WO2010119507A1 - Apparatus and method for measuring semiconductor - Google Patents

Apparatus and method for measuring semiconductor Download PDF

Info

Publication number
WO2010119507A1
WO2010119507A1 PCT/JP2009/057510 JP2009057510W WO2010119507A1 WO 2010119507 A1 WO2010119507 A1 WO 2010119507A1 JP 2009057510 W JP2009057510 W JP 2009057510W WO 2010119507 A1 WO2010119507 A1 WO 2010119507A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
electronic component
moving
measurement
semiconductor
Prior art date
Application number
PCT/JP2009/057510
Other languages
French (fr)
Japanese (ja)
Inventor
寿治 清水
昭一 藤森
秀憲 青木
Original Assignee
パイオニア株式会社
株式会社パイオニアFa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社, 株式会社パイオニアFa filed Critical パイオニア株式会社
Priority to PCT/JP2009/057510 priority Critical patent/WO2010119507A1/en
Priority to CN200980125417.8A priority patent/CN102077103B/en
Priority to JP2010536669A priority patent/JP4646271B1/en
Publication of WO2010119507A1 publication Critical patent/WO2010119507A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2887Features relating to contacting the IC under test, e.g. probe heads; chucks involving moving the probe head or the IC under test; docking stations

Definitions

  • the present invention relates to a technical field of a semiconductor measuring apparatus and method for measuring electrical characteristics by bringing an inspection needle into contact with an electronic component such as a chip divided by a dicing process.
  • a probe card having an inspection needle fixedly arranged in a probe apparatus is moved on a table on which a chip to be measured is mounted, so that the probe is provided on the chip with respect to the inspection needle.
  • a probe device that enables a stylus at a measurement site such as an electrode section is used.
  • an optical measurement device such as a photodetector.
  • Such an optical measuring device needs to be arranged so that the stylus position of the inspection needle of the probe can be measured. For this reason, it is possible to fix and arrange such an optical measuring device by fixing the probe and movably configuring the table on which the chip is mounted with respect to the probe. This is advantageous in that it is possible to suitably prevent the mechanism of the probe apparatus from becoming complicated.
  • the chip arrangement there are cases where there are contaminated chips or places where no chips exist. At this time, since the position of the table and the height adjustment of the table for the stylus of the inspection needle are adjusted based on the reference probe, the chip corresponding to the other probe is not contaminated or missing. If so, there is also a technical problem that leads to contamination of the inspection needle.
  • the present invention has been made in view of such a problem, and enables an accurate stylus in response to an unexpected change in the position of the tip, and on the other hand, the inspection stylus is soiled due to chip scumming or missing.
  • An object of the present invention is to provide a probe device that appropriately prevents this.
  • a semiconductor measuring apparatus for measuring electrical characteristics of an electronic component, and includes a mounting means for mounting a plurality of the electronic components, and the electronic component.
  • a first moving means that enables the placement means to move within a plane parallel to the surface on which the electronic component is placed; and a first measuring means that is fixed to the semiconductor measuring device and that measures electrical characteristics by contacting one electronic component.
  • a third moving means for moving the mounting means in a direction in which the distance between the first probe and the surface on which the electronic component is placed is reduced or moved away.
  • the first moving means is the one electric power source.
  • the placement means can be moved so that the measurement site of the component faces the first probe, and the second movement device can move the second probe so as to face the measurement site of the other electronic component.
  • the third moving means can move the placing means so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other.
  • An embodiment of the semiconductor measuring device is a semiconductor measuring device for measuring electrical characteristics of an electronic component, and a mounting means for mounting a plurality of the electronic components and a mounting of the electronic components.
  • a first moving means capable of moving the placing means in a plane parallel to the plane; a first probe fixed to the semiconductor measuring device and measuring electrical characteristics by contacting one electronic component;
  • a second probe that measures electrical characteristics by contacting another electronic component different from the one electronic component; and the second probe is movable in a plane parallel to a surface on which the electronic component is placed.
  • Second moving means that moves, and third moving means that enables the placing means to move in a direction to reduce or move away the distance between the first probe and the surface on which the electronic component is placed,
  • the moving means measures the one electronic component.
  • the mounting means is movable so that the position faces the first probe, and the second moving means allows the second probe to move so as to face the measurement site of the other electronic component,
  • the third moving means enables the placing means to move so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other.
  • the electronic component arranged on the mounting means is transferred to the first probe arranged in a fixed state in the device.
  • the inspection needle of the first probe touches the electrode part of the electronic component, and the electrical characteristics of the electronic component are measured.
  • the upper mounting means is aligned.
  • the electronic component is typically a chip in which electrode portions are patterned on a semiconductor wafer by a photoetching process or the like, and the semiconductor wafer is divided into individual chips by a dicing process on the mounting means. Placed on.
  • a second probe which is arranged so that the electrical characteristics of other electronic components different from the one electronic component corresponding to the first probe can be measured simultaneously.
  • the second probe is typically positioned so as to be capable of touching an electrode portion of an electronic component adjacent to the one electronic component among the plurality of electronic components. For this reason, preferably, by aligning one electronic component to be in contact with the inspection needle of the first probe, the electrode portion of the other electronic component adjacent to the one electronic component is inspected by the second probe. Needle and stylus become possible.
  • the second probe of the present embodiment is configured to be movable in a plane parallel to the plane on which the electronic components are arranged by the operation of the second moving means. According to such operation of the second moving means, a deviation is confirmed in the relative positional relationship between the position of the other electronic component corresponding to the second probe and the electronic component at the position corresponding to the first probe. In this case, the second probe is moved so that the inspection needle can accurately touch the electrode portion of the electronic component. That is, it is possible to correct the positional relationship to enable the stylus by moving the second probe with respect to the displacement of the electronic component position.
  • a general semiconductor measurement apparatus is provided with a photodetector that performs optical characteristic measurement corresponding to the position of the probe of each probe.
  • the measurable range of such a photodetector is typically about several centimeters.
  • the range is one. It can be seen that a plurality of adjacent electronic components can be simultaneously measured by the photodetector. For this reason, according to the embodiment of the semiconductor measuring apparatus of the present invention, a special mechanism for moving the photodetector according to the measurement position of the probe is not required even if the configuration includes such a photodetector.
  • the second probe in the present embodiment is intended to indicate at least one probe different from the first probe.
  • a plurality of second probes may be provided as will be described later.
  • a plurality of second moving means each independently operating are provided corresponding to the plurality of second probes. For this reason, even when two or more probes are used, it is possible to suitably align the stylus of the electronic component corresponding to each probe.
  • the first probe fixed and arranged in the device, and moves in a plane parallel to the arrangement surface of the electronic components and in a direction orthogonal thereto
  • Possible mounting means and a second probe movable in a plane parallel to the arrangement surface of the electronic components are provided. For this reason, when the mounting means for mounting the electronic component is transferred in accordance with the measurement position of the first probe, there is a deviation between the measurement position of the second probe and the corresponding electronic component. Even if it exists, the position of the second probe is adjusted by the second moving means, and the correction of the thread is performed.
  • the fourth moving means has an electronic component for measurement corresponding to the second probe at the time of one stylus measurement in which the placing means is brought close to each probe by the third moving means as described above. If not, the position of the second probe is moved away from the electronic component. At this time, the operation of moving the second probe away means that at least the tip part of the inspection needle is at a position where the electronic component is originally present even if a factor such as vibration is taken into account, and further on the portion on the mounting means where the electronic component is originally present. The purpose is to keep the distance away from contact.
  • the electronic component after the dicing process is often placed on an adhesive sheet developed on the placing means so that the position does not move due to vibration of the placing means.
  • the inspection needle of the probe touches the portion where the electronic component does not exist, the adhesive adheres to the inspection needle, and the subsequent characteristic measurement by the stylus on the electronic component cannot be performed accurately.
  • the adhesive that has adhered to the inspection needle may adhere to the electronic component, which may lead to a decrease in quality due to the contamination of the electronic component.
  • the thickness of the electronic component is very thin, such as several hundred ⁇ m.
  • the measurement electronic components are typically arranged in a circular shape because they are typically cut out from a circular wafer. For this reason, when the mounting means on which the electronic component is arranged in accordance with the first probe is aligned, for example, the electronic component corresponding to the second probe is often absent at the periphery of the circle.
  • the semiconductor measuring apparatus including the fourth moving unit, when the electronic component is aligned with the first probe, there is no measurement electronic component corresponding to the second probe.
  • the second probe is moved away from the mounting means, and the probe is retracted. For this reason, it becomes possible to avoid suitably that the inspection needle of the second probe is damaged or broken.
  • the confirmation as to whether or not there is an electronic component corresponding to the second probe in this aspect may be performed based on information relating to the arrangement of the electronic components obtained by some sensor, and will be described later. It may be confirmed as appropriate based on the position information of the electronic component stored in the means.
  • the semiconductor measuring apparatus further includes a determining unit that determines whether the other electronic component is a measurement target electronic component, and the fourth moving unit includes the other electronic component.
  • the semiconductor measuring apparatus further includes a determining unit that determines whether the other electronic component is a measurement target electronic component, and the fourth moving unit includes the other electronic component.
  • the fourth moving unit performs the retreat operation of the second probe as described above.
  • electronic components that are not to be measured include, for example, electronic components that are damaged or defective in the manufacturing process, TEG (Test Element Group) electronic components that are formed for the purpose of measuring characteristics such as materials and manufacturing processes, and the like.
  • the purpose is to indicate an electronic component that does not require measurement with a probe. Measuring these electronic parts with the stylus of the inspection needle is not preferable in terms of the process, although it is difficult to cause a loss in tact time. Further, when the inspection needle is brought into contact with the contaminated electronic component, the inspection needle may be stained or damaged.
  • the discrimination means in this aspect is typically configured to include an imaging means such as a camera, and is the measurement target obtained by acquiring image information of each electronic component and analyzing the image information? Determine whether or not. Further, the determination may be made by some other means, for example, based on information related to the electronic component included in advance in the position information of the electronic component stored in the recording means described later.
  • the second probe is a plurality of probes
  • the second moving unit corresponds to each of the plurality of probes
  • a plurality of moving means for moving each of the different electronic components so as to face each other.
  • the second probe in this aspect is intended to indicate a plurality of probes, and each probe is configured such that the moving operation by the second moving means can be performed individually. That is, the embodiment of the semiconductor measurement device of this aspect includes the first probe and a plurality of probes that should be referred to as the second probe group, and the first probe that is fixedly arranged with respect to the device is Each probe of the second probe group is configured to be movable in a plane parallel to the arrangement surface of the electronic components.
  • the second probe group other than the reference first probe can be individually moved to correct the deviation, so that a highly accurate measurement result can be obtained.
  • the semiconductor measuring apparatus further includes storage means for storing position information of the plurality of electronic components placed on the placing means, and the first moving means includes: The placing means is moved based on the position information, and the second moving means moves the second probe based on the position information.
  • the operations of the first moving unit, the second moving unit, the fourth moving unit, and the like are performed by referring to the position information indicating the position of each electronic component in the electronic component array acquired in advance.
  • Such position information is typically acquired by acquiring image information by an imaging unit such as a camera and analyzing the image information when the electronic component is mounted on the mounting unit.
  • an imaging unit such as a camera
  • analyzing the image information when the electronic component is mounted on the mounting unit there is no problem even if it is appropriately acquired by some means.
  • Embodiments according to the semiconductor measurement method of the present invention include a first probe that measures electrical characteristics of a plurality of electronic components placed on a placement means by contacting a measurement site of the electronic components, and A semiconductor measurement method of a semiconductor measurement device including a second probe, wherein the measurement part of one electronic component faces the first probe in a plane parallel to a surface on which the electronic component is placed.
  • the embodiment of the semiconductor measurement method of the present invention it is possible to receive the same effects as the various effects that can be enjoyed by the above-described embodiment of the semiconductor measurement apparatus of the present invention.
  • the embodiment of the semiconductor measurement method of the present invention can also adopt various aspects.
  • the mounting means, the first probe, the second probe, the first moving means, the second moving means, and the third moving means are provided.
  • the semiconductor measurement apparatus includes a first movement process, a second movement process, and a third movement process. Accordingly, when the electronic component is misaligned on the arrangement of the electronic component and the electronic component is aligned with the first probe, the position of the electronic component corresponding to the second probe is misaligned. It is possible to carry out highly accurate measurement after suitably correcting the deviation.
  • FIG. 1 is a schematic diagram illustrating a basic configuration example of the probe device according to the present embodiment.
  • the basic configuration example of the probe apparatus 1 includes a table 100, a table position adjustment unit 110, a first probe 200, a second probe 300, a control unit 400, and a photodetector 410. Yes.
  • the electrical characteristics of the chip 500 which is a specific example of the electronic component in the present embodiment, are measured.
  • the table 100 is a specific example of the placing means according to the present embodiment.
  • the table position adjustment unit 110 is a moving unit including an actuator that is attached to or integrated with the table 100, and is a specific example of the first moving unit and the third moving unit in the present embodiment.
  • the table position adjustment unit 110 is connected to the control unit 400 and is controlled to move based on the positional information of the arrangement of the chips 500, so that the table 100 is placed in a plane parallel to the arrangement plane of the chips 500 and the arrangement plane of the chips 500. Move in an orthogonal direction.
  • An adhesive sheet 510 is developed on the table 100, and a plurality of chips 500 are placed thereon.
  • the first probe 100 is a probe card arranged and fixed in the probe apparatus 1 by the first probe base 220, and includes a plurality of inspection needles 210.
  • the inspection needle 210 touches the electrode portion of the chip 500, the electrical characteristics of the chip 500 are measured.
  • the direction orthogonal to the chip array is the Z axis
  • the X axis and the Y axis orthogonal to the Z axis and orthogonal to each other, and the rotation on the XY plane are mounted on the table 100.
  • the chip 500 to be placed is aligned with the inspection needle 210 of the first probe 200.
  • the table 100 is moved in the Z-axis direction so that the tip 500 comes into contact with the inspection needle 210, thereby measuring the electrical characteristics of the tip 500 with the stylus of the inspection needle 210.
  • the table position adjustment unit 110 moves the table 100 and aligns each chip with the inspection needle 210 so that the chip 500 is measured in the measurement order shown in FIG.
  • the inspection needle 210 in the first probe 200 is movable with respect to the first probe 200. For this reason, before the measurement of the chip 500, the inspection needle 210 can be aligned so as to appropriately touch the electrode portion of the chip 500 by, for example, a manual teaching operation.
  • the second probe 300 is a probe card that includes a plurality of inspection needles 310 and is arranged in the probe apparatus 1 by the second probe base 330, similar to the first probe 200.
  • the second probe 300 of the present embodiment is basically disposed at a position where a stylus can be touched with respect to the tip adjacent to the tip touched by the first probe 200.
  • the second probe 300 further includes a second probe position adjusting unit 320, and the movement of the second probe position adjusting unit 320 and the rotational movement in the XY plane are performed by the operation of the second probe position adjusting unit 320, similarly to the table 100 described above. Configured to be possible.
  • the second probe position adjustment unit 320 is connected to the control unit 400 and moves the second probe 300 under the control of the control unit 400.
  • the control unit 400 is a processing device such as a known CPU (Central Processing Unit), for example, and includes a memory as a specific example of the storage means in the present embodiment, and is connected to each unit of the probe device 1. Control the operation and obtain measurement results.
  • CPU Central Processing Unit
  • control unit 400 is connected to each of the table position adjustment unit 110 and the second probe position adjustment unit 320, and controls the execution of the movement operation and the movement amount. At this time, the control unit 400 controls the movement operation (ie, alignment) of the position adjustment unit based on the position information of the chip 500 stored in the memory.
  • the photodetector 410 is arranged so that the optical characteristics of the chip 500 can be measured with respect to the stylus portion of the inspection probe 210 and 310 of each of the first probe 200 and the second probe 300 with the chip 500.
  • the photodetector 410 is arranged in a state where the vicinity of the stylus position of the inspection needle 210 is aligned so as to be measurable. For this reason, it is possible to suitably measure the optical characteristics of the chip 500 that is aligned with the inspection needle 210 so that it can be touched.
  • FIG. 3 is an example of a flowchart showing a basic operation flow of the probe apparatus 1.
  • chip position information is acquired (step S101).
  • the position information of the chip may be acquired by an imaging device such as a camera, or may be acquired by reading the position information of the chip acquired in advance.
  • the table 100 is moved by the operation of the table position adjustment unit 110, and among the mounted chips 500, the measurement start chip is the touch of the inspection needle 210 of the first probe 200. Positioning is performed so as to come to the needle position (step S102).
  • the chip at the peripheral edge is selected as the measurement start chip, such as the chip at the upper left in the chip arrangement of FIG.
  • a tip different from the measurement start tip is aligned with the stylus position of the inspection needle 310 of the second probe 300.
  • each inspection needle is aligned (so-called teaching) so that the inspection needle 210 of the first probe 200 and the electrode portion of the measurement start tip, and the inspection needle 310 of the second probe 300 and the electrode portion of the corresponding tip are in contact with each other. Implemented (step S103).
  • the height of the table 100 is adjusted by the operation of the table position adjustment unit 110, and the electrical characteristics of each chip are measured by contacting the corresponding inspection needles with the electrode portions of the chips (step S104). ).
  • the next measurement chip is aligned with the first probe 200 (step S105).
  • the next measurement chip is a chip that follows the inspection sequence, and indicates an unmeasured chip other than a chip that is determined not to be a measurement target chip due to contamination, breakage, or some other reason. For this reason, the chip that has been measured by the second probe 300 is excluded and the subsequent chip is selected.
  • the tip is also transferred to the measurement position of the inspection needle 310 of the second probe 300.
  • the defect that occurs in the chip is a chip that has been excluded from the measurement object due to something such as fouling or breakage, a chip that has already been measured, or a chip on the chip arrangement (that is, This means that there is no chip to be arranged).
  • the case where the position is simply shifted from the inspection needle 310 is not included in the problem mentioned here.
  • FIG. 4 is a schematic diagram illustrating an example of the retreat operation of the second probe 300 when a chip having such a defect is confirmed.
  • the tip of the inspection needle 310 of the second probe 300 can touch the electrode portion of the corresponding chip simultaneously with the inspection needle 210 of the first probe 200.
  • the height is adjusted to the same level as the inspection needle 210. For this reason, measurement with each probe is possible in one stylus operation.
  • the tip 500 to be measured is transferred after the second probe 300 is retracted, the position of the second probe 300 is returned to the initial state after teaching, and the stylus can be made again.
  • the displacement of the position of the tip typically means a displacement of the position of the inspection needle 310 of the second probe 300 and the position of the electrode portion of the tip 500.
  • the second probe position adjusting unit 320 is aligned under the control of the control unit 400, and the tip of the inspection needle 310 is accurately positioned on the electrode portion of the tip 500.
  • Step S109 With reference to FIG. 5, the operation of each unit at this time will be described.
  • FIG. 5 is a schematic diagram illustrating an example of the alignment operation of the second probe 300 when the chip 500 in which such a positional deviation has occurred is confirmed.
  • the inspection needle 210 of the first probe 200 can be brought into contact with the electrode portion of the chip 500 to be measured by the first probe 200 by teaching work so that the probe 500 can touch the electrode portion of the chip 500. It is aligned in a plane parallel to the array plane.
  • the tip of the inspection needle 310 of the second probe 300 is aligned within a plane parallel to the array surface of the chip 500 so that the probe can be brought into contact with the electrode portion of the chip 500 to be measured by the second probe. ing.
  • each probe suitably measures the two chips 500 of the contact 1. Can be implemented.
  • the tip of the contact 2 is adjusted by teaching shown in FIG. 4A because there is a positional shift between the tip corresponding to the first probe 200 and the tip corresponding to the second probe 300. With the second probe 300 that has been made, an appropriate stylus cannot be implemented. Note that such a positional shift can be confirmed by, for example, the chip position information acquired in step S101.
  • control unit 400 operates the second probe position adjustment unit 320 to finely adjust the position of the second probe 300 so that an appropriate stylus is implemented.
  • the corresponding tip of the second probe 300 is shifted downward in the drawing compared to the corresponding tip of the first probe 200. Make fine adjustments.
  • the two chip positions are close compared to the chips of the other contacts, and the traveling direction of the table 100 (that is, the chip transfer direction).
  • the positions of the chips are shifted in the direction orthogonal to ().
  • the corresponding tip of the first probe 200 is adjusted so as to come to the measurement position of the first probe 200. Therefore, in such a contact, the second probe 300 is moved downward and left in the drawing. Tweaked.
  • the displacement in the chip arrangement can be suitably corrected. Further, such position adjustment of the second probe is preferably performed in parallel with the alignment in step S105.
  • step S110 the height of the table 100 is adjusted, and the electrical characteristics of the corresponding chip are measured by each probe (step S110).
  • Such a series of alignment and measurement operations are basically performed until there is no unmeasured chip on the table 100 or until it is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

Provided is an apparatus for measuring electrical characteristics of a plurality of electronic components at the same time. A semiconductor measuring apparatus (1) is provided with a placing means (100) whereupon a plurality of electronic components (500) are placed; a first moving means (110) which can move the placing means in parallel to a surface whereupon the electronic components are placed; a first probe (200) for measuring the characteristics by being brought into contact with one electronic component; a second probe (300) which measures the characteristics by being brought into contact with other electronic component; a second moving means (320) which can move the second probe in parallel to the surface whereupon the electronic components are placed; and a third moving means (110) which can move the placing means in a direction orthogonally intersecting with the surface whereupon the electronic components are placed. The first moving means moves the placing means so that the one electronic component faces the first probe. The second moving means moves the second probe so that the second probe faces other electronic component. The third moving means moves the placing means so that the first and the second probes and the corresponding electronic components are broughtinto contact with each other.

Description

半導体測定装置及び方法Semiconductor measuring apparatus and method
 本発明は、ダイシング処理によって分割されたチップなどの電子部品に対して検査針を接触させることで電気的特性を計測する半導体測定装置及び方法の技術分野に関する。 The present invention relates to a technical field of a semiconductor measuring apparatus and method for measuring electrical characteristics by bringing an inspection needle into contact with an electronic component such as a chip divided by a dicing process.
 従来、例えば半導体ウェハ上に多数形成された半導体チップなどの電子部品の夫々の電気的特性を測定するために、検査針の触針によって該電子部品の電気的特性の測定を行うプローブを備えた半導体測定装置が用いられてきた。このような測定によれば、特性が不良と判定される半導体チップをアセンブリ工程の前で排除することが可能となり、結果的にコストダウンや生産性の向上などに繋がるものである。 Conventionally, in order to measure each electrical characteristic of an electronic component such as a semiconductor chip formed on a semiconductor wafer, for example, a probe for measuring the electrical characteristic of the electronic component with a stylus of an inspection needle has been provided. Semiconductor measuring devices have been used. According to such measurement, it is possible to eliminate a semiconductor chip whose characteristics are determined to be defective before the assembly process, resulting in cost reduction and improvement in productivity.
 一般的に、プローブ装置中に固定されて配置される検査針を有するプローブカードに対して、測定対象となるチップを載置したテーブルを移動させることで、プローブの検査針に対してチップに設けられる電極部などの測定部位の触針を可能とするプローブ装置が用いられている。この背景として、チップに対して、プローブによる電気的特性の測定と同時に、例えばフォトディテクタなどの光学的測定装置による測定が実施されることが多いことがある。このような光学的測定装置は、プローブの検査針の触針位置を測定可能に配置されている必要がある。このため、プローブを固定し、該プローブに対してチップを載置するテーブルを移動可能に構成することで、このような光学的測定装置もまた固定して配置することが可能となる。このことは、プローブ装置の機構が複雑化することを好適に防止可能という点で有益である。 Generally, a probe card having an inspection needle fixedly arranged in a probe apparatus is moved on a table on which a chip to be measured is mounted, so that the probe is provided on the chip with respect to the inspection needle. 2. Description of the Related Art A probe device that enables a stylus at a measurement site such as an electrode section is used. As a background to this, there are many cases where the measurement of an electrical characteristic by a probe is performed on a chip at the same time as an optical measurement device such as a photodetector. Such an optical measuring device needs to be arranged so that the stylus position of the inspection needle of the probe can be measured. For this reason, it is possible to fix and arrange such an optical measuring device by fixing the probe and movably configuring the table on which the chip is mounted with respect to the probe. This is advantageous in that it is possible to suitably prevent the mechanism of the probe apparatus from becoming complicated.
 上述したように、このようなプローブ装置が用いられる背景として、生産性の向上が要求されるという点がある。生産性の向上を達成するためには、測定対象となるチップの電気的特性の測定に対して、正確さのみならず迅速さも要求される。係る事情に鑑み、例えば複数の測定用プローブを備え、同時に複数のチップの電気的特性を計測可能に構成されるプローブ装置が考案されている。 As described above, an improvement in productivity is required as a background for using such a probe apparatus. In order to achieve improvement in productivity, not only accuracy but also speed is required for measurement of electrical characteristics of a chip to be measured. In view of such circumstances, for example, a probe device has been devised that includes a plurality of measurement probes and is configured to measure the electrical characteristics of a plurality of chips at the same time.
 このような複数のプローブを備えるプローブ装置について、簡単のために2つのプローブを備えるプローブ装置の場合について考える。このようなプローブ装置の動作によれば、1回のコンタクトで隣り合う2つのチップの夫々が、対応するプローブの検査針に触針される。このとき、一のプローブの検査針と、対応する一のチップの電極部とが触針する位置を基準として、位置合わせが実施される。このとき、他方のプローブの検査針は、他方のチップの電極位置に触針可能となるよう、予め手動でのティーチングによって位置が調整されている。このため、一のプローブと一のチップとを基準として位置合わせを行ったとしても、その他のプローブと対応するチップとの夫々が触針可能となっている。 For such a probe device having a plurality of probes, consider the case of a probe device having two probes for simplicity. According to the operation of such a probe device, each of two adjacent chips in one contact is brought into contact with the inspection probe of the corresponding probe. At this time, alignment is performed with reference to the position at which the inspection needle of one probe and the electrode portion of the corresponding one chip touch each other. At this time, the position of the inspection needle of the other probe is adjusted in advance by manual teaching so that the probe can be brought into contact with the electrode position of the other tip. For this reason, even if alignment is performed using one probe and one chip as a reference, each of the other probes and the corresponding chip can be stylused.
特開平11-219988号公報Japanese Patent Laid-Open No. 11-219988
 しかしながら、チップ位置がティーチング時に想定されたチップ位置に対して正確である場合には何ら問題はないものの、基準となるチップ位置に対してズレが生じている場合には、正しい触針が行えない虞がある。このとき、チップ位置情報をもとにプローブ位置の再ティーチングを行う場合、測定時間の延長に繋がり、これは迅速な工程が好まれるという点から好ましくない。 However, there is no problem if the tip position is accurate with respect to the tip position assumed during teaching, but if there is a deviation from the reference tip position, correct stylus cannot be performed. There is a fear. At this time, when re-teaching the probe position based on the chip position information, it leads to an extension of the measurement time, which is not preferable because a quick process is preferred.
 また、チップの配列中に、汚損しているチップや、チップが存在しない箇所が存在している場合もある。このとき、基準となるプローブをもとに、位置合わせや検査針の触針のためのテーブルの高さ調整が実施されることから、他のプローブに対応するチップにこのような汚損や欠落が生じている場合、検査針に汚損が生じることに繋がるという技術的な問題もある。 Also, in the chip arrangement, there are cases where there are contaminated chips or places where no chips exist. At this time, since the position of the table and the height adjustment of the table for the stylus of the inspection needle are adjusted based on the reference probe, the chip corresponding to the other probe is not contaminated or missing. If so, there is also a technical problem that leads to contamination of the inspection needle.
 本発明はこのような課題に鑑みて為されたものであり、予期しないチップの位置変化に対応して的確な触針を可能にし、他方でチップの汚損や欠落などによって検査針に汚損が生じることを適切に防止するプローブ装置を提供することを目的とする。 The present invention has been made in view of such a problem, and enables an accurate stylus in response to an unexpected change in the position of the tip, and on the other hand, the inspection stylus is soiled due to chip scumming or missing. An object of the present invention is to provide a probe device that appropriately prevents this.
 上記課題を解決するために、本発明の半導体測定装置は、電子部品の電気的特性を測定する半導体測定装置であって、前記電子部品が複数個載置される載置手段と、前記電子部品を載置する面と平行する面内で前記載置手段を移動可能とする第1移動手段と、当該半導体測定装置に固定され、一の電子部品に接触することで電気的特性を測定する第1プローブと、前記一の電子部品とは異なる他の電子部品に接触することで電気的特性を測定する第2プローブと、前記電子部品を載置する面と平行な面内で前記第2プローブを移動可能とする第2移動手段と、前記第1プローブと前記電子部品を載置する面との距離を近づける、または遠ざける方向へ前記載置手段を移動可能とする第3移動手段とを備え、前記第1移動手段は、前記一の電子部品の測定部位が前記第1プローブに対向するよう、前記載置手段を移動可能にし、前記第2移動手段は、前記他の電子部品の測定部位に対向するよう、前記第2プローブを移動可能にし、前記第3移動手段は、前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動可能とする。 In order to solve the above-described problems, a semiconductor measuring apparatus according to the present invention is a semiconductor measuring apparatus for measuring electrical characteristics of an electronic component, and includes a mounting means for mounting a plurality of the electronic components, and the electronic component. A first moving means that enables the placement means to move within a plane parallel to the surface on which the electronic component is placed; and a first measuring means that is fixed to the semiconductor measuring device and that measures electrical characteristics by contacting one electronic component. One probe, a second probe for measuring electrical characteristics by contacting another electronic component different from the one electronic component, and the second probe in a plane parallel to a surface on which the electronic component is placed And a third moving means for moving the mounting means in a direction in which the distance between the first probe and the surface on which the electronic component is placed is reduced or moved away. The first moving means is the one electric power source. The placement means can be moved so that the measurement site of the component faces the first probe, and the second movement device can move the second probe so as to face the measurement site of the other electronic component. The third moving means can move the placing means so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other.
 上記課題を解決するために、本発明のプローブ方法は、載置手段上に載置される複数個の電子部品に対し、該電子部品の測定部位に接触することで電気的特性を測定する第1プローブ及び第2プローブとを備える半導体測定装置の半導体測定方法であって、一の電子部品の測定部位が前記第1プローブに対向するよう、前記電子部品を載置する面と平行する面内で前記載置手段を移動させる第1移動工程と、前記一の電子部品とは異なる他の電子部品の測定部位に対向するよう、前記電子部品を載置する面と平行な面内で前記第2プローブを移動させる第2移動工程と、前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動させる第3移動工程とを備える。 In order to solve the above-described problem, the probe method of the present invention is a first method for measuring electrical characteristics of a plurality of electronic components placed on a placing means by contacting a measurement site of the electronic components. A semiconductor measurement method of a semiconductor measurement device comprising a probe and a second probe, wherein the measurement part of one electronic component is in a plane parallel to a surface on which the electronic component is placed so as to face the first probe The first moving step of moving the mounting means in the above and the first moving step in a plane parallel to the surface on which the electronic component is placed so as to face the measurement site of another electronic component different from the one electronic component. A second movement step for moving two probes; and a third movement for moving the placement means so that the first probe and the one electronic component and the second probe and the other electronic component are in contact with each other. A process.
本発明の実施形態に係るプローブ装置の構成例を示す概略図である。It is the schematic which shows the structural example of the probe apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプローブ装置の動作による、チップの測定順序を示す概略図である。It is the schematic which shows the measurement order of a chip | tip by operation | movement of the probe apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプローブ装置の基本的な動作の流れを示すフローチャートである。It is a flowchart which shows the flow of basic operation | movement of the probe apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプローブ装置の基本的な動作の一具体例を示す模式図である。It is a schematic diagram which shows a specific example of basic operation | movement of the probe apparatus which concerns on embodiment of this invention. 本発明の実施形態に係るプローブ装置の基本的な動作の一具体例を示す模式図である。It is a schematic diagram which shows a specific example of basic operation | movement of the probe apparatus which concerns on embodiment of this invention.
 本発明の半導体測定装置に係る実施形態は、電子部品の電気的特性を測定する半導体測定装置であって、前記電子部品が複数個載置される載置手段と、前記電子部品を載置する面と平行する面内で前記載置手段を移動可能とする第1移動手段と、当該半導体測定装置に固定され、一の電子部品に接触することで電気的特性を測定する第1プローブと、前記一の電子部品とは異なる他の電子部品に接触することで電気的特性を測定する第2プローブと、前記電子部品を載置する面と平行な面内で前記第2プローブを移動可能とする第2移動手段と、前記第1プローブと前記電子部品を載置する面との距離を近づける、または遠ざける方向へ前記載置手段を移動可能とする第3移動手段とを備え、前記第1移動手段は、前記一の電子部品の測定部位が前記第1プローブに対向するよう、前記載置手段を移動可能にし、前記第2移動手段は、前記他の電子部品の測定部位に対向するよう、前記第2プローブを移動可能にし、前記第3移動手段は、前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動可能とする。 An embodiment of the semiconductor measuring device according to the present invention is a semiconductor measuring device for measuring electrical characteristics of an electronic component, and a mounting means for mounting a plurality of the electronic components and a mounting of the electronic components. A first moving means capable of moving the placing means in a plane parallel to the plane; a first probe fixed to the semiconductor measuring device and measuring electrical characteristics by contacting one electronic component; A second probe that measures electrical characteristics by contacting another electronic component different from the one electronic component; and the second probe is movable in a plane parallel to a surface on which the electronic component is placed. Second moving means that moves, and third moving means that enables the placing means to move in a direction to reduce or move away the distance between the first probe and the surface on which the electronic component is placed, The moving means measures the one electronic component. The mounting means is movable so that the position faces the first probe, and the second moving means allows the second probe to move so as to face the measurement site of the other electronic component, The third moving means enables the placing means to move so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other.
 本発明の半導体測定装置に係る実施形態によれば、装置中に固定された状態で配置される第1プローブに対して、載置手段上に配置された電子部品が移送されてくることで、第1プローブの検査針が電子部品の電極部分に触針し、電子部品の電気的特性が測定される。具体的には、第1移動手段により、載置手段上の一の電子部品の電極部分が、第1プローブの触針位置に来るように、電子部品が配置される面に対して平行な面上の載置手段の位置合わせが行われる。ここに電子部品とは、典型的には半導体ウェハ上にフォトエッチング処理などによって電極部分がパターンされたチップであり、該半導体ウェハをダイシング処理によって個別のチップに分割された状態で載置手段上に載置される。 According to the embodiment of the semiconductor measuring device of the present invention, the electronic component arranged on the mounting means is transferred to the first probe arranged in a fixed state in the device. The inspection needle of the first probe touches the electrode part of the electronic component, and the electrical characteristics of the electronic component are measured. Specifically, a surface parallel to the surface on which the electronic component is arranged so that the electrode portion of one electronic component on the mounting device is positioned at the stylus position of the first probe by the first moving unit. The upper mounting means is aligned. Here, the electronic component is typically a chip in which electrode portions are patterned on a semiconductor wafer by a photoetching process or the like, and the semiconductor wafer is divided into individual chips by a dicing process on the mounting means. Placed on.
 そして、第3移動手段の動作により、載置手段の高さ方向(すなわち、電子部品が配置される面に対して直交する方向)の位置合わせにより、該一の電子部品の電極部分が第1プローブの検査針に触針する。従って、本実施形態の半導体測定装置による電子部品の電気的特性の測定が行われる。 Then, by the operation of the third moving means, the electrode portion of the one electronic component is moved to the first position by the alignment in the height direction of the placing means (that is, the direction orthogonal to the surface on which the electronic component is arranged). Touch the probe needle. Therefore, the electrical characteristics of the electronic component are measured by the semiconductor measuring device of this embodiment.
 本実施形態によれば、特に、第1プローブと対応する一の電子部品とは異なる他の電子部品の電気的特性を同時に測定可能に配置される第2のプローブが備えられる。この第2プローブは、典型的には、複数の電子部品のうち、該一の電子部品と隣接する電子部品の電極部分に触針可能となるように位置合わせされている。このため、好適には、第1プローブの検査針と触針可能に一の電子部品を位置合わせすることで、該一の電子部品に隣接する他の電子部品の電極部分が第2プローブの検査針と触針可能となる。 According to the present embodiment, in particular, a second probe is provided which is arranged so that the electrical characteristics of other electronic components different from the one electronic component corresponding to the first probe can be measured simultaneously. The second probe is typically positioned so as to be capable of touching an electrode portion of an electronic component adjacent to the one electronic component among the plurality of electronic components. For this reason, preferably, by aligning one electronic component to be in contact with the inspection needle of the first probe, the electrode portion of the other electronic component adjacent to the one electronic component is inspected by the second probe. Needle and stylus become possible.
 このとき、例えば、移送中の振動などの何らかの要因によって、配置されている電子部品の夫々の相対的な位置関係にズレが生じている場合、複数のプローブと、該プローブの夫々に対応する電子部品との位置合わせが適切に行われなくなる可能性がある。例えば、一の電子部品と、該一の電子部品に隣接する他の電子部品との相対的な位置関係にズレが生じた場合、該一の電子部品と第1プローブとを基準に位置合わせを行ったとしても、該他の電子部品と第2プローブとの位置関係にズレが生じてしまうため、第2プローブの的確な触針が実施されない。 At this time, for example, when there is a shift in the relative positional relationship between the arranged electronic components due to some factor such as vibration during transfer, a plurality of probes and the electrons corresponding to the probes are arranged. There is a possibility that the alignment with the component is not performed properly. For example, when the relative positional relationship between one electronic component and another electronic component adjacent to the one electronic component is shifted, alignment is performed with reference to the one electronic component and the first probe. Even if it is performed, the positional relationship between the other electronic component and the second probe is displaced, so that an accurate stylus of the second probe is not implemented.
 係る事態を考慮して、本実施形態の第2プローブは、第2移動手段の動作により、電子部品の配列される面と平行する面内を移動可能に構成されている。このような第2移動手段の動作によれば、第2プローブに対応する他の電子部品の位置と、第1プローブに対応する位置の電子部品との相対的な位置関係にズレが確認される場合、検査針が該電子部品の電極部分に的確に触針可能となるように第2プローブを移動させる。つまり、電子部品位置のズレに対し、第2プローブを移動させることで、触針可能となる位置関係に補正することが可能となる。 In consideration of such a situation, the second probe of the present embodiment is configured to be movable in a plane parallel to the plane on which the electronic components are arranged by the operation of the second moving means. According to such operation of the second moving means, a deviation is confirmed in the relative positional relationship between the position of the other electronic component corresponding to the second probe and the electronic component at the position corresponding to the first probe. In this case, the second probe is moved so that the inspection needle can accurately touch the electrode portion of the electronic component. That is, it is possible to correct the positional relationship to enable the stylus by moving the second probe with respect to the displacement of the electronic component position.
 ここに、電子部品位置のズレとは、第1プローブに対応する一の電子部品に対する相対的な位置のズレを示す趣旨である。このため、第2プローブに対応する他の電子部品の位置がティーチングにより調整された位置と等しい場合であっても、例えば第1プローブに対応する一の電子部品の位置がティーチングにより調整された位置からズレが生じている場合、第1移動手段による位置合わせで一の電子部品位置が第1プローブに対応するよう調整されることにより、第2プローブに対応する他の電子部品の位置にはズレが生じることとなる。このような第2プローブの相対的なズレに対しても、第2移動手段の動作により第2プローブの位置合わせが行われることで補正を行うことが可能である。 Here, the displacement of the position of the electronic component is intended to indicate a displacement of the relative position with respect to one electronic component corresponding to the first probe. Therefore, even when the position of the other electronic component corresponding to the second probe is equal to the position adjusted by teaching, for example, the position where the position of one electronic component corresponding to the first probe is adjusted by teaching If the first electronic component position is adjusted by the first moving means so as to correspond to the first probe, the position of the other electronic component corresponding to the second probe is displaced. Will occur. Such relative displacement of the second probe can also be corrected by aligning the second probe by the operation of the second moving means.
 尚、本実施形態においては特に取り上げないものの、一般的な半導体測定装置においては、各プローブの検査針の触針位置に対応して、光学的特性測定を実施するフォトディテクタが備えられている。このようなフォトディテクタの測定可能範囲は、典型的には、数cm程度であり、一方配列される電子部品の大きさ、及び相互の電子部品間隔が数100μm程度であることを考慮すれば、一のフォトディテクタによって隣接する複数の電子部品を同時に測定可能であることが分かる。このため、本発明の半導体測定装置の実施形態によれば、このようなフォトディテクタを備える構成であっても、該フォトディテクタをプローブの測定位置に応じて移動させるための特別な機構は不要である。 Although not particularly taken up in the present embodiment, a general semiconductor measurement apparatus is provided with a photodetector that performs optical characteristic measurement corresponding to the position of the probe of each probe. The measurable range of such a photodetector is typically about several centimeters. On the other hand, considering that the size of the arranged electronic components and the interval between the electronic components is about several hundred μm, the range is one. It can be seen that a plurality of adjacent electronic components can be simultaneously measured by the photodetector. For this reason, according to the embodiment of the semiconductor measuring apparatus of the present invention, a special mechanism for moving the photodetector according to the measurement position of the probe is not required even if the configuration includes such a photodetector.
 また、本実施形態における第2プローブは、少なくとも第1プローブとは異なる一つ以上のプローブを示す趣旨である。例えば、本発明の半導体測定装置に係る実施形態の一態様として、後述するように複数の第2プローブを備えていても良い。このとき、複数の第2プローブに対応して、夫々独自に動作する複数の第2移動手段が備えられている。このため、2つ以上のプローブを用いる場合であっても、好適に各プローブと対応する電子部品の触針の位置合わせが可能となる。 In addition, the second probe in the present embodiment is intended to indicate at least one probe different from the first probe. For example, as one aspect of the embodiment of the semiconductor measurement device of the present invention, a plurality of second probes may be provided as will be described later. At this time, a plurality of second moving means each independently operating are provided corresponding to the plurality of second probes. For this reason, even when two or more probes are used, it is possible to suitably align the stylus of the electronic component corresponding to each probe.
 以上説明したように、本発明の半導体測定装置に係る実施形態によれば、装置中に固定されて配置される第1プローブと、電子部品の配列面に平行する面内及び直交する方向で移動可能な載置手段と、電子部品の配列面に平行する面内で移動可能な第2プローブが設けられる。このため、第1プローブの測定位置に合わせて、電子部品を載置する載置手段が移送されたとき、第2プローブの測定位置と対応する電子部品との位置にズレが生じている場合であっても、第2移動手段により第2プローブの位置が調整され、スレの補正が行われる。従って、電子部品の配列にズレが生じている場合であっても、同時に複数のプローブを用いて電子部品への触針が可能となる。尚、電子部品の多少の配列のズレをも補正可能であることから、電子部品の配列における精度の要求値を多少なりとも緩和させることが可能となる。 As described above, according to the embodiment of the semiconductor measuring device of the present invention, the first probe fixed and arranged in the device, and moves in a plane parallel to the arrangement surface of the electronic components and in a direction orthogonal thereto Possible mounting means and a second probe movable in a plane parallel to the arrangement surface of the electronic components are provided. For this reason, when the mounting means for mounting the electronic component is transferred in accordance with the measurement position of the first probe, there is a deviation between the measurement position of the second probe and the corresponding electronic component. Even if it exists, the position of the second probe is adjusted by the second moving means, and the correction of the thread is performed. Therefore, even when there is a deviation in the arrangement of the electronic components, it is possible to contact the electronic components using a plurality of probes at the same time. Incidentally, since it is possible to correct a slight misalignment of the electronic components, it is possible to relax the required accuracy value of the electronic component arrangement to some extent.
 本発明の半導体測定装置に係る実施形態の一の態様は、前記第2プローブと前記電子部品を載置する面との距離を近づける、または遠ざける方向へ前記第2プローブを移動可能とする第4移動手段を更に備え、前記第4移動手段は、前記他の電子部品が存在しない場合、前記第2プローブと前記電子部品を載置する面との距離を遠ざける。 One aspect of the embodiment of the semiconductor measuring device of the present invention is the fourth aspect in which the second probe can be moved in a direction in which the distance between the second probe and the surface on which the electronic component is placed is reduced. The fourth moving unit further moves the distance between the second probe and the surface on which the electronic component is placed when the other electronic component is not present.
 この態様によれば、第4移動手段の動作によって、第2プローブは、電子部品との距離を近づける、または遠ざける方向へ移動可能となる。このため、第2プローブが備える検査針による、対応する電子部品への触針を行うか行わないかを第4移動手段の動作によって決定することが可能となる。 According to this aspect, the second probe can be moved in a direction in which the distance from the electronic component is reduced or moved away by the operation of the fourth moving means. For this reason, it becomes possible to determine whether or not to perform contact with the corresponding electronic component by the inspection needle provided in the second probe by the operation of the fourth moving means.
 この態様においては特に、第4移動手段は、上述したように第3移動手段によって載置手段が各プローブに近づけられる一の触針測定時に、第2プローブに対応する測定用の電子部品が存在しない場合、第2プローブの位置を電子部品から遠ざける。このとき、第2プローブを遠ざける動作とは、少なくとも検査針の先端部が振動などの要因を考慮したとしても本来電子部品が存在する位置、ひいては本来電子部品が存在する載置手段上の部分に接触しない程度の距離まで遠ざける趣旨である。 In this aspect, in particular, the fourth moving means has an electronic component for measurement corresponding to the second probe at the time of one stylus measurement in which the placing means is brought close to each probe by the third moving means as described above. If not, the position of the second probe is moved away from the electronic component. At this time, the operation of moving the second probe away means that at least the tip part of the inspection needle is at a position where the electronic component is originally present even if a factor such as vibration is taken into account, and further on the portion on the mounting means where the electronic component is originally present. The purpose is to keep the distance away from contact.
 一般的に、ダイシング処理後の電子部品は、載置手段の振動などによって位置が移動しないように、載置手段上に展開される粘着シート上に載置されていることが多い。このとき、電子部品が存在しない部分にプローブの検査針が触針してしまうと、検査針に粘着剤が付着してしまい、以降の電子部品への触針による特性測定が正確に行われなくなる虞がある。更には、検査針に付着した粘着剤が電子部品に付着してしまう可能性もあり、電子部品の汚損による品質の低下に繋がりかねない。また、電子部品の厚さは数100μmと非常に薄く、電子部品に触診させる目的で検査針と載置手段とを近づけた場合、そこに電子部品が存在しなければ、少々の振動によって容易に検査針の先端部が載置手段に触針してしまう。 Generally, the electronic component after the dicing process is often placed on an adhesive sheet developed on the placing means so that the position does not move due to vibration of the placing means. At this time, if the inspection needle of the probe touches the portion where the electronic component does not exist, the adhesive adheres to the inspection needle, and the subsequent characteristic measurement by the stylus on the electronic component cannot be performed accurately. There is a fear. Furthermore, there is a possibility that the adhesive that has adhered to the inspection needle may adhere to the electronic component, which may lead to a decrease in quality due to the contamination of the electronic component. In addition, the thickness of the electronic component is very thin, such as several hundred μm. When the inspection needle and the mounting means are brought close to each other for the purpose of palpating the electronic component, if there is no electronic component there, it is easily caused by a slight vibration. The tip of the inspection needle touches the mounting means.
 尚、測定用の電子部品は、典型的には円形のウェハから切り出された状態で配置されているため、円形に配置されていることが多い。このため、第1プローブに合わせて電子部品が配置される載置手段の位置合わせを行った場合、例えば、円の周縁部において第2プローブに対応する電子部品が不在であることが多い。 Note that the measurement electronic components are typically arranged in a circular shape because they are typically cut out from a circular wafer. For this reason, when the mounting means on which the electronic component is arranged in accordance with the first probe is aligned, for example, the electronic component corresponding to the second probe is often absent at the periphery of the circle.
 このような第4移動手段を備える半導体測定装置の実施形態によれば、第1プローブに合わせて電子部品の位置合わせを行った際に第2プローブに対応する測定用の電子部品が存在しない場合、第2プローブを載置手段から遠ざける、プローブの退避動作が行われる。このため、第2プローブの検査針に汚損や破損が生じることを好適に回避することが可能となる。 According to the embodiment of the semiconductor measuring apparatus including the fourth moving unit, when the electronic component is aligned with the first probe, there is no measurement electronic component corresponding to the second probe. The second probe is moved away from the mounting means, and the probe is retracted. For this reason, it becomes possible to avoid suitably that the inspection needle of the second probe is damaged or broken.
 尚、この態様における第2プローブと対応する電子部品が存在するか否かの確認は、何らかのセンサによって取得される電子部品の配列に係る情報に基づいて実施されても良く、また、後述の記憶手段に格納される電子部品の位置情報に基づいて適宜確認されても良いものである。 It should be noted that the confirmation as to whether or not there is an electronic component corresponding to the second probe in this aspect may be performed based on information relating to the arrangement of the electronic components obtained by some sensor, and will be described later. It may be confirmed as appropriate based on the position information of the electronic component stored in the means.
 本発明の半導体測定装置に係る実施形態の他の態様は、前記他の電子部品が測定対象電子部品であるか否かを判別する判別手段を更に備え、前記第4移動手段は、前記他の電子部品が測定対象電子部品でないと判別される場合、前記第2プローブと前記電子部品を載置する面との距離を遠ざける。 In another aspect of the embodiment of the semiconductor measuring device of the present invention, the semiconductor measuring apparatus further includes a determining unit that determines whether the other electronic component is a measurement target electronic component, and the fourth moving unit includes the other electronic component. When it is determined that the electronic component is not the measurement target electronic component, the distance between the second probe and the surface on which the electronic component is placed is increased.
 この態様によれば、第2プローブに対応する電子部品が測定対象であるか否かの判別を行う。そして、第4移動手段は、対応する測定用電子部品が測定対象とならない電子部品であると判別される場合、上述したように第2プローブの退避動作を行う。ここに、測定対象とならない電子部品とは、例えば製造工程において汚損や不具合が生じた電子部品や、材料や製造工程などの特性を測定する目的で形成されるTEG(Test Element Group)電子部品など、プローブによる測定が不要な電子部品を示す趣旨である。これらの電子部品に対して検査針の触針による測定を行うことは、タクトタイム上での損失こそ生じ難いものの、工程上決して好ましいものではない。また、汚損した電子部品に対して検査針を触針させることで、検査針の汚損や破損を招くこともある。 According to this aspect, it is determined whether or not the electronic component corresponding to the second probe is a measurement target. Then, when it is determined that the corresponding measurement electronic component is an electronic component that is not a measurement target, the fourth moving unit performs the retreat operation of the second probe as described above. Here, electronic components that are not to be measured include, for example, electronic components that are damaged or defective in the manufacturing process, TEG (Test Element Group) electronic components that are formed for the purpose of measuring characteristics such as materials and manufacturing processes, and the like. The purpose is to indicate an electronic component that does not require measurement with a probe. Measuring these electronic parts with the stylus of the inspection needle is not preferable in terms of the process, although it is difficult to cause a loss in tact time. Further, when the inspection needle is brought into contact with the contaminated electronic component, the inspection needle may be stained or damaged.
 尚、この態様における判別手段は、典型的には、カメラなどの撮像手段を含む構成であって、各電子部品の画像情報を取得し、該画像情報を分析することで、測定対象であるか否かの判別を行う。また、その他何らかの手段によって、判別が行われても良く、例えば、後述する記録手段に格納される電子部品の位置情報に予め含まれる電子部品に係る情報に基づくものであってても良い。 Note that the discrimination means in this aspect is typically configured to include an imaging means such as a camera, and is the measurement target obtained by acquiring image information of each electronic component and analyzing the image information? Determine whether or not. Further, the determination may be made by some other means, for example, based on information related to the electronic component included in advance in the position information of the electronic component stored in the recording means described later.
 このように構成することで、上述したような触針による測定が不要である電子部品に対しては、第2プローブを退避させることで、好適にこのような不具合を回避することが出来る。尚、このような汚損電子部品を判別する電子部品情報とは、典型的には光学的に取得される電子部品の配列の画像情報などであるが、その他なんらかの手法により電子部品の判別が可能な情報であれば、どのような情報を用いても良い。 With such a configuration, such a problem can be suitably avoided by retracting the second probe for an electronic component that does not require measurement with the stylus as described above. Note that the electronic component information for identifying such a fouled electronic component is typically optically acquired image information of the arrangement of electronic components, but the electronic component can be identified by some other method. Any information may be used as long as it is information.
 本発明の半導体測定装置に係る実施形態の他の態様は、前記第2プローブは、複数のプローブであって、前記第2移動手段は、該複数のプローブの夫々に対応し、対応するプローブの夫々を、相異なる前記他の電子部品の測定位置に対向するよう移動させる複数の移動手段である。 In another aspect of the embodiment of the semiconductor measuring apparatus of the present invention, the second probe is a plurality of probes, and the second moving unit corresponds to each of the plurality of probes, and And a plurality of moving means for moving each of the different electronic components so as to face each other.
 この態様における第2プローブとは、複数のプローブを示す趣旨であり、夫々のプローブは、第2移動手段による移動動作が個別に実施可能に構成されている。つまり、この態様の半導体測定装置の実施形態は、第1プローブと、第2プローブ群というべき複数のプローブとを備えており、装置に対して固定されて配置される第1プローブに対して、第2プローブ群の夫々のプローブは、電子部品の配列面に平行する面内で移動可能に構成される。 The second probe in this aspect is intended to indicate a plurality of probes, and each probe is configured such that the moving operation by the second moving means can be performed individually. That is, the embodiment of the semiconductor measurement device of this aspect includes the first probe and a plurality of probes that should be referred to as the second probe group, and the first probe that is fixedly arranged with respect to the device is Each probe of the second probe group is configured to be movable in a plane parallel to the arrangement surface of the electronic components.
 このため、一度の触針のタイミングにおいて、同時に複数の電子部品に対する測定を実施することが可能となる。また、基準となる第1プローブ以外の第2プローブ群は、夫々個別にズレを補正するための移動が可能であるため、高精度の測定結果を取得することが出来る。また、電子部品の配列精度の要求値を好適に緩和することが出来るとの効果もある。 For this reason, it is possible to simultaneously measure a plurality of electronic components at the timing of a single stylus. In addition, the second probe group other than the reference first probe can be individually moved to correct the deviation, so that a highly accurate measurement result can be obtained. In addition, there is an effect that the required value of the arrangement accuracy of the electronic components can be relaxed suitably.
 尚、この態様では、第2プローブの夫々に対応して複数の第4移動手段が設けられていても良く、第2プローブの夫々において、上述したように退避動作を実施するよう構成することも可能である。 In this aspect, a plurality of fourth moving means may be provided corresponding to each of the second probes, and each of the second probes may be configured to perform the retreat operation as described above. Is possible.
 本発明の半導体測定装置に係る実施形態の他の態様は、前記載置手段上に載置される前記複数の電子部品の位置情報を記憶する記憶手段を更に備え、前記第1移動手段は、前記位置情報に基づいて前記載置手段を移動させ、前記第2移動手段は、前記位置情報に基づいて前記第2プローブを移動させる。 According to another aspect of the embodiment of the semiconductor measuring device of the present invention, the semiconductor measuring apparatus further includes storage means for storing position information of the plurality of electronic components placed on the placing means, and the first moving means includes: The placing means is moved based on the position information, and the second moving means moves the second probe based on the position information.
 この態様によれば、予め取得される電子部品の配列における各電子部品の位置を示す位置情報を参照することにより、第1移動手段、第2移動手段及び第4移動手段などの動作が実施される。このように構成することで、比較的容易に第1プローブと電子部品の位置合わせ、または第2プローブと電子部品の位置合わせを実行することが出来る。 According to this aspect, the operations of the first moving unit, the second moving unit, the fourth moving unit, and the like are performed by referring to the position information indicating the position of each electronic component in the electronic component array acquired in advance. The With this configuration, it is possible to relatively easily align the first probe and the electronic component, or align the second probe and the electronic component.
 このような位置情報は、典型的には、電子部品が載置手段に載置された際に、カメラなどの撮像手段による画像情報の取得、及び該画像情報の分析によって取得される。しかしながら、その他、なんらかの手段によって適宜取得されても何ら問題はない。 Such position information is typically acquired by acquiring image information by an imaging unit such as a camera and analyzing the image information when the electronic component is mounted on the mounting unit. However, there is no problem even if it is appropriately acquired by some means.
 本発明の半導体測定方法に係る実施形態は、載置手段上に載置される複数個の電子部品に対し、該電子部品の測定部位に接触することで電気的特性を測定する第1プローブ及び第2プローブとを備える半導体測定装置の半導体測定方法であって、一の電子部品の測定部位が前記第1プローブに対向するよう、前記電子部品を載置する面と平行する面内で前記載置手段を移動させる第1移動工程と、前記一の電子部品とは異なる他の電子部品の測定部位に対向するよう、前記電子部品を載置する面と平行な面内で前記第2プローブを移動させる第2移動工程と、前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動させる第3移動工程とを備える。 Embodiments according to the semiconductor measurement method of the present invention include a first probe that measures electrical characteristics of a plurality of electronic components placed on a placement means by contacting a measurement site of the electronic components, and A semiconductor measurement method of a semiconductor measurement device including a second probe, wherein the measurement part of one electronic component faces the first probe in a plane parallel to a surface on which the electronic component is placed. A first moving step for moving the mounting means, and the second probe in a plane parallel to a surface on which the electronic component is placed so as to face a measurement site of another electronic component different from the one electronic component. A second moving step for moving, and a third moving step for moving the placing means so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other. Prepare.
 本発明の半導体測定方法に係る実施形態によれば、上述した本発明の半導体測定装置に係る実施形態が享受することが出来る各種効果と同様の効果を享受することが出来る。尚、上述した本発明の半導体測定装置の実施形態の各種態様に対応して、本発明の半導体測定方法の実施形態もまた、各種態様を採ることが可能である。 According to the embodiment of the semiconductor measurement method of the present invention, it is possible to receive the same effects as the various effects that can be enjoyed by the above-described embodiment of the semiconductor measurement apparatus of the present invention. Incidentally, in response to the various aspects of the embodiment of the semiconductor measurement apparatus of the present invention described above, the embodiment of the semiconductor measurement method of the present invention can also adopt various aspects.
 以上、説明したように、本発明の半導体測定装置によれば、載置手段と、第1プローブと、第2プローブと、第1移動手段と、第2移動手段と、第3移動手段とを備える。本発明の本発明の半導体測定装置によれば、第1移動工程と、第2移動工程と、第3移動工程とを備える。従って、電子部品の配列上にズレが生じていて、第1プローブに合わせて電子部品の位置合わせを行った場合に、第2プローブに対応する電子部品位置がズレている場合であっても、好適にズレを補正した上で高精度の測定を実施することが出来る。 As described above, according to the semiconductor measuring apparatus of the present invention, the mounting means, the first probe, the second probe, the first moving means, the second moving means, and the third moving means are provided. Prepare. According to the semiconductor measurement device of the present invention, the semiconductor measurement apparatus includes a first movement process, a second movement process, and a third movement process. Accordingly, when the electronic component is misaligned on the arrangement of the electronic component and the electronic component is aligned with the first probe, the position of the electronic component corresponding to the second probe is misaligned. It is possible to carry out highly accurate measurement after suitably correcting the deviation.
 以下、本発明を実施するための最良の形態について図面を参照して説明する。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
 (1)基本構成例
 まず、本発明の半導体測定装置の実施形態の一具体例であるプローブ装置の基本的な構成例について、図1を参照しながら説明する。ここに図1は、本実施例に係るプローブ装置の基本的な構成例を示す概略図である。
(1) Basic Configuration Example First, a basic configuration example of a probe device, which is a specific example of an embodiment of a semiconductor measurement device of the present invention, will be described with reference to FIG. FIG. 1 is a schematic diagram illustrating a basic configuration example of the probe device according to the present embodiment.
 図1に示すように、プローブ装置1の基本的な構成例は、テーブル100、テーブル位置調整部110、第1プローブ200、第2プローブ300、制御部400、及びフォトディテクタ410を備えて構成されている。このようなプローブ装置1によれば、本実施例における電子部品の一具体例である、チップ500の電気的特性が測定される。 As shown in FIG. 1, the basic configuration example of the probe apparatus 1 includes a table 100, a table position adjustment unit 110, a first probe 200, a second probe 300, a control unit 400, and a photodetector 410. Yes. According to such a probe device 1, the electrical characteristics of the chip 500, which is a specific example of the electronic component in the present embodiment, are measured.
 テーブル100は、本実施例に係る載置手段の一具体例である。テーブル位置調整部110は、テーブル100に付属して、または一体化して設置されるアクチュエータを備える移動手段であり、本実施例における第1移動手段及び第3移動手段の一具体例である。テーブル位置調整部110は、制御部400に接続され、チップ500の配列の位置情報に基づく移動の制御を受け、テーブル100をチップ500の配列面と平行な面内、及びチップ500の配列面に直交する方向で移動させる。テーブル100上には、粘着シート510が展開され、その上に複数のチップ500が載置されている。 The table 100 is a specific example of the placing means according to the present embodiment. The table position adjustment unit 110 is a moving unit including an actuator that is attached to or integrated with the table 100, and is a specific example of the first moving unit and the third moving unit in the present embodiment. The table position adjustment unit 110 is connected to the control unit 400 and is controlled to move based on the positional information of the arrangement of the chips 500, so that the table 100 is placed in a plane parallel to the arrangement plane of the chips 500 and the arrangement plane of the chips 500. Move in an orthogonal direction. An adhesive sheet 510 is developed on the table 100, and a plurality of chips 500 are placed thereon.
 第1プローブ100は、第1プローブ基部220によってプローブ装置1中に固定されて配置されるプローブカードであり、複数の検査針210を備える。この検査針210がチップ500の電極部分に触針することで、チップ500の電気的特性を測定する。 The first probe 100 is a probe card arranged and fixed in the probe apparatus 1 by the first probe base 220, and includes a plurality of inspection needles 210. When the inspection needle 210 touches the electrode portion of the chip 500, the electrical characteristics of the chip 500 are measured.
 具体的には、チップ配列に直行する方向をZ軸と仮定し、該Z軸と直交するとともに相互に直行するX軸及びY軸、並びにXY平面内での回転動作によって、テーブル100上に載置されるチップ500を第1プローブ200の検査針210に位置合わせを行う。その後、チップ500が検査針210に接触するようテーブル100をZ軸方向に移動させることで、検査針210の触針によるチップ500の電気的特性の測定が実施される。 Specifically, assuming that the direction orthogonal to the chip array is the Z axis, the X axis and the Y axis orthogonal to the Z axis and orthogonal to each other, and the rotation on the XY plane, are mounted on the table 100. The chip 500 to be placed is aligned with the inspection needle 210 of the first probe 200. Thereafter, the table 100 is moved in the Z-axis direction so that the tip 500 comes into contact with the inspection needle 210, thereby measuring the electrical characteristics of the tip 500 with the stylus of the inspection needle 210.
 チップ500は、一般的に円形の半導体ウェハより切り出されるため、図2に示されるように円形の配列となっていることが多い。このため、テーブル位置調整部110は、例えば図2に示した測定順序でチップ500が測定されるよう、テーブル100を移動させて各チップを検査針210に対して位置合わせする。 Since the chip 500 is generally cut out from a circular semiconductor wafer, the chip 500 often has a circular arrangement as shown in FIG. For this reason, the table position adjustment unit 110 moves the table 100 and aligns each chip with the inspection needle 210 so that the chip 500 is measured in the measurement order shown in FIG.
 尚、第1プローブ200における検査針210は、第1プローブ200に対して可動である。このため、チップ500の測定前に、例えば手動のティーチング作業によって、チップ500の電極部分と適切に触針するよう検査針210の位置合わせを行うことが出来る。 Note that the inspection needle 210 in the first probe 200 is movable with respect to the first probe 200. For this reason, before the measurement of the chip 500, the inspection needle 210 can be aligned so as to appropriately touch the electrode portion of the chip 500 by, for example, a manual teaching operation.
 第2プローブ300は、第1プローブ200と同様、複数の検査針310を備え、第2プローブ基部330によってプローブ装置1中に配置されるプローブカードである。本実施例の第2プローブ300は、基本的に、第1プローブ200によって触針されるチップに隣接するチップに対して触針可能な位置に配置されている。 The second probe 300 is a probe card that includes a plurality of inspection needles 310 and is arranged in the probe apparatus 1 by the second probe base 330, similar to the first probe 200. The second probe 300 of the present embodiment is basically disposed at a position where a stylus can be touched with respect to the tip adjacent to the tip touched by the first probe 200.
 第2プローブ300は、更に第2プローブ位置調整部320を備え、上述したテーブル100と同様に、第2プローブ位置調整部320の動作により、XYZ軸での移動及びXY平面内での回転移動が可能であるように構成される。この第2プローブ位置調整部320は、制御部400に接続され、制御部400による制御のもと、第2プローブ300の移動を行う。 The second probe 300 further includes a second probe position adjusting unit 320, and the movement of the second probe position adjusting unit 320 and the rotational movement in the XY plane are performed by the operation of the second probe position adjusting unit 320, similarly to the table 100 described above. Configured to be possible. The second probe position adjustment unit 320 is connected to the control unit 400 and moves the second probe 300 under the control of the control unit 400.
 制御部400は、例えば公知のCPU(Central Processing Unit)などの処理装置であって、本実施例における記憶手段の一具体例としてのメモリなどを備えると共に、プローブ装置1の各部と接続することでその動作の制御や、測定結果の取得などを行う。 The control unit 400 is a processing device such as a known CPU (Central Processing Unit), for example, and includes a memory as a specific example of the storage means in the present embodiment, and is connected to each unit of the probe device 1. Control the operation and obtain measurement results.
 例えば、制御部400は、テーブル位置調整部110及び第2プローブ位置調整部320の夫々に接続され、その移動動作の実施や移動量を制御する。このとき、制御部400は、メモリに格納されるチップ500の位置情報に基づいて、このような位置調整部の移動動作(つまり、位置合わせ)を制御する。 For example, the control unit 400 is connected to each of the table position adjustment unit 110 and the second probe position adjustment unit 320, and controls the execution of the movement operation and the movement amount. At this time, the control unit 400 controls the movement operation (ie, alignment) of the position adjustment unit based on the position information of the chip 500 stored in the memory.
 また、制御部400は、第1プローブ200及び第2プローブ300に接続され、ティーチング時の検査針210及び310の動作の制御や、各プローブでのチップ500の測定結果の取得などを行う。また、フォトディテクタ410からのチップ500の測定結果の取得を行う。 Also, the control unit 400 is connected to the first probe 200 and the second probe 300, and controls the operation of the inspection needles 210 and 310 during teaching, acquires the measurement result of the chip 500 with each probe, and the like. Further, the measurement result of the chip 500 is obtained from the photodetector 410.
 フォトディテクタ410は、第1プローブ200及び第2プローブ300の夫々の検査針210及び310のチップ500との触針部分に対してチップ500の光学的特性の測定を実施可能に配置されている。本実施例においては、フォトディテクタ410は、検査針210の触針位置近傍を測定可能に位置合わせされた状態で配置されている。このため、検査針210に対して触針可能に位置合わせされたチップ500に対して、好適に光学的特性を測定することが可能となる。 The photodetector 410 is arranged so that the optical characteristics of the chip 500 can be measured with respect to the stylus portion of the inspection probe 210 and 310 of each of the first probe 200 and the second probe 300 with the chip 500. In the present embodiment, the photodetector 410 is arranged in a state where the vicinity of the stylus position of the inspection needle 210 is aligned so as to be measurable. For this reason, it is possible to suitably measure the optical characteristics of the chip 500 that is aligned with the inspection needle 210 so that it can be touched.
 (2)基本動作例
 続いて、図3を参照して、本実施例のプローブ装置1における基本的な動作の例について説明する。図3は、プローブ装置1の基本的な動作の流れを示すフローチャートの一例である。
(2) Basic Operation Example Next, with reference to FIG. 3, an example of a basic operation in the probe apparatus 1 of the present embodiment will be described. FIG. 3 is an example of a flowchart showing a basic operation flow of the probe apparatus 1.
 先ず、フローチャートに示されるように、チップ位置情報が取得される(ステップS101)。このとき、例えばカメラなどの撮像装置によってチップの位置情報が取得されても良く、また予め取得されているチップの位置情報を読み取ることにより取得されても良いものである。 First, as shown in the flowchart, chip position information is acquired (step S101). At this time, for example, the position information of the chip may be acquired by an imaging device such as a camera, or may be acquired by reading the position information of the chip acquired in advance.
 続いて、制御部400の制御のもと、テーブル位置調整部110の動作により、テーブル100が移動され、載置されるチップ500のうち、測定開始チップが第1プローブ200の検査針210の触針位置に来るように位置合わせされる(ステップS102)。一般的に、例えば図2のチップの配列の中では一番左上のチップであるなど、周縁部のチップが測定開始チップとして選択される。 Subsequently, under the control of the control unit 400, the table 100 is moved by the operation of the table position adjustment unit 110, and among the mounted chips 500, the measurement start chip is the touch of the inspection needle 210 of the first probe 200. Positioning is performed so as to come to the needle position (step S102). In general, for example, the chip at the peripheral edge is selected as the measurement start chip, such as the chip at the upper left in the chip arrangement of FIG.
 尚、このとき、第2プローブ300の検査針310の触針位置に、該測定開始チップとは異なるチップが位置合わせされる。 At this time, a tip different from the measurement start tip is aligned with the stylus position of the inspection needle 310 of the second probe 300.
 そして、第1プローブ200の検査針210及び測定開始チップの電極部分、第2プローブ300の検査針310及び対応チップの電極部分が互いに接触するよう、各検査針の位置合わせ(所謂、ティーチング)が実施される(ステップS103)。 Then, each inspection needle is aligned (so-called teaching) so that the inspection needle 210 of the first probe 200 and the electrode portion of the measurement start tip, and the inspection needle 310 of the second probe 300 and the electrode portion of the corresponding tip are in contact with each other. Implemented (step S103).
 その後、テーブル位置調整部110の動作により、テーブル100の高さが調整され、チップの電極部分が夫々対応する検査針に触針することで、各チップの電気的特性が測定される(ステップS104)。 Thereafter, the height of the table 100 is adjusted by the operation of the table position adjustment unit 110, and the electrical characteristics of each chip are measured by contacting the corresponding inspection needles with the electrode portions of the chips (step S104). ).
 続いて、第1プローブ200に合わせて次の測定チップの位置合わせが行われる(ステップS105)。ここに、次の測定チップとは、検査順序に従うチップであって、汚損や破損、その他何らかの理由により測定対象チップでないと判定されるチップ以外の未測定のチップを示す。このため、第2プローブ300によって測定が行われたチップは、除外して続くチップが選択される。 Subsequently, the next measurement chip is aligned with the first probe 200 (step S105). Here, the next measurement chip is a chip that follows the inspection sequence, and indicates an unmeasured chip other than a chip that is determined not to be a measurement target chip due to contamination, breakage, or some other reason. For this reason, the chip that has been measured by the second probe 300 is excluded and the subsequent chip is selected.
 位置合わせ後、基本的には、第2プローブ300の検査針310の測定位置にもチップが移送される。このとき、例えば位置情報に含まれるチップの製造情報などに基づいて、該チップに不具合があるか否かの判定が行われる(ステップS106)。ここに、チップに生じる不具合とは、汚損や破損などの何らかによって測定対象から除外されているチップや、既に測定済みのチップ、また、チップの配列上チップに欠落が生じている(つまり、配置されるチップが存在しない)ことなどを示す趣旨である。また、単に検査針310から位置ズレしているだけの場合は、ここでいう不具合に含まれない。 After the alignment, basically, the tip is also transferred to the measurement position of the inspection needle 310 of the second probe 300. At this time, for example, based on chip manufacturing information included in the position information, it is determined whether or not the chip has a defect (step S106). Here, the defect that occurs in the chip is a chip that has been excluded from the measurement object due to something such as fouling or breakage, a chip that has already been measured, or a chip on the chip arrangement (that is, This means that there is no chip to be arranged). In addition, the case where the position is simply shifted from the inspection needle 310 is not included in the problem mentioned here.
 第2プローブ300位置に移送されるチップにおいて、このような不具合が生じている場合、制御部400の制御のもと、第2プローブ位置調整部320により、第2プローブ300がテーブル100から遠ざけられる(ステップS107)。図4を参照して、このときの各部の動作について説明する。図4は、このような不具合が生じているチップが確認された場合の、第2プローブ300の退避動作の例を示す概略図である。 When such a defect occurs in the chip transferred to the position of the second probe 300, the second probe 300 is moved away from the table 100 by the second probe position adjustment unit 320 under the control of the control unit 400. (Step S107). With reference to FIG. 4, the operation of each unit at this time will be described. FIG. 4 is a schematic diagram illustrating an example of the retreat operation of the second probe 300 when a chip having such a defect is confirmed.
 図4(a)に示されるように、通常、第2プローブ300の検査針310の先端部は、第1プローブ200の検査針210と同時に対応するチップの電極部分に触針可能となるよう、検査針210と同程度の高さに調整されている。このため、一度の触針動作において、各プローブにおける測定が可能となっている。 As shown in FIG. 4A, normally, the tip of the inspection needle 310 of the second probe 300 can touch the electrode portion of the corresponding chip simultaneously with the inspection needle 210 of the first probe 200. The height is adjusted to the same level as the inspection needle 210. For this reason, measurement with each probe is possible in one stylus operation.
 他方、図4(b)または図4(c)に示されるように、対応チップが不在である場合や、または対応チップが汚損している場合など、チップに不具合が生じている場合、第2プローブ位置調整部320は第2プローブ300をテーブル100から遠ざけることで、検査針310の円端部がテーブル100または粘着シート510、若しくは汚損チップに触針することが無いよう退避させる。このとき、第2プローブ位置調整部320は、測定のためのテーブル100の高さが調整された場合であっても、検査針310の先端部がテーブル100または粘着シート510、若しくは汚損チップに接触することが無いよう、振動などを加味しても十分である距離まで遠ざける。また、このような第2プローブの退避動作は、好適にはステップS105の位置合わせと平行して実施されることが好ましい。 On the other hand, as shown in FIG. 4 (b) or FIG. 4 (c), when the corresponding chip is absent, or when the corresponding chip is damaged, the second The probe position adjusting unit 320 retracts the second probe 300 away from the table 100 so that the circular end portion of the inspection needle 310 does not touch the table 100, the adhesive sheet 510, or the dirty tip. At this time, even if the height of the table 100 for measurement is adjusted, the second probe position adjusting unit 320 makes the tip of the inspection needle 310 contact the table 100, the adhesive sheet 510, or the dirty tip. In order not to do it, keep it away to a distance that is sufficient even if vibration is added. Moreover, it is preferable that such a retracting operation of the second probe is performed in parallel with the alignment in step S105.
 第2プローブ300の退避後、測定対象となるチップ500が移送されて来た場合、第2プローブ300の位置をティーチング後の初期状態に戻し、再び触針可能とする。 When the tip 500 to be measured is transferred after the second probe 300 is retracted, the position of the second probe 300 is returned to the initial state after teaching, and the stylus can be made again.
 第2プローブ300の位置に移送されるチップ500に上述したような不具合が無い場合、続いて、該チップの位置にズレが生じているか否かの判定が行われる(ステップS108)。このとき、チップの位置のズレとは、典型的には第2プローブ300の検査針310位置と、該チップ500における電極部分との位置のズレを示す趣旨である。このような位置のズレが検出される場合、制御部400の制御のもと、第2プローブ位置調整部320の位置合わせが行われ、検査針310の先端部が的確に該チップ500の電極部分に対抗するよう調整される(ステップS109)。図5を参照して、このときの各部の動作について説明する。図5は、このような位置のズレが生じているチップ500が確認された場合の、第2プローブ300の位置合わせ動作の例を示す概略図である。 If the chip 500 transferred to the position of the second probe 300 does not have the above-described defects, it is subsequently determined whether or not the position of the chip is displaced (step S108). At this time, the displacement of the position of the tip typically means a displacement of the position of the inspection needle 310 of the second probe 300 and the position of the electrode portion of the tip 500. When such a positional shift is detected, the second probe position adjusting unit 320 is aligned under the control of the control unit 400, and the tip of the inspection needle 310 is accurately positioned on the electrode portion of the tip 500. (Step S109). With reference to FIG. 5, the operation of each unit at this time will be described. FIG. 5 is a schematic diagram illustrating an example of the alignment operation of the second probe 300 when the chip 500 in which such a positional deviation has occurred is confirmed.
 本実施例のプローブ装置1によれば、ティーチング作業によって、第1プローブ200の検査針210は、第1プローブ200の測定対象となるチップ500の電極部分に触針可能となるよう、チップ500の配列面と平行な面内で位置合わせされている。同時に、第2プローブ300の検査針310の先端部は、第2プローブの測定対象となるチップ500の電極部分に触針可能となるよう、チップ500の配列面と平行な面内で位置合わせされている。このため、上述したチップの測定動作において、テーブル100の高さを調整することで、図5(a)に示されるように、コンタクト1の二つのチップ500に対し、夫々のプローブが好適に測定を実施することが出来る。 According to the probe device 1 of the present embodiment, the inspection needle 210 of the first probe 200 can be brought into contact with the electrode portion of the chip 500 to be measured by the first probe 200 by teaching work so that the probe 500 can touch the electrode portion of the chip 500. It is aligned in a plane parallel to the array plane. At the same time, the tip of the inspection needle 310 of the second probe 300 is aligned within a plane parallel to the array surface of the chip 500 so that the probe can be brought into contact with the electrode portion of the chip 500 to be measured by the second probe. ing. For this reason, in the above-described chip measurement operation, by adjusting the height of the table 100, as shown in FIG. 5A, each probe suitably measures the two chips 500 of the contact 1. Can be implemented.
 他方、コンタクト2のチップは、第1プローブ200に対応するチップと、第2プローブ300に対応するチップとの間に位置のズレが生じているため、図4(a)に示されるティーチングにより調整された第2プローブ300では、適切な触針が実施出来ない。尚、このような位置のズレは、例えばステップS101において取得されたチップの位置情報により確認可能である。 On the other hand, the tip of the contact 2 is adjusted by teaching shown in FIG. 4A because there is a positional shift between the tip corresponding to the first probe 200 and the tip corresponding to the second probe 300. With the second probe 300 that has been made, an appropriate stylus cannot be implemented. Note that such a positional shift can be confirmed by, for example, the chip position information acquired in step S101.
 このような位置ズレが確認される場合、制御部400は、第2プローブ位置調整部320を動作させ、適切な触針が実施されるよう第2プローブ300位置の微調整を行う。 When such a positional deviation is confirmed, the control unit 400 operates the second probe position adjustment unit 320 to finely adjust the position of the second probe 300 so that an appropriate stylus is implemented.
 例えば、図5(b)に示されるコンタクト2では、第1プローブ200の対応チップと比較して、第2プローブ300の対応チップが図面下方にズレているため、第2プローブ位置を図面下方に微調整する。 For example, in the contact 2 shown in FIG. 5 (b), the corresponding tip of the second probe 300 is shifted downward in the drawing compared to the corresponding tip of the first probe 200. Make fine adjustments.
 また、図5(b)及び図5(c)に示されるコンタクト3では、二つのチップ位置が他のコンタクトのチップと比較して近い上に、テーブル100の進行方向(すなわち、チップの移送方向)と直交する方向に相互のチップの位置がズレている。ステップS105の位置合わせ工程において、第1プローブ200の対応チップが、第1プローブ200の測定位置に来るよう調整されるため、このようなコンタクトにおいては、第2プローブ300を図面下方及び左方へ微調整される。 Further, in the contact 3 shown in FIG. 5B and FIG. 5C, the two chip positions are close compared to the chips of the other contacts, and the traveling direction of the table 100 (that is, the chip transfer direction). The positions of the chips are shifted in the direction orthogonal to (). In the alignment step of step S105, the corresponding tip of the first probe 200 is adjusted so as to come to the measurement position of the first probe 200. Therefore, in such a contact, the second probe 300 is moved downward and left in the drawing. Tweaked.
 このように、第1プローブ200の対応チップとの相対的なズレに対して、第2プローブ300の位置の微調整が実施されるため、チップの配列におけるズレを好適に補正することが出来る。また、このような第2プローブの位置調整は、好適にはステップS105の位置合わせと平行して実施されることが好ましい。 Thus, since the position of the second probe 300 is finely adjusted with respect to the relative displacement between the first probe 200 and the corresponding chip, the displacement in the chip arrangement can be suitably corrected. Further, such position adjustment of the second probe is preferably performed in parallel with the alignment in step S105.
 そして、ステップS104と同様、テーブル100の高さが調整され、各プローブによる対応チップの電気的特性の測定が実施される(ステップS110)。 Then, like step S104, the height of the table 100 is adjusted, and the electrical characteristics of the corresponding chip are measured by each probe (step S110).
 このような一連の位置合わせ及び測定動作が、基本的にはテーブル100上に未測定のチップがなくなるまで、または停止されるまで実施される。 Such a series of alignment and measurement operations are basically performed until there is no unmeasured chip on the table 100 or until it is stopped.
 以上説明したように、本発明に係るプローブ装置の実施例によれば、複数のプローブを備えている場合であっても、基準となる第1プローブの対応チップとの相対的なチップのズレに対し、第2プローブ位置を微調整することで、補正可能となる。このため、このようなズレが生じているチップの配列であっても、同時に複数のチップに対して高精度の測定が可能となる。 As described above, according to the embodiment of the probe device according to the present invention, even when a plurality of probes are provided, the tip is displaced relative to the corresponding tip of the reference first probe. On the other hand, it can be corrected by finely adjusting the second probe position. For this reason, even with the chip arrangement in which such a shift occurs, high-precision measurement can be simultaneously performed on a plurality of chips.
 また、第2プローブに対応するチップに不具合が生じている場合、またはチップが存在しない場合、第2プローブをテーブルから遠ざける退避動作により、第2プローブの検査針が汚損チップや粘着シートに触針してしまうことによる汚損や破損を好適に回避することが可能となる。 Further, when a defect occurs in the chip corresponding to the second probe or when the chip does not exist, the inspection probe of the second probe moves to the dirty chip or the adhesive sheet by the retraction operation of moving the second probe away from the table. Thus, it is possible to favorably avoid fouling or breakage due to the occurrence of the damage.
 また、このような第2プローブの位置調整や退避動作は、測定用チップの移送(言い換えれば、位置合わせ)と平行して実施されることが好ましく、このように構成される場合、第2プローブの位置調整や退避動作に起因するタクトタイムの増加を抑制出来る。 In addition, it is preferable that the position adjustment and the retreating operation of the second probe are performed in parallel with the transfer of the measurement tip (in other words, the alignment). It is possible to suppress an increase in tact time due to the position adjustment and retraction operation.
 本発明は、上述した実施例に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う半導体測定装置及び方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the scope or spirit of the invention that can be read from the claims and the entire specification. The method is also included in the technical scope of the present invention.
 例えば、上述の基本構成例及び基本動作例においては、2つのプローブを備えるプローブ装置について説明したが、3つ以上のプローブを備えるプローブ装置もまた本発明の技術的範囲に含まれるものである。 For example, in the basic configuration example and the basic operation example described above, the probe apparatus including two probes has been described, but a probe apparatus including three or more probes is also included in the technical scope of the present invention.
 1…プローブ装置
 100…テーブル
 110…テーブル位置調整部
 200…第1プローブ
 210…第1検査針
 220…第1プローブ基部
 300…第2プローブ
 310…第2検査針
 320…第2プローブ位置調整部
 330…第2プローブ基部
 400…制御部
 500…チップ
 510…粘着シート
DESCRIPTION OF SYMBOLS 1 ... Probe apparatus 100 ... Table 110 ... Table position adjustment part 200 ... 1st probe 210 ... 1st test needle 220 ... 1st probe base part 300 ... 2nd probe 310 ... 2nd test needle 320 ... 2nd probe position adjustment part 330 ... second probe base 400 ... control unit 500 ... chip 510 ... adhesive sheet

Claims (6)

  1.  電子部品の電気的特性を測定する半導体測定装置であって、
     前記電子部品が複数個載置される載置手段と、 前記電子部品を載置する面と平行する面内で前記載置手段を移動可能とする第1移動手段と、
     当該半導体測定装置に固定され、一の電子部品に接触することで電気的特性を測定する第1プローブと、
     前記一の電子部品とは異なる他の電子部品に接触することで電気的特性を測定する第2プローブと、
     前記電子部品を載置する面と平行な面内で前記第2プローブを移動可能とする第2移動手段と、
     前記第1プローブと前記電子部品を載置する面との距離を近づける、または遠ざける方向へ前記載置手段を移動可能とする第3移動手段と、
     を備え、
     前記第1移動手段は、前記一の電子部品の測定部位が前記第1プローブに対向するよう、前記載置手段を移動可能にし、
     前記第2移動手段は、前記他の電子部品の測定部位に対向するよう、前記第2プローブを移動可能にし、
     前記第3移動手段は、前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動可能とすることを特徴とする半導体測定装置。
    A semiconductor measuring device for measuring electrical characteristics of electronic components,
    A placing means for placing a plurality of the electronic components; a first moving means for allowing the placing means to move within a plane parallel to a surface for placing the electronic components;
    A first probe fixed to the semiconductor measuring device and measuring an electrical characteristic by contacting one electronic component;
    A second probe that measures electrical characteristics by contacting another electronic component different from the one electronic component;
    Second moving means for allowing the second probe to move in a plane parallel to the surface on which the electronic component is placed;
    Third moving means for moving the placing means in a direction in which the distance between the first probe and the surface on which the electronic component is placed is reduced or moved away;
    With
    The first moving means enables the placing means to move so that the measurement site of the one electronic component faces the first probe,
    The second moving means enables the second probe to move so as to face the measurement site of the other electronic component,
    The third moving means is characterized in that the placing means can be moved so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other. Semiconductor measuring device.
  2.  前記第2プローブと前記電子部品を載置する面との距離を近づける、または遠ざける方向へ前記第2プローブを移動可能とする第4移動手段を更に備え、
     前記第4移動手段は、前記他の電子部品が存在しない場合、前記第2プローブと前記電子部品を載置する面との距離を遠ざけることを特徴とする請求の範囲第1項に記載の半導体測定装置。
    A fourth moving means for allowing the second probe to move in a direction in which the distance between the second probe and the surface on which the electronic component is placed is reduced or moved away;
    2. The semiconductor according to claim 1, wherein the fourth moving unit increases a distance between the second probe and a surface on which the electronic component is placed when the other electronic component does not exist. measuring device.
  3.  前記他の電子部品が測定対象電子部品であるか否かを判別する判別手段を更に備え、
     前記第4移動手段は、前記他の電子部品が測定対象電子部品でないと判別される場合、前記第2プローブと前記電子部品を載置する面との距離を遠ざけることを特徴とする請求の範囲第2項に記載の半導体測定装置。
    A discriminating means for discriminating whether or not the other electronic component is an electronic component to be measured;
    The fourth moving means increases the distance between the second probe and a surface on which the electronic component is placed when it is determined that the other electronic component is not a measurement target electronic component. The semiconductor measurement apparatus according to item 2.
  4.  前記第2プローブは、複数のプローブであって、前記第2移動手段は、該複数のプローブの夫々に対応し、対応するプローブの夫々を、相異なる前記他の電子部品の測定位置に対向するよう移動させる複数の移動手段であることを特徴とする請求の範囲第1項から第3項のいずれか一項に記載の半導体測定装置。 The second probe is a plurality of probes, and the second moving unit corresponds to each of the plurality of probes, and each of the corresponding probes is opposed to a measurement position of the different electronic component. The semiconductor measuring apparatus according to any one of claims 1 to 3, wherein the semiconductor measuring apparatus is a plurality of moving means for moving in such a manner.
  5.  前記載置手段上に載置される前記複数の電子部品の位置情報を記憶する記憶手段を更に備え、
     前記第1移動手段は、前記位置情報に基づいて前記載置手段を移動させ、
     前記第2移動手段は、前記位置情報に基づいて前記第2プローブを移動させることを特徴とする請求の範囲第1項から第4項のいずれか一項に記載の半導体測定装置。
    And further comprising storage means for storing position information of the plurality of electronic components placed on the placing means.
    The first moving means moves the placing means based on the position information,
    5. The semiconductor measurement apparatus according to claim 1, wherein the second moving unit moves the second probe based on the position information. 6.
  6.  載置手段上に載置される複数個の電子部品に対し、該電子部品の測定部位に接触することで電気的特性を測定する第1プローブ及び第2プローブとを備える半導体測定装置の半導体測定方法であって、
     一の電子部品の測定部位が前記第1プローブに対向するよう、前記電子部品を載置する面と平行する面内で前記載置手段を移動させる第1移動工程と、
     前記一の電子部品とは異なる他の電子部品の測定部位に対向するよう、前記電子部品を載置する面と平行な面内で前記第2プローブを移動させる第2移動工程と、
     前記第1プローブと前記一の電子部品、及び前記第2プローブと前記他の電子部品の夫々が接触するよう、前記載置手段を移動させる第3移動工程と
     を備える特徴とする半導体測定方法。
    Semiconductor measurement of a semiconductor measuring device comprising a first probe and a second probe that measure electrical characteristics of a plurality of electronic components placed on the placing means by contacting a measurement site of the electronic components. A method,
    A first moving step of moving the placing means in a plane parallel to a surface on which the electronic component is placed so that a measurement site of one electronic component faces the first probe;
    A second moving step of moving the second probe in a plane parallel to a surface on which the electronic component is placed so as to face a measurement site of another electronic component different from the one electronic component;
    A semiconductor measuring method comprising: a third moving step of moving the placing means so that the first probe and the one electronic component, and the second probe and the other electronic component are in contact with each other.
PCT/JP2009/057510 2009-04-14 2009-04-14 Apparatus and method for measuring semiconductor WO2010119507A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/057510 WO2010119507A1 (en) 2009-04-14 2009-04-14 Apparatus and method for measuring semiconductor
CN200980125417.8A CN102077103B (en) 2009-04-14 2009-04-14 Apparatus and method for measuring semiconductor
JP2010536669A JP4646271B1 (en) 2009-04-14 2009-04-14 Semiconductor measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/057510 WO2010119507A1 (en) 2009-04-14 2009-04-14 Apparatus and method for measuring semiconductor

Publications (1)

Publication Number Publication Date
WO2010119507A1 true WO2010119507A1 (en) 2010-10-21

Family

ID=42982191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057510 WO2010119507A1 (en) 2009-04-14 2009-04-14 Apparatus and method for measuring semiconductor

Country Status (3)

Country Link
JP (1) JP4646271B1 (en)
CN (1) CN102077103B (en)
WO (1) WO2010119507A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295948A (en) * 2020-10-07 2022-04-08 台湾爱司帝科技股份有限公司 Electronic component measuring apparatus, electronic component measuring method, and method of manufacturing light emitting diode

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771346B1 (en) * 2010-12-07 2011-09-14 パイオニア株式会社 Semiconductor inspection equipment
JP5781864B2 (en) * 2011-08-25 2015-09-24 株式会社日本マイクロニクス Light-emitting element inspection apparatus and inspection method
CN107526014B (en) * 2016-06-22 2019-10-08 致茂电子(苏州)有限公司 Test device and test method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330372A (en) * 1995-03-31 1996-12-13 Matsushita Electric Ind Co Ltd Semiconductor device inspection
JP2000346896A (en) * 1999-06-01 2000-12-15 Nidec-Read Corp Board inspecting device
JP2006145402A (en) * 2004-11-19 2006-06-08 Oki Electric Ind Co Ltd Simultaneous measurement method for semiconductor integrated circuit

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0174773B1 (en) * 1995-03-31 1999-04-01 모리시다 요이치 Inspecting method for semiconductor device
JP4413130B2 (en) * 2004-11-29 2010-02-10 Okiセミコンダクタ株式会社 Semiconductor device inspection method using probe card and semiconductor device inspected by the inspection method
US7928591B2 (en) * 2005-02-11 2011-04-19 Wintec Industries, Inc. Apparatus and method for predetermined component placement to a target platform
JP2008243861A (en) * 2007-03-23 2008-10-09 Tokyo Electron Ltd Inspection apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330372A (en) * 1995-03-31 1996-12-13 Matsushita Electric Ind Co Ltd Semiconductor device inspection
JP2000346896A (en) * 1999-06-01 2000-12-15 Nidec-Read Corp Board inspecting device
JP2006145402A (en) * 2004-11-19 2006-06-08 Oki Electric Ind Co Ltd Simultaneous measurement method for semiconductor integrated circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114295948A (en) * 2020-10-07 2022-04-08 台湾爱司帝科技股份有限公司 Electronic component measuring apparatus, electronic component measuring method, and method of manufacturing light emitting diode
CN114295948B (en) * 2020-10-07 2023-11-14 台湾爱司帝科技股份有限公司 Electronic component measuring apparatus, electronic component measuring method, and manufacturing method of light emitting diode

Also Published As

Publication number Publication date
CN102077103B (en) 2013-06-05
CN102077103A (en) 2011-05-25
JPWO2010119507A1 (en) 2012-10-22
JP4646271B1 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
TWI444631B (en) A detection device, a detection method and a recording medium
KR100248569B1 (en) Probe system
JP4996119B2 (en) Probe tip position detection method, storage medium recording this method, and probe apparatus
JP4950719B2 (en) Probe tip position detection method, alignment method, needle tip position detection device, and probe device
US7501843B2 (en) Movement amount operation correction method for prober, movement amount operation correction processing program, and prober
JP3163221B2 (en) Probe device
KR20130076786A (en) Multi-chip prober, contact position correction method thereof, and readable recording medium
JP2009176883A (en) Inspection method and program recording medium recording the inspection method
JP2005072143A (en) Probe unit
JP2008053624A (en) Alignment apparatus
JP4646271B1 (en) Semiconductor measuring apparatus and method
KR20190029697A (en) Device and method for bonding alignment
TWI729044B (en) Moving sensor coordinate inspection system
JP2010169651A (en) Substrate inspecting apparatus and inspecting tool
JP2007010671A (en) Method and system for electrically inspecting test subject, and manufacturing method of contactor used in inspection
JP2004063877A (en) Wafer-positioning correction method
JP3248136B1 (en) Probe method and probe device
JP2019033150A (en) Probing station
JP2002057196A (en) Method and device for probe
JP2005268486A (en) Marking method, marking apparatus and test device
JP2007095938A (en) Tester, prober, wafer test system and electrical contact position detection method
JP3328148B2 (en) Probing method and prober
JP2008192861A (en) Semiconductor inspection apparatus and method
JP2913609B2 (en) Probing apparatus, probing method and probe card
JP5004454B2 (en) Prober and rotation / movement control method in prober

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125417.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010536669

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09843288

Country of ref document: EP

Kind code of ref document: A1