WO2010119959A1 - Pneumatic tire for two-wheeled motor vehicle - Google Patents

Pneumatic tire for two-wheeled motor vehicle Download PDF

Info

Publication number
WO2010119959A1
WO2010119959A1 PCT/JP2010/056866 JP2010056866W WO2010119959A1 WO 2010119959 A1 WO2010119959 A1 WO 2010119959A1 JP 2010056866 W JP2010056866 W JP 2010056866W WO 2010119959 A1 WO2010119959 A1 WO 2010119959A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
layer
tread
belt
radial direction
Prior art date
Application number
PCT/JP2010/056866
Other languages
French (fr)
Japanese (ja)
Inventor
辰作 片山
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2010119959A1 publication Critical patent/WO2010119959A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/22Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre
    • B60C9/2204Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel the plies being arranged with all cords disposed along the circumference of the tyre obtained by circumferentially narrow strip winding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/01Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered
    • B60C2011/016Shape of the shoulders between tread and sidewall, e.g. rounded, stepped or cantilevered different rubber for tread wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C2200/00Tyres specially adapted for particular applications
    • B60C2200/10Tyres specially adapted for particular applications for motorcycles, scooters or the like

Definitions

  • the present invention relates to a pneumatic tire for a motorcycle (hereinafter, also simply referred to as “tire”), and more specifically, improves the steering stability performance at high speed, and particularly when accelerating from deep cornering that greatly depresses a vehicle (motorcycle).
  • the present invention relates to a pneumatic tire for a motorcycle that can improve traction performance and stability when the vehicle body is collapsed.
  • a tire structure has been developed in which a reinforcing member (spiral member) made of organic fiber or steel is wound around the tread portion of the tire so as to be substantially parallel to the tire equatorial plane.
  • spiral member used for the spiral belt layer examples include nylon fiber, aromatic polyamide (trade name: Kevlar), and steel.
  • aromatic polyamide and steel have recently been attracting attention because they can suppress expansion of the tread portion without stretching even at high temperatures.
  • a so-called “tangle” effect the tire crown portion is restrained by the spiral member so that the tire is inflated by centrifugal force even when the tire rotates at a high speed.
  • Patent Documents 1 to 5 A number of techniques for improving these spiral members have been proposed so far (for example, Patent Documents 1 to 5). .
  • the end of one side of the tread of the tire comes into contact with the grip to generate a grip.
  • the grounding state as shown in FIG. 8 is obtained.
  • the deformation state of the tread differs between the ground shape near the center and the ground shape near the tread end.
  • the deformation of the tread in the tire rotation direction also referred to as the tire equator direction or the tire front-rear direction
  • the driving state means that when the wheel is cut along the tire equator direction, the deformation of the tread is caused by the lower surface of the tread (the surface in contact with the skeleton member inside the tire) being sheared rearward in the tire traveling direction.
  • This is a shearing state in which the tread surface that is in contact with the ground is deformed forward in the tire traveling direction, which is a deformation that occurs when a driving force is applied to the tire.
  • the braking state is the reverse of the driving state, and the deformation of the tread is a sheared state in which the tire inner side (belt) is sheared forward, and the tread surface that is in contact with the road surface is deformed rearward, This is the movement of the tire when braking.
  • the speed of the belt (when the tire is in contact with the road surface, it means the speed in the tire equator direction along the road surface; the belt radius multiplied by the tire angular speed) is The portion of R1 having a larger radius is faster.
  • the tread surface of the tire is not sheared in the front-rear direction at the moment of contact with the road surface, but proceeds with the rotation of the tire while in contact with the road surface, and undergoes shear deformation in the front-rear direction when leaving the road surface.
  • Such extra deformation during turning causes the tread to undergo forward and backward reverse shear deformation, which includes useless behavior and wasteful tire grip force during turning.
  • the gripping force will be maximum, but the excessive deformation as described above will occur, and depending on the grounding location, the gripping force may be It may not occur.
  • the driving force is applied to the tire, but the tread near the center already in the driving state exhibits the driving grip as soon as the driving force is applied to the tire.
  • the tread at the tread end already in the braking state cannot easily contribute to the driving force because the braking deformation once returns to neutral and then shifts to the deformation on the driving side.
  • a large traction force is required to bring the tread end into the driving state.
  • the tread deformation of the tire shoulder portion (tread end portion) on the braking side is set to the driving side as much as possible, the traction force can be exerted greatly at the tread end portion.
  • One solution is to increase the belt speed at the tread edge.
  • the belt speed is determined by the belt radius as described above, and if the belt radius is increased, the belt cannot be used as a tire for a motorcycle. Therefore, it is conceivable to increase the belt speed by making the belt easily extend in the equator direction at the end of the tread after being grounded.
  • the center half of the grounding shape has a structure in which the belt does not extend in the equator direction, and if the belt is extended in the equator direction for the half on the tread end side, then the tread after grounding.
  • the belt speed on the tread end side is increased, and braking deformation on the tread end side can be reduced.
  • the traction acceleration from a turn with a large tilt of the motorcycle at the time of large CA is improved.
  • the spiral belt layer is usually wound around the entire tread area.
  • the belt of the shoulder portion of the tread cannot be extended in the equator direction. Therefore, if the spiral belt layer is arranged only on the center side without being wound around the tread edge, the belt speed at the tread edge increases at the time of large CA, that is, at the time of turning with a large camber angle. Thus, the traction grip can be improved.
  • the belt speed of the tread shoulder portion increases at the time of large CA, it means that the belt speed of the tread shoulder portion approaches the belt speed on the tread center side, and this causes an extra movement of the tread that is grounded. It is suppressed.
  • the tread that has been sheared in the reverse direction until now has the shear in the same direction, and unnecessary movement is eliminated, and the occurrence of uneven wear can be suppressed.
  • an object of the present invention is to improve the steering stability performance at high speed, and at the same time, improve the traction performance especially when accelerating from deep cornering that greatly defeats the vehicle (bike) and the stability when the vehicle body is collapsed.
  • the object is to provide a pneumatic tire for a motorcycle.
  • the present inventor can solve the above-mentioned problems by reducing the rigidity of the tread portion of the portion wound with the spiral belt layer and increasing the rigidity of the buttress portion to eliminate the rigidity step portion. As a result, the present invention has been completed.
  • the pneumatic tire for a motorcycle of the present invention includes a bead core embedded in each of the pair of left and right bead portions, and a carcass layer including at least one carcass extending across the toroid between the pair of bead portions.
  • a belt layer composed of at least one belt disposed on the outer side in the tire radial direction of the carcass layer, and a tread portion disposed on the outer side in the tire radial direction of the belt layer,
  • a rubber member harder than the rubber member of the tread portion and the rubber member of the sidewall portion is disposed in the buttress portion.
  • the belt layer is provided with a spiral belt layer on the outer side in the tire radial direction of the carcass layer and having an arrangement width wound substantially in the width direction that is 0.5 to 0.8 times the entire tread width.
  • the spiral belt layer is divided into three in the width direction, and the tensile elastic modulus of the cord constituting the end region of the spiral belt layer divided into three is the cord constituting the central region. It is preferable that it is lower than the tensile elastic modulus.
  • the rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion,
  • an average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region in the sidewall portion is 0.2 to 2.0 mm.
  • a belt crossing layer made of an organic fiber cord that is wider than the spiral belt layer and has an angle with respect to the tire equator direction of 30 degrees or more and less than 85 degrees is disposed adjacent to the spiral belt layer.
  • a belt reinforcing layer made of an organic fiber cord having an angle of 85 degrees to 90 degrees with respect to the tire equator direction is in contact with the tread layer between the tread layer of the tread portion and the spiral belt layer.
  • the width is preferably 90% or more and 110% or less, and further, a thickness of 0.3 to 1.5 mm is provided on the inner side in the tire radial direction of the belt reinforcement layer and adjacent to the belt reinforcement layer. It is preferable that a buffer rubber is provided.
  • the above configuration enhances the steering stability performance at high speeds, and particularly improves the traction performance when accelerating from the deep cornering that greatly defeats the vehicle (bike) and the stability when the vehicle body is collapsed. It becomes possible to provide a pneumatic tire for a motorcycle that can be improved.
  • FIG. 1 is a cross-sectional view in a width direction showing a pneumatic tire for a motorcycle according to a preferred example of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to a conventional example. It is sectional drawing which shows the tire just under a load when a two-wheeled vehicle is turning by big CA (CA50 degree
  • FIG. 1 is a cross-sectional view in the width direction of a pneumatic tire for a motorcycle according to a preferred embodiment of the present invention.
  • the pneumatic tire for a motorcycle of the present invention includes at least one bead core 1 embedded in a pair of left and right bead portions 14 and at least one piece extending in a toroidal shape between the pair of bead portions 14.
  • the bead core 1 is made of a bead wire 1
  • the belt layer 3 is made of a spiral belt layer 3
  • the carcass layer has two carcass 2.
  • the pneumatic tire for a motorcycle according to the present invention includes a buttress portion 12, a sidewall portion 13, and a bead portion 14 in order on both sides of the tread portion 11.
  • the rubber member of the tread portion 11 and the sidewall portion 13 are formed on the buttress portion 12 that is in the region closer to the sidewall portion 13 than the end of the tread portion 11 and closer to the end portion of the tread portion 11.
  • a rubber member 4 that is harder than the rubber member is disposed.
  • the buttress portion 12, which is the boundary between the tread portion 11 having the belt layer 3 and the sidewall portion 13, which generally has the belt layer 3 less than the tread portion 11, has a rigid step portion due to the difference in the number of belt layers 3. Become. For this reason, a sudden grip change at the end of the vehicle body in the buttress portion 12 occurs, and there is a problem that the rider feels the level difference of the tire and cannot collapse the vehicle body.
  • a hard rubber member 4 is disposed at the step portion.
  • the compression rigidity is greatly increased due to the incompressibility of the rubber, and the bending rigidity due to the deformation of the stepped portion can be increased.
  • the grip changes gently, and the rider can tilt the vehicle body without feeling uncomfortable.
  • the arrangement width W of the hard rubber member 4 is preferably 0.01 L ⁇ W ⁇ 0.1 L, where L is the total width of the tread.
  • the purpose of the hard rubber member 4 is to alleviate the rigidity step, so that an effect cannot be obtained when the arrangement is made with a very narrow width, and the arrangement width of 0.01 L can provide a certain desired effect of the present invention.
  • This is the lower limit.
  • the upper limit value if it exceeds 0.1L, the effect of increasing the bending rigidity of the side portion is increased, and a decrease in ride comfort due to an increase in spring is induced. did.
  • the hardness of the hard rubber member 4 is preferably 2 to 20 times the hardness of the rubber member of the sidewall portion 13.
  • the purpose of the hard rubber member 4 is to relieve the rigidity step, so that the effect is not obtained with a soft rubber, and the double hardness is a lower limit value that is known to be effective to some extent.
  • the upper limit value if it is harder than 20 times, the effect of increasing the bending rigidity of the sidewall portion 13 is increased, and the ride comfort is lowered due to the increase in spring.
  • the hard rubber member 4 is not limited to a single type of rubber, and may be composed of a plurality of types as long as the average hardness of the hard rubber member 4 is within a specified range. .
  • Shore A hardness is used as an index of the hardness of the rubber member 4.
  • Such Shore A hardness can be measured using a commercially available hardness meter. For example, after tread rubber is cut out and stored in a high temperature chamber kept at 50 ° C. for 30 minutes to bring the rubber temperature to 50 ° C., the hardness meter Can measure the hardness.
  • the belt layer 3 is provided with a spiral belt layer 3 on the outer side in the tire radial direction of the carcass layer and having a wound arrangement width of approximately 0.5 to 0.8 times the entire tread width.
  • the full width of the tread is a distance of a curved surface from one end portion of the tread portion 11 to the end portion of the tread portion 11 on the opposite side along the tire surface.
  • the basis for setting this width is based on the ground contact portion where the CA (Camber angle) at which the motorcycle falls most greatly is around 50 degrees and the ground contact portion where the motorcycle is slightly raised.
  • the above upper limit is an ideal value for grounding when the bike is most collapsed.
  • the motorcycle accelerates the acceleration starts from the time when the motorcycle falls most, and the vehicle body is gradually raised, that is, the ground contact portion of the tire gradually moves from the center. Further, the motorcycle accelerates most in the range of 30 to 45 degrees CA than when the bike fell most at 50 degrees CA.
  • the spiral belt width is narrower than the above 0.8 times width. Therefore, 0.5 times is set as the lower limit of the spiral belt width.
  • the spiral belt layer width is 0.5 times the tread width, the end portion of the spiral belt layer is located at the center in the width direction of the ground contact portion at CA 30 to 40 degrees. If the spiral belt width is less than 0.5 times, the position is shifted from the center in the width direction of the ground contact shape of CA 30 to 40 degrees, which is not preferable. That is, the spiral belt layer 3 is too narrow.
  • the end of the spiral belt layer 3 is positioned at the center of the ground contact shape near the CA of 50 degrees where the motorcycle is most tilted.
  • the grip improvement effect becomes high in the early stage of acceleration.
  • the effect is high at a low-speed corner where a motorcycle is greatly defeated (it is possible to greatly defeat a motorcycle at a low-speed corner).
  • the arrangement width of the spiral belt layer 3 is 0.5 times the tread width which is the lower limit, the end of the spiral belt layer can be arranged at the center of the ground shape when the motorcycle is slightly raised (CA30).
  • the grip improvement effect can be demonstrated in the middle of the acceleration when the vehicle body is slightly raised. In addition, it demonstrates the effect of increasing the grip at high-speed corners that do not overwhelm the bike.
  • the spiral belt layer is arranged so that the center in the width direction coincides with the tire equator. This makes it possible to match the left and right reinforcement directions when the vehicle body is folded down.
  • the cord constituting the spiral belt layer 3 may be an organic fiber cord or a steel cord.
  • organic fiber cords for example, twisted cords such as aromatic polyamide (trade name: Kevlar), nylon, and aromatic polyketone can be used.
  • Kevlar aromatic polyamide
  • nylon nylon
  • aromatic polyketone can be used in the case of a steel cord.
  • steel cord for example, five steel single wires having a wire diameter of 0.2 mm or five steel single wires having a wire diameter of 0.4 mm can be used without being twisted.
  • the spiral belt layer 3 having a winding width of approximately 0.5 to 0.8 times the entire width of the tread is provided outside the carcass layer in the tire radial direction.
  • the effect of relieving the step between the tread portion 11 and the sidewall portion 13 due to the hard rubber member 4 is remarkably obtained.
  • the spiral belt layer 3 is made narrower than the entire width of the tread, the spiral belt layer 3 is suddenly absent when the vehicle body is tilted (in-belt in-plane shear), as compared with the case where the spiral belt layer 3 has the entire tread width. Since the portion where the rigidity is lowered) is grounded, the rigidity step is further promoted.
  • this rigidity step is alleviated and the change in grip can be made smooth. Moreover, since the shearing strain applied to the end portion of the spiral belt layer 3 can be relieved by relaxing the rigidity step, it is possible to prevent a crack failure that tends to occur at the end portion.
  • the organic fiber cord is adjacent to the spiral belt layer 3 and wider than the spiral belt layer 3 and has an angle with respect to the tire equator direction of 30 degrees or more and less than 85 degrees.
  • the belt crossing layer 5 is preferably disposed. This is because if the belt crossing layer is not present at the left and right shoulder portions of the tread portion 11 around which the spiral belt is not wound, the shear rigidity of the belt is lowered, and the belt is too weak. This is because the grip force is reduced.
  • the belt of the shoulder portion is 85 degrees or more, it is not possible to obtain a sufficient crossing effect as the belt crossing layer 5 (an effect of increasing the in-plane shear rigidity of the belt by superimposing belts in opposite directions), The in-plane rigidity of the shoulder belt is insufficient and a sufficient turning grip cannot be obtained.
  • the angle is particularly preferably 45 degrees or more because the skeleton member is easy to extend in the tire equator direction. Moreover, 80 degree
  • the material of the belt crossing layer 5 is an organic fiber cord. If a cord having rigidity in the compression direction of the cord, such as a steel cord, is arranged as the belt crossing layer 5, the skeleton member has a characteristic that it is difficult to bend out of the plane, the ground contact area is reduced, and the grip force is reduced. . If it is an organic fiber cord, it does not have a great rigidity for compression in the cord direction, it can reduce the out-of-plane rigidity of the skeleton member and increase the ground contact area, and it is very strong in the tension direction of the cord This is because the in-plane rigidity can be effectively increased due to the rigidity.
  • the belt crossing layer 5 may be disposed on the outer side in the tire radial direction of the spiral belt layer 3 as shown in FIG. 2, or the tire radius of the spiral belt layer 3 as shown in FIG. If it arrange
  • the angle with respect to the tire equator direction is between 85 degrees and 90 degrees between the tread layer of the tread portion 11 and the spiral belt layer 3 and adjacent to the tread layer. It is also preferable to dispose a belt reinforcing layer 6 made of an organic fiber cord.
  • the rigidity step at the boundary between the portion where the spiral belt layer 3 exists and the portion where the spiral belt layer 3 does not exist is large.
  • the belt reinforcement layer is arranged continuously from the tire center to the tire shoulder as a belt adjacent to the tread layer, that is, as the outermost layer. it can.
  • the reason why the angle of the belt reinforcing layer 6 is set to 90 degrees with respect to the tire equator direction is that the step is most effectively prevented from being felt by arranging the cords along the width direction.
  • the reason why the angle is given a width of 85 degrees to 90 degrees includes a manufacturing error.
  • the arrangement width of the belt reinforcing layer 6 is 90% to 110% of the entire width of the tread.
  • the purpose of the belt reinforcing layer 6 is to prevent the step from being felt, that is, the end of the spiral belt is covered with a member so that the outermost belt is not divided. Therefore, it is preferable to widen the arrangement width and cover the entire area of the tread.
  • the step of the spiral belt can be sufficiently covered.
  • it exceeds 110% there will also be a 90 degree belt in the sidewall portion of the tire, the sidewall will be difficult to bend, and the tire will be hard, that is, the tire will be difficult to bend. There is a risk that performance will deteriorate. Therefore, the upper limit was made 110%.
  • the belt reinforcing layer 6 is made of an organic fiber cord because a motorcycle tire has a very round cross section. If a steel cord having rigidity on the compression side of the cord is used in the tire width direction, the tire will bend. This is because the contact area is reduced. The organic fiber cord has low rigidity on the compression side of the cord, and there is no risk of reducing the ground contact area.
  • the diameter of the cord of the belt reinforcing layer 6 is preferably 0.5 mm or greater and 1.2 mm or less.
  • the belt crossing layer 5 may be provided on the inner side or the outer side of the spiral belt layer 3 in the tire radial direction.
  • the belt reinforcing layer 6 is disposed immediately outside the spiral belt layer 3 in the tire radial direction (see FIG. 3).
  • the belt reinforcing layer 6 is disposed immediately outside the outer belt in the tire radial direction of the two belt crossing layers 5 ( Not shown). In any case, it is necessary to dispose the belt reinforcing layer 6 immediately inside the tread portion 11 in the tire radial direction and adjacent to the tread portion 11.
  • FIG. 4 shows a cross-sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • a buffer having a thickness of 0.3 to 1.5 mm is provided on the inner side in the tire radial direction of the belt reinforcing layer 6 and adjacent to the belt reinforcing layer 6. It is also preferable to dispose the rubber layer 7.
  • the buffer rubber layer 7 has an effect of suppressing wear of the tread of the shoulder portion.
  • FIG. 8 shows the behavior in the tread width direction when the tire turns at a CA of 50 degrees.
  • the deformation of the tread in the tire equator direction also shows the tread end in FIG. 8 in the region where the tread is in contact with the road surface.
  • the tread center area are different. This is because the belt speed is different between the area near the center of the ground contact shape and the area near the tread end of the ground contact shape.
  • the tire of a motorcycle has a large roundness in the cross section in the width direction. Therefore, the belt radius, which is the distance from the rotating shaft to the belt, is larger in the region near the tread center.
  • the speed of the belt that is, the belt speed until the tread moves away from the road surface after the tread comes into contact with the road surface, and the region near the tread center becomes faster.
  • the belt speed is obtained by multiplying the belt radius by the rotational angular velocity of the tire. Due to the speed difference in the equator direction of the belt, the tread is in the driving state near the center of the tire, and the braking state is in the region near the tread end of the tire (described above).
  • the belt in the portion where the spiral belt layer is not disposed extends along the ground in the tire equator direction, and the belt speed is improved.
  • the simple deformation is alleviated.
  • reducing the width of the spiral belt to alleviate it does not completely eliminate the extra deformation.
  • the buffer rubber layer 7 When the buffer rubber layer 7 is provided on the inner side of the belt reinforcing layer 6 in the tire radial direction, the buffer rubber layer 7 shears and deforms in the tire equator direction, so that the buffer rubber layer 7 takes over the driving deformation and braking deformation of the tread. The tread tire equator deformation is further alleviated.
  • the shock absorbing rubber layer 7 since the shock absorbing rubber layer 7 has the belt reinforcing layer 6 along the tire width direction on the upper surface thereof, it is not easily sheared and deformed in the tire width direction. Therefore, the buffer rubber layer 7 does not take over the deformation of the tread in the tire width direction, and the lateral shear deformation of the tread remains large even when the buffer rubber layer 7 is disposed.
  • the shock absorbing rubber layer 7 takes over the deformation of the tread only in the tire equator direction, reduces the deformation of the tread in the tire equator direction, and further improves the grip force, while, on the other hand, the deformation of the tread in the tire width direction. Without changing the shoulder, the lateral deformation of the tread is kept large and the lateral force is kept high.
  • the belt reinforcing layer 6 and the shock absorbing rubber layer 7 are preferably arranged widely, particularly in the range of 90% or more of the tread width, particularly 110% or less.
  • FIG. 5 shows a cross-sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C of the sidewall portion 13 is the outer side in the tire radial direction of the carcass layer in the tread portion side region D of the sidewall portion 13. It is preferable that the average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C is 0.2 to 2.0 mm.
  • the effect of increasing the bending rigidity of the buttress portion 12 is increased, and there is a risk of inducing a decrease in riding comfort due to an increase in springiness.
  • it is effective to reduce this increase in springiness at the sidewall portion 13 near the bead portion 14 that has little influence on the rigidity step. Therefore, by reducing the thickness of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C of the sidewall portion 13, the spring property is reduced.
  • the lower limit of the rubber gauge is set to 0.2 mm because the thinner the rubber gauge, the better. However, if it is less than 0.2 mm, it is difficult to manufacture.
  • the upper limit value is exceeded 2.0 mm, there is no difference from a normal side gauge, so the effect of reducing rigidity cannot be obtained.
  • the upper side in the tire radial direction is the tread portion side region D and the lower side in the tire radial direction is the bead portion side region C.
  • FIG. 6 shows a sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention.
  • the spiral belt layer 3 is divided into three in the width direction, and the tensile elastic modulus (hereinafter simply referred to as “ Is preferably lower than the tensile elastic modulus of the cord constituting the central region A.
  • Is the tensile elastic modulus of the cord constituting the central region A.
  • the tensile elastic modulus of the cord is compared with the value measured under the same conditions such as temperature, and the tensile elastic modulus is measured in accordance with JISL1017-2002.
  • the load-elongation curve obtained at ⁇ 2 ° C. and 55% humidity was calculated from the slope of the tangent and the filament fineness.
  • the ratio when the spiral belt layer 3 is divided into three in the width direction can be set to, for example, both end regions B: 42.5 to 30% with respect to the center region A: 15 to 40%. .
  • the buttress portion 12 satisfies the above conditions such as the placement of a rubber member harder than the rubber member of the tread portion 11 and the rubber member of the sidewall portion 13.
  • the desired effect of the present invention can be obtained, and other conditions such as the tire structure and material are not particularly limited.
  • the carcass 2 that forms the skeleton of the tire of the present invention is composed of at least one carcass ply formed by arranging relatively highly elastic textile cords in parallel with each other.
  • the number of carcass plies may be one or two, or three or more.
  • both ends of the carcass 2 may be sandwiched and locked by the bead wire 1 from both sides as shown in FIG. 1 or the like, or may be folded around the bead core from the inside of the tire to the outside (not shown). Any fixing method may be used.
  • an inner liner is disposed on the innermost layer of the tire (not shown), and a tread pattern is appropriately formed on the surface of the tread portion 11 (not shown).
  • the present invention is applicable not only to radial tires but also to bias tires.
  • Example 1 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 1 was manufactured with a tire size of 190 / 50ZR17 in accordance with the following conditions.
  • the test tire includes a carcass composed of two carcass plies (body plies) extending across a toroid between a pair of bead cores.
  • nylon fiber was used for the carcass ply.
  • the angle of the two carcass was 90 degrees with respect to the radial direction (tire equator direction).
  • the end portion of the carcass ply was sandwiched by bead wires from both sides in the bead portion and locked by the bead core.
  • a spiral belt layer was arranged on the outer side of the carcass in the radial direction of the tire.
  • the spiral belt layer was formed in a so-called spiral shape in which a steel cord twisted by a 1 ⁇ 5 type steel single wire having a diameter of 0.18 mm was spirally wound in the tire equator direction.
  • the spiral belt layer is a method in which a belt-like body in which a single parallel cord is embedded in a coated rubber is wound in a spiral direction along the tire equator direction in the tire rotation axis direction. Formed with.
  • the total width of the spiral belt layer is 170 mm, which corresponds to 0.71 times the total tread width (L) of 240 mm.
  • a rubber member that is harder than the rubber member of the tread portion and the rubber member of the sidewall portion is disposed in the buttress portion.
  • the hard rubber member was arranged with a width of 0.04 L from the end of the tread portion, and the hardness was four times that of the rubber member of the sidewall portion.
  • a belt reinforcing layer made of an aromatic polyamide fiber having an angle of 90 degrees with respect to the tire equator direction was disposed outside the spiral belt layer in the tire radial direction.
  • Aromatic polyamide fibers were twisted to form a cord having a diameter of 0.7 mm, and the cord was driven into 50 cords / 50 mm and arranged at 90 degrees with respect to the tire equator direction.
  • the width is the same as the tread width.
  • a tread layer having a thickness of 7 mm was disposed outside the belt reinforcing layer in the tire radial direction.
  • Example 2 A tire of Example 2 was produced in the same manner as Example 1 except that the spiral belt width was 120 mm (0.5 times the total tread width).
  • Example 3 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 2 was produced according to the following conditions.
  • One carcass ply was arranged in the radial direction (angle with respect to the tire equator direction was 90 degrees).
  • a spiral belt layer exists outside the carcass ply in the tire radial direction.
  • the material and driving of the spiral belt layer are the same as in the first embodiment.
  • Two belt crossing layers (abbreviated as “crossing layers” in Tables 1 and 2) are arranged outside the spiral belt layer in the tire radial direction.
  • the belt crossing layer was formed by twisting aromatic polyamide into a cord having a diameter of 0.5 mm and placing it at 50 pieces / 50 mm.
  • the angle of the belt crossing layer is 60 degrees with respect to the tire equator direction, and crosses each other.
  • the width of the belt crossing layer was 250 mm on the first sheet (inner side) and 230 mm on the second sheet (outer side).
  • a belt reinforcing layer of 90 degrees with respect to the tire equator direction is not provided outside the belt crossing layer in the tire radial direction.
  • the tire of Example 3 was manufactured in the same manner as Example 1 except for the above.
  • Example 4 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 3 was produced according to the following conditions. One carcass ply was placed in the radial direction. In addition, two belt crossing layers similar to those in Example 3 were disposed on the inner side in the tire radial direction of the spiral belt layer. Therefore, in this case, the belt crossing layer exists immediately outside the carcass in the tire radial direction, and the spiral belt layer exists outside the belt crossing layer in the tire radial direction. The configuration of the spiral belt layer is the same as that of Example 3. A belt reinforcing layer having an angle of 90 degrees with respect to the tire equator direction exists outside the spiral belt layer in the tire radial direction. The outermost belt reinforcing layer has the same configuration as in the first embodiment. A tread exists on the outer side in the tire radial direction of the outermost belt reinforcing layer.
  • Example 5 A tire of Example 5 was produced in the same manner as Example 4 except that the belt reinforcing layer on the outer side in the tire radial direction of the spiral belt layer of Example 4 was removed.
  • Example 6 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 4 was produced according to the following conditions.
  • a rubber layer having a thickness of 0.6 mm is disposed on the inner side in the tire radial direction of the outermost belt reinforcing layer.
  • the material of the rubber layer is the same as the coating rubber used for the belt reinforcing layer.
  • the width of the rubber layer is also the same as the width 240 mm of the belt reinforcing layer. Otherwise, the tire of Example 6 was made in the same manner as Example 4.
  • Example 7 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 5 was produced according to the following conditions.
  • the rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is made thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion, and in the bead portion side region
  • the average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer was set to 1.0 mm. Otherwise, the tire of Example 7 was made in the same manner as Example 6.
  • Example 8 A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 6 was produced according to the following conditions.
  • an aromatic polyamide fiber is twisted and driven with a cord having a diameter of 0.7 mm to make 50 pieces / 50 mm, and a steel cord is used as a member in the center region of the spiral belt layer.
  • the tensile elastic modulus of the cord of the member in both end regions was made lower than the tensile elastic modulus of the cord of the member in the central region.
  • the ratio of each region was set to 40% for both end regions B with respect to 20% for the central region A: 20%. Otherwise, the tire of Example 8 was made in the same manner as Example 6.
  • Examples 9 to 12 have the same configuration as that of Example 4, and only the types of rubber members arranged in the buttress portion are changed as shown in Tables 1 and 2 below.
  • a pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 7 was produced according to the following conditions.
  • One carcass ply was placed in the radial direction.
  • a belt crossing layer was disposed outside the carcass in the radial direction of the tire.
  • the material of the belt crossing layer is the same as in Example 3.
  • One spiral belt layer is disposed outside the belt crossing layer in the tire radial direction.
  • the spiral belt is a steel belt, and driving is 50 pieces / 50 mm.
  • Comparative Example 1 A tire of Comparative Example 1 was produced in the same manner as in Example 4 except that there was no rubber member arranged in the buttress portion.
  • Comparative Example 2 A tire of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the spiral belt layer width was 100 mm.
  • Example 13 A tire of Example 13 was made in the same manner as Example 4 except that the rubber member was 0.15 L wide from the end of the tread part and arranged in the buttress part.
  • Example 14 A tire of Example 14 was produced in the same manner as in Example 4 except that the rubber member disposed in the buttress portion was very hard, 25 times as hard as the rubber member in the sidewall portion.
  • Tables 1 and 2 summarize the tire structures of Examples 1 to 14, Comparative Examples 1 and 2, and Conventional Examples 1 and 2.
  • sandpaper was pasted on a drum with a diameter of 3 m, and the surface of the sandpaper was likened to the road surface.
  • the drum was rolled at a speed of 80 km / h, and a tire was pressed onto the drum at a CA of 35 degrees and a CA of 50 degrees.
  • Each test tire was filled with an internal pressure of 240 kPa and pressed with a load of 1471 N (150 kgf).
  • the tire has a chain that transmits power to the rotating shaft, and a driving force can be applied.
  • the driving force was applied using a motor.
  • the tire was rotated at 80 km / h, and driving force was applied to accelerate the tire linearly to 120 km / h in a time of 3 seconds. At this time, since the drum rolls at 80 km / h, the driving force is applied to the tire, and the traction can be measured with the vehicle body tilted.
  • the force acting in the direction parallel to the tire rotation axis (that is, the tire width direction) and the force acting in the direction perpendicular to the tire rotation axis are measured by a force sensor installed at the center of the tire wheel, and these forces are measured by the camber.
  • the force in the drum width direction and the drum rotation direction are decomposed according to the angle, the force in the drum width direction is Fy, and the force in the drum rotation direction is Fx (Fx and Fy are coordinates with respect to the ground). That is, Fy indicates a lateral force for turning the motorcycle, and Fx indicates a driving force for accelerating the motorcycle.
  • the intercept of Fy at Fx0 indicates a pure lateral force at a driving force of 0, and this is a force called camber thrust.
  • the grip performance of a tire in a traction state can be evaluated by applying a driving force to the tire to accelerate the rotation of the tire. With time, the waveform of the graph moves in the positive direction of Fx.
  • the maximum value of Fx can be said to be an index of traction grip.
  • test tire was mounted on a 1000cc sports-type motorcycle, and the vehicle was run on a test course.
  • the steering stability (cornering performance) was comprehensively evaluated by a 10-point method based on the feeling of the test rider.
  • the test items are low-speed corner traction performance (acceleration performance from a state where the vehicle body is largely defeated at a speed of 50 km / h), high-speed corner traction performance (acceleration performance from a state where the vehicle body is slightly defeated at a speed of 120 km / h),
  • the grip stability discontinuity when the car body is tilted down.
  • Table 3 The test results obtained are summarized in Table 3.
  • * 1 Indicates the width and hardness from the end of the tread part of the rubber member.
  • * 2 The value in parentheses is the ratio of the width of the spiral belt layer to the tread width.
  • * 3 The average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead side region.
  • Example 1 there is no crossing belt. Therefore, manufacturing costs can be saved.
  • the Fx index of the CA 35 degree and the CA 50 degree is improved in the example 1, and the traction performance is improved in the actual vehicle test in both the low speed corner and the high speed corner. I understand that.
  • Examples 3 and 5 have two crossing belts. Compared with the prior art examples 1 and 2, the traction performance is significantly improved.
  • Example 4 shows that the traction performance is improved by the buffer rubber layer.
  • Example 5 shows the effect of the outermost belt reinforcing layer and the buffer rubber layer on the stability when folded.
  • the rigidity step is eliminated and the stability is increased.
  • Example 4 From the comparison between Example 4 and Examples 9 to 14 and Comparative Example 1, it can be seen that the arrangement width of the hard rubber member in the buttress portion and the effect on the stability when collapsed are brought down.
  • the rubber member For stability when collapsed, the rubber member is effective if there is an arrangement width of about 0.01 L and a hardness of about twice, but Comparative Example 1 below (when there is no rubber member) ) Is clearly ineffective. Further, the rubber member is effective even when the arrangement width is about 0.1 L and the hardness is about 20 times, but it is harder than that (Example 13: 0.15 L) and hard (Example 14: 25 times). In some cases, in the stability at the time of collapse, the effect is diminished and the improvement effect cost is small. From this result, it can be seen that the arrangement width of the rubber member should be about 0.01 L to 0.1 L and the hardness should be 2 to 20 times.
  • Examples 7 and 8 are obtained by adding conditions for buffer rubber layer, rubber gauge thinning and spiral belt end member change to Example 4.
  • both the traction performance and the stability performance when collapsed are the best results, and it can be seen that the performance improvement at a much higher level can be achieved compared to the conventional example.
  • the result exceeds the conventional example in which the spiral belt layer is arranged to the end, and the effect of the above combination can be seen.

Abstract

A pneumatic tire for a two-wheeled motor vehicle, having enhanced driving stability performance during high-speed running, improved traction performance when the vehicle (motorcycle) is accelerated from the speed of running along a sharp curve during which the vehicle is largely tilted, and improves stability when the vehicle is tilted. A pneumatic tire for a two-wheeled motor vehicle, comprising: bead cores respectively embedded in a left and right pair of bead sections (14); a carcass layer consisting of at least one sheet of a carcass (2) toroidally extending between the pair of bead sections (14); a belt layer (3) consisting at least one sheet of a belt disposed on the outer side of the carcass layer in the radial direction of the tire; and a tread section (11) disposed on the outer side of the belt layer (3) in the radial direction of the tire. Buttress sections (12), side wall sections (13), and the bead sections (14) are provided in sequence to both sides of the tread section (11). Rubber members harder than a rubber member of the tread section (11) and rubber members of the side wall sections (13) are provided to the buttress sections (12).

Description

自動二輪車用空気入りタイヤPneumatic tires for motorcycles
 本発明は自動二輪車用空気入りタイヤ(以下、単に「タイヤ」とも称する)に関し、詳しくは、高速時の操縦安定性能を高めると共に、特に車両(バイク)を大きく倒す深いコーナリング時から加速する時のトラクション性能と車体倒しこみ時の安定性を向上させることができる自動二輪車用空気入りタイヤに関する。 The present invention relates to a pneumatic tire for a motorcycle (hereinafter, also simply referred to as “tire”), and more specifically, improves the steering stability performance at high speed, and particularly when accelerating from deep cornering that greatly depresses a vehicle (motorcycle). The present invention relates to a pneumatic tire for a motorcycle that can improve traction performance and stability when the vehicle body is collapsed.
 高性能二輪車用タイヤでは、タイヤの回転速度が高速となるため、遠心力の影響が大きく、タイヤのトレッド部分が外側に膨張してしまい、操縦安定性能を害する場合がある。このため、タイヤのトレッド部分に、有機繊維やスチールの補強部材(スパイラル部材)を、タイヤ赤道面と概略平行となるように、巻回するタイヤ構造が開発されている。 In high-performance motorcycle tires, since the rotational speed of the tire is high, the influence of centrifugal force is large, and the tread portion of the tire expands outward, which may impair steering stability performance. Therefore, a tire structure has been developed in which a reinforcing member (spiral member) made of organic fiber or steel is wound around the tread portion of the tire so as to be substantially parallel to the tire equatorial plane.
 このスパイラルベルト層に用いられるスパイラル部材としては、例えば、ナイロン繊維や、芳香族ポリアミド(商品名:ケブラー)、スチールなどが挙げられる。中でも、芳香族ポリアミドやスチールは、高温時においても伸張せずにトレッド部分の膨張を抑制することができることから、最近、注目されつつある。かかるスパイラル部材をタイヤのクラウン部分に巻きつけた場合に、いわゆる「たが」効果(タイヤクラウン部をスパイラル部材で拘束することで、高速でタイヤが回転した場合でもタイヤが遠心力で膨らむことを防止し、高い操縦安定性能や耐久性を発揮させる効果)を高めることができるので、これらスパイラル部材の改良に係る技術が、これまでに多数提案されてきている(例えば、特許文献1~5)。 Examples of the spiral member used for the spiral belt layer include nylon fiber, aromatic polyamide (trade name: Kevlar), and steel. Among them, aromatic polyamide and steel have recently been attracting attention because they can suppress expansion of the tread portion without stretching even at high temperatures. When such a spiral member is wound around the crown portion of the tire, a so-called “tangle” effect (the tire crown portion is restrained by the spiral member so that the tire is inflated by centrifugal force even when the tire rotates at a high speed. A number of techniques for improving these spiral members have been proposed so far (for example, Patent Documents 1 to 5). .
 これらスパイラル部材を巻きつけたタイヤは、高速時の操縦安定性能が優れ、トラクションが非常に高いことが知られている。しかし、車両(バイク)を大きく倒した場合の旋回性能については、スパイラル部材を巻きつけた場合でも、操縦安定性能が飛躍的に向上することはない。そのため、消費者やレースを行うライダーからは、バイクを大きく倒した時のグリップ性能の向上を要望されることもある。 It is known that tires wound with these spiral members have excellent steering stability performance at high speeds and very high traction. However, with regard to the turning performance when the vehicle (motorcycle) is largely tilted, the steering stability performance is not dramatically improved even when the spiral member is wound. For this reason, consumers and riders who are racing may be required to improve grip performance when the motorcycle is greatly defeated.
特開2004-067059号公報JP 2004-067059 A 特開2004-067058号公報JP 2004-067058 A 特開2003-011614号公報JP 2003-011614 A 特開2002-316512号公報JP 2002-316512 A 特開平09-226319号公報JP 09-226319 A
 二輪車用の空気入りタイヤでは、二輪車が車体を傾けて旋回することから、直進時と旋回時とでは、タイヤトレッド部が地面と接する場所が異なる。すなわち、直進時にはトレッド部分の中央部分を使い、旋回時にはトレッド部分の端部を使う特徴がある。そのため、タイヤの形状が、乗用車用タイヤに比べて非常に丸い。この丸いクラウン形状(タイヤのトレッド部分の形状をクラウン形状と呼ぶ)によって、特に旋回中においては、次のような独特な特性を有する。 In a pneumatic tire for a motorcycle, since the motorcycle turns while tilting the vehicle body, the place where the tire tread portion is in contact with the ground is different between when going straight and when turning. That is, the center portion of the tread portion is used when going straight, and the end portion of the tread portion is used when turning. Therefore, the shape of the tire is very round compared to the tire for passenger cars. This round crown shape (the shape of the tread portion of the tire is called a crown shape) has the following unique characteristics, particularly during turning.
 自動二輪車用のタイヤでは、特に車体を大きく倒した場合の旋回性能については、タイヤのトレッドの片側の端部が接地してグリップを発生させている。車体を大きく倒して旋回する場合、図8のような接地状態となる。このときの接地形状について考察すると、図示するように、接地形状のセンター寄りと、接地形状のトレッド端部寄りでは、トレッドの変形状態が異なる。トレッドのタイヤ回転方向(タイヤ赤道方向、またはタイヤ前後方向とも呼ぶ)の変形を見てみると、タイヤのセンター寄りではドライビング状態であり、タイヤのトレッド端部寄りではブレーキング状態である。 In the case of motorcycle tires, particularly when the vehicle body is greatly tilted, the end of one side of the tread of the tire comes into contact with the grip to generate a grip. When turning the vehicle body greatly, the grounding state as shown in FIG. 8 is obtained. Considering the ground contact shape at this time, as shown in the drawing, the deformation state of the tread differs between the ground shape near the center and the ground shape near the tread end. Looking at the deformation of the tread in the tire rotation direction (also referred to as the tire equator direction or the tire front-rear direction), it is in the driving state near the center of the tire and in the braking state near the tread end of the tire.
 ここで、ドライビング状態とは、タイヤ赤道方向に沿って輪切りにした場合に、そのトレッドの変形が、トレッド下面(タイヤ内部の骨格部材に接している面)がタイヤ進行方向後方に剪断され、路面に接地しているトレッド表面がタイヤ進行方向前方に変形している剪断状態であり、ちょうどタイヤに駆動力をかけたときに起こる変形である。一方、ブレーキング状態はドライビング状態の逆であり、トレッドの変形は、タイヤ内部側(ベルト)が前方に剪断され、路面に接地しているトレッド表面が後方に変形している剪断状態であり、制動したときのタイヤの動きとなる。 Here, the driving state means that when the wheel is cut along the tire equator direction, the deformation of the tread is caused by the lower surface of the tread (the surface in contact with the skeleton member inside the tire) being sheared rearward in the tire traveling direction. This is a shearing state in which the tread surface that is in contact with the ground is deformed forward in the tire traveling direction, which is a deformation that occurs when a driving force is applied to the tire. On the other hand, the braking state is the reverse of the driving state, and the deformation of the tread is a sheared state in which the tire inner side (belt) is sheared forward, and the tread surface that is in contact with the road surface is deformed rearward, This is the movement of the tire when braking.
 図8のように、キャンバー角(CA)が50度のように大きな角度で傾いて旋回する場合は、タイヤに駆動力や制動力が加わっていない状態での回転でも、トレッドセンター寄りの接地領域にドライビング状態が現れ、トレッド端部寄りにブレーキング状態が現れる。これは、タイヤのベルト部の半径の差(径差)による。自動二輪車用のタイヤでは、タイヤクラウン部が大きな丸みを帯びているため、回転軸からベルトまでの距離が、トレッドセンター部と、トレッド端部で大きく異なる。図8の場合では、接地形状のセンター寄りの位置での半径R1は、接地形状のトレッド端部寄りの位置での半径R2よりも明らかに大きい。タイヤが回転する角速度は同じであるので、ベルト部の速度(タイヤが路面に接触している場合は、路面に沿ったタイヤ赤道方向の速度をいう。ベルト半径にタイヤ角速度をかけたもの)は、半径の大きいR1の部分の方が速い。タイヤのトレッド表面は、路面に接触した瞬間は、前後方向に剪断されていないが、路面に接触したままタイヤの回転に合わせて進み、路面から離れるときには前後方向の剪断変形を受けている。このとき、ベルトの速度が速いタイヤセンター寄りのトレッドはドライビング状態の剪断変形となり、タイヤのトレッド端部では、ベルトの速度が遅いのでブレーキング状態となる。これが、トレッドの前後方向の変形形態である。 As shown in FIG. 8, when turning with a large camber angle (CA) such as 50 degrees, the ground contact area near the tread center even when the tire is rotated without driving force or braking force. The driving state appears at the front and the braking state appears near the tread edge. This is due to the difference in the radius of the belt portion of the tire (diameter difference). In a motorcycle tire, since the tire crown portion is rounded, the distance from the rotating shaft to the belt is greatly different between the tread center portion and the tread end portion. In the case of FIG. 8, the radius R1 near the center of the ground contact shape is obviously larger than the radius R2 near the tread edge of the ground shape. Since the angular speed at which the tire rotates is the same, the speed of the belt (when the tire is in contact with the road surface, it means the speed in the tire equator direction along the road surface; the belt radius multiplied by the tire angular speed) is The portion of R1 having a larger radius is faster. The tread surface of the tire is not sheared in the front-rear direction at the moment of contact with the road surface, but proceeds with the rotation of the tire while in contact with the road surface, and undergoes shear deformation in the front-rear direction when leaving the road surface. At this time, the tread near the tire center where the belt speed is fast becomes shearing deformation in the driving state, and at the tread end portion of the tire, the belt speed is low, so that the braking state occurs. This is a modification of the tread in the front-rear direction.
 このような旋回中の余計な変形によって、トレッドが前方や後方の逆の剪断変形を起こすことから、無駄な挙動を含み、旋回時のタイヤグリップ力に無駄が生じる。理想的には、接地しているトレッドの変形が全て同じ挙動であれば、グリップ力は最大になるが、先のような余計な変形が発生して、接地している場所によってはグリップ力が発生しない場合がある。例えば、タイヤが傾いたまま加速するときを考えると、タイヤに駆動力が加わるわけであるが、すでにドライビング状態にあるセンター寄りのトレッドは、駆動力がタイヤに加わるとすぐに駆動グリップを発揮する一方、すでにブレーキング状態にあるトレッド端のトレッドは、一度ブレーキング変形がニュートラルに戻り、それから駆動側の変形へとシフトするため、なかなか駆動力に寄与できない。トレッド端部をドライビング状態にするためには、大きなトラクション力が必要であり、このようなトラクション力を加えるためにアクセルを開いてタイヤに駆動力を加えると、もともとドライビング状態にあるタイヤセンター側のトレッドが滑って空転状態に陥りやすい。 Such extra deformation during turning causes the tread to undergo forward and backward reverse shear deformation, which includes useless behavior and wasteful tire grip force during turning. Ideally, if all the deformations of the tread that are in contact with the ground are the same, the gripping force will be maximum, but the excessive deformation as described above will occur, and depending on the grounding location, the gripping force may be It may not occur. For example, when considering acceleration when the tire is tilted, the driving force is applied to the tire, but the tread near the center already in the driving state exhibits the driving grip as soon as the driving force is applied to the tire. On the other hand, the tread at the tread end already in the braking state cannot easily contribute to the driving force because the braking deformation once returns to neutral and then shifts to the deformation on the driving side. A large traction force is required to bring the tread end into the driving state. When the accelerator is opened and a driving force is applied to the tire to apply such a traction force, the tire center side in the driving state is originally The tread slips easily and falls into an idle state.
 このような問題に対して、もともとブレーキング側にあるタイヤショルダー部(トレッド端部)のトレッド変形を、少しでもドライビング側にしておけば、トレッド端部でもトラクション力を大きく発揮できると考えられる。このためには、トレッド端部でのベルトの速度を速めることが解決方法の1つである。ところが、ベルトの速度は先に述べたようにベルト半径によって決まっており、ベルト半径を大きくすると二輪車のタイヤとして存在できなくなる。そこで、トレッドの端部については、接地してから赤道方向にベルトが伸びやすくすることで、ベルト速度を速めることが考えられる。すなわち、大CA時の旋回において、接地形状のセンター側半分についてはベルトが赤道方向に伸びない構造とし、トレッド端側の半分についてはベルトが赤道方向に伸びるようにすれば、接地してからトレッド側のベルトが伸びることでトレッド端側のベルト速度が増し、トレッド端側のブレーキング変形を少なくすることができる。その結果、大CA時のトラクション(バイクを大きく傾けた旋回からの加速)性能が向上する。 For such problems, it is considered that if the tread deformation of the tire shoulder portion (tread end portion) on the braking side is set to the driving side as much as possible, the traction force can be exerted greatly at the tread end portion. One solution is to increase the belt speed at the tread edge. However, the belt speed is determined by the belt radius as described above, and if the belt radius is increased, the belt cannot be used as a tire for a motorcycle. Therefore, it is conceivable to increase the belt speed by making the belt easily extend in the equator direction at the end of the tread after being grounded. In other words, when turning at a large CA, if the center half of the grounding shape has a structure in which the belt does not extend in the equator direction, and if the belt is extended in the equator direction for the half on the tread end side, then the tread after grounding. By extending the belt on the side, the belt speed on the tread end side is increased, and braking deformation on the tread end side can be reduced. As a result, the traction (acceleration from a turn with a large tilt of the motorcycle) at the time of large CA is improved.
 従来の二輪車用タイヤにおいては、スパイラルベルト層をトレッドの全領域に巻き付けることが普通である。このようなタイヤであると、トレッドのショルダー部のベルトを赤道方向に延ばすことはできない。そこで、スパイラルベルト層をトレッド端部の範囲に巻かずに、センター側だけの配設することとすれば、大CA時、すなわち、大きくキャンバー角度が付く旋回時に、トレッド端部のベルト速度が増して、トラクショングリップを向上させることができる。また、大CA時にトレッドショルダー部のベルト速度が増すということは、トレッドショルダー部のベルト速度がトレッドセンター側のベルト速度に近づくことを意味し、これにより、接地しているトレッドの余計な動きが抑制される。すなわち、これまで逆方向の剪断を持っていたトレッドが、同じ方向の剪断を持つこととなり、無駄な動きが排除されて、偏摩耗の発生も抑制することができる。また、トレッドセンター部にはスパイラルベルト層が配設されているため、高速走行時(速度が速い=バイクが直立している)のタイヤの遠心力による膨張を抑制することができ、結果として、高速時の操縦安定性能を、全幅のスパイラルベルト層を持つタイヤ並みに維持することができる。 In conventional motorcycle tires, the spiral belt layer is usually wound around the entire tread area. With such a tire, the belt of the shoulder portion of the tread cannot be extended in the equator direction. Therefore, if the spiral belt layer is arranged only on the center side without being wound around the tread edge, the belt speed at the tread edge increases at the time of large CA, that is, at the time of turning with a large camber angle. Thus, the traction grip can be improved. In addition, when the belt speed of the tread shoulder portion increases at the time of large CA, it means that the belt speed of the tread shoulder portion approaches the belt speed on the tread center side, and this causes an extra movement of the tread that is grounded. It is suppressed. That is, the tread that has been sheared in the reverse direction until now has the shear in the same direction, and unnecessary movement is eliminated, and the occurrence of uneven wear can be suppressed. In addition, since the spiral belt layer is disposed in the tread center portion, it is possible to suppress the expansion due to the centrifugal force of the tire during high speed running (high speed = the motorcycle is upright). Steering stability at high speeds can be maintained at the same level as a tire with a full width spiral belt layer.
 しかしながら、トレッド端部の範囲にスパイラルベルト層を巻かない場合、車体を倒していく際に急にスパイラルベルト層が無い領域が接地することは、急なグリップ変化(剛性段差の変化)の要因にもなり、ライダーがタイヤの段差を感じて車体を倒し込めなくなるという問題が発生することもある。 However, if the spiral belt layer is not wound around the end of the tread, the region where there is no spiral belt layer suddenly touches the ground when the vehicle is tilted down, which is a cause of sudden grip changes (changes in rigidity steps). Also, there may be a problem that the rider feels the difference in level of the tires and cannot defeat the car body.
 そこで本発明の目的は、高速時の操縦安定性能を高めると共に、特に車両(バイク)を大きく倒す深いコーナリング時から加速する時のトラクション性能と車体倒しこみ時の安定性を向上させることができる自動二輪車用空気入りタイヤを提供することにある。 Accordingly, an object of the present invention is to improve the steering stability performance at high speed, and at the same time, improve the traction performance especially when accelerating from deep cornering that greatly defeats the vehicle (bike) and the stability when the vehicle body is collapsed. The object is to provide a pneumatic tire for a motorcycle.
 上記観点から、本発明者はさらに検討した結果、スパイラルベルト層を巻いた部分のトレッド部の剛性を低下させ、かつバットレス部の剛性を高めて剛性段差部をなくすことにより、上記課題を解決できることを見出して、本発明を完成するに至った。 From the above viewpoint, as a result of further studies, the present inventor can solve the above-mentioned problems by reducing the rigidity of the tread portion of the portion wound with the spiral belt layer and increasing the rigidity of the buttress portion to eliminate the rigidity step portion. As a result, the present invention has been completed.
 すなわち、本発明の自動二輪車用空気入りタイヤは、左右一対のビード部にそれぞれ埋設されたビードコアと、該一対のビード部間にトロイド状に跨って延在する少なくとも1枚のカーカスからなるカーカス層と、該カーカス層のタイヤ半径方向外側に配設された少なくとも1枚のベルトからなるベルト層と、該ベルト層のタイヤ半径方向外側に配置されたトレッド部と、を有し、該トレッド部の両側にバットレス部、サイドウォール部および前記ビード部を順次備える自動二輪車用空気入りタイヤにおいて、
 前記バットレス部に、前記トレッド部のゴム部材および前記サイドウォール部のゴム部材よりも硬いゴム部材を配置したことを特徴とするものである。
That is, the pneumatic tire for a motorcycle of the present invention includes a bead core embedded in each of the pair of left and right bead portions, and a carcass layer including at least one carcass extending across the toroid between the pair of bead portions. A belt layer composed of at least one belt disposed on the outer side in the tire radial direction of the carcass layer, and a tread portion disposed on the outer side in the tire radial direction of the belt layer, In a pneumatic tire for a motorcycle that sequentially includes a buttress portion, a sidewall portion, and the bead portion on both sides,
A rubber member harder than the rubber member of the tread portion and the rubber member of the sidewall portion is disposed in the buttress portion.
 本発明においては、前記ベルト層として、前記カーカス層のタイヤ半径方向外側に、略幅方向に巻回された配置幅がトレッド全幅の0.5~0.8倍であるスパイラルベルト層を備えていることが好ましく、また、前記スパイラルベルト層が幅方向に3分割されてなり、3分割された該スパイラルベルト層の両端部領域を構成するコードの引張り弾性率が、中央部領域を構成するコードの引張り弾性率よりも低いことが好ましい。さらに、前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージが、前記サイドウォール部のうちトレッド部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージよりも薄く、かつ、前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージの平均値が0.2~2.0mmであることが好ましい。さらにまた、前記スパイラルベルト層に隣接して、該スパイラルベルト層よりも広幅であって、かつ、タイヤ赤道方向に対する角度が30度以上85度未満である有機繊維コードからなるベルト交錯層が配設されていることが好ましい。また、前記トレッド部のトレッド層と前記スパイラルベルト層との間に、該トレッド層に接して、タイヤ赤道方向に対する角度が85度~90度である有機繊維コードからなるベルト補強層が、トレッド全幅の90%以上110%以下の幅で配設されていることが好ましく、さらに、前記ベルト補強層のタイヤ半径方向内側に、前記ベルト補強層に隣接して、厚み0.3~1.5mmの緩衝ゴムが、配設されていることが好ましい。 In the present invention, the belt layer is provided with a spiral belt layer on the outer side in the tire radial direction of the carcass layer and having an arrangement width wound substantially in the width direction that is 0.5 to 0.8 times the entire tread width. Preferably, the spiral belt layer is divided into three in the width direction, and the tensile elastic modulus of the cord constituting the end region of the spiral belt layer divided into three is the cord constituting the central region. It is preferable that it is lower than the tensile elastic modulus. Further, the rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion, In addition, it is preferable that an average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region in the sidewall portion is 0.2 to 2.0 mm. Further, adjacent to the spiral belt layer, a belt crossing layer made of an organic fiber cord that is wider than the spiral belt layer and has an angle with respect to the tire equator direction of 30 degrees or more and less than 85 degrees is disposed. It is preferable that Further, a belt reinforcing layer made of an organic fiber cord having an angle of 85 degrees to 90 degrees with respect to the tire equator direction is in contact with the tread layer between the tread layer of the tread portion and the spiral belt layer. The width is preferably 90% or more and 110% or less, and further, a thickness of 0.3 to 1.5 mm is provided on the inner side in the tire radial direction of the belt reinforcement layer and adjacent to the belt reinforcement layer. It is preferable that a buffer rubber is provided.
 本発明によれば、上記構成としたことにより、高速時の操縦安定性能を高めると共に、特に車両(バイク)を大きく倒す深いコーナリング時から加速する時のトラクション性能と車体倒しこみ時の安定性を向上させることができる自動二輪車用空気入りタイヤを提供することが可能となる。 According to the present invention, the above configuration enhances the steering stability performance at high speeds, and particularly improves the traction performance when accelerating from the deep cornering that greatly defeats the vehicle (bike) and the stability when the vehicle body is collapsed. It becomes possible to provide a pneumatic tire for a motorcycle that can be improved.
本発明の一好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。1 is a cross-sectional view in a width direction showing a pneumatic tire for a motorcycle according to a preferred example of the present invention. 本発明の他の好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to another preferred embodiment of the present invention. 本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. 本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. 本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. 本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. 従来例に係る自動二輪車用空気入りタイヤを示す幅方向断面図である。FIG. 6 is a cross-sectional view in the width direction showing a pneumatic tire for a motorcycle according to a conventional example. 二輪車が大きなCA(CA50度)で旋回しているときの荷重直下におけるタイヤを示す断面図である。It is sectional drawing which shows the tire just under a load when a two-wheeled vehicle is turning by big CA (CA50 degree | times). FxとFyとの関係を示す摩擦楕円を示すグラフである。It is a graph which shows the friction ellipse which shows the relationship between Fx and Fy.
 以下、本発明の好適な実施形態について、図面を参照しつつ詳細に説明する。
 図1に、本発明の一好適例の自動二輪車用空気入りタイヤの幅方向断面図を示す。図示するように、本発明の自動二輪車用空気入りタイヤは、左右一対のビード部14にそれぞれ埋設されたビードコア1と、一対のビード部14間にトロイド状に跨って延在する少なくとも1枚のカーカス2からなるカーカス層と、該カーカス層のタイヤ半径方向外側に配設された少なくとも1枚のベルトからなるベルト層3と、該ベルト層3のタイヤ半径方向外側に配置されたトレッド部11と、を有している、なお、図示する例では、ビードコア1はビードワイヤ1からなり、ベルト層3は、スパイラルベルト層3からなり、カーカス層は2枚のカーカス2を備えている。また、本発明の自動二輪車用空気入りタイヤは、トレッド部11の両側にバットレス部12、サイドウォール部13およびビード部14を順次備えている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view in the width direction of a pneumatic tire for a motorcycle according to a preferred embodiment of the present invention. As shown in the figure, the pneumatic tire for a motorcycle of the present invention includes at least one bead core 1 embedded in a pair of left and right bead portions 14 and at least one piece extending in a toroidal shape between the pair of bead portions 14. A carcass layer made of the carcass 2, a belt layer 3 made of at least one belt disposed on the outer side in the tire radial direction of the carcass layer, and a tread portion 11 arranged on the outer side in the tire radial direction of the belt layer 3. In the illustrated example, the bead core 1 is made of a bead wire 1, the belt layer 3 is made of a spiral belt layer 3, and the carcass layer has two carcass 2. The pneumatic tire for a motorcycle according to the present invention includes a buttress portion 12, a sidewall portion 13, and a bead portion 14 in order on both sides of the tread portion 11.
 本発明のタイヤにおいては、トレッド部11の端よりサイドウォール部13側の領域で、かつトレッド部11の端部寄りの領域であるバットレス部12に、トレッド部11のゴム部材およびサイドウォール部13のゴム部材よりも硬いゴム部材4が配置されている。ベルト層3を有するトレッド部11と、一般的にトレッド部11よりベルト層3が少ないサイドウォール部13と、の境界部であるバットレス部12は、ベルト層3の数の違いにより剛性段差部となる。そのため、バットレス部12では車体を倒し終わる際の急なグリップの変化が発生することになり、ライダーがタイヤの段差を感じて車体を倒し込めなくなるという問題が発生する。この急激な剛性段差を緩和するため、該段差部に硬いゴム部材4を配置するものである。硬いゴム部材4を配置することで、ゴムの非圧縮性により大幅に圧縮剛性が上がり、該段差部の変形による曲げ剛性を上げることができる。その結果、かかる構成を用いることでグリップの変化がなだらかになり、ライダーは違和感なく車体を倒し込むことが可能となる。 In the tire of the present invention, the rubber member of the tread portion 11 and the sidewall portion 13 are formed on the buttress portion 12 that is in the region closer to the sidewall portion 13 than the end of the tread portion 11 and closer to the end portion of the tread portion 11. A rubber member 4 that is harder than the rubber member is disposed. The buttress portion 12, which is the boundary between the tread portion 11 having the belt layer 3 and the sidewall portion 13, which generally has the belt layer 3 less than the tread portion 11, has a rigid step portion due to the difference in the number of belt layers 3. Become. For this reason, a sudden grip change at the end of the vehicle body in the buttress portion 12 occurs, and there is a problem that the rider feels the level difference of the tire and cannot collapse the vehicle body. In order to relieve this steep rigidity step, a hard rubber member 4 is disposed at the step portion. By disposing the hard rubber member 4, the compression rigidity is greatly increased due to the incompressibility of the rubber, and the bending rigidity due to the deformation of the stepped portion can be increased. As a result, by using such a configuration, the grip changes gently, and the rider can tilt the vehicle body without feeling uncomfortable.
 また、本発明において、硬いゴム部材4の配置幅Wは、トレッド全幅をLとするとき、0.01L≦W≦0.1Lの幅であることが好ましい。かかる硬いゴム部材4は、剛性段差を緩和することが目的であるため、あまり狭い幅での配置では効果が得られず、配置幅0.01Lは、本発明のある程度の所望の効果が得られる下限値である。また、上限値については、0.1Lより大きくなるとサイド部の曲げ剛性を高める効果が大きくなって、バネ増加による乗り心地の低下を誘発するため、実施例の結果から0.1Lを上限値とした。 In the present invention, the arrangement width W of the hard rubber member 4 is preferably 0.01 L ≦ W ≦ 0.1 L, where L is the total width of the tread. The purpose of the hard rubber member 4 is to alleviate the rigidity step, so that an effect cannot be obtained when the arrangement is made with a very narrow width, and the arrangement width of 0.01 L can provide a certain desired effect of the present invention. This is the lower limit. As for the upper limit value, if it exceeds 0.1L, the effect of increasing the bending rigidity of the side portion is increased, and a decrease in ride comfort due to an increase in spring is induced. did.
 さらに、本発明において、硬いゴム部材4の硬さは、サイドウォール部13のゴム部材の硬さに対して、2~20倍であることが好ましい。かかる硬いゴム部材4は、剛性段差を緩和することが目的であるため、あまり柔らかいゴムでは効果が得られず、2倍の硬さは、ある程度効果が得られると知れた下限値である。また、上限値については、20倍より硬いとサイドウォール部13の曲げ剛性を高める効果が大きくなって、バネ増加による乗り心地低下を誘発するため、実施例の結果から20倍を上限値とした。また、硬いゴム部材4は、単一種のゴムの場合だけでなく、硬いゴム部材4の平均的な硬さが規定の範囲内であれば、複数の種類より構成されていても、もちろんかまわない。なお、本発明においては、ゴム部材4の硬さの指標としてショアA硬度を使用する。かかるショアA硬度は、市販の硬度計を用いて計測可能であり、例えば、トレッドゴムを切り出し、50℃に保った高温室に30分保管してゴムの温度を50℃にした後、硬度計で硬度を計測することができる。 Furthermore, in the present invention, the hardness of the hard rubber member 4 is preferably 2 to 20 times the hardness of the rubber member of the sidewall portion 13. The purpose of the hard rubber member 4 is to relieve the rigidity step, so that the effect is not obtained with a soft rubber, and the double hardness is a lower limit value that is known to be effective to some extent. Moreover, about the upper limit value, if it is harder than 20 times, the effect of increasing the bending rigidity of the sidewall portion 13 is increased, and the ride comfort is lowered due to the increase in spring. . Further, the hard rubber member 4 is not limited to a single type of rubber, and may be composed of a plurality of types as long as the average hardness of the hard rubber member 4 is within a specified range. . In the present invention, Shore A hardness is used as an index of the hardness of the rubber member 4. Such Shore A hardness can be measured using a commercially available hardness meter. For example, after tread rubber is cut out and stored in a high temperature chamber kept at 50 ° C. for 30 minutes to bring the rubber temperature to 50 ° C., the hardness meter Can measure the hardness.
 本発明においては、ベルト層3として、カーカス層のタイヤ半径方向外側に、略幅方向の巻回された配置幅がトレッド全幅の0.5~0.8倍であるスパイラルベルト層3を備えていることが好ましい。ここで、トレッド全幅とは、トレッド部11の片側の端部からタイヤの表面にそって逆側のトレッド部11の端部までの曲線表面の距離である。この幅の設定の根拠は、バイクが最も大きく倒れるCA(キャンバー角)が50度付近での接地部分、および、バイクをやや起こした位置での接地部分に基づくものである。 In the present invention, the belt layer 3 is provided with a spiral belt layer 3 on the outer side in the tire radial direction of the carcass layer and having a wound arrangement width of approximately 0.5 to 0.8 times the entire tread width. Preferably it is. Here, the full width of the tread is a distance of a curved surface from one end portion of the tread portion 11 to the end portion of the tread portion 11 on the opposite side along the tire surface. The basis for setting this width is based on the ground contact portion where the CA (Camber angle) at which the motorcycle falls most greatly is around 50 degrees and the ground contact portion where the motorcycle is slightly raised.
 CA50度の旋回時には、トレッド全幅の0.2~0.25倍の幅のトレッドショルダー部の部分のみが接地している(図8)。これは、全体の幅の約1/4である。前述のように、大CA時のトレッドセンター部には、スパイラルベルトを巻いて骨格部材が接地範囲でタイヤ赤道方向に伸びることを防止し、逆に、トレッド部11の端部側ではスパイラルベルトを巻かずに骨格部材をタイヤ赤道方向に積極的に伸ばすことが求められている。大CA時の接地部の半分は、トレッド全幅の0.1倍幅であり、この幅にスパイラルベルトを巻かない場合、両端部に0.1倍幅の部分にはスパイラルベルトが存在しないので、スパイラルベルト層3の総幅はトレッド幅の0.8倍幅となる。 When turning at a CA of 50 degrees, only the tread shoulder portion with a width of 0.2 to 0.25 times the entire width of the tread is grounded (FIG. 8). This is about 1/4 of the total width. As described above, a spiral belt is wound around the tread center portion at the time of large CA to prevent the skeletal member from extending in the tire equator direction in the ground contact range, and conversely, the spiral belt is attached to the end portion side of the tread portion 11. There is a demand for positively extending the skeleton member in the tire equator direction without winding. Half of the grounding part at the time of large CA is 0.1 times the entire width of the tread, and if the spiral belt is not wound around this width, there is no spiral belt in the 0.1 times wide part at both ends. The total width of the spiral belt layer 3 is 0.8 times the tread width.
 上記の上限は、バイクが最も倒れた時の接地時についての理想的な値である。しかしながら、バイクが加速する時には、最も倒れた時から加速を始めて、徐々に車体を起こす、すなわち、タイヤの接地部分が徐々にセンターよりに移動していく特徴がある。また、バイクが最も加速するのは、バイクが最も倒れたCA50度のときよりも、CA30度~45度の範囲である。この時にトラクション性能を最大にすることを考えると、上記の0.8倍幅よりもスパイラルベルト幅は狭い方が好ましい。そこで、0.5倍をスパイラルベルト幅の下限とした。スパイラルベルト層幅がトレッド幅の0.5倍の場合には、CA30~40度での接地部分の幅方向中心にスパイラルベルト層端部が位置することになる。スパイラルベルト幅を0.5倍未満としてしまうと、CA30~40度の接地形状の幅方向中心から位置がずれてしまい、好ましくない。すなわち、スパイラルベルト層3が狭すぎることになる。 The above upper limit is an ideal value for grounding when the bike is most collapsed. However, when the motorcycle accelerates, the acceleration starts from the time when the motorcycle falls most, and the vehicle body is gradually raised, that is, the ground contact portion of the tire gradually moves from the center. Further, the motorcycle accelerates most in the range of 30 to 45 degrees CA than when the bike fell most at 50 degrees CA. In consideration of maximizing the traction performance at this time, it is preferable that the spiral belt width is narrower than the above 0.8 times width. Therefore, 0.5 times is set as the lower limit of the spiral belt width. When the spiral belt layer width is 0.5 times the tread width, the end portion of the spiral belt layer is located at the center in the width direction of the ground contact portion at CA 30 to 40 degrees. If the spiral belt width is less than 0.5 times, the position is shifted from the center in the width direction of the ground contact shape of CA 30 to 40 degrees, which is not preferable. That is, the spiral belt layer 3 is too narrow.
 以上のことから、スパイラルベルト層3の配設幅が、上限であるトレッド幅の0.8倍幅では、バイクが最も倒れるCA50度付近の接地形状の中心にスパイラルベルト層端部を位置させることができ、加速初期においてグリップ向上効果が高くなる。また、バイクを大きく倒す低速コーナー(低速コーナーではバイクを大きく倒すことが可能)で効果が高い。一方、スパイラルベルト層3の配設幅が、下限であるトレッド幅の0.5倍幅では、バイクがやや起き上がったところでの接地形状の中心にスパイラルベルト層端部を配置することができ(CA30~40度)、加速開始から、車体をやや起こした加速中期にグリップ向上効果を発揮することができる。また、バイクをあまり大きく倒さない高速コーナーでのグリップ増大効果を発揮する。なお、本発明においてはスパイラルベルト層の幅方向中心とタイヤ赤道とが一致するように配置する。このことにより、車体倒しこみ時の左右での補強方向を合わせることができる。 From the above, when the arrangement width of the spiral belt layer 3 is 0.8 times the upper limit of the tread width, the end of the spiral belt layer is positioned at the center of the ground contact shape near the CA of 50 degrees where the motorcycle is most tilted. The grip improvement effect becomes high in the early stage of acceleration. In addition, the effect is high at a low-speed corner where a motorcycle is greatly defeated (it is possible to greatly defeat a motorcycle at a low-speed corner). On the other hand, when the arrangement width of the spiral belt layer 3 is 0.5 times the tread width which is the lower limit, the end of the spiral belt layer can be arranged at the center of the ground shape when the motorcycle is slightly raised (CA30). From ~ 40 degrees), the grip improvement effect can be demonstrated in the middle of the acceleration when the vehicle body is slightly raised. In addition, it demonstrates the effect of increasing the grip at high-speed corners that do not overwhelm the bike. In the present invention, the spiral belt layer is arranged so that the center in the width direction coincides with the tire equator. This makes it possible to match the left and right reinforcement directions when the vehicle body is folded down.
 スパイラルベルト層3を構成するコードは、有機繊維のコードでも、スチールのコードでも良い。有機繊維のコードの場合は、例えば芳香族ポリアミド(商品名:ケブラー)やナイロンや芳香族ポリケトンなどの撚りコードを使用できる。スチールコードの場合は、例えば、線径0.2mmのスチール単線を5本撚ったものや、線径0.4mmのスチールの単線を撚らずにそのまま使うことができる。 The cord constituting the spiral belt layer 3 may be an organic fiber cord or a steel cord. In the case of organic fiber cords, for example, twisted cords such as aromatic polyamide (trade name: Kevlar), nylon, and aromatic polyketone can be used. In the case of a steel cord, for example, five steel single wires having a wire diameter of 0.2 mm or five steel single wires having a wire diameter of 0.4 mm can be used without being twisted.
 また、本発明において、カーカス層のタイヤ半径方向外側に、略幅方向の巻回された配置幅がトレッド全幅の0.5~0.8倍であるスパイラルベルト層3を備えている場合には、上記硬いゴム部材4によるトレッド部11とサイドウォール部13間の段差を緩和する効果が、顕著に得られる。スパイラルベルト層3をトレッド全幅に対して狭くした場合は、スパイラルベルト層3がトレッド全幅に有る場合に比較して、車体を倒していく際に急にスパイラルベルト層3が無い(ベルト面内剪断剛性が低下する)箇所が接地することになるため、剛性段差をさらに助長することになる。そこで、本構成のように硬いゴム部材4をバットレス部12に配置することで、この剛性段差は緩和され、グリップの変化をなだらかにすることができる。また、剛性段差を緩和することで、スパイラルベルト層3の端部に加わるせん断歪みも緩和することができるため、端部に発生しやすい亀裂故障も防ぐことが可能となる。 Further, in the present invention, when the spiral belt layer 3 having a winding width of approximately 0.5 to 0.8 times the entire width of the tread is provided outside the carcass layer in the tire radial direction. The effect of relieving the step between the tread portion 11 and the sidewall portion 13 due to the hard rubber member 4 is remarkably obtained. When the spiral belt layer 3 is made narrower than the entire width of the tread, the spiral belt layer 3 is suddenly absent when the vehicle body is tilted (in-belt in-plane shear), as compared with the case where the spiral belt layer 3 has the entire tread width. Since the portion where the rigidity is lowered) is grounded, the rigidity step is further promoted. Therefore, by disposing the hard rubber member 4 in the buttress portion 12 as in this configuration, this rigidity step is alleviated and the change in grip can be made smooth. Moreover, since the shearing strain applied to the end portion of the spiral belt layer 3 can be relieved by relaxing the rigidity step, it is possible to prevent a crack failure that tends to occur at the end portion.
 図2および3に、本発明の他の好適例の自動二輪車用空気入りタイヤを示す。本発明においては、図示するように、スパイラルベルト層3に隣接して、スパイラルベルト層3よりも広幅であって、かつ、タイヤ赤道方向に対する角度が30度以上85度未満である有機繊維コードからなるベルト交錯層5が配設されていることが好ましい。これは、スパイラルベルトが巻かれていないトレッド部11の左右両端部のショルダー部について、ここにベルト交錯層が存在しないと、ベルトの剪断剛性が低下してしまい、ベルトが弱すぎて旋回時のグリップ力が低下するからである。 2 and 3 show a pneumatic tire for a motorcycle according to another preferred embodiment of the present invention. In the present invention, as shown in the drawing, the organic fiber cord is adjacent to the spiral belt layer 3 and wider than the spiral belt layer 3 and has an angle with respect to the tire equator direction of 30 degrees or more and less than 85 degrees. The belt crossing layer 5 is preferably disposed. This is because if the belt crossing layer is not present at the left and right shoulder portions of the tread portion 11 around which the spiral belt is not wound, the shear rigidity of the belt is lowered, and the belt is too weak. This is because the grip force is reduced.
 トレッド部11のショルダー部に配置するベルト交錯層5のタイヤ赤道方向に対する角度が30度未満になると、これは、すなわち、スパイラルベルト層3の角度に近づく方向であり、タイヤ赤道方向にベルトが伸びにくい特性を持ってくる。こうなると、ショルダー部のベルトを設置領域でタイヤ赤道方向に延ばすという本発明の趣旨に反することになる。したがって、ベルトが30度未満になると、ショルダー部で骨格部材がタイヤ赤道方向に伸びにくくなり、ショルダー部のベルト速度が増さずに、ショルダー部のトレッドがブレーキング変形のままであり、トラクショングリップを得ることができない。一方、ショルダー部のベルトが85度以上となると、ベルト交錯層5として十分に交錯効果(互いに逆方向のベルトを重ね合わせることによって、ベルトの面内剪断剛性を高める効果)を得られずに、ショルダー部のベルトの面内剛性が不足して、十分な旋回グリップを得られない。なお、角度については、特には45度以上が、骨格部材がタイヤ赤道方向に伸びやすいため、好ましい。また、面内剪断剛性を発揮する上でも、好ましくは80度以下がよい。したがって、好ましくは45度以上80度以下である。 When the angle of the belt crossing layer 5 arranged on the shoulder portion of the tread portion 11 with respect to the tire equator direction is less than 30 degrees, this is a direction approaching the angle of the spiral belt layer 3, and the belt extends in the tire equator direction. Brings difficult characteristics. This would be contrary to the spirit of the present invention in which the shoulder belt extends in the tire equator direction in the installation region. Therefore, when the belt is less than 30 degrees, the skeleton member is difficult to extend in the tire equator direction at the shoulder, the belt speed of the shoulder does not increase, and the tread of the shoulder remains in the braking deformation, and the traction grip Can't get. On the other hand, when the belt of the shoulder portion is 85 degrees or more, it is not possible to obtain a sufficient crossing effect as the belt crossing layer 5 (an effect of increasing the in-plane shear rigidity of the belt by superimposing belts in opposite directions), The in-plane rigidity of the shoulder belt is insufficient and a sufficient turning grip cannot be obtained. The angle is particularly preferably 45 degrees or more because the skeleton member is easy to extend in the tire equator direction. Moreover, 80 degree | times or less are good also when exhibiting in-plane shear rigidity. Therefore, it is preferably 45 degrees or more and 80 degrees or less.
 ベルト交錯層5の材質には、有機繊維コードを用いる。スチールコードのようにコードの圧縮方向にも剛性を持つコードをベルト交錯層5として配置すると、骨格部材が面外に曲がりにくい特性を持ち、接地面積が小さくなってグリップ力が低下するからである。有機繊維コードであれば、コード方向の圧縮については大きな剛性を持たずに、骨格部材の面外剛性を低下させて接地面積を大きくすることができ、かつ、コードの引張り方向には非常に強い剛性をもつため、効果的に面内剛性を高めることができるからである。なお、本発明においては、このベルト交錯層5は、図2に示すようにスパイラルベルト層3のタイヤ半径方向外側に配置してもよいし、図3に示すようにスパイラルベルト層3のタイヤ半径方向内側に配置してもよく、スパイラルベルト層3に隣接して配置するものであれば、その配置順に特に制限はない。 The material of the belt crossing layer 5 is an organic fiber cord. If a cord having rigidity in the compression direction of the cord, such as a steel cord, is arranged as the belt crossing layer 5, the skeleton member has a characteristic that it is difficult to bend out of the plane, the ground contact area is reduced, and the grip force is reduced. . If it is an organic fiber cord, it does not have a great rigidity for compression in the cord direction, it can reduce the out-of-plane rigidity of the skeleton member and increase the ground contact area, and it is very strong in the tension direction of the cord This is because the in-plane rigidity can be effectively increased due to the rigidity. In the present invention, the belt crossing layer 5 may be disposed on the outer side in the tire radial direction of the spiral belt layer 3 as shown in FIG. 2, or the tire radius of the spiral belt layer 3 as shown in FIG. If it arrange | positions adjacent to the spiral belt layer 3, you may arrange | position in the direction inner side, and there will be no restriction | limiting in particular in the arrangement order.
 また、本発明においては、図1および3に示すように、トレッド部11のトレッド層とスパイラルベルト層3との間に、トレッド層に隣接して、タイヤ赤道方向に対する角度が85度~90度である有機繊維コードからなるベルト補強層6を配置することも好ましい。トレッド部内で、スパイラルベルト層3が存在する部分とスパイラルベルト層3が存在しない部分とでは、その両者の境界での剛性段差は大きい。その段差を緩和させるため、トレッド層に隣接して、すなわち、最外層に配置するベルトとして、タイヤセンターからタイヤショルダーまで連続してベルト補強層を配置することで、この段差を感じにくくすることができる。 Further, in the present invention, as shown in FIGS. 1 and 3, the angle with respect to the tire equator direction is between 85 degrees and 90 degrees between the tread layer of the tread portion 11 and the spiral belt layer 3 and adjacent to the tread layer. It is also preferable to dispose a belt reinforcing layer 6 made of an organic fiber cord. In the tread portion, the rigidity step at the boundary between the portion where the spiral belt layer 3 exists and the portion where the spiral belt layer 3 does not exist is large. In order to alleviate the level difference, the belt reinforcement layer is arranged continuously from the tire center to the tire shoulder as a belt adjacent to the tread layer, that is, as the outermost layer. it can.
 ベルト補強層6の角度をタイヤ赤道方向に対して90度としているのは、幅方向に沿ってコードを配置することで、段差を最も効果的に感じさせないようにできるからである。ここで、角度を85度~90度のように幅を持たせたのは製造上の誤差を含むからである。また、ベルト補強層6の配設幅については、トレッド全幅の90%以上110%以下とした。ベルト補強層6の目的は、段差を感じさせなくすること、すなわち、スパイラルベルトの端部を部材で覆って、最外層のベルトが分断されないようにしている点にある。そのため、配設幅を広くして、トレッドの全領域を覆う配置とすることが好ましい。配設幅をトレッド全幅の90%以上とすれば、十分にスパイラルベルトの段差を覆うことができる。なお、上限については、トレッド幅を超えてサイドウォール部に達してもかまわない。しかし、110%を超えると、タイヤのサイドウォール部にも90度のベルトが存在することになり、サイドウォールがたわみにくくなり、タイヤに硬さが生じる、すなわち、タイヤがたわみにくくなり、乗り心地性能が悪化する、おそれがある。それゆえ、上限を110%とした。 The reason why the angle of the belt reinforcing layer 6 is set to 90 degrees with respect to the tire equator direction is that the step is most effectively prevented from being felt by arranging the cords along the width direction. Here, the reason why the angle is given a width of 85 degrees to 90 degrees includes a manufacturing error. Further, the arrangement width of the belt reinforcing layer 6 is 90% to 110% of the entire width of the tread. The purpose of the belt reinforcing layer 6 is to prevent the step from being felt, that is, the end of the spiral belt is covered with a member so that the outermost belt is not divided. Therefore, it is preferable to widen the arrangement width and cover the entire area of the tread. If the arrangement width is 90% or more of the total tread width, the step of the spiral belt can be sufficiently covered. In addition, about an upper limit, you may reach a sidewall part exceeding a tread width. However, if it exceeds 110%, there will also be a 90 degree belt in the sidewall portion of the tire, the sidewall will be difficult to bend, and the tire will be hard, that is, the tire will be difficult to bend. There is a risk that performance will deteriorate. Therefore, the upper limit was made 110%.
 このベルト補強層6の材質を有機繊維コードとするのは、自動二輪車用のタイヤは断面が非常に丸いため、タイヤ幅方向にコードの圧縮側に剛性を持つスチールコードを用いると、タイヤがたわみにくくなり、接地面積が減少するからである。有機繊維コードは、コードの圧縮側には剛性が低く、接地面積を減少させるおそれがない。 The belt reinforcing layer 6 is made of an organic fiber cord because a motorcycle tire has a very round cross section. If a steel cord having rigidity on the compression side of the cord is used in the tire width direction, the tire will bend. This is because the contact area is reduced. The organic fiber cord has low rigidity on the compression side of the cord, and there is no risk of reducing the ground contact area.
 なお、ベルト補強層6を設ける理由がスパイラルベルトの端部の段差を解消することにあるため、コードの直径が細すぎては効果が得られない。一方、コードの直径が太すぎると、有機繊維コードとはいえコードの圧縮側に剛性を持つため、あまりに太すぎるコードも好ましくない。したがって、ベルト補強層6のコードの直径については、0.5mm以上1.2mm以下が好ましい。 In addition, since the reason for providing the belt reinforcing layer 6 is to eliminate the step at the end of the spiral belt, the effect cannot be obtained if the diameter of the cord is too thin. On the other hand, if the diameter of the cord is too large, the cord has rigidity on the compression side of the cord although it is an organic fiber cord. Therefore, the diameter of the cord of the belt reinforcing layer 6 is preferably 0.5 mm or greater and 1.2 mm or less.
 ここで、前述したように、ベルト交錯層5はスパイラルベルト層3のタイヤ半径方向内側に設けても外側に設けてもよいので、これらとベルト補強層6との配置順としては、ベルト交錯層5がスパイラルベルト層3よりもタイヤ半径方向内側に存在する場合には、スパイラルベルト層3のすぐタイヤ半径方向外側にベルト補強層6が配置される(図3参照)。一方、ベルト交錯層5がスパイラルベルト層3よりもタイヤ半径方向外側に存在する場合には、2枚のベルト交錯層5のうち外側ベルトのすぐタイヤ半径方向外側にベルト補強層6を配置する(図示せず)。いずれの場合も、ベルト補強層6を、トレッド部11のすぐタイヤ半径方向内側に、トレッド部11に隣接して配置することが必要である。 Here, as described above, the belt crossing layer 5 may be provided on the inner side or the outer side of the spiral belt layer 3 in the tire radial direction. When 5 is present in the tire radial direction inner side than the spiral belt layer 3, the belt reinforcing layer 6 is disposed immediately outside the spiral belt layer 3 in the tire radial direction (see FIG. 3). On the other hand, when the belt crossing layer 5 exists outside the spiral belt layer 3 in the tire radial direction, the belt reinforcing layer 6 is disposed immediately outside the outer belt in the tire radial direction of the two belt crossing layers 5 ( Not shown). In any case, it is necessary to dispose the belt reinforcing layer 6 immediately inside the tread portion 11 in the tire radial direction and adjacent to the tread portion 11.
 図4に、本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤの断面図を示す。本発明において、ベルト補強層6を配置する場合には、図示するように、ベルト補強層6のタイヤ半径方向内側に、ベルト補強層6に隣接して、厚み0.3~1.5mmの緩衝ゴム層7を配置することも好ましい。この緩衝ゴム層7は、ショルダー部のトレッドの摩耗を抑制する効果がある。 FIG. 4 shows a cross-sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. In the present invention, when the belt reinforcing layer 6 is disposed, as shown in the drawing, a buffer having a thickness of 0.3 to 1.5 mm is provided on the inner side in the tire radial direction of the belt reinforcing layer 6 and adjacent to the belt reinforcing layer 6. It is also preferable to dispose the rubber layer 7. The buffer rubber layer 7 has an effect of suppressing wear of the tread of the shoulder portion.
 図8にタイヤがCA50度で旋回する時のトレッド幅方向の挙動を示したが、その一方、トレッドのタイヤ赤道方向の変形も、トレッドが路面に接触している領域において、図8のトレッド端部の領域とトレッドセンター部の領域とで異なっている。これは、接地形状のセンター寄りの領域と、接地形状のトレッド端部寄りの領域とで、ベルトの速度が異なるからである。二輪車のタイヤは、幅方向断面において、大きな丸みを持っている。そのため、回転軸からベルトまでの距離であるベルト半径が、トレッドセンター寄りの領域の方が大きい。したがって、ベルトの速度、すなわち、トレッドが路面に接触してから、タイヤの回転が進み、トレッドが路面から離れるまでのベルト速度が、トレッドセンター寄りの領域の方が速くなる。ベルト半径にタイヤの回転角速度をかけたものがベルトの速度になるからである。このベルトの赤道方向の速度差により、タイヤのセンター寄りではトレッドがドライビング状態であり、タイヤのトレッド端部寄り領域ではブレーキング状態である(前述)。 FIG. 8 shows the behavior in the tread width direction when the tire turns at a CA of 50 degrees. On the other hand, the deformation of the tread in the tire equator direction also shows the tread end in FIG. 8 in the region where the tread is in contact with the road surface. And the tread center area are different. This is because the belt speed is different between the area near the center of the ground contact shape and the area near the tread end of the ground contact shape. The tire of a motorcycle has a large roundness in the cross section in the width direction. Therefore, the belt radius, which is the distance from the rotating shaft to the belt, is larger in the region near the tread center. Therefore, the speed of the belt, that is, the belt speed until the tread moves away from the road surface after the tread comes into contact with the road surface, and the region near the tread center becomes faster. This is because the belt speed is obtained by multiplying the belt radius by the rotational angular velocity of the tire. Due to the speed difference in the equator direction of the belt, the tread is in the driving state near the center of the tire, and the braking state is in the region near the tread end of the tire (described above).
 本発明においては、スパイラルベルト層の幅を狭めることで、スパイラルベルト層が配設されていない部分のベルトがタイヤ赤道方向に接地にともなって伸びて、ベルト速度が向上し、これらのトレッドの余計な変形が緩和されることは前述した。しかし、スパイラルベルトの幅を狭くして緩和するといっても、完全に余計な変形がなくなるわけではない。 In the present invention, by reducing the width of the spiral belt layer, the belt in the portion where the spiral belt layer is not disposed extends along the ground in the tire equator direction, and the belt speed is improved. As described above, the simple deformation is alleviated. However, reducing the width of the spiral belt to alleviate it does not completely eliminate the extra deformation.
 ベルト補強層6のタイヤ半径方向内側に緩衝ゴム層7を設けると、緩衝ゴム層7がタイヤ赤道方向に剪断変形するため、上記トレッドのドライビング変形およびブレーキング変形を緩衝ゴム層7が肩代わりして、トレッドのタイヤ赤道方向の変形がさらに緩和される。一方で、緩衝ゴム層7はその上面にタイヤ幅方向に沿うベルト補強層6を持つため、タイヤ幅方向には剪断変形されにくい。そのため、緩衝ゴム層7は、タイヤ幅方向に対してはトレッドの変形を肩代わりせず、トレッドの横剪断変形は緩衝ゴム層7を配置しても大きいままである。すなわち、緩衝ゴム層7は、タイヤ赤道方向のみのトレッドの変形を肩代わりし、トレッドのタイヤ赤道方向の変形を小さくしてグリップ力を更に向上させるとともに、その一方で、タイヤ幅方向のトレッドの変形は肩代わりせずに、トレッドの横変形は大きいまま維持し、横力を高く保てる効果を有する。本発明のように、スパイラルベルト層幅を狭くするとともに、このような緩衝ゴム層7を設けると、更にトレッドのタイヤ赤道方向の無駄の変形が抑制されるため、大きな効果となって、非常に好ましい。ベルト補強層6および緩衝ゴム層7は、特には、トレッド幅の90%以上、特には、110%以下の範囲で、幅広く配置することが好ましい。 When the buffer rubber layer 7 is provided on the inner side of the belt reinforcing layer 6 in the tire radial direction, the buffer rubber layer 7 shears and deforms in the tire equator direction, so that the buffer rubber layer 7 takes over the driving deformation and braking deformation of the tread. The tread tire equator deformation is further alleviated. On the other hand, since the shock absorbing rubber layer 7 has the belt reinforcing layer 6 along the tire width direction on the upper surface thereof, it is not easily sheared and deformed in the tire width direction. Therefore, the buffer rubber layer 7 does not take over the deformation of the tread in the tire width direction, and the lateral shear deformation of the tread remains large even when the buffer rubber layer 7 is disposed. That is, the shock absorbing rubber layer 7 takes over the deformation of the tread only in the tire equator direction, reduces the deformation of the tread in the tire equator direction, and further improves the grip force, while, on the other hand, the deformation of the tread in the tire width direction. Without changing the shoulder, the lateral deformation of the tread is kept large and the lateral force is kept high. As in the present invention, when the spiral belt layer width is narrowed and the buffer rubber layer 7 is provided, the tread is further prevented from being deformed in the tire equator direction. preferable. The belt reinforcing layer 6 and the shock absorbing rubber layer 7 are preferably arranged widely, particularly in the range of 90% or more of the tread width, particularly 110% or less.
 図5に、本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤの断面図を示す。本発明においては、図示するように、サイドウォール部13のビード部側領域Cにおけるカーカス層のタイヤ半径方向外側のゴムゲージが、サイドウォール部13のトレッド部側領域Dにおけるカーカス層のタイヤ半径方向外側のゴムゲージよりも薄く(図中の矢印部)、かつ、ビード部側領域Cにおけるカーカス層のタイヤ半径方向外側のゴムゲージの平均値が0.2~2.0mmであることが好ましい。硬いゴム部材4をバットレス部12に配置した場合、バットレス部12の曲げ剛性を高める効果が大きくなって、バネ性の増加による乗り心地の低下を誘発するおそれがある。これに対する対策としては、このバネ性の増加を、剛性段差への影響が少ないビード部14寄りのサイドウォール部13で低減させることが効果的である。そこで、サイドウォール部13のビード部側領域Cにおけるカーカス層のタイヤ半径方向外側のゴムゲージを薄くすることで、バネ性を低減させている。また、上記ゴムゲージの下限値を0.2mmとしたのは、このゴムゲージは薄ければ薄いほどよいが、0.2mm未満では製造が困難なためである。さらに、上限値2.0mmを超えると、通常のサイドゲージと差がなくなるため、剛性低減の効果は得られなくなる。ここで、トレッド端からビードヒール部までの高さの半分の位置より、タイヤ半径方向上側をトレッド部側領域D、タイヤ半径方向下側をビード部側領域Cとする。 FIG. 5 shows a cross-sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. In the present invention, as shown in the drawing, the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C of the sidewall portion 13 is the outer side in the tire radial direction of the carcass layer in the tread portion side region D of the sidewall portion 13. It is preferable that the average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C is 0.2 to 2.0 mm. When the hard rubber member 4 is disposed in the buttress portion 12, the effect of increasing the bending rigidity of the buttress portion 12 is increased, and there is a risk of inducing a decrease in riding comfort due to an increase in springiness. As a countermeasure against this, it is effective to reduce this increase in springiness at the sidewall portion 13 near the bead portion 14 that has little influence on the rigidity step. Therefore, by reducing the thickness of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region C of the sidewall portion 13, the spring property is reduced. The lower limit of the rubber gauge is set to 0.2 mm because the thinner the rubber gauge, the better. However, if it is less than 0.2 mm, it is difficult to manufacture. Furthermore, if the upper limit value is exceeded 2.0 mm, there is no difference from a normal side gauge, so the effect of reducing rigidity cannot be obtained. Here, from the half of the height from the tread end to the bead heel portion, the upper side in the tire radial direction is the tread portion side region D and the lower side in the tire radial direction is the bead portion side region C.
 図6に、本発明のさらに他の好適例に係る自動二輪車用空気入りタイヤの断面図を示す。本発明においては、図示するように、スパイラルベルト層3が幅方向に3分割されてなり、3分割されたスパイラルベルト層3の両端部領域Bを構成するコードの引張り弾性率(以下、単に「弾性率」とも表す)が、中央部領域Aを構成するコードの引張り弾性率よりも低いことが好ましい。スパイラルベルト層3をトレッド全幅に対して狭くした場合は、スパイラルベルト層3がトレッド全幅に有る場合に比較して、車体を倒していく際に急にスパイラルベルト層3が無い(ベルト面内剪断剛性が低下する)箇所が接地することになるため、車体を倒し終わる際の急なグリップの変化が発生することになり、ライダーがタイヤの段差を感じて車体を倒し込めなくなるという問題が発生する。この急激な剛性段差をより緩和するため、スパイラルベルト層3の両端部領域Bには中央部領域Aより低い引張り弾性率のコードを使用する。かかる構成を用いることでグリップの変化がさらになだらかになるため、ライダーは違和感なく車体を倒し込むことが可能となる。また、剛性段差をより緩和することで、スパイラルベルト層3の端部に加わるせん断歪みも緩和することができるため、端部に発生しやすい亀裂故障も防ぐことが可能となる。ここで、スパイラルベルト層3の両端部領域Bおよび中央部領域Aにおける弾性率を変化させる手法としては、各々の領域に別のコード種を使用すること等が挙げられる。また、本発明においてコードの引張り弾性率は、温度等を同一の条件で測定した値で比較し、引張弾性率の測定は、JISL1017-2002に準拠し、島津製作所社製オートグラフにより、室温25±2℃、湿度55%において得た荷重-伸長曲線の立上がりの接線の傾きとフィラメント繊度から算出した。ここで、スパイラルベルト層3を幅方向に3分割する際のその比率は、例えば、中央部領域A:15~40%に対し、両端部領域B:42.5~30%とすることができる。 FIG. 6 shows a sectional view of a pneumatic tire for a motorcycle according to still another preferred embodiment of the present invention. In the present invention, as shown in the drawing, the spiral belt layer 3 is divided into three in the width direction, and the tensile elastic modulus (hereinafter simply referred to as “ Is preferably lower than the tensile elastic modulus of the cord constituting the central region A. When the spiral belt layer 3 is made narrower than the entire width of the tread, the spiral belt layer 3 is suddenly absent when the vehicle body is tilted (in-belt in-plane shear), as compared with the case where the spiral belt layer 3 has the entire tread width. This will cause a sudden change of grip when the car body is finished, causing a problem that the rider feels a step in the tire and can not push down the car body. . In order to further alleviate this steep rigidity step, a cord having a tensile elastic modulus lower than that of the central region A is used for both end regions B of the spiral belt layer 3. By using such a configuration, the change in grip becomes smoother, so that the rider can tilt the vehicle body without feeling uncomfortable. Moreover, since the shearing strain applied to the end portion of the spiral belt layer 3 can be relieved by further relaxing the rigidity step, it is possible to prevent a crack failure that tends to occur at the end portion. Here, as a method of changing the elastic modulus in the both end region B and the central region A of the spiral belt layer 3, use of a different cord type for each region can be mentioned. In the present invention, the tensile elastic modulus of the cord is compared with the value measured under the same conditions such as temperature, and the tensile elastic modulus is measured in accordance with JISL1017-2002. The load-elongation curve obtained at ± 2 ° C. and 55% humidity was calculated from the slope of the tangent and the filament fineness. Here, the ratio when the spiral belt layer 3 is divided into three in the width direction can be set to, for example, both end regions B: 42.5 to 30% with respect to the center region A: 15 to 40%. .
 本発明のタイヤにおいては、バットレス部12に、トレッド部11のゴム部材およびサイドウォール部13のゴム部材よりも硬いゴム部材を配置すること等の上記条件を満足する点のみが重要であり、これにより本発明の所期の効果を得ることができ、それ以外のタイヤ構造や材質等の条件については、特に制限されるものではない。 In the tire of the present invention, it is important only that the buttress portion 12 satisfies the above conditions such as the placement of a rubber member harder than the rubber member of the tread portion 11 and the rubber member of the sidewall portion 13. Thus, the desired effect of the present invention can be obtained, and other conditions such as the tire structure and material are not particularly limited.
 例えば、本発明のタイヤの骨格をなすカーカス2は、比較的高弾性のテキスタイルコードを互いに平行に配列してなるカーカスプライの少なくとも1枚からなる。カーカスプライの枚数は、1枚でも2枚でもよく、3枚以上でもかまわない。また、カーカス2の両端部は、図1等に示すように両側からビードワイヤ1で挟み込んで係止しても、ビードコアの周りにタイヤ内側から外側に折り返して係止しても(図示せず)、いずれの固定方法を用いてもよい。また、タイヤの最内層にはインナーライナーが配置され(図示せず)、トレッド部11の表面には、適宜トレッドパターンが形成されている(図示せず)。本発明は、ラジアルタイヤに限らず、バイアスタイヤにも適用可能である。 For example, the carcass 2 that forms the skeleton of the tire of the present invention is composed of at least one carcass ply formed by arranging relatively highly elastic textile cords in parallel with each other. The number of carcass plies may be one or two, or three or more. Further, both ends of the carcass 2 may be sandwiched and locked by the bead wire 1 from both sides as shown in FIG. 1 or the like, or may be folded around the bead core from the inside of the tire to the outside (not shown). Any fixing method may be used. Further, an inner liner is disposed on the innermost layer of the tire (not shown), and a tread pattern is appropriately formed on the surface of the tread portion 11 (not shown). The present invention is applicable not only to radial tires but also to bias tires.
 以下、本発明について、実施例を用いて具体的に説明する。
(実施例1)
 図1に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い、タイヤサイズは190/50ZR17にて作製した。供試タイヤは、一対のビードコア間にトロイド状に跨って延在するカーカスプライ(ボディプライ)の2枚からなるカーカスを備えている。ここで、カーカスプライには、ナイロン繊維を用いた。2枚のカーカスの角度は、ラジアル方向(タイヤ赤道方向)に対する角度が90度とした。また、カーカスプライの端部は、図示するように、ビード部において、両側からビードワイヤで挟みこんで、ビードコアで係止した。
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 1 was manufactured with a tire size of 190 / 50ZR17 in accordance with the following conditions. The test tire includes a carcass composed of two carcass plies (body plies) extending across a toroid between a pair of bead cores. Here, nylon fiber was used for the carcass ply. The angle of the two carcass was 90 degrees with respect to the radial direction (tire equator direction). Further, as shown in the figure, the end portion of the carcass ply was sandwiched by bead wires from both sides in the bead portion and locked by the bead core.
 カーカスのタイヤ半径方向外側には、スパイラルベルト層を配置した。スパイラルベルト層は、直径0.18mmのスチール単線を1×5タイプで撚ったスチールコードをタイヤ赤道方向に螺旋巻きする、いわゆるスパイラル状に形成した。スパイラルベルト層は1本の並列したコードを被覆ゴム中に埋設した帯状体を、略タイヤ赤道方向に沿って螺旋状にタイヤ回転軸方向に巻きつける手法で、スパイラルベルト層の打ち込み50本/50mmで形成した。なお、スパイラルベルト層の総幅は、170mmであり、トレッド全幅(L)240mmの0.71倍に相当する。 A spiral belt layer was arranged on the outer side of the carcass in the radial direction of the tire. The spiral belt layer was formed in a so-called spiral shape in which a steel cord twisted by a 1 × 5 type steel single wire having a diameter of 0.18 mm was spirally wound in the tire equator direction. The spiral belt layer is a method in which a belt-like body in which a single parallel cord is embedded in a coated rubber is wound in a spiral direction along the tire equator direction in the tire rotation axis direction. Formed with. The total width of the spiral belt layer is 170 mm, which corresponds to 0.71 times the total tread width (L) of 240 mm.
 また、バットレス部に、トレッド部のゴム部材およびサイドウォール部のゴム部材よりも硬いゴム部材を配置した。該硬いゴム部材は、トレッド部の端より0.04Lの幅で配置され、硬さはサイドウォール部のゴム部材の4倍のものを用いた。 Also, a rubber member that is harder than the rubber member of the tread portion and the rubber member of the sidewall portion is disposed in the buttress portion. The hard rubber member was arranged with a width of 0.04 L from the end of the tread portion, and the hardness was four times that of the rubber member of the sidewall portion.
 スパイラルベルト層のタイヤ半径方向外側には、タイヤ赤道方向に対する角度が90度の芳香族ポリアミド繊維からなるベルト補強層を配置した。芳香族ポリアミド繊維を撚って直径0.7mmのコードとしてこれを打ち込み50本/50mmで、タイヤ赤道方向に対して90度に配置した。幅はトレッド幅と同じである。このベルト補強層のタイヤ半径方向外側に、厚さ7mmのトレッド層を配置した。 A belt reinforcing layer made of an aromatic polyamide fiber having an angle of 90 degrees with respect to the tire equator direction was disposed outside the spiral belt layer in the tire radial direction. Aromatic polyamide fibers were twisted to form a cord having a diameter of 0.7 mm, and the cord was driven into 50 cords / 50 mm and arranged at 90 degrees with respect to the tire equator direction. The width is the same as the tread width. A tread layer having a thickness of 7 mm was disposed outside the belt reinforcing layer in the tire radial direction.
(実施例2)
 スパイラルベルト幅を120mm(トレッド全幅の0.5倍)とした以外は、実施例1と同様に実施例2のタイヤを作製した。
(Example 2)
A tire of Example 2 was produced in the same manner as Example 1 except that the spiral belt width was 120 mm (0.5 times the total tread width).
(実施例3)
 図2に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。カーカスプライは1枚とし、ラジアル方向に配置した(タイヤ赤道方向に対する角度が90度)。また、カーカスプライのタイヤ半径方向外側に、スパイラルベルト層が存在する。スパイラルベルト層の材質および打ち込みは、実施例1と同じである。スパイラルベルト層のタイヤ半径方向外側にベルト交錯層(表1,2中では「交錯層」と略記する)を2枚配置した。ベルト交錯層は、芳香族ポリアミドを撚った直径0.5mmのコードとし、これを打ち込み50本/50mmで配置することにより形成した。ベルト交錯層の角度はタイヤ赤道方向に対して60度であり、互いに交錯している。ベルト交錯層の幅は1枚目(内側)が250mmであり、2枚目(外側)が230mmであった。ベルト交錯層のタイヤ半径方向外側には、タイヤ赤道方向に対して90度のベルト補強層は設けていない。なお、それ以外は実施例1と同様にして、実施例3のタイヤを作製した。
(Example 3)
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 2 was produced according to the following conditions. One carcass ply was arranged in the radial direction (angle with respect to the tire equator direction was 90 degrees). In addition, a spiral belt layer exists outside the carcass ply in the tire radial direction. The material and driving of the spiral belt layer are the same as in the first embodiment. Two belt crossing layers (abbreviated as “crossing layers” in Tables 1 and 2) are arranged outside the spiral belt layer in the tire radial direction. The belt crossing layer was formed by twisting aromatic polyamide into a cord having a diameter of 0.5 mm and placing it at 50 pieces / 50 mm. The angle of the belt crossing layer is 60 degrees with respect to the tire equator direction, and crosses each other. The width of the belt crossing layer was 250 mm on the first sheet (inner side) and 230 mm on the second sheet (outer side). A belt reinforcing layer of 90 degrees with respect to the tire equator direction is not provided outside the belt crossing layer in the tire radial direction. The tire of Example 3 was manufactured in the same manner as Example 1 except for the above.
(実施例4)
 図3に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。カーカスプライは1枚とし、ラジアル方向に配置した。また、スパイラルベルト層のタイヤ半径方向内側には、実施例3と同様のベルト交錯層を2枚配置した。したがってこの場合は、カーカスのすぐタイヤ半径方向外側にベルト交錯層が存在し、ベルト交錯層のタイヤ半径方向外側に、スパイラルベルト層が存在する。スパイラルベルト層の構成は実施例3と同じである。このスパイラルベルト層のタイヤ半径方向外側に、タイヤ赤道方向に対する角度が90度のベルト補強層が存在する。最外層のベルト補強層は、実施例1と同じ構成である。最外層のベルト補強層のタイヤ半径方向外側にトレッドが存在する。
Example 4
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 3 was produced according to the following conditions. One carcass ply was placed in the radial direction. In addition, two belt crossing layers similar to those in Example 3 were disposed on the inner side in the tire radial direction of the spiral belt layer. Therefore, in this case, the belt crossing layer exists immediately outside the carcass in the tire radial direction, and the spiral belt layer exists outside the belt crossing layer in the tire radial direction. The configuration of the spiral belt layer is the same as that of Example 3. A belt reinforcing layer having an angle of 90 degrees with respect to the tire equator direction exists outside the spiral belt layer in the tire radial direction. The outermost belt reinforcing layer has the same configuration as in the first embodiment. A tread exists on the outer side in the tire radial direction of the outermost belt reinforcing layer.
(実施例5)
 実施例4のスパイラルベルト層のタイヤ半径方向外側のベルト補強層を取り除いたこと以外は実施例4と同様にして、実施例5のタイヤを作製した。
(Example 5)
A tire of Example 5 was produced in the same manner as Example 4 except that the belt reinforcing layer on the outer side in the tire radial direction of the spiral belt layer of Example 4 was removed.
(実施例6)
 図4に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。最外層のベルト補強層のタイヤ半径方向内側に、厚み0.6mmのゴム層を配置したものである。ゴム層の材質は、ベルト補強層に用いたコーティングゴムと同じである。ゴム層の幅もベルト補強層の幅240mmと同じである。それ以外は、実施例4と同様にして実施例6のタイヤを作製した。
(Example 6)
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 4 was produced according to the following conditions. A rubber layer having a thickness of 0.6 mm is disposed on the inner side in the tire radial direction of the outermost belt reinforcing layer. The material of the rubber layer is the same as the coating rubber used for the belt reinforcing layer. The width of the rubber layer is also the same as the width 240 mm of the belt reinforcing layer. Otherwise, the tire of Example 6 was made in the same manner as Example 4.
(実施例7)
 図5に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。サイドウォール部のビード部側領域におけるカーカス層のタイヤ半径方向外側のゴムゲージを、サイドウォール部のトレッド部側領域におけるカーカス層のタイヤ半径方向外側のゴムゲージよりも薄くし、かつ該ビード部側領域におけるカーカス層のタイヤ半径方向外側のゴムゲージの平均値が1.0mmになるようにした。それ以外は、実施例6と同様にして実施例7のタイヤを作製した。
(Example 7)
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 5 was produced according to the following conditions. The rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is made thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion, and in the bead portion side region The average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer was set to 1.0 mm. Otherwise, the tire of Example 7 was made in the same manner as Example 6.
(実施例8)
 図6に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。スパイラルベルト層の両端部領域の部材として、芳香族ポリアミド繊維を撚って直径0.7mmのコードで打ち込み50本/50mmとしたものを使用し、スパイラルベルト層の中央部領域の部材としてスチールコードを使用して、両端部領域の部材のコードの引張り弾性率を、中央部領域の部材のコードの引張り弾性率よりも低くした。ここで、各領域の比率は、中央部領域A:20%に対し、両端部領域B:40%とした。それ以外は、実施例6と同様にして実施例8のタイヤを作製した。
(Example 8)
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 6 was produced according to the following conditions. As a member in the end region of the spiral belt layer, an aromatic polyamide fiber is twisted and driven with a cord having a diameter of 0.7 mm to make 50 pieces / 50 mm, and a steel cord is used as a member in the center region of the spiral belt layer. , The tensile elastic modulus of the cord of the member in both end regions was made lower than the tensile elastic modulus of the cord of the member in the central region. Here, the ratio of each region was set to 40% for both end regions B with respect to 20% for the central region A: 20%. Otherwise, the tire of Example 8 was made in the same manner as Example 6.
(実施例9~12)
 実施例9~12は、実施例4と同様の構成であり、バットレス部に配置したゴム部材の種類のみを下記表1、2の示すとおりに変更したものである。
(Examples 9 to 12)
Examples 9 to 12 have the same configuration as that of Example 4, and only the types of rubber members arranged in the buttress portion are changed as shown in Tables 1 and 2 below.
(従来例1)
 図7に示すような断面構造を有する自動二輪車用空気入りタイヤを、下記条件に従い作製した。カーカスプライは1枚とし、ラジアル方向に配置した。カーカスのタイヤ半径方向外側にベルト交錯層を配置した。なお、ベルト交錯層の材質は実施例3と同様である。ベルト交錯層のタイヤ半径方向外側に、スパイラルベルト層が1層配置されている。スパイラルベルトはスチールベルトであり、打ち込みは50本/50mmである。
(Conventional example 1)
A pneumatic tire for a motorcycle having a cross-sectional structure as shown in FIG. 7 was produced according to the following conditions. One carcass ply was placed in the radial direction. A belt crossing layer was disposed outside the carcass in the radial direction of the tire. The material of the belt crossing layer is the same as in Example 3. One spiral belt layer is disposed outside the belt crossing layer in the tire radial direction. The spiral belt is a steel belt, and driving is 50 pieces / 50 mm.
(従来例2)
 従来例1から交錯ベルトを取り除いた構成である。また、カーカスプライは2枚とし、ラジアル方向に配置した。
(Conventional example 2)
The crossing belt is removed from Conventional Example 1. Two carcass plies were arranged in the radial direction.
(比較例1)
 バットレス部に配置したゴム部材がない以外は、実施例4と同様にして比較例1のタイヤを作製した。
(Comparative Example 1)
A tire of Comparative Example 1 was produced in the same manner as in Example 4 except that there was no rubber member arranged in the buttress portion.
(比較例2)
 スパイラルベルト層幅が100mmであること以外は、比較例1と同様にして比較例2のタイヤを作製した。
(Comparative Example 2)
A tire of Comparative Example 2 was produced in the same manner as Comparative Example 1 except that the spiral belt layer width was 100 mm.
(実施例13)
 ゴム部材をトレッド部の端より0.15Lの幅で、バットレス部に配置した以外は、実施例4と同様にして実施例13のタイヤを作製した。
(Example 13)
A tire of Example 13 was made in the same manner as Example 4 except that the rubber member was 0.15 L wide from the end of the tread part and arranged in the buttress part.
(実施例14)
 バットレス部に配置したゴム部材の硬さを、サイドウォール部のゴム部材の25倍と非常に硬くした以外は、実施例4と同様にして実施例14のタイヤを作製した。
(Example 14)
A tire of Example 14 was produced in the same manner as in Example 4 except that the rubber member disposed in the buttress portion was very hard, 25 times as hard as the rubber member in the sidewall portion.
 得られた各供試タイヤについて、下記の規定の試験を実施した。なお、表1、2に実施例1~14、比較例1、2、従来例1、2のタイヤの構造をまとめて示す。 The following prescribed tests were carried out for each of the obtained tires. Tables 1 and 2 summarize the tire structures of Examples 1 to 14, Comparative Examples 1 and 2, and Conventional Examples 1 and 2.
<ドラム試験>
 まず、本発明の主目的である、車体を傾けたときのトラクションが向上しているかどうかを、ドラムを用いて測定した。ドラムを用いたトラクションの測定方法は次のとおりである。
<Drum test>
First, it was measured using a drum whether the traction when the vehicle body was tilted, which is the main object of the present invention, was improved. The method for measuring traction using a drum is as follows.
 試験機としては、直径3mのドラムに、紙やすりを貼り付けて、紙やすりの表面を路面に見立てた。このドラムを時速80kmで転動させ、その上に、タイヤをCA35度およびCA50度で押し付けた。各供試タイヤには内圧240kPaを充填し、荷重1471N(150kgf)で押し付けた。タイヤには、回転軸に動力を伝えるチェーンが掛かっており、駆動力を掛けられる。駆動力はモーターを用いて加えた。タイヤを80km/hで回転させておき、駆動力を加えてタイヤを120km/hまで、3秒の時間で線形に加速させた。このとき、ドラムは80km/hで転動しているため、タイヤに駆動力が掛かった状態となり、車体が傾けた状態でのトラクションを測定できる。 As a testing machine, sandpaper was pasted on a drum with a diameter of 3 m, and the surface of the sandpaper was likened to the road surface. The drum was rolled at a speed of 80 km / h, and a tire was pressed onto the drum at a CA of 35 degrees and a CA of 50 degrees. Each test tire was filled with an internal pressure of 240 kPa and pressed with a load of 1471 N (150 kgf). The tire has a chain that transmits power to the rotating shaft, and a driving force can be applied. The driving force was applied using a motor. The tire was rotated at 80 km / h, and driving force was applied to accelerate the tire linearly to 120 km / h in a time of 3 seconds. At this time, since the drum rolls at 80 km / h, the driving force is applied to the tire, and the traction can be measured with the vehicle body tilted.
 タイヤ回転軸に平行な方向(すなわちタイヤ幅方向)に働く力と、タイヤ回転軸に垂直な方向に働く力とを、タイヤのホイル中心に設置した力センサーでそれぞれ計測し、この力を、キャンバー角度に応じてドラム幅方向とドラム回転方向の力に分解して、ドラム幅方向の力をFy、ドラム回転方向の力をFxとした(Fx、Fyは地面に対しての座標である)。すなわち、Fyはバイクを旋回させる横力を、Fxはバイクを加速させる駆動力を、それぞれ示している。これらを、横軸にFx、縦軸にFyとして描くことで、図9に示すような波形が得られる。これを摩擦楕円と呼ぶが、Fx0においてのFyの切片は駆動力0での純粋な横力を示し、これがキャンバースラストと呼ばれる力である。本試験では、タイヤに駆動力を加えてタイヤの回転を速くすることで、トラクション状態のタイヤのグリップ性能を評価することができる。時間とともに、グラフの波形はFxが正の方向に移動する。Fxの最大値がトラクショングリップの指標といえる。 The force acting in the direction parallel to the tire rotation axis (that is, the tire width direction) and the force acting in the direction perpendicular to the tire rotation axis are measured by a force sensor installed at the center of the tire wheel, and these forces are measured by the camber. The force in the drum width direction and the drum rotation direction are decomposed according to the angle, the force in the drum width direction is Fy, and the force in the drum rotation direction is Fx (Fx and Fy are coordinates with respect to the ground). That is, Fy indicates a lateral force for turning the motorcycle, and Fx indicates a driving force for accelerating the motorcycle. By drawing these as Fx on the horizontal axis and Fy on the vertical axis, a waveform as shown in FIG. 9 is obtained. Although this is called a friction ellipse, the intercept of Fy at Fx0 indicates a pure lateral force at a driving force of 0, and this is a force called camber thrust. In this test, the grip performance of a tire in a traction state can be evaluated by applying a driving force to the tire to accelerate the rotation of the tire. With time, the waveform of the graph moves in the positive direction of Fx. The maximum value of Fx can be said to be an index of traction grip.
 実施例1のCA35度のFxの最大値を102、CA50度のFxの最大値を103として、他の実施例の性能を指数で評価した。得られた結果を下記表3中に示す。 The maximum value of Fx at CA 35 degrees in Example 1 was 102, and the maximum value of Fx at CA 50 degrees was 103, and the performance of other examples was evaluated by an index. The obtained results are shown in Table 3 below.
<実車走行試験>
 次に、本発明の二輪車用タイヤの性能改善効果を確認するために、実車を用いた操縦性能比較試験をした結果を説明する。各供試タイヤはリア用のタイヤであったため、リアのみのタイヤを交換して実車試験を行った。フロントのタイヤは常に従来のもので固定した。評価方法を次に記す。
<Driving test>
Next, in order to confirm the performance improvement effect of the two-wheeled vehicle tire of the present invention, a result of a steering performance comparison test using an actual vehicle will be described. Since each of the test tires was a rear tire, an actual vehicle test was performed by exchanging only the rear tire. The front tire was always fixed with a conventional one. The evaluation method is described below.
 各供試タイヤを1000ccのスポーツタイプの二輪車に装着して、テストコースで実車走行させ、操縦安定性(コーナリング性能)を、テストライダーのフィーリングによる10点法で総合評価した。コースでは、自動二輪車レースを意識した激しい走行を行い、最高速度は180km/hに達した。テスト項目は、低速コーナーのトラクション性能(速度50km/hで車体を大きく倒した状態からの加速性能)、高速コーナーのトラクション性能(速度120km/hでやや車体を倒した状態からの加速性能)、車体倒しこみ時のグリップの安定性(不連続感)、の3つである。得られた試験結果を表3にまとめて示す。 Each test tire was mounted on a 1000cc sports-type motorcycle, and the vehicle was run on a test course. The steering stability (cornering performance) was comprehensively evaluated by a 10-point method based on the feeling of the test rider. On the course, the motorcycle ran intensely in consideration of motorcycle racing, and the maximum speed reached 180 km / h. The test items are low-speed corner traction performance (acceleration performance from a state where the vehicle body is largely defeated at a speed of 50 km / h), high-speed corner traction performance (acceleration performance from a state where the vehicle body is slightly defeated at a speed of 120 km / h), The grip stability (discontinuity) when the car body is tilted down. The test results obtained are summarized in Table 3.
Figure JPOXMLDOC01-appb-T000001
*1 ゴム部材のトレッド部の端からの幅および硬さを示す。
*2 カッコ内の数値はトレッド幅に対するスパイラルベルト層の幅の割合である。
*3 ビード部側領域におけるカーカス層のタイヤ半径方向外側のゴムゲージの平均値を示す。
Figure JPOXMLDOC01-appb-T000001
* 1 Indicates the width and hardness from the end of the tread part of the rubber member.
* 2 The value in parentheses is the ratio of the width of the spiral belt layer to the tread width.
* 3 The average value of the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead side region.
Figure JPOXMLDOC01-appb-T000002
*4 スパイラルベルト層の素材および幅を示す。
Figure JPOXMLDOC01-appb-T000002
* 4 Indicates the material and width of the spiral belt layer.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 今回の実施例はいずれも、バットレス部に硬いゴム部材を配置せずに、スパイラル幅を狭めただけの比較例1と比較して、大幅に倒しこみ時安定性が向上していることは明らかであり、硬いゴム部材により剛性段差を緩和する効果は非常に大きいことが確かめられた。 It is clear that the stability of the present example is significantly improved when compared with Comparative Example 1 in which the spiral width is narrowed without placing a hard rubber member in the buttress portion. Thus, it was confirmed that the effect of reducing the rigidity step by the hard rubber member was very large.
 実施例1は、交錯ベルトが存在しない。そのため、製造コストを節約できる。従来例2と比べると、交錯ベルトが無いもの同士の比較において、実施例1は、CA35度、CA50度のFx指数が向上し、低速コーナー、高速コーナーともに実車テストでトラクション性能が良くなっていることがわかる。 In Example 1, there is no crossing belt. Therefore, manufacturing costs can be saved. Compared to the conventional example 2, in the comparison of the ones without the crossing belt, the Fx index of the CA 35 degree and the CA 50 degree is improved in the example 1, and the traction performance is improved in the actual vehicle test in both the low speed corner and the high speed corner. I understand that.
 実施例3と5は、交錯ベルトを2枚備えている。従来例1、2に比べるとトラクション性能において、いずれも大幅な改良効果が見られる。 Examples 3 and 5 have two crossing belts. Compared with the prior art examples 1 and 2, the traction performance is significantly improved.
 実施例4と実施例6を比較すると、緩衝ゴム層により、トラクション性能が向上していることがわかる。 Comparison of Example 4 and Example 6 shows that the traction performance is improved by the buffer rubber layer.
 また、実施例5と実施例4、6の比較からは、倒し込み時安定性に対する最外層のベルト補強層・緩衝ゴム層の効果がわかる。最外層のベルト補強層・緩衝ゴム層をそれぞれ追加することで、さらに剛性段差がなくなって安定性が増す結果となっている。 In addition, the comparison between Example 5 and Examples 4 and 6 shows the effect of the outermost belt reinforcing layer and the buffer rubber layer on the stability when folded. By adding the outermost belt reinforcement layer and the shock absorbing rubber layer, the rigidity step is eliminated and the stability is increased.
 実施例4、5、6の関係からは、倒しこみ時安定性に対する最外層のベルト補強層、バットレス部の硬いゴム部材の効果がわかる。バットレス部の硬いゴム部材と最外層のベルト補強層を組み合わせることで、倒しこみ性は大幅に向上し、さらに剛性段差がなくなって安定性が大幅に増す結果となっている。 From the relationship between Examples 4, 5, and 6, the effects of the outermost belt reinforcement layer and the hard rubber member of the buttress portion on the stability when collapsed are found. By combining the hard rubber member of the buttress portion with the outermost belt reinforcing layer, the collapse property is greatly improved, and further, the rigidity step is eliminated and the stability is greatly increased.
 実施例6、7、8の関係からは、倒しこみ時安定性に対する、サイドウォール部のビード部側領域におけるカーカス層のタイヤ半径方向外側のゴムゲージの薄化、およびスパイラルベルト端部材の変更による効果がわかる。バットレス部の硬いゴム部材、該ゴムゲージの薄化、およびスパイラルベルト端部材の変更を組み合わせることで、倒しこみ性は更に向上しており、安定性がもう1ステップ増す効果が得られている。 From the relationship between Examples 6, 7, and 8, the effect of thinning the rubber gauge on the outer side in the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion and the change of the spiral belt end member on the stability when collapsed I understand. By combining the hard rubber member of the buttress portion, the thinning of the rubber gauge, and the change of the spiral belt end member, the folding property is further improved, and the effect of increasing the stability by another step is obtained.
 実施例1、2から、スパイラルベルト層の幅の影響がわかる。スパイラルベルト層幅を広くすると、大CA時のFx指数が良くなり、即ち車体を大きく倒す大CA時の低速コーナーに大きな効果が得られる。しかし、従来例1および2のようにトレッド幅全幅とすると、トラクション性能向上の効果は無い。スパライルベルト層幅を狭くすると、CAが小さいところ、すなわちCA35度程度の高速コーナーで大きな効果が得られる。しかし、比較例2のように狭くしすぎると効果が無くなる。 From Examples 1 and 2, the influence of the width of the spiral belt layer can be seen. If the width of the spiral belt layer is widened, the Fx index at the time of large CA is improved, that is, a large effect can be obtained at a low-speed corner at the time of large CA that greatly depresses the vehicle body. However, when the full width of the tread is used as in Conventional Examples 1 and 2, there is no effect of improving the traction performance. When the sparele belt layer width is narrowed, a large effect can be obtained at a small CA, that is, at a high-speed corner of about 35 degrees CA. However, if it is made too narrow as in Comparative Example 2, the effect is lost.
 実施例4と実施例9~14、および比較例1の比較から、バットレス部の硬いゴム部材の配置幅および硬さの倒しこみ時安定性に対する効果がわかる。倒しこみ時の安定性に対し、該ゴム部材は、配置幅で0.01L程度、硬さで2倍程度があれば効果があるが、これ以下である比較例1(全くゴム部材が無い場合)では効果が得られないことは明らかである。また、ゴム部材は、配置幅は、0.1L程度、硬さで20倍程度でも効果があるが、これ以上広い(実施例13:0.15L)場合と硬い(実施例14:25倍)場合では、倒し込み時の安定性において、その効果が目減して改良効果代が小さい結果となっている。この結果より、ゴム部材の配置幅は0.01L~0.1L程度、硬さは2~20倍が良いとわかる。 From the comparison between Example 4 and Examples 9 to 14 and Comparative Example 1, it can be seen that the arrangement width of the hard rubber member in the buttress portion and the effect on the stability when collapsed are brought down. For stability when collapsed, the rubber member is effective if there is an arrangement width of about 0.01 L and a hardness of about twice, but Comparative Example 1 below (when there is no rubber member) ) Is clearly ineffective. Further, the rubber member is effective even when the arrangement width is about 0.1 L and the hardness is about 20 times, but it is harder than that (Example 13: 0.15 L) and hard (Example 14: 25 times). In some cases, in the stability at the time of collapse, the effect is diminished and the improvement effect cost is small. From this result, it can be seen that the arrangement width of the rubber member should be about 0.01 L to 0.1 L and the hardness should be 2 to 20 times.
 実施例7、8は、実施例4に、緩衝ゴム層、ゴムゲージの薄化およびスパイラルベルト端部材の変更の条件を追加したものである。今回の評価では、トラクション性能および倒しこみ時安定性能のいずれも最も良い結果となっており、従来例と比較するとはるかに高い次元での性能向上が達成できていることがわかる。また、車体の倒しこみ安定性能については、スパイラルベルト層を端部まで配置した従来例を超える結果となっており、上記組み合わせによる効果が伺える。 Examples 7 and 8 are obtained by adding conditions for buffer rubber layer, rubber gauge thinning and spiral belt end member change to Example 4. In this evaluation, both the traction performance and the stability performance when collapsed are the best results, and it can be seen that the performance improvement at a much higher level can be achieved compared to the conventional example. In addition, with regard to the fall stability performance of the vehicle body, the result exceeds the conventional example in which the spiral belt layer is arranged to the end, and the effect of the above combination can be seen.
 以上の結果から、本発明により、車体を大きく倒した旋回時の操縦安定性能(トラクション性能)と車体を倒し込む際の安定性を高い次元で両立することが可能であることがわかった。 From the above results, it has been found that according to the present invention, it is possible to achieve a high level of both the steering stability performance (traction performance) when turning the vehicle body and the stability when the vehicle body is lowered.
1 ビードコア
2 カーカス
3 ベルト層
4 ゴム部材
5 ベルト交錯層
6 ベルト補強層
7 緩衝ゴム層
11 トレッド部
12 バットレス部
13 サイドウォール部
14 ビード部
A 中央部領域
B 両端部領域
C サイドウォール部のビード部側領域
D サイドウォール部のトレッド部側領域
DESCRIPTION OF SYMBOLS 1 Bead core 2 Carcass 3 Belt layer 4 Rubber member 5 Belt crossing layer 6 Belt reinforcement layer 7 Buffer rubber layer 11 Tread part 12 Buttress part 13 Side wall part 14 Bead part A Central part area B Both end area C Bead part of side wall part Side region D Tread part side region of sidewall part

Claims (8)

  1.  左右一対のビード部にそれぞれ埋設されたビードコアと、該一対のビード部間にトロイド状に跨って延在する少なくとも1枚のカーカスからなるカーカス層と、該カーカス層のタイヤ半径方向外側に配設された少なくとも1枚のベルトからなるベルト層と、該ベルト層のタイヤ半径方向外側に配置されたトレッド部と、を有し、該トレッド部の両側にバットレス部、サイドウォール部および前記ビード部を順次備える自動二輪車用空気入りタイヤにおいて、
     前記バットレス部に、前記トレッド部のゴム部材および前記サイドウォール部のゴム部材よりも硬いゴム部材を配置したことを特徴とする自動二輪車用空気入タイヤ。
    A bead core embedded in each of the pair of left and right bead portions, a carcass layer composed of at least one carcass extending across the toroidal shape between the pair of bead portions, and an outer side in the tire radial direction of the carcass layer A belt layer composed of at least one belt, and a tread portion disposed on the outer side in the tire radial direction of the belt layer. In pneumatic tires for motorcycles that are sequentially equipped,
    A pneumatic tire for a motorcycle, wherein a rubber member harder than the rubber member of the tread portion and the rubber member of the sidewall portion is disposed in the buttress portion.
  2.  前記ベルト層として、前記カーカス層のタイヤ半径方向外側に、略幅方向に巻回された配置幅がトレッド全幅の0.5~0.8倍であるスパイラルベルト層を備えている請求項1記載の自動二輪車用空気入りタイヤ。 The spiral belt layer having an arrangement width of approximately 0.5 to 0.8 times the entire width of the tread as the belt layer is provided on the outer side in the tire radial direction of the carcass layer. Pneumatic tires for motorcycles.
  3.  前記スパイラルベルト層が幅方向に3分割されてなり、3分割された該スパイラルベルト層の両端部領域を構成するコードの引張り弾性率が、中央部領域を構成するコードの引張り弾性率よりも低い請求項2記載の自動二輪車用空気入タイヤ。 The spiral belt layer is divided into three in the width direction, and the tensile elastic modulus of the cord constituting the end region of the three-split spiral belt layer is lower than the tensile elastic modulus of the cord constituting the central region. The pneumatic tire for a motorcycle according to claim 2.
  4.  前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージが、前記サイドウォール部のうちトレッド部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージよりも薄く、かつ、前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージの平均値が0.2~2.0mmである請求項1記載の自動二輪車用空気入タイヤ。 The rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion, and The pneumatic tire for a motorcycle according to claim 1, wherein an average value of a rubber gauge on the outer side in the tire radial direction of the carcass layer in a bead portion side region in the sidewall portion is 0.2 to 2.0 mm.
  5.  前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージが、前記サイドウォール部のうちトレッド部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージよりも薄く、かつ、前記サイドウォール部のうちビード部側領域における前記カーカス層のタイヤ半径方向外側のゴムゲージの平均値が0.2~2.0mmである請求項2記載の自動二輪車用空気入タイヤ。 The rubber gauge outside the tire radial direction of the carcass layer in the bead portion side region of the sidewall portion is thinner than the rubber gauge outside the tire radial direction of the carcass layer in the tread portion side region of the sidewall portion, and The pneumatic tire for a motorcycle according to claim 2, wherein an average value of a rubber gauge on an outer side in a tire radial direction of the carcass layer in a bead portion side region in the sidewall portion is 0.2 to 2.0 mm.
  6.  前記スパイラルベルト層に隣接して、該スパイラルベルト層よりも広幅であって、かつ、タイヤ赤道方向に対する角度が30度以上85度未満である有機繊維コードからなるベルト交錯層が配設されている請求項2記載の自動二輪車用空気入りタイヤ。 Adjacent to the spiral belt layer, a belt intersection layer made of an organic fiber cord that is wider than the spiral belt layer and has an angle with respect to the tire equator direction of 30 degrees or more and less than 85 degrees is disposed. The pneumatic tire for a motorcycle according to claim 2.
  7.  前記トレッド部のトレッド層と前記スパイラルベルト層との間に、該トレッド層に接して、タイヤ赤道方向に対する角度が85度~90度である有機繊維コードからなるベルト補強層が、トレッド全幅の90%以上110%以下の幅で配設されている請求項2記載の自動二輪車用空気入りタイヤ。 Between the tread layer of the tread portion and the spiral belt layer, a belt reinforcing layer made of organic fiber cords in contact with the tread layer and having an angle with respect to the tire equator direction of 85 degrees to 90 degrees is 90% of the total width of the tread. The pneumatic tire for a motorcycle according to claim 2, wherein the tire is disposed with a width of not less than 100% and not more than 110%.
  8.  前記ベルト補強層のタイヤ半径方向内側に、前記ベルト補強層に隣接して、厚み0.3~1.5mmの緩衝ゴムが、配設されている請求項7記載の自動二輪車用空気入りタイヤ。 The pneumatic tire for a motorcycle according to claim 7, wherein a cushioning rubber having a thickness of 0.3 to 1.5 mm is disposed on the inner side in the tire radial direction of the belt reinforcing layer and adjacent to the belt reinforcing layer.
PCT/JP2010/056866 2009-04-17 2010-04-16 Pneumatic tire for two-wheeled motor vehicle WO2010119959A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009101002 2009-04-17
JP2009-101002 2009-04-17

Publications (1)

Publication Number Publication Date
WO2010119959A1 true WO2010119959A1 (en) 2010-10-21

Family

ID=42982616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056866 WO2010119959A1 (en) 2009-04-17 2010-04-16 Pneumatic tire for two-wheeled motor vehicle

Country Status (1)

Country Link
WO (1) WO2010119959A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285079A (en) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Tire for motorcycle
US20130167992A1 (en) * 2011-12-29 2013-07-04 Sumitomo Rubber Industries Ltd. Motorcycle tire for uneven terrain
JP2013180657A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Pneumatic tire for motorcycle
JP2015067003A (en) * 2013-09-26 2015-04-13 住友ゴム工業株式会社 Tire for two-wheeled vehicle
JP2015067005A (en) * 2013-09-26 2015-04-13 住友ゴム工業株式会社 Tire for two-wheeled vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178202U (en) * 1986-05-02 1987-11-12
JPH07195906A (en) * 1993-12-29 1995-08-01 Sumitomo Rubber Ind Ltd Fire for motorcycle
JPH08216629A (en) * 1994-12-16 1996-08-27 Sumitomo Rubber Ind Ltd Motorcycle
WO2006098112A1 (en) * 2005-03-16 2006-09-21 Bridgestone Corporation Pneumatic radial tire for motorcycle
JP2009061842A (en) * 2007-09-05 2009-03-26 Bridgestone Corp Pneumatic tire for two-wheel vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62178202U (en) * 1986-05-02 1987-11-12
JPH07195906A (en) * 1993-12-29 1995-08-01 Sumitomo Rubber Ind Ltd Fire for motorcycle
JPH08216629A (en) * 1994-12-16 1996-08-27 Sumitomo Rubber Ind Ltd Motorcycle
WO2006098112A1 (en) * 2005-03-16 2006-09-21 Bridgestone Corporation Pneumatic radial tire for motorcycle
JP2009061842A (en) * 2007-09-05 2009-03-26 Bridgestone Corp Pneumatic tire for two-wheel vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010285079A (en) * 2009-06-11 2010-12-24 Sumitomo Rubber Ind Ltd Tire for motorcycle
US20130167992A1 (en) * 2011-12-29 2013-07-04 Sumitomo Rubber Industries Ltd. Motorcycle tire for uneven terrain
US9321313B2 (en) * 2011-12-29 2016-04-26 Sumitomo Rubber Industries Ltd. Motorcycle tire for uneven terrain
JP2013180657A (en) * 2012-03-01 2013-09-12 Bridgestone Corp Pneumatic tire for motorcycle
JP2015067003A (en) * 2013-09-26 2015-04-13 住友ゴム工業株式会社 Tire for two-wheeled vehicle
JP2015067005A (en) * 2013-09-26 2015-04-13 住友ゴム工業株式会社 Tire for two-wheeled vehicle

Similar Documents

Publication Publication Date Title
JP5063304B2 (en) Pneumatic tires for motorcycles
JP4943830B2 (en) Pneumatic tires for motorcycles
JP5327957B2 (en) Pneumatic tires for motorcycles
JP4860621B2 (en) Pneumatic tires for motorcycles
JP2007131228A (en) Pneumatic tire for two-wheel vehicle
JP5179803B2 (en) Pneumatic tires for motorcycles
JP2010247744A (en) Pneumatic tire for motorcycle
WO2010119959A1 (en) Pneumatic tire for two-wheeled motor vehicle
JP2010120436A (en) Pneumatic tire for motorcycle
JP2007161054A (en) Pneumatic tire
JP2009096419A (en) Pneumatic tire for two-wheel vehicle
JP5179802B2 (en) Tires for motorcycles
JP2010126005A (en) Motorcycle pneumatic tire
JP2009051361A (en) Pneumatic tire for two-wheeled vehicle
JP2009056899A (en) Pneumatic tire for two-wheel vehicle
JP2009113604A (en) Pneumatic tire for motorcycle
JP2010126004A (en) Motorcycle pneumatic tire
JP2010126003A (en) Motorcycle pneumatic tire
JP2009001080A (en) Pneumatic tire for motorcycle
JP2010120437A (en) Pneumatic tire for motorcycle
JP5009722B2 (en) Pneumatic tires for motorcycles
JP5182662B2 (en) Pneumatic tires for motorcycles
JP5455185B2 (en) Pneumatic tires for motorcycles
JP2010120438A (en) Pneumatic tire for motorcycle
JP2010120614A (en) Pneumatic tire for motorcycle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10764541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP