WO2010117048A1 - Method of producing processed cooking food stuff and device of producing stuff - Google Patents

Method of producing processed cooking food stuff and device of producing stuff Download PDF

Info

Publication number
WO2010117048A1
WO2010117048A1 PCT/JP2010/056407 JP2010056407W WO2010117048A1 WO 2010117048 A1 WO2010117048 A1 WO 2010117048A1 JP 2010056407 W JP2010056407 W JP 2010056407W WO 2010117048 A1 WO2010117048 A1 WO 2010117048A1
Authority
WO
WIPO (PCT)
Prior art keywords
dough
liquid
kneading
temperature
pulverization
Prior art date
Application number
PCT/JP2010/056407
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 田口
敏治 藤原
吉成 白井
正雄 早勢
理如 下澤
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Priority to CN2010800160513A priority Critical patent/CN102387716A/en
Publication of WO2010117048A1 publication Critical patent/WO2010117048A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/06Baking processes
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D6/00Other treatment of flour or dough before baking, e.g. cooling, irradiating, heating
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L7/00Cereal-derived products; Malt products; Preparation or treatment thereof
    • A23L7/10Cereal-derived products
    • A23L7/197Treatment of whole grains not provided for in groups A23L7/117 - A23L7/196

Definitions

  • the present invention relates to a method for producing a cooked food dough that can be eaten by cooking, for example, bread dough.
  • the present invention also relates to a dough manufacturing apparatus to which the cooked food dough manufacturing method is applied.
  • cereal When cereal is ingested as food, it may be cooked and eaten as grains (grain meal), or it may be cooked and eaten after meal (powdery meal). In the case of a powdered meal, it is common to mix powder and water, knead them, and then cook them after cooking them into a so-called “dough”.
  • the dough may be mixed with seasoning ingredients (salt, sugar, chicken eggs, butter, shortening, etc.), and may also be mixed with foam-inducing materials such as dry yeast, fresh yeast, natural yeast, koji, and baking powder. .
  • the dough prepared in this way can be shaped by rolling, stretching, tearing, or slicing to obtain the desired food.
  • the shaped dough may be baked (bread, cake, pizza, etc.), fried (doughnuts, fried bread, etc.), steamed (rice buns, steamed bread, etc.) It is cooked by techniques such as boiling (such as udon, soba, spaghetti), stir-fry (such as fried noodles, dumplings), and boiled (such as suito, hoto).
  • Patent Document 1 An example of a method for producing a cooked food dough can be seen in Patent Document 1.
  • Patent Document 1 relates to a method for producing bread dough, and functional starch solution obtained by pulverizing raw rice by lactic acid fermentation is added as a partial substitute for water during kneading and mixing of medium-type bread dough And dough preparation.
  • the production method includes a step of pulverizing cereal grains by rotating a pulverizing blade in a mixture of a predetermined amount of cereal grains and a predetermined amount of liquid (grinding step), and a dough material comprising a mixture of pulverized cereal grains and liquid Kneading into a dough with a kneading blade (kneading step).
  • the present applicants have obtained knowledge that the above-described pulverization process easily generates heat due to friction between the pulverization blade and the grain. For example, when bread dough is manufactured, the function of yeast added in the kneading process is reduced due to the influence of the heat generation, and the kneading process may not be performed properly (first problem).
  • the pulverization process for example, the number of rotations, the rotation time, the rotation pattern, etc., if appropriate conditions are obtained by conducting experiments in advance, the pulverization process is performed under the conditions obtained in advance. Grain grains can be stably and finely ground to a certain level.
  • an object of the present invention is to provide a production method capable of appropriately performing a kneading step while suppressing the influence of heat generation in the pulverization step in a method of producing a cooked food dough from a grain without going through a milling step. is there.
  • Another object of the present invention is to provide a method for producing a cooked food dough from cereal grains without going through a milling step, and a method for producing a stable dough for any kind of cereal grain. That is.
  • another object of the present invention is to provide a dough producing apparatus to which the cooked food dough producing method as described above is applied.
  • a method for producing a cooked food dough according to the first aspect of the present invention includes a liquid absorption step for absorbing grains and a mixture containing the absorbed grains and liquid.
  • Temperature control is started, and the dough temperature is maintained at a constant temperature at least halfway through the kneading step by the temperature control.
  • the material at the start of the kneading process is referred to as “dough material”, and the material that has approached the intended state of the dough after the kneading has progressed is “dough” even in a semi-finished state. It is supposed to be called.
  • the cooked food dough can be obtained without the trouble of milling. And the influence of the heat_generation
  • yeast may be added to the dough when the dough temperature is the constant temperature during the kneading process.
  • yeast necessary for producing bread dough can be introduced into the dough at an appropriate temperature, and the dough can be produced while actively working.
  • the kneading step is started almost simultaneously with the start of the temperature control.
  • the kneading process is started before the dough raw material reaches a constant temperature by temperature control, and the dough temperature is set to a constant temperature while performing the kneading process. For this reason, the cooked food dough can be manufactured efficiently.
  • the cooked food dough manufacturing method includes a pulverization step of pulverizing the cereal grains by rotating a pulverization blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading a dough raw material made of a mixture containing the pulverized grains and the liquid and kneading the dough into a dough with a blade, and the end of the crushing step is determined using the load during crushing as an index It is characterized.
  • the cooked food dough can be prepared without the need for milling. Obtainable. And since it is the structure which performs the judgment of the end of a crushing process as an index at the time of crushing, the crushing process is carried out at the stage where the grain is finely ground to a certain level regardless of the difference in the hardness of the grain used as a raw material. Can be terminated.
  • the rotation of the pulverization blade in the pulverization step is intermittent rotation.
  • the grains can be effectively convected in the container by repeatedly rotating and stopping the grinding blade, and the grinding efficiency can be improved.
  • a liquid absorbing step for absorbing the grains is performed before the pulverizing step.
  • the present invention is characterized in that it is a dough producing apparatus to which the cooked food dough producing method having the above configuration is applied.
  • the kneading process can be performed while suppressing the influence of heat generation in the crushing process.
  • the grain can be stably and finely pulverized to a certain level. For this reason, when manufacturing cooked food dough from a grain without going through a milling process, it is easy to obtain a dough of stable quality.
  • cooked food dough can be produced from cereal grains without going through a milling process, so the possibility of cooking cereal grains is expanded.
  • FIG. 1 is an overall flowchart of the cooked food dough manufacturing method of the present embodiment.
  • FIG. 2 is a schematic graph showing the flow of the cooked food dough manufacturing method of the present embodiment.
  • FIG. 3 is a flowchart showing the details of the liquid absorption process included in the cooked food dough manufacturing method of the present embodiment.
  • FIG. 4 is a table showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process.
  • FIG. 5 is a flowchart showing details of the crushing step included in the method for producing cooked food dough according to the present embodiment.
  • FIG. 6 is a schematic diagram for explaining a change with respect to time of load at the time of pulverization.
  • FIG. 7 is a flowchart showing details of the kneading step included in the method for producing cooked food dough according to the present embodiment.
  • FIG. 8 is a cross-sectional view showing an example of a dough manufacturing apparatus to which the cooked food dough manufacturing method of the present embodiment is applied.
  • the cooked food dough manufacturing method of the present embodiment includes a liquid absorption process # 10, a pulverization process # 20, and a kneading process # 30, and the processes proceed in this order. It is done. Details of each step will be described below.
  • This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
  • Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container.
  • step # 12 the liquid is weighed and a predetermined amount is put into a container.
  • a common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged. In this embodiment, rice grains are used as grain grains and water is used as a liquid.
  • Step # 13 the mixture of cereal grains and liquid is left in the container.
  • Step # 14 is executed almost simultaneously with the start of standing in step # 13.
  • the temperature of the liquid (liquid temperature) is detected using a thermometer.
  • the liquid temperature may be detected by putting a thermometer directly into the liquid, or may be detected indirectly by measuring the temperature of the container.
  • the detection of the liquid temperature is to take into consideration that the liquid absorption speed of the cereal grains varies depending on the liquid temperature, and to change the immersion time of the cereal grains in the liquid depending on the liquid temperature. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease.
  • step # 15 the time for immersing the grain in the liquid is determined based on the detected liquid temperature.
  • the table shown in FIG. 4 is a setting example of the immersion time assuming that water is absorbed (liquid absorption) in the grain.
  • the cooked food dough can be manufactured in a short time.
  • the production time of the cooked food dough becomes longer in the winter, but an appropriate water absorption time is provided, so that defects are less likely to occur in the subsequent pulverization step.
  • 5 to 10 indicate 5 ° C. or more and less than 10 ° C.
  • the liquid temperature is configured to give different immersion times at intervals of 5 ° C.
  • the immersion time may be given at finer temperature intervals or coarser temperature intervals.
  • the upper limit (35 ° C. in FIG. 4) and the lower limit (5 ° C. in FIG. 4) of the temperature may naturally be changed from those shown in FIG.
  • the liquid temperature detection timing is not limited to the configuration of the present embodiment, and for example, the liquid temperature may be measured immediately when the liquid is put in the container.
  • step # 16 time measurement is started so that the grain is immersed in the liquid for the determined immersion time.
  • Step # 17 it is checked whether or not the measurement time started in Step # 16 has passed the previously determined immersion time (scheduled immersion time). When the planned immersion time has elapsed, the liquid absorption step # 10 is terminated.
  • the pulverization blade may be rotated at the initial stage of the liquid absorption step # 10, and thereafter the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised. Further, in the liquid absorption step # 10, the liquid may be heated to raise the liquid temperature (for example, 50 ° C. or the like), and liquid absorption may be performed at that temperature for a certain period of time. The liquid absorption speed can be improved by allowing the grain to absorb liquid at a high temperature, and the time required for the liquid absorption process # 10 can be shortened.
  • the liquid temperature for example, 50 ° C. or the like
  • This pulverization step # 20 is a step of making grain grains into a paste. Insufficient pulverization of grain may make the dough unsatisfactory. For this reason, in this crushing step # 20, it is necessary to finely grind the grain to a certain level. In the pulverization step # 20 of the present embodiment, even when cereal grains having different hardnesses are used as raw materials, a device is devised so that a finely pulverized powder can be obtained stably to a certain level.
  • FIG. 6 is a graph showing the change over time of the load during crushing when the crushing blade is continuously rotated at the same rotation speed.
  • A, B, and C indicate the types of grain, and the hardness increases in the order of grain A, grain B, and grain C.
  • the rate of decrease in load during pulverization with respect to time change is large.
  • the hard grain C is hard to be crushed, the rate of decrease in load tends to be small during pulverization with respect to time change. For this reason, the pulverization levels of the grains A, B, and C are different in the same time of pulverization.
  • the load at the time of pulverization is related to the particle size of the pulverized powder, if the load at the time of pulverization is the same, it can be determined that the particle size of the pulverized powder is equivalent. For this reason, in the pulverization step # 20 of the present embodiment, the load during pulverization is at a certain level (this is determined as a threshold value, for example, as indicated by the broken line in FIG. 6 and is obtained in advance by experiments or the like). When it reaches, pulverization step # 20 is finished. In this way, even when grain grains having different hardness are used as the raw material, it is possible to obtain a powder that is stably finely pulverized to a certain level.
  • the details of the pulverization step # 20 will be described with reference to FIG.
  • step # 21 the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container.
  • This liquid may be the same as the liquid previously used in the liquid absorption step, or may be different (a case where the same type of liquid is simply replaced or a case where the same type of liquid is replaced). In some cases, additives such as seasonings may be added to the container at this stage.
  • this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good.
  • step # 22 the rotation of the grinding blade is started in a mixture containing cereal grains and liquid (this mixture includes a mixture of cereal grains and liquid only, which is in this embodiment).
  • step # 23 time measurement is started almost simultaneously with the start of rotation of the grinding blade.
  • step # 24 the load during grinding (grinding load) is detected.
  • the load applied to the motor can be acquired using, for example, the motor power value, current value, motor temperature change (temperature rise), and the like as an index.
  • a temperature detection sensor is separately required.
  • the power value or current value of the motor is preferably used as an index of the load at the time of grinding, although it is not intended to be limited.
  • step # 25 it is checked whether or not the pulverization load detected in step # 24 (for example, the electric power value of the motor) has reached a predetermined level (threshold). If the pulverization load detected in step # 24 has reached a predetermined level (for example, set by the power value), the pulverization step # 20 is terminated. On the other hand, if the grinding load detected in step # 24 has not reached the predetermined level, the process proceeds to step # 26.
  • a predetermined level for example, set by the power value
  • step # 26 it is checked whether or not the rotation time of the grinding blade has passed 1 minute. If the rotation time of the crushing blade has not passed 1 minute, the process returns to step # 24, and step # 24 and step # 25 are performed again. On the other hand, when the rotation time of the pulverizing blade has passed 1 minute, the process proceeds to step # 27 and the rotation of the pulverizing blade is stopped.
  • step # 28 it is checked whether or not 3 minutes have elapsed since the rotation of the grinding blade stopped. If 3 minutes have passed since the rotation stopped, the process proceeds to step # 29. In step # 29, the rotation of the grinding blade is resumed. Thereafter, the process returns to step # 24, and steps # 24 to # 29 are repeated until it is determined in step # 25 that the grinding load has reached a predetermined level.
  • the grinding blade is intermittently rotated by repeatedly rotating (ON) and stopping (OFF). Specifically, in the present embodiment, intermittent rotation is performed in which rotation is performed for 1 minute and stopped for 3 minutes. Then, as described above, the intermittent operation is continued until the load at the time of pulverization reaches a predetermined level, and when the load at the time of pulverization reaches the predetermined level, the rotation is stopped even during the one-minute rotation operation. Then, the pulverization step # 20 is completed.
  • the rotation of the pulverization blade in the pulverization process does not necessarily have to be intermittent rotation, but may be a continuous operation.
  • intermittent rotation is preferable because grain grains can be effectively convected in the container and grinding efficiency can be improved.
  • This kneading step # 30 is a step of kneading the dough raw material into a dough with a kneading blade.
  • the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 20 and a liquid, and is in a paste form.
  • the material at the start of the kneading process is referred to as a “dough raw material”, and the material that has approached the intended dough state as the kneading progressed is “ It will be called “fabric”.
  • step # 31 the dough material is put in a container.
  • this step # 31 may be omitted, and after the pulverization process # 20, the process may proceed to step # 32 described below.
  • step # 32 a predetermined amount of gluten is added to the dough material.
  • seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the present embodiment, the seasoning material is introduced.
  • step # 33 temperature control is started. As shown in FIG. 2, in the pulverizing step # 20, heat is generated due to friction between the pulverizing blade and the grain. For this reason, the temperature of the dough material tends to be higher than the desired temperature in the kneading step # 30 (28 ° C. in this embodiment, but this point will be described later). When the kneading blade starts to rotate, the dough temperature rises with the rotation. For this reason, temperature control is started so as to be constant at a desired temperature.
  • This temperature control is performed using a cooling means for cooling the container and a heating means for warming the container so as to be constant at a desired temperature.
  • the temperature here may be obtained by directly measuring the temperature of the dough (the dough raw material in the initial stage) or indirectly by measuring the temperature of the container.
  • a cooling means the thing using water and ice, the thing using a Peltier device, etc. are mentioned, for example.
  • the heating means include those using a heating wire and those using hot water.
  • the temperature control in this embodiment has a strong meaning of lowering the temperature raised in the pulverization step # 20 and suppressing the temperature rise due to kneading, and basically the cooling by the cooling means is the main.
  • Step # 34 rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started.
  • step # 34 is executed almost simultaneously with the start of temperature control in step # 33 as shown in FIG.
  • the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
  • the method of rotating the kneading blade is not particularly limited, as shown in FIG. 2, in the present embodiment, the first half is intermittent rotation and the second half is continuous rotation. In the flowchart shown in FIG. 7, details regarding intermittent rotation of the kneading blade are omitted.
  • step # 35 it is checked whether the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since this embodiment is a method for producing bread dough, yeast such as dry yeast or fresh yeast is used as a foam-inducing material as described later. Yeast needs to be adjusted to a temperature that works actively because its function is reduced if it is not at an appropriate temperature. In general, about 30 ° C. is recommended as this temperature, and in this embodiment, the dough temperature is adjusted to 28 ° C. to make the yeast work actively.
  • the temperature of the dough being kneaded is 28 ° C. Since this embodiment is a method for producing bread dough, yeast such as dry yeast or fresh yeast is used as a foam-inducing material as described later. Yeast needs to be adjusted to a temperature that works actively because its function is reduced if it is not at an appropriate temperature. In general, about 30 ° C. is recommended as this temperature, and in this embodiment, the dough temperature is adjusted to 28 ° C. to make the yeast work actively.
  • step # 36 yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C.
  • step # 37 it is checked how much time has passed since the dry yeast was added.
  • step # 38 the rotation of the kneading blade is completed. At this point, the dough is connected and integrated with the required elasticity.
  • the finished dough is cooked after it has undergone the fermentation process. Further, the finished dough may be stored refrigerated or frozen and cooked at different times. In addition, it is possible to distribute the dough at each stage subjected to refrigeration storage and frozen storage processing as a product.
  • Each process described above can be performed using a separate instrument for each process, or the instrument can be shared by a plurality of processes.
  • a bowl, bucket, tub, etc. are used in the liquid absorption process # 10
  • a mixer is used in the pulverization process # 20
  • an automatic bread maker is used after the kneading process # 30.
  • An example can be given.
  • FIG. 8 shows an example of the configuration of an instrument shared by all of the liquid absorption process, the pulverization process, and the kneading process.
  • the dough producing apparatus 100 in FIG. 8 is configured such that a container 120 is detachably attached on a main body 110 incorporating an electric motor (motor) 111 and a control unit 112 (for example, a board on which a microcomputer is mounted).
  • the container 120 has a cup shape, and the upper surface opening is sealed with a lid 121.
  • a blade 122 shared for crushing and kneading is disposed at the bottom center of the container 120.
  • the blade 122 is connected to the shaft of the electric motor 111 by a coupling 123 and is rotated by the electric motor 111.
  • a heating means 124 and a cooling means 125 Surrounding the outer periphery of the container 120 is a heating means 124 and a cooling means 125.
  • the heating means 124 can be constituted by an electric heater or an IH heater, and the cooling means 125 can be constituted by a cold water pipe or a Peltier element.
  • the container 120 is preferably formed of a metal having good heat conduction.
  • the main body 110 is provided with a temperature sensor 113 that measures the temperature of the container 120.
  • the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed.
  • the liquid temperature is detected using the temperature sensor 113. Based on the detected liquid temperature, the time of the liquid absorption step # 10 (immersion time of the grains in the liquid) is determined.
  • the immersion time can be determined by the control unit 112 by storing a table as shown in FIG. About completion
  • the blade 122 may be intermittently rotated under the control of the control unit 112 to damage the surface of the grain.
  • the blade 122 When entering the pulverization step # 20, the blade 122 is rotated at a high speed (may be intermittent rotation) to pulverize the grain. Thereby, the dough raw material which consists of a mixture of a pulverized grain and a liquid is formed.
  • the load at the time of pulverization is detected using the electric power value and current value of the electric motor 111, and the pulverization step # 20 is terminated when the load reaches a predetermined level. If the electric power value of the electric motor 111 etc. can be transmitted to the control part 112, the control part 112 can determine the completion
  • the start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed, or may be automatically started.
  • the heating unit 124 and the cooling unit 125 are appropriately functioned based on the temperature detected by the temperature sensor 113 so that the dough temperature becomes constant at a desired temperature (for example, 28 ° C.).
  • Start temperature control This temperature control may be performed manually, but can be automatically controlled by the control unit 112.
  • the temperature control may be started by providing a temperature control start button, for example, or may be automatically started by the control unit 112 when it is determined that the pulverization step # 20 has been completed. Good.
  • the lid 121 is opened, and a predetermined amount of gluten and, if necessary, a predetermined amount of seasoning material are added to the dough raw material.
  • the lid 121 is closed and the kneading step # 30 is started.
  • the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together.
  • the temperature is usually deviated from a desired temperature (for example, 28 ° C.).
  • a predetermined amount of foam-inducing material for example, dry yeast
  • the lid 121 When the foam-inducing material is introduced, the lid 121 is closed, the blade 122 is rotated at a low speed, and the dough and the foam-inducing material are kneaded to complete the dough.
  • the completion of the dough is managed by, for example, the total time from the start of kneading, and the kneading step # 30 is ended when the predetermined time has elapsed.
  • the end of the kneading step # 30 may be configured to automatically end when a predetermined time has elapsed from the start of kneading. Moreover, it is good also as a structure etc. which notify the completion
  • the dough When the dough is completed, take out the dough from the container 120 or leave the dough in the container 120 and wait for foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
  • the rotation direction of the blade 122 is changed in the pulverization process # 20 and the kneading process # 30.
  • the sharp edge on one side of the blade 122 hits the grain
  • the blade It may be configured such that the non-pointed end face of 122 on the other side presses the dough material.
  • the liquid absorption process # 10 is performed before the pulverization process # 20, and the immersion time of the grains in the liquid absorption process # 10 is changed according to the temperature of the liquid. It was.
  • the present invention is not limited to this configuration. That is, for example, the liquid absorption process may not be performed. However, it is preferable to perform the liquid absorption step as in this embodiment because grinding can be performed efficiently.
  • the immersion time in the liquid absorption process may be a fixed time. However, in this case, it is preferable to set the soaking time longer in order to reduce the possibility of insufficient grain absorption. For this reason, the configuration in which the immersion time is changed according to the liquid temperature as in the present embodiment is preferable in terms of time efficiency.
  • the temperature control and the kneading process are started simultaneously after the pulverization process.
  • the present invention is not limited to this configuration.
  • the kneading step may be started after adjusting the dough raw material to a desired temperature by temperature control started after the pulverization step.
  • the dough temperature is maintained at a constant temperature from the start of the kneading process.
  • the configuration of the present embodiment is preferable because it is time efficient.
  • gluten is added to the dough raw material when manufacturing the bread dough.
  • a configuration in which gluten is not added may be used.
  • a thickening stabilizer eg, guar gum
  • guar gum may be added instead of gluten.
  • the cooked food dough is bread dough
  • the scope of the present invention is not limited to bread dough, and the present invention is not limited to cooked food dough. Widely applicable to.
  • the following crushing and kneading processes can be executed depending on the type of dough.
  • the end of the pulverization process is determined using the load during pulverization as an index, so that the cereal grains are finely pulverized to a certain level regardless of the hardness of the cereal grains used as raw materials. It is possible to finish the pulverization process at the stage where it is done. That is, since the particle size of the pulverized powder obtained by the pulverization step can be stabilized, it is possible to obtain a dough having a stable quality regardless of the type of grain used as a raw material.
  • ⁇ Cake dough> Grinding step # 20 is performed at the same liquid ratio as dough. Eggs, sugar, baking powder, etc. are added to the dough material, and the kneading step # 30 is executed. Thereby, a soft paste-like dough is obtained.
  • ⁇ Udon dough> After the crushing step # 20, salt is added to the dough raw material and the kneading step # 30 is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
  • ⁇ Pasta dough> After the pulverization step # 20, salt and oil are added to the dough raw material and the kneading step # 30 is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
  • the present invention can be widely applied to the production of cooked food dough, and is suitable, for example, for the production of bread dough.

Abstract

A method of producing a processed cooking food stuff comprises a liquid suction step for making cereal grains suck liquid, a grinding step for grinding the cereal grains by rotating a grinding blade in a mixture containing the cereal grains which sucked the liquid and the liquid, and a kneading step for kneading the stuff material composed of the mixture containing the ground cereal grains and the liquid by means of a kneading blade to produce the stuff, wherein temperature control is started after the grinding step and the temperature of the stuff is maintained at a fixed level at least from the middle of the kneading step by the temperature control.

Description

加熱調理食品生地製造方法及び生地製造装置Cooked food dough manufacturing method and dough manufacturing apparatus
 本発明は、例えばパン生地等の加熱調理して食べられる加熱調理食品生地の製造方法に関する。また、本発明は、加熱調理食品生地製造方法が適用される生地製造装置に関する。 The present invention relates to a method for producing a cooked food dough that can be eaten by cooking, for example, bread dough. The present invention also relates to a dough manufacturing apparatus to which the cooked food dough manufacturing method is applied.
 穀物を食物として摂取する場合、粒のまま調理して食べる(粒食)こともあれば、粉に碾いた上で調理して食べる(粉食)こともある。粉食の場合、粉と水を混ぜて捏ね、一つにつながった「生地」と呼ばれるものにしてから加熱調理するのが一般的である。生地には、調味材料(食塩、砂糖、鶏卵、バター、ショートニング等)を混ぜることもあれば、また、ドライイースト、生イースト、天然酵母、糀、ベーキングパウダーなどの発泡誘起材料を混ぜることもある。 ∙ When cereal is ingested as food, it may be cooked and eaten as grains (grain meal), or it may be cooked and eaten after meal (powdery meal). In the case of a powdered meal, it is common to mix powder and water, knead them, and then cook them after cooking them into a so-called “dough”. The dough may be mixed with seasoning ingredients (salt, sugar, chicken eggs, butter, shortening, etc.), and may also be mixed with foam-inducing materials such as dry yeast, fresh yeast, natural yeast, koji, and baking powder. .
 このようにして調製した生地は、目的とする食品が得られるように丸めたり、延ばしたり、ちぎったり、細く切ったりして形を整えられる。そして、形が整えられた生地は、場合によっては発酵工程や乾燥工程を経てから、焼く(パン、ケーキ、ピザ等)、揚げる(ドーナツ、揚げパン等)、蒸す(饅頭、蒸しパン等)、茹でる(うどん、そば、スパゲティ等)、炒め焼きする(焼きそば、餃子等)、煮る(すいとん、ほうとう等)などの手法で加熱調理される。 The dough prepared in this way can be shaped by rolling, stretching, tearing, or slicing to obtain the desired food. In some cases, the shaped dough may be baked (bread, cake, pizza, etc.), fried (doughnuts, fried bread, etc.), steamed (rice buns, steamed bread, etc.) It is cooked by techniques such as boiling (such as udon, soba, spaghetti), stir-fry (such as fried noodles, dumplings), and boiled (such as suito, hoto).
 加熱調理食品生地の製造方法の一例を特許文献1に見ることができる。特許文献1はパン生地の製造方法に係るものであり、生米を乳酸発酵させて粉砕した機能性デンプン液を、パン生地の中種混捏時若しくは直捏法による混捏攪拌時に加水の一部代替えとして添加してパン生地の調製を行っている。 An example of a method for producing a cooked food dough can be seen in Patent Document 1. Patent Document 1 relates to a method for producing bread dough, and functional starch solution obtained by pulverizing raw rice by lactic acid fermentation is added as a partial substitute for water during kneading and mixing of medium-type bread dough And dough preparation.
特開平9-51754号公報JP-A-9-51754
 ところで、加熱調理食品生地を製造する場合、これまでは穀物粉を入手するところから始めなければならなかった。この点、本出願人らは鋭意研究の末、粒の形で手元にある穀物(典型的なものとして、例えば米粒が挙げられる)を利用することにより、製粉という手間をかけずに加熱調理食品生地を製造する方法を発明した。なお、これについては先に特許出願(特願2008-201506)を行っている。 By the way, when producing cooked food dough, it has been necessary to start from obtaining grain flour. In this regard, the present applicants have intensively studied, and by using grains that are in the form of grains (typically, for example, rice grains), the cooked food can be cooked without the need for milling. Invented a method of manufacturing dough. For this, a patent application (Japanese Patent Application No. 2008-201506) has been filed earlier.
 ここで、先に特許出願した加熱調理食品生地製造方法の一例を紹介する。該製造方法には、所定量の穀物粒と所定量の液体の混合物の中で粉砕ブレードを回転させて穀物粒を粉砕する工程(粉砕工程)と、粉砕穀物粒と液体の混合物からなる生地原料を練りブレードで生地に練り上げる工程(練り工程)と、が含まれる。 Here, we will introduce an example of a method for manufacturing cooked food dough that was previously filed for a patent. The production method includes a step of pulverizing cereal grains by rotating a pulverizing blade in a mixture of a predetermined amount of cereal grains and a predetermined amount of liquid (grinding step), and a dough material comprising a mixture of pulverized cereal grains and liquid Kneading into a dough with a kneading blade (kneading step).
 本出願人らは、上述の粉砕工程では、粉砕ブレードと穀物粒との摩擦等が原因となって発熱しやすいとの知見を得ている。そして、例えばパン生地の製造を行う場合には、この発熱の影響で練り工程において投入されるイーストの働きが低下し、適切に練り工程を行えない場合があった(第1の問題点)。 The present applicants have obtained knowledge that the above-described pulverization process easily generates heat due to friction between the pulverization blade and the grain. For example, when bread dough is manufactured, the function of yeast added in the kneading process is reduced due to the influence of the heat generation, and the kneading process may not be performed properly (first problem).
 また、本出願人らのこれまでの研究で、粉砕工程における穀物粒の粉砕が不十分で粒径の大きな粉(或いは粒)が残った状態で次の練り工程に進んでしまうと、例えば所望の弾力を備えた生地が得られない等、得られる生地が出来の悪いものとなるという知見を得ている。このため、粉砕工程においては穀物粒を一定のレベルまで細かく粉砕する必要がある。 Further, in the previous researches of the present applicants, if the pulverization of grain grains in the pulverization process is insufficient and the powder (or grains) having a large particle size remains, the process proceeds to the next kneading process. It has been found that the dough with the elasticity of the above cannot be obtained. For this reason, it is necessary to grind grain grains finely to a certain level in the grinding process.
 この点、粉砕工程における粉砕条件(例えば回転数、回転時間、回転パターン等)について、予め実験等を行うことによって適切な条件を求めておけば、予め求めた条件で粉砕工程を行うことで、穀物粒を安定して一定のレベルまで細かく粉砕することが可能である。 In this regard, for the pulverization conditions in the pulverization process (for example, the number of rotations, the rotation time, the rotation pattern, etc.), if appropriate conditions are obtained by conducting experiments in advance, the pulverization process is performed under the conditions obtained in advance. Grain grains can be stably and finely ground to a certain level.
 しかしながら、加熱調理食品生地を製造するために用いる穀物粒の候補としては、例えば米粒、大豆、麦等の様々な種類の穀物粒が想定される。また、同じ米粒でも白米や玄米といった複数種類の粒が存在する。これら種類の異なる穀物粒には硬さがまったく異なるものがあり、このような硬さの異なる穀物粒を同一条件で粉砕した場合には、当然、得られる粉砕粉の粒度はバラバラなものとなってしまう。その結果、その後の練り工程によって得られる生地の品質もばらついたものとなり、不出来な生地が製造される場合が起こってしまう(第2の問題点)。 However, various types of grains such as rice grains, soybeans, and wheat grains are assumed as candidates for the grains used for producing the cooked food dough. In addition, there are multiple types of grains such as white rice and brown rice even in the same rice grain. Some of these different types of grains have completely different hardness. When grains of different hardness are pulverized under the same conditions, the particle size of the pulverized powder obtained will naturally vary. End up. As a result, the quality of the dough obtained by the subsequent kneading process varies, and an unsatisfactory dough may be produced (second problem).
 なお、各種の穀物粒に対して適切な粉砕条件を予め求めておき、穀物粒の種類によって設定される粉砕条件を変更して粉砕工程を行うことも考えられるが、加熱調理食品生地を製造するために用いる穀物粒の候補は多種類であるために、そのような対応は容易ではない。 It is also possible to obtain appropriate pulverization conditions for various cereal grains in advance and change the pulverization conditions set according to the type of cereal grain to perform the pulverization process. For this reason, since there are many kinds of grain grains used for this purpose, such correspondence is not easy.
 そこで、本発明の目的は、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造する方法において、粉砕工程における発熱の影響を抑制して適切に練り工程を行える製造方法を提供することである。また、本発明の他の目的は、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造する方法において、いずれの種類の穀物粒であっても安定した生地が得られる製造方法を提供することである。更に、本発明の他の目的は、以上のような加熱調理食品生地製造方法が適用される生地製造装置を提供することである。 Accordingly, an object of the present invention is to provide a production method capable of appropriately performing a kneading step while suppressing the influence of heat generation in the pulverization step in a method of producing a cooked food dough from a grain without going through a milling step. is there. Another object of the present invention is to provide a method for producing a cooked food dough from cereal grains without going through a milling step, and a method for producing a stable dough for any kind of cereal grain. That is. Furthermore, another object of the present invention is to provide a dough producing apparatus to which the cooked food dough producing method as described above is applied.
 上記目的を達成するために本発明の第1の局面における加熱調理食品生地製造方法は、穀物粒に吸液させる吸液工程と、吸液した前記穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、粉砕された前記穀物粒と前記液体とを含む混合物からなる生地原料を練りブレードで生地に練り上げる練り工程と、を含み、前記粉砕工程後に温度制御が開始され、前記温度制御により前記練り工程の少なくとも途中から生地温度が一定の温度に維持されることを特徴とする。
 なお、本明細書では、練り工程の開始時点のものを「生地原料」と呼称し、練りが進行して目的とする生地の状態に近づいたものは、半完成状態であっても「生地」と呼称することとしている。
In order to achieve the above object, a method for producing a cooked food dough according to the first aspect of the present invention includes a liquid absorption step for absorbing grains and a mixture containing the absorbed grains and liquid. A crushing step of crushing the cereal grains by rotating a blade, and a kneading step of kneading a dough raw material made of a mixture containing the crushed cereal grains and the liquid into a dough with a blade, and after the crushing step Temperature control is started, and the dough temperature is maintained at a constant temperature at least halfway through the kneading step by the temperature control.
In the present specification, the material at the start of the kneading process is referred to as “dough material”, and the material that has approached the intended state of the dough after the kneading has progressed is “dough” even in a semi-finished state. It is supposed to be called.
 本構成によれば、粉砕工程で粉砕した穀物粒と液体とを含む混合物を生地原料として生地を練り上げる構成であるために、製粉という手間をかけずに加熱調理食品生地を得ることができる。そして、粉砕工程後に開始される温度制御によって、粉砕工程における発熱の影響を抑制できる。 According to this configuration, since the dough is kneaded using the mixture containing the cereal grains and liquid pulverized in the pulverization step as the dough raw material, the cooked food dough can be obtained without the trouble of milling. And the influence of the heat_generation | fever in a grinding | pulverization process can be suppressed by the temperature control started after a grinding | pulverization process.
 上記第1の局面における加熱調理食品生地製造方法において、前記練り工程の途中であって前記生地温度が前記一定の温度である場合に、生地にイーストが投入されることとして構わない。 In the cooked food dough manufacturing method according to the first aspect, yeast may be added to the dough when the dough temperature is the constant temperature during the kneading process.
 本構成によれば、例えばパン生地の製造に必要なイーストを適切な温度で生地に投入して、活発に働かせながら生地を製造することができる。 According to this configuration, for example, yeast necessary for producing bread dough can be introduced into the dough at an appropriate temperature, and the dough can be produced while actively working.
 上記第1の局面における加熱調理食品生地製造方法において、前記練り工程は、前記温度制御の開始とほぼ同時に開始されるのが好ましい。 In the cooked food dough manufacturing method according to the first aspect, it is preferable that the kneading step is started almost simultaneously with the start of the temperature control.
 本構成によれば、温度制御によって生地原料が一定の温度となる前に練り工程を開始し、練り工程を行いながら生地温度を一定の温度とする構成である。このために、加熱調理食品生地の製造を効率良く行える。そして、この構成においては、前記生地温度が前記一定の温度となった時点で直ぐに、生地にイーストが投入されるのが好ましい。 According to this configuration, the kneading process is started before the dough raw material reaches a constant temperature by temperature control, and the dough temperature is set to a constant temperature while performing the kneading process. For this reason, the cooked food dough can be manufactured efficiently. In this configuration, it is preferable that yeast is introduced into the dough immediately after the dough temperature reaches the constant temperature.
 上記目的を達成するために本発明の第2の局面における加熱調理食品生地製造方法は、穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、粉砕された前記穀物粒と前記液体とを含む混合物からなる生地原料を練りブレードで生地に練り上げる練り工程と、を含み、前記粉砕工程の終了は、粉砕時の負荷を指標として判断されることを特徴している。 In order to achieve the above object, the cooked food dough manufacturing method according to the second aspect of the present invention includes a pulverization step of pulverizing the cereal grains by rotating a pulverization blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading a dough raw material made of a mixture containing the pulverized grains and the liquid and kneading the dough into a dough with a blade, and the end of the crushing step is determined using the load during crushing as an index It is characterized.
 本構成によれば、粉砕工程で粉砕した穀物粒と液体とを含む混合物(ペースト状のもの)を生地原料として生地を練り上げる構成であるために、製粉という手間をかけずに加熱調理食品生地を得ることができる。そして、粉砕工程の終了判断を粉砕時の負荷を指標として行う構成であるために、原料として用いる穀物粒の硬さの違いによらず、一定のレベルまで穀物粒を細かく粉砕した段階で粉砕工程を終了することが可能である。すなわち、本構成によれば、いずれの種類の穀物粒でも粉砕工程によって得られる粉砕粉の粒度を安定したものとできるために、原料として用いる穀物粒の種類によらず安定した品質の生地を得ることが可能である。 According to this configuration, since the dough is kneaded using the mixture (paste-like) containing the cereal grains and liquid pulverized in the pulverization step as the dough material, the cooked food dough can be prepared without the need for milling. Obtainable. And since it is the structure which performs the judgment of the end of a crushing process as an index at the time of crushing, the crushing process is carried out at the stage where the grain is finely ground to a certain level regardless of the difference in the hardness of the grain used as a raw material. Can be terminated. In other words, according to this configuration, since the particle size of the pulverized powder obtained by the pulverization process can be stabilized for any type of cereal grain, a stable quality dough is obtained regardless of the type of cereal grain used as a raw material. It is possible.
 上記第2の局面における加熱調理食品生地製造方法において、前記粉砕工程における前記粉砕ブレードの回転は間欠回転であるのが好ましい。 In the cooked food dough manufacturing method according to the second aspect, it is preferable that the rotation of the pulverization blade in the pulverization step is intermittent rotation.
 本構成によれば、粉砕ブレードの回転・停止を繰り返すことによって穀物粒を効果的に容器内で対流させることができ、粉砕効率を向上することができる。 According to this configuration, the grains can be effectively convected in the container by repeatedly rotating and stopping the grinding blade, and the grinding efficiency can be improved.
 上記第2の局面における加熱調理食品生地製造方法において、前記粉砕工程の前に、前記穀物粒に吸液させる吸液工程が行われるのが好ましい。 In the heat-cooked food dough manufacturing method according to the second aspect, it is preferable that a liquid absorbing step for absorbing the grains is performed before the pulverizing step.
 本構成によれば、吸液した穀物粒を粉砕工程で粉砕することになるため、穀物粒を芯まで粉砕しやすい。 According to this configuration, since the absorbed grain is pulverized in the pulverization step, it is easy to pulverize the grain to the core.
 上記目的を達成するために本発明は、上記構成の加熱調理食品生地製造方法が適用される生地製造装置であることを特徴としている。 In order to achieve the above object, the present invention is characterized in that it is a dough producing apparatus to which the cooked food dough producing method having the above configuration is applied.
 本構成によれば、粉砕工程における発熱の影響を抑制して練り工程を行える。また、本構成によれば、原料として用いる穀物粒の種類によらず、穀物粒を安定して一定のレベルまで細かく粉砕できる。このため、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造する際に、安定した品質の生地を得やすい。 According to this configuration, the kneading process can be performed while suppressing the influence of heat generation in the crushing process. Moreover, according to this structure, regardless of the kind of grain used as a raw material, the grain can be stably and finely pulverized to a certain level. For this reason, when manufacturing cooked food dough from a grain without going through a milling process, it is easy to obtain a dough of stable quality.
 本発明によると、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造できるために、穀物粒の調理の可能性が広がる。 According to the present invention, cooked food dough can be produced from cereal grains without going through a milling process, so the possibility of cooking cereal grains is expanded.
本実施形態の加熱調理食品生地製造方法の全体フローチャートOverall flowchart of the method for producing cooked food dough according to this embodiment 本実施形態の加熱調理食品生地製造方法の流れを示す模式的なグラフSchematic graph showing the flow of the cooked food dough manufacturing method of the present embodiment 本実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートThe flowchart which shows the detail of the liquid absorption process contained in the heat cooking food dough manufacturing method of this embodiment. 吸液工程における液温と浸漬時間との関係の一例を示すテーブルTable showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process 本実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートThe flowchart which shows the detail of the grinding | pulverization process included in the heat cooking food dough manufacturing method of this embodiment. 粉砕時の負荷の時間に対する変化について説明するための模式図Schematic diagram for explaining the change with time of load during crushing 本実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートThe flowchart which shows the detail of the kneading | mixing process contained in the heat cooking food dough manufacturing method of this embodiment. 本実施形態の加熱調理食品生地製造方法が適用される生地製造装置の一例を示す断面図Sectional drawing which shows an example of the dough manufacturing apparatus with which the cooked food dough manufacturing method of this embodiment is applied
 以下、本発明の加熱調理食品生地製造方法及び生地製造装置の実施形態について、図1~図8を参照しながら説明する。なお、本実施形態においては、加熱調理食品生地の一例としてパン生地の場合を挙げて説明する。 Hereinafter, an embodiment of a cooked food dough manufacturing method and a dough manufacturing apparatus according to the present invention will be described with reference to FIGS. In the present embodiment, a case of bread dough will be described as an example of cooked food dough.
 図1は、本実施形態の加熱調理食品生地製造方法の全体フローチャートである。図2は、本実施形態の加熱調理食品生地製造方法の流れを示す模式的なグラフである。図3は、本実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートである。図4は、吸液工程における液温と浸漬時間との関係の一例を示すテーブルである。図5は、本実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートである。図6は、粉砕時の負荷の時間に対する変化について説明するための模式図である。図7は、本実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートである。図8は、本実施形態の加熱調理食品生地製造方法が適用される生地製造装置の一例を示す断面図である。 FIG. 1 is an overall flowchart of the cooked food dough manufacturing method of the present embodiment. FIG. 2 is a schematic graph showing the flow of the cooked food dough manufacturing method of the present embodiment. FIG. 3 is a flowchart showing the details of the liquid absorption process included in the cooked food dough manufacturing method of the present embodiment. FIG. 4 is a table showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process. FIG. 5 is a flowchart showing details of the crushing step included in the method for producing cooked food dough according to the present embodiment. FIG. 6 is a schematic diagram for explaining a change with respect to time of load at the time of pulverization. FIG. 7 is a flowchart showing details of the kneading step included in the method for producing cooked food dough according to the present embodiment. FIG. 8 is a cross-sectional view showing an example of a dough manufacturing apparatus to which the cooked food dough manufacturing method of the present embodiment is applied.
 図1及び図2に示すように、本実施形態の加熱調理食品生地製造方法には、吸液工程#10と、粉砕工程#20と、練り工程#30とが含まれ、この順に工程が進められる。以下、各工程の詳細について説明する。 As shown in FIGS. 1 and 2, the cooked food dough manufacturing method of the present embodiment includes a liquid absorption process # 10, a pulverization process # 20, and a kneading process # 30, and the processes proceed in this order. It is done. Details of each step will be described below.
 まず、図3にフローチャートが示される吸液工程#10について説明する。この吸液工程#10は、穀物粒に液体を含ませることによって、その後に行われる粉砕工程#20において、穀物粒を芯まで粉砕しやすくすることを狙う工程である。 First, the liquid absorption process # 10 whose flowchart is shown in FIG. 3 will be described. This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
 ステップ#11では穀物粒(米粒が最も入手しやすいが、それ以外の穀物、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆などの粒も利用可能である)を計量し、所定量を容器に入れる。ステップ#12では液体を計量し、所定量を容器に入れる。液体として一般的なものは水であるが、だし汁のような味成分を有する液体でもよく、果汁でもよい。また、アルコールを含有するものであってもよい。なお、ステップ#11とステップ#12とは順序が入れ替わっても構わない。また、本実施形態では、穀物粒として米粒、液体として水を用いることとしている。 Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container. In step # 12, the liquid is weighed and a predetermined amount is put into a container. A common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged. In this embodiment, rice grains are used as grain grains and water is used as a liquid.
 ステップ#13では穀物粒と液体との混合物を容器内で静置する。ステップ#14はステップ#13における静置開始とほぼ同時に実行され、例えば温度計を用いて液体の温度(液温)を検知する。液温については、液体に直接温度計を入れて検知するようにしてもよいし、容器の温度を測定することによって間接的に検知するようにしても構わない。液温の検知は、穀物粒の吸液速度が液温によって変動することを考慮するものであり、液温によって穀物粒の液体への浸漬時間を変化させるためである。一般に、液温が高い場合には穀物粒の吸液速度が速くなり、液温が低い場合には穀物粒の吸液速度が遅くなる傾向がある。 In Step # 13, the mixture of cereal grains and liquid is left in the container. Step # 14 is executed almost simultaneously with the start of standing in step # 13. For example, the temperature of the liquid (liquid temperature) is detected using a thermometer. The liquid temperature may be detected by putting a thermometer directly into the liquid, or may be detected indirectly by measuring the temperature of the container. The detection of the liquid temperature is to take into consideration that the liquid absorption speed of the cereal grains varies depending on the liquid temperature, and to change the immersion time of the cereal grains in the liquid depending on the liquid temperature. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease.
 ステップ#15では、検知された液温に基づいて穀物粒を液体に浸漬する時間を決定する。図4に示すテーブルは、穀物粒に水を吸水(吸液)させる場合を想定した浸漬時間の設定例である。このように浸漬時間を水温(液温)によって変更することにより、例えば夏季には短時間で加熱調理食品生地の製造が可能となる。また、冬季においては加熱調理食品生地の製造時間が長くなるが、適切な吸水時間を与えることになるために、後の粉砕工程で不良が発生し難くなる。 In step # 15, the time for immersing the grain in the liquid is determined based on the detected liquid temperature. The table shown in FIG. 4 is a setting example of the immersion time assuming that water is absorbed (liquid absorption) in the grain. Thus, by changing the immersion time depending on the water temperature (liquid temperature), for example, in the summer season, the cooked food dough can be manufactured in a short time. In addition, the production time of the cooked food dough becomes longer in the winter, but an appropriate water absorption time is provided, so that defects are less likely to occur in the subsequent pulverization step.
 なお、図4において、例えば5~10は5℃以上10℃未満を示す。他の温度帯域も同様である。また、図4では、液温について5℃間隔で異なる浸漬時間を与える構成となっているが、例えば更に細かい温度間隔や更に粗い温度間隔で浸漬時間を与えるようにしてもよい。また、温度の上限(図4では35℃)や下限(図4では5℃)について、図4に示すものから当然変更してよい。更に、液温の検知タイミングについても本実施形態の構成に限定されず、例えば液体を容器内に入れた時点で即座に測定してもよい。 In FIG. 4, for example, 5 to 10 indicate 5 ° C. or more and less than 10 ° C. The same applies to other temperature bands. Further, in FIG. 4, the liquid temperature is configured to give different immersion times at intervals of 5 ° C. However, for example, the immersion time may be given at finer temperature intervals or coarser temperature intervals. Further, the upper limit (35 ° C. in FIG. 4) and the lower limit (5 ° C. in FIG. 4) of the temperature may naturally be changed from those shown in FIG. Further, the liquid temperature detection timing is not limited to the configuration of the present embodiment, and for example, the liquid temperature may be measured immediately when the liquid is put in the container.
 ステップ#16では、穀物粒が決定された浸漬時間だけ液体に浸漬されるように時間測定を開始する。ステップ#17では、ステップ#16で開始した測定時間が先に決定された浸漬時間(予定の浸漬時間)を経過したか否かをチェックする。予定の浸漬時間が経過したら吸液工程#10を終了する。 In step # 16, time measurement is started so that the grain is immersed in the liquid for the determined immersion time. In Step # 17, it is checked whether or not the measurement time started in Step # 16 has passed the previously determined immersion time (scheduled immersion time). When the planned immersion time has elapsed, the liquid absorption step # 10 is terminated.
 なお、吸液工程#10の初期段階で粉砕ブレードを回転させ、その後も断続的に粉砕ブレードを回転させるようにしてもよい。このようにすると、穀物粒の表面に傷をつけることができ、穀物粒の吸液効率を高められる。また、吸液工程#10において液体を加熱して液温を上げて(例えば50℃等とする)、その温度で一定時間、吸液を行うようにしてもよい。高い温度で穀物粒に吸液させることにより吸液速度を向上させることができ、吸液工程#10に要する時間短縮が可能となる。 Note that the pulverization blade may be rotated at the initial stage of the liquid absorption step # 10, and thereafter the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised. Further, in the liquid absorption step # 10, the liquid may be heated to raise the liquid temperature (for example, 50 ° C. or the like), and liquid absorption may be performed at that temperature for a certain period of time. The liquid absorption speed can be improved by allowing the grain to absorb liquid at a high temperature, and the time required for the liquid absorption process # 10 can be shortened.
 次に、図5にフローチャートが示される粉砕工程#20について説明する。この粉砕工程#20は、穀物粒をペースト化する工程である。穀物粒の粉砕が不十分であると生地が不出来となることがある。このため、この粉砕工程#20では、穀物粒を一定のレベルまで細かく粉砕する必要がある。本実施形態の粉砕工程#20においては、原料として硬さが異なる穀物粒が使用された場合でも、安定して一定のレベルまで細かく粉砕された粉が得られるように工夫がなされている。 Next, pulverization step # 20 whose flowchart is shown in FIG. 5 will be described. This pulverization step # 20 is a step of making grain grains into a paste. Insufficient pulverization of grain may make the dough unsatisfactory. For this reason, in this crushing step # 20, it is necessary to finely grind the grain to a certain level. In the pulverization step # 20 of the present embodiment, even when cereal grains having different hardnesses are used as raw materials, a device is devised so that a finely pulverized powder can be obtained stably to a certain level.
 図6は、粉砕ブレードを同一の回転数で連続回転した場合における、粉砕時の負荷の時間変化を示したグラフである。図6において、A、B、Cは穀物粒の種類を示し、穀物粒A、穀物粒B、穀物粒Cの順に硬さが硬くなる。図6に示すように、硬さの柔らかい穀物粒Aは粉砕されやすいために、時間変化に対する粉砕時の負荷の低下率が大きい傾向がある。一方、硬さの硬い穀物粒Cは粉砕されにくいために、時間変化に対する粉砕時に負荷の低下率が小さくなる傾向がある。このため、同一時間の粉砕では、各穀物粒A、B、Cの粉砕レベルは異なったものとなる。 FIG. 6 is a graph showing the change over time of the load during crushing when the crushing blade is continuously rotated at the same rotation speed. In FIG. 6, A, B, and C indicate the types of grain, and the hardness increases in the order of grain A, grain B, and grain C. As shown in FIG. 6, since the soft hard grain A is easily pulverized, there is a tendency that the rate of decrease in load during pulverization with respect to time change is large. On the other hand, since the hard grain C is hard to be crushed, the rate of decrease in load tends to be small during pulverization with respect to time change. For this reason, the pulverization levels of the grains A, B, and C are different in the same time of pulverization.
 粉砕時の負荷は粉砕された粉の粒度と関係するために、粉砕時の負荷が同一であれば、粉砕された粉の粒度は同等と判断することができる。このため、本実施形態の粉砕工程#20では、粉砕時の負荷がある一定のレベル(これは、例えば図6の破線で示すように閾値として定められるもので、予め実験等によって求められる)に到達した時点で粉砕工程#20を終了することにしている。このようにすれば、原料として硬さが異なる穀物粒が使用された場合でも、安定して一定のレベルまで細かく粉砕された粉を得ることが可能となる。以下、図5を参照しながら粉砕工程#20の詳細を説明する。 Since the load at the time of pulverization is related to the particle size of the pulverized powder, if the load at the time of pulverization is the same, it can be determined that the particle size of the pulverized powder is equivalent. For this reason, in the pulverization step # 20 of the present embodiment, the load during pulverization is at a certain level (this is determined as a threshold value, for example, as indicated by the broken line in FIG. 6 and is obtained in advance by experiments or the like). When it reaches, pulverization step # 20 is finished. In this way, even when grain grains having different hardness are used as the raw material, it is possible to obtain a powder that is stably finely pulverized to a certain level. Hereinafter, the details of the pulverization step # 20 will be described with reference to FIG.
 ステップ#21では吸液工程#10で吸液した穀物粒と液体とを容器に入れる。この液体は先に吸液工程で用いた液体と同じものでもよいし、別もの(単に同一種類の液体を入れ替える場合や、別の種類の液体に入れ替える場合が挙げられる)でもよい。また、場合によっては、この段階で容器に例えば調味材料等の添加物を加えてもよい。なお、吸液工程#10で使用した容器と同じ容器を使用する場合には、このステップ#21を省略して、吸液工程#10の終了後、次に説明するステップ#22へと進んでもよい。 In step # 21, the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container. This liquid may be the same as the liquid previously used in the liquid absorption step, or may be different (a case where the same type of liquid is simply replaced or a case where the same type of liquid is replaced). In some cases, additives such as seasonings may be added to the container at this stage. In addition, when using the same container as the container used in the liquid absorption process # 10, this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good.
 ステップ#22では、穀物粒と液体とを含む混合物(この混合物は穀物粒と液体のみの混合物である場合も含み、本実施形態ではこの形態である)の中で粉砕ブレードの回転を開始する。ステップ#23では、粉砕ブレードの回転開始とほぼ同時に時間測定を開始する。また、ステップ#24では粉砕時の負荷(粉砕負荷)の検出を行う。 In step # 22, the rotation of the grinding blade is started in a mixture containing cereal grains and liquid (this mixture includes a mixture of cereal grains and liquid only, which is in this embodiment). In step # 23, time measurement is started almost simultaneously with the start of rotation of the grinding blade. In step # 24, the load during grinding (grinding load) is detected.
 なお、粉砕時の負荷は、例えば粉砕ブレードを回転させるモータに加わる負荷によって得れば良い。モータに加わる負荷は、例えばモータの電力値、電流値、モータの温度変化(温度上昇)等を指標として取得できる。例えばモータの温度変化を粉砕時の負荷の指標とする場合には、温度検出用のセンサが別途必要となるが、モータの電力値或いは電流値を粉砕時の負荷の指標とする場合にはセンサを別途準備する必要がない。このような点等を考慮して、限定する趣旨ではないが、粉砕時の負荷の指標としてモータの電力値或いは電流値を用いるのが好ましい。 In addition, what is necessary is just to obtain | require the load at the time of a grinding | pulverization by the load added to the motor which rotates a grinding | pulverization blade, for example. The load applied to the motor can be acquired using, for example, the motor power value, current value, motor temperature change (temperature rise), and the like as an index. For example, when the temperature change of the motor is used as an index of load during crushing, a temperature detection sensor is separately required. However, when the motor power value or current value is used as an index of load during crushing, a sensor is required. There is no need to prepare separately. In consideration of such points and the like, the power value or current value of the motor is preferably used as an index of the load at the time of grinding, although it is not intended to be limited.
 ステップ#25では、ステップ#24で検出した粉砕負荷(例えばモータの電力値等)が予め定めた所定のレベル(閾値)に到達したか否かをチェックする。ここで、ステップ#24で検出した粉砕負荷が所定のレベル(例えば電力値で設定される)に到達している場合には粉砕工程#20を終了する。一方、ステップ#24で検出した粉砕負荷が所定のレベルに到達していない場合には、ステップ#26に進む。 In step # 25, it is checked whether or not the pulverization load detected in step # 24 (for example, the electric power value of the motor) has reached a predetermined level (threshold). If the pulverization load detected in step # 24 has reached a predetermined level (for example, set by the power value), the pulverization step # 20 is terminated. On the other hand, if the grinding load detected in step # 24 has not reached the predetermined level, the process proceeds to step # 26.
 ステップ#26では、粉砕ブレードの回転時間が1分を経過したか否かをチェックする。粉砕ブレードの回転時間が1分を経過していない場合には、ステップ#24に戻って、ステップ#24、ステップ#25を再度行う。一方、粉砕ブレードの回転時間が1分を経過したら、ステップ#27に進んで粉砕ブレードの回転を停止する。 In step # 26, it is checked whether or not the rotation time of the grinding blade has passed 1 minute. If the rotation time of the crushing blade has not passed 1 minute, the process returns to step # 24, and step # 24 and step # 25 are performed again. On the other hand, when the rotation time of the pulverizing blade has passed 1 minute, the process proceeds to step # 27 and the rotation of the pulverizing blade is stopped.
 ステップ#28では、粉砕ブレードの回転停止から3分が経過した否かをチェックする。回転停止から3分が経過している場合にはステップ#29に進む。ステップ#29では、粉砕ブレードの回転を再開する。その後ステップ#24に戻り、ステップ#25において粉砕負荷が所定のレベルに達したと判断されるまで、ステップ#24~#29を繰り返す。 In step # 28, it is checked whether or not 3 minutes have elapsed since the rotation of the grinding blade stopped. If 3 minutes have passed since the rotation stopped, the process proceeds to step # 29. In step # 29, the rotation of the grinding blade is resumed. Thereafter, the process returns to step # 24, and steps # 24 to # 29 are repeated until it is determined in step # 25 that the grinding load has reached a predetermined level.
 粉砕ブレードの回転制御について、図2を参照しながら説明する。図2に示すように、粉砕ブレードは、回転(ON)と停止(OFF)とを繰り返し行う間欠回転とされる。具体的には、本実施形態では1分間回転して3分間停止という間欠回転が行われる。そして、上述のように粉砕時の負荷が所定のレベルに到達するまで間欠運転が続けられ、粉砕時の負荷が所定のレベルに達したら、1分間の回転動作中であっても回転を停止して粉砕工程#20を終了する。 The rotation control of the grinding blade will be described with reference to FIG. As shown in FIG. 2, the grinding blade is intermittently rotated by repeatedly rotating (ON) and stopping (OFF). Specifically, in the present embodiment, intermittent rotation is performed in which rotation is performed for 1 minute and stopped for 3 minutes. Then, as described above, the intermittent operation is continued until the load at the time of pulverization reaches a predetermined level, and when the load at the time of pulverization reaches the predetermined level, the rotation is stopped even during the one-minute rotation operation. Then, the pulverization step # 20 is completed.
 ただし、これは一例であり、粉砕ブレードの回転制御の方法は必要に応じて適宜変更可能である。また、粉砕工程における粉砕ブレードの回転について、必ず間欠回転としなければならないという訳ではなく連続運転としても構わない。ただし、間欠回転とした方が、穀物粒を効果的に容器内で対流させることができて粉砕効率を向上できるので好ましい。 However, this is only an example, and the method of controlling the rotation of the grinding blade can be changed as appropriate. Further, the rotation of the pulverization blade in the pulverization process does not necessarily have to be intermittent rotation, but may be a continuous operation. However, intermittent rotation is preferable because grain grains can be effectively convected in the container and grinding efficiency can be improved.
 次に、図7にフローチャートが示される練り工程#30について説明する。この練り工程#30は、生地原料を練りブレードで生地に練り上げる工程である。ここで、生地原料とは、粉砕工程#20で粉砕された穀物粒(粉砕穀物粒)と液体とを含む混合物のことで、ペースト状のものである。上述したが、本明細書では、練り工程の開始時点のものを「生地原料」と呼称し、練りが進行して目的とする生地の状態に近づいたものは、半完成状態であっても「生地」と呼称することとしている。 Next, the kneading step # 30 whose flowchart is shown in FIG. 7 will be described. This kneading step # 30 is a step of kneading the dough raw material into a dough with a kneading blade. Here, the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 20 and a liquid, and is in a paste form. As described above, in the present specification, the material at the start of the kneading process is referred to as a “dough raw material”, and the material that has approached the intended dough state as the kneading progressed is “ It will be called “fabric”.
 ステップ#31では生地原料を容器に入れる。なお、粉砕工程#20で使用した容器と同じ容器を使用する場合には、このステップ#31を省略して、粉砕工程#20の終了後、次に説明するステップ#32へと進んでもよい。ステップ#32では生地原料に所定量のグルテンを投入する。この際、必要に応じ、食塩、砂糖、ショートニングといった調味材料も投入する。本実施形態では、上記調味材料を投入することとしている。 In step # 31, the dough material is put in a container. When the same container as that used in the pulverization process # 20 is used, this step # 31 may be omitted, and after the pulverization process # 20, the process may proceed to step # 32 described below. In step # 32, a predetermined amount of gluten is added to the dough material. At this time, seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the present embodiment, the seasoning material is introduced.
 ステップ#33では温度制御を開始する。図2に示すように粉砕工程#20においては、粉砕ブレードと穀物粒との摩擦等が原因となって発熱する。このために、生地原料の温度が練り工程#30における所望の温度(本実施形態では28℃であるが、この点は後述する)より高くなりやすい。また、練りブレードの回転が始まると、その回転に伴って生地温度が上昇する。このため、所望の温度で一定となるように温度制御を開始する。 In step # 33, temperature control is started. As shown in FIG. 2, in the pulverizing step # 20, heat is generated due to friction between the pulverizing blade and the grain. For this reason, the temperature of the dough material tends to be higher than the desired temperature in the kneading step # 30 (28 ° C. in this embodiment, but this point will be described later). When the kneading blade starts to rotate, the dough temperature rises with the rotation. For this reason, temperature control is started so as to be constant at a desired temperature.
 この温度制御は、容器を冷やすための冷却手段と、容器を温めるための加熱手段とを用いて、所望の温度で一定となるように制御する。ここでの温度は、生地(初期段階においては生地原料)の温度を直接測定して得てもよいし、容器の温度を測定して間接的に得てもよい。なお、冷却手段としては、例えば水や氷を用いるものやペルチエ素子を用いるもの等が挙げられる。加熱手段としては、例えば電熱線を用いるものや温水を用いるもの等が挙げられる。 This temperature control is performed using a cooling means for cooling the container and a heating means for warming the container so as to be constant at a desired temperature. The temperature here may be obtained by directly measuring the temperature of the dough (the dough raw material in the initial stage) or indirectly by measuring the temperature of the container. In addition, as a cooling means, the thing using water and ice, the thing using a Peltier device, etc. are mentioned, for example. Examples of the heating means include those using a heating wire and those using hot water.
 なお、本実施形態における温度制御は、粉砕工程#20で上昇した温度を下げる、及び、練り上げによる温度上昇を抑制するという意味合いが強く、基本的には、冷却手段による冷却がメインである。 Note that the temperature control in this embodiment has a strong meaning of lowering the temperature raised in the pulverization step # 20 and suppressing the temperature rise due to kneading, and basically the cooling by the cooling means is the main.
 ステップ#34では、生地原料の中で練りブレードの回転を開始し、更に練りの開始からの時間を測定するための時間測定が開始される。このステップ#34は、本実施形態では図2に示すようにステップ#33の温度制御開始とほぼ同時に実行される。練りブレードの回転により、生地原料が一つにつながり、所定の弾力を備えた生地へと練り上がっていく。 In Step # 34, rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started. In this embodiment, step # 34 is executed almost simultaneously with the start of temperature control in step # 33 as shown in FIG. By rotating the kneading blade, the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
 なお、練りブレードの回転方法は特に限定されるものではないが、図2に示すように本実施形態では前半は間欠回転とし、後半は連続回転としている。図7に示すフローチャートでは、練りブレードの間欠回転に関する詳細は省略した記載となっている。 Although the method of rotating the kneading blade is not particularly limited, as shown in FIG. 2, in the present embodiment, the first half is intermittent rotation and the second half is continuous rotation. In the flowchart shown in FIG. 7, details regarding intermittent rotation of the kneading blade are omitted.
 ステップ#35では、練り上げ中の生地の温度(生地温度)が28℃であるか否かをチェックする。本実施形態はパン生地の製造方法であるため、後述のように発泡誘起材料としてドライイーストや生イーストなどのイーストを投入する。イーストは適切な温度でないとその働きが低下するために、活発に働く温度に調整する必要がある。この温度として一般に30度前後が良いとされており、本実施形態では生地温度を28℃に調整してイーストを活発に働かせることとしている。 In step # 35, it is checked whether the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since this embodiment is a method for producing bread dough, yeast such as dry yeast or fresh yeast is used as a foam-inducing material as described later. Yeast needs to be adjusted to a temperature that works actively because its function is reduced if it is not at an appropriate temperature. In general, about 30 ° C. is recommended as this temperature, and in this embodiment, the dough temperature is adjusted to 28 ° C. to make the yeast work actively.
 温度制御によって生地温度が28℃に冷却されると、その時点でステップ#36に進む。ステップ#36では、生地温度が28℃となった生地にイースト(この場合はドライイースト)を投入する。ステップ#37ではドライイーストを投入してからどれだけ時間が経過したかをチェックする。所定時間が経過したらステップ#38へ進んで練りブレードの回転が終了する。この時点で、一つにつながり、所要の弾力を備えた生地が完成する。 When the dough temperature is cooled to 28 ° C. by temperature control, the process proceeds to step # 36 at that time. In step # 36, yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C. In step # 37, it is checked how much time has passed since the dry yeast was added. When the predetermined time has elapsed, the process proceeds to step # 38 and the rotation of the kneading blade is completed. At this point, the dough is connected and integrated with the required elasticity.
 完成した生地は、発酵工程を経た段階で加熱調理される。また、完成した生地を冷蔵したり冷凍したりして保存し、時間をずらして加熱調理してもよい。また、冷蔵保存や冷凍保存の処理を施した各段階の生地を商品として流通させることもできる。 The finished dough is cooked after it has undergone the fermentation process. Further, the finished dough may be stored refrigerated or frozen and cooked at different times. In addition, it is possible to distribute the dough at each stage subjected to refrigeration storage and frozen storage processing as a product.
 上記の各工程は、工程毎に別個の器具を使って遂行することもできるし、複数の工程で器具を共用することもできる。工程毎に別個の器具を使うことについては、吸液工程#10ではボウル、バケツ、たらい等を使い、粉砕工程#20ではミキサーを使い、練り工程#30以降は自動製パン器を使う、といった例を挙げることができる。 Each process described above can be performed using a separate instrument for each process, or the instrument can be shared by a plurality of processes. Regarding the use of separate tools for each process, a bowl, bucket, tub, etc. are used in the liquid absorption process # 10, a mixer is used in the pulverization process # 20, and an automatic bread maker is used after the kneading process # 30. An example can be given.
 吸液工程、粉砕工程及び練り工程の全てで共用される器具の構成例を図8に示す。図8の生地製造装置100は、電動機(モータ)111及び制御部112(例えばマイクロコンピュータを搭載した基板)を内蔵した本体110の上に、容器120を着脱自在に取り付ける形になっている。容器120はカップ形状であって、上面開口は蓋121で密封される。容器120の底部中央には粉砕と練りに共用されるブレード122が配置されている。 FIG. 8 shows an example of the configuration of an instrument shared by all of the liquid absorption process, the pulverization process, and the kneading process. The dough producing apparatus 100 in FIG. 8 is configured such that a container 120 is detachably attached on a main body 110 incorporating an electric motor (motor) 111 and a control unit 112 (for example, a board on which a microcomputer is mounted). The container 120 has a cup shape, and the upper surface opening is sealed with a lid 121. A blade 122 shared for crushing and kneading is disposed at the bottom center of the container 120.
 ブレード122は電動機111の軸にカップリング123で連結し、電動機111によって回転せしめられる。容器120の外周を取り巻くのは加熱手段124と冷却手段125である。加熱手段124は電熱ヒータやIHヒータで構成することができ、冷却手段125は冷水管やペルチエ素子で構成することができる。容器120は熱伝導の良好な金属で形成するのがよい。本体110には容器120の温度を測定する温度センサ113が設けられている。 The blade 122 is connected to the shaft of the electric motor 111 by a coupling 123 and is rotated by the electric motor 111. Surrounding the outer periphery of the container 120 is a heating means 124 and a cooling means 125. The heating means 124 can be constituted by an electric heater or an IH heater, and the cooling means 125 can be constituted by a cold water pipe or a Peltier element. The container 120 is preferably formed of a metal having good heat conduction. The main body 110 is provided with a temperature sensor 113 that measures the temperature of the container 120.
 穀物粒からパン用の生地を製造するときは、生地製造装置100を次のように用いる。蓋121を外し、容器120の中に所定量の穀物粒と所定量の液体とを入れた後、再び蓋121を嵌め込んで、まず吸液工程#10を実行する。この吸液工程#10では温度センサ113を用いて液温を検知する。検知された液温に基づいて吸液工程#10の時間(穀物粒の液体への浸漬時間)を決定する。この浸漬時間は、図示しないメモリに予め図4に示すようなテーブルを記憶させておき、制御部112によって決定することができる。吸液工程#10の終了については、例えばブザー等の報知音を鳴らすようにしてもよい。 When manufacturing bread dough from grain, the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed. In this liquid absorption process # 10, the liquid temperature is detected using the temperature sensor 113. Based on the detected liquid temperature, the time of the liquid absorption step # 10 (immersion time of the grains in the liquid) is determined. The immersion time can be determined by the control unit 112 by storing a table as shown in FIG. About completion | finish of liquid absorption process # 10, you may make it sound notification sounds, such as a buzzer, for example.
 なお、上述したように、この吸液工程#10で、制御部112による制御によってブレード122を断続的に回転させて穀物粒の表面に傷をつけるようにしてもよい。 Note that, as described above, in this liquid absorption step # 10, the blade 122 may be intermittently rotated under the control of the control unit 112 to damage the surface of the grain.
 粉砕工程#20に入ったらブレード122を高速回転(間欠回転であってよい)させ、穀物粒を粉砕する。これにより、粉砕穀物粒と液体との混合物からなる生地原料が形成される。粉砕工程#20においては、例えば電動機111の電力値や電流値を用いて粉砕時の負荷を検出し、この負荷が所定のレベルに到達した時点で粉砕工程#20を終了する。電動機111の電力値等を制御部112に送信できるように構成しておけば、制御部112にて粉砕工程#20の終了時点を判断して自動的に粉砕工程#20を終了できる。 When entering the pulverization step # 20, the blade 122 is rotated at a high speed (may be intermittent rotation) to pulverize the grain. Thereby, the dough raw material which consists of a mixture of a pulverized grain and a liquid is formed. In the pulverization step # 20, for example, the load at the time of pulverization is detected using the electric power value and current value of the electric motor 111, and the pulverization step # 20 is terminated when the load reaches a predetermined level. If the electric power value of the electric motor 111 etc. can be transmitted to the control part 112, the control part 112 can determine the completion | finish time of grinding | pulverization process # 20, and can complete | finish grinding | pulverization process # 20 automatically.
 なお、粉砕工程#20のスタートは、吸液工程の終了後にスタートボタンを押すことによって始まるようにしてもよいし、自動的に始まるようにしてもよい。 The start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed, or may be automatically started.
 粉砕工程#20が終了した時点で、温度センサ113の検知温度に基づいて加熱手段124と冷却手段125とを適宜機能させて、生地温度が所望の温度(例えば28℃)で一定となるように温度制御を開始する。この温度制御は手動によって行っても良いが、制御部112によって自動制御することとできる。また、この温度制御は、例えば温度制御開始用のボタンを設けて開始することとしてもよいし、粉砕工程#20が終了したと判断された時点で、制御部112によって自動的に開始してもよい。 When the pulverization step # 20 is completed, the heating unit 124 and the cooling unit 125 are appropriately functioned based on the temperature detected by the temperature sensor 113 so that the dough temperature becomes constant at a desired temperature (for example, 28 ° C.). Start temperature control. This temperature control may be performed manually, but can be automatically controlled by the control unit 112. The temperature control may be started by providing a temperature control start button, for example, or may be automatically started by the control unit 112 when it is determined that the pulverization step # 20 has been completed. Good.
 粉砕工程#20が終了した時点で、蓋121を開け、所定量のグルテンと、必要に応じ所定量の調味材料を生地原料に投入する。 When the pulverization step # 20 is completed, the lid 121 is opened, and a predetermined amount of gluten and, if necessary, a predetermined amount of seasoning material are added to the dough raw material.
 この後、蓋121を閉じて練り工程#30を開始する。練り工程#30ではブレード122を低速回転させ、生地原料及びそれに投入されたグルテンや調味材料を捏ねて一つにつながった生地を練り上げる。練り工程#30の開始時は、通常、所望の温度(例えば28℃)からずれている。温度制御により所望の温度となった時点で蓋121を開けて生地に所定量の発泡誘起材料(例えばドライイースト)を投入する。なお、所望の温度となったことをブザー音等の報知音で知らせる構成としてもよい。 Thereafter, the lid 121 is closed and the kneading step # 30 is started. In the kneading step # 30, the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together. At the start of the kneading step # 30, the temperature is usually deviated from a desired temperature (for example, 28 ° C.). When the desired temperature is reached by temperature control, the lid 121 is opened, and a predetermined amount of foam-inducing material (for example, dry yeast) is put into the dough. In addition, it is good also as a structure which notifies that it became desired temperature by alerting sounds, such as a buzzer sound.
 発泡誘起材料を投入したら蓋121を閉め、ブレード122を低速回転させて生地と発泡誘起材料とを混練して生地を完成させる。生地の完成は、例えば混練開始からのトータル時間で管理することとし、トータル時間が所定の時間を経過した時点で練り工程#30を終了とする。なお、練り工程#30の終了は、混練開始からのトータル時間が所定の時間を経過した時点で自動的に終了する構成としてもよい。また、練り工程#30の終了をブザー等の報知音で知らせる構成等としてもよい。 When the foam-inducing material is introduced, the lid 121 is closed, the blade 122 is rotated at a low speed, and the dough and the foam-inducing material are kneaded to complete the dough. The completion of the dough is managed by, for example, the total time from the start of kneading, and the kneading step # 30 is ended when the predetermined time has elapsed. The end of the kneading step # 30 may be configured to automatically end when a predetermined time has elapsed from the start of kneading. Moreover, it is good also as a structure etc. which notify the completion | finish of kneading process # 30 by alerting sounds, such as a buzzer.
 生地が完成したら、生地を容器120から取り出して、あるいは生地を容器120に入れたままで、生地の発泡が進むのを待つ。所望の発泡を得られたら生地をパン焼き装置に入れ、パンを焼く。 When the dough is completed, take out the dough from the container 120 or leave the dough in the container 120 and wait for foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
 このように、同一の容器120内で吸液工程#10から練り工程#30まで進行させることにより、ある工程から他の工程に移行する際に内容物を別の容器に移し替える必要がなく、時間を短縮できる。また、穀物粒や生地原料の一部が前の工程で使用した容器の内面に残り、少しずつ目減りするという問題もなくなる。 In this way, by proceeding from the liquid absorption process # 10 to the kneading process # 30 in the same container 120, it is not necessary to transfer the contents to another container when moving from one process to another, You can save time. In addition, there is no problem that a part of the grain grains and dough raw material remains on the inner surface of the container used in the previous process and gradually decreases.
 なお、上記生地製造装置100において、粉砕工程#20と練り工程#30でブレード122の回転方向を変え、粉砕工程#20ではブレード122の片側の鋭いエッジが穀物粒に当たり、練り工程#30ではブレード122の他側の尖っていない端面が生地原料を押す、といった構成にしてもよい。 In the dough manufacturing apparatus 100, the rotation direction of the blade 122 is changed in the pulverization process # 20 and the kneading process # 30. In the pulverization process # 20, the sharp edge on one side of the blade 122 hits the grain, and in the kneading process # 30, the blade It may be configured such that the non-pointed end face of 122 on the other side presses the dough material.
 以上、本発明の実施態様につき説明したが、本発明の範囲はこれに限定されるものではなく、発明の主旨を逸脱しない範囲で種々の変更を加えて実施することができる。 The embodiment of the present invention has been described above, but the scope of the present invention is not limited to this, and various modifications can be made without departing from the spirit of the invention.
 例えば、以上に示した実施形態では、粉砕工程#20の前に吸液工程#10が行われる構成とし、吸液工程#10における穀物粒の液体への浸漬時間を液体の温度によって変更する構成とした。しかし、この構成に限定される趣旨ではない。すなわち、例えば吸液工程を行わない構成としてもよい。ただし、本実施形態のように吸液工程を行う方が粉砕を効率良く行えるので好ましい。 For example, in the embodiment described above, the liquid absorption process # 10 is performed before the pulverization process # 20, and the immersion time of the grains in the liquid absorption process # 10 is changed according to the temperature of the liquid. It was. However, the present invention is not limited to this configuration. That is, for example, the liquid absorption process may not be performed. However, it is preferable to perform the liquid absorption step as in this embodiment because grinding can be performed efficiently.
 また、例えば吸液工程における上記浸漬時間は一定の固定時間としてもよい。ただし、この場合は穀物粒の吸液不足が発生する可能性を低減するため浸漬時間を長めに設定しておくのが好ましくなる。このようなことから、本実施形態のように液温によって上記浸漬時間を変更する構成の方が時間効率の点で好ましい。 For example, the immersion time in the liquid absorption process may be a fixed time. However, in this case, it is preferable to set the soaking time longer in order to reduce the possibility of insufficient grain absorption. For this reason, the configuration in which the immersion time is changed according to the liquid temperature as in the present embodiment is preferable in terms of time efficiency.
 また、以上に示した実施形態では、粉砕工程後に温度制御と練り工程が同時に開始される構成とした。しかし、この構成に限定される趣旨ではない。例えば、粉砕工程後に開始される温度制御によって生地原料を所望の温度に調整した後、練り工程を開始する構成としても構わない。この場合は、練り工程の開始時から生地温度が一定の温度に維持されることになる。ただし、本実施形態の構成の方が、時間効率が良く好ましい。 In the embodiment described above, the temperature control and the kneading process are started simultaneously after the pulverization process. However, the present invention is not limited to this configuration. For example, after adjusting the dough raw material to a desired temperature by temperature control started after the pulverization step, the kneading step may be started. In this case, the dough temperature is maintained at a constant temperature from the start of the kneading process. However, the configuration of the present embodiment is preferable because it is time efficient.
 また、以上に示した実施形態では、パン生地の製造にあたって生地原料にグルテンを投入する構成とした。しかし、グルテンを投入しない構成としても構わない。この場合は、例えば、グルテンの代わりに増粘安定剤(例えばグアガム)を投入する等してもよい。 In the embodiment described above, gluten is added to the dough raw material when manufacturing the bread dough. However, a configuration in which gluten is not added may be used. In this case, for example, a thickening stabilizer (eg, guar gum) may be added instead of gluten.
 その他、以上に示した実施形態では、加熱調理食品生地がパン生地である場合を例に挙げて説明したが、本発明の適用範囲はパン生地に限定される趣旨ではなく、本発明は加熱調理食品生地に広く適用可能である。例えば、生地の種類により、次のような粉砕、練り工程が実行できる。そして、この際においても、粉砕工程の終了判断を粉砕時の負荷を指標として行う構成とすることで、原料として用いる穀物粒の硬さの違いによらず、一定のレベルまで穀物粒を細かく粉砕した段階で粉砕工程を終了することが可能である。すなわち、粉砕工程によって得られる粉砕粉の粒度を安定したものとできるために、原料として用いる穀物粒の種類によらず安定した品質の生地を得ることが可能である。 In addition, in the embodiment described above, the case where the cooked food dough is bread dough has been described as an example. However, the scope of the present invention is not limited to bread dough, and the present invention is not limited to cooked food dough. Widely applicable to. For example, the following crushing and kneading processes can be executed depending on the type of dough. In this case as well, the end of the pulverization process is determined using the load during pulverization as an index, so that the cereal grains are finely pulverized to a certain level regardless of the hardness of the cereal grains used as raw materials. It is possible to finish the pulverization process at the stage where it is done. That is, since the particle size of the pulverized powder obtained by the pulverization step can be stabilized, it is possible to obtain a dough having a stable quality regardless of the type of grain used as a raw material.
 <ケーキ生地>
 パン生地と同じくらいの液体の割合で粉砕工程#20を実行する。生地原料に卵、砂糖、ベーキングパウダーなどを投入し、練り工程#30を実行する。これにより、柔らかいペースト状の生地が得られる。
 <うどん生地>
 粉砕工程#20の後、生地原料に塩を投入して練り工程#30を実行する。これにより、パン生地よりも硬く、弾力のある生地が得られる。
 <パスタ生地>
 粉砕工程#20の後、生地原料に塩と油を投入して練り工程#30を実行する。これにより、パン生地よりも硬く、弾力のある生地が得られる。
<Cake dough>
Grinding step # 20 is performed at the same liquid ratio as dough. Eggs, sugar, baking powder, etc. are added to the dough material, and the kneading step # 30 is executed. Thereby, a soft paste-like dough is obtained.
<Udon dough>
After the crushing step # 20, salt is added to the dough raw material and the kneading step # 30 is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
<Pasta dough>
After the pulverization step # 20, salt and oil are added to the dough raw material and the kneading step # 30 is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
 本発明は、加熱調理食品の生地を製造する際に広く適用でき、例えばパン生地の製造に好適である。 The present invention can be widely applied to the production of cooked food dough, and is suitable, for example, for the production of bread dough.
   #10 吸液工程
   #20 粉砕工程
   #30 練り工程
   100 生地製造装置
   112 制御部
   113 温度センサ
   120 容器
   122 ブレード
# 10 Liquid absorption process # 20 Crushing process # 30 Kneading process 100 Dough manufacturing apparatus 112 Control unit 113 Temperature sensor 120 Container 122 Blade

Claims (7)

  1.  穀物粒に吸液させる吸液工程と、
     吸液した前記穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、
     粉砕された前記穀物粒と前記液体とを含む混合物からなる生地原料を練りブレードで生地に練り上げる練り工程と、を含み、
     前記粉砕工程後に温度制御が開始され、前記温度制御により前記練り工程の少なくとも途中から生地温度が一定の温度に維持されることを特徴とする加熱調理食品生地製造方法。
    A liquid absorption process for absorbing the grains,
    A pulverizing step of pulverizing the cereal grains by rotating a pulverizing blade in a mixture containing the absorbed cereal grains and liquid;
    A kneading step of kneading a dough raw material made of a mixture containing the pulverized grain and the liquid into a dough with a blade, and
    A method for producing a cooked food dough, wherein temperature control is started after the pulverization step, and the dough temperature is maintained at a constant temperature at least halfway through the kneading step by the temperature control.
  2.  前記練り工程の途中であって前記生地温度が前記一定の温度である場合に、生地にイーストが投入されることを特徴とする請求項1に記載の加熱調理食品生地製造方法。 The method for producing a cooked food dough according to claim 1, wherein yeast is added to the dough when the dough temperature is the constant temperature during the kneading step.
  3.  前記練り工程は、前記温度制御の開始とほぼ同時に開始されることを特徴とする請求項1に記載の加熱調理食品生地製造方法。 2. The cooked food dough manufacturing method according to claim 1, wherein the kneading step is started almost simultaneously with the start of the temperature control.
  4.  穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、
     粉砕された前記穀物粒と前記液体とを含む混合物からなる生地原料を練りブレードで生地に練り上げる練り工程と、を含み、
     前記粉砕工程の終了は、粉砕時の負荷を指標として判断されることを特徴とする加熱調理食品生地製造方法。
    A crushing step of crushing the grain by rotating a grinding blade in a mixture containing the grain and liquid;
    A kneading step of kneading a dough raw material made of a mixture containing the pulverized grain and the liquid into a dough with a blade, and
    The method for producing a cooked food dough, characterized in that the end of the pulverization step is determined using a load during pulverization as an index.
  5.  前記粉砕工程における前記粉砕ブレードの回転は間欠回転であることを特徴とする請求項4に記載の加熱調理食品生地製造方法。 The method for producing a cooked food dough according to claim 4, wherein the crushing blade rotates intermittently in the crushing step.
  6.  前記粉砕工程の前に、前記穀物粒に吸液させる吸液工程が行われることを特徴とする請求項4に記載の加熱調理食品生地製造方法。 The method for producing a cooked food dough according to claim 4, wherein a liquid-absorbing step for absorbing the grains is performed before the crushing step.
  7.  請求項1から6のいずれかに記載の加熱調理食品生地製造方法が適用される生地製造装置。 A dough manufacturing apparatus to which the cooked food dough manufacturing method according to any one of claims 1 to 6 is applied.
PCT/JP2010/056407 2009-04-10 2010-04-09 Method of producing processed cooking food stuff and device of producing stuff WO2010117048A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800160513A CN102387716A (en) 2009-04-10 2010-04-09 Method of producing processed cooking food stuff and device of producing stuff

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-096003 2009-04-10
JP2009096003A JP5609001B2 (en) 2009-04-10 2009-04-10 Cooked food dough manufacturing method and dough manufacturing apparatus

Publications (1)

Publication Number Publication Date
WO2010117048A1 true WO2010117048A1 (en) 2010-10-14

Family

ID=42936329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056407 WO2010117048A1 (en) 2009-04-10 2010-04-09 Method of producing processed cooking food stuff and device of producing stuff

Country Status (4)

Country Link
JP (1) JP5609001B2 (en)
CN (1) CN102387716A (en)
TW (1) TW201043141A (en)
WO (1) WO2010117048A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201036552A (en) * 2009-04-10 2010-10-16 Sanyo Electric Co Method for making food dough for cooking and dough making device
WO2012063518A1 (en) * 2010-11-09 2012-05-18 三洋電機株式会社 Automatic breadmaker
BE1026671B1 (en) * 2018-10-03 2020-05-05 Maeyer Stefan De Composition of a speculaas-containing milk-containing drink and method for preparing it

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2004255163A (en) * 2003-02-07 2004-09-16 Niigata Gourmet:Kk Automatic breadmaker and method of making bread
JP2004261232A (en) * 2003-02-19 2004-09-24 Shitogi Japan:Kk Automatic bread maker and production method for bread utilizing the same
JP2006280824A (en) * 2005-04-05 2006-10-19 Sanyo Electric Co Ltd Automatic bread maker
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2009125515A (en) * 2007-11-28 2009-06-11 Sanyo Electric Co Ltd Automatic bread maker
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1319469C (en) * 2002-11-25 2007-06-06 株式会社林原生物化学研究所 Method of producing rice flour and use thereof
JP5430895B2 (en) * 2008-08-05 2014-03-05 三洋電機株式会社 Cooking food dough manufacturing method
TW201036552A (en) * 2009-04-10 2010-10-16 Sanyo Electric Co Method for making food dough for cooking and dough making device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2004255163A (en) * 2003-02-07 2004-09-16 Niigata Gourmet:Kk Automatic breadmaker and method of making bread
JP2004261232A (en) * 2003-02-19 2004-09-24 Shitogi Japan:Kk Automatic bread maker and production method for bread utilizing the same
JP2006280824A (en) * 2005-04-05 2006-10-19 Sanyo Electric Co Ltd Automatic bread maker
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2009125515A (en) * 2007-11-28 2009-06-11 Sanyo Electric Co Ltd Automatic bread maker
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATSUSHI FUJITA ET AL.: "Funsai Joken no Kotonaru Komeko no Rheology Tokusei to Happo Seikeisei", SEIKEI KAKO, vol. 16, 2005, pages 263 - 264 *
KAZUNORI EGAWA: "Ine Riyo eno Aratana Michi o Hiraku Komeko Pan no Kaihatsu", RESEARCH JOURNAL OF FOOD AND AGRICULTURE, vol. 26, no. 10, 2003, pages 11 - 16 *
KOJI TAKEYA: "Atarashii Seipan Kiso Chishiki", KABUSHIKI KAISHA PAN NEWS SHA, 2 September 2009 (2009-09-02), pages 21 - 22 *
MAKOTO HATTO: "'Gopan' no Susume! sono 1 Rice Bread no Fukyu de Kome Juyo no Kakudai e!", SHOKU NO KAGAKU, 2001, pages 53 - 59 *
MIHO OKADOME ET AL.: "Effects of Manufacturing Methods of Rice Flour on Fermentation of Dough and Bread-making", BULLETIN OF THE WAYO WOMEN'S UNIVERSITY, vol. 48, 31 March 2008 (2008-03-31), pages 45 - 54 *

Also Published As

Publication number Publication date
CN102387716A (en) 2012-03-21
TW201043141A (en) 2010-12-16
JP5609001B2 (en) 2014-10-22
JP2010246404A (en) 2010-11-04

Similar Documents

Publication Publication Date Title
JP5430895B2 (en) Cooking food dough manufacturing method
WO2010016400A1 (en) Method for producing food dough to be cooked and method for producing bread
JP5810280B2 (en) Automatic bread machine
JP2010035476A (en) Method for producing bread
JP5609001B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
JP5167169B2 (en) Cooking food dough manufacturing method
JP5716162B2 (en) Automatic bread machine
JP5609002B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
WO2010117053A1 (en) Method of producing processed cooking food stuff and device of producing stuff
JP5672679B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
JP5167168B2 (en) Cooking food dough manufacturing method
JP5870245B2 (en) Automatic bread machine
JP6528084B2 (en) Automatic bread maker
JP5810278B2 (en) Automatic bread machine
JP6944276B2 (en) Manufacturing method of processed dietary fiber-containing material and processed dietary fiber-containing material
JP5472372B2 (en) Cooking equipment
JP6082975B2 (en) Automatic bread machine
KR20060078559A (en) Chicken Gomtang Rice Noodles Manufacturing Method and Apparatus
JP5938556B2 (en) Automatic bread machine
JP5870244B2 (en) Automatic bread machine
JP5903536B2 (en) Automatic bread machine
JP2016150125A (en) Automatic bread maker
JP2014054493A (en) Automatic bread machine
JP2016129581A (en) Automatic bread making device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016051.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761747

Country of ref document: EP

Kind code of ref document: A1