WO2010119718A1 - 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム - Google Patents

通信装置及び通信方法、コンピューター・プログラム、並びに通信システム Download PDF

Info

Publication number
WO2010119718A1
WO2010119718A1 PCT/JP2010/051896 JP2010051896W WO2010119718A1 WO 2010119718 A1 WO2010119718 A1 WO 2010119718A1 JP 2010051896 W JP2010051896 W JP 2010051896W WO 2010119718 A1 WO2010119718 A1 WO 2010119718A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
beam pattern
frame
preamble
reception
Prior art date
Application number
PCT/JP2010/051896
Other languages
English (en)
French (fr)
Inventor
和之 迫田
裕一 森岡
亮 澤井
裕昭 高野
亮太 木村
卓志 國弘
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP10764304A priority Critical patent/EP2421320A1/en
Priority to CN201080015241.3A priority patent/CN102379152B/zh
Priority to US13/258,040 priority patent/US9525473B2/en
Publication of WO2010119718A1 publication Critical patent/WO2010119718A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to a communication apparatus and communication method for performing beam pattern control using an array antenna, a computer program, and a communication system, and more particularly to a communication apparatus using both access control based on physical carrier sense and beam pattern control. And a communication method, a computer program, and a communication system.
  • Wireless communication is rapidly spreading as a technology that eliminates the burden of wiring work in conventional wired communication and realizes mobile communication.
  • IEEE The Institute of Electrical and Electronics Engineers 802.11 and IEEE 802.15 can be cited as standard specifications related to a wireless LAN (Local Area Network).
  • CSMA / CA Carrier Sense Multiple Access withCollection Avoidance
  • FIG. 22 shows how three communication stations STA-0, STA-1, and STA-1 operate within their communicable ranges.
  • FIG. 23 shows a communication sequence example based on CSMA / MA in a communication environment in which three communication stations STA-0, STA-1, and STA-1 operate.
  • the communication station that issued the transmission request first monitors the media state for a predetermined frame interval DIFS (Distributed Inter Frame Space). If there is no transmission signal during this period, it performs random backoff, and also transmits during this time. When there is no signal, a frame can be transmitted with a transmission right.
  • DIFS Distributed Inter Frame Space
  • the communication station when an exceptionally urgent frame such as ACK is transmitted, the communication station is permitted to transmit a frame (packet) after a shorter frame interval SIFS (Short Inter Frame Space).
  • SIFS Short Inter Frame Space
  • “Virtual carrier sense” can be cited as a methodology for solving the hidden terminal problem. Specifically, when the communication station describes Duration (duration) information for reserving the media in the received frame not addressed to the local station, the media is used for the period corresponding to the Duration information.
  • a transmission suspension period (NAV: Network Allocation Vector) is set by assuming that the carrier is present, that is, virtual carrier sense.
  • an RTS / CTS handshake can be given as a representative example of a signal transmission / reception sequence using virtual carrier sense.
  • the data transmission source communication station transmits a transmission request frame (RTS: Request To Send) and starts data transmission in response to receiving a confirmation notification frame (CTS: Clear To Send) from the data transmission destination communication station. To do.
  • RTS Transmission request frame
  • CTS confirmation notification frame
  • the hidden terminal sets a transmission stop period based on Duration information described in the received frame to avoid collision.
  • the hidden terminal for the transmitting station receives the CTS and sets a transmission stop period to avoid collision with the data frame, the hidden terminal for the receiving station receives the RTS and stops the transmission period, and ACK To avoid collisions.
  • array antenna technology can be cited as an example of a method for securing a good communication channel with a specific communication partner.
  • the beam pattern of the antenna can be controlled.
  • the quality of the communication channel is improved. improves.
  • a radio communication system has been proposed in which a base station forms a unique beam pattern for each mobile station to perform transmission and reception to improve antenna gain and provide a good communication path (for example, Patent Documents). 1).
  • the base station controls the directivity of the antenna when transmitting the data signal, but does not control the directivity of the antenna when transmitting the synchronization signal, and is a data signal multiplexed in the same time zone as the synchronization signal.
  • a communication method for reducing the interference caused by the signal with respect to the terminal device before the synchronization is established by performing adaptive processing such as shortening the length of the synchronization signal see, for example, Patent Document 2).
  • FIG. 24 illustrates a communication environment using the array antenna technology.
  • each communication station STA-0, STA-1, and STA-2 does not generate a beam pattern addressed to a specific communication station, and is an omnidirectional beam pattern. Beam-1, Beam-1, and Beam-2 perform transmission and reception, respectively.
  • the STA-0 corresponding to the base station performs a specific communication such as Beam-01 and Beam-02 with respect to STA-1 and STA-2 as communication partners. Communication is performed by generating beam patterns with higher gains for stations STA-1 and STA-2 (in other words, focused on STA-1 and STA-2).
  • the STA-1 and STA-2 corresponding to the terminal station have omnidirectional beam patterns Beam-1 and Beam-2, respectively, but the beam patterns Beam-01 directed to the local station STA-0 respectively. And transmit using Beam-02. Therefore, the reception SINR (Signal-to-Interference plus Noise power Ratio) at STA-1 and STA-2 is improved.
  • SINR Signal-to-Interference plus Noise power Ratio
  • a communication method using antenna directivity is also applied to IEEE 802.15.3c, which is a standard of a wireless PAN (mmWPAN: millimeter-wave Wireless Area Network) that uses a millimeter wave band.
  • mmWPAN millimeter-wave Wireless Area Network
  • millimeter waves Compared with microwaves that are widely used in wireless LAN technology and the like, millimeter waves have a short wavelength and strong straightness, and can transmit a very large amount of information, but attenuation due to reflection is severe. Because of the large propagation loss, radio signals do not reach far. By controlling the transmit / receive beam pattern, the millimeter wave flight distance problem can be compensated.
  • the beam pattern is generally calculated based on transmission channel information with a communication partner. For this reason, when controlling the beam pattern, a reception signal from the communication partner is required.
  • the subordinate terminal stations STA-1 and STA-2 update the beam pattern ( It is assumed that a signal for refreshing is periodically transmitted to STA-0. Further, when a signal is transmitted / received with a specific beam pattern, the signal is not detected using the preamble. Preamble detection is performed only in random channel access as shown in FIG. 23, and transmission / reception is performed with a beam pattern different from transmission / reception of data frames for random channel access. For example, in the communication system shown in FIG.
  • the base station STA-0 uses beam patterns Beam-01 and Beam02 directed to the communication partner when transmitting and receiving data frames with the STA-1 and STA-2. However, at the time of random channel access, an omnidirectional beam pattern Beam-0 as shown in FIG. 22 is used.
  • An object of the present invention is an excellent communication that can suitably perform beam pattern control using an array antenna in order to solve a flight distance problem or improve communication quality in a communication system using a millimeter wave band, for example.
  • An apparatus, a communication method, a computer program, and a communication system are provided.
  • a further object of the present invention is to provide an excellent communication apparatus capable of performing appropriate beam pattern control while performing access control based on physical carrier sense, for example, in a communication environment where the radio wave band is an unlicensed band. And a communication method, a computer program, and a communication system.
  • An antenna capable of controlling the beam pattern; A beam pattern control unit for controlling the beam pattern of the antenna; A control unit for controlling a frame transmission / reception procedure, and instructing the beam pattern control unit to control a beam pattern of the antenna according to the frame transmission / reception procedure; With The control unit performs frame transmission by selecting any one of a plurality of preamble types having different preamble lengths during frame transmission. It is a communication device.
  • control unit of the communication device is configured to instruct control of the beam pattern by the beam pattern control unit during frame transmission. ing.
  • the control unit of the communication apparatus according to claim 2 when the control unit of the communication apparatus according to claim 2 does not instruct the beam pattern control unit to control the beam pattern, the preamble having a longer preamble length is used.
  • a shorter preamble length Is selected to transmit a frame when selecting the type and transmitting the frame, and instructing the beam pattern control unit to control the beam pattern so as to form a beam pattern narrowed down to the frame transmission destination, a shorter preamble length Is selected to transmit a frame.
  • the communication apparatus further includes a storage unit that holds a transmission / reception history with the frame transmission destination, and the control unit Based on the transmission / reception history with the frame transmission destination, one of a plurality of preamble types having different preamble lengths is selected, and the beam pattern control unit is instructed to control the beam pattern to transmit the frame. It is comprised so that it may perform.
  • the control unit of the communication device is configured to hold the previous transmission / reception time information with the frame transmission destination in the storage unit as the transmission / reception history. ing.
  • the control unit refers to the transmission / reception history stored in the storage unit at the time of frame transmission, and has a plurality of preamble lengths different depending on the elapsed time from the previous transmission / reception time with the frame transmission destination. Are selected from among the preamble types, and the beam pattern control unit is instructed to control the beam pattern to perform frame transmission.
  • the control unit when the communication apparatus according to claim 2 applies the RTS / CTS transmission / reception procedure, when the communication apparatus operates as the data receiving side, the control unit is configured to transmit the beam pattern.
  • the control unit When the RTS frame is received from the frame transmission destination, the control unit is configured to instruct to form a beam pattern directed to the frame transmission destination based on the received signal.
  • the control unit when operating as a data transmission side in RTS / CTS transmission / reception, when receiving a CTS frame from the frame transmission destination, the control unit transmits a data frame to the frame transmission destination based on the received signal. It is configured to instruct to form a beam pattern to be used.
  • the control unit of the communication device uses the beam pattern formed based on the CTS frame received from the frame transmission destination to transmit the frame transmission destination.
  • a preamble type having a shorter preamble length is selected.
  • control unit of the communication device determines that the beam pattern used at the previous data frame transmission is valid, it is inserted into the payload part.
  • the ratio of pilot symbols to be transmitted is reduced and data frames are transmitted.
  • the control unit of the communication device is configured to hold an elapsed time threshold for the frame transmission destination in the storage unit as the transmission / reception history. Yes. Then, the control unit refers to the transmission / reception history held in the storage unit at the time of frame transmission, and when the elapsed time from the previous transmission / reception time with the frame transmission destination is within the threshold value, While selecting the preamble type or beam pattern used at the time of frame transmission / reception and the elapsed time from the previous transmission / reception time with the frame transmission destination exceeds the threshold, the preamble length longer than that used at the previous frame transmission Select the preamble type with or disable the beam pattern used during the previous frame transmission.
  • control unit of the communication device increases the threshold according to a successful frame transmission / reception process with the frame transmission destination, and the frame transmission The threshold value is decreased in response to the failure of the frame transmission / reception process with the destination.
  • the invention according to claim 12 of the present application uses an antenna capable of controlling a beam pattern, controls a frame transmission / reception procedure, and controls the beam pattern of the antenna according to the frame transmission / reception procedure.
  • a wireless communication method includes a step of selecting one of a plurality of preamble types having different preamble lengths and performing frame transmission.
  • the invention according to claim 13 of the present application is a computer program written in a computer-readable format so that a communication operation using an antenna capable of controlling a beam pattern is executed on a computer.
  • said computer A beam pattern control unit for controlling a beam pattern of the antenna;
  • Function as The control unit performs frame transmission by selecting any one of a plurality of preamble types having different preamble lengths during frame transmission. It is a computer program characterized by this.
  • the computer program according to claim 13 of the present application defines a computer program described in a computer-readable format so as to realize predetermined processing on a computer.
  • a cooperative operation is exhibited on the computer, and the same operational effect as the communication device according to claim 1 of the present application is obtained. Can do.
  • the invention according to claim 14 of the present application is An antenna capable of controlling a beam pattern, a beam pattern control unit for controlling the beam pattern of the antenna, a frame transmission / reception procedure, and the beam pattern control unit according to the frame transmission / reception procedure
  • a communication device as a frame transmission destination;
  • a communication system comprising:
  • system here refers to a logical collection of a plurality of devices (or functional modules that realize specific functions), and each device or functional module is in a single housing. It does not matter whether or not.
  • the present invention for example, in a communication method using the millimeter wave band, it is possible to suitably perform beam pattern control using an array antenna in order to solve a flight distance problem and improve communication quality.
  • An apparatus and a communication method, a computer program, and a communication system can be provided.
  • the radio wave band is an unlicensed band
  • An apparatus and a communication method, a computer program, and a communication system can be provided.
  • a method of narrowing a beam pattern toward a communication partner is employed in order to secure a good communication channel with a specific communication partner.
  • effective beam pattern information cannot be held when a considerable period has elapsed since the last transmission / reception with the communication partner or when the communication partner is the first communication partner.
  • the communication partner is low by selecting a preamble type having a longer preamble length and transmitting a frame while sacrificing transmission overhead. Signal detection can be performed even with reception SINR. Conversely, under circumstances where the received SINR is sufficiently high by performing beam pattern control or the like, transmission overhead can be suppressed by selecting a preamble type having a shorter preamble length.
  • the communication apparatus can selectively determine the preamble length to be used simultaneously with the selection of the beam pattern.
  • the third aspect of the present invention by transmitting a frame having a long preamble length, it is possible to perform access control based on signal detection even under a low reception SINR condition without performing beam pattern control.
  • transmission overhead is selected by selecting a preamble type having a shorter preamble length. Can be suppressed.
  • the communication device can hold information such as a beam pattern and a preamble type used at the previous frame transmission / reception in the storage unit as a transmission / reception history.
  • information such as a beam pattern and a preamble type used at the previous frame transmission / reception in the storage unit as a transmission / reception history.
  • the communication partner can detect a signal even with a low reception SINR.
  • the reception SINR of the communication partner is determined by beam pattern control. Therefore, transmission overhead can be suppressed by selecting a preamble type having a shorter preamble length.
  • the transmission / reception history such as the beam pattern and preamble type used in the previous frame transmission / reception stored in the storage unit is valid as long as the channel with the communication partner does not change. In general, the channel changes with time. According to the invention described in claim 5 of the present application, in consideration of such a point, a beam pattern or preamble held as a transmission / reception history based on an elapsed time from the previous frame transmission / reception with the same communication partner. -The validity of the type (preamble length) can be determined.
  • the communication apparatus can improve the reception SINR by using the beam pattern secured at the time of reception of the immediately preceding frame for transmission / reception of the subsequent frame. Further, according to the invention described in claim 7 of the present application, in the RTS / CTS handshake, by selecting a preamble type having a shorter preamble length in the hope that the reception SINR is improved at the frame transmission destination. Can reduce transmission overhead.
  • the RTS / CTS handshake is omitted and the data frames are continuously transmitted. By transmitting, transmission overhead can be suppressed.
  • the ratio of pilot symbols to be inserted into the payload is reduced to reduce the data pattern.
  • the threshold of the elapsed time for each frame transmission destination is managed as the transmission / reception history, and the elapsed time from the previous transmission / reception time with the frame transmission destination is compared with the corresponding threshold.
  • a communication partner that can correctly deliver a frame is judged to have a small change in channel status. Therefore, by increasing the threshold of elapsed time, The pattern can be made effective, and as a result, transmission overhead can be suppressed and information transmission can be made more efficient. Conversely, a communication partner that cannot deliver a frame correctly is judged to have a large change in channel status, and therefore, by updating the beam pattern in a short period by decreasing the elapsed time threshold, Generation of transmission errors can be suppressed.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the communication device 100.
  • FIG. 3 is a diagram showing an example of the internal configuration of the digital unit 180.
  • FIG. 4 is a diagram illustrating a configuration example of a correlation processing circuit that detects a preamble by autocorrelation.
  • FIG. 5 is a diagram illustrating a configuration example of a correlation processing circuit that detects a preamble by cross-correlation.
  • FIG. 6 is a diagram illustrating an internal configuration example of the power calculation unit 183.
  • FIG. 1 is a diagram schematically illustrating a configuration example of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of the communication device 100.
  • FIG. 3 is a diagram showing an example of the internal configuration of the digital unit 180.
  • FIG. 4 is a diagram illustrating
  • FIG. 7 is a diagram illustrating an example of a transmission beam pattern that can be formed by the communication apparatus 100 by directivity control of the transmission beam by the transmission beam processing unit 187.
  • FIG. 8 shows an example of a frame format with a different preamble length.
  • FIG. 9 is a diagram exemplifying a communication environment in which both communicating parties form a beam pattern that increases the gain with respect to each other and performs transmission and reception.
  • FIG. 10 is a diagram showing an example of a communication sequence in which access control is performed between two communication stations STA-0 and STA-1 according to the CSMA / CA procedure.
  • FIG. 11 is a diagram showing a format example of the transmission / reception history.
  • FIG. 12 is a communication sequence diagram for explaining a processing procedure for the communication apparatus 100 to set an appropriate beam pattern and preamble type based on the past transmission / reception history.
  • FIG. 13 is a communication sequence diagram for explaining a processing procedure for the communication apparatus 100 to set an appropriate beam pattern and preamble type based on the past transmission / reception history.
  • FIG. 14 is a state transition diagram when the communication apparatus 100 operates as the communication station STA-0 in the communication sequence shown in FIGS. 10, 12, and 13.
  • FIG. 15 is a flowchart illustrating a processing procedure for updating a transmission / reception history that is sequentially performed with a start event indicating that the communication apparatus 100 has transitioned to a transmission preparation state of each frame of RTS, CTS, data, and ACK. It is.
  • FIG. 10 is a communication sequence diagram for explaining a processing procedure for the communication apparatus 100 to set an appropriate beam pattern and preamble type based on the past transmission / reception history.
  • FIG. 14 is a state transition diagram when the communication
  • FIG. 16 is a flowchart illustrating a processing procedure for updating the transmission / reception history, which is sequentially performed with a start event indicating that the communication apparatus 100 has received the RTS, CTS, data, and ACK frames.
  • FIG. 17 is a flowchart showing a processing procedure for incrementally updating the elapsed time threshold (Threshold), which is executed in step S1601 in the flowchart shown in FIG.
  • FIG. 18 is a flowchart showing a processing procedure for updating to a preamble type having a shorter preamble length, which is executed in step S1603 in the flowchart shown in FIG. FIG.
  • FIG. 19 is a flowchart illustrating a processing procedure for updating the transmission / reception history, which is sequentially performed with a start event indicating that the communication apparatus 100 has timed out after transmitting each frame of RTS, CTS, and data.
  • FIG. 20 is a flowchart showing a processing procedure for reducing and updating the threshold value (Threshold) of elapsed time, which is executed in step S1901 in the flowchart shown in FIG.
  • FIG. 21 is a flowchart showing a processing procedure for updating to a preamble type having a longer preamble length, which is executed in step S1902 in the flowchart shown in FIG. FIG.
  • FIG. 22 is a diagram illustrating a communication environment in which any communication station performs a transmission / reception operation using a non-directional beam pattern.
  • FIG. 23 is a diagram illustrating a communication sequence example based on CSMA / MA in a communication environment in which three communication stations STA-0, STA-1, and STA-1 operate.
  • FIG. 24 exemplifies a communication environment in which only the base station performs transmission / reception by forming a beam pattern having a high gain for each terminal station, while the terminal station performs transmission / reception using an omnidirectional beam pattern.
  • FIG. FIG. 25 is a diagram illustrating a state in which each terminal station STA-1 and STA-2 periodically transmits a signal for updating the beam pattern to STA-0.
  • FIG. 26 is a diagram illustrating a configuration example of an information device on which the modularized communication device 100 is mounted.
  • a communication method for performing beam pattern control a VHT (Very High Throughput) standard using a 60 GHz band millimeter wave can be cited, but the gist of the present invention is not limited to a specific frequency band. .
  • the directivity is controlled more precisely, and the beam direction changes with time. Can be made.
  • it is essential to control the beam pattern of the antenna but the gist of the present invention is not limited to a specific array antenna structure.
  • FIG. 1 schematically shows a configuration example of a wireless communication system according to an embodiment of the present invention.
  • the illustrated wireless communication system includes a communication device 100 and a communication device 200.
  • the system uses the millimeter wave band.
  • the millimeter-wave communication system has a flying distance problem that it has high straightness and a large attenuation during reflection. Therefore, a radio signal is transmitted / received by directing a transmission beam and a reception beam toward a communication partner.
  • the radio wave band used in the system is an unlicensed band, and channel sharing is performed by access control based on physical carrier sense.
  • the communication device 100 includes a plurality of antennas 160a to 160n for transmitting and receiving radio signals according to a millimeter-wave communication scheme.
  • the directivity B t of the transmission beam is controlled by adjusting the weight of the signal transmitted through each of the antennas 160a to 160n.
  • the transmission beam B t is directed in the direction of the position of the communication device 200 that is the communication partner.
  • the communication device 200 includes a plurality of antennas 260a to 260n for transmitting and receiving radio signals according to the millimeter wave communication method. Then, by adjusting the weights of signals received via antennas 260a ⁇ 260n, and controls the directivity B r of receive beams. In the illustrated example, the reception beam Br is directed in the direction of the position of the communication apparatus 100 that is the communication partner.
  • FIG. 2 shows a configuration example of the communication device 100.
  • the illustrated communication device 100 may operate as a broadband router or a wireless access point.
  • the communication device 200 may have the same configuration.
  • the communication device 100 includes a storage unit 150, a plurality of antennas 160a to 160n, and a wireless communication unit 170.
  • the wireless communication unit 170 includes an analog unit 172, an AD conversion unit 174, a DA conversion unit 176, a digital unit 180, and a control unit 190.
  • the plurality of antennas 160a to 160n are used for wireless communication according to the millimeter wave communication method.
  • the antennas 160a to 160n constitute an array antenna, and can control the excitation amplitude and phase of each to change the beam direction with time. Specifically, a radio signal weighted using a predetermined weighting factor is transmitted from each of the antennas 160a to 160n using millimeter waves, and a millimeter wave radio signal received by each of the antennas 160a to 160n is transmitted to a predetermined signal. Weighted using a weighting coefficient and received.
  • the analog unit 172 typically corresponds to an RF circuit for transmitting and receiving a radio signal in accordance with a millimeter wave communication method. That is, the analog unit 172 performs low-noise amplification and down-conversion on a plurality of received signals respectively received by the antennas 160a to 160n, and outputs them to the subsequent AD conversion unit 174. The analog unit 172 also up-converts the plurality of transmission signals converted into analog signals by the DA conversion unit 176 into the RF band, amplifies the power, and outputs the amplified signals to the antennas 160a to 160n.
  • the AD conversion unit 174 converts each of the plurality of analog reception signals input from the analog unit 172 into a digital signal, and outputs the digital signal to the subsequent digital unit 180. Further, the DA conversion unit 176 converts each of a plurality of digital transmission signals input from the digital unit 180 into analog signals and outputs the analog signals to the analog unit 172.
  • the digital unit 180 typically includes a circuit for demodulating and decoding a received signal according to a millimeter-wave communication scheme, and a circuit for encoding and modulating a transmission signal according to a millimeter-wave communication scheme. .
  • FIG. 3 shows an example of the internal configuration of the digital unit 180.
  • the digital unit 180 includes a synchronization unit 181, a reception beam processing unit 182, a power calculation unit 183, a determination unit 184, a demodulation / decoding unit 185, a coded modulation unit 186, and a transmission beam processing unit. 187.
  • the synchronization unit 181 synchronizes the start timing of the reception processing according to the preamble at the head of the frame for the plurality of reception signals received by the plurality of antennas 160a to 160n, and outputs the synchronization to the reception beam processing unit 182.
  • the synchronization unit 181 can acquire synchronization timing based on correlation processing such as auto-correlation or cross-correlation of the received preamble.
  • FIG. 4 shows a configuration example of a correlation processing circuit that detects a preamble by autocorrelation.
  • the delay unit 401 holds the reception signal for a time interval corresponding to the repetition period of the known training sequence included in the preamble, and outputs it as a delay signal.
  • the complex conjugate section 402 takes the conjugate complex number of this delayed signal.
  • Multiplier 403 performs complex conjugate multiplication of the received signal and the delayed signal corresponding to the repetition period interval of the known training sequence.
  • the averaging unit 404 calculates a moving average of products output from the multiplication unit 403 over a predetermined moving average section to obtain an autocorrelation value. Then, the determination unit 405 finds the arrival of a frame or a signal when the autocorrelation value exceeds a predetermined threshold.
  • FIG. 5 shows a configuration example of a correlation processing circuit that detects a preamble by cross-correlation.
  • the delay unit 502 is configured by connecting a plurality of delay elements each having a delay time corresponding to the sample period in series, and gives the delay time of the timing estimation section as a whole.
  • the preamble holding unit 501 holds a pattern of a known training sequence. Then, the received signal samples are delayed by one sample at each delay element of the delay unit 502, each delayed signal is multiplied by the holding pattern of the preamble holding unit 501, and the summing unit 503 adds these to obtain an inner product. A cross-correlation value can be obtained. And the peak detection part 504 makes the peak position of a cross correlation value an estimation timing.
  • the synchronization unit 181 includes a plurality of correlation processing circuit modules corresponding to different types of preambles having different lengths, and can operate these in parallel to receive a frame whose preamble type is unknown, that is, an arbitrary preamble length.
  • the reception beam processing unit 182 controls the directivity of the reception beam by weighting the plurality of reception signals input from the synchronization unit 181 according to, for example, a uniform distribution or a Taylor distribution. Reception beam processing section 182 then outputs the weighted reception signal to power calculation section 183 and demodulation decoding section 185.
  • the power calculation unit 183 calculates the reception power of the reception signal transmitted / received in each transmission / reception beam direction, and sequentially outputs the received power to the determination unit 184.
  • FIG. 6 shows an internal configuration example of the power calculation unit 183.
  • the frequency correction unit 601 corrects the frequency offset of the received signal.
  • the squarer 602 can calculate the square value of the received signal X to obtain signal power.
  • the determining unit 184 determines an optimal transmission beam direction and an optimal reception beam direction based on the received power value input from the power calculation unit 183. Then, a parameter value for specifying the determined beam direction is stored in the storage unit 150 via the control unit 190.
  • the optimum beam direction mentioned here typically corresponds to a beam direction in which a series of received power values input from the power calculation unit 183 for one beam learning signal is a maximum value.
  • the demodulation / decoding unit 185 demodulates and decodes the reception signal weighted by the reception beam processing unit 182 in accordance with an arbitrary modulation method and encoding method used for the millimeter wave communication method, and acquires a data signal. Then, the demodulation / decoding unit 185 outputs the acquired data signal to the control unit 190.
  • the encoding modulation unit 186 encodes and modulates the data signal input from the control unit 190 according to an arbitrary encoding method and modulation method used for the millimeter wave communication method, and generates a transmission signal. Then, the encoding modulation unit 186 outputs the generated transmission signal to the transmission beam processing unit 187.
  • the transmission beam processing unit 187 generates a plurality of transmission signals weighted according to, for example, a uniform distribution or a Taylor distribution from the transmission signal input from the encoding modulation unit 186, and controls the directivity of the transmission beam.
  • the value of the weight used by the transmission beam processing unit 187 is specified by a directivity control signal input from the control unit 190, for example.
  • the plurality of transmission signals weighted by the transmission beam processing unit 187 are output to the DA conversion unit 176, respectively.
  • the control unit 190 is configured using an arithmetic device such as a microprocessor, for example, and controls the overall operation within the wireless communication unit 170, including processing of a MAC (Media Access Control) layer.
  • the MAC layer processing includes, for example, media access control according to the CSMA / CA procedure.
  • the control unit 190 acquires the parameter value for specifying the optimum transmission beam direction or reception beam direction from the storage unit 150, the control unit 190 sets the antennas 160a to 160n to form the beam direction specified based on the parameter value.
  • a directivity control signal for instructing to add a weighting coefficient is output to transmission beam processing section 187 in digital section 180.
  • an optimal beam pattern is formed such that the transmission beam or the reception beam at the time of wireless transmission according to the millimeter wave communication method by the wireless communication apparatus 100 is directed in the direction in which the communication partner is located.
  • the MAC layer processing performed by the control unit 190 includes, for example, media access control according to the CSMA / CA procedure.
  • the control unit 190 stores a transmission / reception history when frame transmission / reception is performed according to the MAC layer protocol or the like in the storage unit 150, and based on the stored transmission / reception history, a beam pattern to be used at the next frame transmission / reception. The details of the processing will be described later.
  • FIG. 7 shows an example of a transmission beam pattern that can be formed by the communication apparatus 100 by directivity control of the transmission beam by the transmission beam processing unit 187.
  • the communication apparatus 100 can form ten transmission beam pattern elements B t0 to B t9 .
  • the transmission beam pattern elements B t0 to B t9 have directivities in different directions by 36 degrees on the plane on which the communication apparatus 100 is located.
  • the transmission beam processing unit 187 assigns a weighting factor to each of the antennas 160a to 160n in accordance with the directivity control signal from the control unit 190, so that among the ten transmission beam pattern elements B t0 to B t9 . Any one (or a combination of two or more) of transmission beam patterns can be formed to transmit a directional radio signal.
  • the reception beam pattern that can be formed by the communication apparatus 100 may be the same beam pattern as the transmission beams B t0 to B t9 shown in FIG. That is, the reception beam processing unit 182 assigns a weighting factor to each of the antennas 160a to 160n in accordance with the directivity control signal from the control unit 190, so that the ten reception beam pattern elements B r0 to B r9 are obtained.
  • a reception beam pattern that coincides with any one of these (or a combination of two or more) can be formed, and radio signals according to the millimeter-wave communication scheme can be received by the antennas 160a to 160n.
  • parameter values for specifying the weighting factors for the antennas 160a to 160n for forming these transmission / reception beam pattern elements B t0 to B t9 and B r0 to B r9 are stored in advance. It is remembered.
  • the transmit beam pattern and the receive beam pattern that can be formed by the communication apparatus 100 are not limited to the example shown in FIG.
  • the plurality of antennas 160a to 160n can be configured so as to form a transmission beam pattern or a reception beam pattern having directivity in various directions in a three-dimensional space.
  • FIG. 8 shows examples of frame formats with different preamble types (preamble lengths).
  • Preamble-0 having the shortest preamble length
  • Preamble-2 having the longest preamble length
  • Preamble-1 having an intermediate length therebetween.
  • the structure after the header is the same for all frames.
  • control information necessary for receiving the payload (PSDU) is described.
  • PSDU PLCP Service Data Unit
  • a PSDU is a service data unit that is responsible for a PLCP (Physical Layer Convergence Procedure), and corresponds to a MAC frame including a MAC header.
  • the longer the preamble length the higher the signal detection processing capability (well known). This is because, by using a long preamble, more symbols can be used for signal detection on the receiving side, and a signal is detected even when the received SINR is low. Therefore, when performing signal detection processing based on CSMA / CA in a communication environment in which a signal does not reach unless a beam pattern is formed toward the communication partner, a longer preamble length is used. It is conceivable to use a frame. On the other hand, it is preferable that the preamble length is as short as possible from the viewpoint that a long preamble leads to transmission overhead.
  • Preamble-0 which is a short preamble
  • Preamble-2 which is a long preamble
  • Preamble-2 has a problem that overhead is increased, but signal discovery is possible even with a lower SINR.
  • the communication apparatus 100 selectively determines the preamble length to be used at the same time as selecting the beam pattern. Specifically, by transmitting a frame having Preamble-2 which is a long preamble, it is possible to perform access control based on signal detection even in a situation where reception SINR is low without performing beam pattern control. Conversely, under conditions in which the received SINR is sufficiently high, such as by performing beam pattern control, it is possible to reduce the transmission overhead by transmitting a frame having a shorter preamble.
  • FIG. 22 shows a communication environment in which each of the communication stations STA-0, STA-1, and STA-2 performs transmission / reception with the omnidirectional beam pattern Beam-1, Beam-1, and Beam-2. Illustrated. Since it is assumed that a signal without such a beam pattern is received with a low SINR value at the transmission destination, the frame transmission source selects a preamble type having Preamble-2 which is a long preamble. It is considerable to use.
  • STA-0 corresponding to the base station forms beam patterns Beam-01 and Beam-02 that have higher gains than STA-1 and STA-2 that are communication partners.
  • STA-1 and STA-2 corresponding to the terminal stations exemplify a communication environment in which omnidirectional beam patterns Beam-1 and Beam-2 perform transmission and reception with STA-0.
  • the reception SINR is improved as compared with the example shown in FIG. Therefore, when transmitting using a beam pattern focused to the communication partner, the frame source uses a preamble type having a shorter preamble, Preamble-1, to suppress transmission overhead. Can do.
  • FIG. 9 shows transmission and reception of beam patterns Beam-01 and Beam-02 in which STA-0 forms gain patterns with respect to STA-1 and STA-2 with which communication is performed.
  • STA-1 and STA-2 also exemplify communication environments in which beam patterns Beam-10 and Beam-20, each having a higher gain than STA-0, are formed and transmitted and received.
  • the reception SINR at the terminal stations STA-1 and STA-2 is further improved. Therefore, in a situation where the frame transmission source can recognize that the frame transmission destination is waiting for reception with a beam pattern focused on its own station, the frame transmission source itself also transmits using the beam pattern focused on the communication partner. In this case, transmission overhead can be further suppressed by using a preamble type having Preamble-0, which is the shortest preamble.
  • the communication device 100 transmits the previous transmission / reception history (the last communication time for the frame transmission destination, the beam used at that time). Based on the pattern and preamble type), it is possible to estimate the current communication status and determine the beam pattern and preamble type to be used when transmitting the current frame.
  • FIG. 10 shows an example of a communication sequence in which access control is performed between two communication stations STA-0 and STA-1 according to the CSMA / CA procedure.
  • the RTS / CTS handshake is used together.
  • description will be given of an operation in which the communication station performs appropriate beam pattern control while performing access control based on signal detection.
  • each of the communication stations STA-0 and STA-1 is configured in the same manner as the communication apparatus 100 shown in FIG.
  • STA-0 In order to obtain a transmission opportunity, STA-0 first monitors the media state for a predetermined frame interval DIFS, and if there is no transmission signal during this period, it further performs random backoff. In this way, after confirming that there is no transmission from another communication station, the STA-0 transmits the RTS frame (1000) addressed to the adjacent STA-1.
  • STA-0 does not have a transmission / reception history with respect to STA-1 (or a considerable time has passed since the last communication time, and the transmission / reception history possessed is not valid).
  • STA-0 performs transmission with an omnidirectional beam pattern such as Beam-0 in FIG. 22 when transmitting the RTS frame (1000).
  • STA-0 transmits a RTS frame (1000) using a preamble type having Preamble-2 which is a long preamble, thereby enabling signal detection on the STA-1 side.
  • STA-1 is in a situation where it is not known from which adjacent station the signal is transmitted when the RTS frame (1000) arrives. For this reason, STA-1 performs signal detection using a non-directional beam pattern such as Beam-1 in FIG.
  • the RTS frame (1000) uses a preamble type having Preamble-2 which is a long preamble, so that signal detection is possible even with a low SINR. Since STA-1 receives the RTS frame (1001) from STA-0, STA-1 generates a specific beam pattern addressed to STA-0 from STA-1 based on the information of the received signal. This beam pattern is a pattern narrowed down to STA-0 like Beam-10 in FIG.
  • STA-1 decodes the received RTS frame (1001), interprets the description, and returns a CTS frame (1003) to STA-0. At this time, STA-1 performs transmission using the beam pattern Beam-10 generated at the time of receiving (1001) the previous RTS frame (1000). It can be assumed that the CNR frame (1003) generated by generating the beam pattern in this way is improved in SINR when received by the STA-0. Therefore, based on this assumption, STA-1 may transmit the CTS frame (1003) using a preamble type having Preamble-1 which is a slightly shorter preamble. Alternatively, the STA-1 may transmit the CTS frame (1003) with the same preamble type used in the received RTS frame (1000). In any case, STA-1 expects that a data frame will be transmitted from STA-0 after returning a CTS frame (1003), and addressed to STA-0 as in Beam-10 in FIG. The signal detection process is performed with a beam pattern focused on.
  • the STA-0 After returning the RTS frame (1000), the STA-0 performs signal detection processing in the expectation that a CTS frame is transmitted from the STA-1. STA-0 is in a situation where it is not known what beam pattern should be used for STA-1 when the CTS frame arrives. For this reason, the STA-0 performs signal detection processing with a non-directional beam pattern such as Beam-0 in FIG.
  • the STA-0 When the STA-0 receives the CTS frame (1002) from the STA-1, the STA-0 can generate a specific beam pattern addressed to the STA-1 from the STA-0 based on the information of the received signal. This beam pattern is a pattern narrowed down to STA-1 like Beam-01 in FIG.
  • STA-0 transmits a data frame (1004) in response to receiving the CTS frame (1002).
  • This data frame (1004) is transmitted using the beam pattern Beam-01 generated based on the previously received CTS frame (1002).
  • the data frame (1004) is transmitted by forming the beam pattern Beam-01 in the transmission source STA-0, and the beam pattern Beam-10 in the transmission destination STA-1 as described above.
  • the transmission / reception antenna also performs transmission / reception in a state where the beam is focused for a specific communication station, and it is assumed that the reception SINR at STA-1 is high and signal detection is easy.
  • STA-0 can transmit a data frame (1004) by using a preamble type having Preamble-0, which is the shortest preamble.
  • STA-1 forms a beam pattern Beam-10 and receives the data frame (1005). Thereafter, as shown in FIG. 10, the STA-0 may transmit data frames (1006) continuously.
  • the beam pattern used at that time may be the same as when the data frame (1004) was transmitted immediately before. This is because it is presumed that the channel status has hardly changed because the transmission times are close.
  • the data frame (1006) can be transmitted by using the same beam pattern as when the data frame (1004) was transmitted immediately before without transmitting the RTS frame. .
  • transmission overhead can be suppressed by omitting the RTS / CTS handshake and continuously transmitting data frames.
  • pilot symbols are inserted into the payload in the frame at predetermined intervals for channel estimation and waveform equalization (well known).
  • the STA-0 continuously transmits subsequent data frames (1006) within a period in which it is determined that the beam pattern and preamble type used at the time of transmitting the previous data frame (1004) are valid.
  • transmitting improve the efficiency of information transmission by reducing the ratio of pilot symbols to be inserted in the payload or by stopping the insertion of pilot symbols and transmitting data frames continuously. Can do.
  • a method for controlling the ratio of pilot symbols to be inserted into the payload is disclosed in, for example, Japanese Patent Laid-Open Nos. 2001-77788 and 2001-77789, which have already been assigned to the present applicant.
  • STA-1 determines that the reception of the data frame (1007) is completed, it returns an ACK frame (1009) to STA-0.
  • the ACK frame (1009) is transmitted by forming the beam pattern Beam-10 at the transmission source STA-1, and is received by forming the beam pattern Beam-01 at the transmission destination STA-0. . That is, similarly, the transmission / reception antenna also performs transmission / reception in a state where the beam is focused for a specific communication station, and it is assumed that the reception SINR at STA-0 is high and signal detection is easy.
  • An ACK frame (1009) can be transmitted using a preamble type having Preamble-0, which is the shortest preamble.
  • a frame addressed to each other in accordance with a predetermined communication procedure as in the case of performing access control according to the CSMA / CA procedure using RTS / CTS handshake between STA-0 and STA-1
  • a beam pattern to be used can be secured based on the communication procedure, and an appropriate preamble type (preamble length) can be selected in consideration of reception SINR and transmission overhead.
  • the communication apparatus 100 that operates as the STA-0 and STA-1 stores in the storage unit 150 a transmission / reception history acquired when frame transmission / reception is performed in accordance with the MAC layer protocol and the like, starting with the CSMA / CA procedure.
  • the transmission / reception history here refers to information for identifying the beam pattern used at the previous frame transmission / reception, the preamble type (preamble length) used at the previous frame transmission / reception, and the previous frame transmission / reception for each communication partner. Time information and a threshold of elapsed time.
  • a record of transmission / reception history as shown in FIG. 11 is stored for each communication partner.
  • the communication apparatus 100 can determine a beam pattern to be used at the next frame transmission / reception with the same communication partner and select a preamble frame type.
  • the beam pattern and preamble type used at the previous frame transmission / reception are effective as long as the channel with the communication partner does not change.
  • the communication apparatus 100 determines the beam pattern and preamble type (preamble length) held as the transmission / reception history based on the elapsed time from the previous frame transmission / reception with the same communication partner. It is possible to judge the effectiveness of.
  • the transmission / reception history exceeding the threshold of the elapsed time is invalid, and even when sending and receiving frames with the same communication partner, the stored beam pattern and preamble type cannot be used (useless data is there).
  • the threshold of elapsed time is not uniform, and it is appropriate to set the threshold of elapsed time to be small for a communication partner whose channel is likely to fluctuate due to high movement frequency.
  • each of the communication stations STA-0 and STA-1 is configured in the same manner as the communication apparatus 100 shown in FIG.
  • a transaction is performed between STA-0 and STA-1 according to the CSMA / CA procedure using the RTS / CTS handshake. Then, STA-0 and STA-1 secure a beam pattern to be used when transmitting a frame to the communication partner and receiving a frame from the communication partner through the transaction 1200. Select the preamble type of the transmission frame according to the pattern. Then, STA-0 and STA-1 hold these pieces of information together with time information at the time of frame transmission / reception in each storage unit 150 as transmission / reception history (see FIG. 11). In the transaction 1200, each communication station STA-0 and STA-1 generates a bit pattern and selects a preamble type as described above with reference to FIG. Omitted.
  • STA-0 continues to transmit data to STA-1, and transactions according to the CSMA / CA procedure using the RTS / CTS handshake are repeatedly performed.
  • STA-0 refers to the transmission / reception history in the storage unit 150 of the local station, and after the last frame transmission / reception with STA-1 (ie, the end of transaction 1200) Check the elapsed time (afterwards) to determine if the elapsed time threshold is exceeded. In the illustrated example, since the next transaction 1201 is started within the elapsed time threshold after the end of the transaction 1200, the transmission / reception history of STA-1 is valid. Try.
  • the STA-0 uses the preamble type having the preamble-0 used in the previous transmission of the data frame or the preamble type having the preamble-1 having a slightly longer preamble length than the RTS. Send a frame.
  • STA-1 refers to the transmission / reception history in storage unit 150 of its own station, and the elapsed time since the last frame transmission / reception with STA-0 (that is, after the end of transaction 1200) is a threshold value. Therefore, signal detection is performed with the beam pattern used last time.
  • the RST frame arriving from STA-0 is a preamble type having a short preamble length of Preamble-0 or Preamble-1, but since the received SINR is improved by directing beam patterns to each other, STA-1 RTS frames can be successfully received.
  • STA-1 may newly generate a beam pattern addressed to STA-0 based on the received signal, and update the transmission / reception history with STA-0.
  • STA-1 uses the preamble type having Preamble-0, which was used in the previous transmission of the ACK frame, or the preamble type having Preamble-1 which is slightly longer in preamble length than this, and uses the CTS frame. Is sent.
  • STA-0 After returning the RTS frame, STA-0 performs signal detection processing using the beam pattern used last time, expecting the CTS frame to be transmitted from STA-1. In response to receiving the CTS, the STA-0 uses the preamble type having the shortest preamble length in the beam pattern used last time, and uses the preamble type having the shortest preamble length. Send a frame.
  • the STA-0 may newly generate a beam pattern addressed to the STA-1 based on the received signal of the CTS, and update the transmission / reception history with the STA-1.
  • STA-1 receives the data frame from STA-0 with the beam pattern focused on STA-0.
  • the STA-1 may newly generate a beam pattern addressed to the STA-0 based on the received signal, and update the transmission / reception history with the STA-0.
  • STA-0 may transmit two or more data frames continuously, but the beam pattern and preamble type used at that time may be the same as when the data frame was transmitted immediately before. If the beam pattern used at the previous data frame transmission is within the period determined to be valid, the RTS / CTS handshake is omitted, and STA-0 uses the same beam pattern and continues. Data frame (same as above). Thus, transmission overhead can be suppressed by omitting the RTS / CTS handshake and continuously transmitting data frames. In addition, when STA-0 continuously transmits data frames, it reduces the ratio of pilot symbols to be inserted into its payload or stops the insertion of pilot symbols and continues data frames. (Same as above), the efficiency of information transmission can be improved.
  • STA-1 receives a data frame with a beam pattern focused on STA-0.
  • STA-1 may newly generate a beam pattern addressed to STA-0 each time it receives a data frame, and sequentially update the transmission / reception history with STA-0.
  • STA-1 determines that the reception of the data frame is completed, it returns an ACK frame with a beam pattern narrowed to STA-0.
  • This ACK frame may use a preamble type having Preamble-0 which is the shortest preamble.
  • STA-0 and STA-1 update the transmission history information such as the beam pattern secured through the transaction 1201 and the used preamble type, and store it in each storage unit 150.
  • STA-0 transmits the data frame addressed to STA-1 suddenly without the RTS / CTS handshake.
  • the STA-0 refers to the transmission / reception history in the storage unit 150 of its own station, and checks the elapsed time since the last frame transmission / reception with the STA-1.
  • the STA-0 since it is within the threshold of the elapsed time, the STA-0 forms the beam pattern used last time, and also uses a preamble type having a preamble-0, or a preamble with a slightly longer preamble length. Attempt to transmit a data frame using a preamble type with a 1.
  • STA-1 receives a data frame with a beam pattern focused on STA-0.
  • the STA-1 may newly generate a beam pattern addressed to the STA-0 and update the transmission / reception history with the STA-0.
  • STA-1 determines that the reception of the data frame is completed, it uses the preamble type having Preamble-0, which is the shortest preamble, in the beam pattern focused on STA-0.
  • ACK frame is returned.
  • STA-0 and STA-1 update the transmission history information such as the beam pattern secured through the transaction 1201 and the used preamble type, and store it in each storage unit 150.
  • a frame transmission / reception procedure is performed between STA-0 and STA-1.
  • STA-0 and STA-1 secure a beam pattern to be used when transmitting a frame to a communication partner and receiving a frame from the communication partner through this transaction 1300, Select the preamble type of the transmission frame according to the pattern. Then, STA-0 and STA-1 hold these pieces of information together with time information at the time of frame transmission / reception in each storage unit 150 as transmission / reception history (see FIG. 11).
  • the media access control method applied in the transaction 1300 is arbitrary and is not limited to CSMA / CA and RTS / CTS.
  • STA-0 continues to transmit data to STA-1, and a transaction is performed according to the CSMA / CA procedure using the RTS / CTS handshake.
  • the STA-0 Prior to the transmission of the RTS frame, the STA-0 refers to the transmission / reception history in the storage unit 150 of its own station, checks the elapsed time since the last frame transmission / reception with the STA-1, and determines the threshold of the elapsed time. It is determined whether or not it exceeds. In the illustrated example, since the elapsed time after the end of the transaction 1300 exceeds the threshold, the transmission / reception history of STA-1 is invalid. For this reason, STA-0 transmits an RTS frame with a non-directional beam pattern such as Beam-0 in FIG. Further, it is assumed that a signal in which such a beam pattern is not formed is received at a low SINR value in the transmission destination STA-1. Therefore, STA-0 transmits a RTS frame using a preamble type having Preamble-2, which is a long preamble, so that a signal can be detected on the STA-1 side.
  • Preamble-2 which is a long preamble
  • STA-1 refers to the transmission / reception history in its own storage unit 150, and since the time elapsed since the last frame transmission / reception with STA-0 exceeds the threshold, STA-0 The transmission / reception history is invalid. For this reason, STA-1 performs signal detection using a non-directional beam pattern such as Beam-1 in FIG.
  • the RTS frame uses a preamble type having Preamble-2 which is a long preamble, signal detection is possible even with a low SINR.
  • the STA-0 and the STA-1 perform the RTS / CTS handshake according to the same procedure as described with reference to FIG. 10 to secure the beam pattern focused on each communication partner, An appropriate preamble type used for the transmission frame can be selected.
  • the RTS / CTS handshake is omitted and the STA-0 uses the same beam pattern if the beam pattern used at the previous data frame transmission is determined to be valid.
  • the data frame is transmitted continuously (same as above).
  • transmission overhead can be suppressed by omitting the RTS / CTS handshake and continuously transmitting data frames.
  • the STA-0 and the STA-1 sequentially update the transmission / reception history and hold them in the respective storage units 150.
  • STA-0 continuously transmits data frames it reduces the ratio of pilot symbols to be inserted into its payload or stops the insertion of pilot symbols and continues data frames. (Same as above), the efficiency of information transmission can be improved.
  • FIG. 14 shows a state transition diagram when the communication apparatus 100 operates as the communication stations STA-0 and STA-1 in the communication sequences shown in FIGS. 10, 12, and 13, for example.
  • the communication device 100 is waiting in an idle state.
  • the RTS / CTS handshake is used together, or the RTS / CTS handshake is not used together, and after the random backoff is performed, the data frame is directly received.
  • the criterion for determining whether or not to use the RTS / CTS handshake is not directly related to the gist of the present invention, and thus the description thereof is omitted here.
  • the communication apparatus 100 transitions to the RTS frame transmission ready state, and when it is determined not to use the RTS / CTS handshake, the communication apparatus 100 shifts to the data frame transmission ready state.
  • Either state is an event that activates a transmission / reception history update processing routine (see FIG. 15), which will be described later.
  • the communication apparatus 100 determines a beam pattern and a preamble type to be used through a transmission / reception history update process (see FIG. 15) described later. Then, the communication apparatus 100 monitors the media state for a predetermined frame interval DIFS, and if there is no transmission signal during this period, further performs random backoff and then uses the determined beam pattern and preamble type.
  • the RTS frame is transmitted to the communication partner.
  • the communication apparatus 100 In the post-RTS transmission state, the communication apparatus 100 returns a reply from the communication partner using the beam pattern determined at the time of preparation for RTS frame transmission for a predetermined frame interval SIFS (Short IFS) after completing the transmission of the RTS frame. Wait for receiving CTS frame.
  • SIFS Short IFS
  • the communication apparatus 100 When the communication apparatus 100 has received a CTS frame addressed to itself from the communication partner within the frame interval SIFS after completing the transmission of the RTS frame, the communication apparatus 100 transitions to a data frame transmission ready state.
  • the completion of reception of the CTS frame is an event that activates a transmission / reception history update processing routine (see FIG. 16), which will be described later, and returns to the data transmission ready state after executing this processing routine.
  • the communication apparatus 100 when the communication apparatus 100 times out because it cannot receive the CTS frame addressed to itself from the communication partner within the frame interval SIFS after completing the transmission of the RTS frame, the communication apparatus 100 gives up transmission of the subsequent data frame and enters the idle state. Transition to.
  • the reception timeout of the CTS frame is an event that activates the transmission / reception history update processing routine (see FIG. 19).
  • the communication apparatus 100 determines a beam pattern and a preamble type to be used through a transmission / reception history update process (see FIG. 15) described later. Then, the communication device 100 uses the determined beam pattern and preamble type to transmit a data frame to the communication partner after a predetermined frame interval SIFS has elapsed since the completion of reception of the CTS frame addressed to itself. Send.
  • the communication apparatus 100 transmits an ACK returned from the communication partner using the beam pattern determined at the time of data frame transmission preparation for a predetermined frame interval SIFS after transmission of the data frame is completed. Wait to receive a frame.
  • the communication device 100 returns to the idle state when it can receive the ACK frame addressed to itself from the communication partner within the frame interval SIFS after completing the transmission of the data frame.
  • the completion of reception of the ACK frame is an event that activates a transmission / reception history update processing routine (see FIG. 16), which will be described later, and returns to the idle state after executing this processing routine.
  • the communication apparatus 100 transits to the idle state.
  • the CTS frame reception timeout is an event that activates a transmission / reception history update processing routine (see FIG. 19), which will be described later, and returns to the idle state after the processing routine is executed.
  • the communication device 100 is waiting for reception in the idle state.
  • the communication apparatus 100 can use an omnidirectional beam pattern, or can use a beam pattern used (yet effective) in the previous transmission / reception operation.
  • the communication apparatus 100 When the communication apparatus 100 receives an RTS frame addressed to itself in an idle state, it becomes an event for starting a later-described transmission / reception history update processing routine (see FIG. 16). After executing the processing routine, CTS transmission is performed. Transition to the ready state.
  • the transmission preparation state of the CTS frame becomes an event for starting transmission / reception history update processing (see FIG. 15) described later, and the communication apparatus 100 determines the beam pattern and preamble type to be used through the processing routine. To do. Then, the communication apparatus 100 uses the determined beam pattern and preamble type to the CTS addressed to the transmission source of the RTS frame after a predetermined frame interval SIFS has elapsed since the completion of reception of the CTS frame addressed to itself. Reply the frame.
  • the communication apparatus 100 receives an RTS frame addressed to itself and does not permit transmission of a data frame, it returns a CTS frame to the RTS frame transmission source within a predetermined frame interval SIFS. It returns to the idle state without.
  • SIFS predetermined frame interval
  • the communication apparatus 100 transmits a data frame transmitted from the communication partner by using a beam pattern determined at the time of preparation for CTS frame transmission for a predetermined frame interval SIFS after transmission of the CTS frame is completed. Wait for reception.
  • the communication apparatus 100 When the communication apparatus 100 has received a data frame addressed to itself from the communication partner within the frame interval SIFS after completing the transmission of the CTS frame, the communication apparatus 100 transitions to the ACK frame transmission preparation state.
  • the completion of reception of the data frame is an event that activates a transmission / reception history update processing routine (see FIG. 16), which will be described later, and returns to the ACK transmission ready state after executing this processing routine.
  • the communication apparatus 100 when the communication apparatus 100 times out after receiving the data frame addressed to itself from the communication partner within the frame interval SIFS after completing the transmission of the CTS frame, the communication apparatus 100 gives up reception of the subsequent data frame and idles. Transition to the state.
  • the reception timeout of the data frame is an event for starting the transmission / reception history update processing routine (see FIG. 19).
  • the communication device 100 when the communication device 100 receives a data frame addressed to itself (without going through the RTS / CTS handshake) in an idle state, the communication device 100 transits to an ACK frame transmission preparation state. As in the case of using the RTS / CTS handshake, the completion of reception of the data frame is an event that activates a transmission / reception history update processing routine (see FIG. 16) described later. Return to the ACK transmission ready state.
  • the communication apparatus 100 determines a beam pattern and a preamble type to be used through a transmission / reception history update process (see FIG. 15) described later. Then, the communication apparatus 100 uses the determined beam pattern and preamble type to determine the transmission source of the data frame after a predetermined frame interval SIFS has elapsed since the completion of reception of the data frame addressed to itself. An ACK frame is transmitted to the communication partner to be returned to the idle state.
  • the communication apparatus 100 when the communication apparatus 100 is ready to transmit an ACK frame and further receives a data frame addressed to itself, the communication apparatus 100 activates a transmission / reception history update processing routine (see FIG. 16) to be described later. The event returns to the ACK transmission ready state after executing the processing routine.
  • the communication device 100 secures a transmission / reception history for each communication partner through the communication sequences shown in FIGS. ing.
  • This transmission / reception history has a data structure as shown in FIG. 11, for example.
  • the communication apparatus 100 updates the content of the record of the corresponding transmission / reception log
  • a processing procedure for updating the transmission / reception history for the communication partner when the communication apparatus 100 performs the frame transmission / reception processing according to the state transition diagram shown in FIG. 14 will be described.
  • FIG. 15 is a flowchart of a processing procedure for updating the transmission / reception history, which is sequentially performed with the activation event that the communication apparatus 100 has transitioned to the transmission preparation state of each frame of RTS, CTS, data, and ACK. Shown in format.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication apparatus 100 refers to the transmission / reception history of the frame transmission destination held in the storage unit 150 (step S1501), calculates the elapsed time from the last transmission / reception time with the frame transmission destination, and substitutes it in the variable N1. (Step S1502). Then, it is checked whether or not the elapsed time N1 exceeds a threshold (Threshold) of the elapsed time recorded in the transmission / reception history (step S1503).
  • a threshold Theshold
  • the communication apparatus 100 uses the beam pattern Beam-b and the preamble type Preamble-b (steps S1504 and S1505).
  • the beam pattern Beam-b is a non-directional or gentle beam pattern depending on the elapsed time.
  • the preamble type Preamble-b is changed to a preamble type having a longer or longer preamble length than the previous one. That is, steps S1504 and S1505 correspond to updating the beam pattern and preamble type used at the time of the current frame transmission.
  • the communication apparatus 100 determines to use the beam pattern Beam-a and the preamble type Preamble-a held as the transmission / reception history as they are (steps S1506 and S1507).
  • step S1508 By reducing the ratio of pilot symbols or stopping pilot symbol insertion and transmitting data frames continuously (same as above), the efficiency of information transmission can be improved.
  • the communication device 100 updates the transmission / reception history regarding the frame transmission destination with the beam pattern, preamble type, and transmission / reception time used for the current frame transmission (step S1509).
  • FIG. 16 shows, in the form of a flowchart, a processing procedure for updating the transmission / reception history, which is sequentially performed by the activation event that the communication apparatus 100 has received the RTS, CTS, data, and ACK frames.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 executes an increase update process for a threshold (Threshold) of elapsed time, which is separately defined (step S1601).
  • the communication apparatus 100 updates the beam pattern directed to the frame transmission source through the frame reception process, and substitutes the new beam pattern for Beam-a (step S1602).
  • the communication apparatus 100 performs update processing to a preamble type having a shorter preamble length that is defined separately (step S1603), thereby suppressing transmission overhead.
  • the communication apparatus 100 updates the transmission / reception history regarding the frame transmission source with the beam pattern, preamble type, and transmission / reception time used for the current frame transmission (step S1604).
  • FIG. 17 shows a processing procedure for increasing and updating the threshold value (Threshold) of the elapsed time, which is executed in step S1601 in the flowchart shown in FIG. 16, in the form of a flowchart.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 increments the counter CNT1 by 1 each time it enters the processing routine (step S1701).
  • the communication apparatus 100 makes the elapsed time threshold (Threshold) longer (step S1703). Further, after the threshold value (Threshold) of the elapsed time is updated, the value of the counter CNT1 is returned to 0 (step S1704).
  • the communication partner that can deliver the frame correctly is judged to have little change in the channel status. Therefore, the communication apparatus 100 can make the beam pattern effective over a longer period by increasing the elapsed time threshold according to the processing procedure shown in FIG. As a result, transmission overhead can be suppressed and information transmission can be made more efficient.
  • FIG. 18 shows a processing procedure for updating to a preamble type with a shorter preamble length, executed in step S1603 in the flowchart shown in FIG. 16, in the form of a flowchart.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 increments the counter CNT3 by 1 each time the processing routine is entered (step S1801).
  • the value of the counter CNT3 exceeds the predetermined value L3 (Yes in step S1802), after the elapsed time in the transmission / reception history is updated, the number of times the reception process with the communication partner has been successfully completed has exceeded L3. Become. In such a case, the channel condition with the communication partner is good, and the same transmission / reception history is valid for a longer period, in other words, the received SINR over the channel is high, and the shorter preamble length is It can be determined that transmission overhead can be suppressed by changing to the preamble type.
  • the communication apparatus 100 changes the preamble type to a shorter preamble length, substitutes it for Preamble-a (step S1803), and further substitutes Preamble-a for Preamble-b (step S1804), and then sets the counter CNT3. The value is returned to 0 (step S1805).
  • FIG. 19 shows, in the form of a flowchart, a processing procedure for updating a transmission / reception history, which is sequentially performed with a start event that the communication apparatus 100 has timed out after transmitting each frame of RTS, CTS, and data.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 executes a decrease update process for an elapsed time threshold (Threshold), which is separately defined (step S1901).
  • the communication apparatus 100 performs update processing to a preamble type having a long preamble length that is defined separately (step S1902), thereby suppressing transmission overhead.
  • the communication apparatus 100 updates the transmission / reception history regarding the frame transmission source with the beam pattern, preamble type, and transmission / reception time used for the current frame transmission (step S1903).
  • FIG. 20 shows, in the form of a flowchart, the processing procedure for reducing and updating the elapsed time threshold (Threshold), which is executed in step S1901 in the flowchart shown in FIG.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 increments the counter CNT2 by 1 each time it enters the processing routine (step S2001).
  • the communication device 100 further shortens the threshold (Threshold) of elapsed time (Step S2003). Further, after the threshold value (Threshold) of the elapsed time is updated, the value of the counter CNT2 is returned to 0 (step S2004).
  • the communication apparatus 100 can suppress the occurrence of transmission errors by updating the beam pattern in a short period by decreasing the elapsed time threshold according to the processing procedure shown in FIG.
  • FIG. 21 shows a processing procedure for updating to a preamble type having a longer preamble length, executed in step S1902 in the flowchart shown in FIG. 19, in the form of a flowchart.
  • the processing procedure can be realized in a form in which the control unit 190 in the wireless communication unit 170 executes a predetermined program code.
  • the communication device 100 increments the counter CNT4 by 1 each time the processing routine is entered (step S2101).
  • the communication apparatus 100 changes the preamble type to a longer preamble length and substitutes it for Preamble-b (step S2104), and counter CNT4. Is reset to 0 (step S2105).
  • CNT1 to CNT4 used in the flowcharts shown in FIGS. 17, 18, 20, and 21 are counters that are controlled to be executed only once at a plurality of times.
  • L1 to L4 are constants that define how many times “multiple times” is.
  • the communication device 100 operating as an access point (AP) or a terminal station (STA) is, for example, a personal computer (PC), a mobile phone, a PDA (Personal Digital Assistant), or the like. It may be a wireless communication module mounted on an information device such as a portable information terminal, a portable music player, or a game machine, or on a television receiver or other information home appliances.
  • AP access point
  • STA terminal station
  • PC personal computer
  • PDA Personal Digital Assistant
  • FIG. 26 shows a configuration example of an information device on which the modularized communication device 100 is mounted.
  • a CPU (Central Processing Unit) 1 executes a program stored in a ROM (Read Only Memory) 2 or a hard disk drive (HDD) 11 under a program execution environment provided by an operating system (OS).
  • OS operating system
  • the received frame synchronization process described later or a part of the process may be realized in a form in which the CPU 1 executes a predetermined program.
  • ROM 2 permanently stores program codes such as POST (Power On Self Test) and BIOS (Basic Input Output System).
  • BIOS Basic Input Output System
  • a RAM (Random Access Memory) 3 loads a program stored in the ROM 2 or HDD (Hard Disk Drive) 11 when the CPU 1 executes it, or temporarily holds work data of the program being executed. Used for. These are connected to each other by a local bus 4 directly connected to a local pin of the CPU 1.
  • the local bus 4 is connected to an input / output bus 6 such as a PCI (Peripheral Component Interconnect) bus via a bridge 5.
  • PCI Peripheral Component Interconnect
  • the keyboard 8 and the pointing device 9 are input devices operated by the user.
  • the display 10 includes an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube), and displays various types of information as text and images.
  • HDD 11 is a drive unit having a built-in hard disk as a recording medium, and drives the hard disk.
  • the hard disk is used for installing programs executed by the CPU 1 such as an operating system and various applications, and for storing data files and the like.
  • the communication unit 12 is a wireless communication interface configured by modularizing the wireless communication device 100, and operates as an access point or a terminal station in an infrastructure mode or operates in an ad hoc mode, and is within a signal reachable range. Communication with other communication terminals existing in the network is executed. The operation of the wireless communication device 100 is as already described.
  • the present invention can be suitably applied to communication systems that employ a millimeter-wave communication system, such as IEEE 802.15.3c using the 60 GHz band, but the gist of the present invention is not necessarily limited to a specific frequency band. Is not to be done. Further, it can be applied not only to millimeter wave communication but also to other directional communication.
  • a millimeter-wave communication system such as IEEE 802.15.3c using the 60 GHz band
  • the elapsed time is used as a reference for determining the validity of the beam pattern and preamble type (preamble length) held as the transmission / reception history, and the threshold of the elapsed time is adaptively increased or decreased.
  • the gist of the present invention is not limited thereto. For example, it is possible to determine the effectiveness of a beam pattern or preamble type (preamble length) used in the past using information on communication quality such as SINR. In other words, information on communication quality is used as a threshold value. Similar decisions can be made.
  • Transmission beam processing unit 190 ... Control unit 401 ... Delay unit 402 ... Complex conjugate unit 403 ... Multiplication unit 404 ... Average unit 405 Determining unit 501 Preamble holding unit 502 Delay unit 503 Totaling unit 504 Peak detecting unit 601 Frequency correcting unit 602 Squarer

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 物理キャリアセンスに基づくアクセス制御を行ないながら、適切なビーム・パターン制御を行なう。 通信装置は、ビーム・パターンを形成しないと信号が届かないような状況下では、長いプリアンブルを持つフレームを送信し、物理キャリアセンスに基づくアクセス制御を可能にし、ビーム・パターンを形成しなくても信号が十分に届く状況下では、より短いプリアンブルを持つフレームを送信し、伝送のオーバーヘッドを小さく抑える。また、CSMA/CA手順に従ってアクセス制御の送受信履歴に基づいて、ビーム・パターンやプリアンブル・タイプを決定する。

Description

通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
 本発明は、アレーアンテナを用いてビーム・パターン制御を行なう通信装置及び通信方法、コンピューター・プログラム、並びに通信システムに係り、特に、物理キャリアセンスに基づくアクセス制御とビーム・パターン制御を併用する通信装置及び通信方法、コンピューター・プログラム、並びに通信システムに関する。
 無線通信は、旧来の有線通信における配線作業の負担を解消し、さらには移動体通信を実現する技術として、急速に普及してきている。例えば、無線LAN(Local Area Network)に関する標準的な規格として、IEEE(The Institute of Electrical and Electronics Engineers)802.11やIEEE802.15を挙げることができる。
 多くの無線LANシステムでは、CSMA/CA(Carrier Sense Multiple Access withCollision Avoidance:搬送波感知多重アクセス)などのキャリアセンスに基づくアクセス制御手順を採り入れて、各通信局はランダム・チャネル・アクセス時におけるキャリアの衝突を回避するようにしている。
 図22には、3台の通信局STA-0、STA-1、STA-1が各々の通信可能範囲内で動作する様子を示している。また、図23には、3台の通信局STA-0、STA-1、STA-1が動作する通信環境下で、CSMA/MAに基づく通信シーケンス例を示している。送信要求が発生した通信局は、まず所定のフレーム間隔DIFS(Distributed Inter Frame Space)だけメディア状態を監視し、この間に送信信号が存在しなければ、ランダム・バックオフを行ない、さらにこの間にも送信信号が存在しない場合に、送信権を得てフレームを送信することができる。
 また、通信局は、ACKなどの例外的に緊急度の高いフレームを送信する際には、より短いフレーム間隔SIFS(Short Inter Frame Space)の後にフレーム(パケット)を送信することが許される。これにより、緊急度の高いフレームは、通常のCSMAの手順に従って送信されるフレームよりも先に送信することが可能となる。
 ここで、無線通信においては、通信局が互いに直接通信できない領域が存在するという隠れ端末問題が生じることが知られている。隠れ端末同士ではネゴシエーションを行なうことができないため、送信動作が衝突する可能性がある。隠れ端末問題を解決する方法論として、「仮想キャリアセンス」を挙げることができる。具体的には、通信局は、自局宛てでない受信フレーム中にメディアを予約するためのDuration(持続時間)情報が記載されている場合には、Duration情報に応じた期間はメディアが使用されているものと予想すなわち仮想キャリアセンスして、送信停止期間(NAV:Network Allocation Vector)を設定する。
 さらに、仮想キャリアセンスを利用した信号送受信シーケンスの代表例として、RTS/CTSハンドシェイクを挙げることができる。データ送信元の通信局が送信要求フレーム(RTS:Request To Send)を送信し、データ送信先の通信局から確認通知フレーム(CTS:Clear To Send)を受信したことに応答してデータ送信を開始する。そして、隠れ端末は、自局宛てでないRTS又はCTSのうち少なくとも一方のフレームを受信すると、受信フレーム中に記載されているDuration情報に基づいて送信停止期間を設定して、衝突を回避する。送信局にとっての隠れ端末は、CTSを受信して送信停止期間を設定し、データ・フレームとの衝突を回避し、受信局にとっての隠れ端末は、RTSを受信して送信期間を停止し、ACKとの衝突を回避する。
 CSMA/CA制御手順にRTS/CTSハンドシェイクを併用することにより、過負荷状態における衝突のオーバーヘッドの削減が図られることがある。
 ところで、特定の通信相手との間で良好な通信チャネルを確保する方法の一例として、アレーアンテナ技術を挙げることができる。アンテナ毎の送信重み若しくは受信重みを変化させることでアンテナのビーム・パターンを制御することができ、送信ビーム又は受信ビームの少なくとも一方を通信相手が位置する方向に向けることで、通信チャネルの品質が向上する。
 例えば、基地局が移動局毎に固有のビーム・パターンを形成して送受信を行なってアンテナ・ゲインを向上させ、良好な通信路を提供する無線通信システムについて提案がなされている(例えば、特許文献1を参照のこと)。
 また、基地局が、データ信号の送信時にはアンテナの指向性を制御するが、同期信号を送信する際にはアンテナの指向性を制御せず、同期信号と同一の時間帯に多重されたデータ信号が存在するときには同期信号の長さを短縮するなどの適応処理を行なうことで、同期確立前の端末装置に対する信号による与干渉低減する通信方法について提案がなされている(例えば、特許文献2を参照のこと)。
 図24には、アレーアンテナ技術を利用した通信環境を例示している。図22に示した通信環境下では、各通信局STA-0、STA-1、STA-2は特定の通信局宛てのビーム・パターンを生成せず、無指向性(omni directional)のビーム・パターンBeam-1、Beam-1、Beam-2で、それぞれ送受信を行なっている。これに対し、図24に示す例では、基地局に相当するSTA-0は、通信相手であるSTA-1並びにSTA-2に対して、Beam-01並びにBeam-02のように、特定の通信局STA-1、STA-2に対して利得が高くなる(言い換えれば、STA-1、STA-2宛てに絞られた)ビーム・パターンをそれぞれ生成して、通信を行なう。端末局に相当するSTA-1、STA-2は、無指向性のビーム・パターンBeam-1、Beam-2をそれぞれ持つが、STA-0がそれぞれ自局に向けられたビーム・パターンBeam-01、Beam-02で送信する。したがって、STA-1、STA-2での受信SINR(Signal-to-Interference plus Noise power Ratio)は向上する。
 また、ミリ波帯を使用する無線PAN(mmWPAN:millimeter-wave Wireless Personal Area Network)の標準規格であるIEEE802.15.3cにも、アンテナの指向性を利用した通信方法が適用されている。ミリ波は、無線LAN技術などで広く普及しているマイクロ波と比較しても、波長が短く強い直進性があり、非常に大きな情報量を伝送することができるが、反射に伴う減衰が激しく、伝搬損失が大きいため、遠くまで無線信号が到達しない。送受信ビーム・パターンの制御により、ミリ波の飛距離問題を補うことができる。
 ビーム・パターンは、一般に、通信相手との間の伝送チャネル情報に基づいて算出される。このため、ビーム・パターンを制御する際には、通信相手からの受信信号を必要とする。図24に示した、基地局に相当するSTA-0で運営される通信環境では、例えば図25に示すように、配下の各端末局STA-1並びにSTA-2が、ビーム・パターンを更新(リフレッシュ)するための信号(signal)をそれぞれ定期的にSTA-0宛てに送信することが前提となる。また、特定のビーム・パターンで信号を送受信する際には、プリアンブルを用いて信号を検出することは行なわれない。プリアンブル検出は、図23に示したようなランダム・チャネル・アクセスにおいてのみ行なわれ、ランダム・チャネル・アクセス用には、データ・フレームの送受信とは異なるビーム・パターンで送受信が行なわれる。例えば、図24に示した通信システムにおいて、基地局STA-0は、STA-1、STA-2とデータ・フレームの送受信を行なうときには通信相手に向けられたビーム・パターンBeam-01、Beam02を用いるが、ランダム・チャネル・アクセス時には図22に示したような無指向性のビーム・パターンBeam-0を利用する。
 通信局は、物理キャリアセンスに基づくアクセス制御を行なう際には、不特定の周辺局からの信号を受信する目的で、プリアンブルの検出を行なう必要がある。一方で、ビーム・パターンを形成しないと特定の通信局との通信が困難となる通信システムでは、ビーム・パターンを形成すると不特定局からの信号を受信できなくなる結果として、物理キャリアセンスに基づくアクセス制御を行なうことは困難である。
 上述した特許文献1、2に記載されているような基地局の配下で特定の通信局向けのビーム・パターンと不特定の通信局向けのビーム・パターンを別々に形成して通信を行なうシステムでは、物理キャリアセンスに基づくアクセス制御なしにチャネル共有を行なうことに特に問題はない。これに対し、利用する電波帯域がアンライセンスト・バンドのような場合には、物理キャリアセンスに基づくアクセス制御によってチャネル共有を行なうことが好ましい。例えば、ミリ波を使用する無線LANのようなプライベートなネットワークでは、物理キャリアセンスに基づくアクセス制御と、ビーム・パターン制御を併用する必要があると思料される。
特開2004-72539号公報 特開2007-324773号公報
 本発明の目的は、例えばミリ波帯を使用する通信方式において、飛距離問題解決や通信品質の向上などのためにアレーアンテナを用いてビーム・パターン制御を好適に行なうことができる、優れた通信装置及び通信方法、コンピューター・プログラム、並びに通信システムを提供することにある。
 本発明のさらなる目的は、例えば電波帯域がアンライセンスト・バンドとなる通信環境下において、物理キャリアセンスに基づくアクセス制御を行ないながら、適切なビーム・パターン制御を行なうことができる、優れた通信装置及び通信方法、コンピューター・プログラム、並びに通信システムを提供することにある。
 本願は、上記課題を参酌してなされたものであり、請求項1に記載の発明は、
 ビーム・パターンを制御することが可能なアンテナと、
 前記アンテナのビーム・パターンを制御するビーム・パターン制御部と、
 フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部と、
を備え、
 前記制御部は、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう、
通信装置である。
 本願の請求項2に記載の発明によれば、請求項1に係る通信装置の制御部は、フレーム送信時において、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示するように構成されている。
 本願の請求項3に記載の発明によれば、請求項2に係る通信装置の制御部は、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示しないときには、より長いプリアンブル長を持つプリアンブル・タイプを選択してフレーム送信を行ない、前記フレーム送信先に当てて絞られたビーム・パターンを形成するよう前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示するときには、より短いプリアンブル長を持つプリアンブル・タイプを選択してフレーム送信を行なうように構成されている。
 本願の請求項4に記載の発明によれば、請求項2に係る通信装置は、フレーム送信先との送受信履歴を保持する記憶部をさらに備えており、また、制御部は、フレーム送信時において、フレーム送信先との送受信履歴に基づいて、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択するとともに、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示して、フレーム送信を行なうように構成されている。
 本願の請求項5に記載の発明によれば、請求項4に係る通信装置の制御部は、フレーム送信先との前回の送受信時間情報を前記送受信履歴として前記記憶部に保持するように構成されている。また、制御部は、フレーム送信時において、前記記憶部に保持されている前記送受信履歴を参照して、前記フレーム送信先との前回の送受信時刻からの経過時間に応じて、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択するとともに、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示して、フレーム送信を行なうように構成されている。
 本願の請求項6に記載の発明によれば、請求項2に係る通信装置がRTS/CTS送受信手順を適用する場合において、データ受信側として動作する際には、制御部は、前記ビーム・パターン制御部に対して、前記フレーム送信先からRTSフレームを受信したときには、当該受信信号に基づいて前記フレーム送信先に向けられたビーム・パターンを形成するように指示するように構成されている。また、RTS/CTS送受信においてデータ送信側として動作する際には、制御部は、前記フレーム送信先からCTSフレームを受信したときには、当該受信信号に基づいて前記フレーム送信先宛てにデータ・フレームを送信する際に用いるビーム・パターンを形成するように指示するように構成されている。
 本願の請求項7に記載の発明によれば、請求項6に係る通信装置の制御部は、前記フレーム送信先から受信したCTSフレームに基づいて形成したビーム・パターンを利用して前記フレーム送信先宛てにデータ・フレームを送信する際に、より短いプリアンブル長のプリアンブル・タイプを選択するように構成されている。
 本願の請求項8に記載の発明によれば、請求項6に係る通信装置の制御部は、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、RTSフレームの送信を行なうことなく、同じビーム・パターンを使用して連続してデータ・フレームを送信するように構成されている。
 本願の請求項9に記載の発明によれば、請求項6に係る通信装置の制御部は、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、ペイロード部に挿入するパイロット・シンボルの比率を低減してデータ・フレームを送信するように構成されている。
 本願の請求項10に記載の発明によれば、請求項5に係る通信装置の制御部は、前記フレーム送信先に対する経過時間の閾値を前記送受信履歴として前記記憶部に保持するように構成されている。そして、制御部は、フレーム送信時において、前記記憶部に保持されている前記送受信履歴を参照して、前記フレーム送信先との前回の送受信時刻からの経過時間が前記閾値以内のときには、前回のフレーム送受信時に使用したプリアンブル・タイプ又はビーム・パターンを選択する一方、前記フレーム送信先との前回の送受信時刻からの経過時間が前記閾値を超えるときには、前回のフレーム送信時に使用したよりも長いプリアンブル長を持つプリアンブル・タイプを選択し又は前回のフレーム送信時に使用したビーム・パターンを無効にする。
 本願の請求項11に記載の発明によれば、請求項10に係る通信装置の制御部は、前記フレーム送信先とのフレーム送受信処理が成功することに応じて前記閾値を増加し、前記フレーム送信先とのフレーム送受信処理が失敗することに応じて前記閾値を減少するように構成されている。
 また、本願の請求項12に記載の発明は、ビーム・パターンを制御することが可能なアンテナを用い、フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記アンテナのビーム・パターンの制御を行なう無線通信方法であって、
 プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なうステップを有する通信方法である。
 また、本願の請求項13に記載の発明は、ビーム・パターンを制御することが可能なアンテナを用いた通信動作の制御をコンピューター上で実行するようにコンピューター可読形式で記述されたコンピューター・プログラムであって、前記コンピューターを、
 前記アンテナのビーム・パターンを制御するビーム・パターン制御部、
 フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部、
として機能させ、
 前記制御部は、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう、
ことを特徴とするコンピューター・プログラムである。
 本願の請求項13に係るコンピューター・プログラムは、コンピューター上で所定の処理を実現するようにコンピューター可読形式で記述されたコンピューター・プログラムを定義したものである。換言すれば、本願の請求項13に係るコンピューター・プログラムをコンピューターにインストールすることによって、コンピューター上では協働的作用が発揮され、本願の請求項1に係る通信装置と同様の作用効果を得ることができる。
 また、本願の請求項14に記載の発明は、
 ビーム・パターンを制御することが可能なアンテナと、前記アンテナのビーム・パターンを制御するビーム・パターン制御部と、フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部を備え、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう通信装置と、
 フレーム送信先となる通信装置と、
を具備する通信システムである。
 但し、ここで言う「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。
 本発明によれば、例えばミリ波帯を使用する通信方式において、飛距離問題解決や通信品質の向上などのためにアレーアンテナを用いてビーム・パターン制御を好適に行なうことができる、優れた通信装置及び通信方法、コンピューター・プログラム、並びに通信システムを提供することができる。
 また、本発明によれば、例えば電波帯域がアンライセンスト・バンドとなる通信環境下において、物理キャリアセンスに基づくアクセス制御を行ないながら、適切なビーム・パターン制御を行なうことができる、優れた通信装置及び通信方法、コンピューター・プログラム、並びに通信システムを提供することができる。
 ミリ波帯を使用する通信システムなどでは、特定の通信相手との間で良好な通信チャネルを確保するために、通信相手に向けてビーム・パターンを絞る方法が採用される。しかしながら、通信相手と最後に送受信してから相当の期間が経過したときや、初めての通信相手の時には、有効なビーム・パターン情報を保持することができない。これに対し、本願の請求項1、12乃至14に記載の発明によれば、伝送のオーバーヘッドを犠牲にしつつ、より長いプリアンブル長のプリアンブル・タイプを選択してフレーム送信することによって通信相手は低い受信SINRでも信号検出できるようにすることができる。また逆に、ビーム・パターン制御を行なうことなどによって受信SINRが十分高い状況下では、より短いプリアンブル長のプリアンブル・タイプを選択することによって伝送のオーバーヘッドを抑えることができる。
 本願の請求項2に記載の発明によれば、通信装置は、ビーム・パターンを選択すると同時に利用するプリアンブル長も選択的に決定することができる。
 本願の請求項3に記載の発明によれば、長いプリアンブル長を持つフレームを送信することにより、ビーム・パターン制御を行なわず受信SINRが低い状況下でも信号検出に基づくアクセス制御を行なうことができる。また、本願の請求項3に記載の発明によれば、ビーム・パターン制御により通信相手の受信SINRを向上させることができるときには、より短いプリアンブル長のプリアンブル・タイプを選択することによって、伝送のオーバーヘッドを抑えることができる。
 本願の請求項4に記載の発明によれば、通信装置は、前回のフレーム送受信時に利用したビーム・パターンやプリアンブル・タイプなどの情報を送受信履歴として記憶部に保持することができる。また、本願の請求項4に記載の発明によれば、通信相手との送受信履歴に基づいて有効なビーム・パターンを保持していないと判断されるときには、伝送のオーバーヘッドを犠牲にしつつ、より長いプリアンブル長のプリアンブル・タイプを選択してフレーム送信することによって、通信相手は低い受信SINRでも信号検出できるようにすることができる。また、本願の請求項4に記載の発明によれば、通信相手との送受信履歴に基づいて有効なビーム・パターンを保持していると判断されるときには、ビーム・パターン制御により通信相手の受信SINRを向上させることができることから、より短いプリアンブル長のプリアンブル・タイプを選択することによって、伝送のオーバーヘッドを抑えることができる。
 記憶部に保持されている、前回のフレーム送受信時に利用したビーム・パターンやプリアンブル・タイプなどの送受信履歴は、通信相手との間のチャネルが変化しない限り有効である。また、一般にチャネルは経時変化する。本願の請求項5に記載の発明によれば、かかる点を考慮して、同じ通信相手との前回のフレーム送受信時からの経過時間に基づいて、送受信履歴として保持しているビーム・パターンやプリアンブル・タイプ(プリアンブル長)の有効性を判断することができる。
 RTS/CTSハンドシェイクのように所定の送受信手順に従う際には、短いフレーム間隔でフレーム交換が行なわれ、直前のフレーム受信時に確保したビーム・パターンが有効であることが期待される。そこで、本願の請求項6に記載の発明によれば、通信装置は、直前のフレーム受信時に確保したビーム・パターンを後続のフレームの送受信に利用することで、受信SINRを向上させることができる。また、本願の請求項7に記載の発明によれば、フレーム送信先において受信SINRが向上することを期待して、より短いプリアンブル長のプリアンブル・タイプを選択することによって、RTS/CTSハンドシェイク時における伝送のオーバーヘッドを抑えることができる。
 本願の請求項8に記載の発明によれば、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、RTS/CTSハンドシェイクを省略してデータ・フレームを連続して送信することにより、伝送のオーバーヘッドを抑えることができる。
 本願の請求項9に記載の発明によれば、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、ペイロード中に挿入するパイロット・シンボルの比率を低減してデータ・フレームを連続して送信することにより、情報伝送の効率を向上することができる。
 本願の請求項10に記載の発明によれば、フレーム送信先毎の経過時間の閾値を送受信履歴として管理し、フレーム送信先との前回の送受信時刻からの経過時間を該当する閾値と比較することによって、前回のフレーム送受信時に使用したプリアンブル・タイプやビーム・パターンの有効性を判断することができる。
 本願の請求項11に記載の発明によれば、フレームを正しく届けられる通信相手は、チャネル状況の変化が小さいと判断されることから、経過時間の閾値を増加することによって、より長い期間にわたってビーム・パターンが有効となるようにすることができ、この結果、伝送のオーバーヘッドを抑え、情報伝送の効率化を図ることができる。また逆に、フレームを正しく届けることができない通信相手は、チャネル状況の変化が大きいと判断されることから、経過時間の閾値を減少することによって、短い期間でビーム・パターンを更新することによって、伝送誤りの発生を抑えることができる。
 本発明のさらに他の目的、特徴や利点は、後述する本発明の実施形態や添付する図面に基づくより詳細な説明によって明らかになるであろう。
図1は、本発明の一実施形態に係る無線通信システムの構成例を模式的に示した図である。 図2は、通信装置100の構成例を示した図である。 図3は、ディジタル部180の内部構成の一例を示した図である。 図4は、自己相関によりプリアンブルを検出する相関処理回路の構成例を示した図である。 図5は、相互相関によりプリアンブルを検出する相関処理回路の構成例を示した図である。 図6は、電力計算部183の内部構成例を示した図である。 図7は、送信ビーム処理部187による送信ビームの指向性制御によって通信装置100が形成することができる送信ビーム・パターンの一例を示した図である。 図8は、プリアンブル長の異なるフレーム・フォーマット例を示した図である。 図9は、通信相手同士がともに互いに対して利得が高くなるビーム・パターンを形成して送受信を行なう通信環境を例示した図である。 図10は、2台の通信局STA-0、STA-1の間でCSMA/CA手順に従ってアクセス制御が行なわれる通信シーケンス例を示した図である。 図11は、送受信履歴のフォーマット例を示した図である。 図12は、通信装置100が過去の送受信履歴に基づいて適切なビーム・パターン並びにプリアンブル・タイプを設定するための処理手順を説明するための通信シーケンス図である。 図13は、通信装置100が過去の送受信履歴に基づいて適切なビーム・パターン並びにプリアンブル・タイプを設定するための処理手順を説明するための通信シーケンス図である。 図14は、通信装置100が図10、図12、図13に示した通信シーケンスにおいて通信局STA-0として動作する際の状態遷移図である。 図15は、通信装置100がRTS、CTS、データ、並びにACKの各フレームの送信準備状態に遷移したことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順を示したフローチャートである。 図16は、通信装置100がRTS、CTS、データ、並びにACKの各フレームを受信完了したことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順を示したフローチャートである。 図17は、図16に示したフローチャート中のステップS1601で実行される、経過時間の閾値(Threshold)を増加更新するための処理手順を示したフローチャートである。 図18は、図16に示したフローチャート中のステップS1603で実行される、よりプリアンブル長の短いプリアンブル・タイプに更新するための処理手順を示したフローチャートである。 図19は、通信装置100がRTS、CTS、データの各フレーム送信後にタイムアウトしたことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順を示したフローチャートである。 図20は、図19に示したフローチャート中のステップS1901で実行される、経過時間の閾値(Threshold)を減少更新するための処理手順を示したフローチャートである。 図21は、図19に示したフローチャート中のステップS1902で実行される、よりプリアンブル長の長いプリアンブル・タイプに更新するための処理手順を示したフローチャートである。 図22は、いずれの通信局も無指向性のビーム・パターンを用いて送受信動作を行なう通信環境を例示した図である。 図23は、3台の通信局STA-0、STA-1、STA-1が動作する通信環境下で、CSMA/MAに基づく通信シーケンス例を示した図である。 図24は、基地局のみが各端末局に対して利得が高くなるビーム・パターンを形成して送受信を行なう一方、端末局は無指向性のビーム・パターンを用いて送受信を行なう通信環境を例示した図である。 図25は、各端末局STA-1並びにSTA-2が、ビーム・パターンを更新するためのsignal信号をそれぞれ定期的にSTA-0宛てに送信する様子を示した図である。 図26は、モジュール化された通信装置100を搭載した情報機器の構成例を示した図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。なお、ビーム・パターン制御を行なう通信方式として、60GHz帯のミリ波を使用するVHT(Very High Throughput)規格を挙げることができるが、本発明の要旨は特定の周波数帯に限定されるものではない。また、アンテナの指向性を所望の特性にするにはアンテナ上の振幅と位相分布を制御する必要がある。半波長ダイポール・アンテナやスロット・アンテナを複数並べて、アレーアンテナを構成し、各アンテナ素子の励振振幅と位相を制御することによって、指向性をより細やかに制御し、ビームの方向を時間的に変化させることができる。本発明を実現するには、アンテナのビーム・パターン制御を行なうことが必須であるが、本発明の要旨は特定のアレーアンテナ構造に限定されるものではない。
 図1には、本発明の一実施形態に係る無線通信システムの構成例を模式的に示している。図示の無線通信システムは、通信装置100と通信装置200からなる。同システムでは、ミリ波帯が使用される。ミリ波の通信方式は、直進性が強く反射時の減衰の大きいという飛距離問題があるため、送信ビーム及び受信ビームを通信相手にそれぞれ向けて無線信号を送受信するようになっている。また、同システムで利用する電波帯域がアンライセンスト・バンドであり、物理キャリアセンスに基づくアクセス制御によってチャネル共有を行なうものとする。
 図1に示す例では、通信装置100は、ミリ波の通信方式に従って無線信号を送受信するための複数のアンテナ160a~160nを備えている。そして、各アンテナ160a~160nを介して送信される信号の重みを調整することによって、送信ビームの指向性Btを制御するようになっている。図示の例では、送信ビームBtは、通信相手となる通信装置200の位置の方向に向けられている。
 また、通信装置200は、ミリ波の通信方式に従って無線信号を送受信するための複数のアンテナ260a~260nを備えている。そして、各アンテナ260a~260nを介して受信される信号の重みを調整することによって、受信ビームの指向性Brを制御するようになっている。図示の例では、受信ビームBrは、通信相手となる通信装置100の位置の方向に向けられている。
 図2には、通信装置100の構成例を示している。図示の通信装置100は、ブロードバンド・ルーターや無線アクセスポイントとして動作してもよい。なお、図示しないが、通信装置200も同様の構成であってもよい。
 通信装置100は、記憶部150と、複数のアンテナ160a~160nと、無線通信部170を備えている。無線通信部170は、アナログ部172と、AD変換部174と、DA変換部176と、ディジタル部180と、制御部190で構成される。
 複数のアンテナ160a~160nは、ミリ波の通信方式に従った無線通信に使用される。アンテナ160a~160nはアレーアンテナを構成し、各々の励振振幅と位相を制御して、ビームの方向を時間的に変化させることができる。具体的には、所定の重み係数を用いて重み付けされた無線信号をアンテナ160a~160nからミリ波を用いてそれぞれ送信し、また、アンテナ160a~160nでそれぞれ受信したミリ波の無線信号に所定の重み係数を用いて重み付けして受信する。
 アナログ部172は、典型的には、ミリ波の通信方式に従った無線信号を送受信するためのRF回路に相当する。すなわち、アナログ部172は、アンテナ160a~160nによりそれぞれ受信された複数の受信信号を低雑音増幅するとともにダウンコンバートし、後段のAD変換部174へ出力する。また、アナログ部172は、DA変換部176によりそれぞれアナログ信号に変換された複数の送信信号をRF帯にアップコンバートするとともに電力増幅して、各アンテナ160a~160nへ出力する。
 AD変換部174は、アナログ部172から入力される複数のアナログ受信信号をそれぞれディジタル信号に変換し、後段のディジタル部180へ出力する。また、DA変換部176は、ディジタル部180から入力される複数のディジタル送信信号をそれぞれアナログ信号に変換し、アナログ部172へ出力する。
 ディジタル部180は、典型的には、ミリ波の通信方式に従って受信信号を復調及び復号するための回路、並びに、ミリ波の通信方式に従って送信信号を符号化及び変調するための回路で構成される。
 図3には、ディジタル部180の内部構成の一例を示している。図示のように、ディジタル部180は、同期部181と、受信ビーム処理部182と、電力計算部183と、決定部184と、復調復号部185と、符号化変調部186と、送信ビーム処理部187で構成される。
 同期部181は、例えば、複数のアンテナ160a~160nにより受信された複数の受信信号について、フレームの先頭のプリアンブルに応じて受信処理の開始タイミングを同期させて、受信ビーム処理部182へ出力する。同期部181は、例えば受信したプリアンブルの自己相関又は相互相関などの相関処理に基づいて、同期タイミングを獲得することができる。
 図4には、自己相関によりプリアンブルを検出する相関処理回路の構成例を示している。
 遅延部401は、プリアンブルに含まれる既知トレーニング・シーケンスの繰り返し周期に相当する時間間隔だけ受信信号を保持し、遅延信号として出力する。また、複素共役部402は、この遅延信号の共役複素数をとる。そして、乗算部403では、受信信号と既知トレーニング・シーケンスの繰り返し周期間隔分の遅延信号との複素共役乗算を行なう。平均部404は、所定の移動平均区間にわたって、乗算部403が出力する積の移動平均を計算して自己相関値を求める。そして、判定部405、この自己相関値が所定の閾値を超えたタイミングでフレーム若しくは信号の到来を発見する。
 また、図5には、相互相関によりプリアンブルを検出する相関処理回路の構成例を示している。
 遅延部502は、それぞれサンプル周期に相当する遅延時間を持つ複数の遅延素子を直列接続して構成され、全体としてはタイミング推定区間の遅延時間を与える。一方、プリアンブル保持部501は既知トレーニング・シーケンスのパターンを保持している。そして、受信信号サンプルを遅延部502の各遅延素子で1サンプルずつ遅延させ、各々の遅延信号をプリアンブル保持部501の保持パターンと掛け合わせ、合計部503でこれらを合計して内積を求めることで、相互相関値を得ることができる。そして、ピーク検出部504は、相互相関値のピーク位置を推定タイミングとする。
 後述するように、本実施形態に係る通信システムでは、長さの異なる複数種類のプリアンブルを選択的に使用するようになっている。同期部181は、長さの異なる各種類のプリアンブルに対応した複数の相関処理回路モジュールを備え、これらを並列的に動作させて、プリアンブル・タイプが未知すなわち任意のプリアンブル長のフレームを受信できるものとする。
 受信ビーム処理部182は、同期部181から入力される複数の受信信号について、例えば一様分布又はテイラー分布に従って重み付け処理を行なうことによって、受信ビームの指向性を制御する。そして、受信ビーム処理部182は、重み付けされた受信信号を電力計算部183及び復調復号部185へ出力する。
 最適な送受信ビーム方向の学習若しくは更新を行なう際、電力計算部183は、各送受信ビーム方向で送受信された受信信号の受信電力をそれぞれ計算して、決定部184へ順次出力する。
 図6には、電力計算部183の内部構成例を示している。周波数補正部601は、受信信号の周波数オフセットを補正する。そして、2乗器602では受信信号Xの2乗値を算出して、信号電力を得ることができる。
 決定部184は、電力計算部183から入力される受信電力値に基づいて、最適な送信ビーム方向並びに最適な受信ビーム方向を決定する。そして、決定されたビーム方向を特定するためのパラメーター値が、制御部190を介して記憶部150に記憶される。ここで言う最適なビーム方向とは、典型的には、1つのビーム学習用信号について電力計算部183から入力される一連の受信電力値が最大値となるビーム方向に相当する。
 復調復号部185は、受信ビーム処理部182により重み付けされた受信信号をミリ波の通信方式に使用される任意の変調方式及び符号化方式に従って復調及び復号し、データ信号を取得する。そして、復調復号部185は、取得したデータ信号を制御部190へ出力する。
 符号化変調部186は、制御部190から入力されるデータ信号をミリ波の通信方式に使用される任意の符号化方式及び変調方式に従って符号化及び変調し、送信信号を生成する。そして、符号化変調部186は、生成した送信信号を送信ビーム処理部187へ出力する。
 送信ビーム処理部187は、符号化変調部186から入力された送信信号から、例えば一様分布又はテイラー分布に従って重み付けされた複数の送信信号を生成し、送信ビームの指向性を制御する。送信ビーム処理部187により使用される重みの値は、例えば、制御部190から入力される指向性制御信号により指定される。送信ビーム処理部187により重み付けされた複数の送信信号は、DA変換部176へそれぞれ出力される。
 図2に戻って、引き続き、無線通信装置100の構成について説明する。制御部190は、例えばマイクロプロセッサーなどの演算装置を用いて構成され、MAC(Media Access Control)層の処理を始め、無線通信部170内の動作全般について制御する。MAC層の処理には、例えば、CSMA/CA手順に従うメディア・アクセス制御が含まれる。制御部190は、最適な送信ビーム方向又は受信ビーム方向を特定するためのパラメーター値を記憶部150から取得すると、当該パラメーター値に基づいて特定されるビーム方向を形成するよう各アンテナ160a~160nに重み係数を付与することを指示するための指向性制御信号をディジタル部180内の送信ビーム処理部187へ出力する。これにより、無線通信装置100によるミリ波の通信方式に従った無線送信の際の送信ビーム又は受信ビームが通信相手の位置する方向に向くような最適なビーム・パターンが形成される。
 また、制御部190が行なうMAC層の処理には、例えば、CSMA/CA手順に従うメディア・アクセス制御が含まれる。制御部190は、MAC層プロトコルなどに従ってフレーム送受信を行なった際の送受信履歴を記憶部150に記憶するとともに、記憶しておいた送受信履歴に基づいて、次回のフレーム送受信時に利用すべきビーム・パターンなどを決定するが、その処理の詳細は後述に譲る。
 図7には、送信ビーム処理部187による送信ビームの指向性制御によって通信装置100が形成することができる送信ビーム・パターンの一例を示している。同図に示す例では、通信装置100は10個の送信ビーム・パターン要素Bt0~Bt9を形成することができる。送信ビーム・パターン要素Bt0~Bt9は、通信装置100が位置する平面上で、36度ずつ異なる方向への指向性をそれぞれ有している。
 送信ビーム処理部187は、制御部190からの指向性制御信号に応じて、各アンテナ160a~160nに重み係数を付与することによって、かかる10個の送信ビーム・パターン要素Bt0~Bt9のうちいずれか1つ(若しくは2以上の組み合わせ)の送信ビーム・パターンを形成して、指向性の無線信号を送信させることができる。
 通信装置100により形成可能な受信ビーム・パターンも、図7に示した送信ビーム・Bt0~Bt9と同様のビーム・パターンであってよい。すなわち、受信ビーム処理部182は、制御部190からの指向性制御信号に応じて、各アンテナ160a~160nに重み係数を付与することによって、かかる10個の受信ビーム・パターン要素Br0~Br9のうちいずれか1つ(若しくは2以上の組み合わせ)と一致する受信ビーム・パターンを形成して、ミリ波の通信方式に従った無線信号をアンテナ160a~160nで受信させることができる。
 通信装置100の記憶部150には、これら送受信ビーム・パターン要素Bt0~Bt9、Br0~Br9をそれぞれ形成するためのアンテナ160a~160n毎の重み係数を特定するためのパラメーター値があらかじめ記憶されている。
 なお、通信装置100により形成可能な送信ビーム・パターン及び受信ビーム・パターンは、図7に示した例に限定されるものではない。例えば、3次元空間上のさまざまな方向に指向性を有する送信ビーム・パターン又は受信ビーム・パターンを形成できるように複数のアンテナ160a~160nを構成することもできる。
 本実施形態に係る通信システムでは、長さの異なる複数種類のプリアンブルが規定されており(前述)、これらのうちいずれかを選択的に使用することができる。図8には、プリアンブル・タイプ(プリアンブルの長さ)の異なるフレーム・フォーマット例を示している。同図に示す例では、プリアンブル長が最も短いPreamble-0、プリアンブル長が最も長いPreamble-2、これらの中間の長さからなるPreamble-1を持つ、3種類のフレーム・フォーマットを示している。ヘッダー部以降の構成はいずれのフレームも同じとする。ヘッダー部には、ペイロード(PSDU)の受信に必要となる制御情報が記載されている。PSDU(PLCP Service Data Unit)は、PLCP(Physical Layer Convergence Procedure)が配送する責任のあるサービス・データ・ユニットであり、MACヘッダーを含むMACフレームに相当する。
 プリアンブル長が長いほど、信号検出処理能力が高くなる(周知)。何故ならば、長いプリアンブルを使用することにより、受信側ではより多くのシンボルを信号検出に利用することができ、受信SINRが低くても信号が検出されるからである。したがって、通信相手に向かってビーム・パターンを形成しないと信号が届かないような通信環境下で、ビームを形成しない状態でCSMA/CAに基づき信号検出処理を行なう際には、プリアンブル長のより長いフレームを利用することが考えられる。他方、長いプリアンブルは伝送のオーバーヘッドにつながるという観点からは、可能な限りプリアンブル長は短いことが好ましい。
 要するに、短いプリアンブルであるPreamble-0は、オーバーヘッドの削減には都合が良いが、信号発見には高いSINRを必要とする。これに対し、長いプリアンブルであるPreamble-2は、オーバーヘッドが大きくなる問題があるが、より低いSINRでも信号発見が可能となる。
 後に詳細に説明するように、本実施形態では、通信装置100は、ビーム・パターンを選択すると同時に利用するプリアンブル長も選択的に決定するようになっている。具体的には、長いプリアンブルであるPreamble-2を持つフレームを送信することにより、ビーム・パターン制御を行なわず受信SINRが低い状況下でも信号検出に基づくアクセス制御を行なうことができる。また逆に、ビーム・パターン制御を行なうことなどによって受信SINRが十分高い状況下では、より短いプリアンブルを持つフレームを送信することで、伝送のオーバーヘッドを小さく抑えることが可能になる。
 図22には、各通信局STA-0、STA-1、STA-2が無指向性(omni directional)のビーム・パターンBeam-1、Beam-1、Beam-2でそれぞれ送受信を行なう通信環境を例示した。このようなビーム・パターンが形成されていない信号は、送信先では低いSINR値で受信されることが想定されることから、フレーム送信元は、長いプリアンブルであるPreamble-2を持つプリアンブル・タイプを利用することが相当である。
 また、図24には、基地局に相当するSTA-0は、通信相手であるSTA-1並びにSTA-2に対して利得が高くなるビーム・パターンBeam-01並びにBeam-02をそれぞれ形成して送受信を行なう一方、端末局に相当するSTA-1、STA-2は、無指向性のビーム・パターンBeam-1、Beam-2でSTA-0と送受信を行なう通信環境を例示した。このように基地局STA-0のみが通信相手宛てに絞ったビーム・パターンBeam-01、Beam-02で送信すると、図22に示した例と比較して、受信SINRは向上する。したがって、フレーム送信元は、通信相手宛てに絞ったビーム・パターンを用いて送信する際には、より短いプリアンブルであるPreamble-1を持つプリアンブル・タイプを利用することで、伝送のオーバーヘッドを抑えることができる。
 また、図9には、STA-0が通信相手であるSTA-1並びにSTA-2に対して利得が高くなるビーム・パターンBeam-01並びにBeam-02をそれぞれ形成して送受信を行なうとともに、さらにSTA-1、STA-2もSTA-0に対して利得が高くなるビーム・パターンBeam-10並びにBeam-20をそれぞれ形成して送受信を行なう通信環境を例示している。このような場合、図24と比較しても、端末局STA-1、STA-2での受信SINRはさらに向上する。したがって、フレーム送信元は、フレーム送信先が自局宛てに絞られたビーム・パターンで受信待ちしていることが認識できる状況下で、自らも通信相手宛てに絞ったビーム・パターンを用いて送信する際には、最も短いプリアンブルであるPreamble-0を持つプリアンブル・タイプを利用することで、伝送のオーバーヘッドをさらに抑えることができる。
 通信装置100は、CSMA/CA手順に従ってアクセス制御を行なう場合や、さらにはRTS/CTSハンドシェイクを併用する場合に、直前の送受信履歴(フレーム送信先に対する最後の通信時刻、その際に使用したビーム・パターンやプリアンブルのタイプ)に基づいて、現在の通信状況を推定して、今回フレーム送信時に用いるビーム・パターンやプリアンブル・タイプを決定することができる。
 図10には、2台の通信局STA-0、STA-1の間でCSMA/CA手順に従ってアクセス制御が行なわれる通信シーケンス例を示している。図示の例では、RTS/CTSハンドシェイクが併用される。同図を参照しながら、通信局が信号検出に基づくアクセス制御を行ないながら、適切なビーム・パターン制御を行なう動作について説明する。但し、各通信局STA-0、STA-1は、図2に示した通信装置100と同様に構成されるものとする。
 STA-0は、送信機会を得るため、まず所定のフレーム間隔DIFSだけメディア状態を監視し、この間に送信信号が存在しなければ、さらにランダム・バックオフを行なう。このようにして、STA-0は、他の通信局からの送信がないことを確認の上、隣接するSTA-1宛てのRTSフレーム(1000)を送信する。
 この時点では、STA-0は、STA-1に対する送受信履歴を持たず(若しくは、最後の通信時刻から相当の時間が経過し、所持する送受信履歴が有効でなく)、言い換えれば、STA-1に対してどのようなビーム・パターンで送信を行なうと都合がよいのかの事前情報を持たない。このため、STA-0は、RTSフレーム(1000)の送信時には、図22中のBeam-0のような無指向性のビーム・パターンにて送信を行なう。また、このようなビーム・パターンが形成されていない信号は、送信先であるSTA-1では低いSINR値で受信されることが想定される。そこで、STA-0は、長いプリアンブルであるPreamble-2を持つプリアンブル・タイプを利用してRTSフレーム(1000)を送信することにより、STA-1側で信号検出できるようにする。
 STA-1は、RTSフレーム(1000)が到来する時点では、いずれの隣接局から信号が送信されてくるか判らない状況である。このため、STA-1は、図22中のBeam-1のような無指向性のビーム・パターンにて、信号検出を行なっている。これに対し、上述したようにRTSフレーム(1000)は長いプリアンブルであるPreamble-2を持つプリアンブル・タイプを利用しているので、低いSINRでも信号検出が可能である。そして、STA-1は、STA-0からのRTSフレーム(1001)を受信したことから、この受信信号の情報を基に、STA-1からSTA-0宛ての特定のビーム・パターンを生成する。このビーム・パターンは、図9中のBeam-10のようにSTA-0宛てに絞られたパターンとなる。
 STA-1は、受信したRTSフレーム(1001)を復号しその記載内容を解釈すると、STA-0宛てにCTSフレーム(1003)を返送する。この際、STA-1は、先のRTSフレーム(1000)の受信時(1001)に生成したビーム・パターンBeam-10を用いて送信を行なう。このようにビーム・パターンを生成して送信されるCTSフレーム(1003)は、STA-0で受信する際のSINRは向上する、と仮定することもできる。そこで、STA-1は、かかる仮定に基づき、少し短いプリアンブルであるPreamble-1を持つプリアンブル・タイプを利用して、CTSフレーム(1003)を送信するようにしてもよい。あるいは、STA-1は、受信したRTSフレーム(1000)で用いられたのと同じプリアンブル・タイプでCTSフレーム(1003)を送信するようにしてもよい。いずれにせよ、STA-1は、CTSフレーム(1003)を返信した後、STA-0からデータ・フレームが送信されてくることを期待し、図9中のBeam-10のようにSTA-0宛てに絞られたビーム・パターンで信号検出処理を行なう。
 STA-0は、RTSフレーム(1000)を返信した後、STA-1からCTSフレームが送信されてくることを期待して、信号検出処理を行なう。STA-0は、CTSフレームが到来する時点では、STA-1に対してどのようなビーム・パターンを利用すればよいのか判らない状況である。このため、STA-0は、図22中のBeam-0のような無指向性のビーム・パターンで信号検出処理を行なう。
 STA-0は、STA-1からのCTSフレーム(1002)を受信すると、この受信信号の情報を基に、STA-0からSTA-1宛ての特定ビーム・パターンを生成することができる。このビーム・パターンは、図9中のBeam-01のようにSTA-1宛てに絞られたパターンとなる。
 そして、STA-0は、CTSフレーム(1002)を受信したことに応答して、データ・フレーム(1004)を送信する。このデータ・フレーム(1004)は、先に受信したCTSフレーム(1002)に基づいて生成したビーム・パターンBeam-01を用いて送信される。また、このデータ・フレーム(1004)は、送信元のSTA-0ではビーム・パターンBeam-01を形成して送信されるとともに、送信先のSTA-1では上述したようにビーム・パターンBeam-10を形成して受信される。すなわち、図9で示したように送受信アンテナともビームが特定通信局用に絞られた状態での送受信となり、STA-1での受信SINRは高く信号の検出は容易であると想定されることから、STA-0は、最も短いプリアンブルであるPreamble-0を持つプリアンブル・タイプを利用して、データ・フレーム(1004)を送信することができる。
 STA-1は、ビーム・パターンBeam-10を形成して、データ・フレーム(1005)を受信する。その後、図10に示すように、STA-0が連続してデータ・フレーム(1006)を送信することもある。その際に使用するビーム・パターンは、直前にデータ・フレーム(1004)を送信したときと同様でよい。何故ならば、送信時刻が接近していることから、チャネル状況はほとんど変化していないと推定されるからである。
 言い換えれば、STA-0は、前回のデータ・フレーム(1004)送信時に使用したビーム・パターン並びにプリアンブル・タイプが有効であると判断される期間内であれば、改めてRTS/CTSハンドシェイクを通じてビーム・パターンを更新する必要がないので、RTSフレームの送信を行なうことなく、直前にデータ・フレーム(1004)を送信したときと同じビーム・パターンを用いてデータ・フレーム(1006)を送信することができる。このようにRTS/CTSハンドシェイクを省略してデータ・フレームを連続して送信することにより、伝送のオーバーヘッドを抑えることができる。
 また、フレーム中のペイロードには、チャネル推定、波形等化のために所定の間隔でパイロット・シンボルが挿入される(周知)。ここで、STA-0は、前回のデータ・フレーム(1004)送信時に使用したビーム・パターン並びにプリアンブル・タイプが有効であると判断される期間内で後続のデータ・フレーム(1006)を連続して送信する際には、そのペイロード中に挿入するパイロット・シンボルの比率を低減し又はパイロット・シンボルの挿入を停止してデータ・フレームを連続して送信することにより、情報伝送の効率を向上することができる。なお、ペイロード中に挿入するパイロット・シンボルの比率の制御方法に関しては、例えば本出願人に既に譲渡されている特開2001-77788号公報、特開2001-77789号公報などに開示されている。
 その後、STA-1は、データ・フレーム(1007)の受信を完了したと判断すると、STA-0宛てにACKフレーム(1009)を返信する。このACKフレーム(1009)は、送信元のSTA-1ではビーム・パターンBeam-10を形成して送信されるとともに、送信先のSTA-0ではビーム・パターンBeam-01を形成して受信される。すなわち、同様に送受信アンテナともビームが特定通信局用に絞られた状態での送受信となり、STA-0での受信SINRは高く信号の検出は容易であると想定されることから、STA-1は、最も短いプリアンブルであるPreamble-0を持つプリアンブル・タイプを利用して、ACKフレーム(1009)を送信することができる。
 図10に例示した、STA-0とSTA-1間でRTS/CTSハンドシェイクを併用してCSMA/CA手順に従ってアクセス制御を行なう場合のように、所定の通信手順に従って互いの通信相手宛てにフレーム送受信を行なう場合には、通信手順に基づいて、利用すべきビーム・パターンを確保し、さらには受信SINRと伝送のオーバーヘッドを考慮して適当なプリアンブル・タイプ(プリアンブル長)を選択することができる。
 STA-0、STA-1として動作する通信装置100は、CSMA/CA手順を始め、MAC層プロトコルなどに従ってフレーム送受信を行なった際に取得される送受信履歴を、記憶部150に保持する。ここで言う送受信履歴は、通信相手毎の、前回のフレーム送受信時に利用したビーム・パターンを特定するための情報、前回のフレーム送受信時に利用したプリアンブル・タイプ(プリアンブル長)、前回のフレーム送受信を行なった時刻情報、経過時間の閾値を少なくとも含むものとする。記憶部150には、図11に示すような送受信履歴のレコードが、通信相手毎に記憶される。
 通信装置100は、このような送受信履歴を参照することで、同じ通信相手との次回のフレーム送受信時に利用すべきビーム・パターンの決定、並びに送信フレームのプリアンブル・タイプの選択を行なうことができる。
 また、前回のフレーム送受信時に利用したビーム・パターンやプリアンブル・タイプは、通信相手との間のチャネルが変化しない限り有効である。一般にチャネルは経時変化することから、通信装置100は、同じ通信相手との前回のフレーム送受信時からの経過時間に基づいて、送受信履歴として保持しているビーム・パターンやプリアンブル・タイプ(プリアンブル長)の有効性を判断することができる。経過時間の閾値を超えた送受信履歴は無効であり、同じ通信相手とフレーム送受信する場合であっても、記憶しているビーム・パターンやプリアンブル・タイプを利用することはできない(意味のないデータである)。また、経過時間の閾値は一様ではなく、移動する頻度が高いなどチャネルが変動し易い通信相手に対しては経時時間の閾値を小さく設定することが妥当である。
 以下では、図12並びに図13に示した通信シーケンス例を参照しながら、通信装置100が過去の送受信履歴に基づいて適切なビーム・パターン並びにプリアンブル・タイプを設定するための処理手順について、詳細に説明する。但し、各通信局STA-0、STA-1は、図2に示した通信装置100と同様に構成されるものとする。
 図12中の参照番号1200で示される区間では、STA-0とSTA-1の間で、RTS/CTSハンドシェイクを併用したCSMA/CA手順に従ったトランザクションが実施される。そして、STA-0とSTA-1は、トランザクション1200を通じて、通信相手宛てにフレーム送信を行なう場合並びに通信相手からフレーム受信を行なう場合に利用すべきビーム・パターンを確保し、また、利用するビーム・パターンなどに応じて送信フレームのプリアンブル・タイプを選択する。そして、STA-0とSTA-1は、これらの情報をフレーム送受信時の時刻情報とともに、送受信履歴(図11を参照のこと)として各々の記憶部150に保持する。なお、トランザクション1200内で各通信局STA-0、STA-1がそれぞれビット・パターンを生成し、プリアンブル・タイプを選択する方法は、図10を参照しながら既に説明した通りなので、ここでは説明を省略する。
 参照番号1201で示される区間では、STA-0が引き続きSTA-1に対するデータ送信を行なうことになり、RTS/CTSハンドシェイクを併用したCSMA/CA手順に従ったトランザクションが繰り返し実施される。
 このとき、STA-0は、RTSフレームの送信に先立ち、自局の記憶部150内の送受信履歴を参照して、STA-1と最後にフレーム送受信を行なってからの(すなわち、トランザクション1200の終了後からの)経過時間をチェックし、経過時間の閾値を越えているか否かを判定する。図示の例では、トランザクション1200の終了後から経過時間の閾値以内に次のトランザクション1201を開始するので、STA-1の送受信履歴は有効であるから、前回利用したビーム・パターンにてRTSフレームの送信を試みる。また、STA-0は、前回のデータ・フレームの送信で用いた、Preamble-0を持つプリアンブル・タイプ、又はこれよりも少しプリアンブル長の長いPreamble-1を持つプリアンブル・タイプを利用して、RTSフレームの送信を行なう。
 また、STA-1は、自局の記憶部150内の送受信履歴を参照して、STA-0と最後にフレーム送受信を行なってからの(すなわち、トランザクション1200の終了後からの)経過時間が閾値以内であることから、前回利用したビーム・パターンにて信号検出を行なっている。STA-0から到来するRSTフレームは、Preamble-0又はPreamble-1の短いプリアンブル長のプリアンブル・タイプであるが、互いにビーム・パターンを向け合うことで受信SINRが向上することから、STA-1はRTSフレームを成功裏に受信することができる。このとき、STA-1は、受信信号に基づいてSTA-0宛てのビーム・パターンを新たに生成し、STA-0との送受信履歴を更新するようにしてもよい。また、STA-1は、前回のACKフレームの送信で用いた、Preamble-0を持つプリアンブル・タイプ、又はこれよりも少しプリアンブル長の長いPreamble-1を持つプリアンブル・タイプを利用して、CTSフレームの送信を行なう。
 STA-0は、RTSフレームを返信した後、STA-1からCTSフレームが送信されてくることを期待して、前回利用したビーム・パターンにて信号検出処理を行なう。そして、STA-0は、CTSを受信したことに応答して、前回利用したビーム・パターンにて、プリアンブル長が最も短いPreamble-0を持つプリアンブル・タイプを用いて、STA-1宛てのデータ・フレームを送信する。STA-0は、CTSの受信信号に基づいてSTA-1宛てのビーム・パターンを新たに生成し、STA-1との送受信履歴を更新するようにしてもよい。
 STA-1は、STA-0宛てに絞られたビーム・パターンにて、STA-0からのデータ・フレームを受信する。STA-1は、受信信号に基づいてSTA-0宛てのビーム・パターンを新たに生成し、STA-0との送受信履歴を更新するようにしてもよい。
 STA-0が2以上のデータ・フレームを連続して送信することもあるが、その際に使用するビーム・パターン並びにプリアンブル・タイプは、直前にデータ・フレームを送信したときと同様でよい。前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断される期間内であれば、RTS/CTSハンドシェイクを省略し、STA-0は、同じビーム・パターンを使用して連続してデータ・フレームを送信する(同上)。このようにRTS/CTSハンドシェイクを省略してデータ・フレームを連続して送信することにより、伝送のオーバーヘッドを抑えることができる。また、STA-0は、データ・フレームを連続して送信する際には、そのペイロード中に挿入するパイロット・シンボルの比率を低減し又はパイロット・シンボルの挿入を停止してデータ・フレームを連続して送信することにより(同上)、情報伝送の効率を向上することができる。
 STA-1は、同様に、STA-0宛てに絞られたビーム・パターンにてデータ・フレームを受信する。STA-1は、データ・フレームを受信する度にSTA-0宛てのビーム・パターンを新たに生成し、STA-0との送受信履歴を逐次更新するようにしてもよい。
 その後、STA-1は、データ・フレームの受信を完了したと判断すると、STA-0宛てに絞られたビーム・パターンにてACKフレームを返信する。このACKフレームは、最も短いプリアンブルであるPreamble-0を持つプリアンブル・タイプを利用したものでよい。
 そして、STA-0とSTA-1は、トランザクション1201を通じて確保されたビーム・パターン、利用したプリアンブル・タイプなどの送信履歴情報を更新して、各々の記憶部150に保持する。
 参照番号1202で示される区間では、STA-0は、RTS/CTSハンドシェイクを省いて、STA-1宛てのデータ・フレームをいきなり送信する。このとき、STA-0は、自局の記憶部150内の送受信履歴を参照して、STA-1と最後にフレーム送受信を行なってからの経過時間をチェックする。
 図示の例では、経過時間の閾値以内であるから、STA-0は、前回利用したビーム・パターンを形成するとともに、Preamble-0を持つプリアンブル・タイプ、又はこれよりも少しプリアンブル長の長いPreamble-1を持つプリアンブル・タイプを利用して、データ・フレームの送信を試みる。
 STA-1は、同様に、STA-0宛てに絞られたビーム・パターンにてデータ・フレームを受信する。STA-1は、データ・フレームを受信した際にSTA-0宛てのビーム・パターンを新たに生成し、STA-0との送受信履歴を更新するようにしてもよい。
 その後、STA-1は、データ・フレームの受信を完了したと判断すると、STA-0宛てに絞られたビーム・パターンにて、最も短いプリアンブルであるPreamble-0を持つプリアンブル・タイプを利用して、ACKフレームを返信する。
 そして、STA-0とSTA-1は、トランザクション1201を通じて確保されたビーム・パターン、利用したプリアンブル・タイプなどの送信履歴情報を更新して、各々の記憶部150に保持する。
 また、図13中の参照番号1300で示される区間では、STA-0とSTA-1の間でフレーム送受信手順が実施される。このとき、STA-0とSTA-1は、このトランザクション1300を通じて、通信相手宛てにフレーム送信を行なう場合並びに通信相手からフレーム受信を行なう場合に利用すべきビーム・パターンを確保すると、利用するビーム・パターンなどに応じて送信フレームのプリアンブル・タイプを選択する。そして、STA-0とSTA-1は、これらの情報をフレーム送受信時の時刻情報とともに、送受信履歴(図11を参照のこと)として各々の記憶部150に保持する。但し、トランザクション1300で適用されるメディア・アクセス制御方法は任意であり、CSMA/CA、RTS/CTSに限定されない。
 その後、参照番号1301で示される区間では、STA-0が引き続きSTA-1に対するデータ送信を行なうことになり、RTS/CTSハンドシェイクを併用したCSMA/CA手順に従ったトランザクションが実施される。
 STA-0は、RTSフレームの送信に先立ち、自局の記憶部150内の送受信履歴を参照して、STA-1と最後にフレーム送受信を行なってからの経過時間をチェックし、経過時間の閾値を越えているか否かを判定する。図示の例では、トランザクション1300の終了後から経過時間が閾値を超えているので、STA-1の送受信履歴は無効である。このため、STA-0は、図22中のBeam-0のような無指向性のビーム・パターンにてRTSフレームの送信を行なう。また、このようなビーム・パターンが形成されていない信号は、送信先であるSTA-1では低いSINR値で受信されることが想定される。そこで、STA-0は、長いプリアンブルであるPreamble-2を持つプリアンブル・タイプを利用してRTSフレームを送信することにより、STA-1側で信号検出できるようにする。
 また、STA-1は、自局の記憶部150内の送受信履歴を参照して、STA-0と最後にフレーム送受信を行なってからの経過時間が閾値を超えていることから、STA-0の送受信履歴は無効である。このため、STA-1は、図22中のBeam-1のような無指向性のビーム・パターンにて、信号検出を行なっている。これに対し、上述したようにRTSフレームは長いプリアンブルであるPreamble-2を持つプリアンブル・タイプを利用しているので、低いSINRでも信号検出が可能である。
 以降、STA-0並びにSTA-1は、図10を参照しながら説明したと同様の手順に従って、RTS/CTSハンドシェイクを実施して、それぞれ通信相手に絞られたビーム・パターンを確保するとともに、送信フレームに用いる適切なプリアンブル・タイプを選択することができる。但し、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断される期間内であれば、RTS/CTSハンドシェイクを省略して、STA-0は、同じビーム・パターンを使用して連続してデータ・フレームを送信する(同上)。このようにRTS/CTSハンドシェイクを省略してデータ・フレームを連続して送信することにより、伝送のオーバーヘッドを抑えることができる。そして、STA-0並びにSTA-1は、送受信履歴を逐次更新して各々の記憶部150に保持する。また、STA-0は、データ・フレームを連続して送信する際には、そのペイロード中に挿入するパイロット・シンボルの比率を低減し又はパイロット・シンボルの挿入を停止してデータ・フレームを連続して送信することにより(同上)、情報伝送の効率を向上することができる。
 図14には、通信装置100が、例えば図10、図12、図13に示した通信シーケンスにおいて通信局STA-0、STA-1として動作する際の状態遷移図を示している。
 通信装置100は、アイドル状態で待機しているとする。このとき、通信プロトコルの上位層よりデータ送信要求が発生すると、RTS/CTSハンドシェイクを併用するか、又は、RTS/CTSハンドシェイクを併用せず、ランダム・バックオフを行なった後そのままデータ・フレームの送信を開始するかを判断する。但し、RTS/CTSハンドシェイクを併用するか否かを判断する基準は、本発明の要旨に直接関連しないので、ここでは説明を省略する。
 通信装置100は、RTS/CTSハンドシェイクを併用すると判断したときには、RTSフレームの送信準備状態に遷移し、RTS/CTSハンドシェイクを併用しないと判断したときには、データ・フレームの送信準備状態に遷移する。いずれの状態も、後述する送受信履歴の更新処理ルーチン(図15を参照のこと)を起動するイベントとなる。
 RTSフレームの送信準備状態では、通信装置100は、後述する送受信履歴の更新処理(図15を参照のこと)を経て、利用するビーム・パターン及びプリアンブル・タイプを決定する。そして、通信装置100は、所定のフレーム間隔DIFSだけメディア状態を監視し、この間に送信信号が存在しなければ、さらにランダム・バックオフを行なってから、決定したビーム・パターン及びプリアンブル・タイプを用いて、通信相手宛てにRTSフレームを送信する。
 RTS送信後状態では、通信装置100は、RTSフレームを送信完了してから所定のフレーム間隔SIFS(Short IFS)だけ、RTSフレーム送信準備時に決定したビーム・パターンを用いて、通信相手から返信されるCTSフレームを受信待機する。
 通信装置100は、RTSフレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのCTSフレームを受信できたときには、データ・フレームの送信準備状態に遷移する。ここで、CTSフレームの受信完了は、後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからデータ送信準備状態に復帰する。
 また、通信装置100は、RTSフレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのCTSフレームを受信できずタイムアウトしたときには、後続のデータ・フレームの送信を諦めて、アイドル状態に遷移する。ここで、CTSフレームの受信タイムアウトは、送受信履歴の更新処理ルーチン(図19を参照のこと)を起動するイベントとなる。
 データ・フレームの送信準備状態では、通信装置100は、後述する送受信履歴の更新処理(図15を参照のこと)を経て、利用するビーム・パターン及びプリアンブル・タイプを決定する。そして、通信装置100は、自局宛てのCTSフレームを受信完了してから所定のフレーム間隔SIFSだけ経過した後に、決定したビーム・パターン及びプリアンブル・タイプを用いて、通信相手宛てにデータ・フレームを送信する。
 データ送信後状態では、通信装置100は、データ・フレームを送信完了してから所定のフレーム間隔SIFSだけ、データ・フレームの送信準備時に決定したビーム・パターンを用いて、通信相手から返信されるACKフレームを受信待機する。
 通信装置100は、データ・フレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのACKフレームを受信できたときには、アイドル状態に復帰する。ここで、ACKフレームの受信完了は、後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからアイドル状態に復帰する。
 また、通信装置100は、データ・フレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのACKフレームを受信できずタイムアウトしたときには、アイドル状態に遷移する。ここで、CTSフレームの受信タイムアウトは、後述する送受信履歴の更新処理ルーチン(図19を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからアイドル状態に復帰する。
 また、通信装置100は、アイドル状態では受信待機している。このとき、通信装置100は、無指向性のビーム・パターンを用いるか、又は、前回の送受信動作時に用いた(まだ有効な)ビーム・パターンを用いることができる。
 通信装置100がアイドル状態で自局宛てのRTSフレームを受信したときには、後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからCTS送信準備状態に遷移する。
 CTSフレームの送信準備状態は後述する送受信履歴の更新処理(図15を参照のこと)を起動するイベントとなり、通信装置100は、当該処理ルーチンを経て、利用するビーム・パターン及びプリアンブル・タイプを決定する。そして、通信装置100は、自局宛てのCTSフレームを受信完了してから所定のフレーム間隔SIFSだけ経過した後に、決定したビーム・パターン及びプリアンブル・タイプを用いて、RTSフレームの送信元宛てにCTSフレームを返信する。
 あるいは、通信装置100は、自局宛てのRTSフレームを受信しても、データ・フレームの送信を許可しない場合には、所定のフレーム間隔SIFS内にRTSフレームの送信元宛にCTSフレームを返信することなく、アイドル状態に復帰する。なお、データ・フレームの送信を許可しない原因については、本発明の要旨に直接関連しないので、ここでは説明を省略する。
 CTS送信後状態では、通信装置100は、CTSフレームを送信完了してから所定のフレーム間隔SIFSだけ、CTSフレームの送信準備時に決定したビーム・パターンを用いて、通信相手から送信されるデータ・フレームを受信待機する。
 通信装置100は、CTSフレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのデータ・フレームを受信できたときには、ACKフレームの送信準備状態に遷移する。ここで、データ・フレームの受信完了は、後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからACK送信準備状態に復帰する。
 また、通信装置100は、CTSフレームを送信完了してからフレーム間隔SIFS内に通信相手から自局宛てのデータ・フレームを受信できずタイムアウトしたときには、後続のデータ・フレームの受信を諦めて、アイドル状態に遷移する。ここで、データ・フレームの受信タイムアウトは、送受信履歴の更新処理ルーチン(図19を参照のこと)を起動するイベントとなる。
 また、通信装置100は、アイドル状態で、(RTS/CTSハンドシェイクを経ずに)自局宛てのデータ・フレームを受信したときには、ACKフレームの送信準備状態に遷移する。RTS/CTSハンドシェイクを利用する場合と同様、データ・フレームの受信完了は、後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからACK送信準備状態に復帰する。
 ACKフレームの送信準備状態では、通信装置100は、後述する送受信履歴の更新処理(図15を参照のこと)を経て、利用するビーム・パターン及びプリアンブル・タイプを決定する。そして、通信装置100は、自局宛てのデータ・フレームを受信完了してから所定のフレーム間隔SIFSだけ経過した後に、決定したビーム・パターン及びプリアンブル・タイプを用いて、データ・フレームの送信元となる通信相手宛てにACKフレームを送信してから、アイドル状態に復帰する。
 あるいは、通信装置100は、ACKフレームの送信準備状態で、さらに自局宛てのデータ・フレームを受信したときには、その受信完了は後述する送受信履歴の更新処理ルーチン(図16を参照のこと)を起動するイベントとなり、当該処理ルーチンを実施してからACK送信準備状態に復帰する。
 既に述べたように、通信装置100は、例えば図10、図12、図13に示した通信シーケンスを通じて、通信相手毎の送受信履歴を確保し、これを各自の記憶部150で管理するようになっている。この送受信履歴は、例えば図11に示したようなデータ構造である。そして、通信装置100は、同じ通信相手との間でフレーム送受信を行なう度に、記憶部150内の該当する送受信履歴のレコードの内容を更新する。以下では、通信装置100が、図14に示した状態遷移図に従ってフレーム送受信処理を実施する際に、通信相手に対する送受信履歴を更新するための処理手順について説明する。
 図15には、通信装置100がRTS、CTS、データ、並びにACKの各フレームの送信準備状態に遷移したことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 通信装置100は、記憶部150に保持されているフレーム送信先の送受信履歴を参照して(ステップS1501)、当該フレーム送信先との最後の送受信時刻からの経過時間を計算し、変数N1に代入する(ステップS1502)。そして、この経過時間N1が、同送受信履歴に記録されている経過時間の閾値(Threshold)を超えるか否かをチェックする(ステップS1503)。
 ここで、最後の送受信時刻からの経過時間が閾値を超えるときには(ステップS1503のYes)、記憶部150に保持されている当該フレーム送信先の送受信履歴は、古過ぎて無効な情報であると推定することができる。したがって、通信装置100は、ビーム・パターンBeam-b及びプリアンブル・タイプPreamble-bを利用する(ステップS1504、S1505)。具体的には、ビーム・パターンBeam-bは、無指向性、又は、経過時間に応じて緩やかなビーム・パターンである。また、プリアンブル・タイプPreamble-bは、前回よりもプリアンブル長の長い、若しくは最長のプリアンブル・タイプに変更する。すなわち、ステップS1504、S1505は、今回のフレーム送信時に利用するビーム・パターン並びにプリアンブル・タイプをそれぞれ更新することに相当する。
 一方、最後の送受信時刻からの経過時間が閾値を超えないときには(ステップS1503のNo)、記憶部150に保持されている当該フレーム送信先の送受信履歴はまだ有効であると推定することができる。したがって、通信装置100は、送受信履歴として保持されているビーム・パターンBeam-a及びプリアンブル・タイプPreamble-aをそのまま利用することに決定する(ステップS1506、S1507)。
 また、当該フレーム送信先の送受信履歴はまだ有効であると判断できるときは、チャネルに変動がないことに相当することから、通信装置100は、チャネル推定のためにフレームのペイロード中に挿入するパイロット・シンボルの比率を低減する(ステップS1508)。パイロット・シンボルの比率を低減し又はパイロット・シンボルの挿入を停止してデータ・フレームを連続して送信することにより(同上)、情報伝送の効率を向上することができる。
 そして、通信装置100は、当該フレーム送信先に関する送受信履歴を、今回のフレーム送信に利用するビーム・パターン並びにプリアンブル・タイプ、送受信時刻に更新する(ステップS1509)。
 図16には、通信装置100がRTS、CTS、データ、並びにACKの各フレームを受信完了したことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 まず、通信装置100は、別途定義されている、経過時間の閾値(Threshold)の増加更新処理を実行する(ステップS1601)。
 次いで、通信装置100は、当該フレーム受信処理を通じて、フレーム送信元に向けられるビーム・パターンを更新し、新規ビーム・パターンをBeam-aに代入する(ステップS1602)。
 また、フレーム受信に成功したことを通じて、フレーム送信元に向けてより最適なビーム・パターンに更新されると、当該フレーム送信元との次回以降の通信時における受信SINRが向上することが期待される。受信SINRが高いと、より短いプリアンブル長であっても信号発見が可能になる。そこで、通信装置100は、別途定義されている、プリアンブル長のより短いプリアンブル・タイプへの更新処理を実行することで(ステップS1603)、伝送のオーバーヘッドを抑えるようにする。
 そして、通信装置100は、当該フレーム送信元に関する送受信履歴を、今回のフレーム送信に利用するビーム・パターン並びにプリアンブル・タイプ、送受信時刻に更新する(ステップS1604)。
 図17には、図16に示したフローチャート中のステップS1601で実行される、経過時間の閾値(Threshold)を増加更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 通信装置100は、当該処理ルーチンに入る度に、カウンタCNT1を1ずつ増分する(ステップS1701)。
 そして、カウンタCNT1の値が所定値L1を超えるときには(ステップS1702のYes)、送受信履歴中の経過時間を更新した以降に当該通信相手との受信処理が無事完了した回数がL1を超えたことになる。このような場合、当該通信相手との間のチャネル状況が良好であり、同じ送受信履歴がより長い期間にわたり有効であること、言い換えれば、経過時間の閾値(Threshold)をより長くできると判断することができる。
 そこで、通信装置100は、経過時間の閾値(Threshold)をより長くする(ステップS1703)。また、経過時間の閾値(Threshold)を更新した後、カウンタCNT1の値を0に戻す(ステップS1704)。
 フレームを正しく届けられる通信相手は、チャネル状況の変化が小さいと判断される。そこで、通信装置100は、図17に示した処理手順に従って経過時間の閾値を増加することによって、より長い期間にわたってビーム・パターンが有効となるようにすることができる。この結果、伝送のオーバーヘッドを抑え、情報伝送の効率化を図ることができる。
 図18には、図16に示したフローチャート中のステップS1603で実行される、プリアンブル長のより短いプリアンブル・タイプに更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 通信装置100は、当該処理ルーチンに入る度に、カウンタCNT3を1ずつ増分する(ステップS1801)。
 そして、カウンタCNT3の値が所定値L3を超えるときには(ステップS1802のYes)、送受信履歴中の経過時間を更新した以降に当該通信相手との受信処理が無事完了した回数がL3を超えたことになる。このような場合、当該通信相手との間のチャネル状況が良好であり、同じ送受信履歴がより長い期間にわたり有効であること、言い換えれば、当該チャネルを介した受信SINRは高く、より短いプリアンブル長のプリアンブル・タイプに変更して、伝送のオーバーヘッドを抑制できると判断することができる。
 そこで、通信装置100は、より短いプリアンブル長のプリアンブル・タイプに変更し、Preamble-aに代入し(ステップS1803)、さらにPreamble-aをPreamble-bに代入した後(ステップS1804)、カウンタCNT3の値を0に戻す(ステップS1805)。
 図19には、通信装置100がRTS、CTS、データの各フレーム送信後にタイムアウトしたことを起動イベントして逐次実施される、送受信履歴を更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 まず、通信装置100は、別途定義されている、経過時間の閾値(Threshold)の減少更新処理を実行する(ステップS1901)。
 送信タイムアウトが生じたことは、通信相手との間のチャネル状況は良好でなく、受信SINRが低いと推測される。このような場合には、伝送のオーバーヘッドを犠牲にしつつ、プリアンブル長のより長いプリアンブル・タイプに切り替えて、低い受信SINRでも信号検出できるようにする必要がある。そこで、通信装置100は、別途定義されている、プリアンブル長の長いプリアンブル・タイプへの更新処理を実行することで(ステップS1902)、伝送のオーバーヘッドを抑えるようにする。
 そして、通信装置100は、当該フレーム送信元に関する送受信履歴を、今回のフレーム送信に利用するビーム・パターン並びにプリアンブル・タイプ、送受信時刻に更新する(ステップS1903)。
 図20には、図19に示したフローチャート中のステップS1901で実行される、経過時間の閾値(Threshold)を減少更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 通信装置100は、当該処理ルーチンに入る度に、カウンタCNT2を1ずつ増分する(ステップS2001)。
 そして、カウンタCNT2の値が所定値L2を超えるときには(ステップS2002のYes)、送受信履歴中の経過時間を更新した以降に当該通信相手に対して送信タイムアウトが発生した回数がL2を超えたことになる。このような場合、当該通信相手との間のチャネル状況が劣悪若しくはチャネル状況の変動が激しく、同じ送受信履歴が短期間で無効になってしまうこと、言い換えれば、経過時間の閾値(Threshold)をより短くする必要があると判断することができる。
 そこで、通信装置100は、経過時間の閾値(Threshold)をより短くする(ステップS2003)。また、経過時間の閾値(Threshold)を更新した後、カウンタCNT2の値を0に戻す(ステップS2004)。
 フレームを正しく届けることができない通信相手は、チャネル状況の変化が大きいと判断される。そこで、通信装置100は、図20に示す処理手順に従って、経過時間の閾値を減少することによって、短い期間でビーム・パターンを更新することによって、伝送誤りの発生を抑えることができる。
 図21には、図19に示したフローチャート中のステップS1902で実行される、プリアンブル長のより長いプリアンブル・タイプに更新するための処理手順をフローチャートの形式で示している。同処理手順は、無線通信部170内の制御部190が所定のプログラム・コードを実行するという形態で実現することができる。
 通信装置100は、当該処理ルーチンに入る度に、カウンタCNT4を1ずつ増分する(ステップS2101)。
 そして、カウンタCNT4の値が所定値L4を超えるときには(ステップS2102のYes)、送受信履歴中の経過時間を更新した以降に当該通信相手に対して送信タイムアウトが発生した回数がL4を超えたことになる。このような場合、当該通信相手との間のチャネル状況が劣悪若しくはチャネル状況の変動が激しく、同じ送受信履歴が短期間で無効になってしまうと判断することができる。このような場合には、当該チャネルを介した受信SINRは低いため、伝送のオーバーヘッドを犠牲にしつつ、プリアンブル長のより長いプリアンブル・タイプに切り替えて、低い受信SINRでも信号検出できるようにする必要がある。
 そこで、通信装置100は、Preamble-bをPreamble-aに代入した後(ステップS2103)、より長いプリアンブル長のプリアンブル・タイプに変更してこれをPreamble-bに代入し(ステップS2104)、カウンタCNT4の値を0に戻す(ステップS2105)。
 但し、図17、18、20、21に示した各フローチャートで使用するCNT1~CNT4は、複数回に1度しか実行しないよう制御するカウンタである。また、L1~L4は、「複数回」が何回かを定義する定数である。
 なお、本実施形態に係る通信システムにおいて、アクセスポイント(AP)又は端末局(STA)として動作する通信装置100は、例えば、パーソナル・コンピューター(PC)、携帯電話機、PDA(Personal Digital Assistant)などの携帯情報端末、携帯音楽プレーヤー、ゲーム機などの情報機器、あるいは、テレビジョン受像機やその他の情報家電機器に搭載される無線通信モジュールであってもよい。
 図26には、モジュール化された通信装置100を搭載した情報機器の構成例を示している。
 CPU(Central Processing Unit)1は、オペレーティング・システム(OS)が提供するプログラム実行環境下で、ROM(Read Only Memory)2やハード・ディスク・ドライブ(HDD)11に格納されているプログラムを実行する。例えば、後述する受信フレームの同期処理又はその一部の処理をCPU1が所定のプログラムを実行するという形態で実現することもできる。
 ROM2は、POST(Power On Self Test)やBIOS(Basic Input Output System)などのプログラム・コードを恒久的に格納する。RAM(Random Access Memory)3は、ROM2やHDD(Hard Disk Drive)11に格納されているプログラムをCPU1が実行する際にロードしたり、実行中のプログラムの作業データを一時的に保持したりするために使用される。これらはCPU1のローカル・ピンに直結されたローカル・バス4により相互に接続されている。
 ローカル・バス4は、ブリッジ5を介して、PCI(Peripheral Component Interconnect)バスなどの入出力バス6に接続されている。
 キーボード8と、マウスなどのポインティング・デバイス9は、ユーザにより操作される入力デバイスである。ディスプレイ10は、LCD(Liquid Crystal Display)又はCRT(Cathode Ray Tube)などからなり、各種情報をテキストやイメージで表示する。
 HDD11は、記録メディアとしてのハード・ディスクを内蔵したドライブ・ユニットであり、ハード・ディスクを駆動する。ハード・ディスクには、オペレーティング・システムや各種アプリケーションなどCPU1が実行するプログラムをインストールしたり、データ・ファイルなどを保存したりするために使用される。
 通信部12は、無線通信装置100をモジュール化して構成される無線通信インターフェースであり、インフラストラクチャ・モード下でアクセスポイント若しくは端末局として動作し、あるいはアドホック・モード下で動作し、信号到達範囲内に存在するその他の通信端末との通信を実行する。無線通信装置100の動作については既に説明した通りである。
 以上、特定の実施形態を参照しながら、本発明について詳細に説明してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が該実施形態の修正や代用を成し得ることは自明である。
 本発明は、60GHz帯を使用するIEEE802.15.3cを始めとして、ミリ波の通信方式を採用する通信システムに好適に適用することができるが、本発明の要旨は必ずしも特定の周波数帯に限定されるものではない。また、ミリ波通信だけでなくその他の指向性通信にも適用することができる。
 また、本明細書では、送受信履歴として保持しているビーム・パターンやプリアンブル・タイプ(プリアンブル長)の有効性を判断する基準として経過時間を用い、さらに経過時間の閾値を適応的に増減する実施例について説明してきたが、本発明の要旨はこれに限定されるものではない。例えば、SINRなどの通信品質に関する情報を用いても過去に使用したビーム・パターンやプリアンブル・タイプ(プリアンブル長)の有効性を判断することができ、言い換えれば、通信品質に関する情報を閾値に用いて同様の判断を行なうことができる。
 要するに、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、特許請求の範囲を参酌すべきである。
 1…CPU
 2…ROM
 3…RAM
 4…ローカル・バス
 5…ブリッジ
 6…入出力バス
 7…入出力インターフェース
 8…キーボード
 9…ポインティング・デバイス(マウス)
 10…ディスプレイ
 11…HDD
 12…通信部
 100…通信装置
 150…記憶部
 160a~160n…複数のアンテナ
 170…無線通信部
 172…アナログ部
 174…AD変換部
 176…DA変換部
 180…ディジタル部
 181…同期部
 182…受信ビーム処理部
 183…電力計算部
 184…決定部
 185…復調復号部
 186…符号化変調部
 187…送信ビーム処理部
 190…制御部
 401…遅延部
 402…複素共役部
 403…乗算部
 404…平均部
 405…判定部
 501…プリアンブル保持部
 502…遅延部
 503…合計部
 504…ピーク検出部
 601…周波数補正部
 602…2乗器
 

Claims (14)

  1.  ビーム・パターンを制御することが可能なアンテナと、
     前記アンテナのビーム・パターンを制御するビーム・パターン制御部と、
     フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部と、
    を備え、
     前記制御部は、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう、
    通信装置。
  2.  前記制御部は、フレーム送信時において、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示する、
    請求項1に記載の通信装置。
  3.  前記制御部は、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示しないときには、より長いプリアンブル長を持つプリアンブル・タイプを選択してフレーム送信を行ない、前記フレーム送信先に当てて絞られたビーム・パターンを形成するよう前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示するときには、より短いプリアンブル長を持つプリアンブル・タイプを選択してフレーム送信を行なう、
    請求項2に記載の通信装置。
  4.  前記フレーム送信先との送受信履歴を保持する記憶部をさらに備え、
     前記制御部は、フレーム送信時において、フレーム送信先との送受信履歴に基づいて、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択するとともに、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示して、フレーム送信を行なう、
    請求項2に記載の通信装置。
  5.  前記制御部は、
     前記フレーム送信先との前回の送受信時間情報を前記送受信履歴として前記記憶部に保持し、
     フレーム送信時において、前記記憶部に保持されている前記送受信履歴を参照して、前記フレーム送信先との前回の送受信時刻からの経過時間に応じて、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択するとともに、前記ビーム・パターン制御部による前記ビーム・パターンの制御を指示して、フレーム送信を行なう、
    請求項4に記載の通信装置。
  6.  通信相手に対して送信要求フレーム(RTS:Request To Send)を送信するとともに前記通信相手から確認通知フレーム(CTS:Clear To Send)を受信したことに応答してデータ・フレームの送信を開始する送受信手順を適用する場合において、
     前記制御部は、前記ビーム・パターン制御部に対して、
     前記フレーム送信先からRTSフレームを受信したときには、当該受信信号に基づいて前記フレーム送信先に向けられたビーム・パターンを形成するように指示し、
     前記フレーム送信先からCTSフレームを受信したときには、当該受信信号に基づいて前記フレーム送信先宛てにデータ・フレームを送信する際に用いるビーム・パターンを形成するように指示する、
    請求項2に記載の通信装置。
  7.  前記制御部は、前記フレーム送信先から受信したCTSフレームに基づいて形成したビーム・パターンを利用して前記フレーム送信先宛てにデータ・フレームを送信する際に、より短いプリアンブル長のプリアンブル・タイプを選択する、
    請求項6に記載の通信装置。
  8.  前記制御部は、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、RTSフレームの送信を行なうことなく、同じビーム・パターンを使用して連続してデータ・フレームを送信する、
    請求項6に記載の通信装置。
  9.  前記制御部は、前回のデータ・フレーム送信時に使用したビーム・パターンが有効であると判断したときには、ペイロード部に挿入するパイロット・シンボルの比率を低減してデータ・フレームを送信する、
    請求項6に記載の通信装置。
  10.  前記制御部は、
     前記フレーム送信先に対する経過時間の閾値を前記送受信履歴として前記記憶部に保持し、
     フレーム送信時において、前記記憶部に保持されている前記送受信履歴を参照して、前記フレーム送信先との前回の送受信時刻からの経過時間が前記閾値以内のときには、前回のフレーム送受信時に使用したプリアンブル・タイプ又はビーム・パターンを選択し、前記フレーム送信先との前回の送受信時刻からの経過時間が前記閾値を超えるときには、前回のフレーム送信時に使用したよりも長いプリアンブル長を持つプリアンブル・タイプを選択し又は前回のフレーム送信時に使用したビーム・パターンを無効にする、
    請求項5に記載の通信装置。
  11.  前記制御部は、前記フレーム送信先とのフレーム送受信処理が成功することに応じて前記閾値を増加し、前記フレーム送信先とのフレーム送受信処理が失敗することに応じて前記閾値を減少する、
    請求項10に記載の通信装置。
  12.  ビーム・パターンを制御することが可能なアンテナを用い、フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記アンテナのビーム・パターンの制御を行なう無線通信方法であって、
     プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なうステップを有する通信方法。
  13.  ビーム・パターンを制御することが可能なアンテナを用いた通信動作の制御をコンピューター上で実行するようにコンピューター可読形式で記述されたコンピューター・プログラムであって、前記コンピューターを、
     前記アンテナのビーム・パターンを制御するビーム・パターン制御部、
     フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部、
    として機能させ、
     前記制御部は、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう、
    コンピューター・プログラム。
  14.  ビーム・パターンを制御することが可能なアンテナと、前記アンテナのビーム・パターンを制御するビーム・パターン制御部と、フレーム送受信手順を制御するとともに、前記フレーム送受信手順に従って前記ビーム・パターン制御部による前記アンテナのビーム・パターンの制御を指示する制御部を備え、フレーム送信時において、プリアンブル長の異なる複数のプリアンブル・タイプのうちいずれかを選択して、フレーム送信を行なう通信装置と、
     フレーム送信先となる通信装置と、
    を具備する通信システム。
     
PCT/JP2010/051896 2009-04-15 2010-02-09 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム WO2010119718A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10764304A EP2421320A1 (en) 2009-04-15 2010-02-09 Communication apparatus, communication method, computer program, and communication system
CN201080015241.3A CN102379152B (zh) 2009-04-15 2010-02-09 通信设备、通信方法和通信系统
US13/258,040 US9525473B2 (en) 2009-04-15 2010-02-09 Communication device and communication method, computer program, and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009099324A JP2010252049A (ja) 2009-04-15 2009-04-15 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
JP2009-099324 2009-04-15

Publications (1)

Publication Number Publication Date
WO2010119718A1 true WO2010119718A1 (ja) 2010-10-21

Family

ID=42982389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051896 WO2010119718A1 (ja) 2009-04-15 2010-02-09 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム

Country Status (6)

Country Link
US (1) US9525473B2 (ja)
EP (1) EP2421320A1 (ja)
JP (1) JP2010252049A (ja)
CN (1) CN102379152B (ja)
TW (1) TW201136358A (ja)
WO (1) WO2010119718A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882587A (zh) * 2011-07-12 2013-01-16 拉碧斯半导体株式会社 数据通信系统、前导长度最佳化方法以及通信装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4770939B2 (ja) * 2009-02-13 2011-09-14 ソニー株式会社 通信装置、通信制御方法、及び通信システム
KR101910852B1 (ko) * 2011-07-21 2019-01-04 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 정보를 송수신하는 방법 및 장치
US9380582B2 (en) * 2012-04-16 2016-06-28 Samsung Electronics Co., Ltd. Methods and apparatus for flexible beam communications in random access in system with large number of antennas
US9300355B2 (en) * 2012-09-24 2016-03-29 Kyynel Oy Fast automated radio link establishment
US9204395B2 (en) * 2013-01-15 2015-12-01 Samsung Electronics Co., Ltd. Apparatus and method for discontinuous receive in communication systems with large number of antennas
WO2014199610A1 (ja) 2013-06-14 2014-12-18 パナソニックIpマネジメント株式会社 無線通信装置
KR102118693B1 (ko) * 2013-06-24 2020-06-03 삼성전자주식회사 무선 통신 시스템에서 랜덤 액세스를 위한 적응적 송신 빔 패턴 결정 장치 및 방법
US10231024B2 (en) * 2013-09-12 2019-03-12 Blizzard Entertainment, Inc. Selectively incorporating feedback from a remote audience
CA2924029A1 (en) * 2013-09-24 2015-04-02 Sony Corporation Communication control apparatus, communication control method, terminal apparatus, and information processing apparatus
EP3843316A1 (en) * 2014-06-24 2021-06-30 Telefonaktiebolaget LM Ericsson (publ) Method and apparatuses for operating a wireless communication network
WO2016002855A1 (ja) * 2014-07-03 2016-01-07 シャープ株式会社 基地局装置および端末装置
CN107155193B (zh) * 2016-03-02 2020-05-08 华为技术有限公司 一种定向链路的维护方法及站点sta
US11477771B2 (en) 2016-04-05 2022-10-18 Qualcomm Incorporated Indicating start and stop symbols of PDSCH and PUSCH through PDCCH
JP2019165267A (ja) * 2016-07-26 2019-09-26 シャープ株式会社 端末装置、基地局装置、および、通信方法
CN107689820A (zh) * 2016-08-03 2018-02-13 索尼公司 无线通信系统中的电子设备和服务器以及无线通信方法
CN108123784B (zh) * 2016-08-26 2021-05-18 华为技术有限公司 信号处理的方法和设备
US11265880B2 (en) * 2016-11-03 2022-03-01 Qualcomm Incorporated Beam sets for cell and beam mobility
WO2018090741A1 (zh) * 2016-11-16 2018-05-24 华为技术有限公司 信号处理的方法和设备
CN108243115B (zh) * 2016-12-26 2021-06-29 新华三技术有限公司 报文处理方法及装置
CN108259129B (zh) * 2017-08-02 2021-08-10 张涛 基于低移动性网络的通信方法
WO2019069533A1 (ja) * 2017-10-02 2019-04-11 ソニー株式会社 通信装置及び通信方法
WO2019102724A1 (ja) * 2017-11-24 2019-05-31 ソニー株式会社 通信装置、プログラム及び通信方法
KR20200120710A (ko) * 2018-02-14 2020-10-21 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 신호 전송 방법 및 기기
JP7281647B2 (ja) * 2018-08-07 2023-05-26 パナソニックIpマネジメント株式会社 通信装置、通信システム、及び、通信方法
EP3844889B1 (en) * 2018-08-31 2023-11-08 Telefonaktiebolaget LM Ericsson (publ) Beam-formed signal transmission from a network node
CN114666030B (zh) * 2022-05-25 2022-08-26 华中科技大学 一种混合井下信号编码与解码方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077789A (ja) 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2001077788A (ja) 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2004072539A (ja) 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
JP2005503061A (ja) * 2001-09-13 2005-01-27 タンティビ・コミュニケーションズ・インコーポレーテッド ピアツーピア・ネットワークにおけるアダプティブ・アンテナを用いる信号検出方法
JP2005102136A (ja) * 2003-08-15 2005-04-14 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2006505148A (ja) * 2002-01-22 2006-02-09 エクストリームスペクトラム,インコーポレイテッド メディア品質の判定方法
JP2007324773A (ja) 2006-05-30 2007-12-13 Sanyo Electric Co Ltd 通信方法およびそれを利用した基地局装置
JP2008011157A (ja) * 2006-06-29 2008-01-17 Sharp Corp 移動局装置および基地局装置

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3618917B2 (ja) * 1996-08-05 2005-02-09 株式会社東芝 情報収集方法
JP3874991B2 (ja) * 2000-04-21 2007-01-31 株式会社東芝 無線基地局およびそのフレーム構成方法
US7363057B2 (en) * 2002-04-03 2008-04-22 Nec Corporation Mobile communication system, mobile station, base station, communication path quality estimation method used for the same
JP2004153467A (ja) * 2002-10-29 2004-05-27 Ntt Docomo Inc 指向性ビーム通信方法及び基地局
JP3993508B2 (ja) * 2002-12-02 2007-10-17 株式会社エヌ・ティ・ティ・ドコモ 無線アクセスネットワークシステム、無線通信方法、同期サーバ及びノード装置
JP4005974B2 (ja) * 2004-01-09 2007-11-14 株式会社東芝 通信装置、通信方法、および通信システム
US7289481B2 (en) * 2004-03-24 2007-10-30 Wavion Ltd. WLAN capacity enhancement by contention resolution
US7428428B2 (en) * 2004-04-28 2008-09-23 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Systems and methods for wireless network range extension
JP4256301B2 (ja) * 2004-05-28 2009-04-22 株式会社東芝 無線通信装置
WO2005122696A2 (en) * 2004-06-18 2005-12-29 Stellaris Ltd. Distributed antenna wlan access-point system and method
US8280443B2 (en) * 2004-07-30 2012-10-02 Hong Kong Applied Science And Technology Research Institute Co., Ltd. WLAN access point with extended coverage area
KR20060081194A (ko) * 2005-01-07 2006-07-12 삼성전자주식회사 다중 안테나 시스템에서 섹터 구성 장치 및 방법
WO2006082637A1 (ja) * 2005-02-03 2006-08-10 Fujitsu Limited 無線通信システムおよび無線通信方法
US8724676B2 (en) * 2005-11-16 2014-05-13 Qualcomm Incorporated Method and apparatus for single carrier spreading
KR100728039B1 (ko) * 2006-01-05 2007-06-14 삼성전자주식회사 무선랜에서 히든노드에게 제어 프레임을 전달하는 방법 및장치
US8050620B2 (en) * 2006-02-01 2011-11-01 Panasonic Corporation Wireless station, wireless transmission method for the wireless station, and wireless transmission system using the wireless station
CN101336524B (zh) * 2006-02-02 2013-07-24 富士通株式会社 无线传送方法、无线发送机以及无线接收机
US8014416B2 (en) * 2006-02-14 2011-09-06 Sibeam, Inc. HD physical layer of a wireless communication device
US8072946B2 (en) * 2006-03-30 2011-12-06 Intel Corporation Coordinated transmissions in wireless networks
WO2008004609A1 (en) * 2006-07-07 2008-01-10 Mitsubishi Electric Corporation Wireless communication system and communication control method
DE602006021752D1 (de) * 2006-10-09 2011-06-16 Sony Deutschland Gmbh Verfahren und Vorrichtungen zum Senden und Empfangen von Signalen in einem drahtlosen Kommunikationssystem mit spezieller Rahmenstruktur
US8774140B2 (en) * 2006-10-19 2014-07-08 Intel Corporation Method and apparatus to provide hidden node protection
US20080112370A1 (en) * 2006-11-13 2008-05-15 Samsung Electronics Co., Ltd. Method and apparatus for allocating bandwidth of wireless network, and method and apparatus for transmitting and receiving data on the network
US7822440B2 (en) * 2006-12-23 2010-10-26 Intel Corporation Method and apparatus for operating a communication station
US20080192776A1 (en) * 2007-02-09 2008-08-14 Fleming Kristoffer D Mechanism for increasing UWB MAC efficiency and bandwidth via the period inclusion of PHY preambles for synchronization
WO2009023570A2 (en) * 2007-08-10 2009-02-19 Interdigital Patent Holdings, Inc. Method and apparatus for lte rach channel resource selection and partitioning
CN101399584A (zh) * 2007-09-26 2009-04-01 鼎桥通信技术有限公司 一种下行传输方法及基站
US20090086706A1 (en) * 2007-10-01 2009-04-02 The Hong Kong University Of Science And Technology Cross-layer multi-packet reception based medium access control and resource allocation
US8411664B2 (en) * 2007-11-05 2013-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Random access preamble collision detection
US8437769B1 (en) * 2008-02-19 2013-05-07 Sprint Spectrum L.P. Method and system for selecting a length of a preamble transmitted in an access probe
JP4600497B2 (ja) * 2008-03-14 2010-12-15 ブラザー工業株式会社 データ送信装置
US8165050B2 (en) * 2008-07-02 2012-04-24 Samsung Electronics Co., Ltd. System and method for use of a short beacon in a wireless communication network
KR101721615B1 (ko) * 2009-04-17 2017-03-30 마벨 월드 트레이드 리미티드 분절식 빔포밍

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001077789A (ja) 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2001077788A (ja) 1999-09-07 2001-03-23 Sony Corp 送信装置、受信装置、通信システム、送信方法、受信方法及び通信方法
JP2005503061A (ja) * 2001-09-13 2005-01-27 タンティビ・コミュニケーションズ・インコーポレーテッド ピアツーピア・ネットワークにおけるアダプティブ・アンテナを用いる信号検出方法
JP2006505148A (ja) * 2002-01-22 2006-02-09 エクストリームスペクトラム,インコーポレイテッド メディア品質の判定方法
JP2004072539A (ja) 2002-08-07 2004-03-04 Ntt Docomo Inc 無線通信システム、基地局及び無線通信方法
JP2005102136A (ja) * 2003-08-15 2005-04-14 Sony Corp 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2007324773A (ja) 2006-05-30 2007-12-13 Sanyo Electric Co Ltd 通信方法およびそれを利用した基地局装置
JP2008011157A (ja) * 2006-06-29 2008-01-17 Sharp Corp 移動局装置および基地局装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102882587A (zh) * 2011-07-12 2013-01-16 拉碧斯半导体株式会社 数据通信系统、前导长度最佳化方法以及通信装置

Also Published As

Publication number Publication date
JP2010252049A (ja) 2010-11-04
TW201136358A (en) 2011-10-16
CN102379152A (zh) 2012-03-14
US20120020420A1 (en) 2012-01-26
US9525473B2 (en) 2016-12-20
EP2421320A1 (en) 2012-02-22
CN102379152B (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
WO2010119718A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US8630588B2 (en) Efficient and flexible transmit beamforming sector sweep in a multi-antenna communication device
CN102132504B (zh) 通过扇区扫描进行波束成形的方法及站点
JP5278035B2 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
CN101084666B (zh) 在wlan中使用智能天线来运行的接入点及其相关方法
US8971817B2 (en) Communication apparatus and communication method, computer program, and communication system
WO2010101003A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
US20080002627A1 (en) Methods for improving wireless communications when interference or signal loss is directional in nature
US8879509B2 (en) Antenna Diversity
WO2010100957A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
WO2010100956A1 (ja) 通信装置及び通信方法、コンピューター・プログラム、並びに通信システム
JP2010103992A (ja) 多重ユーザ多重入出力基盤の無線lanシステムで競合期間の最小値を決定する装置および方法
JP2008533772A (ja) Wlanにおけるアップリンク伝送のための指向性アンテナを使用したアクセスポイント
US8027315B2 (en) Antenna diversity
US10660125B2 (en) Base station apparatus, wireless terminal apparatus, and wireless communication method
JP7147756B2 (ja) ビームフォーミング・トレーニングを用いる通信デバイス及び方法
RU2555866C2 (ru) Устройство передачи данных, способ управления передачей данных и система передачи данных
JP2010103996A (ja) 多重ユーザ多重入力多重出力基盤の無線lanシステムにおけるデータ送信スケジューラおよびデータ送信スケジューリング方法
CN114915319B (zh) 基于mimo波束赋形的感知方法及相关装置
WO2021196053A1 (zh) 波束确定方法及相关装置
Kandasamy et al. Power interference modeling for CSMA/CA based networks using directional antenna
Nadeem How Conservative IEEE 802.11 DCF is when using Directional Antenna?
CN114499614A (zh) 无线通信方法、装置、系统、设备和存储介质
CN115361045A (zh) 基于旁瓣能量感知的通信方法、装置、终端及存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015241.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764304

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13258040

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010764304

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE