WO2010118650A1 - 一种信道信息反馈方法、终端、基站及多输入多输出系统 - Google Patents

一种信道信息反馈方法、终端、基站及多输入多输出系统 Download PDF

Info

Publication number
WO2010118650A1
WO2010118650A1 PCT/CN2010/070434 CN2010070434W WO2010118650A1 WO 2010118650 A1 WO2010118650 A1 WO 2010118650A1 CN 2010070434 W CN2010070434 W CN 2010070434W WO 2010118650 A1 WO2010118650 A1 WO 2010118650A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
feedback
information
state information
channel state
Prior art date
Application number
PCT/CN2010/070434
Other languages
English (en)
French (fr)
Inventor
张弓
龙毅
何诚
程勇
黄凯斌
刘坚能
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BRPI1011395-9A priority Critical patent/BRPI1011395B1/pt
Priority to ES10764063.3T priority patent/ES2468796T3/es
Priority to EP10764063.3A priority patent/EP2421176B1/en
Publication of WO2010118650A1 publication Critical patent/WO2010118650A1/zh
Priority to US13/274,101 priority patent/US8320275B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0645Variable feedback
    • H04B7/0647Variable feedback rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03949Spatial equalizers equalizer selection or adaptation based on feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel
    • H04L2025/03808Transmission of equaliser coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods

Definitions

  • the invention provides a communication field, and particularly relates to a channel information feedback method, a terminal, a base station and a multiple input multiple output system.
  • BACKGROUND OF THE INVENTION Physical layer technology.
  • inter-cell interference has become a major factor limiting mobile communication performance, and the basic idea of Co-MIMO is to coordinate the signal transmission of multiple base stations to mitigate inter-cell interference.
  • BSs base stations
  • MSs terminals
  • an inherent feature of Co-MIMO systems is that the participating BSs to one MS have different channel qualities. This will cause the signals received by the MS from different BSs to have different average signal to noise ratios.
  • the channel state information of the MS side feedback channel is required to be sent to the base station.
  • the feedback bit number of the channel information is equally allocated, whether the channel quality is good or the channel quality.
  • the difference channel uniformly allocates feedback bits of the same number of channel information.
  • the scheme for averaging the number of feedback bits of channel information used in the prior art has limited channel state information and low feedback gain.
  • the embodiment of the invention provides a channel information feedback method, a terminal, a base station and a multiple input multiple output system, and dynamically allocates feedback bits of different numbers of channel information for each channel according to the condition of the channel.
  • the number and the channel state information codebook are generated according to the allocated feedback bit number, which can more fully reflect the channel state information of the channel, and more fully utilize the feedback gain.
  • An embodiment of the present invention provides a channel information feedback method, including:
  • the number of feedback bits of the channel information is dynamically allocated for each channel; determining the size of the channel state information codebook of each channel according to the number of feedback bits of the channel information dynamically allocated by each channel, and generating a channel state information codebook;
  • An embodiment of the present invention provides an information processing method, including:
  • the allocation result being a result of dynamically allocating the number of feedback bits of the channel information for each channel according to the channel quality; determining the channel state according to the allocation result The size of the information codebook, generating a channel state information codebook;
  • the index number of the feedback codeword sent by the terminal Receiving, by the index number of the feedback codeword sent by the terminal, finding a corresponding feedback codeword in the channel state information codebook according to an index number of the feedback codeword, and obtaining a channel fed back by the terminal from the feedback codeword Status information; the index number is used to identify the feedback codeword;
  • Precoding design is performed based on the channel state information.
  • An embodiment of the present invention provides a terminal, including:
  • a dynamic bit allocation module configured to dynamically allocate a feedback bit number of channel information for each channel according to channel quality
  • a first sending module configured to send an allocation result of the number of feedback bits of the channel information
  • a channel state information codebook generating module configured to determine, according to the allocation result of the number of feedback bits of the channel information in the dynamic bit allocation module, Generating a channel state information codebook for a channel state information codebook of each channel
  • a feedback codeword determining module configured to determine a feedback codeword in the channel state information codebook according to channel state information, where the feedback codeword is used to feed back the channel state information;
  • the second sending module is configured to send an index number of the feedback codeword determined by the feedback codeword determining module, where the index number is used to identify the feedback codeword.
  • An embodiment of the present invention provides a base station, including:
  • a first receiving module configured to receive a dynamic allocation result of the number of feedback bits of the channel information sent by the terminal, where the allocation result is a result that the terminal dynamically allocates the number of feedback bits of the channel information for each channel according to the channel quality;
  • a channel state information codebook generating module configured to determine a size of the channel state information codebook according to the allocation result, and generate a channel state information codebook
  • a second receiving module configured to receive an index number of a feedback codeword sent by the terminal, where the index number is used to identify the feedback codeword
  • a feedback codeword determining module configured to: according to an index number of the feedback codeword received by the second receiving module, find a corresponding feedback codeword in the channel state information codebook, and obtain a terminal from the feedback codeword Feedback channel status information;
  • the precoding design module is configured to perform precoding design according to channel state information obtained by the feedback codeword determining module.
  • An embodiment of the present invention provides a multiple input multiple output MIMO communication system, including at least two base stations and at least one terminal;
  • the terminal is configured to dynamically allocate, according to the channel quality, the number of feedback bits of the channel information for each channel; determine the size of the channel state information codebook of each channel according to the number of information feedback bits dynamically allocated by each channel, and generate a channel state.
  • Information codebook ⁇ according to channel state information, in the generated channel state information codebook, determining a feedback codeword; transmitting an allocation result of the feedback bit number of the channel information and an index number of the feedback codeword, the feedback The codeword is used to feed back channel state information obtained according to the result of the channel estimation, where the index number is used to identify the feedback codeword;
  • the base station is configured to receive a feedback bit number allocation result of the channel information sent by the terminal; determine, according to the allocation result, a size of a channel state information codebook of a channel between the terminal, and generate a channel state information codebook; and receive The index number of the feedback codeword sent by the terminal, in the generated channel state information codebook, the feedback codeword is found according to the index number; and the precoding design is performed according to the channel state information obtained by the feedback codeword.
  • the number of feedback bits of different numbers of channel information is dynamically allocated to each channel according to the condition of the channel, and the channel state information codebooks of different sizes are generated for each channel according to the allocated feedback bit number,
  • the channel state information of the channel is more fully reflected, and the feedback gain is more fully utilized.
  • FIG. 1 is a schematic diagram of a model of a cooperative MIMO general system according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a cooperative MIMO communication information system according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a channel information feedback method according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a channel information feedback method according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a channel information feedback method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an information processing method according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an information processing method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of an information processing method according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a channel estimation module in another terminal according to an embodiment of the present invention
  • FIG. 11 is a schematic structural diagram of a base station according to an embodiment of the present invention
  • FIG. 12 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of a power allocation module in a base station according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of a MIMO system according to an embodiment of the present invention
  • FIG. 15 is a schematic diagram of performance improvement under a power allocation policy according to an embodiment of the present invention
  • FIG. 16 is a schematic diagram of performance improvement under a power allocation policy according to an embodiment of the present invention
  • FIG. 17 is a schematic diagram of an information processing method according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a cooperative MIMO general system model according to an embodiment of the present invention.
  • a cooperative MIMO system a plurality of base stations cooperatively provide communication services for a plurality of mobile terminals.
  • each terminal needs to feed back multiple channel matrix information (each channel matrix information, including some channel state information of this channel), therefore, the terminal needs to allocate a reasonable allocation for each channel matrix.
  • the feedback bits are used to make full use of the feedback bits.
  • the embodiment of the present invention further provides a schematic diagram of a communication scenario of a cooperative MIMO system.
  • MS2 is equal to the distance between the two BSs, and the distance between MS1 and BS1 is closer than that of BS2.
  • an embodiment of the present invention provides a channel information feedback method, which is applied in a cooperative MIMO system as shown in FIG. 1 or FIG. 2 or other communication systems, such as a MIMO-OFDM system, an LTE system, or a WiMAX. System, etc., the method includes:
  • S102 Determine, according to the number of feedback bits of channel information dynamically allocated by each channel, a size of a channel state information codebook of each channel, and generate a channel state information codebook.
  • the base station after receiving the allocation result of the feedback bit number of the channel information sent by the S104 and the index number of the feedback codeword, the base station generates one and the terminal side according to the feedback bit number of the allocated channel information learned in the allocation result. a channel state information codebook of the same size and content, and finding a feedback codeword in the generated channel state information codebook according to the received index number, according to feedback codeword feedback The channel state information of the channel is subjected to a corresponding precoding design.
  • the channel quality of each channel can be obtained through channel estimation or measurement.
  • the number of feedback bits of different numbers of channel information is dynamically allocated to each channel according to the condition of the channel, and the channel state information codebooks of different sizes are generated for each channel according to the allocated feedback bit number, according to The channel state information fed back by the feedback codeword provided by each channel state information codebook is subjected to a corresponding precoding design, and the feedback gain is more fully utilized.
  • an embodiment of the present invention provides a channel information feedback method, which is applied in a Co-MIMO system as shown in FIG. 1 or FIG. 2 or other communication systems, such as a MIMO-OFDM system, LTE system or WiMAX system, etc., the method includes:
  • S110 Perform channel estimation according to information sent by the base station.
  • the channel estimation may be a process of estimating model parameters of a certain channel model from the received data.
  • the channel estimate can also provide the receiver with the required channel state information.
  • the mobile terminal After receiving the information transmitted by the base station (BS), the mobile terminal (MS) performs channel estimation based on the information transmitted by the base station.
  • the information transmitted by the base station may include a preset pilot signal in an embodiment, so that the MS may perform a channel between the base station and the base station through some channel estimation algorithm according to a preset pilot signal in the information. It is estimated that the model parameters of the channel, that is, the channel matrix model, are obtained.
  • pilots may, in one embodiment, be periodically inserted into the information transmitted by the base station.
  • the information to be transmitted may also be divided into a plurality of data blocks in advance, and a plurality of pilot signals are interleaved between the small blocks.
  • the channel estimation algorithm mentioned here may be a least square channel estimation algorithm in one embodiment, a maximum likelihood estimation algorithm in another embodiment, or a minimum mean square error in another embodiment. Estimation algorithm or maximum a posteriori probability estimation algorithm.
  • the training sequence may be added to the information to be sent in advance instead of the pilot, so that after receiving the information sent by the base station, the MS may use the channel estimation algorithm according to the training sequence therein.
  • the channel between the base stations is estimated to obtain the model parameters of the channel, that is, the channel matrix model.
  • These training sequences may, in one embodiment, be contiguous block signals separate from the information transmitted by the base station, and in another embodiment may also be interspersed with information transmitted by the base station.
  • the channel estimation algorithm mentioned herein may be a least square channel estimation algorithm in one embodiment.
  • the method may also be a maximum likelihood estimation algorithm in another embodiment, or a minimum mean square error estimation algorithm or a maximum a posteriori probability estimation algorithm in another embodiment.
  • blind estimation can also be utilized for channel estimation in one embodiment.
  • the blind estimation does not require a training sequence or pilot, and the intrinsic information of the transmitted data is fully utilized for channel estimation.
  • channel estimation using pilots may be combined with blind estimation for channel estimation, or channel estimation using training sequences may be combined with blind estimation for channel estimation.
  • the channel estimation on the MS side is perfect.
  • the MS has perfect channel state information and path loss information.
  • each base station has ⁇ ⁇ transmit antennas, and each MS has 3 ⁇ 4 receive antennas.
  • the channel from the nth transmit antenna of the base station to the mth receive antenna of the MS can be represented as ⁇ , and can be modeled as:
  • the MS terminal can also obtain the path fading condition of the channel according to (1) and the small-scale Rayleigh fading case, and These fading conditions obtain corresponding channel-to-noise ratio SNR and other channel state information.
  • H m ⁇ ⁇ TM, ⁇ TM3 ⁇ 4 ⁇ ⁇ ⁇ J ( 2 )
  • Each element of the channel matrix in the equation is a small matrix, which is a channel matrix between each base station and the mth MS, representing all channel conditions between each base station and the mth MS. That is, the channel condition between all the antennas of the base station and all the antennas of the MS is included.
  • the MS can obtain channel loss, received signal to noise ratio, signal to noise and distortion ratio information of each channel through channel estimation, and ⁇ 1 according to one or several kinds of information jointly inferred to obtain a channel.
  • the channel quality is good or bad; of course, it can be understood that in another embodiment, the quality of the channel can also be obtained by measurement, for example, by measuring some path loss, receiving signal to noise ratio, signal to noise distortion ratio, etc., and then by combining Calculate or infer how good the channel quality of the channel is.
  • S120 Dynamically allocate feedback bit numbers of channel information for each channel according to channel quality; in a cellular system with limited feedback, the total number of allocated bits is preset and limited.
  • the quality of each channel is not completely the same, and the number of feedback bits of different numbers of channel information is allocated to channels with different channel qualities through a preset dynamic bit allocation strategy, which is better. Use feedback gain.
  • a channel with good channel quality can be allocated to the number of feedback bits of channel information with respect to the number of feedback bits of the evenly distributed channel information. Then, the number of feedback bits according to the allocated channel information can carry more channel state information with respect to the number of feedback bits according to the average allocated channel information; and the channel with poor channel quality is based on the number of feedback bits of the evenly allocated channel information. Sufficient to carry all the channel state information, the channel of the channel state difference can be allocated less feedback bits of the channel information, and more feedback bits of the channel information are allocated to the channel with better channel state.
  • the number of feedback bits of the limited total channel information can be more fully utilized to provide more comprehensive channel state information for the base station, and the base station adjusts the transmitted power according to the channel state information, so that the receiving end can A better gain is received relative to the number of feedback bits of the average assigned channel information.
  • the channel quality is strongly correlated with the distance between the base station and the MS, therefore,
  • two base stations cooperate to perform communication services for one MS.
  • the channel quality of the channel from the base station 1 to the MS is better than that of the base station 2 to the channel of the MS. Channel quality.
  • the allocation bits are pre-set and limited. Assuming that feedback bits of a total of eight channel information are preset for feedback channel state information, feedback bits of five channel information can be allocated to the channel of the base station 1 to the MS, and feedback bits of the three channel information are given to the base station 2 to the MS. channel. It can be understood that in another embodiment, 6 channels can be allocated. The feedback bits of the information are given to the channel of the base station 1 to the MS, and the feedback bits of the 2 channel information are allocated to the channel of the base station 2 to the MS. In a cellular system with limited feedback, the gain of performance (SNR gain or capacity gain) is a function of the average signal-to-noise ratio and the number of feedback bits of the channel information. Therefore, the MS dynamically allocates channel information for each channel based on channel quality. The number of feedback bits can improve system performance more effectively.
  • SNR gain or capacity gain is a function of the average signal-to-noise ratio and the number of feedback bits of the channel information. Therefore, the MS dynamically allocates
  • the difference in channel quality may be reflected as different by channel estimation (as shown in S110) or measured path loss, received signal to noise ratio, or signal to noise distortion ratio on the MS side.
  • the difference in channel quality may be reflected as a difference in Signal to Interference Plus Noise Ratio (SINR). Therefore, the feedback bits of different numbers of channel information may be allocated to channels having different SINRs according to the signal-to-interference ratio SINR through a preset dynamic bit allocation strategy.
  • the SINR can be inferred by combining one or a combination of information such as path loss, received signal to noise ratio, signal to noise and distortion ratio, etc., based on channel estimation or measurement on the MS side.
  • the following embodiments of the present invention all quantize channel quality with SINR.
  • the dynamic bit allocation scheme is more clearly understood.
  • the Co-MIMO system shown in FIG. 2 is taken as an example to illustrate the dynamic bit allocation scheme:
  • the path between MS1 and BS1 is described by BS1-MS1
  • the path between MS1 and BS2 is described by BS2-MS1
  • the path between MS2 and BS1 is described by BS1-MS2
  • MS2 and BS2 are described.
  • the path between them is described by BS2-MS2.
  • the dynamic feedback bit allocation strategy is a threshold-based feedback bit allocation strategy, which in one embodiment is the difference between the MS to the different signal-to-interference ratio SINRs of the participating cooperative BSs.
  • SINR difference thresholds are set offline, as shown in Table 1:
  • SINR difference threshold of MS to different BSs Feedback bit number allocation scheme of channel information
  • the SINR of BS1-MS1 is smaller than the SINR of BS2 - MS1, so if the difference of SINR of the path is as follows:
  • 5dB ⁇ S earn - SINR ⁇ ⁇ Last formula indicates that the difference between the SINR of MS1 to BS1 and the SINR of MS1 to BS2 is greater than 5dB and less than 10dB, for example, the difference is 8dB.
  • feedback bits allocated to the MS1-BS1 link 5 channel information are used for feedback channel state information
  • feedback bits allocated to the MS1-BS2 link 3 channel information are used for feedback channel state information. It can be understood that if the difference between the two paths is 12 dB or 1 ldB, according to Table 1, the feedback bits allocated to the 6 channel information of the MS1-BS1 link are used for feedback channel state information, and are allocated to the MS1-BS2 chain.
  • the feedback bits of the 2 channel information are used to feed back the channel state information.
  • the feedback bits allocated to the 4 channel information of the MS2-BS1 link are used for feedback channel state information, and are allocated to the MS2-BS2 link 4
  • the feedback bits of the channel information are used to feed back channel state information. It can be understood that the distance between the MS2 and the BS2 may be different in another embodiment.
  • the allocation policy at this time is similar to the allocation strategy of the MS1 in FIG. 2 mentioned above, and details are not described herein again.
  • the above threshold settings are performed offline (that is, pre-set), and related information is saved in the BS and the MS.
  • the threshold value is as shown in Table 1, but in another embodiment, there may be different preset thresholds, such as 0 dB, 4 dB, 8 dB, 12 dB, and of course other presets.
  • the door P is depreciated.
  • the total number of feedback bits of the total channel information may be 10, 9, or other values.
  • the number of feedback bits of the information is 10
  • the difference threshold of the corresponding SINR can be Set to 12dB, 9dB, 6dB, 3dB, OdB, of course, in another embodiment the threshold can also be other values.
  • the total number of feedback bits is It has similar settings when it is numeric.
  • the channel quality may also be set to the threshold of the SINR ratio as follows according to the possible combination of the MS and the different BSs, as shown in Table 2:
  • the SINR of BS1-MS1 is 10 dB
  • the SINR of BS2 - MS1 is 16 dB.
  • the allocation is as follows.
  • the feedback bits for the 5 channel information of the MS1-BS1 link are used for feedback channel state information
  • the feedback bits for allocating 3 channel information of each MS1-BS2 link are used for feedback channel state information.
  • the threshold value of the gate P is as shown in Table 2, but in another embodiment, there may be different preset thresholds, such as 1, 1.4, 2, 2.4, of course. It can also be other preset thresholds, such as 1, 2, 2.5, 3 or 1, 1.3, 1.8, 2.2, etc.
  • the corresponding SINR ratio threshold can be set to 1, 1.5, 2, 2.5, 3.
  • the threshold value can also be other values.
  • similar settings are also made when the number of feedback bits of the total channel information is other values.
  • the SINRs of the MSs to the cooperative base stations have different values, and have different ratios.
  • the MS is assumed to be three base stations.
  • the SINR ratio is 1: 1: 2
  • the corresponding paths are respectively assigned with feedback bits of 2, 2 and 4 channel information, when the SINR ratio is other values.
  • the dynamic allocation strategy has similar settings when the number of feedback bits of the total channel information is other values, and can be flexibly set according to actual needs.
  • the cooperative base station is 3 Or more than three or more may be based on the ratio of the SINR difference between the two paths or the difference between the SINRs of the two paths, and the allocation setting according to the number of feedback bits of the possible channel information. Threshold.
  • S121 Send an allocation result of the feedback bit number of the channel information to the base station.
  • the base station learns the number of feedback bits of the channel information allocated by the channel between the base station and the MS, and generates the same size as the MS end according to the number of feedback bits of the allocated channel information.
  • Channel state information codebook It should be noted that, in an embodiment, the allocation result of the feedback bit number of the channel information may be directly sent to the base station. In another embodiment, the allocation result of the feedback bit number of the channel information may also be sent to one.
  • the forwarding device is sent by the forwarding device to the base station.
  • the size of the channel state information codebook C (codebook) of the channel between each base station and the MS is related to the number of feedback bits of the channel information allocated by each base station to the channel of the MS. If the feedback bits of k channel information are allocated to one channel according to the result of channel estimation in S110, the channel state information codebook size of this channel is 2 k . Since the embodiments of the present invention dynamically allocate different numbers of channel information feedback bits for channels having different SINRs (ie, channel quality), corresponding channel state information codebooks having different sizes are used for channels having different SINRs. Thus, the higher the average SNR of the channel, the larger the codebook used and the more codeword information it contains.
  • the channel matrix estimated in step S110 may be decomposed; in one embodiment, matrix estimation of the channel matrix estimated in S110 may be performed, or in step S110. It is to be understood that, in another embodiment, the channel matrix decomposition may also be performed in front of determining the codebook size, and is not particularly limited. for example:
  • each of the equations (7) is a channel direction information matrix of a channel between each of the N base stations and the MS, and each N includes channel direction information of each channel, that is, includes The channel state information of all channels between each base station and the MS, that is, the channel state information between all the antennas of the base station and all the antennas of the MS.
  • the MS needs to feed back the V of each channel to the base station.
  • the V w cannot be directly fed back to the base station.
  • the channel state information code is used. This C approximates this V w and allocates 5 channel information feedback bits.
  • the channel state information codebook contains 2 5 (ie 32 ) codeword information, instead of using the codebook or for each channel. feedback channel information using the same size codebook according to generate feedback bits dynamic channel allocation information codebook of different sizes, with the code of this species codeword feedback channel V w ", can more fully utilize the allocated The number of bits is used to feed back the channel state information of the channel.
  • the 16th code word is the most
  • the index number 16 is fed back to the base station, and the base station can find the corresponding codeword according to the index number, thereby knowing the relatively closest message of N.
  • a Grassmannian codebook can be generated by the Lloyd algorithm as a channel state. Information codebook. It can be understood that, in another embodiment, the channel state information codebook is also generated by a GLA (Generalized Lloyd Algorithm).
  • each N is a channel direction information matrix of a channel between each of the N base stations and the MS, and each N includes channel direction information of each channel, that is, includes The channel state information of all channels between each base station and the MS includes channel state information between all antennas of the base station and all antennas of the MS. Therefore, in one embodiment, may be determined in a feedback codeword is V w of each channel, of course, in other embodiments, it may be the root play another way to get the channel state information, such as obtained by the signal power estimate or measurement EMBODIMENTS Channel status information.
  • the channel state information codebook is generated in step S130, in order to be able to feed back the channel direction information contained in the channel direction information matrix N in the codebook C of a given size of 2 k (k is the allocated feedback bit).
  • V w is the need to find an optimal codeword as a codeword feedback, so the most comprehensive feedback to the codeword, the channel state information comprises a maximum of V w feedback.
  • the index number of this feedback codeword is c
  • V c is the cth codeword in codebook C, ⁇ ⁇ , ⁇ lang) is the chordal distance betweenlie and ⁇ , which is defined as:
  • Equation (9) demonstrate the number, which is a form of metric for functions, vectors, and matrices.
  • the norm can be used to measure the distance between two functions, vectors or matrices, which is a definition of the length of the measure vector.
  • the norm here represents the distance between the matrices, which is what we call the chord distance between V w and V c . That is, according to (8), (9) two formula found by exhaustive chord length from the smallest and V C V codeword, the codeword as feedback.
  • the feedback codeword index c V c is transmitted to the BS, the feedback index number for identifying a codeword c V c.
  • the index number serves the purpose of identifying the feedback codeword.
  • the feedback may be transmitted codeword index c V c of the base station directly to the end, in another embodiment, the feedback may be the codeword index c V c to send a The forwarding device is sent by the forwarding device to the base station.
  • the allocation result is fed back to the base station, so that after receiving the allocation result, the base station knows the number of bits allocated by the channel between the base station and the MS, and A channel state information codebook having the same size and content as the MS end is generated according to the allocated number of bits.
  • the BS can obtain the codeword optimal codeword V e by searching the codebook through the received index c, and obtain channel state information of the downlink channel according to V e , and Corresponding precoding design is performed according to the obtained channel state information.
  • the step S121 sends the result of the allocation of the feedback bits of the channel information to the base station, and may also be placed after the step S140, that is, in the embodiment shown in FIG.
  • step S160 the allocation result of the feedback bits of the channel information and the index number of the feedback codeword are transmitted to the base station.
  • the allocation result of the feedback bits of the channel information and the index number of the feedback codeword may be transmitted together to the base station, and in another embodiment may also be separately transmitted to the base station.
  • the allocation result of the feedback information of the channel information may be sent to the base station after the index number of the feedback codeword is sent to the base station in an embodiment, or may be sent before the index number of the feedback codeword is sent to the base station.
  • the base station is not specifically limited.
  • the number of feedback bits of the channel information is dynamically allocated for each channel, and each channel state information codebook is determined according to the feedback bit number of the allocated channel information. Size, a consistent codebook is generated for the same channel on both sides of the base station and the terminal, and a feedback codeword for feedback channel state information is determined in the codebook. For a given number of feedback information of the channel information, by dynamic allocation, the MS is more It is reasonable to allocate the number of feedback bits of the channel information for different channels, and the feedback gain is more fully utilized.
  • a larger number of base stations are supported to participate in Co-MIMO communication, and each of the participating base stations performs the allocation of the feedback bits of the channel information and the processing of the channel state information codebook, instead of all the cooperative base stations.
  • the "super base station” flexibly handles the channel conditions between each cooperative base station and the MS to improve processing flexibility.
  • an embodiment of the present invention provides an information processing method, which is applied in a cooperative MIMO system as shown in FIG. 1 or FIG. 2 or other communication systems, such as a MIMO-OFDM system, an LTE system, or a WiMAX system.
  • the method includes:
  • the channel state information codebook generated by S202 finds a corresponding feedback codeword, and obtains channel state information fed back by the terminal from the feedback codeword; the index number is used to identify the feedback codeword;
  • S204 Perform precoding design according to the channel state information.
  • the channel quality of each channel can be obtained by channel estimation or measurement on the terminal side.
  • the number of feedback bits of different numbers of channel information is dynamically allocated to each channel according to the condition of the channel, and the channel state information codebooks of different sizes are generated for each channel according to the allocated feedback bit number, according to The channel state information fed back by the feedback codeword provided by each channel state information codebook is subjected to a corresponding precoding design, and the feedback gain is more fully utilized.
  • S260 Set different power allocation factors for each terminal according to a preset query table, and perform power allocation on the terminal.
  • the performance of the user of the cell is greatly improved, and the power allocation strategy provided by the embodiment of the present invention is A part of the improved performance for the cell center is transferred to the cell edge user, thereby improving the communication performance of the cell edge user without reducing the performance of the cell center user.
  • an embodiment of the present invention provides an information processing method, and the method is applied.
  • a cooperative MIMO system as shown in FIG. 1 or FIG. 2 or other communication system such as a MIMO-OFDM system, an LTE system, or a WiMAX system
  • the method includes:
  • S210 Send information to the terminal, where the information carries channel estimation information, where the channel estimation information is used to enable the terminal to perform channel estimation.
  • related information for causing the terminal to perform channel estimation may be a preset pilot signal in one embodiment, so that the MS can pass the preset pilot signal according to the information.
  • Some channel estimation algorithms estimate the channel between them and the base station to obtain the model parameters of the channel, that is, the channel matrix model.
  • These pilots may, in one embodiment, be periodically inserted into the information transmitted by the base station.
  • the information to be transmitted may also be divided into a plurality of data blocks in advance, and a plurality of pilot signals are interleaved between the small blocks.
  • the training sequence may be added to the information to be sent in advance instead of the pilot, so that after receiving the information sent by the base station, the MS may use some channel estimation algorithms according to the training sequence therein.
  • the channel between the base station and the base station is estimated to obtain a model parameter of the channel, that is, a channel matrix model.
  • These training sequences may, in one embodiment, be contiguous block signals separate from the information transmitted by the base station, and in another embodiment may also be interspersed with information transmitted by the base station.
  • the MS After the channel estimation is performed according to the information sent by the base station, the MS dynamically allocates the feedback bit number of the channel information for the channel between different base stations and the MS according to the result of the channel estimation, that is, the channel dynamics with different average SNRs.
  • the feedback bits of different numbers of channel information are allocated, and the allocation result is fed back to the base station.
  • the MS may determine the quality of the channel according to the result of the channel estimation in step S210, and in another embodiment, the quality of the channel may also be obtained by measurement. This has been described in detail in the embodiments shown in Figures 3 - 5 and will not be described again.
  • each cooperative base station After receiving the dynamic allocation result of the number of feedback bits of the channel information sent by the MS, each cooperative base station can know from the allocation result how many channel letters are allocated by the MS for the channel between them. Feedback bits.
  • the size of the channel state information codebook C (codebook) of the channel between each cooperative base station and the MS is related to the number of feedback bits of the allocated channel information of the MS. For example, if the MS allocates feedback bits of k channel information for one channel, the channel state information codebook size of this channel is 2 k . Since the embodiment of the present invention dynamically allocates feedback bits of different channel information for channels having different average SNRs, corresponding pairs of codebooks having different average SNRs use codebooks having different sizes. In this way, the higher the average SNR of the channel, the larger the codebook used, and the more codeword information is included, and the corresponding channel state information can be more comprehensively and accurately reflected.
  • the base station side can generate a Grassmannian codebook as a channel state information codebook by using the Lloyd algorithm.
  • the channel state information codebook is also generated by a GLA (Generalized Lloyd Algorithm).
  • GLA Generalized Lloyd Algorithm
  • S240 Receive an index number of the feedback codeword sent by the MS, find a corresponding feedback codeword from the codebook generated in S230, and obtain channel state information that is fed back by the feedback codeword.
  • the index number of the feedback codeword sent by the MS is an index number of the feedback codeword determined by the MS according to the channel state information obtained according to the channel estimation, and the channel state information codebook generated on the MS side;
  • the status information codebook and the process of determining the feedback codeword have been described in detail in the embodiment shown in Figures 3-5 and will not be described here.
  • the BS can find the best codeword determined by the MS, that is, the feedback codeword, in the channel state information codebook by the received index number.
  • the base station can obtain channel state information of its downlink channel to the MS according to the feedback codeword.
  • the precoding design After all the channel state information fed back by the MS is collected at the base station, the precoding design will start. That is, after the MS feeds back the channel state information of the channel between the MS and all the participating base stations to the base station, the base station starts to perform the precoding design.
  • a pre-coding design is performed by taking a Zero-forcing linear precoding algorithm as an example.
  • the precoding of the MS is found in the joint null space of all other user letter macroblocks.
  • a non-linear precoding algorithm such as a dirty paper coding algorithm, a nonlinear transmit zero-forcing precoding algorithm or THP (Tomlinson-Harashima Precoding, Tomlin) may also be employed in another embodiment.
  • Sen-Halahima precoding precoding algorithm. Etc., but the implementation complexity is relatively high.
  • the number of feedback bits of the channel information is dynamically allocated for each channel, and each channel state information codebook is determined according to the feedback bit number of the allocated channel information. Size, a codebook of the same size is generated for the same channel on both sides of the base station and the terminal, and a feedback codeword for feedback channel state information is determined in the codebook. For a given number of feedback bits of channel information, by dynamic allocation, MS is more The feedback gain is more fully utilized by reasonably assigning feedback bits for a corresponding number of channel information for different channels.
  • a larger number of base stations are supported to participate in Co-MIMO communication, and each of the participating base stations is separately sent a letter.
  • the allocation of the feedback bits of the channel information and the processing of the channel state information codebook instead of treating all the cooperative base stations as one "super base station", performing flexible processing and lifting processing for the channel conditions between each cooperative base station and the MS. flexibility.
  • S260 Set different power allocation factors for each terminal according to a preset query table, and perform power allocation on the terminal.
  • the cell edge user's communication channel strength will be weaker than the cell center user channel strength.
  • the feedback ratio distribution scheme of the dynamic channel information provided by the embodiment of the present invention can enable the cell center user to obtain a large communication performance gain.
  • the embodiment of the present invention provides a power allocation policy based on a lookup table, so as to improve cell edge user communication performance without lowering the performance of the cell center user.
  • the performance of the cell center is improved by the power allocation strategy provided by the embodiment of the present invention. Part of the improved performance is transferred to the cell edge users, thereby improving the communication performance of the cell edge users without reducing the performance of the cell center user.
  • different power allocation factors are set for each terminal by setting a lookup table in advance, and power allocation is performed for each terminal according to each power allocation factor.
  • the communication scenario provided in FIG. 7 is described in detail:
  • MS2 is equal to the distance between the two BSs, and the distance between MS1 and BS1 is closer than the distance of BS2. In this way, MS2 is a cell edge user with respect to MS 1. After the overall performance of the system is improved, it can be considered to increase MS2 by adding more power to MS2 without reducing the performance of MS1. performance.
  • the BS performs equal power allocation for the two MSs. Therefore, there are:
  • is the power allocation factor, which is the transmission power per base station, the distance d between BS1 and MS1, the number of feedback bits B of the total channel information, and the number of feedback bits of the channel information.
  • lookup table 3 can be constructed according to (14):
  • the feedback bit number allocation strategy s may vary due to channel information (this possibility has been described in detail in step S120 in the embodiment shown in Figures 3 - 5), in another
  • the query table 4 can be constructed:
  • the ⁇ in the lookup table, the allocation strategy s according to the feedback bit number of the channel information, the transmission power p per base station, the distance d between the BS1 and the MSI, and the change of the feedback bit number B of the total channel information may also be For its value.
  • metric of the metric is the ergodic capacity of each state, calculate the trajectories of the states c lb and c lp ; If the criterion of the metric is outage probability, then the probability of p is calculated. Utlb and Poutlp;
  • the power distribution strategy of the embodiment is simulated for the communication scenario shown in FIG. 2, and it can be seen from the simulation diagram that the present invention is adopted.
  • the MS2 has a significant improvement in channel capacity compared to the MS2 that does not use the power allocation scheme of the embodiment of the present invention, and the channel capacity of the MS1 does not change significantly, indicating that the overall performance of the system is improved.
  • the power allocation strategy provided by the embodiment of the present invention more power is allocated to the MS2 method, and the performance of the MS2 is further improved, and the performance of the MS1 is not lowered.
  • the cut-off probability is related to each state through the capacities c lb and c lp , the essence is not different.
  • Another embodiment of the present invention provides a simulation of the power distribution strategy of the embodiment of the communication scenario shown in FIG. 2 when the metric is the cutoff probability.
  • the simulation result is shown in FIG. 16 . Show.
  • MS2 As can be seen from the simulation diagram, after using the power allocation scheme provided by the embodiment of the present invention, MS2 (MS2 proposed) has an obvious probability of going to the MS2 (MS2 baseline) without using the power allocation scheme of the embodiment of the present invention. If the overall performance of the system is improved, after the overall performance of the system is improved, the power allocation strategy provided by the embodiment of the present invention allocates more power to the MS2 method, and the performance of the MS2 is further improved. And did not reduce the performance of MS1.
  • the power allocation strategy proposed by an embodiment of the present invention is based on an offline query table query, and provides a flexible basis for the dynamic allocation of the number of feedback bits of the channel information for each channel.
  • a method for controlling the performance of a cell center and a cell edge user so that the number of feedback bits of the channel information is dynamically allocated for each channel according to the channel quality of each channel, so that the channel information is more effectively fed back; and through a new power allocation strategy,
  • the communication performance of the cell edge users is significantly improved without sacrificing the performance of the cell center user.
  • an embodiment of the present invention provides a terminal, including:
  • the channel estimation module 310 is configured to perform channel estimation according to the information sent by the received base station.
  • the channel estimation may be a process of estimating model parameters of a certain channel model from the received data.
  • Channel estimation can provide the terminal with the required channel state information.
  • the channel estimation module 310 After receiving the information transmitted by the base station (BS), the channel estimation module 310 performs channel estimation based on the information transmitted by the base station.
  • the information transmitted by the base station may include a preset pilot signal in one embodiment, such that the channel estimation module 310 may use a channel estimation algorithm between the terminal and the base station according to a preset pilot signal in the information.
  • the channel is estimated to obtain the model parameters of the channel, that is, the channel matrix model.
  • pilots may, in one embodiment, be periodically inserted into the information transmitted by the base station.
  • the information to be transmitted may also be divided into a plurality of data blocks in advance, and a plurality of pilot signals are interleaved between the small blocks.
  • the channel estimation algorithm mentioned here may be a least square channel estimation algorithm in one embodiment, a maximum likelihood estimation algorithm in another embodiment, or a minimum mean square error in another embodiment. Estimation algorithm or maximum a posteriori probability estimation algorithm.
  • the training sequence may be added to the information to be sent in advance instead of the pilot, so that after receiving the information sent by the base station, the channel estimation module 310 may pass some channel estimation algorithms according to the training sequence therein. Estimating the channel between it and the base station to obtain a channel The model parameters, that is, the channel matrix model.
  • These training sequences may be contiguous block signals separated from the information transmitted by the base station in one embodiment, and may also be inserted in the information transmitted by the base station in another embodiment.
  • the channel estimation algorithm mentioned here may be a least square channel estimation algorithm in one embodiment, a maximum likelihood estimation algorithm in another embodiment, or a minimum mean square error in another embodiment. Estimation algorithm or maximum a posteriori probability estimation algorithm.
  • blind estimation can also be utilized for channel estimation in one embodiment.
  • the blind estimation does not require a training sequence or pilot, and the intrinsic information of the transmitted data is fully utilized for channel estimation.
  • channel estimation using pilots may be combined with blind estimation for channel estimation, or channel estimation using training sequences may be combined with blind estimation for channel estimation.
  • a channel matrix model between the terminal and the base station can be obtained, which is described in detail as follows:
  • each base station has ⁇ ⁇ transmit antennas and the terminal has n R receive antennas.
  • the channel from the nth transmit antenna of the base station to the mth receive antenna of the MS can be represented as ⁇ , and can be modeled as:
  • the terminal may also obtain the path fading condition of the channel obtained by the H parameter according to the formula (1), and the small-scale Rayleigh fading condition, and the corresponding signal-to-noise ratio SNR channel obtained from the fading conditions. status information.
  • the terminal provided in this embodiment is the mth terminal (MS) of the system end, and for the mth MS, it is necessary to estimate N channel matrices, 3 ⁇ 4 3 ⁇ 4 token n , and all of these matrices and (1) have A similar structure, therefore, the total channel matrix can be obtained: (2)
  • Each element of the channel matrix in the equation is a small matrix, which is a channel matrix between each base station and the mth MS, representing all channel conditions between each base station and the mth MS. That is, the channel condition between all the antennas of the base station and all the antennas of the MS is included.
  • the MS can obtain path state information such as path loss loss and corresponding signal-to-noise ratio SNR of each channel through path fading and small-scale Rayleigh fading of each channel, according to channel state information. It is understood that a channel with a better channel state can be determined.
  • the quality of the channel can also be obtained by measurement, for example, by measuring some path loss, receiving signal to noise ratio, and signal to noise distortion ratio. Etc. Information, and then by joint calculation or inference to get the channel quality of the channel.
  • the channel estimation module 310 may further include:
  • the estimating unit 311 is configured to perform channel estimation on each channel to obtain a channel matrix of the channel.
  • the estimating unit 311 estimates a channel matrix of the channel according to the information sent by the received base station; and the specific steps of estimating the channel matrix are shown in FIG. 3 to FIG. 5.
  • the method embodiment shown in the foregoing has been described in detail, and details are not described herein again.
  • the decomposing unit 312 is configured to decompose the channel matrix to obtain a channel direction information matrix of each channel, and the channel direction information matrix of each channel includes channel state information of each channel.
  • the dynamic bit allocation module 320 is configured to dynamically allocate the number of feedback bits of the channel information for each channel for the root channel quality
  • the total number of allocated bits is pre-set and limited.
  • the quality of each channel is not completely the same, and the number of feedback bits of different numbers of channel information is allocated to channels with different channel qualities through a preset dynamic bit allocation strategy, which is better. Use feedback gain.
  • the channel with good channel quality can be allocated to the number of feedback bits of the channel information with respect to the number of feedback bits of the evenly distributed channel information. Then the number of feedback bits according to the assigned channel information Compared with the number of feedback bits according to the average allocated channel information, more channel state information can be carried; and the channel with poor channel quality is sufficient to carry all channel state information according to the average number of feedback channels of the channel information, then The channel with the channel state difference can be allocated less feedback bits of the channel information, and more feedback bits of the channel information are allocated to the channel with better channel state.
  • the number of feedback bits of the limited total channel information can be more fully utilized to provide more comprehensive channel state information for the base station, and the base station adjusts the transmitted power according to the channel state information, so that the receiving end can A better gain is received relative to the number of feedback bits of the average assigned channel information.
  • the channel quality is strongly correlated with the distance between the base station and the MS. Therefore, the closer the MS is to the base station, the higher the quality of the channel. For example, in one embodiment, two base stations cooperate to perform communication services for one MS. When the MS is closer to the base station 2 than the base station 2, the channel quality of the channel from the base station 1 to the MS is better than that of the base station 2 to the channel of the MS. Channel quality.
  • the allocation bits are pre-set and limited. Assuming that feedback bits of a total of eight channel information are preset for feedback channel state information, feedback bits of five channel information can be allocated to the channel of the base station 1 to the MS, and feedback bits of the three channel information are given to the base station 2 to the MS. channel. It can be understood that, in another embodiment, feedback bits of 6 channel information can be allocated to the channel of the base station 1 to the MS, and feedback bits of 2 channel information are allocated to the channel of the base station 2 to the MS. In a cellular system with limited feedback, the gain of performance (SNR gain or capacity gain) is a function of the average signal-to-noise ratio and the number of feedback bits of the channel information. Therefore, the MS dynamically allocates channel information for each channel based on channel quality. The number of feedback bits can improve system performance more effectively.
  • SNR gain or capacity gain is a function of the average signal-to-noise ratio and the number of feedback bits of the channel information. Therefore, the MS dynamically allocates channel information for each channel
  • the difference in channel quality can be reflected as a difference in Signal to Interference Plus Noise Ratio (SINR). Therefore, it is possible to further allocate a feedback bit of a different number of channel information for channels having different SINRs by using a predetermined dynamic bit allocation strategy according to the known dry-to-noise ratio SINR.
  • the SINR may be inferred by one of the information such as the path loss, the received signal-to-noise ratio, the signal-to-noise ratio, and the like obtained by the channel estimation module 310 on the MS side.
  • the SINR can be inferred by combining one or a combination of information such as measured path loss, received signal to noise ratio, and signal to noise distortion ratio.
  • step S120 More detailed dynamic bit allocation strategy in step S120 in the embodiment provided in Figures 3 - 5 It has been described in detail and will not be described here.
  • the first sending module 330 is configured to send an allocation result of the number of feedback bits of the channel information. After the dynamic bit allocation module 320 dynamically allocates the number of feedback bits of the channel information, the result of the allocation needs to be sent to the base station. In this way, after receiving the allocation result, the base station knows the number of bits allocated by the channel between the base station and the MS, and generates the channel state information codebook that is consistent with the MS end.
  • the channel state information codebook generating module 350 is configured to determine a size of the channel state information codebook according to the number of feedback bits of the channel information dynamically allocated by the dynamic bit allocation module 320, and generate a channel state information codebook;
  • the size of the channel state information codebook C (codebook) of the channel between each base station and the MS is related to the number of feedback bits of the channel information allocated by each base station to the channel of the MS. If a feedback bit of k channel information is allocated for one channel, the channel state information codebook size of this channel is 2 k . Since the embodiment of the present invention dynamically allocates feedback bits of different numbers of channel information to channels having different channel qualities, corresponding codebooks having different sizes are used for channels having different channel qualities. The higher the channel quality of such a channel, the larger the codebook used and the more codeword information it contains.
  • the channel state information codebook generating module 350 can generate a Grassmannian codebook as a channel state information codebook by using the Lloyd algorithm in this embodiment. It can be understood that, in another embodiment, the channel state information codebook is also generated by a GLA (Generalized Lloyd Algorithm).
  • GLA Generalized Lloyd Algorithm
  • the allocation result of the feedback bit number of the channel information may be directly sent to the base station. In another embodiment, the allocation result of the feedback bit number of the channel information may also be sent to one.
  • the forwarding device is sent by the forwarding device to the base station.
  • the feedback codeword determining module 370 is configured to determine a feedback codeword in the channel state information codebook generated by the channel state information codebook generating module 350.
  • the channel state information codebook generation module 350 After the channel state information codebook generation module 350 generates the channel state information codebook, in order to be able to feed back the channel state information in the codebook C of a given size of 2 k (k is the number of feedback bits of the allocated channel information), Find the best codeword as the feedback codeword for the channel state information that needs feedback, so that the feedback codeword can be the most comprehensive and maximize the feedback channel state information.
  • All codewords in codebook C and channel direction information matrix estimated by channel estimation module 310 The chord distance is compared, and the codeword with the smallest chord distance between the channel direction information matrix is used as the feedback codeword, and the index number of the feedback codeword is fed to the base station. For example, if the 16th codeword is a feedback codeword, the index number 16 is fed back to the base station, and the base station can find the corresponding codeword according to the index number, from which the channel state information of the codeword feedback can be known.
  • a second sending module 390 configured to send an index number of the feedback codeword
  • the index number of the feedback codeword may be directly sent to the base station.
  • the index number of the feedback codeword may also be sent to a forwarding device. Send to the base station.
  • the base station learns the number of bits allocated by the channel between the base station and the MS, and according to the allocated number of bits.
  • a channel state information codebook of the same size as the MS side is generated.
  • the BS can obtain the feedback codeword by looking up the codebook through the received index number, and obtain the channel state information of the downlink channel according to the feedback codeword.
  • the number of feedback bits of the channel information is dynamically allocated for each channel, and each channel state information codebook is determined according to the feedback bit number of the allocated channel information. Size, a codebook of the same size is generated for the same channel on both sides of the base station and the terminal, and a feedback codeword for feedback channel state information is determined in the codebook. For a given number of feedback bits of channel information, by dynamic allocation, MS is more In order to reasonably allocate the number of feedback bits of the channel information for different channels, the feedback gain is more fully utilized.
  • a larger number of base stations are supported to participate in Co-MIMO communication, and each of the participating base stations performs the allocation of the feedback bit number of the channel information and the processing of the channel state information codebook, instead of all the cooperative
  • the base station is regarded as a "super base station", and flexible processing is performed for the channel conditions between each cooperative base station and the MS, thereby improving processing flexibility.
  • an embodiment of the present invention provides a base station, including:
  • the first receiving module 420 is configured to receive a dynamic allocation result of the number of feedback bits of the channel information of the MS, where the allocation result is that the MS dynamically allocates channel information to each channel according to the channel quality. The result of feeding the number of bits;
  • the total number of allocated bits is pre-set and limited.
  • the quality of each channel is not completely the same, and the number of feedback bits of different numbers of channel information is allocated to channels with different channel qualities through a preset dynamic bit allocation strategy, which is better. Use feedback gain.
  • the difference in channel quality can be reflected as the difference in SINR. Therefore, according to the signal to interference and noise ratio SINR, a feedback bit of a different number of channel information can be allocated to channels having different SINRs through a preset dynamic bit allocation strategy.
  • the SINR can be inferred by combining one or a combination of information such as path loss, received signal-to-noise ratio, and signal-to-noise ratio on the MS side based on channel estimation or measurement.
  • the channel state information codebook generating module 430 is configured to determine a size of the channel state information codebook according to the distribution result received by the first receiving module 420, and generate a channel state information codebook;
  • the channel state information codebook generated by the channel state information codebook generating module 430 is consistent with the channel state information codebook generated by the terminal side according to the number of feedback bits of the channel information allocated by each channel; the specific description is shown in FIG. 3 - The embodiment shown in FIG. 5 has been described in detail, and details are not described herein again.
  • the second receiving module 440 is configured to receive an index number of the feedback codeword sent by the terminal, where the index number is used to identify the feedback codeword.
  • the feedback codeword is a codeword determined in the channel state information codebook generated by the terminal on the terminal side according to the channel state information estimated by the channel estimation.
  • the specific determination method has been described in detail in the embodiments shown in Figs. 3 to 5, and will not be described here.
  • the feedback codeword determining module 450 is configured to find a corresponding feedback codeword in the channel state information codebook generated by the channel state information codebook generating module 430 according to the index number of the feedback codeword, and obtain terminal feedback from the feedback codeword.
  • Channel status information
  • the precoding design module 460 is configured to perform precoding design according to the channel state information obtained by the feedback codeword determining module.
  • the number of feedback bits of different numbers of channel information is dynamically allocated to each channel according to the condition of the channel, and the channel state information codebooks of different sizes are generated for each channel according to the allocated feedback bit number, according to The feedback codeword provided by each channel state information codebook is reversed
  • the channel state information fed is subjected to a corresponding precoding design, and the feedback gain is more fully utilized.
  • a base station including:
  • the information sending module 410 is configured to send information to the terminal, where the information carries related information for causing the terminal to perform channel estimation, that is, the related information is used to enable the terminal to perform channel estimation.
  • the related information for causing the terminal (MS) to perform channel estimation may be a preset pilot signal in one embodiment, so that the MS may be preset according to the information.
  • the pilot signal is estimated by some channel estimation algorithms and the channel between the base station and the base station to obtain a model parameter of the channel, that is, a channel matrix model. These pilots may, in one embodiment, be periodically inserted into the information transmitted by the base station.
  • the information to be transmitted may also be divided into a plurality of data blocks in advance, and a plurality of pilot signals are interleaved between the small blocks.
  • the training sequence may be added to the information to be sent in advance instead of the pilot, so that after receiving the information sent by the base station, the MS may use some channel estimation algorithms according to the training sequence therein.
  • the channel between the base station and the base station is estimated to obtain a model parameter of the channel, that is, a channel matrix model.
  • These training sequences may, in one embodiment, be contiguous block signals separate from the information transmitted by the base station, and in another embodiment may also be interspersed with information transmitted by the base station.
  • the MS After performing channel estimation according to the information sent by the base station, the MS determines the quality of each channel according to the result of the channel estimation, and dynamically allocates the feedback bit number of the channel information for each channel between the base station and the MS, that is, the pair has different channels.
  • the quality channel dynamically allocates feedback bits of different amounts of channel information and feeds the allocation result back to the base station.
  • the first receiving module 420 is configured to receive a dynamic bit allocation result of the MS, where the allocation result is a result of the number of feedback bits of the channel information dynamically allocated by the MS according to the result of the channel estimation after performing channel estimation according to the information sent by the information sending module 410;
  • the dynamic allocation result is a result of determining the channel quality of each channel and the number of feedback bits of the channel information allocated for each channel according to the result of the channel estimation after performing channel estimation based on the information transmitted by the information transmitting module 410.
  • the result of channel estimation if the channel quality of a channel is relatively good, a larger number of feedback bits of channel information are allocated to the channel, so that more channel state information can be carried, and the base station segment can also correspond. Know more channel status information, Thereby, the gain of the receiving end is improved by a series of measures such as re-adjusting the transmission power of the information.
  • a corresponding bit is allocated to the channel, because the feedback bit of the allocated channel information is sufficient to carry the channel state information of the channel, so that the feedback of the redundant channel information can be performed.
  • the bits are saved and correspondingly allocated to channels with better channel quality.
  • the channel state information codebook generating module 430 is configured to generate a channel state information codebook according to the size of the channel state information codebook according to the allocation result;
  • the size of the channel state information codebook C (codebook) of the channel between each cooperative base station and the MS is related to the number of feedback bits of the allocated channel information of the MS. For example, if the MS allocates feedback bits of k channel information for one channel, the channel state information codebook size of this channel is 2 k .
  • the terminal dynamically allocates feedback bits of different numbers of channel information to channels having different channel qualities, and correspondingly uses codebooks with different sizes for channels having different channel qualities. The higher the quality of the channel, the larger the codebook used and the more codeword information it contains.
  • the base station side can generate a Grassmannian codebook as a channel state information codebook by using the Lloyd algorithm.
  • the channel state information codebook is also generated by a GLA (Generalized Lloyd Algorithm).
  • GLA Generalized Lloyd Algorithm
  • a codebook matching the base station end is also generated according to the size of the feedback bit number of the allocated channel information. This has been described in detail in the embodiment shown in Figures 3-5 and will not be described here.
  • the second receiving module 440 is configured to receive an index number of the feedback codeword sent by the MS, where the index number of the feedback codeword is used to identify the channel state information codebook generated by the MS ⁇ in the MS side, and the channel estimation estimate is used. a feedback codeword determined by the channel state information;
  • the feedback codeword determining module 450 is configured to find a corresponding feedback codeword in the channel state information codebook generated by the channel state information codebook generating module 430 according to the index number of the codeword received by the second receiving module 440, and Obtaining channel state information of the feedback codeword feedback according to the feedback codeword;
  • the feedback codeword determining module 450 can receive the channel state information codebook generated by the channel state information codebook generating module 430 through the index number received by the second receiving module 440. In the middle, find the best code word determined by the MS, that is, the feedback code word.
  • the channel state information of the base station to the MS downlink channel can be obtained according to the feedback codeword.
  • the precoding design module 460 is configured to use the feedback codeword determined by the feedback codeword determining module 450, The channel state information fed is precoded;
  • the precoding design module 460 After the information transmission processing device has collected all of the channel state information fed back by the MS, the precoding design module 460 will begin to perform the precoding design. That is, after the MS feeds back the channel state information of the channel between the MS and all the participating base stations to the information transmission processing device, the precoding design module 460 starts to perform the precoding design.
  • a pre-coding design is performed by taking a Zero-forcing linear precoding algorithm as an example.
  • a Zero-forcing linear precoding algorithm As an example.
  • block orthogonal zero-forcing can also be used.
  • Linear precoding algorithm or matched filtering precoding algorithm can also be used.
  • a non-linear precoding algorithm such as a dirty paper coding algorithm, a nonlinear transmit zero-forcing precoding algorithm or THP (Tomlinson-Harashima Precoding, Tomlin) may also be employed in another embodiment.
  • Sen-Halahima precoding precoding algorithm. Etc., but the implementation complexity is relatively high.
  • the number of feedback bits of the channel information is dynamically allocated for each channel, and each channel state information codebook is determined according to the number of feedback bits of the allocated channel information. Size, a codebook of the same size is generated for the same channel on both sides of the base station and the terminal, and a feedback codeword for feedback channel state information is determined in the codebook, and a feedback bit for a given number of channel information is dynamically allocated, MS It is more reasonable to allocate feedback bits of different numbers of channel information for channels with different channel qualities, and more fully utilize feedback gain.
  • a larger number of base stations are supported to participate in Co-MIMO communication, and each of the participating base stations performs the allocation of the feedback bit number of the channel information and the processing of the channel state information codebook, instead of all the cooperative
  • the base station is regarded as a "super base station", and flexible processing is performed for the channel conditions between each cooperative base station and the MS, thereby improving processing flexibility.
  • the base station in FIG. 11 and FIG. 12 may further include: a power allocation module 470, configured to set different power allocation factors for each terminal according to a preset query table, Each terminal performs power allocation;
  • the offline lookup table provided by the present embodiment allocates different power allocation factors for each terminal according to the power allocation factors. Power allocation is performed for each terminal. Transfer a portion of the larger communication performance gain obtained by the cell center to the edge user of the cell, thereby not reducing Based on the performance of the cell center user, the performance of the cell edge user is improved.
  • a specific power allocation policy has been described in detail in the embodiment provided in FIG. 8, and details are not described herein again.
  • the power allocation strategy proposed by an embodiment of the present invention is based on an offline query table query, and provides a flexible basis for the dynamic allocation of the number of feedback bits of the channel information for each channel.
  • a method for controlling the performance of a cell center and a cell edge user such that the number of feedback bits of the channel information is dynamically allocated according to different channel qualities of users at different locations, so that the channel information is more effectively fed back; and through a new power allocation strategy,
  • the communication performance of the cell edge users is significantly improved without sacrificing the performance of the cell center user.
  • an embodiment of the present invention provides a MIMO communication system, including:
  • At least two base stations 10, 20 and at least one terminal 30, are provided.
  • the terminal 30 is configured to perform channel estimation according to information sent by the base station 10 and the base station 20, that is, estimate a channel matrix between the terminal 30 and the base station 10, the terminal 30, and the base station 20; according to channel quality of each channel, dynamic channel quality Different channels allocate feedback bits of different numbers of channel information. The better the quality of the channel, the more the number of feedback bits of the allocated channel information, and the allocation result is fed back to the base stations 10 and 20.
  • the feedback codeword is determined, and the index number of the feedback codeword is fed back to the base stations 10 and 20.
  • the base stations 10 and 20 are configured to send information to the terminal 30, and the transmitted information includes channel estimation information that the terminal 30 can use. After receiving the feedback bit number allocation result of the channel information fed back by the terminal 30, the data is determined according to the allocation result.
  • the channel state information codebook of the channel between the terminal 30 and the terminal 30 generates a channel state information codebook, and receives an index number of the feedback codeword sent by the terminal 30. In the channel state information codebook, the feedback codeword is found according to the index number.
  • the precoding design is performed based on the channel state information obtained by the feedback codeword.
  • the base stations 10 and 20 are further configured to perform power allocation on the terminal according to a preset query table.
  • the specific allocation policy has been described in detail in the embodiments shown in FIG. 7 and FIG. Let me repeat.
  • the specific structure and function of terminal 30 may be as shown in the embodiment of FIG. 9 in one embodiment, or may be as shown in the embodiment of FIGS. 9 and 10 in another embodiment.
  • the specific structure and function of the base stations 10, 20 may be as shown in the embodiment provided in FIG. 11 in one embodiment. In one embodiment, as shown in the embodiment provided in FIG. 12, in another embodiment, The embodiment provided by Figures 11 and 13 or as shown in the embodiment of Figures 12 and 13 is shown.
  • each channel can be derived or measured at the terminal side.
  • the number of feedback bits of the channel information is dynamically allocated for each channel, and the size of the channel state information codebook is determined according to the number of feedback bits of the allocated channel information.
  • the same codebook is generated on both sides of the base station and the terminal, and the feedback codeword of the feedback channel state information is determined in the codebook.
  • the MS is more reasonable to obtain different channel quality by dynamic allocation.
  • the channel allocates feedback bits of different numbers of channel information, so that the base station can more fully utilize the channel state information for precoding design, and more fully utilizes the feedback gain.
  • any number of base stations are supported to participate in the Co. - MIMO communication, which separately processes the feedback bit number of the channel information and the channel state information codebook for each participating base station, instead of treating all the cooperative base stations as one "super base station", which can improve the processing flexibility.
  • the power allocation strategy proposed by another embodiment of the present invention provides an flexible control of the cell center and the offline query table query.
  • Cell edge user performance method such that the number of feedback bits of channel information is dynamically allocated for each channel according to the channel quality of each channel, so that the channel information is more effectively fed back; and the new power allocation strategy is adopted without sacrificing the cell center
  • the communication performance of the cell edge users is significantly improved.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware or a combination of the two. Based on such understanding, the technical solution of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium, including several instructions.
  • a computer device which may be a personal computer, server, or network device, etc.
  • the storage medium may be random access memory (RAM), memory, read only memory (ROM), Electrically programmable ROM, electrically erasable programmable ROM, registers, hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.
  • RAM random access memory
  • ROM read only memory
  • Electrically programmable ROM electrically erasable programmable ROM
  • registers hard disk, removable disk, CD-ROM, or any other form of storage medium known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明实施例公开了一种信道信息反馈方法, 包括: 根据信道质量, 动态的为各个信道分配信道信息的反馈比特数;根据各个信道动态分配的信道信息的反馈比特数, 确定各个信道的信道状态信息码本的大小, 产生信道状态信息码本; 根据信道状态信息在所述信道状态信息码本中确定反馈码字, 所述反馈码字用于反馈所述信道状态信息;发送所述信道信息的反馈比特数的分配结果和所述反馈码字的索引号, 所述索引号用于标识所述反馈码字。 相应的本发明实施例还公开了一种信息处理方法、一种终端、基站和 MIMO系统。通过以上技术方案, 动态的为各个信道分配不同数目的信道信息的反馈比特数, 更加充分的利用了反馈增益。

Description

一种信道信息反馈方法、 终端、 基站及多输入多输出系统 本申请要求于 2009年 4月 17日提交中国专利局, 申请号为 200910106694.6, 发明名称为"一种信道信息反馈方法、 终端、基站及多输入多输出系统"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明设计通信领域, 特别涉及一种信道信息反馈方法、 终端、基站及多 输入多输出系统。 背景技术 物理层技术。在全局范围内频率复用的蜂窝系统中, 小区间干扰已经成为限制 移动通信性能的主要因素, 而 Co-MIMO的基本思想则是协调多个基站的信号 传输, 以减轻蜂窝间干扰。 在 Co-MIMO系统中, 多个基站(BS )将同时协作 的为多个终端 (MS )提供通信服务。
与传统的, 带有单一 BS发送方信道状态信息( CSIT )有限反馈的 SDMA 预编码方案相比不同的是, Co-MIMO 系统一个固有的特征是参与协作的 BS 到一个 MS具有不同的信道质量, 这将导致 MS接收的来自不同 BS的信号具 有不同的平均信噪比。 为了根据信道的状态进行预编码设计, 就需要 MS侧反 馈信道的信道状态信息给基站,现有技术中均采用平均分配信道信息的反馈比 特数得方案,不论是信道质量好得信道还是信道质量差得信道都统一分配数目 一样的信道信息的反馈比特。
现有技术中采用的平均分配信道信息的反馈比特数的方案,其反馈的信道 状态信息有限, 反馈增益比较低。
发明内容
本发明实施例提供一种信道信息反馈方法、终端、基站及多输入多输出系 统, 根据信道的状况动态的为各个信道分配不同数目的信道信息的反馈比特 数, 并根据分配的反馈比特数产生信道状态信息码本, 能更加充分的反映信道 的信道状态信息, 更加充分的利用了反馈增益。
本发明一个实施例提供一种信道信息反馈方法, 包括:
根据信道质量, 动态的为各个信道分配信道信息的反馈比特数; 根据各个信道动态分配的信道信息的反馈比特数,确定各个信道的信道状 态信息码本的大小, 产生信道状态信息码本;
根据信道状态信息在所述信道状态信息码本中确定反馈码字,所述反馈码 字用于反馈所述信道状态信息;
发送所述信道信息的反馈比特数的分配结果和所述反馈码字的索引号,所 述索引号用于标识所述反馈码字。
本发明一个实施例提供一种信息处理方法, 包括:
接收终端发送的信道信息的反馈比特数的动态分配结果,所述分配结果为 终端根据信道质量, 动态地为各个信道分配信道信息的反馈比特数的结果; 才艮据所述分配结果确定信道状态信息码本的大小, 产生信道状态信息码 本;
接收终端发送的反馈码字的索引号,根据所述反馈码字的索引号,在所述 信道状态信息码本中,找到相应的反馈码字,从所述反馈码字中获得终端反馈 的信道状态信息; 所述索引号用于标识所述反馈码字;
根据所述信道状态信息进行预编码设计。
本发明一个实施例提供一种终端, 包括:
动态比特分配模块, 用于根据信道质量, 动态的为各个信道分配信道信息 的反馈比特数;
第一发送模块, 用于发送所述信道信息的反馈比特数的分配结果; 信道状态信息码本产生模块, 用于根据所述动态比特分配模块中,信道信 息的反馈比特数的分配结果, 确定各个信道的信道状态信息码本的大小,产生 所述信道状态信息码本;
反馈码字确定模块,用于根据信道状态信息在所述信道状态信息码本中确 定反馈码字, 所述反馈码字用于反馈所述信道状态信息; 第二发送模块,用于发送所述反馈码字确定模块确定出的反馈码字的索引 号, 所述索引号用于标识所述反馈码字。
本发明实施例提供一种基站, 包括:
第一接收模块,用于接收终端发送的信道信息的反馈比特数的动态分配结 果, 所述分配结果为终端根据信道质量,动态地为各个信道分配信道信息的反 馈比特数的结果;
信道状态信息码本产生模块,用于根据所述分配结果确定信道状态信息码 本的大小, 产生信道状态信息码本;
第二接收模块, 用于接收终端发送的反馈码字的索引号, 所述索引号用于 标识所述反馈码字;
反馈码字确定模块, 用于根据所述第二接收模块接收的反馈码字的索引 号, 在所述信道状态信息码本中, 找到相应的反馈码字, 从所述反馈码字中获 得终端反馈的信道状态信息;
预编码设计模块, 用于据反馈码字确定模块获得的信道状态信息,进行预 编码设计。
本发明一个实施例提供一种多输入多输出 MIMO通信系统, 包括至少两 个基站和至少一个终端;
所述终端, 用于根据信道质量,动态的为各个信道分配信道信息的反馈比 特数;根据各个信道动态分配的信息反馈比特的数,确定各个信道的信道状态 信息码本的大小,产生信道状态信息码本; ^^据信道状态信息在产生的信道状 态信息码本中,确定反馈码字;发送所述信道信息的反馈比特数的分配结果和 所述反馈码字的索引号,所述反馈码字用于反馈根据所述信道估计的结果得到 的信道状态信息, 所述索引号用于标识所述反馈码字;
所述基站, 用于接收所述终端发送的信道信息的反馈比特数分配结果;根 据分配结果,确定和所述终端间的信道的信道状态信息码本的大小,产生信道 状态信息码本;接收所述终端发送的反馈码字的索引号,在产生的信道状态信 息码本中,根据所述索引号找到反馈码字;根据反馈码字得到的信道状态信息 进行预编码设计。 本发明实施例通过以上技术方案,根据信道的状况动态的为各个信道分配 不同数目的信道信息的反馈比特数,并根据分配的反馈比特数给各个信道产生 不同大小的信道状态信息码本, 能更加充分的反映信道的信道状态信息, 更加 充分的利用了反馈增益。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1 本发明实施例提供协作 MIMO通用系统模型示意图;
图 2 本发明实施例提供的一种协作 MIMO通信息系统示意图; 图 3 本发明实施例提供的一种信道信息反馈方法示意图;
图 4本发明实施例提供的一种信道信息反馈方法示意图;
图 5 本发明实施例提供的一种信道信息反馈方法示意图;
图 6 本发明实施例提供的一种信息处理方法示意图;
图 7 本发明实施例提供的一种信息处理方法示意图;
图 8 本发明实施例提供的一种信息处理方法示意图;
图 9 本发明实施例提供的一种终端结构示意图;
图 10本发明实施例提供的另一种终端中的信道估模块的结构示意图; 图 11 本发明实施例提供的一种基站结构示意图;
图 12本发明实施例提供的一种基站结构示意图;
图 13 本发明实施例提供的一种基站中的功率分配模块示意图; 图 14本发明实施例提供的一种 MIMO系统示意图;
图 15 本发明实施例提供的功率分配策略下的性能改善示意图; 图 16本发明实施例提供的功率分配策略下的性能改善示意图; 图 17本发明实施例提供的一种信息处理方法示意图。 具体实施方式 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1是本发明实施例提供的协作 MIMO通用系统模型示意图。 由图 1可 知, 在协作 MIMO 系统中, 多个基站同时协作的为多个移动终端提供通信服 务。 当采用有限比特反馈时, 每个终端需要反馈是多个信道矩阵信息(每个信 道矩阵信息, 包含了这个信道的一些信道状态信息), 因此, 终端需要为每个 信道矩阵合理的分配可用的反馈比特, 以做到对反馈比特的充分利用。
为了便于更直观、 容易的理解 Co - MIMO系统, 如图 2所示, 本发明实 施例还提供一种协作 MIMO系统通信场景示意图。 如图 7所示, 两个邻居 BS 为两个 MS进行协作的场景, (N = 2—BS ¾, K = 2—MS数, ητ = 4—发射天 线, nR=2—接收天线)。 MS2与两个 BS距离相等, 而 MS1与 BS1的距离比 BS2的距离更近。
如图 3所示,本发明实施例提供一种信道信息反馈方法,此方法应用在如 图 1或者图 2所示的协作 MIMO系统中或者其它通信系统, 如 MIMO-OFDM 系统、 LTE系统或者 WiMAX系统等, 该方法包括:
5101 , 根据信道质量, 动态的为各个信道分配信道信息的反馈比特数;
5102,根据各个信道动态分配的信道信息的反馈比特数,确定各个信道的 信道状态信息码本的大小, 产生信道状态信息码本;
5103,根据信道状态信息在所述信道状态信息码本中确定反馈码字,反馈 码字用于反馈信道状态信息;
5104,发送信道信息的反馈比特数的分配结果和反馈码字的索引号, 索引 号用于标识所述反馈码字。
需要说明的是, 基站接收到 S104发送的信道信息的反馈比特数的分配结 果和反馈码字的索引号后,会根据分配结果中得知的分配的信道信息的反馈比 特数产生一个和终端侧大小相同, 内容一致的信道状态信息码本, 并根据接收 到的索引号,在产生的信道状态信息码本中找到反馈码字,根据反馈码字反馈 的信道的信道状态信息, 进行相应的预编码设计。
需要说明的是, 各个信道的信道质量可以通过信道估计或者测量得到。 本发明实施例通过以上技术方案,根据信道的状况动态的为各个信道分配 不同数目的信道信息的反馈比特数,并根据分配的反馈比特数给各个信道产生 不同大小的信道状态信息码本,根据各个信道状态信息码本提供的反馈码字反 馈的信道状态信息进行相应的预编码设计, 更加充分的利用了反馈增益。
具体的, 如图 4所示, 本发明实施例提供一种信道信息反馈方法, 此方法 应用在如图 1或者图 2所示的 Co - MIMO系统中或者其它通信系统,如 MIMO - OFDM系统、 LTE系统或者 WiMAX系统等, 该方法包括:
S110, 根据基站发送的信息进行信道估计;
信道估计,可以是从接收到的数据中,将假定的某个信道模型的模型参数 估计出来的过程。 信道估计还可以给接收端提供需要的信道状态信息。
接受到基站(BS )发送的信息后, 移动终端(MS )根据基站发送的信息 进行信道估计。基站发送的信息在一个实施例中可以包括一个预先设定的导频 信号, 这样 MS可以根据信息中的预先设定的导频信号,通过一些信道估计算 法, 对其和基站之间的信道进行估计, 得到信道的模型参数, 也就是信道矩阵 模型。 这些导频在一个实施例中可以是周期性的插入到基站发送的信息中的。 在另一个实施例中也可以预先将需要发送的信息分割成多个数据小块,在这些 小块之间间隔地插入多个导频信号。
这里提到的信道估计算法, 在一个实施例中可以是最小二乘信道估计算 法,在另一个实施例中还可以是最大似然估计算法,在另一个实施例中也可以 为最小均方误差估计算法或者最大后验概率估计算法。
在另一个实施例中也可以预先在需要发送的信息中加入训练序列来代替 导频, 这样 MS在接收到基站发送的信息后, 就可以根据里面的训练序列, 通 过一些信道估计算法对其和基站之间的信道进行估计, 得到信道的模型参数, 也就是信道矩阵模型。这些训练序列在一个实施例中可以是与基站发送的信息 分离的呈连续块状的信号,在另一个实施例中也可以均勾的插在基站发送的信 息中。
这里提到的信道估计算法, 在一个实施例中可以是最小二乘信道估计算 法,在另一个实施例中还可以是最大似然估计算法,在另一个实施例中也可以 为最小均方误差估计算法或者最大后验概率估计算法。
当然可以理解的是,在一个实施例中还可以利用盲估计进行信道估计。盲 估计不需要训练序列或者导频,完全利用传输的数据的内在信息来进行信道估 计。当然在另一个实施例中也可以将利用导频的信道估计与盲估计结合起来进 行信道估计, 或者将利用训练序列的信道估计与盲估计结合起来进行信道估 计。
经信道估计后, 可以得到 MS和基站之间的信道矩阵模型, 现详细描述如 下:
假设 MS侧的信道估计是完善的, 例如, MS有完善的信道状态信息和路 径损耗信息。 假设每个基站有 ητ根发射天线, 每个 MS有¾根接收天线。 通 过信道估计, 基站的第 n根发射天线到 MS的第 m根接收天线的信道可被表 示为 Η,, 并可被建模为:
Figure imgf000009_0001
其中 „为基站的第 η根发射天线到 MS的第 m根接收天线的距离, ^为 预先设定的标准距离, γ为路径损耗因子, C表示路径的衰落, I 表示小 尺度瑞利衰落, ¾^是1¾^ 维矩阵。 进一步的, 在另一个实施例中, MS端 还可以根据 ( 1 ) 式获得 和 Η=„参数获得信道的路径衰落情况, 和小尺度瑞 利衰落情况,以及从这些衰落情况获得的相应的信噪比 SNR等信道状态信息。
在图 1所示的协作通信系统中, 同时有 Ν个基站为第 m个 MS进行通信 服务, 在这里 N是随时间变化的。 对于第 m个 MS而言, 需要估计 N条信道 矩阵, Η^, Η^ ,... , „Ν, 且所有这些矩阵与 (1 )式都有相似的结构, 因此, 可以得到总的信道矩阵:
H m = ίΗ™, Η™¾ · · · J ( 2 )
( 2 ) 式中的信道矩阵的每一个元素都是一个小矩阵, 它为每个基站和第 m个 MS之间的信道矩阵, 代表了每个基站和第 m个 MS之间的所有信道情 况, 即包括了基站的所有天线与 MS的所有天线之间的信道情况。 这样, 在一 个实施例中, MS就可以通过信道估计, 来获得各个信道的路径损耗、 接收信 噪比、信号与噪声失真比等信息, ^^据其中的一种或者几种信息联合推断得出 信道的信道质量好坏; 当然可以理解的是在另一个实施例种,信道的质量也可 以通过测量得到, 例如通过测量得到一些路径损耗、接收信噪比、信号与噪声 失真比等信息, 然后通过联合计算或者推断得到信道的信道质量的好坏。
S120, 根据信道质量, 动态的为各个信道分配信道信息的反馈比特数; 在带有有限反馈的蜂窝系统中, 分配比特的总数都是预先设定好的,有限 的。 在 Co-MIMO通信系统系统中, 各个信道的质量是不完全相同的, 通过预 先设定的动态比特分配策略,为信道质量不同的信道分配不同数目的信道信息 的反馈比特数, 能更好的利用反馈增益。
具体的,信道质量好的信道能分配到,相对于平均分配的信道信息的反馈 比特数更多的信道信息的反馈比特数。那么根据分配的信道信息的反馈比特数 相对于根据平均分配的信道信息的反馈比特数,就能够承载更多的信道状态信 息;而信道质量差的信道根据平均分配的信道信息的反馈比特数就足以承载所 有的信道状态信息,那么就可以给信道状态差的信道相应的少分配一点信道信 息的反馈比特,将更多的信道信息的反馈比特分配给信道状态较好的信道。这 样就能够更充分的利用有限的总的信道信息的反馈比特数个数,为基站提供更 全面的信道状态信息,基站端根据这些信道状态信息,对发射的功率进行调整, 从而在接收端能收到相对于平均分配信道信息的反馈比特数来说更好的增益。
在一个实施例中, 信道质量与基站和 MS之间的距离是强相关的, 因此,
MS越靠近基站, 其信道的平均信噪比越高, 其信道的质量也就越高。 例如, 在一个实施例中, 有两个基站协同为一个 MS进行通信服务, 当 MS离基站 1 比基站 2近的时候,基站 1到 MS的信道的信道质量要好于基站 2到 MS的信 道的信道质量。
在带有有限反馈的蜂窝系统中, 分配比特都是预先设定好的, 有限的。 假 设预先设定总共 8个信道信息的反馈比特用于反馈信道状态信息,就可以分配 5个信道信息的反馈比特给基站 1到 MS的信道, 3个信道信息的反馈比特给 基站 2到 MS的信道。 可以理解的是, 在另一个实施例中, 可以分配 6个信道 信息的反馈比特给基站 1到 MS的信道,分配 2个信道信息的反馈比特给基站 2到 MS的信道。 在带有有限反馈的蜂窝系统中, 性能的增益(SNR增益或容 量增益)是平均信噪比以及信道信息的反馈比特数的函数, 因此, MS根据信 道质量为各个信道动态的分配信道信息的反馈比特数,能更有效的提升系统性 能。
在一个实施例中,信道质量的不同可以反映为在 MS侧通过信道估计(如 S110 中所示)或者测量得到的路径损耗、 接收信噪比或者信号与噪声失真比 等信息的不同
更进一步的, 为了更准确的量化信道质量, 在另一个实施例中, 信道质量 的不同又可以反映为信干噪比(SINR, Signal to Interference Plus Noise Ratio ) 的不同。 因此, 可以进一步根据信干噪比 SINR, 通过预先设定的动态比特分 配策略, 为 SINR不同的信道分配不同数目的信道信息的反馈比特。 SINR可 以通过在 MS侧根据信道估计或者测量得到的路径损耗、接收信噪比、信号与 噪声失真比等信息中的一种或者其中的几种信息联合推断得出。本发明以下实 施例均以 SINR来量化信道质量。
为便于更好, 更为清楚的理解动态比特分配方案, 在另一个实施例中, 以 图 2所示的 Co-MIMO系统为例来说明动态比特的分配方案:
为方便描述,将 MS1与 BS1之间的路径用 BS1-MS1描述,将 MS1与 BS2 之间的路径用 BS2-MS1描述; 将 MS2与 BS1之间的路径用 BS1-MS2描述, 将 MS2与 BS2之间的路径用 BS2-MS2描述。
动态反馈比特分配策略为基于门限的反馈比特分配策略,在一个实施例中 为 MS到不同的参与协作的 BS间的信干噪比 SINR之差。 在本发明实施例提 供的图 2所示的协作通信场景中,假设总共有 8个信道信息的反馈比特用于反 馈信道状态信息, 因此, 可能的信道信息的反馈比特数分配组合包括(1, 7 ), ( 2, 6 ), ( 3, 5 ), (4, 4 )。 根据可能组合, 离线设定如下的 SINR之差门限, 如表 1所示:
MS到不同 BS的 SINR之差门限 信道信息的反馈比特数分配方案
O dB (4, 4) 5 dB (3, 5)
10 dB (2, 6)
15 dB (1, 7)
表 1
对与 MSI来说, 由于距离 BS1比 BS2更近, 所以 BS1-MS1的 SINR要 小于 BS2 - MS1的 SINR, 因此若路径的 SINR之差下式所示:
5dB≤ S賺 -SINR ―篇 <蘭 上式表示 MS1到 BS1的 SINR与 MS1到 BS2的 SINR之差大于 5dB而小 于 10dB, 例如之差为 8dB。 这时, 根据表 1, 分配给 MS1-BS1链路 5个信道 信息的反馈比特用于反馈信道状态信息, 而分配给 MS1-BS2链路 3个信道信 息的反馈比特用于反馈信道状态信息。 可以理解的是, 如果两路径的差值为 12dB或者 l ldB ,那么根据表 1,分配给 MS1-BS1链路 6个信道信息的反馈比 特用于反馈信道状态信息, 而分配给 MS1-BS2链路 2个信道信息的反馈比特 用于反馈信道状态信息。
而对于 MS2来说, 由于 MS2到 BS1和 BS2的距离相同, 因此根据表 1, 分配给 MS2-BS1链路 4个信道信息的反馈比特用于反馈信道状态信息, 分配 给 MS2-BS2链路 4个信道信息的反馈比特用于反馈信道状态信息。 可以理解 的是 MS2在另一个实施例中到 BS1和 BS2的距离也可能不相同,这时的分配 策略类似于上面提到的图 2中 MS1的分配策略, 在此不再赘述。
需要说明的是, 上述门限设置是离线完成的 (即预先设置好的), 并且在 BS、 MS都有相关信息保存。 在本实施例中门限值如表 1所示, 但在另一个实 施例中可能会有不同的预设的门限值, 如 0dB, 4dB, 8dB, 12dB , 当然也可 以为其它预设的门 P艮值。
需要说明的是, 在另一个实施例中, 可能总的信道信息的反馈比特数为 10个, 9个, 或者其它的值, 这时候也有类似于表 1所示的反馈比特组合, 如 在信道信息的反馈比特数为 10个的时候, 有如下组合(1, 9 ), (2, 8 ), ( 3 , 7 ), ( 4, 6 ), (5, 5 ), 相应 SINR之差门限可以设置为 12dB, 9dB, 6dB, 3dB , OdB , 当然在另一个实施例中门限也可以为其它数值。 当总的反馈比特数为其 它数值时, 具有类似的设置。
可以理解的是, 在另一个实施例中, 信道质量也可以根据 MS到不同 BS 可能的组合, 离线设定如下的 SINR之比的门限, 如表 2所示:
仍以图 2为例, 假设, BS1-MS1的 SINR为 10dB, BS2 - MS1的 SINR 为 16dB,两者的比值为 5:8 = 1:1.6,1.5≤1.6≤2,根据表 2可知,分配给 MS1-BS1 链路 5个信道信息的反馈比特用于反馈信道状态信息, 而分配各 MS1-BS2链 路 3个信道信息的反馈比特用于反馈信道状态信息。
Figure imgf000013_0001
表 2
当然可以理解的是,在本实施例中门 P艮值如表 2所示,但在另一个实施例 中可能会有不同的预设的门限值, 如 1, 1.4, 2, 2.4, 当然也可以为其它预设 的门限值, 如, 1, 2, 2.5, 3或者 1, 1.3, 1.8, 2.2等。 当总的信道信息的反 馈比特数为别的数值, 比如 10个的时候, 有如下组合(5, 5 ), (4, 6 ), ( 3 , 7 ), ( 2, 8 ), (1, 9 ), 相应的 SINR之比门限就可以设置为 1, 1.5, 2, 2.5, 3 , 当然在另一个实施例中门限值也可以为其它数值。 另外, 当总的信道信息的反 馈比特数为其它数值时, 也具有类似的设置。
当然可以理解的是, 当协作的基站为 3个或者 3个以上时, MS到各个协 作基站的 SINR有着不同的值, 有着不同的比例, 如当基站为 3个时候, 假设 MS到三个基站的 SINR比为 1 : 1 : 2, 则当总的信道信息的反馈比特数为 8 时, 则给相应的路径分别分配 2, 2和 4个信道信息的反馈比特, 当 SINR比 为其它数值时,或者总的信道信息的反馈比特数为其它数值时,动态分配策略 有着类似的设置, 可以根据实际情况的需要灵活设置。 当然协作的基站为 3 个或者 3个以上是也可以根据所有路径中, 两两路径的 SINR的差值或者两两 路径的 SINR的差值之间的比例值, 来根据可能的信道信息的反馈比特数分配 组合设定门限值。
S121 ,将信道信息的反馈比特数的分配结果发送给基站端。这样基站端在 收到分配结果后, 从中得知其与 MS 间的信道所分配的信道信息的反馈比特 数, 并根据所分配的信道信息的反馈比特数产生一个和 MS端相同大小, 内容 一致的信道状态信息码本。 需要说明的是, 在一个实施例中, 可以将信道信息 的反馈比特数的分配结果直接发送给基站端,在另一个实施例中,也可以将信 道信息的反馈比特数的分配结果发送给一个转发装置,由转发装置发送给基站 端。
S130,根据动态分配的信道信息的反馈比特数的大小确定信道状态信息码 本的大小, 产生信道状态信息码本;
每个基站与 MS之间的信道的信道状态信息码本 C ( codebook ) 的大小, 与每个基站到 MS的信道所分配的信道信息的反馈比特数相关。 如根据 S110 中信道估计的结果为一个信道分配了 k个信道信息的反馈比特,则这个信道的 信道状态信息码本大小即为 2k。 由于本发明实施例对具有不同 SINR (即信道 质量) 的信道动态分配不同数目的信道信息的反馈比特, 相应的对具有不同 SINR的信道就使用有不同大小的信道状态信息码本。这样信道的平均 SNR越 高, 则使用的码本越大, 包含的码字信息也就越多。
当确定完信道状态信息码本的大小后, 就可以对步骤 S110中估计出的信 道矩阵进行分解; 在一个实施例中, 对 S110中估计出的信道矩阵进行矩阵分 解, 也可以在步骤 S110中进行; 当然可以理解的是, 在另一个实施例中, 对 信道矩阵分解也可以在确定码本大小的前面进行, 并不需要特别限定。举例来 说:
在第 m个 MS, 对每个信道的信道矩阵 Hw„进行奇异值分解( SVD ), 可 以得到:
H —
mn TJ Q Η
mn mn mn ( 3 ) 通过奇异值分解后, ¾ (第 m个 MS与所有协作基站间的协作信 i ^巨阵) 可以表示为
H = U S V U S V, ( 4 ) 更进一步可以简化表示为:
H^ A^ ( 5 ) 其中,
Figure imgf000015_0001
在这里 ( 7 ) 式中的每个 为 N个基站中的每个基站与 MS间的信道的 信道方向信息矩阵, 每个 N 包含了每个信道的信道方向信息 (channel direction information ), 即包含了每个基站与 MS 间的所有信道的信道状态信 息, 即包括了基站的所有天线与 MS的所有天线之间的信道状态信息。
MS需要把每个信道的的 V,反馈给基站端, 但是受分配的信道信息的反 馈比特数量的限制, 不能完全的直接将 Vw反馈给基站端。 比如说如果反馈一 个信道的 Vw需要 10个比特, 但是为这个信道只分配了 5个信道信息的反馈 比特, 那么就不足以反馈 Vw„。 而本发明实施例中, 利用信道状态信息码本 C 来近似的反馈这个 Vw, 分配了 5个信道信息的反馈比特, 那么信道状态信息 码本一共就包含 25 (即 32 )个码字信息, 相比不采用码本或者对各个信道采 用相同大小的码本,根据分配的信道信息的反馈比特数动态的产生不同大小的 码本, 用码本种的码字反馈信道的 Vw„, 能更充分的利用分配的信道信息的反 馈比特数来反馈信道的信道状态信息。
将码本 c中的所有码字与 vw„进行比较,得到一个最佳的码字作为反馈码 字, 将这个反馈码字的索引号发馈给基站端。 例如, 第 16个码字最佳, 则将 其索引号 16反馈给基站, 基站根据这个索引号就能找到相应的码字, 从而得 知 N 的相对最近似的消息。
在本实施例中可以通过 Lloyd算法产生 Grassmannian码本,作为信道状态 信息码本。 当然可以理解的是, 在另一个实施例中也通过 GLA ( Generalized Lloyd Algorithm, 广义 Lloyd算法)产生信道状态信息码本。
S140,根据信道估计估计出的信道状态信息,在产生的信道状态信息码本 中, 确定反馈码字;
( 7 ) 式中的每个 N 为 N个基站中的每个基站与 MS间的信道的信道方 向信息矩阵, 每个 N 包含了每个信道的信道方向信息 ( channel direction information ), 即包含了每个基站与 MS 间的所有信道的信道状态信息, 即包 括了基站的所有天线与 MS的所有天线之间的信道状态信息。所以在一个实施 例中可以根据每个信道的 Vw来确定反馈码字, 当然在其它实施例中也可以根 剧其它方式来得到信道状态信息,比如通过对信号功率的估计或者测量等方式 得到信道状态信息。
当步骤 S130产生信道状态信息码本后, 为了能在给定大小为 2k ( k为分 配的反馈比特)的码本 C中,反馈信道方向信息矩阵 N 包含的信道方向信息 ( channel direction information ), 需要为 Vw找到一个最佳的码字作为反馈码 字, 这样反馈码字才能最全面, 最大限度的反馈 Vw 包含的信道状态信息。 假 设这个反馈码字的索引号为 c, MS需要进行如下穷举搜索和对比来找到这个 反馈码字: c = argJ minVc(Vc , VWJ}1
vcecr 其中, Vc是码本 C中的第 c个码字, ^ ^,^„)是 „与¥间的弦距离 ( Chordal Distance ), 其定义为:
Figure imgf000016_0001
式(9 ) 中的下标 表示范数, 范数是对函数、 向量和矩阵定义的一种度 量形式。 使用范数可以测量两个函数、 向量或矩阵之间的距离, 向量范数是度 量向量长度的一种定义形式。这里的范数表示矩阵之间的距离,也就是我们所 说的 Vw 与 Vc间的弦距离。 即, 根据(8 )、 (9 ) 两式, 通过穷举找到和 V 的弦长度距离最小的码字 Vc, 作为反馈码字。 S150, 在 MS确定出反馈码字后, 还包括步骤 S150, MS可以通过上行反 馈信道, 将反馈码字 Vc的索引号 c发送给 BS, 索引号 c用于标识反馈码字 Vc。 索引号在本发明所有实施例中, 均是起的这个作用, 即标识反馈码字。
需要说明的是, 在一个实施例中, 可以将反馈码字 Vc的索引号 c直接发 送给基站端, 在另一个实施例中, 也可以将反馈码字 Vc的索引号 c发送给一 个转发装置, 由转发装置发送给基站端。
这里需要说明的是, 由于 S121中分配完信道信息的反馈比特后要将分配 结果反馈给基站, 这样基站在收到分配结果后,从中得知其与 MS间的信道所 分配的比特数, 并根据所分配的比特数产生一个和 MS端相同大小, 内容一致 的信道状态信息码本。
由于 BS和 MS对使用的码本达成了一致, 因此, BS能通过接收到的索 引 c查找码本得到码字最佳码字 Ve, 根据 Ve得到下行链路信道的信道状态信 息, 并根据得到的信道状态信息进行相应的预编码设计。
需要说明的是, 如图 5所示, 在另一个实施例中, 步骤 S121将信道信息 的反馈比特的分配结果发送给基站也可以放在步骤 S140的后面, 即图 4所示 的实施例中的步骤 S160, 将信道信息的反馈比特的分配结果和反馈码字的索 引号发送给基站。在一个实施例中,信道信息的反馈比特的分配结果和反馈码 字的索引号可以一起发送给基站, 在另一个实施例中也可以分别发送给基站。 而且可以理解的是,信道信息的反馈比特的分配结果在一个实施例中可以在反 馈码字的索引号发送给基站后再发送给基站,也可以在反馈码字的索引号发送 给基站前发送给基站, 并不做特别的限定。
本发明实施例通过以上技术方案,根据信道估计的结果,动态的为每个信 道分配信道信息的反馈比特数,并根据所分配的信道信息的反馈比特数确定每 个的信道状态信息码本的大小,在基站和终端两侧为同一个信道产生一个一致 的码本,在码本中确定反馈信道状态信息的反馈码字,对于给定数目的信道信 息的反馈比特, 通过动态分配, MS更为合理得为不同的信道分配信道信息的 反馈比特数, 更充分的利用了反馈增益。 另外本发明实施例中, 支持更多数目 基站参与 Co - MIMO通信, 分别对每个参与协作的基站进行信道信息的反馈 比特的分配和信道状态信息码本的处理, 而不是把所有协作的基站视为一个 "超级基站", 针对每个协作基站和 MS间的信道状况, 进行灵活处理, 提升 处理的灵活性。
如图 6所示, 本发明实施例提供一种信息处理方法, 此方法应用在如图 1 或者图 2所示的协作 MIMO系统中或者其它通信系统,如 MIMO-OFDM系统、 LTE系统或者 WiMAX系统等, 该方法包括:
5201 ,接收终端发送的信道信息的反馈比特数动态分配结果,该分配结果 为终端根据信道质量, 动态地为各个信道分配信道信息的反馈比特数的结果;
5202,根据该分配结果确定信道状态信息码本的大小,产生信道状态信息 码本;
S203, 接收终端发送的反馈码字的索引号, 根据该反馈码字的索引号, 在
S202产生的信道状态信息码本中, 找到相应的反馈码字, 从反馈码字中获得 终端反馈的信道状态信息; 所述索引号用于标识所述反馈码字;
S204, 根据所述信道状态信息进行预编码设计。
需要说明的是,各个信道的信道质量在终端侧可以通过信道估计或者测量 得到。
本发明实施例通过以上技术方案,根据信道的状况动态的为各个信道分配 不同数目的信道信息的反馈比特数,并根据分配的反馈比特数给各个信道产生 不同大小的信道状态信息码本,根据各个信道状态信息码本提供的反馈码字反 馈的信道状态信息进行相应的预编码设计, 更加充分的利用了反馈增益。
如图 17所示, 在另一个实施例中, 更进一步的, 在基站端进行预编码设 计后还可以包括,
S260,根据预先设定的查询表, 对各个终端设定不同的功率分配因子, 对 终端进行功率分配;
通过图 6所示的本发明实施例提供的动态信道信息的反馈比特数方案,小 区的用户尤其是小区中心的用户的性能得到了较大的提高,通过本发明实施例 提供的功率分配策略,将小区中心用的提高的性能的一部分转移给小区边缘用 户, 从而在不降低小区中心用户性能的基 上, 提高小区边缘用户通信性能。
具体的, 如图 7所示, 本发明实施例提供一种信息处理方法, 此方法应用 在如图 1或者图 2所示的协作 MIMO系统中或者其它通信系统, 如 MIMO - OFDM系统、 LTE系统或者 WiMAX系统等, 该方法包括:
S210, 向终端发送信息, 所述信息中携带有信道估计信息, 信道估计信息 用于使终端进行信道估计;
基站发送的信息中,有关用于使终端进行信道估计的相关信息,在一个实 施例中可以为一个预先设定的导频信号,这样 MS可以根据信息中的预先设定 的导频信号, 通过一些信道估计算法, 对其和基站之间的信道进行估计, 得到 信道的模型参数,也就是信道矩阵模型。这些导频在一个实施例中可以是周期 性的插入到基站发送的信息中的。在另一个实施例中也可以预先将需要发送的 信息分割成多个数据小块, 在这些小块之间间隔地插入多个导频信号。
在另一个实施例中,还可以预先在需要发送的信息中加入训练序列来代替 导频, 这样 MS在接收到基站发送的信息后, 就可以根据里面的训练序列, 通 过一些信道估计算法对其和基站之间的信道进行估计, 得到信道的模型参数, 也就是信道矩阵模型。这些训练序列在一个实施例中可以是与基站发送的信息 分离的呈连续块状的信号,在另一个实施例中也可以均勾的插在基站发送的信 息中。
MS根据基站发送的信息, 进行信道估计后, 将会根据信道估计的结果, 动态的为不同的基站和 MS之间的信道分配信道信息的反馈比特数,即对具有 不同平均 SNR的信道动态的分配不同数量的信道信息的反馈比特, 并将分配 结果反馈给基站。
S220 - S230,接收 MS发送的信道信息的反馈比特数动态分配结果,根据 分配结果的确定信道状态信息码本的大小, 产生信道状态信息码本; 所述分配 结果为 MS根据信道质量,动态地为各个信道分配信道信息的反馈比特数的结 果;
需要说明的是, 在一个实施例中, MS可以根据步骤 S210中的信道估计 的结果确定信道的质量, 在另一个实施例中也可以通过测量得到信道的质量。 这在图 3 -图 5所示的实施例中已经详细描述, 在此不再赘述。
在接收到 MS发送的信道信息的反馈比特数的动态分配结果后,每个协作 基站可以从分配结果中得知, MS为它们之间的信道分配了多少数量的信道信 息的反馈比特。
每个协作基站与 MS之间的信道的信道状态信息码本 C ( codebook )的大 小, 与 MS的所分配的信道信息的反馈比特数相关。 例如, MS为一个信道分 配了 k个信道信息的反馈比特, 则这个信道的信道状态信息码本大小即为 2k。 由于本发明实施例对具有不同平均 SNR的信道动态分配数量不同的信道信息 的反馈比特, 相应的对具有不同平均 SNR的信道就使用有不同大小的码本。 这样信道的平均 SNR越高, 则使用的码本越大, 包含的码字信息也就越多, 相应的就能更加全面和准确的反映信道状态信息。
确定出信道状态信息码本的大小后, 在本实施例中基站端可以通过 Lloyd 算法产生 Grassmannian码本, 作为信道状态信息码本。 当然可以理解的是, 在另一个实施例中也通过 GLA( Generalized Lloyd Algorithm,广义 Lloyd算法) 产生信道状态信息码本。 此时在 MS侧, 也根据分配的信道信息的反馈比特数 的大小, 产生一个和基站端大小相同, 内容一致的码本。 这点在图 3 - 5所示 的实施例中已经详细描述, 在此不再赞述。
S240, 接收 MS发送的反馈码字的索引号, 从 S230中产生的码本中找到 相应的反馈码字, 从中获得反馈码字反馈的信道状态信息;
MS发送的反馈码字的索引号, 是 MS根据根据信道估计得到的信道状态 信息, 通过在 MS侧产生的信道状态信息码本中, 确定的反馈码字的索引号; 关于在 MS侧产生信道状态信息码本以及确定反馈码字的过程在图 3 - 5 所示的实施例中已经详细描述, 在此不再赞述。
由于 BS和 MS对使用的码本达成了一致, 因此, BS能通过接收到的索 引号, 在信道状态信息码本找 MS确定的最佳码字即反馈码字。基站根据反馈 码字能得到其到 MS的下行链路信道的信道状态信息。
S250, 根据反馈码字得到的信道状态信息进行预编码设计;
在基站端收集到了 MS反馈的所有信道状态信息后,将开始执行预编码设 计。 即, MS将 MS与所有参与协作的基站之间的信道的信道状态信息反馈给 基站端后, 基站端开始执行预编码设计。
本实施例以迫零线性预编码算法(Zero-forcing linear precoding )为例进行 预编码设计。 在迫零线性预编码算法中, MS的预编码是在所有其它用户信 巨阵的联 合零空间中找出的。为了计算出第 m个 MS的预编码, 需要找出 H_w的零空间 的正交基, H_w是基站端根据接受到 MS反馈的信道状态信息得到的信道协作 巨 P本 H = lu S U S U S H I ] iZr "fe f
在前面实施例 (图 3 -图 5所示的实施例 ) 中提到, 因为 MS需要把每个 信道的的 Vw 反馈给基站端, 但是受分配的信道信息的反馈比特数数量的限 制, 不能完全的直接将 Vw反馈给基站端。 MS就将信道状态信息码本 C中的 所有码字与 Vw进行比较, 得到一个最佳的码字作为反馈码字, 将这个反馈码 字的索引号发馈给基站端。基站根据索引号在基站段的信道状态信息码本中找 到该反馈码字,根据该反馈码字反馈的信道状态信息,从中得到 的近似值。
在基站端收集到了 MS反馈的 Vw信息后, 得到 Bw的近似值 .m:
Η
Β ( 10 ) 前面实施例 (图 3 -图 5所示的实施例) 中式(5 ) 的描述, Β„^々零空间 位于 Hw的零空间中, 因此, 可以通过计算 B_„^々零空间来代替 H_w零空间的 计算。通过 B_w进行计算得出 B_w的零空间的正交基,根据计算得出的正交基, 以迫零线性预编码算法进行预编码设计。当然可以理解的是在另一个是实施例 中, 也可以采用块正交迫零线性预编码算法或者匹配滤波预编码算法等。
当然可以理解的是,在另一个实施例中也可以采用非线性预编码算法,如 污纸编码 (dirty paper coding ) 算法, 非线性发送迫零预编码算法或者 THP ( Tomlinson-Harashima Precoding, 汤姆林森 -哈拉希玛预编码)预编码算法. 等, 但是实现复杂度相对较高。
本发明实施例通过以上技术方案,根据信道估计的结果,动态的为每个信 道分配信道信息的反馈比特数,并根据所分配的信道信息的反馈比特数确定每 个的信道状态信息码本的大小,在基站和终端两侧为同一个信道产生一个大小 一致的码本,在码本中确定反馈信道状态信息的反馈码字,对于给定数目的信 道信息的反馈比特, 通过动态分配, MS更为合理得为不同的信道分配相应数 量的信道信息的反馈比特, 更充分的利用了反馈增益。 另外本发明实施例中, 支持更多数目基站参与 Co - MIMO通信, 分别对每个参与协作的基站进行信 道信息的反馈比特的分配和信道状态信息码本的处理,而不是把所有协作的基 站视为一个 "超级基站", 针对每个协作基站和 MS间的信道状况, 进行灵活 处理, 提升处理的灵活性。
如图 8所示, 在另一个实施例中, 更进一步的, 在基站端进行预编码设计 后还可以包括,
S260,根据预先设定的查询表, 对各个终端设定不同的功率分配因子, 对 终端进行功率分配;
在图 1所示的 Co - MIMO通信场景中, 小区边缘用户的通信信道强度将 比小区中心用户信道强度弱。通过本发明实施例提供的动态信道信息的反馈比 特数分配方案, 可以使小区中心用户获得较大的通信性能增益。 进一步的, 本 发明实施例提供一种基于查询表的功率分配策略,从而在不降低小区中心用户 性能的基 上,提高小区边缘用户通信性能。 即通过本发明实施例提供的动态 信道信息的反馈比特数方案,小区的用户尤其是小区中心的用户的性能得到了 较大的提高,通过本发明实施例提供的功率分配策略,将小区中心用的提高的 性能的一部分转移给小区边缘用户, 从而在不降低小区中心用户性能的基石出 上, 提高小区边缘用户通信性能。
在一个实施例中,通过预先设定查询表,对各个终端设定不同的功率分配 因子, 根据各功率分配因子对所述各个终端进行功率分配。 为使本领域一般 技术人员更好, 更直观的理解本发明实施例提供的功率分配策略, 以图 7提供 的通信场景进行伴细描述:
如图 2所示, 考虑两个邻居 BS为两个 MS进行协作的场景, (N = 2—BS 数, K = 2—MS数, ητ = 4—发射天线, nR=2—接收天线)。 MS2与两个 BS距 离相等,而 MS1与 BS1的距离比 BS2的距离更近。这样相对于 MS 1来说 MS2 是小区边缘用户, 在系统整体性能提高的后, 可以考虑在不降低 MS1性能的 前提下, 通过将更多的功率分配给 MS2的方法, 更多的提高 MS2的性能。
在现有机制中, BS为两个 MS进行了等功率分配, 因此, 有:
Figure imgf000022_0001
而本实施例将采用一个简单的功率分配策略:
Px = {\ - a)p ( 12 ) p2 = (\ + a)p ( 13 ) 其中 α为功率分配因子, 它是每基站传输功率 p, BS1与 MS1的距离 d, 总信道信息的反馈比特数 B, 以及信道信息的反馈比特数分配策略 s的函数:
= f{p, d, B, s) ( 14 ) 本发明将采用基于查询表查询的方法找到合适的 α值,而表的构造将通过 离线仿真完成, 即表的构造是预先通过仿真设置好的。在一个实施例中可以根 据( 14 ) 式构造查询表 3:
d(km) 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 α 0.2880 0.2800 0.2713 0.2513 0.2240 0.1373 0.1080 0.0780 0.0540 0.0333 表 3 功率因子分配查询表
在另一个实施例中, 由于信道信息的反馈比特数分配策略 s可能会有变化 (这种可能性在图 3 -图 5所示的实施例中的步骤 S120中已经详细描述),在 另一个实施例中可以构造查询表 4:
d(km) 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 α 0.3987 0.3940 0.3793 0.3520 0.3120 0.1173 0.1020 0.0800 0.0600 0.0380 表 4功率因子分配查询表
当然在其它实施例中, 查寻表中的 α, 根据信道信息的反馈比特数分配策 略 s, 每基站传输功率 p, BS1与 MSI的距离 d, 总信道信息的反馈比特数 B 的变化, 也可以为它的值。
为使本领域一般技术人员更清楚的理解本发明实施例, 下面举例说明,构 造 α查询表的具体操作步骤:
1 ) ·对一个给定的 ( p, d, B, s )进行初始化:
Figure imgf000023_0001
P , Ο( = 0 , plp = ( - )p , ρ = (1 + )ρ 其中, 下标为 b, 说明采用了现有基线方案(baseline scheme ), 下标为 p 则为本发明实施例提出的方案( proposed scheme )。
2 ) ·进行迭代操作:
a)如果度量的标准是各态历经的容量 ( ergodic capacity ), 计算各态历经 容量 clb和 clp; 如果度量的标准是截至概率(outage probability ), 则计算截至概率 p。utlb 和 Poutlp;
b)如果 |clb-clp| < s或者 |poutlb-poutlp| < s, (这里, ε为预先设定的一个值) 或迭代操作达到了最大的迭代次数时, 终止退出。
如果 Cip < Cib或 Poutlp > Poutlb ' 则有:
ak = ak-x --5k-x ( 15 )
3
否则, 有 ί = ί - ' + (16 ), 并且返回 a)继续执行;
其中 clb和 clp指 MS1在基准方案和本发明方案中的各态历经的容量; poutib 和 ^^分别指 MS1在基准方案和本发明方案中的截至概率; ak指 α的第 k次 迭代值; ^指 α增加的步长, 取决于 (clp-clb)或 (ρ outlb-Poutl
对于步长^, 当取决于 (clp-clb)时, 在本实施例中, 有表 5说明取值情况, 并且在表 2中给出相应的 a的取值情况(对任意合理的 p和 d, B = 8比特, 其中 6比特分配给 Hu, 2比特分配给 H12, )0
(cip-cib) >=0.5 >=0.4 >=0.3 >=0.2 >=0.0 >=0.05
Sk 0.12 0.1 0.08 0.06 0.04 0.006
表 5 步长取值举例
如果度量的标准是各态历经的容量时, 如图 15所示, 对图 2所示的通信 场景采用本实施例的功率分配策略的情况进行了仿真, 由仿真图可以看出, 采 用本发明实施例提供的功率分配方案后, MS2相对于没有采用本发明实施例 功率分配方案的 MS2来说, 信道容量有了明显的提高, 同时 MS1的信道容量 并没明显变化,说明在系统整体性能提高后,通过本发明实施例提供的功率分 配策略, 将更多的功率分配给 MS2的方法, 更多的提高 MS2的性能, 而且没 有降低 MS1的性能。
当然在另一个实施例中, 对于步长^, 也可以由截至概率决定, 由于截至 概率是与各态历经容量 clb和 clp相互联系的, 所以本质并没有什么不同。
同样本发明另一个实施例给出了度量标准为截至概率时,对图 2所示的通 信场景采用本实施例的功率分配策略的情况进行了仿真, 仿真结果如图 16所 示。
由仿真图可以看出,采用本发明实施例提供的功率分配方案后, MS2( MS2 proposed )相对于没有采用本发明实施例功率分配方案的 MS2 ( MS2 baseline ) 来说, 截至概率有了明显的降低, 同时 MS1的截至概率并没明显变化, 说明 在系统整体性能提高后,通过本发明实施例提供的功率分配策略,将更多的功 率分配给 MS2的方法, 更多的提高 MS2的性能, 而且没有降低 MS1的性能。
通过以上技术方案可以看出,在对各个信道进行动态分配信道信息的反馈 比特数的基石出上,本发明一个实施例提出的功率分配策略是基于离线的查询表 查询的,提供了一种灵活地控制小区中心和小区边缘用户性能的方法,这样根 据各个信道的信道质量,动态地为各个信道分配信道信息的反馈比特数,使之 更有效地反馈信道信息; 并且通过新的功率分配策略,在不牺牲小区中心用户 性能的前提下, 显著地提高小区边缘用户的通信性能。
如图 9所示, 本发明实施例提供一种终端, 包括:
信道估计模块 310, 用于根据接收到的基站发送的信息进行信道估计; 信道估计,可以是从接收到的数据中,将假定的某个信道模型的模型参数 估计出来的过程。 信道估计可以给终端提供需要的信道状态信息。
接受到基站(BS )发送的信息后, 信道估计模块 310根据基站发送的信 息进行信道估计。基站发送的信息在一个实施例中可以包括一个预先设定的导 频信号,这样信道估计模块 310可以根据信息中的预先设定的导频信号,通过 一些信道估计算法,对终端和基站之间的信道进行估计,得到信道的模型参数, 也就是信道矩阵模型。这些导频在一个实施例中可以是周期性的插入到基站发 送的信息中的。在另一个实施例中也可以预先将需要发送的信息分割成多个数 据小块, 在这些小块之间间隔地插入多个导频信号。
这里提到的信道估计算法, 在一个实施例中可以是最小二乘信道估计算 法,在另一个实施例中还可以是最大似然估计算法,在另一个实施例中也可以 为最小均方误差估计算法或者最大后验概率估计算法。
在另一个实施例中也可以预先在需要发送的信息中加入训练序列来代替 导频,这样信道估计模块 310在接收到基站发送的信息后, 就可以根据里面的 训练序列,通过一些信道估计算法对其和基站之间的信道进行估计,得到信道 的模型参数,也就是信道矩阵模型。这些训练序列在一个实施例中可以是与基 站发送的信息分离的呈连续块状的信号,在另一个实施例中也可以均勾的插在 基站发送的信息中。
这里提到的信道估计算法, 在一个实施例中可以是最小二乘信道估计算 法,在另一个实施例中还可以是最大似然估计算法,在另一个实施例中也可以 为最小均方误差估计算法或者最大后验概率估计算法。
当然可以理解的是,在一个实施例中还可以利用盲估计进行信道估计。盲 估计不需要训练序列或者导频,完全利用传输的数据的内在信息来进行信道估 计。当然在另一个实施例中也可以将利用导频的信道估计与盲估计结合起来进 行信道估计, 或者将利用训练序列的信道估计与盲估计结合起来进行信道估 计。
经信道估计后,可以得到终端和基站之间的信道矩阵模型,现详细描述如 下:
假设每个基站有 ητ根发射天线, 终端有 nR根接收天线。 通过信道估计模 块 310的信道估计, 基站的第 n根发射天线到 MS的第 m根接收天线的信道 可被表示为 Η,, 并可被建模为:
Figure imgf000026_0001
其中 „为基站的第 η根发射天线到终端的第 m根接收天线的距离, ^为 预先设定的标准距离, γ为路径损耗因子, C表示路径的衰落, I 表示小 尺度瑞利衰落, Hw„是 nR x nT维矩阵。 在另一个实施例中, 终端端还可以根据 ( 1 )式获得 和 H 参数获得信道的路径衰落情况,和小尺度瑞利衰落情况, 以及从这些衰落情况获得的相应的信噪比 SNR等信道状态信息。
在 Co - MIMO通信系统中, 同时有 N个基站为本实施例提供的终端进行 通信服务, 在这里 N是随时间变化的。 假设本实施例提供的终端为系统终的 第 m 个终端 (MS ), 对于第 m 个 MS 而言, 需要估计 N条信道矩阵, ¾ ¾„n , 且所有这些矩阵与 (1 ) 式都有相似的结构, 因此, 可以 得到总的信道矩阵: ( 2 ) 式中的信道矩阵的每一个元素都是一个小矩阵, 它为每个基站和第 m个 MS之间的信道矩阵, 代表了每个基站和第 m个 MS之间的所有信道情 况, 即包括了基站的所有天线与 MS的所有天线之间的信道情况。 这样, 在一 个实施例中, MS就可以通过每个信道的路径衰落和小尺度瑞利衰落, 来获得 各个信道的路径衰损耗情况和相应的信噪比 SNR等信道状态信息, 根据信道 状态信息就能够确定出信道状态较好的信道,当然可以理解的是在另一个实施 例种, 信道的质量也可以通过测量得到, 例如通过测量得到一些路径损耗、接 收信噪比、信号与噪声失真比等信息, 然后通过联合计算或者推断得到信道的 信道质量的好坏。
具体的, 如图 10所示, 在另一个实施例中, 信道估计模块 310还可以包 括:
估计单元 311, 用于对各个信道进行信道估计, 得到信道的信道矩阵; 估计单元 311根据接收到的基站发送的信息估计出信道的信道矩阵; 估计出信道矩阵的具体步骤在图 3 -图 5所示的方法实施例中已经详细描 述, 在此不再赘述。
分解单元 312, 用于对所述信道矩阵进行分解, 得到各个信道的信道方向 信息矩阵, 所述各个信道的信道方向信息矩阵包含有各个信道的信道状态信 息。
对信道矩阵分解的具体步骤在图 3 -图 5所示的方法实施例中已经详细描 述, 在此不再赞述。
动态比特分配模块 320, 用于根信道质量, 动态的为各个信道分配信道信 息的反馈比特数;
在带有有限反馈的蜂窝系统中, 分配比特的总数都是预先设定好的,有限 的。 在 Co-MIMO通信系统系统中, 各个信道的质量是不完全相同的, 通过预 先设定的动态比特分配策略,为信道质量不同的信道分配不同数目的信道信息 的反馈比特数, 能更好的利用反馈增益。
具体的,信道质量好的信道能分配到,相对于平均分配的信道信息的反馈 比特数更多的信道信息的反馈比特数。那么根据分配的信道信息的反馈比特数 相对于根据平均分配的信道信息的反馈比特数,就能够承载更多的信道状态信 息;而信道质量差的信道根据平均分配的信道信息的反馈比特数就足以承载所 有的信道状态信息,那么就可以给信道状态差的信道相应的少分配一点信道信 息的反馈比特,将更多的信道信息的反馈比特分配给信道状态较好的信道。这 样就能够更充分的利用有限的总的信道信息的反馈比特数个数,为基站提供更 全面的信道状态信息,基站端根据这些信道状态信息,对发射的功率进行调整, 从而在接收端能收到相对于平均分配信道信息的反馈比特数来说更好的增益。
在一个实施例中, 信道质量与基站和 MS之间的距离是强相关的, 因此, MS越靠近基站, 其信道的质量也就越高。 例如, 在一个实施例中, 有两个基 站协同为一个 MS进行通信服务, 当 MS离基站 1比基站 2近的时候, 基站 1 到 MS的信道的信道质量要好于基站 2到 MS的信道的信道质量。
在带有有限反馈的蜂窝系统中, 分配比特都是预先设定好的, 有限的。 假 设预先设定总共 8个信道信息的反馈比特用于反馈信道状态信息,就可以分配 5个信道信息的反馈比特给基站 1到 MS的信道, 3个信道信息的反馈比特给 基站 2到 MS的信道。 可以理解的是, 在另一个实施例中, 可以分配 6个信道 信息的反馈比特给基站 1到 MS的信道,分配 2个信道信息的反馈比特给基站 2到 MS的信道。 在带有有限反馈的蜂窝系统中, 性能的增益(SNR增益或容 量增益)是平均信噪比以及信道信息的反馈比特数的函数, 因此, MS根据信 道质量为各个信道动态的分配信道信息的反馈比特数,能更有效的提升系统性 能。
在另一个实施例中,信道质量的不同又可以反映为信干噪比( SINR, Signal to Interference Plus Noise Ratio )的不同。因此,可以进一步才艮据信干噪比 SINR, 通过预先设定的动态比特分配策略, 为 SINR不同的信道分配不同数目的信道 信息的反馈比特。 SINR在一个实施例中, 可以通过在 MS侧根据信道估计模 块 310的信道估计得到的路径损耗、接收信噪比、信号与噪声失真比等信息中 的一种或者其中的几种信息联合推断得出; SINR在另一个实施例中, 又可以 通过测量得到的路径损耗、接收信噪比、信号与噪声失真比等信息中的一种或 者其中的几种信息联合推断得出。
更为详细的动态比特分配策略在图 3 -图 5提供的实施例中的步骤 S120 中已经详细描述, 在此不再赘述。
第一发送模块 330, 用于发送所述信道信息的反馈比特数的分配结果; 在动态比特分配模块 320动态的分配完信道信息的反馈比特数后,还需要 将分配的结果发送给基站端。 这样基站端在收到分配结果后, 从中得知其与 MS间的信道所分配的比特数, 并 ^居所分配的比特数产生一个和 MS端相一 致的信道状态信息码本。
信道状态信息码本产生模块 350, 用于根据动态比特分配模块 320动态分 配的信道信息的反馈比特数确定信道状态信息码本的大小,产生信道状态信息 码本;
每个基站与 MS之间的信道的信道状态信息码本 C ( codebook ) 的大小, 与每个基站到 MS的信道所分配的信道信息的反馈比特数相关。如为一个信道 分配了 k个信道信息的反馈比特, 则这个信道的信道状态信息码本大小为 2k。 由于本发明实施例对具有不同信道质量的信道动态分配不同数目的信道信息 的反馈比特,相应的对具有不同信道质量的信道就使用有不同大小的码本。这 样信道的信道质量越高, 则使用的码本越大, 包含的码字信息也就越多。
确定完信道状态信息码本的大小吼,信道状态信息码本产生模块 350在本 实施例中可以通过 Lloyd算法产生 Grassmannian码本,作为信道状态信息码本。 当然可以理解的是, 在另一个实施例中也通过 GLA ( Generalized Lloyd Algorithm, 广义 Lloyd算法)产生信道状态信息码本。
需要说明的是,在一个实施例中,可以将信道信息的反馈比特数的分配结 果直接发送给基站端,在另一个实施例中,也可以将信道信息的反馈比特数的 分配结果发送给一个转发装置, 由转发装置发送给基站端。
反馈码字确定模块 370, 用于在信道状态信息码本产生模块 350产生的信 道状态信息码本中, 确定反馈码字。
当信道状态信息码本产生模块 350产生信道状态信息码本后,为了能在给 定大小为 2k ( k为分配的信道信息的反馈比特数)的码本 C中, 反馈信道状态 信息, 需要为需要反馈的信道状态信息找到一个最佳的码字作为反馈码字, 这 样反馈码字才能最全面, 最大限度的反馈信道状态信息。
将码本 C中的所有码字与信道估计模块 310估计出的信道方向信息矩阵 进行弦距离的比较,将与信道方向信息矩阵之间的弦距离最小的码字作为反馈 码字, 将这个反馈码字的索引号发馈给基站端。 例如, 第 16个码字为反馈码 字, 则将其索引号 16反馈给基站,基站根据这个索引号就能找到相应的码字, 从中能得知码字反馈的信道状态信息。
具体的根据弦距离长度选择反馈码字的方法, 在图 3 -图 5提供的方法实 施例中已经详细描述, 在此不再赞述。
第二发送模块 390, 用于发送反馈码字的索引号
需要说明的是,在一个实施例中,可以将反馈码字的索引号直接发送给基 站端, 在另一个实施例中, 也可以将反馈码字的索引号发送给一个转发装置, 由转发装置发送给基站端。
这里需要说明的是, 由于第一发送模块 330将分配结果反馈给基站,这样 基站在收到分配结果后, 从中得知其与 MS间的信道所分配的比特数, 并根据 所分配的比特数产生一个和 MS端相同大小的信道状态信息码本。
由于 BS和 MS对使用的码本达成了一致, 因此, BS能通过接收到的索 引号查找码本得到反馈码字, 根据反馈码字得到下行链路信道的信道状态信 息。
本发明实施例通过以上技术方案,根据信道估计的结果,动态的为每个信 道分配信道信息的反馈比特数,并根据所分配的信道信息的反馈比特数确定每 个的信道状态信息码本的大小,在基站和终端两侧为同一个信道产生一个大小 一致的码本,在码本中确定反馈信道状态信息的反馈码字,对于给定数目的信 道信息的反馈比特, 通过动态分配, MS更为合理得为不同的信道分配信道信 息的反馈比特数, 更充分的利用了反馈增益。 另外本发明实施例中, 支持更多 数目基站参与 Co - MIMO通信, 分别对每个参与协作的基站进行信道信息的 反馈比特数的分配和信道状态信息码本的处理,而不是把所有协作的基站视为 一个 "超级基站", 针对每个协作基站和 MS间的信道状况, 进行灵活处理, 提升处理的灵活性。
如图 11所示, 本发明实施例提供一种基站, 包括:
第一接收模块 420, 用于接收 MS的信道信息的反馈比特数的动态分配结 果, 所述分配结果为 MS根据信道质量, 动态地为各个信道分配信道信息的反 馈比特数的结果;
在带有有限反馈的蜂窝系统中, 分配比特的总数都是预先设定好的,有限 的。 在 Co-MIMO通信系统系统中, 各个信道的质量是不完全相同的, 通过预 先设定的动态比特分配策略,为信道质量不同的信道分配不同数目的信道信息 的反馈比特数, 能更好的利用反馈增益。
信道质量的不同又可以反映为 SINR的不同。 因此, 可以进一步根据信干 噪比 SINR, 通过预先设定的动态比特分配策略, 为 SINR不同的信道分配不 同数目的信道信息的反馈比特。 SINR可以通过在 MS侧根据信道估计或者测 量得到的路径损耗、接收信噪比、信号与噪声失真比等信息中的一种或者其中 的几种信息联合推断得出。
信道状态信息码本产生模块 430, 用于根据第一接收模块 420接收的分配 结果确定信道状态信息码本的大小, 产生信道状态信息码本;
信道状态信息码本产生模块 430产生的信道状态信息码本,和终端侧才艮据 各个信道所分配的信道信息的反馈比特数产生的信道状态信息码本相一致;具 体的描述在图 3 -图 5所示的实施例中已经详细描述, 在此不再赘述。
第二接收模块 440, 用于接收终端发送的反馈码字的索引号, 所述索引号 用于标识所述反馈码字;
反馈码字为终端根据信道估计估计出的信道状态信息,在终端侧产生的信 道状态信息码本中确定的码字。 具体的确定方法在图 3 -图 5所示的实施例中 已经详细描述, 在此不再赞述。
反馈码字确定模块 450, 用于根据反馈码字的索引号, 在信道状态信息码 本产生模块 430产生的信道状态信息码本中,找到相应的反馈码字,从反馈码 字中获得终端反馈的信道状态信息;
预编码设计模块 460, 用于据反馈码字确定模块获得的信道状态信息, 进 行预编码设计。
本发明实施例通过以上技术方案,根据信道的状况动态的为各个信道分配 不同数目的信道信息的反馈比特数,并根据分配的反馈比特数给各个信道产生 不同大小的信道状态信息码本,根据各个信道状态信息码本提供的反馈码字反 馈的信道状态信息进行相应的预编码设计, 更加充分的利用了反馈增益。 如图 12所示, 本发明实施例提供一种基站, 包括:
信息发送模块 410, 用于向终端发送信息, 所述信息中携带有用于使终端 进行信道估计的相关信息, 即所述相关信息用于使终端进行信道估计;
信息发送模块 410发送的信息中, 用于使终端 ( MS )进行信道估计的相 关信息,在一个实施例中可以为一个预先设定的导频信号, 这样 MS可以根据 信息中的预先设定的导频信号,通过一些信道估计算法,对其和基站之间的信 道进行估计, 得到信道的模型参数, 也就是信道矩阵模型。 这些导频在一个实 施例中可以是周期性的插入到基站发送的信息中的。在另一个实施例中也可以 预先将需要发送的信息分割成多个数据小块,在这些小块之间间隔地插入多个 导频信号。
在另一个实施例中,还可以预先在需要发送的信息中加入训练序列来代替 导频, 这样 MS在接收到基站发送的信息后, 就可以根据里面的训练序列, 通 过一些信道估计算法对其和基站之间的信道进行估计, 得到信道的模型参数, 也就是信道矩阵模型。这些训练序列在一个实施例中可以是与基站发送的信息 分离的呈连续块状的信号,在另一个实施例中也可以均勾的插在基站发送的信 息中。
MS根据基站发送的信息, 进行信道估计后, 将会根据信道估计的结果, 确定各个信道的质量,动态的为各个基站和 MS之间的信道分配信道信息的反 馈比特数,即对具有不同信道质量的信道动态的分配不同数量的信道信息的反 馈比特, 并将分配结果反馈给基站。
第一接收模块 420, 接收 MS的动态比特分配结果, 所述分配结果为 MS 根据信息发送模块 410发送的信息进行信道估计后,根据信道估计的结果动态 分配的信道信息的反馈比特数的结果;
该动态分配结果,是 MS根据信息发送模块 410发送的信息进行信道估计 后, 根据信道估计的结果, 确定各个信道的信道质量, 动态的为各个信道分配 的信道信息的反馈比特数的结果。根据信道估计的结果,如果某个信道的信道 质量相对较好, 则为这个信道分配更多数量的信道信息的反馈比特,这样就能 够承载更多的信道状态信息, 基站段也就能相应的得知更多的信道状态信息, 从而通过重新调整信息的发射功率等一系列措施, 使接收端的增益得到提高。 如果某个信道质量相对较差, 则相应的为这个信道分配少一点的比特, 因为所 分配的信道信息的反馈比特就足以承载这个信道的信道状态信息,这样就可以 将多余的信道信息的反馈比特节省下来, 相应的分配给信道质量较好的信道。
信道状态信息码本产生模块 430, 用于根据分配结果的确定信道状态信息 码本的大小, 产生信道状态信息码本;
每个协作基站与 MS之间的信道的信道状态信息码本 C ( codebook )的大 小, 与 MS的所分配的信道信息的反馈比特数相关。 例如, MS为一个信道分 配了 k个信道信息的反馈比特,则这个信道的信道状态信息码本大小为 2k。 由 于本发明实施例中,终端对具有不同信道质量的信道动态分配不同数量的信道 信息的反馈比特, 相应的对具有不同信道质量的信道就使用有不同大小的码 本。 这样信道的质量越高, 则使用的码本越大, 包含的码字信息也就越多。
确定出信道状态信息码本的大小后, 在本实施例中基站端可以通过 Lloyd 算法产生 Grassmannian码本, 作为信道状态信息码本。 当然可以理解的是, 在另一个实施例中也通过 GLA( Generalized Lloyd Algorithm,广义 Lloyd算法) 产生信道状态信息码本。 此时在 MS侧, 也根据分配的信道信息的反馈比特数 的大小, 产生一个和基站端一致的码本。 这点在图 3 - 5所示的实施例中已经 详细描述, 在此不再赞述。
第二接收模块 440, 用于接收 MS发送的反馈码字的索引号, 所述反馈码 字的索引号用于标识 MS ^居在 MS侧产生的信道状态信息码本中, ^居信道 估计估计出的信道状态信息确定的反馈码字;
反馈码字确定模块 450, 用于根据第二接收模块 440接收到的码字的索引 号,在信道状态信息码本产生模块 430产生的信道状态信息码本中,找到相应 的反馈码字, 并根据反馈码字获得反馈码字反馈的信道状态信息;
由于 BS和 MS对使用的码本达成了一致, 因此, 反馈码字确定模块 450 能通过第二接收模块 440接收到的索引号, 在信道状态信息码本产生模块 430 产生的信道状态信息码本中, 找到 MS确定的最佳码字即反馈码字。根据反馈 码字能得到基站到 MS的下行链路信道的信道状态信息。
预编码设计模块 460, 用于据反馈码字确定模块 450确定的反馈码字, 反 馈的信道状态信息进行预编码设计;
在信息发送处理装置收集到了 MS反馈的所有信道状态信息后,预编码设 计模块 460将开始执行预编码设计。 即, MS将 MS与所有参与协作的基站之 间的信道的信道状态信息反馈给信息发送处理装置后, 预编码设计模块 460 开始执行预编码设计。
本实施例以迫零线性预编码算法(Zero-forcing linear precoding )为例进行 预编码设计, 当然可以理解的是, 当然可以理解的是在另一个是实施例中, 也 可以采用块正交迫零线性预编码算法或者匹配滤波预编码算法等。
当然可以理解的是,在另一个实施例中也可以采用非线性预编码算法,如 污纸编码 (dirty paper coding ) 算法, 非线性发送迫零预编码算法或者 THP ( Tomlinson-Harashima Precoding, 汤姆林森 -哈拉希玛预编码)预编码算法. 等, 但是实现复杂度相对较高。
本发明实施例通过以上技术方案,根据信道估计的结果,动态的为每个信 道分配信道信息的反馈比特数,并根据所分配的信道信息的反馈比特数数确定 每个的信道状态信息码本的大小,在基站和终端两侧为同一个信道产生一个大 小一致的码本,在码本中确定反馈信道状态信息的反馈码字,对于给定数目的 信道信息的反馈比特, 通过动态分配, MS更为合理得为信道质量不同的信道 分配不同数量的信道信息的反馈比特, 更充分的利用了反馈增益。 另外本发明 实施例中, 支持更多数目基站参与 Co - MIMO通信, 分别对每个参与协作的 基站进行信道信息的反馈比特数的分配和信道状态信息码本的处理,而不是把 所有协作的基站视为一个 "超级基站", 针对每个协作基站和 MS间的信道状 况, 进行灵活处理, 提升处理的灵活性。
如图 13所示, 在另一个实施例中, 图 11和图 12中的基站还可以包括: 功率分配模块 470, 根据预先设定的查询表, 对各个终端设定不同的功率 分配因子, 对各个终端进行功率分配;
通过预先构造的查询表,在系统的整体性能通过动态分配信道信息的反馈 比特数得到提升后,根据本实施例提供的离线查询表, 为各个终端分配不同的 功率分配因子,根据各个功率分配因子对各个终端进行功率分配。将小区中心 获得的较大的通信性能增益中的一部分转移到小区的边缘用户,从而在不降低 小区中心用户性能的基 上,提高小区边缘用户的性能。具体的功率分配策略 在图 8提供的实施例中已经详细描述, 在此不再赘述。
通过以上技术方案可以看出,在对各个信道进行动态分配信道信息的反馈 比特数的基石出上,本发明一个实施例提出的功率分配策略是基于离线的查询表 查询的,提供了一种灵活地控制小区中心和小区边缘用户性能的方法,这样根 据不同位置用户的不同信道质量,动态地分配信道信息的反馈比特数,使之更 有效地反馈信道信息; 并且通过新的功率分配策略,在不牺牲小区中心用户性 能的前提下, 显著地提高小区边缘用户的通信性能。
如图 11所示, 本发明实施例提供一种 MIMO通信系统, 包括:
至少两个基站 10、 20和至少一个终端 30,
终端 30, 用于根据基站 10和基站 20发送的信息, 进行信道估计, 即估 计终端 30和基站 10, 终端 30和基站 20之间的信道矩阵; 根据各个信道的信 道质量, 动态的为信道质量不同的信道分配不同数目的信道信息的反馈比特, 信道的质量越好,分配的信道信息的反馈比特数数目就越多, 并将分配结果反 馈给基站 10和 20。 根据每个信道分配的比特数目, 确定各个信道的信道状态 信息码本的大小, 产生信道状态信息码本, 在产生的信道状态信息码本中, 根 据信道估计出的信道矩阵包括的信道状态信息,确定反馈码字, 并将反馈码字 的索引号反馈给基站 10和 20。
基站 10和 20, 用于发送信息给终端 30, 发送的信息中包含终端 30可以 利用的信道估计信息, 接收到终端 30反馈的信道信息的反馈比特数分配结果 后, ^据分配结果, 确定其和终端 30间的信道的信道状态信息码本的大小, 产生信道状态信息码本, 接收终端 30发送的反馈码字的索引号, 在信道状态 信息码本中,根据索引号找到反馈码字,根据反馈码字得到的信道状态信息进 行预编码设计。
在另一个实施例中,基站 10和 20还用于,根据预先设置的查询表对终端 进行功率分配, 具体的分配策略在图 7和图 8所示的实施例中已经详细描述, 在此不再赘述。
终端 30的具体结构和功能在一个实施例中可以如图 9提供的实施例所示, 在另一个实施例中可以如图 9和图 10提供的实施例所示。 基站 10、 20的具体结构和功能在一个实施例中可以如图 11提供的实施例 所示, 在一个实施例中可以如图 12提供的实施例所示, 在另一个实施例中也 可以如图 11和图 13提供的的实施例所示或者如图 12和图 13提供的的实施例 所示。
可以理解的是各个信道的质量,在终端侧可以根绝信道估计得出或者测量 得出。
本发明实施例通过以上技术方案,根据信道估计的结果,动态的为每个信 道分配信道信息的反馈比特数,并根据所分配的信道信息的反馈比特数确定信 道状态信息码本的大小,在基站和终端两侧同时产生一个相同的码本,在码本 中确定反馈信道状态信息的反馈码字, 对于给定数目的信道信息的反馈比特, 通过动态分配, MS更为合理得为信道质量不同的信道分配不同数目的信道信 息的反馈比特, 使基站端能够更充分的利用得到信道状态信息进行预编码设 计, 更充分的利用了反馈增益, 另外本发明实施例中, 支持任意数目基站参与 Co - MIMO通信, 分别对每个参与协作的基站进行信道信息的反馈比特数和 信道状态信息码本的处理, 而不是把所有协作的基站视为一个 "超级基站", 可以提升处理的灵活性。
而且,在对各个信道进行动态分配信道信息的反馈比特数的基础上,本发 明另一个实施例提出的功率分配策略 ^^于离线的查询表查询的,提供了一种 灵活地控制小区中心和小区边缘用户性能的方法,这样根据各个信道的信道质 量,动态地为各个信道分配信道信息的反馈比特数,使之更有效地反馈信道信 息; 并且通过新的功率分配策略, 在不牺牲小区中心用户性能的前提下, 显著 地提高小区边缘用户的通信性能。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到本发明 可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过硬件,或者 二者的结合来实施。基于这样的理解,本发明的技术方案本质上或者说对现有 技术做出贡献的部分可以以软件产品的形式体现出来,该软件模块或计算机软 件产品可以存储在一个存储介质中, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述 的方法。 存储介质可以是随机存储器(RAM )、 内存、 只读存储器(ROM )、 电可编程 ROM、电可擦除可编程 ROM、寄存器、硬盘、可移动磁盘、 CD-ROM、 或技术领域内所公知的任意其它形式的存储介质。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开 的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims

权 利 要 求
1、 一种信道信息反馈方法, 其特征在于, 包括:
根据信道质量, 动态的为各个信道分配信道信息的反馈比特数; 根据各个信道动态分配的信道信息的反馈比特数,确定各个信道的信道状 态信息码本的大小, 产生信道状态信息码本;
根据信道状态信息在所述信道状态信息码本中确定反馈码字,所述反馈码 字用于反馈所述信道状态信息;
发送所述信道信息的反馈比特数的分配结果和所述反馈码字的索引号,所 述索引号用于标识所述反馈码字。
2、 如权利要求 1所述的信道信息反馈方法, 其特征在于, 所述根据信道 质量, 动态的为各个信道分配信道信息的反馈比特数, 包括:
根据预先设定的动态比特分配策略,为信道质量不同的信道分配不同数目 的信道信息的反馈比特。
3、 如权利要求 1所述的信道信息反馈方法, 其特征在于, 在根据信道状 态信息在所述信道状态信息码本中确定反馈码字之前, 还包括:
对各个信道进行信道估计,得到各个信道的信道矩阵,对所述信道矩阵进 行分解,得到各个信道的信道方向信息矩阵, 所述各个信道的信道方向信息矩 阵包含有各个信道的信道状态信息。
4、 如权利要求 3所述的信道信息反馈方法, 其特征在于, 所述反馈码字 为所述信道状态信息码本中,与所述信道方向信息矩阵之间的弦距离最小的码 字。
5、 一种信息处理方法, 其特征在于, 包括:
接收终端发送的信道信息的反馈比特数的动态分配结果,所述分配结果为 终端根据信道质量, 动态地为各个信道分配信道信息的反馈比特数的结果; 才艮据所述分配结果确定信道状态信息码本的大小, 产生信道状态信息码 本; 接收终端发送的反馈码字的索引号,根据所述反馈码字的索引号,在所述 信道状态信息码本中,找到相应的反馈码字,从所述反馈码字中获得终端反馈 的信道状态信息; 所述索引号用于标识所述反馈码字;
根据所述信道状态信息进行预编码设计。
6、 如权利要求 5所述的信息处理方法, 其特征在于, 在根据所述信道状 态信息进行预编码设计后, 还包括:
根据预先设定的查询表,对各个终端设定不同的功率分配因子,对所述各 个终端进行功率分配。
7、 一种终端, 其特征在于, 包括:
动态比特分配模块, 用于根据信道质量, 动态的为各个信道分配信道信息 的反馈比特数;
第一发送模块, 用于发送所述信道信息的反馈比特数的分配结果; 信道状态信息码本产生模块, 用于根据所述动态比特分配模块中,信道信 息的反馈比特数的分配结果, 确定各个信道的信道状态信息码本的大小,产生 所述信道状态信息码本;
反馈码字确定模块,用于根据信道状态信息在所述信道状态信息码本中确 定反馈码字, 所述反馈码字用于反馈所述信道状态信息;
第二发送模块,用于发送所述反馈码字确定模块确定出的反馈码字的索引 号, 所述索引号用于标识所述反馈码字。
8、 如权利要求 7所述的终端, 其特征在于, 所述终端还包括, 用于对信 道进行估计的信道估计模块, 所述信道估计模块包括:
估计单元, 用于对各个信道进行信道估计, 得到信道的信道矩阵; 分解单元, 用于对所述信道矩阵进行分解,得到各个信道的信道方向信息 矩阵, 所述各个信道的信道方向信息矩阵包含有各个信道的信道状态信息。
9、 如权利要求 8所述的终端, 其特征在于, 所述反馈码字为所述信道状 态信息码本中, 与所述信道方向信息矩阵之间的弦距离最小的码字。
10、 一种基站, 其特征在于, 包括:
第一接收模块,用于接收终端发送的信道信息的反馈比特数的动态分配结 果, 所述分配结果为终端根据信道质量,动态地为各个信道分配信道信息的反 馈比特数的结果;
信道状态信息码本产生模块,用于根据所述分配结果确定信道状态信息码 本的大小, 产生信道状态信息码本;
第二接收模块, 用于接收终端发送的反馈码字的索引号, 所述索引号用于 标识所述反馈码字;
反馈码字确定模块, 用于根据所述第二接收模块接收的反馈码字的索引 号, 在所述信道状态信息码本中, 找到相应的反馈码字, 从所述反馈码字中获 得终端反馈的信道状态信息;
预编码设计模块, 用于据反馈码字确定模块获得的信道状态信息,进行预 编码设计。
11、 如权利要求 10所述的基站, 其特征在于, 还包括:
功率分配模块, 用于根据预先设定的查询表,对各个终端设定不同的功率 分配因子, 对所述各个终端进行功率分配。
12、 一种多输入多输出 MIMO通信系统, 其特征在于, 包括至少两个基 站和至少一个终端;
所述终端, 用于根据信道质量,动态的为各个信道分配信道信息的反馈比 特数;根据各个信道动态分配的信息反馈比特的数,确定各个信道的信道状态 信息码本的大小,产生信道状态信息码本;根据信道状态信息在产生的信道状 态信息码本中,确定反馈码字;发送所述信道信息的反馈比特数的分配结果和 所述反馈码字的索引号,所述反馈码字用于反馈根据所述信道估计的结果得到 的信道状态信息, 所述索引号用于标识所述反馈码字;
所述基站, 用于接收所述终端发送的信道信息的反馈比特数分配结果; 根 据分配结果,确定和所述终端间的信道的信道状态信息码本的大小,产生信道 状态信息码本;接收所述终端发送的反馈码字的索引号,在产生的信道状态信 息码本中,根据所述索引号找到反馈码字;根据反馈码字得到的信道状态信息 进行预编码设计。
13、 如权利要求 12所述的 MIMO通信系统, 其特征在于, 所述基站还用 于, 根据预先设定的查询表, 对各个终端设定不同的功率分配因子, 对各个终 端进行功率分配。
14、如权利要求 12所述的 MIMO通信系统,其特征在于,所述终端还用于, 对所述终端与所述基站之间的各个信道进行信道估计,得到各个信道的信道矩 阵, 对所述信道矩阵进行分解, 得到各个信道的信道方向信息矩阵, 所述各个 信道的信道方向信息矩阵包含有各个信道的信道状态信息。
PCT/CN2010/070434 2009-04-17 2010-01-30 一种信道信息反馈方法、终端、基站及多输入多输出系统 WO2010118650A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BRPI1011395-9A BRPI1011395B1 (pt) 2009-04-17 2010-01-30 método de retroalimentação de informações de canal, método de processamento de informações, estação móvel, estação base e sistema de múltiplas entradas múltiplas saídas
ES10764063.3T ES2468796T3 (es) 2009-04-17 2010-01-30 Método de retorno de información de canal, terminal, estación base y sistema de entradas múltiples/salidas múltiples (MIMO)
EP10764063.3A EP2421176B1 (en) 2009-04-17 2010-01-30 Channel information feedback method, terminal, base station, and multiple input multiple output (mimo) system
US13/274,101 US8320275B2 (en) 2009-04-17 2011-10-14 Channel information feedback method, mobile station, base station, multi-input multi-output system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009101066946A CN101867464B (zh) 2009-04-17 2009-04-17 一种信道信息反馈方法、终端、基站及多输入多输出系统
CN200910106694.6 2009-04-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/274,101 Continuation US8320275B2 (en) 2009-04-17 2011-10-14 Channel information feedback method, mobile station, base station, multi-input multi-output system

Publications (1)

Publication Number Publication Date
WO2010118650A1 true WO2010118650A1 (zh) 2010-10-21

Family

ID=42959038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070434 WO2010118650A1 (zh) 2009-04-17 2010-01-30 一种信道信息反馈方法、终端、基站及多输入多输出系统

Country Status (6)

Country Link
US (1) US8320275B2 (zh)
EP (1) EP2421176B1 (zh)
CN (1) CN101867464B (zh)
BR (1) BRPI1011395B1 (zh)
ES (1) ES2468796T3 (zh)
WO (1) WO2010118650A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098955A (ja) * 2011-11-07 2013-05-20 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8798551B2 (en) * 2011-01-07 2014-08-05 Zte (Usa) Inc. Method and system for spatial CSI feedback for coordinated multi-point processing (CoMP)
JP5723457B2 (ja) * 2011-03-16 2015-05-27 エヌイーシー(チャイナ)カンパニー, リミテッドNEC(China)Co.,Ltd. ビームフォーミング方法および受信機
CN102142938A (zh) * 2011-03-29 2011-08-03 东南大学 有限反馈系统中基于信漏噪比的预编码构造方法
WO2011157182A2 (zh) * 2011-06-03 2011-12-22 华为技术有限公司 发送信道状态信息的方法和设备及系统
CN103188031B (zh) * 2011-12-28 2016-02-17 同济大学 利用信道时域相关性降低反馈量的码本编码信息处理方法
WO2013125882A1 (en) * 2012-02-21 2013-08-29 Lg Electronics Inc. Method and apparatus for optimizing a limited feedback in a wireless access system supporting a distributed antenna (da) technicue
KR101968704B1 (ko) * 2012-03-13 2019-04-12 삼성전자주식회사 다중 안테나 통신 시스템에서의 전송 파워 결정 방법 및 장치
CN102710371B (zh) * 2012-05-23 2014-12-17 东南大学 多天线两跳中继系统中利用有限反馈信息的传输方法
US9503924B2 (en) * 2013-01-18 2016-11-22 Qualcomm Incorporated Interpolation-based channel state information (CSI) enhancements in long-term evolution (LTE)
CN103178939B (zh) * 2013-04-15 2016-01-13 东南大学 基于有限反馈技术降低反馈量提高系统吞吐率的方法
KR102083352B1 (ko) * 2013-07-03 2020-03-03 삼성전자주식회사 가상 셀 네트워크 시스템에서 가상 셀 형성장치 및 방법
CN103402268B (zh) * 2013-08-21 2017-01-18 西安电子科技大学 一种基于改进的弦距离的下行mu_comp调度方法
CN105379369B (zh) * 2014-01-29 2019-10-25 华为技术有限公司 一种用户设备及确定发射功率的方法
US9979450B2 (en) 2016-10-07 2018-05-22 Qualcomm Incorporated Adaptive codeword and codeblock selection in wireless communications
US10044420B2 (en) * 2016-12-15 2018-08-07 Hong Kong Applied Science and Technology Research Institute Company Limited Closed-loop massive MIMO system architecture
CN110166214B (zh) * 2018-02-13 2020-08-21 华为技术有限公司 传输反馈信息的方法和通信设备
US10742282B2 (en) 2018-10-30 2020-08-11 Samsung Electronics Co., Ltd. System and method for generating codebook for analog beamforming
US11777539B2 (en) * 2018-10-31 2023-10-03 Avago Technologies International Sales Pte. Limited Rate control with transmitter power optimization

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946000A (zh) * 2005-10-05 2007-04-11 中兴通讯股份有限公司 在多用户多输入多输出系统中实现下行链路自适应的方法及系统
CN101183890A (zh) * 2007-12-12 2008-05-21 中兴通讯股份有限公司 一种基于码本的多用户预编码系统的cqi反馈方法
CN101399590A (zh) * 2007-09-27 2009-04-01 株式会社Ntt都科摩 一种多用户预编码系统中的反馈选择方法及反馈选择装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10124397A1 (de) 2001-05-18 2002-11-21 Siemens Ag Verfahren zum steuern der Strahlformung in einem Mobilfunk-Kommunikationssystem und Basisstation hierfür
WO2007129271A1 (en) * 2006-05-10 2007-11-15 Koninklijke Philips Electronics N.V. Wireless communication system using harq and method of operating the system
US8626104B2 (en) * 2006-09-28 2014-01-07 Apple Inc. Generalized codebook design method for limited feedback systems
US7961672B2 (en) * 2007-02-23 2011-06-14 Texas Instruments Incorporated CQI feedback for OFDMA systems
CN101340218A (zh) 2007-07-04 2009-01-07 华为技术有限公司 多输入多输出系统中通信方法及装置
CN101374003B (zh) 2007-08-23 2012-07-18 中兴通讯股份有限公司 一种多输入多输出系统中的信号发送方法及码本反馈方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1946000A (zh) * 2005-10-05 2007-04-11 中兴通讯股份有限公司 在多用户多输入多输出系统中实现下行链路自适应的方法及系统
CN101399590A (zh) * 2007-09-27 2009-04-01 株式会社Ntt都科摩 一种多用户预编码系统中的反馈选择方法及反馈选择装置
CN101183890A (zh) * 2007-12-12 2008-05-21 中兴通讯股份有限公司 一种基于码本的多用户预编码系统的cqi反馈方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013098955A (ja) * 2011-11-07 2013-05-20 Ntt Docomo Inc 無線通信システム、無線基地局装置、ユーザ端末及び無線通信方法
US9444527B2 (en) 2011-11-07 2016-09-13 Ntt Docomo, Inc. Radio communication system, radio base station apparatus, user terminal and radio communication method

Also Published As

Publication number Publication date
EP2421176A1 (en) 2012-02-22
ES2468796T3 (es) 2014-06-17
BRPI1011395B1 (pt) 2021-01-12
EP2421176B1 (en) 2014-03-12
CN101867464A (zh) 2010-10-20
EP2421176A4 (en) 2012-06-20
CN101867464B (zh) 2012-12-12
US20120033575A1 (en) 2012-02-09
BRPI1011395A2 (pt) 2016-03-15
US8320275B2 (en) 2012-11-27

Similar Documents

Publication Publication Date Title
WO2010118650A1 (zh) 一种信道信息反馈方法、终端、基站及多输入多输出系统
CN104702324B (zh) 大规模mimo下行链路自适应传输方法
CN102687551B (zh) 用于无线通信的可扩展信道反馈
JP5335778B2 (ja) マルチユーザ・マルチ入力・マルチ出力(mu−mimo)ワイヤレス通信システムを動作させる方法及びシステム
CN113574815A (zh) 用于多传输点(trp)传输的低开销信道状态信息(csi)反馈
TWI587658B (zh) 在無線通訊系統中用於發送通道回饋訊息的方法和裝置以及用於接收通道回饋訊息的方法和裝置
WO2015089894A1 (zh) 一种波束赋形权值训练方法及基站、终端
KR20110079759A (ko) 다중―섹터 협력 통신의 협력 유형 전환 기술
JP5562292B2 (ja) 無線ネットワークの送信機においてシンボルを符号化するための方法
EP2380300A1 (en) Methods and arrangements for feeding back channel state information
US20160381697A1 (en) Method for feeding back channel quality indicator, and method and apparatus for sending resource scheduling information
WO2015090021A1 (zh) 波束质量信息反馈方法和系统
CN112039568B (zh) 基于不完全信道状态信息的大规模mimo系统跨层设计方法
US8948120B2 (en) Exploiting hybrid-channel information for downlink multi-user scheduling
US20230412430A1 (en) Inforamtion reporting method and apparatus, first device, and second device
Yu et al. Robust design of rate-splitting multiple access with imperfect CSI for cell-free MIMO systems
WO2012095049A2 (zh) 一种mimo模式配置方法及通信设备
WO2022116875A1 (zh) 传输方法、装置、设备及可读存储介质
EP3544201B1 (en) Methods for transmitting and receiving signals, base station and user equipment
WO2014067158A1 (zh) 调度方法、装置和基站
WO2017166185A1 (zh) 一种协调多用户间干扰的方法及基站
CN110912590A (zh) 基于信道反转技术的大规模衰落mimo系统的干扰抑制预编码方法
KR101806311B1 (ko) 규준화된 빔포밍을 사용하는 네트워크 다중 입출력 통신 시스템
WO2017157123A1 (zh) 一种预编码处理方法、用户设备及基站
CN102957502A (zh) 用于通信系统的线性预编码的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010764063

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 4695/KOLNP/2011

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1011395

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1011395

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111017