WO2010117053A1 - Method of producing processed cooking food stuff and device of producing stuff - Google Patents

Method of producing processed cooking food stuff and device of producing stuff Download PDF

Info

Publication number
WO2010117053A1
WO2010117053A1 PCT/JP2010/056425 JP2010056425W WO2010117053A1 WO 2010117053 A1 WO2010117053 A1 WO 2010117053A1 JP 2010056425 W JP2010056425 W JP 2010056425W WO 2010117053 A1 WO2010117053 A1 WO 2010117053A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
liquid
dough
pulverization
grain
Prior art date
Application number
PCT/JP2010/056425
Other languages
French (fr)
Japanese (ja)
Inventor
輝明 田口
敏治 藤原
吉成 白井
正雄 早勢
理如 下澤
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009096004A external-priority patent/JP5609002B2/en
Priority claimed from JP2009194123A external-priority patent/JP5672679B2/en
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Priority to CN201080016053.2A priority Critical patent/CN102387708B/en
Publication of WO2010117053A1 publication Critical patent/WO2010117053A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D8/00Methods for preparing or baking dough
    • A21D8/06Baking processes
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21DTREATMENT, e.g. PRESERVATION, OF FLOUR OR DOUGH, e.g. BY ADDITION OF MATERIALS; BAKING; BAKERY PRODUCTS; PRESERVATION THEREOF
    • A21D6/00Other treatment of flour or dough before baking, e.g. cooling, irradiating, heating

Definitions

  • the present invention relates to a method for producing a cooked food dough that can be eaten by cooking, for example, bread dough.
  • the present invention also relates to a dough producing apparatus for producing a cooked food dough.
  • cereal When cereal is ingested as food, it may be cooked and eaten as grains (grain meal), or it may be cooked and eaten after meal (powdery meal). In the case of a powdered meal, it is common to mix and knead the powder and water and cook it after cooking it into a so-called “dough”.
  • the dough may be mixed with seasoning ingredients (salt, sugar, chicken eggs, butter, shortening, etc.), and may also be mixed with foam-inducing materials such as dry yeast, fresh yeast, natural yeast, koji, and baking powder. .
  • the dough prepared in this way can be shaped by rolling, stretching, tearing, or slicing to obtain the desired food.
  • the shaped dough may be baked (bread, cake, pizza, etc.), fried (doughnuts, fried bread, etc.), steamed (rice buns, steamed bread, etc.) It is cooked by techniques such as boiling (such as udon, soba, spaghetti), stir-fry (such as fried noodles, dumplings), and boiled (such as suito, hoto).
  • Patent Document 1 An example of a method for producing a cooked food dough can be seen in Patent Document 1.
  • Patent Document 1 relates to a method for producing bread dough, and functional starch solution obtained by pulverizing raw rice by lactic acid fermentation is added as a partial substitute for water during kneading and mixing of medium-type bread dough And dough preparation.
  • the manufacturing method includes a step of allowing a predetermined amount of cereal grains and a predetermined amount of liquid to stand still in a mixed state so as to contain the liquid in the cereal grains (liquid absorption step), and the cereal grains and liquid that have undergone the liquid absorption step.
  • a step of pulverizing grain grains by rotating a pulverizing blade in the mixture grinding process
  • a step of kneading dough raw material composed of a mixture of pulverized grain grains and liquid into dough kneading step.
  • the liquid absorption step performed before the pulverization step is not necessarily required.
  • the pulverization blade is rotated at a high speed because it is necessary to pulverize the grain in the pulverization step. For this reason, the calorific value is large especially in the pulverization step, and the temperature of the mixture of the grain and the liquid tends to rise. For example, when using rice grains as cereal grains, if the temperature of the mixture rises too much, the rice will gelatinize, increasing the load on the grinding blade.
  • the pulverizing blade cannot be rotated in the worst case, and even if it can be rotated, the problem arises that the grain size of the rice grains cannot be pulverized to the preferred particle size (second problem) ).
  • an object of the present invention is to provide a method for efficiently producing a cooked food dough from a grain grain in producing the cooked food dough without going through a milling process.
  • Another object of the present invention includes a pulverization step of pulverizing cereal grains by mixing cereal grains and a liquid, and in the method for producing a cooked food dough without going through a milling process, the temperature rise during pulverization It is providing the method of performing a grinding
  • the objective of this invention is providing the dough manufacturing apparatus with which the above cooked food dough manufacturing methods are applied.
  • the cooked food dough manufacturing method includes a pulverization step of pulverizing the cereal grains by rotating a pulverization blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a kneading blade, and a method for producing a cooked food dough, wherein in the crushing step, the crushing blade is rotated.
  • the pulverization period for pulverizing the cereal grains and the liquid absorption period for stopping the rotation of the pulverization blade and absorbing the cereal grains are alternately repeated.
  • the material at the start of the kneading process is referred to as “dough raw material”, and after the kneading process is started and the kneading proceeds, it is referred to as “dough” even in a semi-finished state. Yes.
  • the cooked food dough can be obtained without the trouble of milling.
  • the pulverization step includes a liquid absorption period, and the pulverization step is configured such that pulverization proceeds while liquid absorption is performed on the grain. Therefore, it is not necessary to separately provide a liquid absorption step before the pulverization step, and it is possible to increase the production efficiency of the cooked food dough.
  • the length of the liquid absorption period is preferably longer than the length of the pulverization period.
  • the length of the pulverization period may not be constant, and the length of the pulverization period may be compared between the initial stage and the final stage of the pulverization step.
  • the initial case may be shorter.
  • the grain grains do not contain sufficient water, and the pulverization efficiency deteriorates.
  • the first pulverization period (the initial stage of the pulverization process) is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is thereafter performed. It may be shorter than the length of the grinding period. Thereby, it becomes possible to proceed the pulverization of the grain efficiently.
  • a method for producing a cooked food dough according to a second aspect of the present invention includes a liquid absorption step for absorbing grains and a mixture containing the absorbed grains and liquid.
  • this configuration since the dough is kneaded using the mixture containing the cereal grains and liquid pulverized in the pulverization step as the dough raw material, the cooked food dough can be obtained without the trouble of milling. And since it is the structure which heats the liquid in which the grain is immersed in the grinding
  • the rotation of the pulverizing blade in the pulverizing step may be intermittent. According to this configuration, the grains can be effectively convected in the container by repeatedly rotating and stopping the grinding blade, and the grinding efficiency can be improved.
  • the liquid in which the grain is immersed in the liquid absorption step, may be cooled after being heated.
  • the temperature of the liquid in which the grain is immersed is heated to the first temperature, and then maintained at that temperature for a predetermined time. For this reason, it can avoid that the temperature of the liquid which has immersed the grain grain rises too much, and it can make the gelatinization of the rice mentioned above difficult to occur in a liquid absorption process. Moreover, since the liquid absorption by 1st temperature can be performed stably, it can be made stable about the quality of the finished cloth.
  • temperature control is performed so as to maintain the dough temperature at a constant temperature, and the second temperature may be lower than the constant temperature.
  • the temperature of the liquid when the pulverization process is started is lower than the temperature controlled to be a constant temperature in the kneading process. For this reason, it is possible to shift to the kneading step after increasing the paste temperature to the constant temperature using the heat generated in the crushing step. For this reason, it is possible to advance the production of the dough efficiently, such that the cooling process after the pulverization step can be omitted.
  • control that the dough temperature becomes constant in the kneading process is performed when, for example, bread dough is manufactured. This is intended to make the yeast work actively.
  • the pulverization step may be terminated when the temperature of the paste obtained by pulverization reaches the constant temperature.
  • the liquid in which the grain is immersed is heated to a first temperature by heating, and then the first temperature is maintained.
  • the temperature control to be performed may be performed for a predetermined time.
  • the temperature of the liquid in which the grain is immersed is heated to the first temperature, and then maintained at that temperature for a predetermined time. For this reason, it can avoid that the temperature of the liquid which has immersed the grain grain rises too much, and can make gelatinization of the rice mentioned above difficult to occur in a liquid absorption process. Moreover, since the liquid absorption by 1st temperature can be performed stably, it can be made stable about the quality of the finished cloth. And in the case of this structure, it is also possible to set it as the structure which performs a crushing process, without cooling a liquid in a liquid absorption process. In this case, in order to avoid an excessive temperature rise of the paste in the pulverization step, it is preferable to perform a cooling treatment during the pulverization step.
  • a method for producing a cooked food dough includes a pulverizing step of pulverizing the cereal grains by rotating a pulverizing blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a kneading blade, and in the crushing step, the temperature of the mixture becomes the first temperature by rotating the crushing blade.
  • the cereal grains are pulverized by intermittent rotation in which rotation of the pulverization blade is resumed when the temperature of the mixture decreases to a second temperature lower than the first temperature after the stop. ing.
  • the rotation of the pulverization blade in the pulverization process is intermittent, the cereal grains can be convected in the container and efficiently pulverized. And since it is the structure which performs intermittent rotation of a grinding
  • the grain size of the grain may be measured in the middle of the pulverization step to determine whether or not to end the pulverization step.
  • a liquid absorbing step for absorbing the grains is performed before the pulverizing step.
  • the liquid temperature is detected in the liquid absorption process, and the time of the liquid absorption process is changed according to the detected temperature. According to this configuration, even when the liquid temperature fluctuates depending on the season, it is possible to set the time required for the grain to absorb liquid (immersion time for immersing the grain in the liquid) to be an appropriate time. For this reason, it is hard to produce the defect in a grinding
  • the kneading step may be performed while controlling the temperature so that the dough temperature becomes a constant temperature.
  • the temperature becomes a constant temperature (preferred temperature for adding yeast) as in this configuration.
  • gluten may be added to the dough raw material after the pulverization step.
  • This configuration is particularly effective in the case where gluten cannot be obtained from cereal grains, for example, when rice grains are used as cereal grains, whereby a dough having a desired elasticity can be produced.
  • a seasoning material may be added to the dough raw material after the crushing step. According to this structure, the taste at the time of heat-cooking dough and using it for edible can be improved.
  • the present invention is characterized in that it is a dough producing apparatus to which the above-described cooked food dough producing method is applied.
  • This configuration can provide a dough producing apparatus that can efficiently produce cooked food dough from grain grains without producing a milling process. Moreover, according to the dough producing apparatus of the present configuration, cooked food dough can be produced without going through the milling process, and the grains can be efficiently produced while appropriately suppressing the temperature rise during pulverization with a simple configuration. Can be crushed. For this reason, it is easy to provide as a fabric manufacturing apparatus that can be used at home.
  • the cooked food dough can be efficiently produced from the grain without going through the milling process, and the possibility of cooking the grain can be expanded.
  • the schematic diagram which shows the flow of the cooked food dough manufacturing method of 1st Embodiment.
  • the flowchart which shows the detail of the grinding
  • the flowchart which shows the detail of the kneading
  • Sectional drawing which shows an example of the dough manufacturing apparatus with which the cooked food dough manufacturing method of 1st Embodiment is applied.
  • the flowchart which shows the detail of the liquid absorption process included in the heat cooking food dough manufacturing method of 3rd Embodiment Table showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process
  • the flowchart which shows the detail of the crushing process included in the heat cooking food dough manufacturing method of 3rd Embodiment The flowchart which shows the detail of the kneading
  • FIG. 1 is an overall flowchart of the method for producing a cooked food dough according to the first embodiment.
  • FIG. 2 is a schematic diagram showing the flow of the method for producing a cooked food dough according to the first embodiment.
  • FIG. 3 is a flowchart showing details of the crushing step included in the cooked food dough manufacturing method of the first embodiment.
  • FIG. 4 is a flowchart showing details of a kneading step included in the method of manufacturing a cooked food dough according to the first embodiment.
  • FIG. 5A and FIG. 5B are schematic diagrams for explaining the effect of the cooked food dough manufacturing method of the first embodiment.
  • the cooked food dough manufacturing method of the first embodiment includes a pulverization step # 10 and a kneading step # 20, and the steps are performed in this order. Details of each step will be described below.
  • pulverization step # 10 whose flowchart is shown in FIG. 3 will be described.
  • This pulverization step # 10 is a step of pulverizing the grain and making it into a paste.
  • the applicants have found that when cereal grains are pulverized, it is easier to pulverize the cereal grains to the core if the cereal grains contain a liquid. For this reason, in the previous patent application, the pulverization step was performed after the liquid absorption step.
  • the pulverization step # 10 is configured to alternately repeat the pulverization period and the liquid absorption period as shown in FIG. The process proposed in the previous patent application is being reviewed.
  • Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container.
  • step # 12 the liquid is weighed and a predetermined amount is put into a container.
  • a common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged.
  • rice grains are used as cereal grains and water is used as a liquid.
  • Step # 13 rotation of the grinding blade is started in the mixture containing the grain and liquid (in the first embodiment, the mixture of rice grain and water), and time measurement is started at the same time. At this time, the water absorption of the grain is not so advanced, so the pulverization efficiency is worse than the case where the pulverization is performed after the liquid absorption process.
  • step # 14 it is checked whether 1 minute has elapsed since the rotation of the grinding blade was started.
  • the period during which the pulverizing blade is rotating corresponds to the pulverizing period for pulverizing the grain in the present invention.
  • the length of the pulverizing period is 1 minute.
  • step # 16 it is checked whether or not the pulverization process is finished.
  • the time required for the pulverization process is determined in advance, and when the time required for the pulverization process determined in advance has elapsed at the time of confirmation, the pulverization process ends. On the other hand, if the predetermined time has not elapsed, the process proceeds to step # 17.
  • step # 17 it is checked whether 9 minutes have passed since the rotation of the grinding blade stopped.
  • the period during which the rotation of the pulverizing blade is stopped corresponds to the liquid absorption period in which the grains are absorbed in the present invention.
  • the length of the liquid absorption period is 9 minutes.
  • this liquid absorption period is configured to be performed after the pulverization period. That is, this liquid absorption period is executed after the grain has been refined to some extent. For this reason, the cereal grains are allowed to absorb liquid with the surface area of the cereal grains increased, and the liquid absorption is performed with high liquid absorption efficiency. Therefore, the length of the liquid absorption period (9 minutes) is relatively short as the time for liquid absorption, but the liquid absorption proceeds considerably even during this time.
  • Step # 17 When the liquid absorption period of Step # 17 ends, the process proceeds to Step # 18, where the rotation of the pulverization blade is started again, and the pulverization period is executed again. Thereafter, returning to step # 14, when the pulverization period ends with the passage of a predetermined time and the pulverization process is not terminated, the liquid absorption period is executed again with the rotation of the pulverization blade stopped. That is, the pulverization period and the liquid absorption period are alternately repeated until a predetermined time as the time required for the pulverization process elapses.
  • the pulverization of the cereal grains in the second and subsequent pulverization periods can be efficiently performed due to the effect of the cereal grain liquid absorption during the liquid absorption period previously performed.
  • the absorption of the grain grains in the second and subsequent liquid-absorbing periods can be efficiently performed by the effect of the grain grain grinding performed previously. That is, by alternately repeating the pulverization period and the liquid absorption period, the cereal grains can be efficiently pulverized while sufficiently containing water in the cereal grains. Therefore, according to the pulverization process of the first embodiment, the grain can be efficiently pulverized without performing the liquid absorption process before the pulverization process.
  • the pulverization period (1 minute) and the liquid absorption period (9 minutes) are each repeated four times, and then the pulverization period is further performed once (that is, the first pulverization blade rotates).
  • the pulverization process is finished at the time when 41 minutes have passed since the start (see FIG. 2).
  • the length and number of times of the pulverization period and the liquid absorption period in the pulverization process are merely examples, and the length and the number of times of these times are set, for example, based on conditions that allow grains to have a desired particle size (or particle size distribution). That's fine.
  • the lengths of the pulverization periods performed five times are all the same (fixed length).
  • the length of the first pulverization period may be set short (for example, 10 seconds), and thereafter may be set longer than the first pulverization period.
  • the lengths of the second and subsequent grinding periods may all be the same, or the length of the grinding period may be gradually increased.
  • the pulverization in the first pulverization period is poor in pulverization efficiency because the grain does not contain water sufficiently.
  • the primary grinding period is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is shorter than the length of the subsequent grinding period. It is good to do.
  • the lengths of the liquid absorption periods performed four times are all the same (constant length).
  • the purpose is not limited to this configuration, and the length of each liquid absorption period may not be a fixed length. That is, for example, the length of the first liquid absorption period may be longer than the length of other liquid absorption periods.
  • the liquid absorption speed of grain grains can be increased by raising the liquid temperature from room temperature (for example, 40 to 50 ° C.). For this reason, you may perform this grinding
  • the liquid temperature is raised and pulverized, there is a possibility that the rice used as cereal grains will be gelatinized due to the influence of heat generated during pulverization and conversely the pulverizability may be reduced. is there. For this reason, in 1st Embodiment, it is supposed that a grinding
  • the liquid temperature that has risen during the pulverization period decreases to some extent by the liquid absorption period that follows the pulverization period, so that the liquid temperature does not reach the above-described gelatinization temperature even without performing temperature control. It is also possible to make it.
  • This kneading step # 20 is a step of kneading the dough raw material into a dough with a kneading blade.
  • the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 10 and a liquid, and is in a paste form.
  • the material at the start of the kneading process is referred to as “dough raw material”, and after the kneading process is started and the kneading proceeds, it is referred to as “dough” even in a semi-finished state.
  • step # 21 the dough material is put in a container.
  • this step # 21 may be omitted, and after the pulverization process # 10, the process proceeds to step # 22 described below.
  • step # 22 a predetermined amount of gluten is added to the dough material.
  • seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the first embodiment, the seasoning material is also introduced.
  • the bread dough is manufactured by adding gluten to the dough raw material.
  • a configuration in which gluten is not added may be used.
  • a thickening stabilizer eg, guar gum
  • guar gum may be added instead of gluten.
  • step # 23 temperature control is started.
  • yeast is introduced during the kneading step # 20. Since yeast does not function properly at an appropriate temperature, it must be adjusted to a temperature at which it works actively. In general, the temperature is preferably around 30 ° C.
  • the dough temperature is adjusted to 28 ° C., and when the dough temperature reaches 28 ° C., the yeast is put into the bread dough to make the yeast functively work. Therefore, temperature control is performed so that the temperature of the bread dough is maintained at 28 ° C.
  • This temperature control may be controlled to be constant at a desired temperature (for example, 28 ° C.) using, for example, a cooling unit for cooling the container and a heating unit for heating the container.
  • the temperature measurement method at this time may be to directly measure the temperature of the dough (the dough raw material at the start of the kneading process) or indirectly through a container.
  • the cooling means include a configuration using water and ice and a configuration using a Peltier element.
  • the heating means include a configuration using a heating wire and a configuration using hot water.
  • the temperature control in the first embodiment has a strong meaning of suppressing a temperature rise that occurs during kneading, and basically cooling by a cooling means is the main.
  • step # 24 rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started.
  • step # 24 is executed almost simultaneously with the start of temperature control in step # 23 as shown in FIG.
  • the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
  • the method of rotating the kneading blade is not particularly limited, as shown in FIG. 2, in the present embodiment, the first half is intermittent rotation and the second half is continuous rotation. Moreover, in the flowchart shown in FIG. 4, the detail regarding the intermittent rotation of the kneading blade is omitted.
  • step # 25 it is checked whether the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since 1st Embodiment is a manufacturing method of bread dough, yeast microbes, such as dry yeast and fresh yeast, are thrown in as a foam induction material. As described above, since yeast has a limited temperature range in which it works actively, the purpose is to confirm the dough temperature before adding yeast. If the dough temperature is maintained at 28 ° C, the process proceeds to step # 26, and if not, the process waits until the temperature reaches 28 ° C.
  • step # 26 yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C.
  • step # 27 it is checked how much time has passed since the yeast was added. When the predetermined time has elapsed, the process proceeds to step # 28 and the rotation of the kneading blade is completed. At this point, the dough is connected and integrated with the required elasticity.
  • Finished dough (bread dough) is cooked through a fermentation process.
  • the completed dough may be stored refrigerated or frozen and cooked at different times.
  • the present applicants have been configured to perform a liquid absorption step in which grain grains are immersed in a liquid and left for a long time before the pulverization step in order to improve the pulverization efficiency.
  • the manufacturing method of the cooked food dough of 1st Embodiment as shown to FIG. 5A, it is supposed that a liquid absorption process is not performed before a crushing process by providing a liquid absorption period in a crushing process. For this reason, it is possible to reduce the time required for producing the cooked food dough, and in the example of FIG. 5, it is possible to reduce the time by 18 minutes. That is, according to the manufacturing method of the cooked food dough of 1st Embodiment, a cooked food dough can be manufactured efficiently.
  • the purpose of intermittently operating the grinding blade in the grinding process of FIG. 5B is to pulverize the grain uniformly by convection of the grain. That is, since the stop period of the pulverization blade in the pulverization process of FIG. 5B is not intended to absorb grain grains, the stop period is set short.
  • the motor used for rotating the grinding blade is turned on and off after a certain amount of time, the temperature of the motor increases. This will alleviate the motor durability.
  • the above-mentioned crushing step and kneading step can be performed using a separate device (device) for each step, or the device (device) can be shared in two steps.
  • a separate tool for each process an example can be given in which a mixer is used in the pulverizing process # 10 and an automatic bread maker is used in the kneading process # 20.
  • the fabric manufacturing apparatus applied to both the above-mentioned crushing process and kneading process will be described.
  • FIG. 6 is a cross-sectional view showing an example of a dough manufacturing apparatus to which the cooked food dough manufacturing method of the first embodiment is applied.
  • the dough producing apparatus 100 shown in FIG. 6 is configured such that a container 120 is detachably attached on a main body 110 that incorporates an electric motor 111 and a control unit 112 (for example, composed of a microcomputer).
  • the container 120 has a cup shape, and the upper surface opening is sealed with a lid 121.
  • a blade 122 shared for crushing and kneading is disposed at the bottom center of the container 120.
  • the electric motor 111 and the blade 112 are embodiments of pulverizing means and embodiments of kneading means.
  • the control unit 112 is an embodiment of a control unit that controls the pulverizing unit, the kneading unit, and the temperature adjusting unit (described later).
  • the blade 122 is connected to the shaft of the electric motor 111 by a coupling 123 and is rotated by the electric motor 111.
  • a heating means 124 Surrounding the outer periphery of the container 120 is a heating means 124 and a cooling means 125.
  • the heating means 124 can be composed of, for example, an electric heater or an IH heater, and the cooling means 125 can be composed of, for example, a cold water pipe or a Peltier element.
  • the container 120 is preferably formed of a metal having good heat conduction.
  • the main body 110 is provided with a temperature sensor 113 that measures the temperature of the container 120.
  • the heating means 123, the cooling means 125, and the temperature sensor 113 are embodiments of temperature adjustment means.
  • the operation of the dough manufacturing apparatus 100 when manufacturing bread dough from cereal grains is as follows.
  • the lid 121 is removed by the user, a predetermined amount of grains and a predetermined amount of liquid are placed in the container 120, and the lid 121 is fitted again.
  • a start button (not shown) provided on the main body 110 is pressed to execute the crushing process # 10 (see FIG. 3), and the crushing process # 10 is started.
  • the dough manufacturing apparatus 100 executes steps # 13 to # 18 shown in FIG. 3 under the control of the control unit 112.
  • the control unit 112 stores a program for executing the crushing process so that the crushing process can be executed.
  • a pulverization period during which the blade 122 is rotated at a high speed and a liquid absorption period during which the rotation of the blade 122 is stopped are alternately repeated to obtain a grain paste.
  • the dough manufacturing apparatus 100 notifies the user of the end of the pulverization process # 10 by a notification sound such as a buzzer sound.
  • the user opens the lid 121, puts a predetermined amount of gluten and a predetermined amount of seasoning material into the dough raw material as necessary, and then closes the lid 121.
  • a start button (not shown) provided on the main body 110 is pressed to execute the kneading step # 20 (see FIG. 4).
  • the dough manufacturing apparatus 100 executes steps # 23 to # 28 shown in FIG. 4 under the control of the control unit 112.
  • the control unit 112 stores a kneading process execution program so that such a kneading process can be executed.
  • the blade 122 is rotated at a low speed, whereby the dough raw material and the gluten and seasoning material added thereto are kneaded, and the dough connected to one is kneaded.
  • the dough manufacturing apparatus 100 notifies the user of the end of the kneading step # 20 by a notification sound such as a buzzer sound.
  • the dough production apparatus may have the function of this baking apparatus, and the bread is baked.
  • the dough is manufactured by performing the pulverization process and the kneading process in the same container 120, so that it is not necessary to transfer the contents to another container when shifting from the pulverization process to the kneading process. Can be shortened. Moreover, a part of the dough material remains on the inner surface of the container used in the previous step, and there is no problem that it is reduced.
  • the rotation direction of the blade 122 is changed in the pulverizing step # 10 and the kneading step # 20.
  • the sharp edge on one side of the blade 122 hits the grain
  • the blade It may be configured such that the non-pointed end face of 122 on the other side presses the dough material.
  • a configuration may be employed in which a pulverization blade and a kneading blade are separately provided, and a driving motor (electric motor) is provided for each of them.
  • FIG. 7 is an overall flowchart of the cooked food dough manufacturing method of the second embodiment.
  • FIG. 8 is a schematic diagram showing the flow of the cooked food dough manufacturing method of the second embodiment.
  • FIG. 9 is a flowchart showing details of a liquid absorption process included in the method of manufacturing a cooked food dough according to the second embodiment.
  • FIG. 10 is a flowchart showing details of the crushing step included in the cooked food dough manufacturing method of the second embodiment.
  • FIG. 11 is a flowchart showing details of a kneading step included in the method for producing a cooked food dough according to the second embodiment.
  • the cooked food dough manufacturing method of the second embodiment includes a liquid absorption process # 10, a pulverization process # 20, and a kneading process # 30.
  • the processes are performed in this order. It is advanced. Details of each step will be described below.
  • This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
  • Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container.
  • step # 12 the liquid is weighed and a predetermined amount is put into a container.
  • a common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged.
  • rice grains are used as grain grains and water is used as a liquid.
  • Step # 13 after the mixture of the cereal grains and the liquid placed in the container is allowed to stand, heating of the liquid is started using a heating means to raise the liquid temperature. At the same time as the start of heating, the liquid temperature measurement is also started using the temperature detecting means. The reason for raising the liquid temperature is to increase the speed at which the grains take up the liquid. The temperature is measured to perform the liquid absorption step # 10 at an appropriate temperature, which will be described later.
  • the heating means may be any means that can raise the temperature of the liquid contained in the container, and its configuration is not particularly limited. For example, it is a means using a heating wire, warm water, etc., Comprising: The structure which warms a liquid with a container may be sufficient. Further, the temperature detecting means only needs to be able to measure the liquid temperature, and its configuration is not particularly limited. The liquid temperature may be obtained by directly measuring the temperature of the liquid, or may be obtained indirectly by measuring the container temperature.
  • step # 14 it is checked whether or not the liquid temperature detected by the temperature detecting means has reached 50 ° C. (first temperature).
  • the liquid temperature of 50 ° C. mentioned here may include not only the case where the temperature is exactly 50 ° C. but also a temperature slightly deviated from 50 ° C. (the same applies to all the temperatures described below).
  • the process proceeds to step # 15.
  • Step # 15 temperature control is started so as to maintain (keep) the liquid temperature at 50 ° C., and time measurement is started.
  • the amount of heat given by a heating means such as a heating wire may be adjusted.
  • the temperature control may be performed by using a cooling means such as a cold water pipe in addition to the heating means.
  • the reason for heating the liquid temperature to 50 ° C. and then maintaining the liquid temperature at 50 ° C. will be described.
  • the absorption speed of grain grains is higher when the temperature is higher than room temperature.
  • the liquid temperature exceeds 60 ° C. the gelatinization of the rice starts. When this gelatinization starts, it becomes difficult to contain the liquid (water) to the center of the rice grain, and the problem that the load applied to the grinding blade increases in the subsequent grinding step # 20 occurs.
  • the liquid temperature of 50 ° C. (which is just an example) is selected with the aim of setting the temperature at which the liquid absorption is performed as efficiently as possible and is not easily affected by the gelatinization of rice.
  • the reason why the liquid temperature is maintained at 50 ° C. is to stably reproduce the temperature at which the liquid can be absorbed efficiently without causing gelatinization of rice.
  • step # 16 it is checked whether or not a predetermined time has elapsed since the start of time measurement in step # 15.
  • This predetermined time is a time that is changed depending on the liquid temperature to be kept (in the second embodiment, 50 ° C.), and the optimum time is obtained by, for example, experiments. In the second embodiment, the predetermined time is, for example, 15 minutes.
  • the process proceeds to step # 17.
  • cooling is started by the cooling means to lower the temperature of the liquid in the container.
  • the cooling means used here may be of any configuration that can lower the temperature of the liquid contained in the container, and the configuration is not particularly limited. For example, a configuration in which cooling water is allowed to flow through a cooling pipe wound around the container, a configuration in which the container is immersed in ice water, or the like may be used.
  • step # 18 it is checked whether or not the liquid temperature has been lowered to 10 ° C. (second temperature) by the cooling process.
  • the liquid absorption process # 10 is completed.
  • the liquid temperature raised by heating is lowered for the following reason.
  • the pulverization blade is rotated at a high speed to pulverize the grain. In this case, heat is generated by friction during the pulverization. For this reason, if the pulverization process is started while the liquid temperature is high, the temperature of the mixture of the grain and the liquid may increase during the pulverization and the above-described gelatinization may start. For this reason, the liquid temperature is lowered to avoid reaching the temperature at which such gelatinization begins.
  • the reason for setting the liquid temperature during cooling to 10 ° C. is as follows. As described later, in the kneading step # 30, temperature control is performed so that the dough temperature becomes a constant temperature (28 ° C. in the second embodiment) (see FIG. 8). For this reason, it is preferable that the temperature is sufficiently lower (10 ° C.) than the constant temperature (for example, 28 ° C.) by cooling, and the constant temperature is obtained using the heat generated in the pulverization step # 20. In the case of such a configuration, for example, further cooling processing after the pulverization step # 20 can be omitted, and temperature management becomes easy. If the temperature is lower than 10 ° C., the pulverization efficiency of cereal grains in the pulverization step # 20 tends to decrease. Therefore, in the second embodiment, the temperature is decreased to 10 ° C.
  • the pulverization blade may be rotated at an initial stage, and thereafter, the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised.
  • This pulverization step # 20 is a step of making grain grains into a paste.
  • step # 21 the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container.
  • this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good.
  • additives such as seasonings may be added to the container at this stage.
  • Step # 22 the rotation of the grinding blade is started in the mixture containing the cereal grains and the liquid (this mixture is also a mixture of the cereal grains and the liquid, and this is the form in the second embodiment). And start time measurement with it. Since the pulverization is performed with the liquid soaked in the cereal grains, the cereal grains can be easily pulverized to the core.
  • step # 23 it is checked whether or not the rotation time of the grinding blade has passed 1 minute. When the rotation time of the pulverizing blade has passed 1 minute, the process proceeds to step # 24 to stop the rotation of the pulverizing blade. In Step # 25, it is checked whether or not the temperature of the pulverized mixture (paste) has reached 28 ° C. When the paste temperature has reached 28 ° C., the pulverization step # 20 is finished.
  • step # 26 the process proceeds to step # 26 to check whether or not 3 minutes have passed since the rotation of the grinding blade stopped. If 3 minutes have passed since the rotation stopped, the process proceeds to step # 27 to resume the rotation of the crushing blade, and returns to step # 23. Steps # 23 to # 27 are repeated until the paste temperature reaches 28 ° C.
  • the pulverizing blade is intermittently rotated by repeatedly rotating (ON) and stopping (OFF).
  • intermittent rotation is performed by rotating for 1 minute and stopping for 3 minutes. Then, while repeating this intermittent rotation, the crushing step # 20 is completed when the paste temperature reaches 28 ° C.
  • the cooling by the cooling means is unnecessary at the initial stage of the kneading step # 30, and temperature management is easy.
  • the above-described rotation control method of the pulverizing blade is merely an example, and can be appropriately changed as necessary.
  • the rotation of the pulverizing blade in the pulverization step does not necessarily have to be intermittent.
  • intermittent rotation is preferable because grain grains can be effectively convected in the container and grinding efficiency can be improved.
  • This kneading step # 30 is a step of kneading the dough raw material into a dough with a kneading blade.
  • the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 20 and a liquid, and is in a paste form.
  • the material at the start of the kneading process is called “dough material”, and the material that has been kneaded and approaches the desired dough state is called “dough” even in a semi-finished state. To do.
  • step # 31 the dough material is put in a container.
  • this step # 31 may be omitted, and after the pulverization process # 20, the process may proceed to step # 32 described below.
  • step # 32 a predetermined amount of gluten is added to the dough material.
  • seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the second embodiment, the seasoning material is also introduced.
  • the bread dough is manufactured by adding gluten to the dough raw material.
  • a configuration in which gluten is not added may be used.
  • a thickening stabilizer eg, guar gum
  • guar gum may be added instead of gluten.
  • step # 33 temperature control is started.
  • yeast is added during the kneading process # 30.
  • Yeast needs to be adjusted to a temperature that works actively because its function is reduced if it is not at an appropriate temperature.
  • the temperature is preferably around 30 ° C., and in the second embodiment, the dough temperature is adjusted to 28 ° C. to make the yeast work actively. For this reason, temperature control is performed so that the temperature of bread dough is maintained at 28 degreeC.
  • This temperature control may be controlled to be constant at a desired temperature (for example, 28 ° C.) using, for example, a cooling unit for cooling the container and a heating unit for heating the container.
  • the temperature measurement method at this time may be to directly measure the temperature of the dough (the dough raw material in the initial stage), or may be indirectly measured through a container.
  • examples of the cooling means include those using water and ice and those using a Peltier element.
  • examples of the heating means include those using a heating wire and those using hot water.
  • the temperature control in the second embodiment has a strong meaning of suppressing the temperature rise due to the kneading, and basically the cooling by the cooling means is the main.
  • Step # 34 rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started.
  • step # 34 is executed almost simultaneously with the start of temperature control in step # 33 as shown in FIG.
  • the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
  • the rotation method of the kneading blade is not particularly limited, as shown in FIG. 8, in the second embodiment, the first half is intermittent rotation and the second half is continuous rotation. In the flowchart shown in FIG. 11, details regarding intermittent rotation of the kneading blade are omitted.
  • step # 35 it is checked whether or not a predetermined time has elapsed since the start of the kneading. If the predetermined time has elapsed, the process proceeds to step # 36.
  • Step # 36 it is checked whether or not the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since 2nd Embodiment is a manufacturing method of bread dough, yeast, such as dry yeast and fresh yeast, is thrown in as a foaming induction material. As described above, since the temperature range in which yeast works actively is limited, the purpose is to confirm the dough temperature before adding yeast. If the dough temperature is maintained at 28 ° C, the process proceeds to step # 37, and if not, the process waits until the temperature reaches 28 ° C.
  • step # 37 yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C.
  • step # 38 it is checked how much time has passed since the dry yeast was added.
  • step # 39 the rotation of the kneading blade is completed.
  • the dough is connected and integrated with the required elasticity. Handling of the finished dough (bread dough) is the same as in the first embodiment.
  • the cooling process is performed in the liquid absorption process # 10.
  • the present invention is not limited to this configuration. That is, in the liquid absorption process, the pulverization process may be performed while performing the cooling process without performing the cooling process.
  • the cooling method may be a method of cooling the container from the outside, but as another method, once the liquid absorption step is finished, the liquid in the container is once discarded and ice (this is at least partly in the container).
  • a method may be adopted in which iced water, cold water, or the like is put into a container.
  • the pulverization step # 20 is performed until the temperature at which the yeast is introduced (for example, 28 ° C.).
  • the present invention is not limited to this configuration, and the process may be terminated at a temperature exceeding the temperature at which the yeast is charged, or may be terminated at a temperature lower than the temperature at which the yeast is charged.
  • Each process of the manufacturing method of 2nd Embodiment can also be performed using a separate instrument for every process similarly to 1st Embodiment, and an apparatus can also be shared by several processes.
  • the fabric manufacturing apparatus 100 shown in the first embodiment can be used as the configuration of the instrument shared in all of the liquid absorption process # 10, the pulverization process, and the kneading process.
  • the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed. In this liquid absorption process # 10, heating is performed using the heating means 124 until the liquid temperature reaches the first temperature (for example, 50 ° C.). Thereafter, the first temperature (for example, 50 ° C.) is maintained for a predetermined time (for example, 15 minutes) using the heating unit 124 and the cooling unit 125 (controlled to a constant temperature). After the elapse of a predetermined time, the cooling means 124 cools to a second temperature (for example, 10 ° C.).
  • a second temperature for example, 10 ° C.
  • the control unit 112 may automatically perform temperature control based on the temperature detected by the temperature sensor 113. Moreover, it is good also as a structure etc. which let a user be notified by notification sounds, such as a buzzer sound, about completion
  • the blade 122 When entering the pulverization step # 20, the blade 122 is rotated at a high speed (may be intermittent rotation) to pulverize the grain. Thereby, the dough raw material which consists of a mixture of a ground grain and a liquid is formed.
  • the start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed. Further, since the end of the liquid absorption process # 10 can be determined based on the temperature detected by the temperature sensor 113, the pulverization process # 20 may be automatically started after the liquid absorption process # 10 is completed.
  • the end of the pulverization step # 20 ends when the paste temperature reaches a predetermined temperature (for example, 28 ° C.). Since the end of the pulverization process # 20 can be determined based on the temperature detected by the temperature sensor 113, the control unit 112 may automatically end the pulverization process # 20. Moreover, it is good also as a structure etc. which let a user know about completion
  • the heating unit 124 and the cooling unit 125 are appropriately functioned based on the temperature detected by the temperature sensor 113 so that the dough temperature becomes constant at a desired temperature (for example, 28 ° C.).
  • Start control The temperature control may be started by, for example, providing a temperature control start button or automatically.
  • the lid 121 is opened, and a predetermined amount of gluten and a predetermined amount of seasoning material as necessary are put into the dough raw material.
  • the lid 121 is closed and the kneading step # 30 is started.
  • the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together.
  • a predetermined time elapses after the kneading step # 30 is started, the lid 121 is opened and a predetermined amount of foam-inducing material (for example, dry yeast) is put into the dough.
  • foam-inducing material for example, dry yeast
  • the kneading step # 30 is finished when a predetermined time has elapsed.
  • the end of the kneading step # 30 may be configured to automatically end when a total time from the start of the kneading has elapsed a predetermined time. Moreover, it is good also as a structure etc. which notify the completion
  • the dough When the dough is completed, take out the dough from the container 120 or leave the dough in the container 120 and wait for foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
  • the rotation direction of the blade 122 is changed in the crushing process # 20 and the kneading process # 30, and in the crushing process # 20, a sharp edge on one side of the blade 122 is a grain.
  • the other non-pointed end face of the blade 122 may press the dough material.
  • FIG. 12 is a schematic diagram showing the flow of the method for producing a cooked food dough according to the third embodiment.
  • FIG. 13 is a flowchart which shows the detail of the liquid absorption process included in the heat cooking food dough manufacturing method of 3rd Embodiment.
  • FIG. 14 is a table showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process.
  • FIG. 15 is a flowchart which shows the detail of the crushing process included in the heat cooking food dough manufacturing method of 3rd Embodiment.
  • FIG. 16 is a flowchart which shows the detail of the kneading
  • the cooked food dough manufacturing method of the third embodiment includes a liquid absorption step # 10, a pulverization step # 20, and a kneading step # 30, and the steps are advanced in this order. Details of each step will be described below.
  • This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
  • Step # 11 grains (rice grains are most easily available, but grains other than the grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans, etc. can also be used.
  • grains of rice are used. Weigh a certain amount and put a predetermined amount in the container.
  • step # 12 the liquid is weighed and a predetermined amount is put into a container.
  • a common liquid is water (the liquid in the third embodiment is water), but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged.
  • Step # 13 the mixture of cereal grains and liquid is left in the container.
  • Step # 14 is executed almost simultaneously with the start of standing in step # 13.
  • the temperature of the liquid (liquid temperature) is detected using a thermometer.
  • the liquid temperature may be measured by putting a thermometer directly into the liquid or may be measured indirectly via a container.
  • the measurement of the liquid temperature is performed in consideration of the fact that the liquid absorption speed of the cereal grains varies depending on the liquid temperature, and is performed in order to change the immersion time of the cereal grains in the liquid depending on the liquid temperature. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease.
  • step # 15 the time for immersing the grain in the liquid is determined based on the detected liquid temperature.
  • the table shown in FIG. 14 is a setting example of the immersion time assuming the case where water is absorbed (absorbed) by the grain.
  • the cooked food dough can be manufactured in a short time.
  • the production time of the cooked food dough becomes longer in the winter, but an appropriate water absorption time is provided, so that defects are less likely to occur in the subsequent pulverization step.
  • the liquid temperature is configured to give different immersion times at intervals of 5 ° C.
  • the immersion time may be given at finer temperature intervals or coarser temperature intervals.
  • the upper limit (35 ° C. in FIG. 14) and the lower limit (5 ° C. in FIG. 14) of the temperature may naturally be changed from those shown in FIG.
  • the liquid temperature detection timing is not limited to the configuration of the third embodiment, and for example, the liquid temperature may be measured immediately when the liquid is placed in the container.
  • step # 16 time measurement is started so that the grain is immersed in the liquid for the determined immersion time.
  • Step # 17 it is checked whether or not the measurement time started in Step # 16 has passed the previously determined immersion time (scheduled immersion time). When the planned immersion time has elapsed, the liquid absorption step # 10 is terminated.
  • the pulverization blade may be rotated at the initial stage of the liquid absorption step # 10, and thereafter the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised.
  • This pulverization step # 20 is a step of making grain grains into a paste.
  • step # 21 the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container.
  • This liquid may be the same as the liquid previously used in the liquid absorption step, or may be different (including not only simply replacing the liquid but also replacing another type of liquid). In some cases, additives such as seasonings may be added to the container at this stage.
  • this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good.
  • step # 22 the rotation of the grinding blade is started in a mixture containing cereal grains and liquid (this mixture is also a mixture of cereal grains and liquid only, which is this form in the third embodiment).
  • this mixture is also a mixture of cereal grains and liquid only, which is this form in the third embodiment.
  • temperature measurement of the mixture (paste) containing the grain and the liquid is started.
  • the cereal grains are easily pulverized to the core because the pulverization is performed in a state in which the liquid has soaked into the cereal grains in the previous liquid absorption step # 10.
  • the temperature of the mixture is measured in order to use the measured temperature for rotation control of the grinding blade.
  • the rotation control using the measured temperature can efficiently grind the grain, and can suppress the temperature of the mixture from rising too much due to the heat generated during the grinding.
  • the gelatinization of the rice starts when the temperature of the mixture rises too much (for example, indicates a state of about 60 ° C.), and the load during pulverization Is inconvenient because it becomes larger For this reason, it is necessary to suppress an excessive temperature rise.
  • the temperature of the mixture may be measured directly with a thermometer or the like, or indirectly through a container.
  • step # 23 it is checked whether the temperature of the mixture is 40 ° C. or higher. If the temperature of a mixture is 40 degreeC or more, it will progress to step # 24 and will stop rotation of a grinding
  • a cooling means for example, means for cooling the container using water or ice is provided for the purpose of increasing the speed of temperature decrease.
  • the temperature of the mixture may be lowered.
  • step # 26 If the temperature of the mixture is 30 ° C. or lower, the process proceeds to Step # 26 and the rotation of the grinding blade is restarted. In step # 27, it is checked again whether the temperature of the mixture is 40 ° C. or higher. If the temperature of a mixture is 40 degreeC or more, it will progress to step # 28 and will stop rotation of a grinding
  • step # 29 the grain size of the grain being crushed is measured to check whether the maximum grain size is 100 ⁇ m or less.
  • a known particle size measurement method may be used for the particle size measurement of the grain, and for example, a liquid phase precipitation method, a laser diffraction / scattering method, a sieving method, or the like can be used.
  • the particle size is measured using the liquid phase sedimentation method.
  • step # 20 As a result of the particle size measurement, if the maximum particle size is 100 ⁇ m or less, the pulverization step # 20 is completed. On the other hand, when particles exceeding 100 ⁇ m are present (NO in step # 29), the process returns to step # 25, and pulverization is performed again according to the subsequent steps.
  • the pulverization step # 20 described above will be described with reference to FIG. As shown in FIG. 12, in the pulverization step # 20, the rotation of the pulverization blade is continued until the temperature of the mixture at the time of pulverization reaches 40 ° C. (pulverization blade ON), and when the temperature of the mixture reaches 40 ° C. Is stopped (pulverization blade OFF). Thereafter, the rotation of the grinding blade is continued until the temperature of the mixture reaches 30 ° C. (grinding blade OFF). When the temperature of the mixture reaches 30 ° C., the rotation of the grinding blade is resumed (grinding blade N). That is, the pulverizing blade is intermittently rotated by controlling ON / OFF of the rotation according to the temperature of the mixture. And a grinding
  • 40 ° C. is selected as a temperature range in which pulverization can be performed efficiently, and rotation of the pulverization blade is turned on and off using 30 ° C. and 40 ° C. so that pulverization is performed within this temperature range. is there.
  • a method of performing the pulverization in a temperature range of 30 ° C. to 40 ° C. a method of controlling the temperature by using a cooling means (in some cases, a heating means) during the pulverization process is also conceivable.
  • a means for finely controlling the temperature of the container also referred to as a mixture
  • the pulverization blade is intermittently rotated. Therefore, the advantage that the grains can be efficiently pulverized by convection in the container is obtained.
  • 30 degreeC and 40 degreeC are used as temperature used for rotation control of a grinding
  • the grain size of the grain is measured, and the end of the pulverization step # 20 is determined based on the maximum particle size.
  • the present invention is not limited to this configuration. That is, for example, in addition to the size of the largest particles, the end of the pulverization process may be determined in consideration of the particle size distribution. As an example of the determination based on the particle size distribution, the pulverization may be continued until the ratio of the particle size of less than 10 ⁇ m to 10 ⁇ m or more is 2: 1. Further, instead of determining the end of the pulverization process by measuring the particle size, for example, a configuration in which the end of the crushing process is completed when the number of cycles of rotation and rotation stop reaches a predetermined number may be used.
  • the kneading step # 30 shown in the flowchart in FIG. 16 is performed.
  • the contents executed in each step (# 31 to # 38) of the kneading step # 30 shown in FIG. 16 are the same as the steps of the kneading step # 20 (see FIG. 4) in the cooked food dough manufacturing method of the first embodiment (see FIG. 4).
  • the contents are the same as those executed in # 21 to # 28).
  • Handling of the finished dough (bread dough) is the same as in the first embodiment.
  • the immersion time in the liquid absorption process may be a fixed time. However, in this case, it is preferable to set the soaking time longer in order to reduce the possibility of insufficient grain absorption. For this reason, the configuration in which the immersion time is changed according to the liquid temperature as in the third embodiment is preferable in terms of time efficiency.
  • the temperature control and the kneading process are started simultaneously after the pulverization process.
  • the present invention is not limited to this configuration.
  • the kneading step may be started after adjusting the dough raw material to a desired temperature by temperature control started after the pulverization step.
  • the dough temperature is maintained at a constant temperature from the start of the kneading process.
  • the configuration of the third embodiment is preferable in terms of time efficiency.
  • Each process of the manufacturing method of 3rd Embodiment can also be performed using a separate instrument for every process similarly to 1st Embodiment, and an apparatus can also be shared by several processes.
  • the fabric manufacturing apparatus 100 shown in the first embodiment can be used as the configuration of the instrument shared in all of the liquid absorption process # 10, the pulverization process, and the kneading process.
  • the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed. In this liquid absorption process # 10, the temperature of the liquid is detected using the temperature sensor 113, and the control board 112 determines the time of the liquid absorption process # 10 (the immersion time of the grains in the liquid) based on the detected liquid temperature. . The determination of the immersion time based on the liquid temperature is performed by storing a table as shown in FIG. 14 in advance in a memory (not shown). A notification sound may be emitted about the end of the liquid absorption process # 10.
  • the blade 122 may be intermittently rotated under the control of the control board 112 to damage the surface of the grain.
  • the blade 122 When entering the grinding step # 20, the blade 122 is rotated at a high speed to grind the grain. Simultaneously with the start of grinding, the temperature sensor 113 is used to measure the temperature of the mixture of cereal grains and liquid, and when the temperature of the mixture reaches 40 ° C. under the control of the control board 112, the rotation of the blade 122 is stopped. When the temperature drops to 30 ° C., the intermittent operation of restarting the rotation of the blade 122 is performed to grind the grain. Then, when the rotation of the blade 122 is stopped, the ground grain is sampled and the particle size is measured. When the desired particle size is obtained by the measurement, the pulverization step # 20 is finished. Thereby, the dough raw material which consists of a mixture of a pulverized grain and a liquid is formed.
  • the start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed, or may be automatically started. Further, in order to prevent the blade 122 from moving during sampling, for example, when the lid 121 is removed, the blade 122 may not start rotating.
  • the control substrate 112 causes the heating unit 124 and the cooling unit 125 to function appropriately based on the temperature detected by the temperature sensor 113, and the dough temperature becomes constant at a desired temperature (for example, 28 ° C.).
  • Start the temperature control as follows.
  • the temperature control may be started, for example, by providing a temperature control start button.
  • the lid 121 is opened, and a predetermined amount of gluten and a predetermined amount of seasoning material as necessary are put into the dough raw material.
  • the lid 121 is closed and the kneading step # 30 is started.
  • the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together.
  • the temperature is usually deviated from a desired temperature (for example, 28 ° C.).
  • a predetermined amount of foam-inducing material for example, dry yeast
  • the lid 121 When the foam-inducing material is introduced, the lid 121 is closed, the blade 122 is rotated at a low speed, and the dough and the foam-inducing material are kneaded to complete the dough. Thereafter, the dough is taken out from the container 120, or the dough is kept in the container 120, and the process waits for the foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
  • the rotation direction of the blade 122 is changed in the crushing process # 20 and the kneading process # 30, and in the crushing process # 20, a sharp edge on one side of the blade 122 is a grain.
  • the other non-pointed end face of the blade 122 may press the dough material.
  • the cooked food dough is bread dough
  • the scope of the present invention is not limited to bread dough, Applicable.
  • the crushing and kneading processes are executed as follows depending on the type of dough.
  • the bread dough manufacturing method of the first embodiment is applied as a method for manufacturing other dough, in any case of dough, the pulverization process and the liquid absorption period are alternately repeated in the pulverization step.
  • the cooked food dough can be manufactured efficiently.
  • the bread dough manufacturing method of the second embodiment is applied as a method for manufacturing other dough, in any case, the grain is soaked in the liquid absorption step performed before the crushing step.
  • the crushing blade is intermittently rotated based on the temperature of the mixture in the crushing step. , Can efficiently cook cooked food dough.
  • ⁇ Cake dough> Mix the grain and liquid in the same proportion of liquid as dough and execute the grinding process. Eggs, sugar, baking powder, etc. are added to the dough ingredients and the kneading process is executed. Thereby, a soft paste-like dough is obtained.
  • ⁇ Udon dough> After the pulverization step, salt is added to the dough material and the kneading step is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
  • ⁇ Pasta dough> After the pulverization step, salt and oil are added to the dough material and the kneading step is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
  • the present invention can be widely applied to the production of cooked food dough, and is suitable, for example, for the production of bread dough.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Food-Manufacturing Devices (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Cereal-Derived Products (AREA)

Abstract

A method of producing a processed cooking food stuff comprises a grinding step for grinding cereal grains by rotating a grinding blade in a mixture containing the cereal grains and the liquid, and a kneading step for kneading the stuff material containing the ground cereal grains and the liquid by means of a kneading blade to produce the stuff. In the grinding step, the grinding period in which the cereal grains are ground by rotating the grinding blade, and the liquid suction period in which rotation of the grinding blade is stopped and the cereal grains are made to suck the liquid are repeated alternately.

Description

加熱調理食品生地製造方法及び生地製造装置Cooked food dough manufacturing method and dough manufacturing apparatus
 本発明は、例えばパン生地等の加熱調理することによって食べられる加熱調理食品生地の製造方法に関する。また、本発明は、加熱調理食品生地を製造する生地製造装置に関する。 The present invention relates to a method for producing a cooked food dough that can be eaten by cooking, for example, bread dough. The present invention also relates to a dough producing apparatus for producing a cooked food dough.
 穀物を食物として摂取する場合、粒のまま調理して食べる(粒食)こともあれば、粉に碾いた上で調理して食べる(粉食)こともある。粉食の場合、粉と水とを混ぜて捏ね、一つにつながった「生地」と呼ばれるものにしてから加熱調理するのが一般的である。生地には、調味材料(食塩、砂糖、鶏卵、バター、ショートニング等)を混ぜることもあれば、また、ドライイースト、生イースト、天然酵母、糀、ベーキングパウダーなどの発泡誘起材料を混ぜることもある。 ∙ When cereal is ingested as food, it may be cooked and eaten as grains (grain meal), or it may be cooked and eaten after meal (powdery meal). In the case of a powdered meal, it is common to mix and knead the powder and water and cook it after cooking it into a so-called “dough”. The dough may be mixed with seasoning ingredients (salt, sugar, chicken eggs, butter, shortening, etc.), and may also be mixed with foam-inducing materials such as dry yeast, fresh yeast, natural yeast, koji, and baking powder. .
 このようにして調製した生地は、目的とする食品が得られるように丸めたり、延ばしたり、ちぎったり、細く切ったりして形を整えられる。そして、形が整えられた生地は、場合によっては発酵工程や乾燥工程を経てから、焼く(パン、ケーキ、ピザ等)、揚げる(ドーナツ、揚げパン等)、蒸す(饅頭、蒸しパン等)、茹でる(うどん、そば、スパゲティ等)、炒め焼きする(焼きそば、餃子等)、煮る(すいとん、ほうとう等)などの手法で加熱調理される。 The dough prepared in this way can be shaped by rolling, stretching, tearing, or slicing to obtain the desired food. In some cases, the shaped dough may be baked (bread, cake, pizza, etc.), fried (doughnuts, fried bread, etc.), steamed (rice buns, steamed bread, etc.) It is cooked by techniques such as boiling (such as udon, soba, spaghetti), stir-fry (such as fried noodles, dumplings), and boiled (such as suito, hoto).
 加熱調理食品生地の製造方法の一例を特許文献1に見ることができる。特許文献1はパン生地の製造方法に係るものであり、生米を乳酸発酵させて粉砕した機能性デンプン液を、パン生地の中種混捏時若しくは直捏法による混捏攪拌時に加水の一部代替えとして添加してパン生地の調製を行っている。 An example of a method for producing a cooked food dough can be seen in Patent Document 1. Patent Document 1 relates to a method for producing bread dough, and functional starch solution obtained by pulverizing raw rice by lactic acid fermentation is added as a partial substitute for water during kneading and mixing of medium-type bread dough And dough preparation.
特開平9-51754号公報JP-A-9-51754
 ところで、加熱調理食品生地を製造する場合、これまでは穀物粉を入手するところから始めなければならなかった。この点、本出願人らは鋭意研究の末、粒の形で手元にある穀物(典型的なものとして、例えば米粒が挙げられる)を利用することにより、製粉という手間をかけずに加熱調理食品生地を製造する方法を発明した。なお、これについては先に特許出願(特願2008-201506)を行っている。 By the way, when producing cooked food dough, it has been necessary to start from obtaining grain flour. In this regard, the present applicants have intensively studied, and by using grains that are in the form of grains (typically, for example, rice grains), the cooked food can be cooked without the need for milling. Invented a method of manufacturing dough. For this, a patent application (Japanese Patent Application No. 2008-201506) has been filed earlier.
 ここで、先に特許出願した加熱調理食品生地製造方法の一例を紹介する。該製造方法には、所定量の穀物粒と所定量の液体を混合状態で静置して穀物粒に液体を含ませる工程(吸液工程)と、吸液工程を経た穀物粒と液体との混合物の中で粉砕ブレードを回転させて穀物粒を粉砕する工程(粉砕工程)と、粉砕穀物粒と液体の混合物からなる生地原料を練りブレードで生地に練り上げる工程(練り工程)と、が含まれる。 Here, we will introduce an example of a method for manufacturing cooked food dough that was previously filed for a patent. The manufacturing method includes a step of allowing a predetermined amount of cereal grains and a predetermined amount of liquid to stand still in a mixed state so as to contain the liquid in the cereal grains (liquid absorption step), and the cereal grains and liquid that have undergone the liquid absorption step. A step of pulverizing grain grains by rotating a pulverizing blade in the mixture (grinding process), and a step of kneading dough raw material composed of a mixture of pulverized grain grains and liquid into dough (kneading step). .
 上記製造方法において、粉砕工程の前に行う吸液工程は必ずしも必要ではない。しかし、本出願人らの研究により、吸液工程を経てから穀物粒を粉砕した方が穀物粒に液体が浸み込んだ状態で粉砕を行えるので、穀物粒を芯まで容易に粉砕しやすいことがわかっている。このために、吸液工程を行うのが好ましいが、穀物粒に吸液させるにはある程度の時間が必要となるために、吸液工程を行う場合には加熱調理食品生地を製造するために要する時間が長くなるといった問題がある(第1の問題点)。 In the above production method, the liquid absorption step performed before the pulverization step is not necessarily required. However, according to the research by the present applicants, it is easy to grind the grain to the core easily because the grain is pulverized after the liquid absorption step and the liquid is immersed in the grain. I know. For this reason, it is preferable to perform a liquid absorption process, but since it takes a certain amount of time to absorb the grains, it is necessary to produce a cooked food dough when performing the liquid absorption process. There is a problem that time is long (first problem).
 また、上記の加熱調理食品生地の製造方法においては、粉砕工程では穀物粒を粉砕する必要があるために粉砕ブレードを高速回転する。このために、特に粉砕工程においては発熱量が多く、穀物粒と液体との混合物の温度が上昇しやすい。例えば、穀物粒として米粒を使用する場合、混合物の温度が上昇しすぎると米が糊化を起こし、粉砕ブレードにかかる負荷が大きくなる。そして、粉砕ブレードにかかる負荷が大きくなりすぎると最悪の場合には粉砕ブレードの回転ができず、回転ができても米粒の粒度を好ましい粒度に粉砕できないといった問題が発生する(第2の問題点)。 Also, in the above-described method for producing a cooked food dough, the pulverization blade is rotated at a high speed because it is necessary to pulverize the grain in the pulverization step. For this reason, the calorific value is large especially in the pulverization step, and the temperature of the mixture of the grain and the liquid tends to rise. For example, when using rice grains as cereal grains, if the temperature of the mixture rises too much, the rice will gelatinize, increasing the load on the grinding blade. If the load applied to the pulverizing blade becomes too large, the pulverizing blade cannot be rotated in the worst case, and even if it can be rotated, the problem arises that the grain size of the rice grains cannot be pulverized to the preferred particle size (second problem) ).
 そこで、本発明の目的は、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造するにあたって、効率良く加熱調理食品生地を製造する方法を提供することである。また、本発明の他の目的は、穀物粒と液体とを混合して穀物粒を粉砕する粉砕工程を含み、製粉工程を経ることなく加熱調理食品生地を製造する方法において、粉砕時の温度上昇を適切に抑制しながら効率良く粉砕工程を行う方法を提供することである。更に、本発明の目的は、以上のような加熱調理食品生地製造方法が適用される生地製造装置を提供することである。 Therefore, an object of the present invention is to provide a method for efficiently producing a cooked food dough from a grain grain in producing the cooked food dough without going through a milling process. Another object of the present invention includes a pulverization step of pulverizing cereal grains by mixing cereal grains and a liquid, and in the method for producing a cooked food dough without going through a milling process, the temperature rise during pulverization It is providing the method of performing a grinding | pulverization process efficiently, suppressing appropriately. Furthermore, the objective of this invention is providing the dough manufacturing apparatus with which the above cooked food dough manufacturing methods are applied.
 上記目的を達成するために本発明の第1の局面における加熱調理食品生地製造方法は、穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を備える加熱調理食品生地の製造方法であって、前記粉砕工程においては、前記粉砕ブレードを回転して前記穀物粒を粉砕する粉砕期間と、前記粉砕ブレードの回転を止めて前記穀物粒に吸液させる吸液期間と、が交互に繰り返されることを特徴としている。 In order to achieve the above object, the cooked food dough manufacturing method according to the first aspect of the present invention includes a pulverization step of pulverizing the cereal grains by rotating a pulverization blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a kneading blade, and a method for producing a cooked food dough, wherein in the crushing step, the crushing blade is rotated. The pulverization period for pulverizing the cereal grains and the liquid absorption period for stopping the rotation of the pulverization blade and absorbing the cereal grains are alternately repeated.
 なお、本明細書では、練り工程の開始時点のものを「生地原料」と呼称し、練り工程が開始され練りが進行した後は、半完成状態であっても「生地」と呼称することとしている。 In this specification, the material at the start of the kneading process is referred to as “dough raw material”, and after the kneading process is started and the kneading proceeds, it is referred to as “dough” even in a semi-finished state. Yes.
 本構成によれば、粉砕工程で粉砕した穀物粒と液体とを含む混合物を生地原料として生地を練り上げる構成であるために、製粉という手間をかけずに加熱調理食品生地を得ることができる。そして、粉砕工程には吸液期間が含まれ、粉砕工程は、穀物粒への吸液を行いながら粉砕が進められる構成になっている。したがって、粉砕工程の前に吸液工程を別途設ける必要がなく、加熱調理食品生地の製造効率を高めることが可能である。 According to this configuration, since the dough is kneaded using the mixture containing the cereal grains and liquid pulverized in the pulverization step as the dough raw material, the cooked food dough can be obtained without the trouble of milling. The pulverization step includes a liquid absorption period, and the pulverization step is configured such that pulverization proceeds while liquid absorption is performed on the grain. Therefore, it is not necessary to separately provide a liquid absorption step before the pulverization step, and it is possible to increase the production efficiency of the cooked food dough.
 上記第1の局面における加熱調理食品生地製造方法において、前記吸液期間の長さは、前記粉砕期間の長さよりも長いのが好ましい。 In the cooked food dough manufacturing method according to the first aspect, the length of the liquid absorption period is preferably longer than the length of the pulverization period.
 本構成によれば、吸液期間において穀物粒に十分に液体を含ませて、効率良く穀物粒の粉砕を進め易い。 According to this configuration, it is easy to efficiently pulverize the grain by allowing the grain to sufficiently contain liquid during the liquid absorption period.
 上記第1の局面における加熱調理食品生地製造方法において、前記粉砕期間の長さが一定でないこととしてもよく、更には、前記粉砕期間の長さは、前記粉砕工程の初期と終期とを比較すると、前記初期の場合の方が短いこととしてもよい。 In the cooked food dough manufacturing method according to the first aspect, the length of the pulverization period may not be constant, and the length of the pulverization period may be compared between the initial stage and the final stage of the pulverization step. The initial case may be shorter.
 複数回実行される粉砕期間のうち、特に初回の粉砕期間においては、穀物粒に十分な水が含まれておらず、粉砕効率が悪くなってしまう。このため、例えば初回(粉砕工程の初期)の粉砕期間は、穀物粒の表面に傷をつけて吸液しやすい穀物粒を得ることを主な目的とし、粉砕期間の長さをその後に行われる粉砕期間の長さより短めとすることとしてもよい。これにより、効率良く穀物粒の粉砕を進めることが可能となる。 Among the pulverization periods that are executed a plurality of times, particularly in the first pulverization period, the grain grains do not contain sufficient water, and the pulverization efficiency deteriorates. For this reason, for example, the first pulverization period (the initial stage of the pulverization process) is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is thereafter performed. It may be shorter than the length of the grinding period. Thereby, it becomes possible to proceed the pulverization of the grain efficiently.
 上記目的を達成するために本発明の第2の局面における加熱調理食品生地製造方法は、穀物粒に吸液させる吸液工程と、吸液した前記穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を含み、前記吸液工程中に、前記穀物粒が浸漬されている液体を加熱することを特徴としている。 In order to achieve the above object, a method for producing a cooked food dough according to a second aspect of the present invention includes a liquid absorption step for absorbing grains and a mixture containing the absorbed grains and liquid. A pulverizing step of rotating a blade to pulverize the cereal grains, and a kneading step of kneading a dough raw material containing the pulverized cereal grains and the liquid into a dough with a blade, and during the liquid absorption step, The liquid in which the grain is immersed is heated.
 本構成によれば、粉砕工程で粉砕した穀物粒と液体とを含む混合物を生地原料として生地を練り上げる構成であるために、製粉という手間をかけずに加熱調理食品生地を得ることができる。そして、粉砕工程中に穀物粒が浸漬されている液体を加熱する構成であるために、穀物粒への吸液速度を向上でき、吸液工程に要する時間を短縮することができる。すなわち、本構成は、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造するにあたって、効率良く加熱調理食品生地を製造する方法を提供するものである。 According to this configuration, since the dough is kneaded using the mixture containing the cereal grains and liquid pulverized in the pulverization step as the dough raw material, the cooked food dough can be obtained without the trouble of milling. And since it is the structure which heats the liquid in which the grain is immersed in the grinding | pulverization process, the liquid absorption speed to a grain can be improved and the time which a liquid absorption process requires can be shortened. That is, this configuration provides a method for efficiently producing a cooked food dough from grain grains without producing a cooked food dough through a milling process.
 なお、前記粉砕工程における前記粉砕ブレードの回転は間欠回転であることとしてもよい。本構成によれば、粉砕ブレードの回転・停止を繰り返すことによって穀物粒を効果的に容器内で対流させることができ、粉砕効率を向上することができる。 Note that the rotation of the pulverizing blade in the pulverizing step may be intermittent. According to this configuration, the grains can be effectively convected in the container by repeatedly rotating and stopping the grinding blade, and the grinding efficiency can be improved.
 上記第2の局面における加熱調理食品生地製造方法において、前記吸液工程においては、前記穀物粒が浸漬されている液体を加熱後に冷却処理することとしてもよい。 In the cooked food dough manufacturing method according to the second aspect, in the liquid absorption step, the liquid in which the grain is immersed may be cooled after being heated.
 本構成によれば、吸液工程において一旦上げた液体の温度を冷却処理によって下げた状態で粉砕工程に移行することができる。このため、粉砕工程時に発生する熱によって、粉砕工程で得られるペースト(粉砕された穀物粒と液体とを含む混合物)の温度が過度に上昇するのを避けられる。例えば、穀物粒として米粒を用いる場合、過度に温度が上昇する(例えば60℃超)と米の糊化により粉砕時の負荷が上昇するが、本構成によればこのような事態を避けられる。 According to this configuration, it is possible to shift to the pulverization step in a state where the temperature of the liquid once raised in the liquid absorption step is lowered by the cooling process. For this reason, it is possible to avoid an excessive increase in the temperature of the paste (mixture containing pulverized grains and liquid) obtained in the pulverization process due to heat generated during the pulverization process. For example, when using rice grains as cereal grains, if the temperature rises excessively (for example, over 60 ° C.), the load during pulverization increases due to the gelatinization of the rice, but this situation can be avoided according to this configuration.
 上記構成の加熱調理食品生地製造方法において、前記穀物粒が浸漬されている液体を加熱して第1の温度まで温めた後、前記第1の温度を維持する温度制御が所定の時間行われ、その後、前記冷却処理により前記穀物粒が浸漬されている液体の温度を前記第1の温度より低い第2の温度へと下げることとしてもよい。 In the cooked food dough manufacturing method of the above configuration, after the liquid in which the grain is immersed is heated and heated to the first temperature, temperature control for maintaining the first temperature is performed for a predetermined time, Then, it is good also as lowering | hanging the temperature of the liquid in which the said grain is immersed by the said cooling process to 2nd temperature lower than said 1st temperature.
 本構成によれば、穀物粒を浸漬している液体の温度を第1の温度まで加熱して、その後、その温度で所定の時間維持するようになっている。このために、穀物粒を浸漬している液体の温度が過度に上昇することを避けられ、吸液工程において、上述した米の糊化が起こり難くできる。また、第1の温度による吸液を安定して行えるために、生地の出来上がりの品質について安定したものとできる。 According to this configuration, the temperature of the liquid in which the grain is immersed is heated to the first temperature, and then maintained at that temperature for a predetermined time. For this reason, it can avoid that the temperature of the liquid which has immersed the grain grain rises too much, and it can make the gelatinization of the rice mentioned above difficult to occur in a liquid absorption process. Moreover, since the liquid absorption by 1st temperature can be performed stably, it can be made stable about the quality of the finished cloth.
 上記構成の加熱調理食品生地製造方法において、前記練り工程では、生地温度を一定の温度に維持するように温度制御が行われ、前記第2の温度は前記一定の温度より低いこととしてもよい。 In the cooked food dough manufacturing method configured as described above, in the kneading step, temperature control is performed so as to maintain the dough temperature at a constant temperature, and the second temperature may be lower than the constant temperature.
 本構成によれば、粉砕工程が開始される時の液体の温度が、練り工程で一定の温度となるように制御される温度よりも低い。このために、粉砕工程で発生する熱を利用して前記一定の温度にペースト温度を高めた上で練り工程へと移行することが可能である。このために、粉砕工程後における冷却処理を不要とできる等、効率良く生地の製造を進めることが可能である。なお、練り工程で生地温度が一定となるような制御は、例えばパン生地を製造する場合に行われる。これは、イーストを活発に働かせることを意図するものである。 According to this configuration, the temperature of the liquid when the pulverization process is started is lower than the temperature controlled to be a constant temperature in the kneading process. For this reason, it is possible to shift to the kneading step after increasing the paste temperature to the constant temperature using the heat generated in the crushing step. For this reason, it is possible to advance the production of the dough efficiently, such that the cooling process after the pulverization step can be omitted. In addition, control that the dough temperature becomes constant in the kneading process is performed when, for example, bread dough is manufactured. This is intended to make the yeast work actively.
 上記構成の加熱調理食品生地製造方法において、前記粉砕工程は、粉砕により得られるペーストの温度が前記一定の温度となった時点で終了されることとしてもよい。 In the cooked food dough manufacturing method configured as described above, the pulverization step may be terminated when the temperature of the paste obtained by pulverization reaches the constant temperature.
 本構成によれば、上述のように粉砕工程後における冷却処理を不要とできる等、効率良く生地の製造を進めることが可能である。 According to this configuration, it is possible to efficiently proceed with the manufacture of the dough, for example, as described above, the cooling process after the pulverization process can be omitted.
 上記第2の局面における加熱調理食品生地製造方法において、前記吸液工程においては、前記穀物粒が浸漬されている液体が加熱により第1の温度まで温められ、その後、前記第1の温度を維持する温度制御が所定の時間行われることとしてもよい。 In the cooked food dough manufacturing method according to the second aspect, in the liquid absorption step, the liquid in which the grain is immersed is heated to a first temperature by heating, and then the first temperature is maintained. The temperature control to be performed may be performed for a predetermined time.
 本構成によれば、穀物粒を浸漬している液体の温度を第1の温度まで加熱して、その後、その温度で所定の時間維持するようになっている。このために、穀物粒を浸漬している液体の温度が過度に上昇するのを避けられ、吸液工程において、上述した米の糊化が起こり難くできる。また、第1の温度による吸液を安定して行えるために、生地の出来上がりの品質について安定したものとできる。そして、本構成の場合、吸液工程では液体の冷却を行わずに粉砕工程を行う構成とすることも可能である。この場合、粉砕工程におけるペーストの過度の温度上昇を避けるために、粉砕工程中に冷却処理を行うのが好ましい。 According to this configuration, the temperature of the liquid in which the grain is immersed is heated to the first temperature, and then maintained at that temperature for a predetermined time. For this reason, it can avoid that the temperature of the liquid which has immersed the grain grain rises too much, and can make gelatinization of the rice mentioned above difficult to occur in a liquid absorption process. Moreover, since the liquid absorption by 1st temperature can be performed stably, it can be made stable about the quality of the finished cloth. And in the case of this structure, it is also possible to set it as the structure which performs a crushing process, without cooling a liquid in a liquid absorption process. In this case, in order to avoid an excessive temperature rise of the paste in the pulverization step, it is preferable to perform a cooling treatment during the pulverization step.
 上記目的を達成するために本発明の第3の局面における加熱調理食品生地製造方法は、穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を含み、前記粉砕工程では、前記粉砕ブレードの回転を前記混合物の温度が第1の温度となったら停止し、停止後に前記混合物の温度が前記第1の温度より低い第2の温度に低下したら前記粉砕ブレードの回転を再開するという間欠回転を行って前記穀物粒の粉砕を行うことを特徴している。 In order to achieve the above object, a method for producing a cooked food dough according to a third aspect of the present invention includes a pulverizing step of pulverizing the cereal grains by rotating a pulverizing blade in a mixture containing the cereal grains and a liquid, A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a kneading blade, and in the crushing step, the temperature of the mixture becomes the first temperature by rotating the crushing blade. And the cereal grains are pulverized by intermittent rotation in which rotation of the pulverization blade is resumed when the temperature of the mixture decreases to a second temperature lower than the first temperature after the stop. ing.
 本構成によれば、粉砕工程における粉砕ブレードの回転が間欠回転であるために、穀物粒を容器内で対流させて、効率良く粉砕可能である。そして、穀物粒と液体とを含む混合物の温度に基づいて粉砕ブレードの間欠回転を実行する構成であるために、混合物の温度が上昇しすぎず、且つ、低下しすぎないようにできる。このため、粉砕工程における粉砕効率を向上しやすい。また、粉砕時において、混合物が収容される容器の温度について緻密な温度制御を行うための手段が不要で、粉砕工程の実施が容易である。 According to this configuration, since the rotation of the pulverization blade in the pulverization process is intermittent, the cereal grains can be convected in the container and efficiently pulverized. And since it is the structure which performs intermittent rotation of a grinding | pulverization blade based on the temperature of the mixture containing a grain and a liquid, it can prevent the temperature of a mixture rising too much and falling too much. For this reason, it is easy to improve the grinding efficiency in the grinding process. Further, at the time of pulverization, means for performing precise temperature control on the temperature of the container in which the mixture is stored is unnecessary, and the pulverization process can be easily performed.
 上記第3の局面における加熱調理食品生地製造方法において、前記粉砕工程の途中で前記穀物粒の粒度を測定して前記粉砕工程を終了するか否か判定することとしても良い。 In the cooked food dough manufacturing method according to the third aspect, the grain size of the grain may be measured in the middle of the pulverization step to determine whether or not to end the pulverization step.
 本構成によれば、粒度測定で粒度を確認した上で粉砕工程を終了するか否かを判定する構成であるために、粉砕工程終了時の粉砕穀物粒の粒度についてばらつきを抑制できる。このため、所望の生地を歩留まり良く製造可能である。 According to this configuration, since it is a configuration for determining whether or not to terminate the pulverization process after confirming the particle size by particle size measurement, variations in the particle size of the pulverized cereal grains at the end of the pulverization process can be suppressed. For this reason, a desired dough can be manufactured with a high yield.
 上記第3の局面における加熱調理食品生地製造方法において、前記粉砕工程の前に、前記穀物粒に吸液させる吸液工程が行われるのが好ましい。 In the cooked food dough manufacturing method according to the third aspect, it is preferable that a liquid absorbing step for absorbing the grains is performed before the pulverizing step.
 本構成によれば、吸液した穀物粒を粉砕工程で粉砕することになるため、穀物粒を芯まで粉砕しやすい。 According to this configuration, since the absorbed grain is pulverized in the pulverization step, it is easy to pulverize the grain to the core.
 なお、前記吸液工程で液温を検知し、検知温度に応じて前記吸液工程の時間を変化させるのが好ましい。本構成によれば、季節によって液温が変動する場合でも、穀物粒に吸液させる時間(穀物粒を液体に浸漬する浸漬時間)を適切な時間とできる。このため、粉砕工程での不良が発生し難い。 In addition, it is preferable that the liquid temperature is detected in the liquid absorption process, and the time of the liquid absorption process is changed according to the detected temperature. According to this configuration, even when the liquid temperature fluctuates depending on the season, it is possible to set the time required for the grain to absorb liquid (immersion time for immersing the grain in the liquid) to be an appropriate time. For this reason, it is hard to produce the defect in a grinding | pulverization process.
 また、上記第1及び第3の局面の加熱調理食品生地製造方法においても、練り工程は生地温度が一定の温度となるように温度制御しながら行われることとしてもよい。例えば、パン生地を製造する場合のように練り工程時にイーストを投入する場合には、本構成のように生地温度が一定の温度(イースト投入に好ましい温度)となるように温度制御するのが好ましい。イーストが活発に働く温度に調整してから練り上げ中の生地にイーストを加えることにより、イーストを適切に働かせて美味しいパンを製造できる。 In the cooked food dough manufacturing method according to the first and third aspects, the kneading step may be performed while controlling the temperature so that the dough temperature becomes a constant temperature. For example, when adding yeast during the kneading process as in the case of producing bread dough, it is preferable to control the temperature so that the dough temperature becomes a constant temperature (preferred temperature for adding yeast) as in this configuration. By adjusting the temperature to the temperature at which the yeast is active and adding it to the dough that is being kneaded, the yeast can work properly to produce delicious bread.
 また、上記第1、第2及び第3の局面の加熱調理食品生地製造方法において、前記粉砕工程終了後に、前記生地原料にグルテンが投入されることとしてもよい。本構成は、例えば穀物粒として米粒を用いた場合のように、穀物粒からグルテンを得られないような場合に特に有効であり、これによって所望の弾力を備えた生地を製造することができる。 In the cooked food dough manufacturing method according to the first, second and third aspects, gluten may be added to the dough raw material after the pulverization step. This configuration is particularly effective in the case where gluten cannot be obtained from cereal grains, for example, when rice grains are used as cereal grains, whereby a dough having a desired elasticity can be produced.
 また、上記第1、第2及び第3の局面の加熱調理食品生地製造方法において、前記粉砕工程終了後に、前記生地原料に調味材料が投入されることとしてもよい。本構成によれば、生地を加熱調理して食用に供する際の食味を向上させることができる。 In the cooked food dough manufacturing method according to the first, second and third aspects, a seasoning material may be added to the dough raw material after the crushing step. According to this structure, the taste at the time of heat-cooking dough and using it for edible can be improved.
 上記目的を達成するために本発明は、上述の加熱調理食品生地製造方法が適用される生地製造装置であることを特徴としている。 In order to achieve the above object, the present invention is characterized in that it is a dough producing apparatus to which the above-described cooked food dough producing method is applied.
 本構成によれば、穀物粒から製粉工程を経ることなく加熱調理食品生地を製造するにあたって、効率良く加熱調理食品生地を製造できる生地製造装置を提供できる。また、本構成の生地製造装置によれば、製粉工程を経ることなく加熱調理食品生地を製造することができるとともに、簡単な構成で粉砕時の温度上昇を適切に抑制しながら穀物粒を効率良く粉砕できる。このため、家庭用で使える生地製造装置として提供しやすい。 This configuration can provide a dough producing apparatus that can efficiently produce cooked food dough from grain grains without producing a milling process. Moreover, according to the dough producing apparatus of the present configuration, cooked food dough can be produced without going through the milling process, and the grains can be efficiently produced while appropriately suppressing the temperature rise during pulverization with a simple configuration. Can be crushed. For this reason, it is easy to provide as a fabric manufacturing apparatus that can be used at home.
 本発明によると、穀物粒から製粉工程を経ることなく加熱調理食品生地を効率良く製造でき、穀物粒の調理の可能性を広げられる。 According to the present invention, the cooked food dough can be efficiently produced from the grain without going through the milling process, and the possibility of cooking the grain can be expanded.
第1実施形態の加熱調理食品生地製造方法の全体フローチャートFlowchart of the cooked food dough manufacturing method of the first embodiment 第1実施形態の加熱調理食品生地製造方法の流れを示す模式図The schematic diagram which shows the flow of the cooked food dough manufacturing method of 1st Embodiment. 第1実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートThe flowchart which shows the detail of the grinding | pulverization process contained in the heat cooking food dough manufacturing method of 1st Embodiment. 第1実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートThe flowchart which shows the detail of the kneading | mixing process contained in the heat cooking food dough manufacturing method of 1st Embodiment. 第1実施形態の加熱調理食品生地製造方法の効果を説明するための模式図The schematic diagram for demonstrating the effect of the heat cooking food dough manufacturing method of 1st Embodiment. 第1実施形態の加熱調理食品生地製造方法の効果を説明するための模式図The schematic diagram for demonstrating the effect of the heat cooking food dough manufacturing method of 1st Embodiment. 第1実施形態の加熱調理食品生地製造方法が適用される生地製造装置の一例を示す断面図Sectional drawing which shows an example of the dough manufacturing apparatus with which the cooked food dough manufacturing method of 1st Embodiment is applied. 第2実施形態の加熱調理食品生地製造方法の全体フローチャートOverall flowchart of the method for producing cooked food dough of the second embodiment 第2実施形態の加熱調理食品生地製造方法の流れを示す模式図The schematic diagram which shows the flow of the heat cooking food dough manufacturing method of 2nd Embodiment. 第2実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートThe flowchart which shows the detail of the liquid absorption process included in the heat cooking food dough manufacturing method of 2nd Embodiment. 第2実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートThe flowchart which shows the detail of the grinding | pulverization process contained in the heat cooking food dough manufacturing method of 2nd Embodiment. 第2実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートThe flowchart which shows the detail of the kneading process contained in the heat cooking food dough manufacturing method of 2nd Embodiment. 第3実施形態の加熱調理食品生地製造方法の流れを示す模式図The schematic diagram which shows the flow of the heat cooking food dough manufacturing method of 3rd Embodiment. 第3実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートThe flowchart which shows the detail of the liquid absorption process included in the heat cooking food dough manufacturing method of 3rd Embodiment. 吸液工程における液温と浸漬時間との関係の一例を示すテーブルTable showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process 第3実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートThe flowchart which shows the detail of the crushing process included in the heat cooking food dough manufacturing method of 3rd Embodiment. 第3実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートThe flowchart which shows the detail of the kneading | mixing process contained in the heat cooking food dough manufacturing method of 3rd Embodiment.
 以下、本発明の加熱調理食品生地製造方法及び生地製造装置の実施形態について説明する。ここでは、加熱調理食品生地がパン生地である場合を例に説明する。なお、本明細書に登場する具体的な時間や温度等はあくまでも例示であり、発明の内容を限定するものではない。 Hereinafter, embodiments of the cooked food dough manufacturing method and dough manufacturing apparatus of the present invention will be described. Here, a case where the cooked food dough is bread dough will be described as an example. In addition, the specific time, temperature, etc. which appear in this specification are illustrations to the last, and do not limit the content of invention.
1.第1実施形態
(第1実施形態の加熱調理食品生地製造方法)
 まず、第1実施形態の加熱調理食品生地製造方法について、図1~図5を参照しながら説明する。図1は、第1実施形態の加熱調理食品生地製造方法の全体フローチャートである。図2は、第1実施形態の加熱調理食品生地製造方法の流れを示す模式図である。図3は、第1実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートである。図4は、第1実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートである。図5A及び図5Bは、第1実施形態の加熱調理食品生地製造方法の効果を説明するための模式図である。
1. 1st Embodiment (The cooking method food cooking method of 1st Embodiment)
First, the cooked food dough manufacturing method of the first embodiment will be described with reference to FIGS. FIG. 1 is an overall flowchart of the method for producing a cooked food dough according to the first embodiment. FIG. 2 is a schematic diagram showing the flow of the method for producing a cooked food dough according to the first embodiment. FIG. 3 is a flowchart showing details of the crushing step included in the cooked food dough manufacturing method of the first embodiment. FIG. 4 is a flowchart showing details of a kneading step included in the method of manufacturing a cooked food dough according to the first embodiment. FIG. 5A and FIG. 5B are schematic diagrams for explaining the effect of the cooked food dough manufacturing method of the first embodiment.
 図1及び図2に示すように、第1実施形態の加熱調理食品生地製造方法は、粉砕工程#10と練り工程#20とからなり、この順に工程が進められる。以下、各工程の詳細について説明する。 As shown in FIGS. 1 and 2, the cooked food dough manufacturing method of the first embodiment includes a pulverization step # 10 and a kneading step # 20, and the steps are performed in this order. Details of each step will be described below.
 まず、図3にフローチャートが示される粉砕工程#10について説明する。この粉砕工程#10は、穀物粒を粉砕してペースト化する工程である。上述のように、穀物粒を粉砕する場合、穀物粒に液体を含ませた方が、穀物粒を芯まで粉砕し易いとの知見を本出願人らは得ている。このため、先の特許出願では吸液工程を経てから粉砕工程を行うこととしていた。しかしながら、第1実施形態においては、効率良く加熱調理食品生地を製造する等の目的で、この粉砕工程#10を、図2に示すように、粉砕期間と吸液期間とを交互に繰り返す構成として、先の特許出願で提案した工程の見直しを図っている。 First, pulverization step # 10 whose flowchart is shown in FIG. 3 will be described. This pulverization step # 10 is a step of pulverizing the grain and making it into a paste. As described above, the applicants have found that when cereal grains are pulverized, it is easier to pulverize the cereal grains to the core if the cereal grains contain a liquid. For this reason, in the previous patent application, the pulverization step was performed after the liquid absorption step. However, in the first embodiment, for the purpose of efficiently producing the cooked food dough, etc., the pulverization step # 10 is configured to alternately repeat the pulverization period and the liquid absorption period as shown in FIG. The process proposed in the previous patent application is being reviewed.
 ステップ#11では穀物粒(米粒が最も入手しやすいが、それ以外の穀物、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆などの粒も利用可能である)を計量し、所定量を容器に入れる。ステップ#12では液体を計量し、所定量を容器に入れる。液体として一般的なものは水であるが、だし汁のような味成分を有する液体でもよく、果汁でもよい。また、アルコールを含有するものであってもよい。なお、ステップ#11とステップ#12とは順序が入れ替わっても構わない。第1実施形態では、穀物粒として米粒、液体として水を用いることとしている。 Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container. In step # 12, the liquid is weighed and a predetermined amount is put into a container. A common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged. In the first embodiment, rice grains are used as cereal grains and water is used as a liquid.
 ステップ#13では、穀物粒と液体とを含む混合物(第1実施形態では、米粒と水の混合物)の中で粉砕ブレードの回転を開始し、それと共に時間測定を開始する。なお、この時点では、穀物粒の吸水はあまり進んでいないので、吸液工程を経てから粉砕を行う場合に比べて粉砕効率は悪い。 In Step # 13, rotation of the grinding blade is started in the mixture containing the grain and liquid (in the first embodiment, the mixture of rice grain and water), and time measurement is started at the same time. At this time, the water absorption of the grain is not so advanced, so the pulverization efficiency is worse than the case where the pulverization is performed after the liquid absorption process.
 ステップ#14では、粉砕ブレードの回転を開始して1分が経過したか否かをチェックする。この粉砕ブレードを回転している期間は、本発明における、穀物粒を粉砕する粉砕期間に相当し、第1実施形態では、この粉砕期間の長さは1分となっている。粉砕ブレードの回転時間が1分を経過したら(すなわち粉砕期間が終了したら)、ステップ#15に進んで粉砕ブレードの回転を停止する。 In step # 14, it is checked whether 1 minute has elapsed since the rotation of the grinding blade was started. The period during which the pulverizing blade is rotating corresponds to the pulverizing period for pulverizing the grain in the present invention. In the first embodiment, the length of the pulverizing period is 1 minute. When the rotation time of the crushing blade has passed 1 minute (that is, when the crushing period has ended), the process proceeds to step # 15 to stop the rotation of the crushing blade.
 ステップ#16では、粉砕工程を終了するか否かをチェックする。第1実施形態においては、粉砕工程に要する時間を予め定めており、この確認時点で予め定めた粉砕工程に要する時間を経過している場合には粉砕工程を終了する。一方、この予め定めた時間を経過していない場合には、ステップ#17に進む。 In step # 16, it is checked whether or not the pulverization process is finished. In the first embodiment, the time required for the pulverization process is determined in advance, and when the time required for the pulverization process determined in advance has elapsed at the time of confirmation, the pulverization process ends. On the other hand, if the predetermined time has not elapsed, the process proceeds to step # 17.
 ステップ#17では、粉砕ブレードの回転停止から9分が経過した否かをチェックする。この粉砕ブレードの回転を停止している期間は、本発明における、穀物粒に吸液させる吸液期間に相当し、第1実施形態では吸液期間の長さが9分となっている。ところで、この吸液期間は粉砕期間の後に行われる構成になっている。すなわち、この吸液期間は、穀物粒がある程度細かくされた後に実行されることになる。このために、穀物粒の表面積が増加した状態で穀物粒に吸液させることになり、高い吸液効率で吸液が行われることになる。したがって、この吸液期間の長さ(9分)は吸液のための時間としては比較的短いが、この時間でも吸液がかなり進む。 In step # 17, it is checked whether 9 minutes have passed since the rotation of the grinding blade stopped. The period during which the rotation of the pulverizing blade is stopped corresponds to the liquid absorption period in which the grains are absorbed in the present invention. In the first embodiment, the length of the liquid absorption period is 9 minutes. By the way, this liquid absorption period is configured to be performed after the pulverization period. That is, this liquid absorption period is executed after the grain has been refined to some extent. For this reason, the cereal grains are allowed to absorb liquid with the surface area of the cereal grains increased, and the liquid absorption is performed with high liquid absorption efficiency. Therefore, the length of the liquid absorption period (9 minutes) is relatively short as the time for liquid absorption, but the liquid absorption proceeds considerably even during this time.
 ステップ#17の吸液期間が終了すると、ステップ#18に進んで再び粉砕ブレードの回転を開始して、再度、粉砕期間が実行される。その後、ステップ#14に戻り、所定の時間の経過とともに粉砕期間が終了し、粉砕工程を終了しない場合には、粉砕ブレードの回転が停止された状態で、再度、吸液期間が実行される。すなわち、粉砕工程に要する時間として予め定めた時間が経過するまでは、粉砕期間と吸液期間とが交互に繰り返されることになる。 When the liquid absorption period of Step # 17 ends, the process proceeds to Step # 18, where the rotation of the pulverization blade is started again, and the pulverization period is executed again. Thereafter, returning to step # 14, when the pulverization period ends with the passage of a predetermined time and the pulverization process is not terminated, the liquid absorption period is executed again with the rotation of the pulverization blade stopped. That is, the pulverization period and the liquid absorption period are alternately repeated until a predetermined time as the time required for the pulverization process elapses.
 なお、2回目以降の粉砕期間における穀物粒の粉砕は、先に行われた吸液期間における穀物粒の吸液の効果で、効率良く行うことができる。また、2回目以降の吸液期間の穀物粒の吸液も、先に行われた穀物粒の粉砕の効果で、効率良く行える。すなわち、粉砕期間と吸液期間とを交互に繰り返すことで、穀物粒に水を十分含ませながら、穀物粒を効率良く粉砕することができる。したがって、第1実施形態の粉砕工程によれば、粉砕工程の前に吸液工程を行わなくても、穀物粒を効率良く粉砕できるのである。 In addition, the pulverization of the cereal grains in the second and subsequent pulverization periods can be efficiently performed due to the effect of the cereal grain liquid absorption during the liquid absorption period previously performed. Moreover, the absorption of the grain grains in the second and subsequent liquid-absorbing periods can be efficiently performed by the effect of the grain grain grinding performed previously. That is, by alternately repeating the pulverization period and the liquid absorption period, the cereal grains can be efficiently pulverized while sufficiently containing water in the cereal grains. Therefore, according to the pulverization process of the first embodiment, the grain can be efficiently pulverized without performing the liquid absorption process before the pulverization process.
 また、第1実施形態では、粉砕期間(1分)と吸液期間(9分)とがそれぞれ4回繰り返され、その後更に1回粉砕期間が行われた時点(すなわち、最初の粉砕ブレードの回転開始から41分経過した時点)で、粉砕工程が終了することとしている(図2参照)。粉砕工程における粉砕期間及び吸液期間の長さ及び回数はあくまで例示であり、これらの時間の長さや回数は、例えば、穀物粒を所望の粒度(或いは粒度分布)とできる条件を目安に設定すればよい。 In the first embodiment, the pulverization period (1 minute) and the liquid absorption period (9 minutes) are each repeated four times, and then the pulverization period is further performed once (that is, the first pulverization blade rotates). The pulverization process is finished at the time when 41 minutes have passed since the start (see FIG. 2). The length and number of times of the pulverization period and the liquid absorption period in the pulverization process are merely examples, and the length and the number of times of these times are set, for example, based on conditions that allow grains to have a desired particle size (or particle size distribution). That's fine.
 また、第1実施形態では、5回行われる粉砕期間の長さは全て同じ(一定の長さ)となっている。しかし、この構成に限定される趣旨でない。すなわち、例えば、初回の粉砕期間の長さは短く設定(例えば10秒等)し、その後は初回に比べて長く設定することとしてもよい。この場合、例えば、2回目以降の粉砕期間の長さは全て同じであってもよいし、徐々に粉砕期間の長さが長くなるようにしてもよい。上述のように、初回の粉砕期間における粉砕は、穀物粒が十分に水を含んでいないので、粉砕効率が悪い。このため、初回の粉砕期間は、穀物粒の表面に傷をつけて吸液しやすい穀物粒を得ることを主な目的とし、粉砕期間の長さをその後に行われる粉砕期間の長さより短めとすることとしてもよい。 Further, in the first embodiment, the lengths of the pulverization periods performed five times are all the same (fixed length). However, it is not intended to be limited to this configuration. That is, for example, the length of the first pulverization period may be set short (for example, 10 seconds), and thereafter may be set longer than the first pulverization period. In this case, for example, the lengths of the second and subsequent grinding periods may all be the same, or the length of the grinding period may be gradually increased. As described above, the pulverization in the first pulverization period is poor in pulverization efficiency because the grain does not contain water sufficiently. For this reason, the primary grinding period is mainly intended to obtain grain grains that are easily damaged by scratching the surface of the grain grains, and the length of the grinding period is shorter than the length of the subsequent grinding period. It is good to do.
 また、同様に、第1実施形態では、4回行われる吸液期間の長さは全て同じ(一定の長さ)となっている。しかし、この構成に限定される趣旨でなく、各吸液期間の長さを一定の長さとしないこととしてもよい。すなわち、例えば、初回の吸液期間の長さを他の吸液期間の長さよりも長くする等してもよい。 Similarly, in the first embodiment, the lengths of the liquid absorption periods performed four times are all the same (constant length). However, the purpose is not limited to this configuration, and the length of each liquid absorption period may not be a fixed length. That is, for example, the length of the first liquid absorption period may be longer than the length of other liquid absorption periods.
 また、穀物粒の吸液は、常温より液温を高くする(例えば40~50℃等)ことで吸液速度を高められる。このため、この粉砕工程は、加熱手段を用いて液温を上げた状態で行ってもよい。ただし、液温を上げて粉砕を行った場合、粉砕時に発生する熱の影響もあって、穀物粒として用いた米が糊化して逆に粉砕性が低下する等の問題が発生する可能性がある。このため、第1実施形態では、常温で粉砕工程を開始することとしている。この場合、粉砕期間の次に行われる吸液期間によって、粉砕期間で上昇した液温がある程度低下するために、特に温度制御を行わなくても、液温が上述の糊化温度に至らないようにすることも可能である。 In addition, the liquid absorption speed of grain grains can be increased by raising the liquid temperature from room temperature (for example, 40 to 50 ° C.). For this reason, you may perform this grinding | pulverization process in the state which raised the liquid temperature using the heating means. However, if the liquid temperature is raised and pulverized, there is a possibility that the rice used as cereal grains will be gelatinized due to the influence of heat generated during pulverization and conversely the pulverizability may be reduced. is there. For this reason, in 1st Embodiment, it is supposed that a grinding | pulverization process will be started at normal temperature. In this case, the liquid temperature that has risen during the pulverization period decreases to some extent by the liquid absorption period that follows the pulverization period, so that the liquid temperature does not reach the above-described gelatinization temperature even without performing temperature control. It is also possible to make it.
 次に、図4にフローチャートが示される練り工程#20について説明する。この練り工程#20は、生地原料を練りブレードで生地に練り上げる工程である。ここで、生地原料とは、粉砕工程#10で粉砕された穀物粒(粉砕穀物粒)と液体とを含む混合物のことで、ペースト状のものである。上述のように、練り工程の開始時点のものを「生地原料」と呼称し、練り工程が開始され練りが進行した後は、半完成状態であっても「生地」と呼称することとしている。 Next, the kneading step # 20 whose flowchart is shown in FIG. 4 will be described. This kneading step # 20 is a step of kneading the dough raw material into a dough with a kneading blade. Here, the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 10 and a liquid, and is in a paste form. As described above, the material at the start of the kneading process is referred to as “dough raw material”, and after the kneading process is started and the kneading proceeds, it is referred to as “dough” even in a semi-finished state.
 ステップ#21では生地原料を容器に入れる。なお、粉砕工程#10で使用した容器と同じ容器を使用する場合には、このステップ#21を省略して、粉砕工程#10の終了後、次に説明するステップ#22へと進めばよい。ステップ#22では生地原料に所定量のグルテンを投入する。この際、必要に応じ、食塩、砂糖、ショートニングといった調味材料も投入する。第1実施形態では、上記調味材料についても投入することとしている。 In step # 21, the dough material is put in a container. When the same container as that used in the pulverization process # 10 is used, this step # 21 may be omitted, and after the pulverization process # 10, the process proceeds to step # 22 described below. In step # 22, a predetermined amount of gluten is added to the dough material. At this time, seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the first embodiment, the seasoning material is also introduced.
 なお、ここでは、生地原料にグルテンを投入してパン生地を製造する構成としている。しかし、グルテンを投入しない構成としても構わない。この場合においては、例えば、グルテンの代わりに増粘安定剤(例えばグアガム)を投入する等してもよい。 In this case, the bread dough is manufactured by adding gluten to the dough raw material. However, a configuration in which gluten is not added may be used. In this case, for example, a thickening stabilizer (eg, guar gum) may be added instead of gluten.
 ステップ#23では温度制御を開始する。パン生地の製造時には練り工程#20の途中でイースト菌を投入する。イースト菌は適切な温度でないとその働きが低下するために、活発に働く温度に調整する必要がある。この温度として一般に30℃前後が良いとされている。このために、第1実施形態では生地温度が28℃になるように調整し、生地温度が28℃になった時点でイースト菌をパン生地に投入してイースト菌を活発に働かせることとしている。そこで、パン生地の温度が28℃で維持されるように温度制御を行うことにしている。 In step # 23, temperature control is started. During the production of bread dough, yeast is introduced during the kneading step # 20. Since yeast does not function properly at an appropriate temperature, it must be adjusted to a temperature at which it works actively. In general, the temperature is preferably around 30 ° C. For this purpose, in the first embodiment, the dough temperature is adjusted to 28 ° C., and when the dough temperature reaches 28 ° C., the yeast is put into the bread dough to make the yeast functively work. Therefore, temperature control is performed so that the temperature of the bread dough is maintained at 28 ° C.
 この温度制御は、例えば、容器を冷やすための冷却手段と、容器を温めるための加熱手段とを用いて、所望の温度(例えば28℃)で一定となるように制御することとしてもよい。この際の温度測定の方法は、生地(練り工程の開始時点では生地原料)の温度を直接測定することとしてもよいし、容器を介して間接的に測定することとしてもよい。ここで、冷却手段としては、例えば水や氷を用いる構成やペルチエ素子を用いる構成等が挙げられる。加熱手段としては、例えば電熱線を用いる構成や温水を用いる構成等が挙げられる。 This temperature control may be controlled to be constant at a desired temperature (for example, 28 ° C.) using, for example, a cooling unit for cooling the container and a heating unit for heating the container. The temperature measurement method at this time may be to directly measure the temperature of the dough (the dough raw material at the start of the kneading process) or indirectly through a container. Here, examples of the cooling means include a configuration using water and ice and a configuration using a Peltier element. Examples of the heating means include a configuration using a heating wire and a configuration using hot water.
 なお、第1実施形態における温度制御は、練り上げ時に発生する温度上昇を抑制するという意味合いが強く、基本的には、冷却手段による冷却がメインである。 Note that the temperature control in the first embodiment has a strong meaning of suppressing a temperature rise that occurs during kneading, and basically cooling by a cooling means is the main.
 ステップ#24では、生地原料の中で練りブレードの回転を開始し、更に練りの開始からの時間を測定するための時間測定が開始される。このステップ#24は、第1実施形態では図2に示すようにステップ#23の温度制御開始とほぼ同時に実行される。練りブレードの回転により、生地原料が一つにつながり、所定の弾力を備えた生地へと練り上がっていく。 In step # 24, rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started. In the first embodiment, step # 24 is executed almost simultaneously with the start of temperature control in step # 23 as shown in FIG. By rotating the kneading blade, the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
 なお、練りブレードの回転方法は特に限定されるものではないが、図2に示すように本実施形態では前半は間欠回転とし、後半は連続回転としている。また、図4に示すフローチャートでは、練りブレードの間欠回転に関する詳細は省略した記載となっている。 Although the method of rotating the kneading blade is not particularly limited, as shown in FIG. 2, in the present embodiment, the first half is intermittent rotation and the second half is continuous rotation. Moreover, in the flowchart shown in FIG. 4, the detail regarding the intermittent rotation of the kneading blade is omitted.
 ステップ#25では、練り上げ中の生地の温度(生地温度)が28℃であるか否かをチェックする。第1実施形態はパン生地の製造方法であるため、発泡誘起材料としてドライイーストや生イーストなどのイースト菌を投入する。上述のように、イースト菌は活発に働く温度範囲が限られているために、イースト菌を投入する前に生地温度を確認する趣旨である。生地温度が28℃で維持されている場合にはステップ#26に進み、そうでない場合には温度が28℃となるまで待つ。 In step # 25, it is checked whether the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since 1st Embodiment is a manufacturing method of bread dough, yeast microbes, such as dry yeast and fresh yeast, are thrown in as a foam induction material. As described above, since yeast has a limited temperature range in which it works actively, the purpose is to confirm the dough temperature before adding yeast. If the dough temperature is maintained at 28 ° C, the process proceeds to step # 26, and if not, the process waits until the temperature reaches 28 ° C.
 ステップ#26では、生地温度が28℃となった生地にイースト菌(この場合はドライイースト)を投入する。ステップ#27ではイースト菌を投入してからどれだけ時間が経過したかをチェックする。所定の時間が経過したらステップ#28へ進んで練りブレードの回転が終了する。この時点で、一つにつながり、所要の弾力を備えた生地が完成する。 In step # 26, yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C. In step # 27, it is checked how much time has passed since the yeast was added. When the predetermined time has elapsed, the process proceeds to step # 28 and the rotation of the kneading blade is completed. At this point, the dough is connected and integrated with the required elasticity.
 完成した生地(パン生地)は発酵工程を経て加熱調理されることになる。なお、完成した生地を冷蔵したり冷凍したりして保存し、時間をずらして加熱調理してもよい。また、冷蔵保存や冷凍保存の処理を施した各段階の生地を商品として流通させることもできる。 Finished dough (bread dough) is cooked through a fermentation process. The completed dough may be stored refrigerated or frozen and cooked at different times. In addition, it is possible to distribute the dough at each stage subjected to refrigeration storage and frozen storage processing as a product.
 ここで、以上のような製造方法で加熱調理食品生地を製造する場合の効果について説明しておく。本出願人らは、これまでは図5Bに示すように、粉砕効率を向上するために、粉砕工程を行う前に、穀物粒を液体に浸して長時間放置する吸液工程を行う構成としていた。一方、第1実施形態の加熱調理食品生地の製造方法では、図5Aに示すように粉砕工程の中に吸液期間を設けることで、粉砕工程の前に吸液工程を行わないこととしている。このために、加熱調理食品生地の製造に要する時間の短縮が可能であり、図5の例では18分の時間短縮が可能となっている。すなわち、第1実施形態の加熱調理食品生地の製造方法によれば、効率良く加熱調理食品生地を製造できる。 Here, the effect when the cooked food dough is manufactured by the above manufacturing method will be described. In the past, as shown in FIG. 5B, the present applicants have been configured to perform a liquid absorption step in which grain grains are immersed in a liquid and left for a long time before the pulverization step in order to improve the pulverization efficiency. . On the other hand, in the manufacturing method of the cooked food dough of 1st Embodiment, as shown to FIG. 5A, it is supposed that a liquid absorption process is not performed before a crushing process by providing a liquid absorption period in a crushing process. For this reason, it is possible to reduce the time required for producing the cooked food dough, and in the example of FIG. 5, it is possible to reduce the time by 18 minutes. That is, according to the manufacturing method of the cooked food dough of 1st Embodiment, a cooked food dough can be manufactured efficiently.
 なお、図5Bの粉砕工程で、粉砕ブレードを間欠運転するのは、穀物粒を対流させて穀物粒を満遍なく粉砕することが目的である。すなわち、図5Bの粉砕工程における粉砕ブレードの停止期間は穀物粒の吸液を目的とするものではないために、その停止期間は短く設定されている。 In addition, the purpose of intermittently operating the grinding blade in the grinding process of FIG. 5B is to pulverize the grain uniformly by convection of the grain. That is, since the stop period of the pulverization blade in the pulverization process of FIG. 5B is not intended to absorb grain grains, the stop period is set short.
 また、第1実施形態の加熱調理食品生地の製造方法であれば、粉砕工程の中に粉砕ブレードの回転を止めて吸液を行う吸液期間があり、この吸液期間中に、粉砕期間で上昇した液温をある程度下げることが可能である(図2参照)。このために、特に温度制御を行わなくても、液温が上昇しすぎることを防止でき、良好なパン生地を得やすい。 Moreover, if it is a manufacturing method of the cooked food dough of 1st Embodiment, there exists a liquid absorption period which stops a rotation of a grinding | pulverization blade in a crushing process, and absorbs liquid, In this liquid absorption period, in a crushing period, It is possible to lower the raised liquid temperature to some extent (see FIG. 2). For this reason, it is possible to prevent the liquid temperature from rising excessively without particularly controlling the temperature, and it is easy to obtain good bread dough.
 更に、第1実施形態の加熱調理食品生地の製造方法であれば、粉砕ブレードを回転するために用いるモータ(電動機)のオンオフをある程度時間をおいて行うことになるために、モータの温度上昇が緩和され、モータの耐久性向上にもつながる。 Furthermore, in the method for producing a cooked food dough according to the first embodiment, since the motor (electric motor) used for rotating the grinding blade is turned on and off after a certain amount of time, the temperature of the motor increases. This will alleviate the motor durability.
(第1実施形態の生地製造装置)
 上述の粉砕工程及び練り工程は、工程毎に別個の器具(装置)を使って遂行することもできるし、2つの工程で器具(装置)を共用することもできる。工程毎に別個の器具を使う場合には、粉砕工程#10ではミキサーを使い、練り工程#20は自動製パン器を使う、といった例を挙げることができる。以下においては、上述の粉砕工程及び練り工程の両工程に適用される生地製造装置について説明する。
(Dough manufacturing apparatus according to the first embodiment)
The above-mentioned crushing step and kneading step can be performed using a separate device (device) for each step, or the device (device) can be shared in two steps. In the case of using a separate tool for each process, an example can be given in which a mixer is used in the pulverizing process # 10 and an automatic bread maker is used in the kneading process # 20. Below, the fabric manufacturing apparatus applied to both the above-mentioned crushing process and kneading process will be described.
 図6は、第1実施形態の加熱調理食品生地製造方法が適用される生地製造装置の一例を示す断面図である。図6に示す生地製造装置100は、電動機111及び制御部112(例えばマイクロコンピュータからなる)を内蔵した本体110の上に、容器120を着脱自在に取り付ける形になっている。容器120はカップ形状であって、上面開口は蓋121で密封される。容器120の底部中央には粉砕と練りに共用されるブレード122が配置されている。 FIG. 6 is a cross-sectional view showing an example of a dough manufacturing apparatus to which the cooked food dough manufacturing method of the first embodiment is applied. The dough producing apparatus 100 shown in FIG. 6 is configured such that a container 120 is detachably attached on a main body 110 that incorporates an electric motor 111 and a control unit 112 (for example, composed of a microcomputer). The container 120 has a cup shape, and the upper surface opening is sealed with a lid 121. A blade 122 shared for crushing and kneading is disposed at the bottom center of the container 120.
 なお、電動機111及びブレード112は、粉砕手段の実施形態であると共に、練り手段の実施形態である。また、制御部112は、粉砕手段、練り手段及び温度調整手段(後述する)を制御する制御手段の実施形態である。 The electric motor 111 and the blade 112 are embodiments of pulverizing means and embodiments of kneading means. The control unit 112 is an embodiment of a control unit that controls the pulverizing unit, the kneading unit, and the temperature adjusting unit (described later).
 ブレード122は電動機111の軸にカップリング123で連結し、電動機111によって回転せしめられる。容器120の外周を取り巻くのは加熱手段124と冷却手段125である。加熱手段124は、例えば電熱ヒータやIHヒータ等で構成することができ、冷却手段125は、例えば冷水管やペルチエ素子等で構成することができる。容器120は熱伝導の良好な金属で形成するのが好ましい。本体110には容器120の温度を測定する温度センサ113が設けられている。 The blade 122 is connected to the shaft of the electric motor 111 by a coupling 123 and is rotated by the electric motor 111. Surrounding the outer periphery of the container 120 is a heating means 124 and a cooling means 125. The heating means 124 can be composed of, for example, an electric heater or an IH heater, and the cooling means 125 can be composed of, for example, a cold water pipe or a Peltier element. The container 120 is preferably formed of a metal having good heat conduction. The main body 110 is provided with a temperature sensor 113 that measures the temperature of the container 120.
 なお、加熱手段123、冷却手段125及び温度センサ113は、温度調整手段の実施形態である。 The heating means 123, the cooling means 125, and the temperature sensor 113 are embodiments of temperature adjustment means.
 第1実施形態の加熱調理食品生地製造方法で、穀物粒からパン生地を製造するときの生地製造装置100の動作は次のようになる。ユーザによって蓋121が外され、容器120の中に所定量の穀物粒と所定量の液体とが入れられ、再び蓋121が嵌め込まれる。この状態で、粉砕工程#10(図3参照)を実行すべく、本体110に設けられる図示しないスタートボタンが押され、粉砕工程#10が開始される。 In the cooked food dough manufacturing method of the first embodiment, the operation of the dough manufacturing apparatus 100 when manufacturing bread dough from cereal grains is as follows. The lid 121 is removed by the user, a predetermined amount of grains and a predetermined amount of liquid are placed in the container 120, and the lid 121 is fitted again. In this state, a start button (not shown) provided on the main body 110 is pressed to execute the crushing process # 10 (see FIG. 3), and the crushing process # 10 is started.
 スタートボタンが押されると、生地製造装置100は、制御部112の制御下で、図3に示す#13~#18のステップを実行する。制御部112には、このような粉砕工程を実行できるように粉砕工程実行用のプログラムが格納されている。この粉砕工程#10では、ブレード122が高速回転される粉砕期間と、ブレード122の回転が停止される吸液期間とが交互に繰り返され、穀物粒のペーストが得られる。粉砕工程#10が終了すると、生地製造装置100は、例えばブザー音等の報知音によってユーザに粉砕工程#10の終了を知らしめる。 When the start button is pressed, the dough manufacturing apparatus 100 executes steps # 13 to # 18 shown in FIG. 3 under the control of the control unit 112. The control unit 112 stores a program for executing the crushing process so that the crushing process can be executed. In this pulverization step # 10, a pulverization period during which the blade 122 is rotated at a high speed and a liquid absorption period during which the rotation of the blade 122 is stopped are alternately repeated to obtain a grain paste. When the pulverization process # 10 ends, the dough manufacturing apparatus 100 notifies the user of the end of the pulverization process # 10 by a notification sound such as a buzzer sound.
 粉砕工程#10が終了した時点で、ユーザは蓋121を開け、所定量のグルテンと、必要に応じ所定量の調味材料を生地原料に投入し、この後、蓋121を閉じる。この状態で、練り工程#20(図4参照)を実行すべく、本体110に設けられる図示しないスタートボタンが押される。 When the pulverization step # 10 is completed, the user opens the lid 121, puts a predetermined amount of gluten and a predetermined amount of seasoning material into the dough raw material as necessary, and then closes the lid 121. In this state, a start button (not shown) provided on the main body 110 is pressed to execute the kneading step # 20 (see FIG. 4).
 スタートボタンが押されると、生地製造装置100は、制御部112の制御下で、図4に示す#23~#28のステップを実行する。制御部112には、このような練り工程を実行できるように練り工程実行用のプログラムが格納されている。練り工程#20ではブレード122は低速回転され、これにより生地原料及びそれに投入されたグルテンや調味材料が捏ねられて、一つにつながった生地が練り上げられる。練り工程#20が終了すると、生地製造装置100は、例えばブザー音等の報知音によってユーザに練り工程#20の終了を知らしめる。 When the start button is pressed, the dough manufacturing apparatus 100 executes steps # 23 to # 28 shown in FIG. 4 under the control of the control unit 112. The control unit 112 stores a kneading process execution program so that such a kneading process can be executed. In the kneading step # 20, the blade 122 is rotated at a low speed, whereby the dough raw material and the gluten and seasoning material added thereto are kneaded, and the dough connected to one is kneaded. When the kneading step # 20 ends, the dough manufacturing apparatus 100 notifies the user of the end of the kneading step # 20 by a notification sound such as a buzzer sound.
 なお、練り工程#20におけるイースト菌の投入については、所定の温度となった時点でイースト菌が自動投入される構成としても構わない。或いは、所定の温度となったことをブザー等の報知音でユーザに知らしめ、ユーザがイースト菌を容器120内に投入する構成としても構わない。 In addition, about the injection | throwing-in of the yeast in kneading process # 20, it does not matter as a structure into which yeast is automatically injected when it becomes predetermined | prescribed temperature. Alternatively, a configuration may be adopted in which the user is informed by a sound such as a buzzer that the predetermined temperature has been reached, and the user puts yeast into the container 120.
 生地が完成したら、生地を容器120から取り出して、あるいは生地を容器120に入れたままで、生地の発泡が進むのを待つ。所望の発泡を得られたら生地をパン焼き装置(生地製造装置がこのパン焼き装置の機能を有してもよい)に入れ、パンを焼く。 When the dough is completed, take out the dough from the container 120 or leave the dough in the container 120 and wait for foaming of the dough to proceed. When the desired foaming is obtained, the dough is put into a baking apparatus (the dough production apparatus may have the function of this baking apparatus), and the bread is baked.
 このように、同一の容器120内で粉砕工程及び練り工程を行って生地を製造することにより、粉砕工程から練り工程に移行する際に内容物を別の容器に移し替える必要がなく、時間を短縮できる。また、生地原料の一部が前の工程で使用した容器の内面に残り、目減りするという問題もなくせる。 In this way, the dough is manufactured by performing the pulverization process and the kneading process in the same container 120, so that it is not necessary to transfer the contents to another container when shifting from the pulverization process to the kneading process. Can be shortened. Moreover, a part of the dough material remains on the inner surface of the container used in the previous step, and there is no problem that it is reduced.
 なお、上記生地製造装置100において、粉砕工程#10と練り工程#20でブレード122の回転方向を変え、粉砕工程#10ではブレード122の片側の鋭いエッジが穀物粒に当たり、練り工程#20ではブレード122の他側の尖っていない端面が生地原料を押す、といった構成にしてもよい。また、粉砕ブレードと練りブレードとを別々に設け、それぞれに対して駆動用のモータ(電動機)を設ける構成等としても構わない。 In the dough producing apparatus 100, the rotation direction of the blade 122 is changed in the pulverizing step # 10 and the kneading step # 20. In the pulverizing step # 10, the sharp edge on one side of the blade 122 hits the grain, and in the kneading step # 20, the blade It may be configured such that the non-pointed end face of 122 on the other side presses the dough material. In addition, a configuration may be employed in which a pulverization blade and a kneading blade are separately provided, and a driving motor (electric motor) is provided for each of them.
2.第2実施形態
(第2実施形態の加熱調理食品生地製造方法)
 次に、第2実施形態の加熱調理食品生地製造方法について、図7~図11を参照しながら説明する。図7は、第2実施形態の加熱調理食品生地製造方法の全体フローチャートである。図8、第2実施形態の加熱調理食品生地製造方法の流れを示す模式図である。図9、第2実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートである。図10は、第2実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートである。図11は、第2実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートである。
2. Second Embodiment (Method for Producing Cooked Food Dough of Second Embodiment)
Next, the cooked food dough manufacturing method of the second embodiment will be described with reference to FIGS. FIG. 7 is an overall flowchart of the cooked food dough manufacturing method of the second embodiment. FIG. 8 is a schematic diagram showing the flow of the cooked food dough manufacturing method of the second embodiment. FIG. 9 is a flowchart showing details of a liquid absorption process included in the method of manufacturing a cooked food dough according to the second embodiment. FIG. 10 is a flowchart showing details of the crushing step included in the cooked food dough manufacturing method of the second embodiment. FIG. 11 is a flowchart showing details of a kneading step included in the method for producing a cooked food dough according to the second embodiment.
 図7及び図8に示すように、第2実施形態の加熱調理食品生地製造方法には、吸液工程#10と、粉砕工程#20と、練り工程#30とが含まれ、この順に工程が進められる。以下、各工程の詳細について説明する。 As shown in FIGS. 7 and 8, the cooked food dough manufacturing method of the second embodiment includes a liquid absorption process # 10, a pulverization process # 20, and a kneading process # 30. The processes are performed in this order. It is advanced. Details of each step will be described below.
 まず、図9にフローチャートが示される吸液工程#10について説明する。この吸液工程#10は、穀物粒に液体を含ませることによって、その後に行われる粉砕工程#20において、穀物粒を芯まで粉砕しやすくすることを狙う工程である。 First, the liquid absorption process # 10 whose flowchart is shown in FIG. 9 will be described. This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
 ステップ#11では穀物粒(米粒が最も入手しやすいが、それ以外の穀物、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆などの粒も利用可能である)を計量し、所定量を容器に入れる。ステップ#12では液体を計量し、所定量を容器に入れる。液体として一般的なものは水であるが、だし汁のような味成分を有する液体でもよく、果汁でもよい。また、アルコールを含有するものであってもよい。なお、ステップ#11とステップ#12とは順序が入れ替わっても構わない。第2実施形態では、穀物粒として米粒、液体として水を用いることとしている。 Step # 11 weighs grain (rice grains are most readily available, but other grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans are also available) Place in a container. In step # 12, the liquid is weighed and a predetermined amount is put into a container. A common liquid is water, but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged. In the second embodiment, rice grains are used as grain grains and water is used as a liquid.
 ステップ#13では、容器に入れた穀物粒と液体との混合物を静置後、液温を上げるべく加熱手段を用いて液体の加熱を開始する。また、加熱開始と同時に温度検出手段を用いて液温の測定も開始する。液温を上げる理由は、穀物粒が液体を吸液する速度を高めるためである。また、温度の測定は吸液工程#10を適切な温度で行うためであり、この点は後述する。 In Step # 13, after the mixture of the cereal grains and the liquid placed in the container is allowed to stand, heating of the liquid is started using a heating means to raise the liquid temperature. At the same time as the start of heating, the liquid temperature measurement is also started using the temperature detecting means. The reason for raising the liquid temperature is to increase the speed at which the grains take up the liquid. The temperature is measured to perform the liquid absorption step # 10 at an appropriate temperature, which will be described later.
 なお、加熱手段については容器に入った液体の温度を上げられる手段であればよく、その構成は特に限定されるものではない。例えば、電熱線や温水等を用いる手段であって、液体を容器ごと温めるような構成のもでもよい。また、温度検出手段についても液温を測定できればよく、その構成は特に限定されるものではない。液温は、液体の温度を直接測ることによって得る構成でもよいし、容器温度を測定して間接的に得る構成等でもよい。 The heating means may be any means that can raise the temperature of the liquid contained in the container, and its configuration is not particularly limited. For example, it is a means using a heating wire, warm water, etc., Comprising: The structure which warms a liquid with a container may be sufficient. Further, the temperature detecting means only needs to be able to measure the liquid temperature, and its configuration is not particularly limited. The liquid temperature may be obtained by directly measuring the temperature of the liquid, or may be obtained indirectly by measuring the container temperature.
 ステップ#14では、上記温度検出手段によって検出される液温が50℃(第1の温度)に達したか否かをチェックする。なお、ここでいう液温50℃には、50℃ぴったりの場合だけでなく、50℃から多少ずれた温度も含んで構わない(これと同様のことは、以下に述べる温度全てに当てはまる)。液温が50℃に達するとステップ#15に進む。ステップ#15では、液温を50℃に維持(キープ)するように温度制御を開始すると共に、時間測定を開始する。 In step # 14, it is checked whether or not the liquid temperature detected by the temperature detecting means has reached 50 ° C. (first temperature). The liquid temperature of 50 ° C. mentioned here may include not only the case where the temperature is exactly 50 ° C. but also a temperature slightly deviated from 50 ° C. (the same applies to all the temperatures described below). When the liquid temperature reaches 50 ° C., the process proceeds to step # 15. In Step # 15, temperature control is started so as to maintain (keep) the liquid temperature at 50 ° C., and time measurement is started.
 なお、液温を50℃に制御するにあたっては、例えば電熱線等からなる加熱手段によって与えられる熱量の調整を行えばよい。また、場合によっては加熱手段に加えて、例えば冷水管等からなる冷却手段も併せて用いて温度制御を行ってもよい。 In controlling the liquid temperature to 50 ° C., for example, the amount of heat given by a heating means such as a heating wire may be adjusted. In some cases, the temperature control may be performed by using a cooling means such as a cold water pipe in addition to the heating means.
 ここで、液温を50℃まで加熱し、その後液温を50℃で維持する理由について述べておく。一般的には、穀物粒の吸液速度は、常温よりも高い温度である方が速い。一方、例えば穀物粒として本実施形態のように米粒を用いた場合には、例えば液温が60℃を超えると米の糊化が始まる。この糊化が始まると、米粒の中心まで液体(水)を含み難くなると共に、その後に行われる粉砕工程#20で、粉砕ブレードに加わる負荷が大きくなるといった問題が発生する。 Here, the reason for heating the liquid temperature to 50 ° C. and then maintaining the liquid temperature at 50 ° C. will be described. In general, the absorption speed of grain grains is higher when the temperature is higher than room temperature. On the other hand, for example, when rice grains are used as cereal grains as in the present embodiment, for example, when the liquid temperature exceeds 60 ° C., the gelatinization of the rice starts. When this gelatinization starts, it becomes difficult to contain the liquid (water) to the center of the rice grain, and the problem that the load applied to the grinding blade increases in the subsequent grinding step # 20 occurs.
 そこで、なるべく効率良く吸液が行われる温度であって、更に米の糊化の影響を受け難い温度とすることを狙って、液温50℃(あくまでも一例である)を選択している。また、液温を50℃に維持することとしているのは、米の糊化を生じることなく効率良く吸液できる温度を安定して再現するためである。 Therefore, the liquid temperature of 50 ° C. (which is just an example) is selected with the aim of setting the temperature at which the liquid absorption is performed as efficiently as possible and is not easily affected by the gelatinization of rice. The reason why the liquid temperature is maintained at 50 ° C. is to stably reproduce the temperature at which the liquid can be absorbed efficiently without causing gelatinization of rice.
 ステップ#16では、ステップ#15で時間測定を開始してから所定の時間が経過したか否かをチェックする。この所定の時間は、キープする液温(第2実施形態では50℃)によって変更される時間であり、その最適な時間は例えば実験等によって求められる。第2実施形態では、この所定の時間は例えば15分とされる。所定の時間が経過するとステップ#17へと進む。 In step # 16, it is checked whether or not a predetermined time has elapsed since the start of time measurement in step # 15. This predetermined time is a time that is changed depending on the liquid temperature to be kept (in the second embodiment, 50 ° C.), and the optimum time is obtained by, for example, experiments. In the second embodiment, the predetermined time is, for example, 15 minutes. When the predetermined time has elapsed, the process proceeds to step # 17.
 ステップ#17では、容器内の液体の温度を低下させるべく、冷却手段によって冷却を開始する。ここで用いられる冷却手段は、容器に入った液体の温度を下げられる構成のものであればよく、その構成は特に限定されるものではない。例えば、容器に巻かれた冷却管に冷却水を流すような構成のものでもよいし、また、氷水に容器が浸されるような構成のもの等でもよい。 In step # 17, cooling is started by the cooling means to lower the temperature of the liquid in the container. The cooling means used here may be of any configuration that can lower the temperature of the liquid contained in the container, and the configuration is not particularly limited. For example, a configuration in which cooling water is allowed to flow through a cooling pipe wound around the container, a configuration in which the container is immersed in ice water, or the like may be used.
 ステップ#18では、冷却処理によって液温が10℃(第2の温度)まで下げられたか否かをチェックする。冷却処理によって液温が10℃まで下げられた時点で吸液工程#10を終了する。 In step # 18, it is checked whether or not the liquid temperature has been lowered to 10 ° C. (second temperature) by the cooling process. When the liquid temperature is lowered to 10 ° C. by the cooling process, the liquid absorption process # 10 is completed.
 ここで、液温を10℃まで冷却する理由について述べておく。まず、加熱によって上げた液温を下げるのは次のような理由による。粉砕工程#20では、後述のように粉砕ブレードを高速回転して穀物粒を粉砕するが、この場合、粉砕時の摩擦等によって熱が発生する。このため、液温が高いまま粉砕工程を開始すると、粉砕中に穀物粒と液体の混合物の温度が上昇して上述の糊化が始まる可能性がある。このため、このような糊化が始まる温度への到達を避けるべく液温を下げることにしている。 Here, the reason why the liquid temperature is cooled to 10 ° C. will be described. First, the liquid temperature raised by heating is lowered for the following reason. In the pulverization step # 20, as will be described later, the pulverization blade is rotated at a high speed to pulverize the grain. In this case, heat is generated by friction during the pulverization. For this reason, if the pulverization process is started while the liquid temperature is high, the temperature of the mixture of the grain and the liquid may increase during the pulverization and the above-described gelatinization may start. For this reason, the liquid temperature is lowered to avoid reaching the temperature at which such gelatinization begins.
 また、冷却時の液温の狙いを10℃とするのは次のような理由による。後述のように練り工程#30では生地温度が一定の温度(第2実施形態では28℃)となるように温度制御を行う(図8参照)。このため、冷却によって上記一定の温度(例えば28℃)より十分低い温度(10℃)とし、粉砕工程#20で発生する熱を利用しながら上記一定の温度を得る構成とするのが好ましい。このような構成とした場合、例えば粉砕工程#20後に更に冷却処理を行うことを省略可能であり、温度管理が容易となる。なお、10℃より低くなると、粉砕工程#20における穀物粒の粉砕効率が低下する傾向にあるために、第2実施形態では10℃まで下げることとしている。 Also, the reason for setting the liquid temperature during cooling to 10 ° C. is as follows. As described later, in the kneading step # 30, temperature control is performed so that the dough temperature becomes a constant temperature (28 ° C. in the second embodiment) (see FIG. 8). For this reason, it is preferable that the temperature is sufficiently lower (10 ° C.) than the constant temperature (for example, 28 ° C.) by cooling, and the constant temperature is obtained using the heat generated in the pulverization step # 20. In the case of such a configuration, for example, further cooling processing after the pulverization step # 20 can be omitted, and temperature management becomes easy. If the temperature is lower than 10 ° C., the pulverization efficiency of cereal grains in the pulverization step # 20 tends to decrease. Therefore, in the second embodiment, the temperature is decreased to 10 ° C.
 以上に説明した吸液工程#10において、初期段階で粉砕ブレードを回転させ、その後も断続的に粉砕ブレードを回転させるようにしてもよい。このようにすると、穀物粒の表面に傷をつけることができ、穀物粒の吸液効率を高められる。 In the liquid absorption step # 10 described above, the pulverization blade may be rotated at an initial stage, and thereafter, the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised.
 次に、図10にフローチャートが示される粉砕工程#20について説明する。この粉砕工程#20は、穀物粒をペースト化する工程である。ステップ#21では吸液工程#10で吸液した穀物粒と液体とを容器に入れる。なお、吸液工程#10で使用した容器と同じ容器を使用する場合には、このステップ#21を省略して、吸液工程#10の終了後、次に説明するステップ#22へと進んでもよい。また、場合によっては、この段階で容器に例えば調味材料等の添加物を加えてもよい。 Next, pulverization step # 20 whose flowchart is shown in FIG. 10 will be described. This pulverization step # 20 is a step of making grain grains into a paste. In step # 21, the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container. In addition, when using the same container as the container used in the liquid absorption process # 10, this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good. In some cases, additives such as seasonings may be added to the container at this stage.
 ステップ#22では、穀物粒と液体とを含む混合物(この混合物は穀物粒と液体のみの混合物である場合も含み、第2実施形態ではこの形態である)の中で粉砕ブレードの回転を開始し、それと共に時間測定を開始する。穀物粒に液体が浸み込んだ状態で粉砕が行われるから、穀物粒を芯まで容易に粉砕することができる。 In Step # 22, the rotation of the grinding blade is started in the mixture containing the cereal grains and the liquid (this mixture is also a mixture of the cereal grains and the liquid, and this is the form in the second embodiment). And start time measurement with it. Since the pulverization is performed with the liquid soaked in the cereal grains, the cereal grains can be easily pulverized to the core.
 ステップ#23では、粉砕ブレードの回転時間が1分を経過したか否かをチェックする。粉砕ブレードの回転時間が1分を経過したら、ステップ#24に進んで粉砕ブレードの回転を停止する。ステップ#25では、粉砕された混合物(ペースト)の温度が28℃に達したか否かをチェックする。ペースト温度が28℃に達している場合には、粉砕工程#20を終了する。 In step # 23, it is checked whether or not the rotation time of the grinding blade has passed 1 minute. When the rotation time of the pulverizing blade has passed 1 minute, the process proceeds to step # 24 to stop the rotation of the pulverizing blade. In Step # 25, it is checked whether or not the temperature of the pulverized mixture (paste) has reached 28 ° C. When the paste temperature has reached 28 ° C., the pulverization step # 20 is finished.
 一方、ペースト温度が28℃に達していない場合には、ステップ#26に進んで粉砕ブレードの回転停止から3分が経過した否かをチェックする。回転停止から3分が経過している場合にはステップ#27に進んで粉砕ブレードの回転を再開し、ステップ#23に戻る。ペースト温度が28℃に達するまで、ステップ#23~#27が繰り返される。 On the other hand, if the paste temperature has not reached 28 ° C., the process proceeds to step # 26 to check whether or not 3 minutes have passed since the rotation of the grinding blade stopped. If 3 minutes have passed since the rotation stopped, the process proceeds to step # 27 to resume the rotation of the crushing blade, and returns to step # 23. Steps # 23 to # 27 are repeated until the paste temperature reaches 28 ° C.
 粉砕ブレードの回転制御について、図8を参照しながら説明する。図8に示すように、粉砕ブレードは、回転(ON)と停止(OFF)とを繰り返し行う間欠回転とされる。第2実施形態では、1分間回転して3分間停止という間欠回転が行われる。そして、この間欠回転を繰り返しながら、ペースト温度が28℃となった時点で粉砕工程#20を終了するのである。 The rotation control of the grinding blade will be described with reference to FIG. As shown in FIG. 8, the pulverizing blade is intermittently rotated by repeatedly rotating (ON) and stopping (OFF). In the second embodiment, intermittent rotation is performed by rotating for 1 minute and stopping for 3 minutes. Then, while repeating this intermittent rotation, the crushing step # 20 is completed when the paste temperature reaches 28 ° C.
 ペースト温度28℃で粉砕工程#20を終了する構成とすると、練り工程#30の初期において冷却手段による冷却が不要であり、温度管理が容易である。なお、ペースト温度28℃となった時点で穀物粒の粉砕が不十分とならないように、粉砕ブレードの回転数等について調整しておく必要がある。 When the paste temperature is 28 ° C. and the pulverization step # 20 is completed, the cooling by the cooling means is unnecessary at the initial stage of the kneading step # 30, and temperature management is easy. In addition, it is necessary to adjust the rotation speed of the pulverizing blade so that the pulverization of the grain is not insufficient when the paste temperature reaches 28 ° C.
 また、上述の粉砕ブレードの回転制御方法はあくまでも一例であり、必要に応じて適宜変更可能である。また、粉砕工程における粉砕ブレードの回転について、必ず間欠回転としなければならないという訳ではない。ただ、間欠回転とした方が、穀物粒を効果的に容器内で対流させることができて粉砕効率を向上できるので好ましい。 Further, the above-described rotation control method of the pulverizing blade is merely an example, and can be appropriately changed as necessary. Further, the rotation of the pulverizing blade in the pulverization step does not necessarily have to be intermittent. However, intermittent rotation is preferable because grain grains can be effectively convected in the container and grinding efficiency can be improved.
 次に、図11にフローチャートが示される練り工程#30について説明する。この練り工程#30は、生地原料を練りブレードで生地に練り上げる工程である。ここで、生地原料とは、粉砕工程#20で粉砕された穀物粒(粉砕穀物粒)と液体とを含む混合物のことで、ペースト状のものである。上述のように、練り工程の開始時点のものを「生地原料」と呼称し、練りが進行して目的とする生地の状態に近づいたものは、半完成状態であっても「生地」と呼称することとしている。 Next, the kneading step # 30 whose flowchart is shown in FIG. 11 will be described. This kneading step # 30 is a step of kneading the dough raw material into a dough with a kneading blade. Here, the dough raw material is a mixture containing the cereal grains (crushed cereal grains) crushed in the pulverization step # 20 and a liquid, and is in a paste form. As described above, the material at the start of the kneading process is called “dough material”, and the material that has been kneaded and approaches the desired dough state is called “dough” even in a semi-finished state. To do.
 ステップ#31では生地原料を容器に入れる。なお、粉砕工程#20で使用した容器と同じ容器を使用する場合には、このステップ#31を省略して、粉砕工程#20の終了後、次に説明するステップ#32へと進んでもよい。ステップ#32では生地原料に所定量のグルテンを投入する。この際、必要に応じ、食塩、砂糖、ショートニングといった調味材料も投入する。第2実施形態では、上記調味材料についても投入することとしている。 In step # 31, the dough material is put in a container. When the same container as that used in the pulverization process # 20 is used, this step # 31 may be omitted, and after the pulverization process # 20, the process may proceed to step # 32 described below. In step # 32, a predetermined amount of gluten is added to the dough material. At this time, seasoning materials such as salt, sugar and shortening are also introduced as necessary. In the second embodiment, the seasoning material is also introduced.
 なお、ここでは、生地原料にグルテンを投入してパン生地を製造する構成としている。しかし、グルテンを投入しない構成としても構わない。この場合においては、例えば、グルテンの代わりに増粘安定剤(例えばグアガム)を投入する等してもよい。 In this case, the bread dough is manufactured by adding gluten to the dough raw material. However, a configuration in which gluten is not added may be used. In this case, for example, a thickening stabilizer (eg, guar gum) may be added instead of gluten.
 ステップ#33では温度制御を開始する。パン生地の製造時には練り工程#30の途中でイーストを投入する。イーストは適切な温度でないとその働きが低下するために、活発に働く温度に調整する必要がある。この温度として一般に30度前後が良いとされており、第2実施形態では生地温度を28℃に調整してイーストを活発に働かせることとしている。このため、パン生地の温度が28℃で維持されるように温度制御を行う。 In step # 33, temperature control is started. During the production of bread dough, yeast is added during the kneading process # 30. Yeast needs to be adjusted to a temperature that works actively because its function is reduced if it is not at an appropriate temperature. In general, the temperature is preferably around 30 ° C., and in the second embodiment, the dough temperature is adjusted to 28 ° C. to make the yeast work actively. For this reason, temperature control is performed so that the temperature of bread dough is maintained at 28 degreeC.
 この温度制御は、例えば、容器を冷やすための冷却手段と、容器を温めるための加熱手段とを用いて、所望の温度(例えば28℃)で一定となるように制御することとしてもよい。この際の温度測定の方法は、生地(初期段階においては生地原料)の温度を直接測定することとしてもよいし、容器を介して間接的に測定することとしてもよい。ここで、冷却手段としては、例えば水や氷を用いるものやペルチエ素子を用いるもの等が挙げられる。加熱手段としては、例えば電熱線を用いるものや温水を用いるもの等が挙げられる。 This temperature control may be controlled to be constant at a desired temperature (for example, 28 ° C.) using, for example, a cooling unit for cooling the container and a heating unit for heating the container. The temperature measurement method at this time may be to directly measure the temperature of the dough (the dough raw material in the initial stage), or may be indirectly measured through a container. Here, examples of the cooling means include those using water and ice and those using a Peltier element. Examples of the heating means include those using a heating wire and those using hot water.
 なお、第2実施形態における温度制御は、練り上げによる温度上昇を抑制するという意味合いが強く、基本的には、冷却手段による冷却がメインである。 Note that the temperature control in the second embodiment has a strong meaning of suppressing the temperature rise due to the kneading, and basically the cooling by the cooling means is the main.
 ステップ#34では、生地原料の中で練りブレードの回転を開始し、更に練りの開始からの時間を測定するための時間測定が開始される。このステップ#34は、第2実施形態では図8に示すようにステップ#33の温度制御開始とほぼ同時に実行される。練りブレードの回転により、生地原料が一つにつながり、所定の弾力を備えた生地へと練り上がっていく。 In Step # 34, rotation of the kneading blade is started in the dough material, and time measurement for measuring the time from the start of kneading is started. In the second embodiment, step # 34 is executed almost simultaneously with the start of temperature control in step # 33 as shown in FIG. By rotating the kneading blade, the dough ingredients are connected together and kneaded into a dough with a predetermined elasticity.
 なお、練りブレードの回転方法は特に限定されるものではないが、図8に示すように第2実施形態では前半は間欠回転とし、後半は連続回転としている。図11に示すフローチャートでは、練りブレードの間欠回転に関する詳細は省略した記載となっている。 In addition, although the rotation method of the kneading blade is not particularly limited, as shown in FIG. 8, in the second embodiment, the first half is intermittent rotation and the second half is continuous rotation. In the flowchart shown in FIG. 11, details regarding intermittent rotation of the kneading blade are omitted.
 ステップ#35では、練りの開始から所定の時間が経過したか否かをチェックする。所定の時間が経過している場合にはステップ#36に進む。ステップ#36では、練り上げ中の生地の温度(生地温度)が28℃であるか否かをチェックする。第2実施形態はパン生地の製造方法であるため、発泡誘起材料としてドライイーストや生イーストなどのイーストを投入する。上述のように、イーストは活発に働く温度範囲が限られているために、イーストを投入する前に生地温度を確認する趣旨である。生地温度が28℃で維持されている場合にはステップ#37に進み、そうでない場合には温度が28℃となるまで待つ。 In step # 35, it is checked whether or not a predetermined time has elapsed since the start of the kneading. If the predetermined time has elapsed, the process proceeds to step # 36. In Step # 36, it is checked whether or not the temperature of the dough being kneaded (dough temperature) is 28 ° C. Since 2nd Embodiment is a manufacturing method of bread dough, yeast, such as dry yeast and fresh yeast, is thrown in as a foaming induction material. As described above, since the temperature range in which yeast works actively is limited, the purpose is to confirm the dough temperature before adding yeast. If the dough temperature is maintained at 28 ° C, the process proceeds to step # 37, and if not, the process waits until the temperature reaches 28 ° C.
 ステップ#37では、生地温度が28℃となった生地にイースト(この場合はドライイースト)を投入する。ステップ#38ではドライイーストを投入してからどれだけ時間が経過したかをチェックする。所定の時間が経過したらステップ#39へ進んで練りブレードの回転が終了する。この時点で、一つにつながり、所要の弾力を備えた生地が完成する。完成した生地(パン生地)の取り扱いは第1実施形態の場合と同様である。 In step # 37, yeast (in this case, dry yeast) is added to the dough having a dough temperature of 28 ° C. In step # 38, it is checked how much time has passed since the dry yeast was added. When the predetermined time has elapsed, the process proceeds to step # 39, where the rotation of the kneading blade is completed. At this point, the dough is connected and integrated with the required elasticity. Handling of the finished dough (bread dough) is the same as in the first embodiment.
 なお、第2実施形態では、吸液工程#10で冷却処理を行う構成とした。しかし、この構成に限定される趣旨ではない。すなわち、吸液工程では冷却処理を行わず、冷却処理を行いながら粉砕工程を行うようにしてもよい。この場合、冷却処理として容器を外部から冷やす方法でもよいが、別の方法として、吸液工程が終わった時点で一旦容器内の液体を捨て、氷(これは、少なくともその一部が容器内で溶けて液体となる)、氷水、或いは冷水等を容器に入れるという方法を採用してもよい。 In the second embodiment, the cooling process is performed in the liquid absorption process # 10. However, the present invention is not limited to this configuration. That is, in the liquid absorption process, the pulverization process may be performed while performing the cooling process without performing the cooling process. In this case, the cooling method may be a method of cooling the container from the outside, but as another method, once the liquid absorption step is finished, the liquid in the container is once discarded and ice (this is at least partly in the container). A method may be adopted in which iced water, cold water, or the like is put into a container.
 また、第2実施形態では、粉砕工程#20はイーストを投入する温度(例えば28℃)となるまで行われることとした。しかし、この構成に限定されず、イーストを投入する温度を超えた温度で終了することとしてもよいし、イーストを投入する温度より低い温度で終了することとしてもよい。 In the second embodiment, the pulverization step # 20 is performed until the temperature at which the yeast is introduced (for example, 28 ° C.). However, the present invention is not limited to this configuration, and the process may be terminated at a temperature exceeding the temperature at which the yeast is charged, or may be terminated at a temperature lower than the temperature at which the yeast is charged.
(第2実施形態の生地製造装置)
 第2実施形態の製造方法の各工程も、第1実施形態と同様に、工程毎に別個の器具を使って遂行することもできるし、複数の工程で器具を共用することもできる。吸液工程#10、粉砕工程及び練り工程の全てで共用される器具の構成としては、第1実施形態で示した生地製造装置100(図6参照)を使用することができる。
(Dough manufacturing apparatus according to the second embodiment)
Each process of the manufacturing method of 2nd Embodiment can also be performed using a separate instrument for every process similarly to 1st Embodiment, and an apparatus can also be shared by several processes. The fabric manufacturing apparatus 100 (see FIG. 6) shown in the first embodiment can be used as the configuration of the instrument shared in all of the liquid absorption process # 10, the pulverization process, and the kneading process.
 第2実施形態の加熱調理食品生地製造方法で、穀物粒からパン生地を製造するときは、生地製造装置100を次のように用いる。蓋121を外し、容器120の中に所定量の穀物粒と所定量の液体とを入れた後、再び蓋121を嵌め込んで、まず吸液工程#10を実行する。この吸液工程#10では加熱手段124を用いて、液温が第1の温度(例えば50℃)となるまで加熱する。その後、加熱手段124や冷却手段125を用いて前記第1の温度(例えば50℃)を所定の時間(例えば15分)維持する(一定温度に制御)。所定の時間経過後、冷却手段124によって第2の温度(例えば10℃)まで冷却し、第2の温度に冷却されたら吸液工程#10を終了する。 When the bread dough is manufactured from the cereal grains by the cooked food dough manufacturing method of the second embodiment, the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed. In this liquid absorption process # 10, heating is performed using the heating means 124 until the liquid temperature reaches the first temperature (for example, 50 ° C.). Thereafter, the first temperature (for example, 50 ° C.) is maintained for a predetermined time (for example, 15 minutes) using the heating unit 124 and the cooling unit 125 (controlled to a constant temperature). After the elapse of a predetermined time, the cooling means 124 cools to a second temperature (for example, 10 ° C.).
 この吸液工程#10においては、温度センサ113によって検出される温度に基づいて、制御部112が自動的に温度制御を行ってもよい。また、吸液工程#10の終了ついて、例えばブザー音等の報知音によってユーザに知らしめる構成等としてもよい。また、この吸液工程#10において、制御部112による制御によってブレード122を断続的に回転させて穀物粒の表面に傷をつけるようにしてもよい。 In this liquid absorption step # 10, the control unit 112 may automatically perform temperature control based on the temperature detected by the temperature sensor 113. Moreover, it is good also as a structure etc. which let a user be notified by notification sounds, such as a buzzer sound, about completion | finish of liquid absorption process # 10, for example. Moreover, in this liquid absorption process # 10, the blade 122 may be intermittently rotated under the control of the control unit 112 to damage the surface of the grain.
 粉砕工程#20に入ったらブレード122を高速回転(間欠回転であってよい)させ、穀物粒を粉砕する。これにより、粉砕穀物粒と液体との混合物からなる生地原料が形成される。なお、粉砕工程#20のスタートは、吸液工程の終了後にスタートボタンを押すことによって始まるようにしてもよい。また、吸液工程#10の終了は温度センサ113によって検出される温度で判断できるので、吸液工程#10の終了後に自動的に粉砕工程#20が始まるようにしてもよい。 When entering the pulverization step # 20, the blade 122 is rotated at a high speed (may be intermittent rotation) to pulverize the grain. Thereby, the dough raw material which consists of a mixture of a ground grain and a liquid is formed. The start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed. Further, since the end of the liquid absorption process # 10 can be determined based on the temperature detected by the temperature sensor 113, the pulverization process # 20 may be automatically started after the liquid absorption process # 10 is completed.
 粉砕工程#20の終了は、ペースト温度が所定の温度(例えば28℃)に達した時点で終了する。この粉砕工程#20の終了については、温度センサ113によって検出される温度に基づいて判断できるので、制御部112によって自動的に粉砕工程#20を終了する構成としてもよい。また、粉砕工程#20の終了について、例えばブザー音等の報知音によってユーザに知らしめる構成等としてもよい。 The end of the pulverization step # 20 ends when the paste temperature reaches a predetermined temperature (for example, 28 ° C.). Since the end of the pulverization process # 20 can be determined based on the temperature detected by the temperature sensor 113, the control unit 112 may automatically end the pulverization process # 20. Moreover, it is good also as a structure etc. which let a user know about completion | finish of grinding | pulverization process # 20, for example by notification sounds, such as a buzzer sound.
 粉砕工程#20が終了した時点で、加熱手段124と冷却手段125を温度センサ113の検出温度に基づいて適宜機能させて、生地温度が所望の温度(例えば28℃)で一定となるように温度制御を開始する。この温度制御の開始は例えば、温度制御開始用のボタンを設けて開始することとしてもよいし、自動的に開始されることとしてもよい。 When the pulverization step # 20 is completed, the heating unit 124 and the cooling unit 125 are appropriately functioned based on the temperature detected by the temperature sensor 113 so that the dough temperature becomes constant at a desired temperature (for example, 28 ° C.). Start control. The temperature control may be started by, for example, providing a temperature control start button or automatically.
 また、粉砕工程#20が終了した時点で、蓋121を開け、所定量のグルテンと、必要に応じ所定量の調味材料を生地原料に投入する。 Also, when the crushing step # 20 is completed, the lid 121 is opened, and a predetermined amount of gluten and a predetermined amount of seasoning material as necessary are put into the dough raw material.
 この後、蓋121を閉じて練り工程#30を開始する。練り工程#30ではブレード122を低速回転させ、生地原料及びそれに投入されたグルテンや調味材料を捏ねて一つにつながった生地を練り上げる。練り工程#30が開始されてから所定の時間が経過した時点で蓋121を開けて生地に所定量の発泡誘起材料(例えばドライイースト)を投入する。なお、所望の時間が経過したことをブザー音等の報知音でユーザに知らせる構成としてもよい。 Thereafter, the lid 121 is closed and the kneading step # 30 is started. In the kneading step # 30, the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together. When a predetermined time elapses after the kneading step # 30 is started, the lid 121 is opened and a predetermined amount of foam-inducing material (for example, dry yeast) is put into the dough. In addition, it is good also as a structure which notifies a user with notification sounds, such as a buzzer sound, that desired time passed.
 発泡誘起材料を投入したら蓋121を閉め、ブレード122を低速回転させて生地と発泡誘起材料とを混練して生地を完成させる。生地の完成は、混練開始からのトータル時間で管理しているために、トータル時間が所定の時間が経過した時点で練り工程#30を終了する。なお、練り工程#30の終了は、混練開始からのトータル時間が所定の時間が経過した時点で自動的に終了する構成としてもよい。また、練り工程#30の終了をブザー等の報知音で知らせる構成等としてもよい。 When the foam-inducing material is introduced, the lid 121 is closed, the blade 122 is rotated at a low speed, and the dough and the foam-inducing material are kneaded to complete the dough. Since the completion of the dough is managed by the total time from the start of kneading, the kneading step # 30 is finished when a predetermined time has elapsed. The end of the kneading step # 30 may be configured to automatically end when a total time from the start of the kneading has elapsed a predetermined time. Moreover, it is good also as a structure etc. which notify the completion | finish of kneading process # 30 by alerting sounds, such as a buzzer.
 生地が完成したら、生地を容器120から取り出して、あるいは生地を容器120に入れたままで、生地の発泡が進むのを待つ。所望の発泡を得られたら生地をパン焼き装置に入れ、パンを焼く。 When the dough is completed, take out the dough from the container 120 or leave the dough in the container 120 and wait for foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
 第1実施形態の場合と同様に、同一の容器120内で吸液工程#10から練り工程#30まで進行させることにより、時間を短縮できるともに、穀物粒や生地原料の一部が少しずつ目減りするという問題もなくなる。また、第1実施形態の場合と同様に、生地製造装置100において、粉砕工程#20と練り工程#30でブレード122の回転方向を変え、粉砕工程#20ではブレード122の片側の鋭いエッジが穀物粒に当たり、練り工程#30ではブレード122の他側の尖っていない端面が生地原料を押す、といった構成にしてもよい。 As in the case of the first embodiment, it is possible to shorten the time by proceeding from the liquid absorption process # 10 to the kneading process # 30 in the same container 120, and part of grain grains and dough raw materials are gradually reduced. The problem of doing is also eliminated. Similarly to the case of the first embodiment, in the dough manufacturing apparatus 100, the rotation direction of the blade 122 is changed in the crushing process # 20 and the kneading process # 30, and in the crushing process # 20, a sharp edge on one side of the blade 122 is a grain. In the kneading step # 30, the other non-pointed end face of the blade 122 may press the dough material.
3.第3実施形態
(第3実施形態の加熱調理食品生地製造方法)
 次に、第3実施形態の加熱調理食品生地製造方法について、図12~図16を参照しながら説明する。図12は、第3実施形態の加熱調理食品生地製造方法の流れを示す模式図である。図13は、第3実施形態の加熱調理食品生地製造方法に含まれる吸液工程の詳細を示すフローチャートである。図14は、吸液工程における液温と浸漬時間との関係の一例を示すテーブルである。図15は、第3実施形態の加熱調理食品生地製造方法に含まれる粉砕工程の詳細を示すフローチャートである。図16は、第3実施形態の加熱調理食品生地製造方法に含まれる練り工程の詳細を示すフローチャートである。
3. 3rd Embodiment (The cooking method of heat cooking food dough of 3rd Embodiment)
Next, the cooked food dough manufacturing method of the third embodiment will be described with reference to FIGS. FIG. 12 is a schematic diagram showing the flow of the method for producing a cooked food dough according to the third embodiment. FIG. 13: is a flowchart which shows the detail of the liquid absorption process included in the heat cooking food dough manufacturing method of 3rd Embodiment. FIG. 14 is a table showing an example of the relationship between the liquid temperature and the immersion time in the liquid absorption process. FIG. 15: is a flowchart which shows the detail of the crushing process included in the heat cooking food dough manufacturing method of 3rd Embodiment. FIG. 16: is a flowchart which shows the detail of the kneading | mixing process included in the heat cooking food dough manufacturing method of 3rd Embodiment.
 図12に示すように、第3実施形態の加熱調理食品生地製造方法には、吸液工程#10と、粉砕工程#20と、練り工程#30とが含まれ、この順に工程が進められる。以下、各工程の詳細について説明する。 As shown in FIG. 12, the cooked food dough manufacturing method of the third embodiment includes a liquid absorption step # 10, a pulverization step # 20, and a kneading step # 30, and the steps are advanced in this order. Details of each step will be described below.
 まず、図13にフローチャートが示される吸液工程#10について説明する。この吸液工程#10は、穀物粒に液体を含ませることによって、その後に行われる粉砕工程#20において、穀物粒を芯まで粉砕しやすくすることを狙う工程である。 First, the liquid absorption process # 10 whose flowchart is shown in FIG. 13 will be described. This liquid absorption step # 10 is a step aimed at making it easy to pulverize the grain to the core in the subsequent pulverization step # 20 by adding the liquid to the grain.
 ステップ#11では穀物粒(米粒が最も入手しやすいが、それ以外の穀物、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆などの粒も利用可能である。第3実施形態では米粒である)を計量し、所定量を容器に入れる。ステップ#12では液体を計量し、所定量を容器に入れる。液体として一般的なものは水であるが(第3実施形態の液体は水である)、だし汁のような味成分を有する液体でもよく、果汁でもよい。また、アルコールを含有するものであってもよい。なお、ステップ#11とステップ#12とは順序が入れ替わっても構わない。 In Step # 11, grains (rice grains are most easily available, but grains other than the grains such as wheat, barley, straw, buckwheat, buckwheat, corn, soybeans, etc. can also be used. In the third embodiment, grains of rice are used. Weigh a certain amount and put a predetermined amount in the container. In step # 12, the liquid is weighed and a predetermined amount is put into a container. A common liquid is water (the liquid in the third embodiment is water), but it may be a liquid having a taste component such as broth or fruit juice. Moreover, you may contain alcohol. Note that the order of step # 11 and step # 12 may be interchanged.
 ステップ#13では穀物粒と液体との混合物を容器内で静置する。ステップ#14はステップ#13における静置開始とほぼ同時に実行され、例えば温度計を用いて液体の温度(液温)を検知する。液温の測定は、液体に直接温度計を入れて測定する構成であっても構わないし、容器を介して間接的に測定する構成であっても構わない。液温の測定を行うのは、穀物粒の吸液速度が液温によって変動することを考慮するものであり、液温によって穀物粒の液体への浸漬時間を変化させるために行われる。一般に、液温が高い場合には穀物粒の吸液速度が速くなり、液温が低い場合には穀物粒の吸液速度が遅くなる傾向がある。 In Step # 13, the mixture of cereal grains and liquid is left in the container. Step # 14 is executed almost simultaneously with the start of standing in step # 13. For example, the temperature of the liquid (liquid temperature) is detected using a thermometer. The liquid temperature may be measured by putting a thermometer directly into the liquid or may be measured indirectly via a container. The measurement of the liquid temperature is performed in consideration of the fact that the liquid absorption speed of the cereal grains varies depending on the liquid temperature, and is performed in order to change the immersion time of the cereal grains in the liquid depending on the liquid temperature. In general, when the liquid temperature is high, the grain absorption rate tends to increase, and when the liquid temperature is low, the grain absorption rate tends to decrease.
 ステップ#15では、検知された液温に基づいて穀物粒を液体に浸漬する時間を決定する。図14に示すテーブルは、穀物粒に水を吸水(吸液)させる場合を想定した浸漬時間の設定例である。このように浸漬時間を水温(液温)によって変更することにより、例えば夏季には短時間で加熱調理食品生地の製造が可能となる。また、冬季においては加熱調理食品生地の製造時間が長くなるが、適切な吸水時間を与えることになるために、後の粉砕工程で不良が発生し難くなる。 In step # 15, the time for immersing the grain in the liquid is determined based on the detected liquid temperature. The table shown in FIG. 14 is a setting example of the immersion time assuming the case where water is absorbed (absorbed) by the grain. Thus, by changing the immersion time depending on the water temperature (liquid temperature), for example, in the summer season, the cooked food dough can be manufactured in a short time. In addition, the production time of the cooked food dough becomes longer in the winter, but an appropriate water absorption time is provided, so that defects are less likely to occur in the subsequent pulverization step.
 なお、図14において、例えば5~10は5℃以上10℃未満を示す。他の温度帯域も同様である。また、図4では、液温について5℃間隔で異なる浸漬時間を与える構成となっているが、例えば更に細かい温度間隔や更に粗い温度間隔で浸漬時間を与えるようにしてもよい。また、温度の上限(図14では35℃)や下限(図14では5℃)について、図14に示すものから当然変更してよい。更に、液温の検知タイミングについても第3実施形態の構成に限定されず、例えば液体を容器内に入れた時点で即座に測定してもよい。 In FIG. 14, for example, 5 to 10 indicate 5 ° C. or more and less than 10 ° C. The same applies to other temperature bands. Further, in FIG. 4, the liquid temperature is configured to give different immersion times at intervals of 5 ° C. However, for example, the immersion time may be given at finer temperature intervals or coarser temperature intervals. Further, the upper limit (35 ° C. in FIG. 14) and the lower limit (5 ° C. in FIG. 14) of the temperature may naturally be changed from those shown in FIG. Furthermore, the liquid temperature detection timing is not limited to the configuration of the third embodiment, and for example, the liquid temperature may be measured immediately when the liquid is placed in the container.
 ステップ#16では、穀物粒が決定された浸漬時間だけ液体に浸漬されるように時間測定を開始する。ステップ#17では、ステップ#16で開始した測定時間が先に決定された浸漬時間(予定の浸漬時間)を経過したか否かをチェックする。予定の浸漬時間が経過したら吸液工程#10を終了する。 In step # 16, time measurement is started so that the grain is immersed in the liquid for the determined immersion time. In Step # 17, it is checked whether or not the measurement time started in Step # 16 has passed the previously determined immersion time (scheduled immersion time). When the planned immersion time has elapsed, the liquid absorption step # 10 is terminated.
 なお、吸液工程#10の初期段階で粉砕ブレードを回転させ、その後も断続的に粉砕ブレードを回転させるようにしてもよい。このようにすると、穀物粒の表面に傷をつけることができ、穀物粒の吸液効率を高められる。 Note that the pulverization blade may be rotated at the initial stage of the liquid absorption step # 10, and thereafter the pulverization blade may be intermittently rotated. If it does in this way, the surface of a grain can be damaged and the liquid absorption efficiency of grain can be raised.
 次に、図15にフローチャートが示される粉砕工程#20について説明する。この粉砕工程#20は、穀物粒をペースト化する工程である。ステップ#21では吸液工程#10で吸液した穀物粒と液体とを容器に入れる。この液体は先に吸液工程で用いた液体と同じものでもよいし、別もの(単に液体を入れ替える場合のみならず、別の種類の液体に入れ替える場合も含む趣旨)でもよい。また、場合によっては、この段階で容器に例えば調味材料等の添加物を加えてもよい。なお、吸液工程#10で使用した容器と同じ容器を使用する場合には、このステップ#21を省略して、吸液工程#10の終了後、次に説明するステップ#22へと進んでもよい。 Next, pulverization step # 20 whose flowchart is shown in FIG. 15 will be described. This pulverization step # 20 is a step of making grain grains into a paste. In step # 21, the grains and liquid absorbed in the liquid absorption step # 10 are placed in a container. This liquid may be the same as the liquid previously used in the liquid absorption step, or may be different (including not only simply replacing the liquid but also replacing another type of liquid). In some cases, additives such as seasonings may be added to the container at this stage. In addition, when using the same container as the container used in the liquid absorption process # 10, this step # 21 is omitted, and after completion of the liquid absorption process # 10, the process proceeds to step # 22 described below. Good.
 ステップ#22では、穀物粒と液体とを含む混合物(この混合物は穀物粒と液体のみの混合物である場合も含み、第3実施形態ではこの形態である)の中で粉砕ブレードの回転を開始し、それと共に穀物粒と液体とを含む混合物(ペースト)の温度測定を開始する。第3実施形態における粉砕は、先の吸液工程#10によって穀物粒に液体が浸み込んだ状態で粉砕が行われるために、穀物粒を芯まで容易に粉砕しやすくなっている。 In step # 22, the rotation of the grinding blade is started in a mixture containing cereal grains and liquid (this mixture is also a mixture of cereal grains and liquid only, which is this form in the third embodiment). In addition, temperature measurement of the mixture (paste) containing the grain and the liquid is started. In the pulverization in the third embodiment, the cereal grains are easily pulverized to the core because the pulverization is performed in a state in which the liquid has soaked into the cereal grains in the previous liquid absorption step # 10.
 また、混合物の温度測定は、測定温度を粉砕ブレードの回転制御に用いるために行われる。この測定温度を用いた回転制御により、穀物粒の粉砕を効率良く行えるとともに、粉砕中に発生する熱で混合物の温度が上昇しすぎるのを抑制可能となっている。例えば、第3実施形態のように穀物粒として米粒を用いる場合には、混合物の温度が上昇しすぎる(例えば60℃程度となった状態を指す)と米の糊化が始まり、粉砕時の負荷が大きくなって不都合である。このため、過度の温度上昇を抑制する必要がある。 Also, the temperature of the mixture is measured in order to use the measured temperature for rotation control of the grinding blade. The rotation control using the measured temperature can efficiently grind the grain, and can suppress the temperature of the mixture from rising too much due to the heat generated during the grinding. For example, when rice grains are used as cereal grains as in the third embodiment, the gelatinization of the rice starts when the temperature of the mixture rises too much (for example, indicates a state of about 60 ° C.), and the load during pulverization Is inconvenient because it becomes larger For this reason, it is necessary to suppress an excessive temperature rise.
 なお、混合物の温度測定は、混合物の温度を温度計等で直接測定してもよいし、容器を介して間接的に測定することとしてもよい。 The temperature of the mixture may be measured directly with a thermometer or the like, or indirectly through a container.
 ステップ#23では、混合物の温度が40℃以上であるか否かをチェックする。混合物の温度が40℃以上であれば、ステップ#24に進んで粉砕ブレードの回転を停止する。ステップ#25では、混合物の温度が30℃以下であるか否かをチェックする。粉砕ブレードの回転停止によって容器内で発熱が起こらなくなるので、混合物の温度は低下する。 In step # 23, it is checked whether the temperature of the mixture is 40 ° C. or higher. If the temperature of a mixture is 40 degreeC or more, it will progress to step # 24 and will stop rotation of a grinding | pulverization blade. In Step # 25, it is checked whether or not the temperature of the mixture is 30 ° C. or lower. Since the heat generation does not occur in the container when the rotation of the grinding blade stops, the temperature of the mixture decreases.
 なお、混合物の温度の低下について、自然に温度が低下するのを待つ構成でもよいが、場合によっては温度低下の速度を速める目的で、冷却手段(例えば水や氷を用いて容器を冷やす手段が想定される)によって混合物の温度を低下させてもよい。 In addition, although it may be configured to wait for the temperature to naturally decrease with respect to the temperature decrease of the mixture, in some cases, a cooling means (for example, means for cooling the container using water or ice is provided for the purpose of increasing the speed of temperature decrease. The temperature of the mixture may be lowered.
 混合物の温度が30℃以下であれば、ステップ#26に進んで粉砕ブレードの回転を再開する。ステップ#27では、再び混合物の温度が40℃以上か否かをチェックする。混合物の温度が40℃以上であれば、ステップ#28に進んで粉砕ブレードの回転を停止する。 If the temperature of the mixture is 30 ° C. or lower, the process proceeds to Step # 26 and the rotation of the grinding blade is restarted. In step # 27, it is checked again whether the temperature of the mixture is 40 ° C. or higher. If the temperature of a mixture is 40 degreeC or more, it will progress to step # 28 and will stop rotation of a grinding | pulverization blade.
 ステップ#29では、粉砕中の穀物粒の粒度を測定して、最大粒子のサイズが100μm以下であるか否かをチェックする。穀物粒の粒度測定については公知の粒度測定方法を使用すればよく、例えば、液相沈降法、レーザ回折・散乱法、ふるい分け法等を使用することができる。第3実施形態では、液相沈降法を用いて粒度測定を行うこととしている。 In step # 29, the grain size of the grain being crushed is measured to check whether the maximum grain size is 100 μm or less. A known particle size measurement method may be used for the particle size measurement of the grain, and for example, a liquid phase precipitation method, a laser diffraction / scattering method, a sieving method, or the like can be used. In the third embodiment, the particle size is measured using the liquid phase sedimentation method.
 粒度測定の結果、最大粒子のサイズが100μm以下であれば、粉砕工程#20を終了する。一方、100μmを超える粒子が存在する場合(ステップ#29でNO)には、ステップ#25に戻り、それ以降のステップに従って再び粉砕を行う。 As a result of the particle size measurement, if the maximum particle size is 100 μm or less, the pulverization step # 20 is completed. On the other hand, when particles exceeding 100 μm are present (NO in step # 29), the process returns to step # 25, and pulverization is performed again according to the subsequent steps.
 以上説明した粉砕工程#20について図12を参照しながら説明する。図12に示すように、粉砕工程#20においては、粉砕時の混合物の温度が40℃となるまでは粉砕ブレードの回転が続けられ(粉砕ブレードON)、混合物の温度が40℃となると粉砕ブレードの回転が停止される(粉砕ブレードOFF)。その後、混合物の温度が30℃となるまで粉砕ブレードの回転停止が続けられ(粉砕ブレードOFF)、混合物の温度が30℃となると粉砕ブレードの回転が再開される(粉砕ブレードN)。すなわち、粉砕ブレードは、混合物の温度によって回転のON・OFFが制御され、間欠回転される。そして、穀物粒の粒度が所望の粒度となった時点で粉砕工程が終了する。 The pulverization step # 20 described above will be described with reference to FIG. As shown in FIG. 12, in the pulverization step # 20, the rotation of the pulverization blade is continued until the temperature of the mixture at the time of pulverization reaches 40 ° C. (pulverization blade ON), and when the temperature of the mixture reaches 40 ° C. Is stopped (pulverization blade OFF). Thereafter, the rotation of the grinding blade is continued until the temperature of the mixture reaches 30 ° C. (grinding blade OFF). When the temperature of the mixture reaches 30 ° C., the rotation of the grinding blade is resumed (grinding blade N). That is, the pulverizing blade is intermittently rotated by controlling ON / OFF of the rotation according to the temperature of the mixture. And a grinding | pulverization process is complete | finished when the particle size of a grain becomes a desired particle size.
 ここで、粉砕ブレードの回転のオンオフを30℃と40℃とを用いて行う理由について説明する。第3実施形態では上述のように穀物粒として米粒を用いる構成としている。このため、粉砕ブレードの回転を、混合物の温度が40℃を超えて続けると、米粒の糊化が始まる温度に至ってしまう可能性がある。米粒の糊化が始まると粉砕時の負荷が大きくなり所望の粉砕が行えなくなる場合がある。また、混合物の温度が低くなりすぎると、混合物の粘性が増加して粉砕効率を下がる傾向がある。このため、効率良く粉砕を行える温度帯として30℃~40℃が選択され、この温度内で粉砕が行われるように粉砕ブレードの回転のオンオフを30℃と40℃とを用いて行っているのである。 Here, the reason why the rotation of the grinding blade is turned on / off using 30 ° C. and 40 ° C. will be described. In 3rd Embodiment, it is set as the structure which uses rice grain as a grain grain as mentioned above. For this reason, if the rotation of the pulverizing blade is continued when the temperature of the mixture exceeds 40 ° C., it may reach a temperature at which gelatinization of the rice grains begins. When gelatinization of rice grains begins, the load during pulverization increases, and desired pulverization may not be performed. Moreover, when the temperature of a mixture becomes low too much, there exists a tendency for the viscosity of a mixture to increase and to reduce a grinding | pulverization efficiency. For this reason, 30 ° C. to 40 ° C. is selected as a temperature range in which pulverization can be performed efficiently, and rotation of the pulverization blade is turned on and off using 30 ° C. and 40 ° C. so that pulverization is performed within this temperature range. is there.
 なお、粉砕を30℃~40℃の温度帯で行う方法として、粉砕工程時に冷却手段(場合によっては加熱手段も)を用いて温度制御する方法も考えられる。しかし、第3実施形態の方法によれば、粉砕工程時に容器(混合物とも言い換えられる)の温度について緻密な制御を行うための手段を用いず粉砕が行えるという利点と、粉砕ブレードを間欠回転させる構成となるために、穀物粒を容器内で対流させて効率良く粉砕できるという利点と、が得られる。また、第3実施形態では、粉砕ブレードの回転制御に用いる温度として30℃と40℃とを用いているが、必ずしもこの温度に限定される趣旨ではなく、適宜変更可能であるのは言うまでもない。 In addition, as a method of performing the pulverization in a temperature range of 30 ° C. to 40 ° C., a method of controlling the temperature by using a cooling means (in some cases, a heating means) during the pulverization process is also conceivable. However, according to the method of the third embodiment, it is possible to perform pulverization without using a means for finely controlling the temperature of the container (also referred to as a mixture) during the pulverization step, and a configuration in which the pulverization blade is intermittently rotated. Therefore, the advantage that the grains can be efficiently pulverized by convection in the container is obtained. Moreover, in 3rd Embodiment, although 30 degreeC and 40 degreeC are used as temperature used for rotation control of a grinding | pulverization blade, it is not necessarily the meaning limited to this temperature, and it cannot be overemphasized that it can change suitably.
 また、第3実施形態では、穀物粒の粒度測定を行い、最大粒子のサイズによって粉砕工程#20の終了判断を行う構成としている。しかし、この構成に限定される趣旨ではない。すなわち、例えば最大粒子のサイズに加えて、粒度分布も考慮して粉砕工程の終了判断を行っても構わない。粒度分布による判断の一例として、粒子サイズが10μm未満と10μm以上との比が2:1となるまで粉砕を続けるというようにしてもよい。また、粒度測定を行って粉砕工程の終了を判断するのではなく、例えば回転と回転停止とのサイクルの回数が所定回数となった時点で終了するという構成等でも構わない。 In the third embodiment, the grain size of the grain is measured, and the end of the pulverization step # 20 is determined based on the maximum particle size. However, the present invention is not limited to this configuration. That is, for example, in addition to the size of the largest particles, the end of the pulverization process may be determined in consideration of the particle size distribution. As an example of the determination based on the particle size distribution, the pulverization may be continued until the ratio of the particle size of less than 10 μm to 10 μm or more is 2: 1. Further, instead of determining the end of the pulverization process by measuring the particle size, for example, a configuration in which the end of the crushing process is completed when the number of cycles of rotation and rotation stop reaches a predetermined number may be used.
 次に、図16にフローチャートが示される練り工程#30が行われる。図16に示す練り工程#30の各ステップ(#31~#38)で実行される内容は、第1実施形態の加熱調理食品生地製造方法における練り工程#20(図4参照)の各ステップ(#21~#28)で実行される内容と同様である。このため、第3実施形態における練り工程#30の詳細説明は省略する。完成した生地(パン生地)の取り扱いについても第1実施形態の場合と同様である。 Next, the kneading step # 30 shown in the flowchart in FIG. 16 is performed. The contents executed in each step (# 31 to # 38) of the kneading step # 30 shown in FIG. 16 are the same as the steps of the kneading step # 20 (see FIG. 4) in the cooked food dough manufacturing method of the first embodiment (see FIG. 4). The contents are the same as those executed in # 21 to # 28). For this reason, detailed description of the kneading step # 30 in the third embodiment is omitted. Handling of the finished dough (bread dough) is the same as in the first embodiment.
 なお、第3実施形態では、粉砕工程#20の前に吸液工程#10が行われる構成とし、吸液工程#10における穀物粒の液体への浸漬時間を液体の温度によって変更する構成とした。しかし、この構成に限定される趣旨ではない。すなわち、例えば吸液工程を行わない構成としてもよい。ただし、第3実施形態のように吸液工程を行う方が粉砕を効率良く行えるので好ましい。 In addition, in 3rd Embodiment, it was set as the structure by which liquid absorption process # 10 is performed before pulverization process # 20, and it was set as the structure which changes the immersion time to the liquid of the grain in liquid absorption process # 10 with the temperature of a liquid. . However, the present invention is not limited to this configuration. That is, for example, the liquid absorption process may not be performed. However, it is preferable to perform the liquid absorption step as in the third embodiment because grinding can be performed efficiently.
 また、例えば吸液工程における上記浸漬時間は一定の固定時間としてもよい。ただし、この場合は穀物粒の吸液不足が発生する可能性を低減するため浸漬時間を長めに設定しておくのが好ましくなる。このようなことから、第3実施形態のように液温によって上記浸漬時間を変更する構成の方が時間効率の点で好ましい。 For example, the immersion time in the liquid absorption process may be a fixed time. However, in this case, it is preferable to set the soaking time longer in order to reduce the possibility of insufficient grain absorption. For this reason, the configuration in which the immersion time is changed according to the liquid temperature as in the third embodiment is preferable in terms of time efficiency.
 また、第3実施形態では、粉砕工程後に温度制御と練り工程が同時に開始される構成とした。しかし、この構成に限定される趣旨ではない。例えば、粉砕工程後に開始される温度制御によって生地原料を所望の温度に調整した後、練り工程を開始する構成としても構わない。この場合は、練り工程の開始時から生地温度が一定の温度に維持されることになる。ただし、第3実施形態の構成の方が、時間効率が良く好ましい。 In the third embodiment, the temperature control and the kneading process are started simultaneously after the pulverization process. However, the present invention is not limited to this configuration. For example, after adjusting the dough raw material to a desired temperature by temperature control started after the pulverization step, the kneading step may be started. In this case, the dough temperature is maintained at a constant temperature from the start of the kneading process. However, the configuration of the third embodiment is preferable in terms of time efficiency.
 (第3実施形態の生地製造装置)
 第3実施形態の製造方法の各工程も、第1実施形態と同様に、工程毎に別個の器具を使って遂行することもできるし、複数の工程で器具を共用することもできる。吸液工程#10、粉砕工程及び練り工程の全てで共用される器具の構成としては、第1実施形態で示した生地製造装置100(図6参照)を使用することができる。
(Dough manufacturing apparatus according to the third embodiment)
Each process of the manufacturing method of 3rd Embodiment can also be performed using a separate instrument for every process similarly to 1st Embodiment, and an apparatus can also be shared by several processes. The fabric manufacturing apparatus 100 (see FIG. 6) shown in the first embodiment can be used as the configuration of the instrument shared in all of the liquid absorption process # 10, the pulverization process, and the kneading process.
 第3実施形態の加熱調理食品生地製造方法で、穀物粒からパン生地を製造するときは、生地製造装置100を次のように用いる。蓋121を外し、容器120の中に所定量の穀物粒と所定量の液体とを入れた後、再び蓋121を嵌め込んで、まず吸液工程#10を実行する。この吸液工程#10では温度センサ113を用いて液温を検知し、制御基板112は検知した液温に基づいて吸液工程#10の時間(穀物粒の液体への浸漬時間)を決定する。液温に基づいた浸漬時間の決定は、図示しないメモリに予め図14に示すようなテーブルを記憶させておくことによって行う。吸液工程#10の終了について報知音を鳴らすようにしてもよい。 When the bread dough is manufactured from the cereal grains by the cooked food dough manufacturing method of the third embodiment, the dough manufacturing apparatus 100 is used as follows. After removing the lid 121 and putting a predetermined amount of grains and a predetermined amount of liquid in the container 120, the lid 121 is fitted again, and the liquid absorption step # 10 is first executed. In this liquid absorption process # 10, the temperature of the liquid is detected using the temperature sensor 113, and the control board 112 determines the time of the liquid absorption process # 10 (the immersion time of the grains in the liquid) based on the detected liquid temperature. . The determination of the immersion time based on the liquid temperature is performed by storing a table as shown in FIG. 14 in advance in a memory (not shown). A notification sound may be emitted about the end of the liquid absorption process # 10.
 なお、上述したように、この吸液工程#10で、制御基板112による制御によってブレード122を断続的に回転させて穀物粒の表面に傷をつけるようにしてもよい。 Note that, as described above, in this liquid absorption step # 10, the blade 122 may be intermittently rotated under the control of the control board 112 to damage the surface of the grain.
 粉砕工程#20に入ったらブレード122を高速回転させ、穀物粒を粉砕する。粉砕の開始と同時に温度センサ113を用いて穀物粒と液体との混合物の温度を測定し、制御基板112の制御によって、混合物の温度が40℃となったらブレード122の回転を停止し、混合物の温度が30℃に低下したらブレード122の回転を再開するという間欠運転を行い、穀物粒の粉砕を行う。そして、ブレード122の回転が停止しているときに粉砕穀物粒をサンプリングして粒度の測定を行う。測定により所望の粒度が得られたら粉砕工程#20を終了する。これにより、粉砕穀物粒と液体との混合物からなる生地原料が形成される。 When entering the grinding step # 20, the blade 122 is rotated at a high speed to grind the grain. Simultaneously with the start of grinding, the temperature sensor 113 is used to measure the temperature of the mixture of cereal grains and liquid, and when the temperature of the mixture reaches 40 ° C. under the control of the control board 112, the rotation of the blade 122 is stopped. When the temperature drops to 30 ° C., the intermittent operation of restarting the rotation of the blade 122 is performed to grind the grain. Then, when the rotation of the blade 122 is stopped, the ground grain is sampled and the particle size is measured. When the desired particle size is obtained by the measurement, the pulverization step # 20 is finished. Thereby, the dough raw material which consists of a mixture of a pulverized grain and a liquid is formed.
 なお、粉砕工程#20のスタートは、吸液工程の終了後にスタートボタンを押すことによって始まるようにしてもよいし、自動的に始まるようにしてもよい。また、サンプリング時にブレード122が動き出さないように、例えば蓋121が外されている場合にはブレード122の回転が開始されない構成としてもよい。 The start of the pulverization process # 20 may be started by pressing a start button after the liquid absorption process is completed, or may be automatically started. Further, in order to prevent the blade 122 from moving during sampling, for example, when the lid 121 is removed, the blade 122 may not start rotating.
 粉砕工程#20が終了した時点で制御基板112によって加熱手段124と冷却手段125を温度センサ113の検知温度に基づいて適宜機能させて、生地温度が所望の温度(例えば28℃)で一定となるように温度制御を開始する。この温度制御の開始は例えば、温度制御開始用のボタンを設けて開始すればよい。また、粉砕工程#20が終了した時点で、蓋121を開け、所定量のグルテンと、必要に応じ所定量の調味材料を生地原料に投入する。 When the pulverization process # 20 is completed, the control substrate 112 causes the heating unit 124 and the cooling unit 125 to function appropriately based on the temperature detected by the temperature sensor 113, and the dough temperature becomes constant at a desired temperature (for example, 28 ° C.). Start the temperature control as follows. The temperature control may be started, for example, by providing a temperature control start button. Moreover, when the crushing step # 20 is completed, the lid 121 is opened, and a predetermined amount of gluten and a predetermined amount of seasoning material as necessary are put into the dough raw material.
 この後、蓋121を閉じて練り工程#30を開始する。練り工程#30ではブレード122を低速回転させ、生地原料及びそれに投入されたグルテンや調味材料を捏ねて一つにつながった生地を練り上げる。練り工程#30の開始時は、通常、所望の温度(例えば28℃)からずれている。温度制御により所望の温度となった時点で蓋121を開けて生地に所定量の発泡誘起材料(例えばドライイースト)を投入する。なお、所望の温度となったことをブザー音等の報知音で知らせる構成としてもよい。 Thereafter, the lid 121 is closed and the kneading step # 30 is started. In the kneading step # 30, the blade 122 is rotated at a low speed to knead the dough raw material, the gluten and the seasoning material added thereto, and knead the dough connected together. At the start of the kneading step # 30, the temperature is usually deviated from a desired temperature (for example, 28 ° C.). When the desired temperature is reached by temperature control, the lid 121 is opened, and a predetermined amount of foam-inducing material (for example, dry yeast) is put into the dough. In addition, it is good also as a structure which notifies that it became desired temperature by alerting sounds, such as a buzzer sound.
 発泡誘起材料を投入したら蓋121を閉め、ブレード122を低速回転させて生地と発泡誘起材料とを混練して生地を完成させる。その後、生地を容器120から取り出して、あるいは生地を容器120に入れたままで、生地の発泡が進むのを待つ。所望の発泡を得られたら生地をパン焼き装置に入れ、パンを焼く。 When the foam-inducing material is introduced, the lid 121 is closed, the blade 122 is rotated at a low speed, and the dough and the foam-inducing material are kneaded to complete the dough. Thereafter, the dough is taken out from the container 120, or the dough is kept in the container 120, and the process waits for the foaming of the dough to proceed. When the desired foaming is obtained, the dough is placed in a baking machine and the bread is baked.
 第1実施形態の場合と同様に、同一の容器120内で吸液工程#10から練り工程#30まで進行させることにより、時間を短縮できるともに、穀物粒や生地原料の一部が少しずつ目減りするという問題もなくなる。また、第1実施形態の場合と同様に、生地製造装置100において、粉砕工程#20と練り工程#30でブレード122の回転方向を変え、粉砕工程#20ではブレード122の片側の鋭いエッジが穀物粒に当たり、練り工程#30ではブレード122の他側の尖っていない端面が生地原料を押す、といった構成にしてもよい。 As in the case of the first embodiment, it is possible to shorten the time by proceeding from the liquid absorption process # 10 to the kneading process # 30 in the same container 120, and part of grain grains and dough raw materials are gradually reduced. The problem of doing is also eliminated. Similarly to the case of the first embodiment, in the dough manufacturing apparatus 100, the rotation direction of the blade 122 is changed in the crushing process # 20 and the kneading process # 30, and in the crushing process # 20, a sharp edge on one side of the blade 122 is a grain. In the kneading step # 30, the other non-pointed end face of the blade 122 may press the dough material.
4.その他
 以上に示した3つの実施形態では、加熱調理食品生地がパン生地である場合を例に挙げて説明したが、本発明の適用範囲はパン生地に限定される趣旨ではなく、加熱調理食品生地に広く適用可能である。例えば、生地の種類により、次のように粉砕、練り工程が実行される。なお、第1実施形態のパン生地の製造方法が他の生地の製造方法として適用される場合は、いずれの生地の場合も、粉砕工程で粉砕期間と吸液期間とが交互に繰り返される構成となり、効率良く加熱調理食品生地を製造できる。また、第2実施形態のパン生地の製造方法が他の生地の製造方法として適用される場合は、いずれの生地の場合も、粉砕工程の前に行われる吸液工程において穀物粒が浸漬されている液体に熱を加える構成となり、効率良く加熱調理食品生地を製造できる。また、第3実施形態のパン生地の製造方法が他の生地の製造方法として適用される場合は、いずれの生地の場合も、粉砕工程において、混合物の温度に基づいて粉砕ブレードを間欠回転する構成となり、効率良く加熱調理食品生地を製造できる。
4). Others In the above-described three embodiments, the case where the cooked food dough is bread dough has been described as an example. However, the scope of the present invention is not limited to bread dough, Applicable. For example, the crushing and kneading processes are executed as follows depending on the type of dough. In addition, when the bread dough manufacturing method of the first embodiment is applied as a method for manufacturing other dough, in any case of dough, the pulverization process and the liquid absorption period are alternately repeated in the pulverization step. The cooked food dough can be manufactured efficiently. Moreover, when the bread dough manufacturing method of the second embodiment is applied as a method for manufacturing other dough, in any case, the grain is soaked in the liquid absorption step performed before the crushing step. It becomes the structure which adds heat to a liquid, and can cook a cooked food dough efficiently. In addition, when the bread dough manufacturing method of the third embodiment is applied as another dough manufacturing method, in any of the doughs, the crushing blade is intermittently rotated based on the temperature of the mixture in the crushing step. , Can efficiently cook cooked food dough.
 <ケーキ生地>
 パン生地と同じくらいの液体の割合で穀物粒と液体を混合し、粉砕工程を実行する。生地原料に卵、砂糖、ベーキングパウダーなどを投入し、練り工程を実行する。これにより、柔らかいペースト状の生地が得られる。
 <うどん生地>
 粉砕工程の後、生地原料に塩を投入して練り工程を実行する。これにより、パン生地よりも硬く、弾力のある生地が得られる。
 <パスタ生地>
 粉砕工程の後、生地原料に塩と油を投入して練り工程を実行する。これにより、パン生地よりも硬く、弾力のある生地が得られる。
<Cake dough>
Mix the grain and liquid in the same proportion of liquid as dough and execute the grinding process. Eggs, sugar, baking powder, etc. are added to the dough ingredients and the kneading process is executed. Thereby, a soft paste-like dough is obtained.
<Udon dough>
After the pulverization step, salt is added to the dough material and the kneading step is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
<Pasta dough>
After the pulverization step, salt and oil are added to the dough material and the kneading step is executed. Thereby, the dough which is harder than bread dough and has elasticity is obtained.
 本発明は、加熱調理食品の生地を製造する際に広く適用でき、例えばパン生地の製造に好適である。 The present invention can be widely applied to the production of cooked food dough, and is suitable, for example, for the production of bread dough.
  100 生地製造装置
  120 容器
  122 ブレード
100 dough production apparatus 120 container 122 blade

Claims (14)

  1.  穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、
     粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を備える加熱調理食品生地の製造方法であって、
     前記粉砕工程においては、前記粉砕ブレードを回転して前記穀物粒を粉砕する粉砕期間と、前記粉砕ブレードの回転を止めて前記穀物粒に吸液させる吸液期間と、が交互に繰り返されることを特徴とする加熱調理食品生地製造方法。
    A crushing step of crushing the grain by rotating a grinding blade in a mixture containing the grain and liquid;
    A kneading step of kneading a dough raw material containing the pulverized grains and the liquid into a dough with a blade, and a method for producing a cooked food dough comprising:
    In the pulverization step, the pulverization period in which the pulverization blade is rotated to pulverize the grain grains and the liquid absorption period in which the pulverization blade is stopped to absorb the liquid grains are alternately repeated. A method for producing a cooked food dough.
  2.  前記吸液期間の長さは、前記粉砕期間の長さよりも長いことを特徴とする請求項1に記載の加熱調理食品生地製造方法。 The cooked food dough manufacturing method according to claim 1, wherein the length of the liquid absorption period is longer than the length of the pulverization period.
  3.  前記粉砕期間の長さが一定でないことを特徴とする請求項1に記載の加熱調理食品生地製造方法。 The cooked food dough manufacturing method according to claim 1, wherein the length of the pulverization period is not constant.
  4.  前記粉砕期間の長さは、前記粉砕工程の初期と終期とを比較すると、前記初期の場合の方が短いことを特徴とする請求項3に記載の加熱調理食品生地製造方法。 The cooked food dough manufacturing method according to claim 3, characterized in that the length of the pulverization period is shorter in the initial case when comparing the initial and final stages of the pulverization step.
  5.  穀物粒に吸液させる吸液工程と、
     吸液した前記穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、
     粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を含み、
     前記吸液工程中に、前記穀物粒が浸漬されている液体を加熱することを特徴とする加熱調理食品生地製造方法。
    A liquid absorption process for absorbing the grains,
    A pulverizing step of pulverizing the cereal grains by rotating a pulverizing blade in a mixture containing the absorbed cereal grains and liquid;
    A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a blade, and
    A method for producing a cooked food dough, wherein the liquid in which the grain is immersed is heated during the liquid absorption step.
  6.  前記吸液工程においては、前記穀物粒が浸漬されている液体を加熱後に冷却処理することを特徴とする請求項5に記載の加熱調理食品生地製造方法。 6. The cooked food dough manufacturing method according to claim 5, wherein in the liquid absorption step, the liquid in which the grain is immersed is heated and then cooled.
  7.  前記吸液工程においては、前記穀物粒が浸漬されている液体を加熱して第1の温度まで温めた後、前記第1の温度を維持する温度制御が所定の時間行われ、その後、前記冷却処理により前記穀物粒が浸漬されている液体の温度を前記第1の温度より低い第2の温度へと下げることを特徴とする請求項6に記載の加熱調理食品生地製造方法。 In the liquid absorption step, after the liquid in which the grain is immersed is heated and heated to the first temperature, temperature control for maintaining the first temperature is performed for a predetermined time, and then the cooling is performed. The method for producing a cooked food dough according to claim 6, wherein the temperature of the liquid in which the grain is immersed is lowered to a second temperature lower than the first temperature by the treatment.
  8.  前記練り工程では、生地温度を一定の温度に維持するように温度制御が行われ、
     前記第2の温度は前記一定の温度より低いことを特徴とする請求項7に記載の加熱調理食品生地製造方法。
    In the kneading step, temperature control is performed so as to maintain the dough temperature at a constant temperature,
    The method for producing a cooked food dough according to claim 7, wherein the second temperature is lower than the certain temperature.
  9.  前記粉砕工程は、粉砕により得られるペーストの温度が前記一定の温度となった時点で終了されることを特徴とする請求項8に記載の加熱調理食品生地製造方法。 The cooked food dough manufacturing method according to claim 8, wherein the pulverizing step is terminated when the temperature of the paste obtained by pulverization reaches the constant temperature.
  10.  前記吸液工程においては、前記穀物粒が浸漬されている液体が加熱により第1の温度まで温められ、その後、前記第1の温度を維持する温度制御が所定の時間行われることを特徴とする請求項5に記載の加熱調理食品生地製造方法。 In the liquid-absorbing step, the liquid in which the grain is immersed is heated to the first temperature by heating, and then temperature control for maintaining the first temperature is performed for a predetermined time. The method for producing a cooked food dough according to claim 5.
  11.  穀物粒と液体とを含む混合物の中で粉砕ブレードを回転させて前記穀物粒を粉砕する粉砕工程と、
     粉砕された前記穀物粒と前記液体とを含む生地原料を練りブレードで生地に練り上げる練り工程と、を含み、
     前記粉砕工程では、前記粉砕ブレードの回転を前記混合物の温度が第1の温度となったら停止し、停止後に前記混合物の温度が前記第1の温度より低い第2の温度に低下したら前記粉砕ブレードの回転を再開するという間欠回転を行って前記穀物粒の粉砕を行うことを特徴とする加熱調理食品生地製造方法。
    A crushing step of crushing the grain by rotating a grinding blade in a mixture containing the grain and liquid;
    A kneading step of kneading the dough raw material containing the pulverized grains and the liquid into a dough with a blade, and
    In the pulverizing step, the rotation of the pulverizing blade is stopped when the temperature of the mixture reaches the first temperature, and the pulverizing blade is stopped when the temperature of the mixture decreases to a second temperature lower than the first temperature after the stop. A method for producing a cooked food dough, characterized in that the grains are pulverized by intermittent rotation in which the rotation of the food is resumed.
  12.  前記粉砕工程の途中で前記穀物粒の粒度を測定して前記粉砕工程を終了するか否か判定することを特徴とする請求項11に記載の加熱調理食品生地製造方法。 The method for producing a cooked food dough according to claim 11, wherein the grain size of the grain is measured during the pulverization step to determine whether or not the pulverization step is finished.
  13.  前記粉砕工程の前に、前記穀物粒に吸液させる吸液工程が行われることを特徴とする請求項11に記載の加熱調理食品生地製造方法。 The method for producing a cooked food dough according to claim 11, wherein a liquid absorbing step for absorbing the grains is performed before the crushing step.
  14.  請求項1から13のいずれかに記載の加熱調理食品生地製造方法が適用される生地製造装置。 A dough manufacturing apparatus to which the cooked food dough manufacturing method according to any one of claims 1 to 13 is applied.
PCT/JP2010/056425 2009-04-10 2010-04-09 Method of producing processed cooking food stuff and device of producing stuff WO2010117053A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080016053.2A CN102387708B (en) 2009-04-10 2010-04-09 The raw face preparation method of cooking food and raw face producing device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-096004 2009-04-10
JP2009096004A JP5609002B2 (en) 2009-04-10 2009-04-10 Cooked food dough manufacturing method and dough manufacturing apparatus
JP2009194123A JP5672679B2 (en) 2009-08-25 2009-08-25 Cooked food dough manufacturing method and dough manufacturing apparatus
JP2009-194123 2009-08-25

Publications (1)

Publication Number Publication Date
WO2010117053A1 true WO2010117053A1 (en) 2010-10-14

Family

ID=42936334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056425 WO2010117053A1 (en) 2009-04-10 2010-04-09 Method of producing processed cooking food stuff and device of producing stuff

Country Status (3)

Country Link
CN (1) CN102387708B (en)
TW (1) TW201036552A (en)
WO (1) WO2010117053A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5609001B2 (en) * 2009-04-10 2014-10-22 三洋電機株式会社 Cooked food dough manufacturing method and dough manufacturing apparatus
CN114515106A (en) * 2022-02-28 2022-05-20 广东美的厨房电器制造有限公司 Method and device for making cooked wheaten food, readable storage medium and cooking equipment

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2004255163A (en) * 2003-02-07 2004-09-16 Niigata Gourmet:Kk Automatic breadmaker and method of making bread
JP2004261232A (en) * 2003-02-19 2004-09-24 Shitogi Japan:Kk Automatic bread maker and production method for bread utilizing the same
JP2006280824A (en) * 2005-04-05 2006-10-19 Sanyo Electric Co Ltd Automatic bread maker
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2009125515A (en) * 2007-11-28 2009-06-11 Sanyo Electric Co Ltd Automatic bread maker
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2134511C1 (en) * 1998-12-25 1999-08-20 Калниш Григорий Изеславович Grain bread production method
CN1108761C (en) * 1999-12-01 2003-05-21 中国农业大学 Production process of instant fresh rice flour noodles
CN2579301Y (en) * 2002-09-30 2003-10-15 何志鹏 Combined coffee stirrer
KR101050052B1 (en) * 2002-11-25 2011-07-19 가부시끼가이샤 하야시바라 세이부쓰 가가꾸 겐꾸조 Manufacturing method of rice flour and its use
CN201061486Y (en) * 2007-07-05 2008-05-21 赵占良 Through-axle drive type integrated machine for stirring and processing food milling lymph
JP5609001B2 (en) * 2009-04-10 2014-10-22 三洋電機株式会社 Cooked food dough manufacturing method and dough manufacturing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069898A (en) * 1998-09-03 2000-03-07 Mk Seiko Co Ltd Food processing apparatus provided with rice polishing function and rice-polishing apparatus
JP2004255163A (en) * 2003-02-07 2004-09-16 Niigata Gourmet:Kk Automatic breadmaker and method of making bread
JP2004261232A (en) * 2003-02-19 2004-09-24 Shitogi Japan:Kk Automatic bread maker and production method for bread utilizing the same
JP2006280824A (en) * 2005-04-05 2006-10-19 Sanyo Electric Co Ltd Automatic bread maker
JP2006334151A (en) * 2005-06-02 2006-12-14 Mk Seiko Co Ltd Automatic bread maker
JP2009125515A (en) * 2007-11-28 2009-06-11 Sanyo Electric Co Ltd Automatic bread maker
WO2010016400A1 (en) * 2008-08-05 2010-02-11 三洋電機株式会社 Method for producing food dough to be cooked and method for producing bread

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ATSUSHI FUJITA ET AL.: "Funsai Joken no Kotonaru Komeko no Rheology Tokusei to Happo Seikeisei", SEIKEI KAKO, vol. 16, 2005, pages 263 - 264 *
KAZUNORI EGAWA: "Ine Riyo eno Aratana Michi o Hiraku Komeko Pan no Kaihatsu", RESEARCH JOURNAL OF FOOD AND AGRICULTURE, vol. 26, no. 10, 2003, pages 11 - 16 *
KOJI TAKEYA: "Atarashii Seipan Kiso Chishiki", KABUSHIKI KAISHA PAN NEWS SHA, 2 September 2009 (2009-09-02), pages 21 - 22 *
MAKOTO HATTO: "'Gopan' no Susume! sono 1 Rice Bread no Fukyu de Kome Juyo no Kakudai e!", SHOKU NO KAGAKU, 2001, pages 53 - 59 *
MIHO OKADOME ET AL.: "Effects of Manufacturing Methods of Rice Flour on Fermentation of Dough and Bread-making", BULLETIN OF THE WAYO WOMEN'S UNIVERSITY, vol. 48, 31 March 2008 (2008-03-31), pages 45 - 54 *

Also Published As

Publication number Publication date
TW201036552A (en) 2010-10-16
CN102387708A (en) 2012-03-21
CN102387708B (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP5430895B2 (en) Cooking food dough manufacturing method
WO2010016400A1 (en) Method for producing food dough to be cooked and method for producing bread
JP5810280B2 (en) Automatic bread machine
JP2010035476A (en) Method for producing bread
JP5609002B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
JP5167169B2 (en) Cooking food dough manufacturing method
JP5609001B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
JP5716162B2 (en) Automatic bread machine
WO2010117053A1 (en) Method of producing processed cooking food stuff and device of producing stuff
JP5672679B2 (en) Cooked food dough manufacturing method and dough manufacturing apparatus
JP5167168B2 (en) Cooking food dough manufacturing method
JP6528084B2 (en) Automatic bread maker
JP5810278B2 (en) Automatic bread machine
JP6082975B2 (en) Automatic bread machine
JP5870245B2 (en) Automatic bread machine
JP5870244B2 (en) Automatic bread machine
JP6082976B2 (en) Automatic bread machine
JP5938556B2 (en) Automatic bread machine
JP2016150125A (en) Automatic bread maker
JP5903536B2 (en) Automatic bread machine
JP2011125380A (en) Automatic bread maker
JP2016129581A (en) Automatic bread making device
JP2013223564A (en) Automatic bread maker

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016053.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761752

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 6205/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761752

Country of ref document: EP

Kind code of ref document: A1