WO2012063518A1 - Automatic breadmaker - Google Patents

Automatic breadmaker Download PDF

Info

Publication number
WO2012063518A1
WO2012063518A1 PCT/JP2011/064739 JP2011064739W WO2012063518A1 WO 2012063518 A1 WO2012063518 A1 WO 2012063518A1 JP 2011064739 W JP2011064739 W JP 2011064739W WO 2012063518 A1 WO2012063518 A1 WO 2012063518A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
unit
power supply
kneading
bread
Prior art date
Application number
PCT/JP2011/064739
Other languages
French (fr)
Japanese (ja)
Inventor
あつみ 高濱
小倉 久幸
井尻 準之介
久美子 岡本
Original Assignee
三洋電機株式会社
三洋電機コンシューマエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010250476A external-priority patent/JP2012100793A/en
Priority claimed from JP2010250474A external-priority patent/JP2012100791A/en
Priority claimed from JP2010250477A external-priority patent/JP2012100794A/en
Application filed by 三洋電機株式会社, 三洋電機コンシューマエレクトロニクス株式会社 filed Critical 三洋電機株式会社
Publication of WO2012063518A1 publication Critical patent/WO2012063518A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/02Mixing or kneading machines for the preparation of dough with vertically-mounted tools; Machines for whipping or beating
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B7/00Baking plants
    • A21B7/005Baking plants in combination with mixing or kneading devices
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21CMACHINES OR EQUIPMENT FOR MAKING OR PROCESSING DOUGHS; HANDLING BAKED ARTICLES MADE FROM DOUGH
    • A21C1/00Mixing or kneading machines for the preparation of dough
    • A21C1/12Mixing or kneading machines for the preparation of dough for the preparation of dough directly from grain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/051Stirrers characterised by their elements, materials or mechanical properties
    • B01F27/054Deformable stirrers, e.g. deformed by a centrifugal force applied during operation
    • B01F27/0543Deformable stirrers, e.g. deformed by a centrifugal force applied during operation the position of the stirring elements depending on the direction of rotation of the stirrer

Definitions

  • the present invention relates to an automatic bread maker mainly used in general households.
  • an automatic bread maker for home use generally has a mechanism for producing bread by directly using a bread container into which bread ingredients are placed (see, for example, Patent Document 1).
  • a bread container in which bread ingredients are placed is placed in a baking chamber in the main body.
  • the bread raw material in a bread container is kneaded into bread dough with the kneading blade provided in a bread container (kneading process).
  • a fermentation process for fermenting the kneaded bread dough is performed, and the bread container is used as a baking mold to bake the bread (baking process).
  • this bread manufacturing method first, cereal grains and liquid are mixed, and the crushed blade is rotated in this mixture to pulverize the cereal grains (grinding step). And the bread raw material containing the paste-form ground powder obtained through the grinding process is kneaded into bread dough using a kneading blade (kneading process). Thereafter, a fermentation process for fermenting the kneaded bread dough is performed, followed by a baking process for baking the bread.
  • an automatic bread maker that can produce bread using cereal grains as a starting material includes a motor for crushing used in the crushing process and a kneading machine used in the kneading process. It is considered preferable to employ a configuration in which the motor is separately provided.
  • Such an automatic bread maker having two motors is unprecedented, and a new mechanism for manufacturing bread by accurately driving each of these two motors is required.
  • an object of the present invention is to provide an automatic bread maker that can accurately drive each of a plurality of motors.
  • the automatic bread maker of the present invention provides a driving shaft that can be connected to a bread container into which bread ingredients are charged so that the rotating power can be transmitted, and a rotating power that rotates at a low speed to the driving shaft.
  • the switching unit electrically and mechanically connects the power supply unit and one of the first motor and the second motor. That is, it is possible to prevent the power supply unit from being connected to both the first motor and the second motor and supplying power thereto.
  • the direction in which the first motor rotates the driving shaft and the direction in which the second motor rotates the driving shaft may be reversed.
  • the switching unit prevents the first motor and the second motor from being driven simultaneously. Therefore, it is possible to prevent the automatic bread maker from being damaged by the simultaneous driving of the first motor and the second motor.
  • the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled.
  • a control unit that acquires a detection result of the detection unit, and the control unit acquires the control unit so that the power supply unit and the first motor are connected to each other. If it is confirmed that the power supply unit supplies a current having a magnitude equal to or larger than the first threshold based on the detection result of the detection unit, the bread making operation may be stopped.
  • the control unit when the control unit performs control to drive the first motor, the connection state of the switching unit is abnormal based on the detection result (for example, the power supply unit and the second motor are If it is determined that it is connected by mistake, the bread making operation is stopped. Therefore, for example, it is possible to prevent the control unit from driving the second motor by mistake.
  • the control unit checks a detection result of the detection unit at predetermined timings, and the control unit connects the power supply unit and the first motor.
  • the switching unit is controlled as described above, when it is confirmed that the power supply unit supplies a current having a magnitude equal to or larger than the first threshold continuously for the first number of times or more, You may control to stop operation
  • the control unit confirms the detection result indicating that the connection state of the switching unit is abnormal, if it does not confirm the first number of times or more, it is not determined to be abnormal, and the bread making operation is stopped. do not do. Therefore, when the detection state indicating that the connection state is abnormal occurs suddenly even though the connection state of the switching unit is correct (the power supply unit and the first motor are connected), It is possible to suppress the control unit from stopping the bread making operation.
  • the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled.
  • a control unit that acquires a detection result of the detection unit, and the control unit acquires the control unit so that the power supply unit and the second motor are connected to each other. If it is confirmed that the power supply unit supplies a current having a magnitude equal to or smaller than the second threshold based on the detection result of the detection unit, the bread making operation may be stopped.
  • the control unit when the control unit performs control to drive the second motor, the connection state of the switching unit is abnormal based on the detection result (for example, the power supply unit and the first motor are If it is determined that it is connected by mistake, the bread making operation is stopped. Therefore, for example, it is possible to prevent the control unit from driving the first motor by mistake.
  • the control unit checks a detection result of the detection unit at predetermined timings, and the control unit connects the power supply unit and the second motor.
  • the switching unit is controlled as described above, when it is confirmed that the power supply unit supplies a current having a magnitude equal to or smaller than the second threshold continuously for a second number of times or more, You may control to stop operation
  • the control unit confirms the detection result indicating that the connection state of the switching unit is abnormal, it does not determine that there is an abnormality unless it is confirmed more than the second number of times, and stops the bread making operation. do not do. Therefore, a detection result indicating that the connection state is abnormal occurs suddenly or transiently even though the connection state of the switching unit is correct (the power supply unit and the second motor are connected). In this case, it is possible to suppress the control unit from stopping the bread making operation.
  • the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled.
  • a control unit that acquires a detection result of the detection unit, wherein the control unit checks a detection result of the detection unit at every predetermined timing, and the control unit includes the power supply unit.
  • the switching unit is controlled so that the first motor is connected to the first motor
  • the power supply unit supplies a current having a magnitude greater than or equal to the first threshold continuously for the first number of times or more.
  • the control unit controls the switching unit so that the power supply unit and the second motor are connected. , Continuously for the second or more times.
  • the bread making operation is controlled to stop, and the second number is more than the first number. May be large.
  • the second number of times for the control unit to determine that the connection state of the switching unit is abnormal is determined.
  • the control unit is larger than the first number of times for determining that the connection state of the switching unit is abnormal. Therefore, the control unit can more accurately determine that the connection state of the switching unit is abnormal.
  • the detection unit includes a first coil connected in series to the power supply unit, the first motor, and the second motor, and the first coil.
  • the switching unit switches a connection between the power supply unit and the first motor and the second motor, and switches the connection of the switch depending on whether power is supplied or not. It is good also as a structure which is a relay provided with 3 coils. According to this configuration, the power supply unit and any of the first motor and the second motor can be electrically and mechanically connected with a simple configuration, and the connection can be switched.
  • an abnormality in at least one of the power supply state detection unit that detects the state of the power supply unit included in the power supply unit, and the first motor and the second motor An abnormality detection unit that detects the abnormality of the motor, and the abnormality detection unit may set a reference for detecting an abnormality of the motor as being different depending on a detection result of the power supply state detection unit. .
  • the abnormality detection unit sets a reference according to the state of the power supply unit, and detects a motor abnormality based on the reference. Therefore, it is possible to detect an abnormality of the motor with high accuracy according to the state fluctuation of the power supply unit.
  • the automatic bread maker further includes a supply current detection unit that detects the magnitude of the current supplied to the motor, and the abnormality detection unit has a threshold value according to the detection result of the power supply state detection unit,
  • the abnormality detection unit confirms that the magnitude of the current supplied to the motor is greater than or equal to the threshold based on the detection result of the supply current detection unit, the motor is set as the reference. It is good also as detecting abnormality of. According to this configuration, even if an excessive current is generated in the circuit due to the motor being locked or the like, the situation can be detected as abnormal.
  • the abnormality detection unit confirms the detection result of the supply current detection unit at a predetermined timing, and the abnormality detection unit is continuously performed a predetermined number of times or more. If it is confirmed that the magnitude of the current supplied to the motor is equal to or greater than the threshold value, an abnormality of the motor may be detected. According to this configuration, the abnormality detection unit does not determine that there is an abnormality unless a detection result indicating that a current equal to or greater than the threshold is supplied to the motor is continuously obtained from the supply current detection unit. Therefore, it is possible to suppress the abnormality detection unit from detecting an abnormality and inhibiting the operation of the automatic bread maker until the current supplied to the motor suddenly exceeds the threshold value.
  • the abnormality detection unit sets the larger threshold as the voltage supplied by the power supply unit increases. Also good. According to this configuration, a threshold suitable for the power supplied by the power supply unit can be set. Therefore, the abnormality detection unit can detect the abnormality of the motor with high accuracy.
  • the abnormality detection unit is not confused with the case where the power supply unit supplies normal power and the motor does not have an abnormality when the motor has an abnormality and the motor has an abnormality. It becomes possible to detect abnormality of the motor.
  • the abnormality detection unit is not confused when the power supply unit supplies normal power and the motor is normal, and the power supply unit supplies normal power and the motor is abnormal. It becomes possible not to detect.
  • the power supply unit supplies AC power
  • the abnormality detection unit sets the threshold value that can vary depending on the frequency of AC power supplied by the power supply unit. It is good. According to this configuration, a threshold suitable for the frequency of the AC power supplied by the power supply unit can be set. Therefore, the abnormality detection unit can detect the abnormality of the motor with high accuracy.
  • the abnormality detection unit detects at least an abnormality of the second motor, and the second motor is put into the bread container by a pulverization blade interlocked with the driving shaft.
  • the driving shaft may be given rotational power.
  • the abnormality detection unit detects an abnormality of the motor that requires high-speed rotation of the driving shaft and that is likely to be locked due to pulverization of the grain. Therefore, it is possible to effectively increase the safety of the automatic bread maker and effectively suppress the occurrence of failure.
  • the switching unit electrically and mechanically connects the power supply unit and one of the first motor and the second motor. Therefore, each of the first motor and the second motor can be accurately driven.
  • it is possible to detect a motor abnormality with high accuracy according to the state of the power supply unit. Therefore, the safety of the automatic bread maker can be improved and the occurrence of failure can be suppressed.
  • the schematic perspective view which shows the external appearance structure of the automatic bread maker of 1st Embodiment.
  • the schematic diagram for demonstrating the structure inside the main body of the automatic bread maker of 1st Embodiment.
  • the figure which shows the state which a clutch cuts off power The figure for demonstrating the clutch contained in the 1st power transmission part with which the automatic bread maker of 1st Embodiment is equipped,
  • the figure which shows the state in which a clutch transmits power The figure which shows typically the structure of the baking chamber in which the bread container was accommodated, and its periphery in the automatic bread maker of 1st Embodiment.
  • FIG. 3 is a schematic plan view of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, and a view when the kneading blade is in a folded posture.
  • FIG 3 is a schematic plan view of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, and a view when the kneading blade is in an open posture.
  • the figure when the bread container with which the automatic bread maker of 1st Embodiment is provided is seen from the top, and the figure when a kneading blade is in a folding posture
  • the figure when the bread container provided in the automatic bread maker of the first embodiment is viewed from above, and the figure when the kneading blade is in the open posture
  • the block diagram which shows the structure of the automatic bread maker of 1st Embodiment.
  • the schematic diagram which shows the flow of the bread-making course for rice grains performed with the automatic bread maker of 1st Embodiment.
  • the circuit diagram which shows the drive circuit of the motor with which the automatic bread maker of 1st Embodiment is provided.
  • the flowchart which shows the confirmation operation of the abnormality of the relay by the control apparatus with which the automatic bread maker of 1st Embodiment is provided.
  • the block diagram which shows the structure of the automatic bread maker of 2nd Embodiment.
  • the circuit diagram which shows the motor drive circuit with which the automatic bread maker of 2nd Embodiment is provided.
  • pulverization motor by the control apparatus with which the automatic bread maker of 2nd Embodiment is provided.
  • the block diagram which shows the structure of the automatic bread maker of 3rd Embodiment.
  • the circuit diagram which shows the motor drive circuit with which the automatic bread maker of 3rd Embodiment is provided.
  • FIG. 1 is a schematic perspective view showing an external configuration of the automatic bread maker according to the first embodiment.
  • an operation unit 20 is provided on a part of the upper surface of a main body 10 (the outer shell of which is formed of, for example, metal or synthetic resin) of an automatic bread maker 1 provided in a substantially rectangular parallelepiped shape. It has been.
  • the operation unit 20 includes an operation key group and a display unit that displays time, contents set by the operation key group, errors, and the like.
  • the operation key group includes, for example, a start key, a cancel key, a timer key, a reservation key, a bread manufacturing course (a course for manufacturing bread using rice grains as a starting material, a course for manufacturing bread using rice flour as a starting material) And a selection key for selecting a course for producing bread using flour as a starting material.
  • the display unit is configured by, for example, a liquid crystal display panel.
  • the firing chamber 30 is composed of, for example, a bottom wall 30a made of sheet metal and four side walls 30b (see also FIG. 4 described later).
  • the baking chamber 30 has a substantially rectangular box shape in plan view, and its upper surface is open.
  • the firing chamber 30 can be opened and closed by a lid 40 provided on the upper part of the main body 10.
  • the lid 40 is attached to the back side of the main body 10 with a hinge shaft (not shown), and the firing chamber 30 can be opened and closed by rotating about the hinge shaft as a fulcrum.
  • FIG. 1 shows a state where the lid 40 is opened.
  • the lid 40 is provided with a viewing window 41 made of heat-resistant glass, for example, so that the inside of the baking chamber 30 can be seen.
  • a bread ingredient storage container 42 is attached to the lid 40. This bread ingredient storage container 42 makes it possible to automatically feed some bread ingredients during the bread production process.
  • the bread raw material storage container 42 includes a box-shaped container body 42a having a substantially rectangular plane shape, and a container lid 42b that is provided so as to be rotatable with respect to the container body 42a and opens and closes the opening of the container body 42a. .
  • the bread ingredient storage container 42 can support the container lid 42b from the outer surface (lower surface) side and maintain the closed state of the opening of the container body 42a, and is moved by an external force to move the container lid 42b to the container lid 42b. There is also provided a movable hook 42c for releasing the engagement.
  • An automatic closing solenoid 16 (see FIG. 10 to be described later) is provided in the main body 10 on the lower side of the operation unit 20, and when the automatic closing solenoid is driven, the plunger wall surface of the main body adjacent to the lid 40. It protrudes from an opening 10b provided in 10a. Then, the movable hook 42c is moved by a movable member (not shown) movable by the protruding plunger, the engagement between the container lid 42b and the movable hook 42c is released, the container lid 42b is rotated, and the container main body 42a. The opening of is opened. Note that FIG. 1 shows a state where the opening of the container main body 42a is opened.
  • the container main body 42a and the container lid 42b are preferably provided with a metal such as aluminum so that powder bread materials (for example, gluten, dry yeast, etc.) stored in the container do not remain in the container. These surfaces are preferably covered with a silicon-based or fluorine-based coating layer, and more preferably configured to be covered with an alumite layer. Moreover, it is preferable that the container main body 42a and the container lid 42b are formed as smoothly as possible without being uneven. The same applies to the members on the inner side of the lid 40 (the side on which the bread ingredient storage container 42 is attached), and it is preferable that the base is made of aluminum and the surface is covered with a coating layer such as silicon or fluorine or an alumite layer. .
  • a flange is provided at the opening side edge of the container main body 42a so that the aforementioned steam or the like does not enter the container, and a packing is provided between the flange and the container lid 42b. (Seal member) 42d is interposed.
  • FIG. 2 is a schematic diagram for explaining the internal configuration of the main body of the automatic bread maker according to the first embodiment.
  • FIG. 2 assumes a case where the automatic bread maker 1 is viewed from above, and the lower side of the figure is the front side of the automatic bread maker 1 and the upper side of the figure is the back side.
  • a low-speed / high-torque type kneading motor 50 used in the kneading process is fixedly disposed on the right side of the baking chamber 30, and the grinding process is performed behind the baking chamber 30.
  • the high-speed rotation type crushing motor 60 used in the above is fixedly arranged.
  • the kneading motor 50 and the crushing motor 60 are both shafts.
  • the kneading motor 50 is an example of the first motor of the present invention
  • the crushing motor 60 is an example of the second motor of the present invention.
  • the first pulley 52 is fixed to the output shaft 51 protruding from the upper surface of the kneading motor 50.
  • the first pulley 52 is connected by a first belt 53 to a second pulley 55 having a diameter larger than that of the first pulley 52 and fixed to the upper side of the first rotating shaft 54.
  • a second rotating shaft 57 is provided on the lower side of the first rotating shaft 54 so that the center of rotation is substantially the same as the first rotating shaft 54 (see FIGS. 3A and 3B described later).
  • the first rotating shaft 54 and the second rotating shaft 57 are rotatably supported inside the main body 10.
  • a clutch 56 that performs power transmission and power interruption is provided between the first rotating shaft 54 and the second rotating shaft 57 (see FIGS. 3A and 3B described later). The configuration of the clutch 56 will be described later.
  • a third pulley 58 is fixed to the lower side of the second rotating shaft 57 (see FIGS. 3A and 3B described later).
  • the third pulley 58 is provided on the lower side of the firing chamber 30 by the second belt 59 and is fixed to the driving shaft 11 and has a first driving shaft pulley 12 (having substantially the same diameter as the third pulley 58). (See FIGS. 3A and 3B described later).
  • the kneading motor 50 itself is a low speed / high torque type, and the rotation of the first pulley 52 is decelerated and rotated by the second pulley 55 (for example, decelerated to 1/5 speed). For this reason, when the kneading motor 50 is driven in a state where the clutch 56 transmits power, the driving shaft 11 rotates at a low speed.
  • first pulley 52 the first belt 53, the first rotating shaft 54, the second pulley 55, the clutch 56, the second rotating shaft 57, the third pulley 58, and the second belt 59 are used.
  • first driving shaft pulley 12 may be expressed as a first power transmission unit PT1.
  • a fourth pulley 62 is fixed to the output shaft 61 protruding from the lower surface of the grinding motor 60.
  • the fourth pulley 62 is fixed by a third belt 63 below the second driving shaft pulley 13 (below the first driving shaft pulley 12) fixed to the driving shaft 11; 3A and FIG. 3B).
  • the second driving shaft pulley 13 has substantially the same diameter as the fourth pulley 62.
  • the power transmission unit including the fourth pulley 62, the third belt 63, and the second driving shaft pulley 13 may be expressed as a second power transmission unit PT2.
  • the second power transmission unit PT2 has a configuration that does not have a clutch, and connects the output shaft 61 of the crushing motor 60 and the driving shaft 11 so that power can be transmitted constantly.
  • 3A and 3B are views for explaining a clutch included in the first power transmission unit included in the automatic bread maker of the first embodiment.
  • 3A and 3B are diagrams assuming a case of viewing along the direction of the arrow X in FIG. 3A shows a state in which the clutch 56 performs power interruption, and FIG. 3B shows a state in which the clutch 56 transmits power.
  • the clutch 56 includes a first clutch member 561 and a second clutch member 562. Then, when the claw 561a provided on the first clutch member 561 and the claw 562a provided on the second clutch member 562 are engaged with each other (the state shown in FIG. 3B), the clutch 56 transmits power. Further, when the two claws 561a and 562a are not engaged with each other (the state shown in FIG. 3A), the clutch 56 cuts off the power. That is, the clutch 56 is a meshing clutch.
  • each of the two clutch members 561 and 562 has a circumferential direction (when the first clutch member 561 is seen in plan view from below, or the second clutch member 562 is seen in plan view from above. Assuming the case), six claws 561a and 562a arranged at almost equal intervals are provided, but the number of the claws may be appropriately changed. Moreover, what is necessary is just to select a preferable shape suitably for the shape of nail
  • the first clutch member 561 is slidable in the axial direction (vertical direction in FIGS. 3A and 3B) with respect to the first rotating shaft 54 and is not relatively rotatable. It is attached.
  • a spring 71 is loosely fitted on the upper side of the first clutch member 561 of the first rotating shaft 54.
  • the spring 71 is disposed so as to be sandwiched between a stopper portion 54a provided on the first rotating shaft 54 and the first clutch member 561, and biases the first clutch member 561 downward.
  • the second clutch member 562 is fixed to the upper end of the second rotating shaft 57.
  • Switching between the power transmission state and the power cut-off state in the clutch 56 is performed using the arm portion 72 that can be selectively arranged at the lower position and the upper position.
  • a part of the arm portion 72 is disposed below the first clutch member 561 and can contact the outer peripheral portion of the first clutch member 561.
  • the first clutch member 561 moves downward while being pushed by the urging force of the spring 71.
  • the first clutch member 561 and the second clutch member 562 are engaged with each other. That is, when the arm portion 72 is in the lower position, the clutch 56 transmits power.
  • the automatic bread maker 1 includes the clutch 56 that performs power transmission and power interruption in the first power transmission unit PT1.
  • the second power transmission unit PT2 is not provided with a clutch, for the following reason. That is, even if the kneading motor 50 is driven, the driving shaft 11 is only rotated at a low speed (for example, 180 rpm). For this reason, even if the rotational power for rotating the driving shaft 11 is transmitted to the output shaft of the crushing motor 60, a large load is not applied to the kneading motor 50. And the manufacturing cost of the automatic bread maker 1 is suppressed by adopting the structure in which the clutch is not provided in the second power transmission part PT2 in this way. However, it goes without saying that a configuration in which a clutch is provided in the second power transmission unit PT2 may be adopted.
  • FIG. 4 is a diagram schematically showing a configuration of a baking chamber in which a bread container is accommodated and its surroundings in the automatic bread maker of the first embodiment.
  • FIG. 4 assumes a configuration when the automatic bread maker 1 is viewed from the front side, and the configurations of the baking chamber 30 and the bread container 80 are generally shown in cross-sectional views.
  • the bread container 80 used as a baking mold while the bread raw material is input can be taken in and out of the baking chamber 30.
  • a sheathed heater 31 is arranged inside the baking chamber 30 so as to surround a bread container 80 accommodated in the baking chamber 30. By using this sheathed heater 31, it is possible to heat the bread ingredients in the bread container 80 (this expression may include bread dough).
  • a bread container support portion 14 (for example, made of an aluminum alloy die-cast product) that supports the bread container 80 is fixed to a location that is substantially at the center of the bottom wall 30a of the baking chamber 30.
  • the bread container support portion 14 is formed so as to be recessed from the bottom wall 30a of the baking chamber 30, and the shape of the recess is substantially circular when viewed from above.
  • the above-described driving shaft 11 is supported so as to be substantially perpendicular to the bottom wall 30a.
  • the bread container 80 is, for example, an aluminum alloy die-cast molded product (others may be made of sheet metal or the like), has a bucket-like shape, and is handed to the flange 80a provided on the side edge of the opening. A handle (not shown) is attached.
  • the horizontal cross section of the bread container 80 is a rectangle with rounded corners. Further, a concave portion 81 having a substantially circular shape in a plan view is formed on the bottom of the bread container 80 so as to accommodate a part of a blade unit 90 which will be described in detail later.
  • a blade rotating shaft 82 extending in the vertical direction is rotatably supported in a state where a countermeasure against sealing is taken.
  • a container side coupling member 82a is fixed to the lower end of the blade rotation shaft 82 (projecting outward from the bottom of the bread container 80).
  • a cylindrical pedestal 83 is provided on the bottom outer surface side of the bread container 80, and the bread container 80 is accommodated in the baking chamber 30 in a state where the pedestal 83 is received by the bread container support part 14. It has become so.
  • the pedestal 83 may be formed separately from the bread container 80 or may be formed integrally with the bread container 80.
  • the container-side coupling member 82 a provided at the lower end of the blade rotation shaft 82 and the driving shaft 11.
  • the coupling (coupling) with the driving shaft side coupling member 11a fixed to the upper end of the shaft can be obtained.
  • the blade rotation shaft 82 can transmit the rotational power from the driving shaft 11.
  • the blade unit 90 is detachably attached to a portion of the blade rotating shaft 82 protruding into the bread container 80 from above.
  • the configuration of the blade unit 90 will be described with reference to FIGS. 5, 6, 7A, 7B, 8A, 8B, 9A, and 9B.
  • FIG. 5 is a schematic perspective view showing the configuration of the blade unit provided in the automatic bread maker of the first embodiment.
  • FIG. 6 is a schematic exploded perspective view showing a configuration of a blade unit provided in the automatic bread maker of the first embodiment.
  • 7A and 7B are views showing a configuration of a blade unit provided in the automatic bread maker of the first embodiment, FIG. 7A is a schematic side view, and FIG. 7B is a cross-sectional view at the position AA in FIG. 7A.
  • 8A and 8B are schematic plan views of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, FIG. 8A is a view when the kneading blade is in a folded position, and FIG. 8B is a kneading position.
  • FIG. 9A and FIG. 9B are diagrams when the bread container provided in the automatic bread maker of the first embodiment is viewed from above.
  • FIG. 9A is a view when the kneading blade is in a folded position
  • FIG. 9B is a view when the kneading blade is in an open position.
  • the blade unit 90 is roughly divided into a unit shaft 91, a crushing blade 92 attached to the unit shaft 91 so as not to rotate relative to the unit shaft 91, and a plan view attached to the unit shaft 91 so as to be relatively rotatable and covering the crushing blade 92.
  • a substantially circular dome-shaped cover 93 and a kneading blade 101 attached to the dome-shaped cover 93 so as to be relatively rotatable are configured (see, for example, FIGS. 5, 6, 7A and 7B).
  • the crushing blade 92 is positioned slightly above the bottom surface of the recess 81 of the bread container 80. Further, almost the entire grinding blade 92 and the dome-shaped cover 93 are accommodated in the recess 81.
  • the unit shaft 91 is a substantially cylindrical member formed of a metal such as a stainless steel plate, for example, and has an opening at one end (the lower end in FIGS. 6 and 7B), and the inside is hollow. That is, the insertion shaft 91c is formed in the unit shaft 91 (see FIG. 7B). In addition, a pair of notches 91a are formed on the lower side (opening side) of the side wall of the unit shaft 91 so as to be symmetrically arranged with respect to the rotation center of the unit shaft 91 (see, for example, FIG. 6). 6 shows only one of them).
  • a pin 821 see FIG. 7B
  • the unit shaft 91 is attached to the blade rotation shaft 82. It is attached so that it cannot rotate relative to it.
  • the upper inner surface of the unit shaft 91 is engaged with the convex portion 82b provided at the center of the upper surface (substantially circular) of the blade rotation shaft 82 (shown by a broken line).
  • a recess 91b is formed at the center. Accordingly, the blade unit 90 can be easily attached to the blade rotation shaft 82 in a state where the centers of the unit shaft 91 and the blade rotation shaft 82 are aligned. For this reason, unnecessary rattling during rotation of the blade is suppressed.
  • the convex portion 82b is provided on the blade rotating shaft 82 side and the concave portion 91b is provided on the unit shaft 91 side, but conversely, the concave portion is provided on the blade rotating shaft 82 side and the unit shaft 91 side is provided.
  • a configuration in which a convex portion is provided may be employed.
  • the pulverizing blade 92 for pulverizing grains is formed of, for example, a stainless steel plate, and the shape thereof is, for example, an airplane propeller. As shown in FIG. 6, an opening 923 a having a substantially rectangular shape in plan view is formed at the center of the crushing blade 92. The crushing blade 92 is attached from the lower side of the unit shaft 91 so that the unit shaft 91 is fitted into the opening 923a.
  • the lower side of the unit shaft 91 has a shape that is obtained by scraping the side surface of the cylinder, and is substantially the same shape (substantially rectangular shape) as the opening 923a of the grinding blade 92 when viewed from below.
  • the area when the lower side of the unit shaft 91 is viewed from below is slightly smaller than the opening 923a. Since such a shape is adopted, the grinding blade 92 is attached to the unit shaft 91 so as not to be relatively rotatable. Since the stopper member 94 for preventing the retaining member 94 is fitted into the unit shaft 91 on the lower side of the pulverizing blade 92, the pulverizing blade 92 does not fall off the unit shaft 91.
  • the dome-shaped cover 93 disposed so as to surround and cover the crushing blade 92 is made of, for example, an aluminum alloy die-cast product, and a bearing 95 (in this embodiment, a rolling bearing is used on the inner surface side thereof. ) (See FIG. 7B) is formed.
  • the dome-shaped cover 93 has a configuration in which a substantially cylindrical convex portion 93a is formed at the center when viewed from the outer surface.
  • the opening is not formed in the convex part 93a, and the bearing 95 accommodated in the accommodating part 931 is in the state in which the side surface and the upper surface are enclosed by the wall surface of the accommodating part 931.
  • the inner ring 95a is attached to the unit shaft 91 so as not to rotate relative to the bearing 95 with the retaining rings 96a and 96b arranged on the upper and lower sides (the unit shaft 91 is press-fitted into a through hole inside the inner ring 95a. ing).
  • the bearing 95 is press-fitted into the housing portion 931 so that the outer wall of the outer ring 95b is fixed to the side wall of the housing portion 931.
  • the dome-shaped cover 93 is attached to the unit shaft 91 so as to be rotatable relative to the bearing 95 (the inner ring 95a rotates relative to the outer ring 95b).
  • the housing portion 931 of the dome-shaped cover 93 is made of, for example, a silicon-based material so that foreign matter (for example, liquid used when pulverizing grain grains or paste-like material obtained by pulverization) does not enter the bearing 95 from the outside.
  • a seal material 97 formed of a fluorine-based material and a metal seal cover 98 that holds the seal material 97 are press-fitted from the lower side of the bearing 95.
  • the seal cover 98 is fixed to the dome-shaped cover 93 with a rivet 99 so that the fixing to the dome-shaped cover 93 is ensured.
  • fixing with the rivet 99 may not be performed, it is preferable to configure as in the present embodiment in order to obtain reliable fixing.
  • the sealing material 97 and the sealing cover 98 function as sealing means.
  • the seal cover 98 is preferably coated with fluorine or the like. In particular, it is preferable to use a silver paint because the coating is difficult to peel off and even if it is peeled off, it is difficult to stand out.
  • a kneading blade 101 (for example, aluminum) in a planar shape is formed by a support shaft 100 (see FIG. 6) disposed so as to extend in a vertical direction at a location adjacent to the convex portion 93 a. (Made of die-cast alloy product) is attached.
  • the kneading blade 101 is attached to the support shaft 100 so as not to be relatively rotatable, and moves together with the support shaft 100 attached to the dome-shaped cover 93 so as to be relatively rotatable. In other words, the kneading blade 101 is attached to the dome-shaped cover 93 so as to be relatively rotatable.
  • FIG. 5 On one surface near the tip of the kneading blade 101 (assuming a portion that draws the largest circle when the kneading blade 101 is rotated about the support shaft 100), FIG. 5, FIG. 6, FIG. 7A, FIG. As shown in FIGS. 8A, 8B, 9A, and 9B, a cushioning material 107 is attached.
  • the buffer material 107 is provided so as to slightly protrude from the tip of the kneading blade 101 (see, for example, FIG. 9B).
  • the buffer material 107 is fixed in a state where the buffer material 107 is sandwiched between one surface of the kneading blade 101 and the fixing plate 108 and obtained by caulking the rivet 109 inserted from the other surface side of the kneading blade 101. ing.
  • the number of rivets 109 is two, but it goes without saying that the number is not limited.
  • the buffer material 107 is disposed so as not to directly contact the bread container 80 (inner wall) when the kneading blade 101 is in an open posture, which will be described in detail later.
  • the buffer material 107 is provided to prevent such damage.
  • the surface of the bread container 80 and the kneading blade 101 is coated with fluorine.
  • the buffer material 107 of the present embodiment is provided so that the fluorine coating is not peeled off by contact between the kneading blade 101 and the pan container 80.
  • the material constituting the cushioning material 107 is preferably a material softer than the coating material so as not to peel off the fluorine coating.
  • silicone rubber or TPE Thermoplastic Elastomers
  • the buffer material 107 also functions as a soundproofing measure, which will be described later. In the following description, the buffer material 107 may be regarded as a part of the kneading blade 101.
  • the complementary kneading blade 102 (for example, made of an aluminum alloy die cast product) is fixedly arranged on the outer surface of the dome-shaped cover 93 so as to be aligned with the kneading blade 101.
  • the complementary kneading blade 102 is not necessarily provided, but is preferably provided in order to increase the kneading efficiency in the kneading process of kneading the bread dough.
  • the kneading blade 101 rotates about the axis of the support shaft 100 together with the support shaft 100, and has two postures, a folded posture shown in FIGS. 5, 7A, 8A and 9A, and an open posture shown in FIGS. 8B and 9B. Take. In the folded position, the protrusion 101a (see FIG. 6) hanging from the lower edge of the kneading blade 101 comes into contact with the first stopper portion 93b provided on the upper surface (outer surface) of the dome-shaped cover 93.
  • the kneading blade 101 cannot further rotate counterclockwise (assuming the case viewed from above) with respect to the dome-shaped cover 93. In this folded position, the tip of the kneading blade 101 protrudes slightly from the dome-shaped cover 93.
  • the tip of the kneading blade 101 is moved to the open posture shown in FIG. Protrudes greatly from the dome-shaped cover 93.
  • the opening angle of the kneading blade 101 in this opening posture is limited by the second stopper portion 93 c (see FIG. 8B) provided on the inner surface of the dome-shaped cover 93.
  • the complementary kneading blade 102 is aligned with the kneading blade 101 as shown in FIGS. 5 and 7A, for example.
  • the size becomes larger.
  • a first engagement body 103 a constituting the cover clutch 103 is attached to the unit shaft 91 between the pulverization blade 92 and the seal cover 98.
  • a substantially rectangular opening 103aa is formed in the first engagement body 103a made of, for example, zinc die casting, and the first rectangular body 103 in the lower side of the unit shaft 91 is fitted into the opening 103aa so that the first The engaging body 103a is attached to the unit shaft 91 so as not to be relatively rotatable.
  • the first engaging body 103a is fitted from the lower side of the unit shaft 91 prior to the crushing blade 92, and the stopper member 94 prevents the unit shaft 91 from dropping off together with the crushing blade 92.
  • the washer 104 is disposed between the first engagement body 103a and the seal cover 98 in consideration of prevention of deterioration of the first engagement body 103a.
  • the washer 104 is not necessarily provided. It does not have to be provided.
  • a second engagement body 103b constituting the cover clutch 103 is attached to the lower side of the support shaft 100 to which the kneading blade 101 is attached.
  • a substantially rectangular opening 103ba is formed in the second engaging body 103b made of zinc die casting, and the second engaging member is fitted into the opening 103ba by fitting a substantially rectangular portion in plan view on the lower side of the support shaft 100.
  • the united body 103b is attached to the support shaft 100 so as not to be relatively rotatable.
  • the washer 105 is arranged on the upper side of the second engagement body 103b in consideration of prevention of deterioration of the second engagement body 103b. However, the washer 105 is not necessarily provided.
  • the cover clutch 103 composed of the first engagement body 103a and the second engagement body 103b functions as a clutch for switching whether or not to transmit the rotational power of the blade rotation shaft 82 to the dome-shaped cover 93.
  • the cover clutch 103 is a rotation direction of the blade rotation shaft 82 when the kneading motor 50 rotates the driving shaft 11 (this rotation direction is referred to as “forward rotation”. In FIGS. 8A and 8B, the rotation is counterclockwise. 9A and 9B, the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93. Conversely, the rotation direction of the blade rotation shaft 82 when the crushing motor 60 rotates the drive shaft 11 (this rotation direction is referred to as “reverse rotation”. FIGS. 8A and 8B rotate clockwise, and FIGS. 9A and 9B show rotation directions). Then, the cover clutch 103 does not transmit the rotational power of the blade rotating shaft 82 to the dome-shaped cover 93.
  • the direction in which the kneading motor 50 rotates the driving shaft 11 is opposite to the direction in which the grinding motor 60 rotates the driving shaft 11. Therefore, there is a concern that the automatic bread maker 1 is damaged due to the kneading motor 50 and the grinding motor 60 being driven simultaneously.
  • the automatic bread maker according to the present embodiment is configured such that the kneading motor 50 and the crushing motor 60 are not driven simultaneously (details will be described later), it is possible to prevent such damage.
  • the engagement portion 103bb of the second engagement body 103b is the engagement portion 103ab of the first engagement body 103a (although there are two in this embodiment). It is an angle that interferes with the rotation trajectory (see FIG. 8A). Therefore, when the blade rotation shaft 82 rotates in the forward direction, the first engagement body 103 a and the second engagement body 103 b are engaged, and the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93.
  • the engagement portion 103bb of the second engagement body 103b deviates from the rotation trajectory of the engagement portion 103ab of the first engagement body 103a. (See the broken line in FIG. 8B). For this reason, even if the blade rotation shaft 82 rotates, the first engagement body 103a and the second engagement body 103b are not engaged. Accordingly, the rotational power of the blade rotation shaft 82 is not transmitted to the dome-shaped cover 93.
  • the dome-shaped cover 93 is formed with a window 93d that communicates the space inside the cover and the space outside the cover.
  • the window 93d is arranged at a height equal to or higher than the grinding blade 92.
  • a total of four windows 93d are arranged at intervals of 90 °, but other numbers and arrangement intervals can be selected.
  • each rib 93e extends obliquely from the vicinity of the center of the dome-shaped cover 93 to the outer peripheral annular wall with respect to the radial direction, and the four ribs 93e form a kind of bowl shape. Moreover, each rib 93e is curving so that the side which faces the bread raw material pressed toward it may become convex.
  • a removable guard 106 is attached to the lower surface of the dome-shaped cover 93.
  • the guard 106 covers the lower surface of the dome-shaped cover 93 and prevents the user's finger from approaching the grinding blade 92.
  • the guard 106 is formed of, for example, an engineering plastic having heat resistance, and can be a molded product such as PPS (polyphenylene sulfide).
  • PPS polyphenylene sulfide
  • a ring-shaped hub 106a through which a stopper member 94 fixed to the unit shaft 91 is passed.
  • a ring-shaped rim 106b is provided at the periphery of the guard 106.
  • the hub 106a and the rim 106b are connected by a plurality of spokes 106c. Between the spokes 106c, there is an opening 106d through which the grain to be crushed by the pulverizing blade 92 is passed.
  • the opening 106d has a size that prevents a finger from passing through.
  • the guard 106 is shaped like an outer blade of a rotary electric razor, and the grinding blade 92 is shaped like an inner blade.
  • a total of four columns 106e are integrally formed at the periphery of the rim 106b at intervals of 90 °.
  • a horizontal groove 106ea having one end dead end is formed on a side surface of the pillar 106e facing the center side of the guard 106.
  • the guard 106 is attached to the dome-shaped cover 93 by engaging the grooves 106 ea with the projections 93 f formed on the outer periphery of the dome-shaped cover 93 (all four are arranged at intervals of 90 °).
  • the groove 106ea and the protrusion 93f are provided so as to constitute a bayonet connection.
  • the crushing blade 92 and the kneading blade 101 are incorporated into one unit (blade unit 90), the handling thereof is convenient.
  • the user can easily pull out the blade unit 90 from the blade rotating shaft 82, and can easily clean the blade after the bread making operation.
  • the pulverizing blade 92 provided in the blade unit 90 is detachably attached to the unit shaft 91, and is easily mass-produced and has excellent maintainability such as blade replacement.
  • the bearing 95 is preferably a sealed structure so that the liquid does not enter the bearing 95.
  • the sealing means the sealing material 97 and the sealing material 97 and the sealing material only on the inner surface side of the dome-shaped cover 93
  • the cover 98 is provided, a structure for sealing the bearing 95 is obtained.
  • the automatic bread maker 1 it is possible to suppress an adverse effect on the shape of the baked bread (for example, the bottom surface of the bread is greatly recessed).
  • FIG. 10 is a block diagram showing the configuration of the automatic bread maker of the first embodiment.
  • the control operation in the automatic bread maker 1 is performed by the control device 120.
  • the control device 120 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like. .
  • the control device 120 is preferably disposed at a position that is not easily affected by the heat of the baking chamber 30. Further, the control device 120 is provided with a time measuring function, and temporal control in the bread manufacturing process is possible.
  • the control device 120 is an example of a control unit of the present invention.
  • the control device 120 includes the operation unit 20 described above, the temperature sensor 15 that detects the temperature of the baking chamber 30, a motor drive circuit 121, a heater drive circuit 122, a first solenoid drive circuit 123, and a second A solenoid drive circuit 124 is electrically connected.
  • the motor drive circuit 121 is a circuit for driving each of the kneading motor 50 and the pulverization motor 60 under a command from the control device 120, and includes a power supply unit 121a, a switching unit 121b, and a supply current detection unit 121c. ,including.
  • the power supply unit 121 a can supply power for driving the kneading motor 50 and the crushing motor 60.
  • the switching unit 121b can electrically and mechanically connect the power supply unit 121a and any one of the kneading motor 50 and the pulverizing motor 60, and can switch these connections.
  • the supply current detection unit 121 c detects the magnitude (supply current value) of the current supplied from the power supply unit 121 a to the kneading motor 50 or the grinding motor 60 and inputs the detection result to the control device 120. Moreover, the control apparatus 120 confirms the abnormality of the switching part 121b by acquiring the detection result output from the supply current detection part 121c.
  • the power supply unit 121a is an example of the power supply unit of the present invention
  • the switching unit 121b is an example of the switching unit of the present invention
  • the supply current detection unit 121c is an example of the detection unit of the present invention. . Details of the circuit configuration of the motor drive circuit 121 including the power supply unit 121a, the switching unit 121b, and the supply current detection unit 121c will be described later. Details of the operation for confirming the abnormality of the switching unit 121b by the control device 120 will also be described later.
  • the heater drive circuit 122 is a circuit for controlling the operation of the sheathed heater 31 under a command from the control device 120.
  • the first solenoid drive circuit 123 controls the driving of the automatic charging solenoid 16 that is driven to automatically input a part of the bread ingredients in the course of the bread manufacturing process, under a command from the control device 120. It is a circuit for.
  • the second solenoid drive circuit 124 is a clutch solenoid 73 (see FIGS. 3A and 3B) used when switching the state of the clutch 56 (see FIGS. 3A and 3B) under a command from the control device 120. It is a circuit for controlling the drive of.
  • the control device 120 reads a program relating to a bread manufacturing course (breadmaking course) stored in a ROM or the like based on an input signal from the operation unit 20, and a kneading blade by the kneading motor 50 via the kneading motor driving circuit 121.
  • FIG. 11 is a schematic diagram showing the flow of the rice grain bread-making course executed by the automatic bread maker of the first embodiment. As shown in FIG. 11, in the bread making course for rice grains, the dipping process, the crushing process, the pause process, the kneading (kneading) process, the fermentation process, and the baking process are sequentially performed in this order.
  • the user attaches the blade unit 90 to the blade rotation shaft 82 by covering the blade rotation shaft 82 of the bread container 80 with the unit shaft 91. Then, the user weighs rice grains, water, and seasonings (eg, salt, sugar, shortening, etc.) by a predetermined amount and puts them into the bread container 80.
  • seasonings eg, salt, sugar, shortening, etc.
  • the user weighs the bread ingredients that are automatically input during the bread manufacturing process and puts them in the container body 42a of the bread ingredient storage container 42.
  • the container lid 42b is supported by the movable hook 42c so that the opening of the container main body 42a is closed by the container cover 42b.
  • the bread raw material accommodated in the bread raw material storage container 42 gluten, dry yeast, etc. are mentioned, for example.
  • gluten for example, at least one of flour, thickener (eg, guar gum), and upper fresh powder may be stored in the bread ingredient storage container 42.
  • only dry yeast may be stored in the bread raw material storage container 42 without using gluten, wheat flour, thickener, super fresh powder or the like.
  • salt, sugar and shortening seasonings such as salt, sugar and shortening are stored in the bread ingredient storage container 42 together with, for example, gluten and dry yeast so as to be automatically introduced during the bread manufacturing process. It may be.
  • the bread raw material previously put into the bread container 80 is rice grains and water (in place of mere water, for example, a liquid having a taste component such as soup stock, a liquid containing fruit juice or alcohol, etc.) Become.
  • the control apparatus 120 starts control operation
  • the dipping process is started by a command from the control device 120.
  • the bread raw material previously put in the bread container 80 is set in a stationary state, and the stationary state is maintained for a predetermined time (30 minutes in the present embodiment).
  • This dipping process is a process aimed at making the rice grains easy to be pulverized to the core in the subsequent pulverization process by adding water to the rice grains.
  • the water absorption rate of rice grains varies depending on the temperature of the water. If the water temperature is high, the water absorption rate increases, and if the water temperature is low, the water absorption rate decreases. For this reason, you may make it fluctuate
  • the grinding blade 92 may be rotated at the initial stage of the dipping process, and further, the grinding blade 92 may be intermittently rotated thereafter. If it does in this way, the surface of a rice grain can be damaged, and the liquid absorption efficiency of a rice grain will be improved.
  • the crushing blade 92 is rotated at a high speed (for example, 7000 to 8000 rpm) in a mixture containing rice grains and water.
  • the control device 120 controls the crushing motor 60 to rotate the blade rotation shaft 82 in the reverse direction (clockwise rotation in FIGS. 8A and 8B, and counterclockwise rotation in FIGS. 9A and 9B).
  • the controller 120 drives the clutch solenoid 73 before driving the grinding motor 60 so that the clutch 56 shuts off the power (the state shown in FIG. 3A).
  • the dome-shaped cover 93 also starts to rotate following the rotation of the blade rotation shaft 82.
  • the rotation of the cover 93 is immediately blocked (stopped). It is preferable that the pulverizing blade 92 is rotated at a low speed in the initial stage of the pulverization process and then rotated at a high speed.
  • the rotation direction of the dome-shaped cover 93 accompanying the rotation of the blade rotation shaft 82 for rotating the grinding blade 92 is the counterclockwise direction in FIGS. 9A and 9B, and the kneading blade 101 has been folded until then (see FIG. 9A).
  • the resistance is changed to the open posture (posture shown in FIG. 9B) due to the resistance received from the mixture containing rice grains and water.
  • the engagement portion 103bb of the second engagement body 103b deviates from the rotation trajectory (see the broken line in FIG. 8B) of the engagement portion 103ab of the first engagement body 103a.
  • the cover clutch 103 disconnects the blade rotation shaft 82 from the dome-shaped cover 93.
  • a part of the kneading blade 101 in the open posture (more precisely, the buffer material 107 provided on the tip side) is formed on the inner wall of the bread container 80 (specifically, the grinding efficiency is improved).
  • the rotation of the dome-shaped cover 93 is prevented (stopped) in order to abut against the bowl-shaped convex portion 80b provided on the inner wall of the bread container 80 for improvement.
  • the pulverization of the rice grains in the pulverization step is performed in a state in which water is soaked in the rice grains by the previously performed immersion step, so that the rice grains can be easily pulverized to the core.
  • the rotation of the pulverizing blade 92 in the pulverization step is intermittent. This intermittent rotation is performed, for example, in a cycle of rotating for 30 seconds and stopping for 5 minutes, and this cycle is repeated 10 times. In the last cycle, the stop for 5 minutes is not performed.
  • the rotation of the crushing blade 92 may be continuous rotation, but for the purpose of, for example, preventing the temperature of the raw material in the bread container 80 from becoming too high, it is preferable to perform intermittent rotation.
  • the pulverization of the rice grains is performed in the dome-shaped cover 93 that has stopped rotating, and therefore the possibility that the rice grains scatter outside the bread container 80 is low. Further, the rice grains entering the dome-shaped cover 93 from the opening 106d of the guard 106 in the rotation stopped state are sheared between the stationary spoke 106c and the rotating pulverizing blade 92, so that the pulverization can be performed efficiently. Further, the rib 93e provided on the dome-shaped cover 93 suppresses the flow of the mixture containing rice grains and water (flow in the same direction as the rotation of the grinding blade 92), so that the grinding can be performed efficiently.
  • the mixture containing the pulverized rice grains and water is guided in the direction of the window 93d by the ribs 93e, and discharged from the window 93d to the outside of the dome-shaped cover 93. Since the rib 93e is curved so that the side facing the mixture pressing toward it is convex, the mixture hardly stays on the surface of the rib 93e and flows smoothly toward the window 93d. Further, instead of the mixture being discharged from the inside of the dome-shaped cover 93, the mixture existing in the space above the concave portion 81 enters the concave portion 81 and passes through the opening portion 106d of the guard 106 from the concave portion 81. Enter the cover 93. Since the pulverization by the pulverization blade 92 is performed while being circulated as described above, the pulverization can be performed efficiently.
  • the crushing process is completed in a predetermined time (in this embodiment, 50 minutes).
  • the grain size of the pulverized powder may vary depending on the hardness of the rice grains and the environmental conditions.
  • the end of the pulverization process may be determined based on the magnitude of the load of the pulverization motor 60 (for example, it can be determined by the control current of the motor).
  • the pause process is executed according to a command from the control device 120.
  • This pause process is provided as a cooling period during which the temperature of the contents in the bread container 80 raised by the crushing process is lowered.
  • the reason for lowering the temperature is that the next kneading step is carried out at a temperature at which the yeast is active (for example, around 30 ° C.).
  • the pause process is a predetermined time (30 minutes). However, in some cases, the pause process may be performed until the temperature of the bread container 80 reaches a predetermined temperature.
  • the kneading process is started by a command from the control device 120.
  • the control device 120 drives the clutch solenoid 73 so that the clutch 56 transmits power (the state shown in FIG. 3B).
  • the control device 120 starts driving the kneading motor 50 to rotate the blade rotation shaft 82 in the forward direction (counterclockwise rotation in FIGS. 8A and 8B and clockwise rotation in FIGS. 9A and 9B).
  • the grinding blade 92 When the blade rotation shaft 82 is rotated in the forward direction, the grinding blade 92 is also rotated in the forward direction, and the bread ingredients around the grinding blade 92 flow in the forward direction. Accordingly, when the dome-shaped cover 93 moves in the forward direction (clockwise in FIGS. 9A and 9B), the kneading blade 101 receives resistance from the non-flowing bread ingredients and is folded from the open position (see FIG. 9B). Change the angle to (see FIG. 9A). Thereby, the engaging portion 103bb of the second engaging body 103b has an angle that interferes with the rotation trajectory (see the broken line in FIG. 8A) of the engaging portion 103ab of the first engaging body 103a.
  • the cover clutch 103 connects the blade rotation shaft 82 and the dome-shaped cover 93, and the dome-shaped cover 93 enters a state of being driven in earnest by the blade rotation shaft 82.
  • the dome-shaped cover 93 and the kneading blade 101 in the folded position rotate together with the blade rotation shaft 82 in the forward direction.
  • the rotation of the blade rotation shaft 82 at the initial stage of the kneading process is preferably intermittent rotation or low speed rotation.
  • the complementary kneading blade 102 is arranged on the extension of the kneading blade 101, so that the kneading blade 101 is enlarged and the bread raw material is pressed strongly. It is. For this reason, the dough can be kneaded firmly.
  • the rotation of the kneading blade 101 (this term is used as an expression including the complementary kneading blade 102 in the folded position, the same applies hereinafter) is very slow in the initial stage of the kneading process, and the speed is increased stepwise.
  • Control is performed by the control device 120.
  • the control device 120 drives the automatic charging solenoid 16 so that the movable hook 42c of the bread ingredient storage container 42 supports the container lid 42b. Let go. Thereby, the opening of the container main body 42a is opened, and for example, bread ingredients such as gluten and dry yeast are automatically charged into the bread container 80.
  • the bread raw material storage container 42 is provided with a coating layer inside the container body 42a and the container lid 42b to improve slipping, and is devised so that there is no uneven portion inside. Yes. Furthermore, the situation where the bread raw material is caught by the packing 42d is also suppressed by the device for arranging the packing 42d. For this reason, the automatic charging is completed with almost no bread ingredients remaining in the bread ingredient storage container 42.
  • the bread ingredients stored in the bread ingredient storage container 42 are charged while the kneading blade 101 is rotating.
  • the present invention is not limited to this, and the kneading blade 101 is stopped. You may decide to throw in in the state which is carrying out.
  • the bread ingredients stored in the bread ingredient storage container 42 are put into the bread container 80, the bread ingredients are kneaded into a dough connected to one having a predetermined elasticity by the rotation of the kneading blade 101. Go.
  • the kneading blade 101 swings the dough and knocks it against the inner wall of the bread container 80, an element of “kneading” is added to the kneading.
  • the dome-shaped cover 93 also rotates.
  • the rib 93e formed on the dome-shaped cover 93 also rotates, so that the bread material in the dome-shaped cover 93 is quickly discharged from the window 93d and the kneading blade 101 kneads the bread. Assimilate into a lump of material.
  • the guard 106 also rotates in the forward direction together with the dome-shaped cover 93.
  • the spoke 106c of the guard 106 has a shape in which the center side of the guard 106 precedes and the outer peripheral side of the guard 106 follows when rotating in the forward direction.
  • the guard 106 rotates in the forward direction to push the bread ingredients inside and outside the dome-shaped cover 93 outward with the spokes 106c. Thereby, the ratio of the raw material used as a waste after baking bread can be reduced.
  • the pillar 106e of the guard 106 has a side surface 106eb (see FIG. 6) which is the front surface in the rotation direction when the guard 106 rotates in the forward direction, and is inclined upward. Bread ingredients are sprung upward on the front surface of the column 106e. For this reason, the ratio of the raw material which becomes waste after baking bread can be reduced.
  • a predetermined time (10 minutes in this embodiment) obtained experimentally as a time for obtaining bread dough having a desired elasticity is employed as the time for the kneading process.
  • the time of the kneading process is constant, the degree of bread dough may vary depending on the environmental temperature or the like. For this reason, for example, a configuration in which the end point of the kneading process is determined based on the magnitude of the load of the kneading motor 50 (for example, it can be determined by the control current of the motor) may be used.
  • ingredients for example, raisins, nuts, cheese, etc.
  • the ingredients may be introduced during the kneading process.
  • the fermentation process is started by a command from the control device 120.
  • the control device 120 controls the sheathed heater 31 to maintain the temperature of the baking chamber 30 at a temperature at which fermentation proceeds (for example, 38 ° C.). Then, the dough is left for a predetermined time (in this embodiment, 60 minutes) in an environment in which fermentation proceeds.
  • the kneading blade 101 may be rotated to perform degassing or rounding of the dough.
  • the firing process is started by a command from the control device 120.
  • the control device 120 controls the sheathed heater 31 to increase the temperature of the baking chamber 30 to a temperature suitable for baking (for example, 125 ° C.). Then, the control device 120 performs control so that the bread is baked in a baking environment for a predetermined time (in this embodiment, 50 minutes).
  • the end of the firing process is notified to the user by, for example, a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
  • the user detects the completion of bread making, the user opens the lid 40 and takes out the bread container 80 to complete the bread production.
  • the bread in the bread container 80 can be taken out by, for example, directing the opening of the bread container 80 obliquely downward. Simultaneously with the removal of the bread, the blade unit 90 attached to the blade rotation shaft 82 is also removed from the bread container 80. At the bottom of the bread, burn marks of the kneading blade 101 of the blade unit 90 and the complementary kneading blade 102 (projecting upward from the recess 81 of the bread container 80) remain. However, since the dome-shaped cover 93 and the guard 106 are accommodated in the recess 81, they are prevented from leaving a large burn mark on the bottom of the bread.
  • FIG. 12 is a circuit diagram of the motor drive circuit 121.
  • the motor drive circuit 121 of this example includes an AC power supply P (power supply unit) and a triac TRI (power adjustment unit) corresponding to the power supply unit 121a (see FIG. 10) described above, and the switching described above.
  • the AC power source P is a power source that supplies, for example, AC power supplied from a commercial power source (or AC power obtained by adjusting power supplied from the commercial power source).
  • a commercial power source or AC power obtained by adjusting power supplied from the commercial power source.
  • the triac TRI its two main electrodes are connected in series to the AC power source P, the kneading motor 50 and the grinding motor 60, and a drive signal output from the control device 120 is input to the control electrode.
  • the control device 120 inputs a pulsed or continuous drive signal (current signal larger than the holding current of the triac TRI) to the control electrode of the triac TRI, thereby turning the triac TRI into a conductive state (ON).
  • the triac TRI conducts the alternating current from when the drive signal is input to the control electrode until the alternating current supplied by the alternating current power supply P and input to the main electrode becomes zero. Therefore, the control device 120 partially supplies the AC power supplied from the AC power supply P to the kneading motor 50 or the grinding motor 60 by inputting a pulsed drive signal to the control electrode of the TRIAC TRI. Can do.
  • the controller 120 can supply the AC power supplied from the AC power source P to the kneading motor 50 or the grinding motor 60 substantially as it is by inputting a continuous drive signal to the control electrode of the TRIAC TRI. it can.
  • control device 120 determines the timing for inputting the pulse-shaped drive signal to the control electrode of the triac TRI based on the zero cross signal (the signal indicating the timing at which the voltage of the AC power supplied from the AC power supply P becomes 0). It doesn't matter. In this case, the control device 120 can easily control the amount of AC power supplied to the kneading motor 50 or the grinding motor 60 by turning on the triac TRI.
  • the current transformer CT includes a primary side coil L1 connected in series to the AC power supply P, the triac TRI, the kneading motor 50 and the grinding motor 60, and a magnetic field generated by passing a current through the primary side coil L1. And a secondary coil L2 that generates a current. One end of the secondary coil L2 is grounded, and the anode of the diode D1 is connected to the other end. The other end of the resistor R1 whose one end is grounded is connected to the cathode of the diode D1.
  • connection node between the resistor R1 and the diode D1 is connected to the other end of the capacitor C grounded at one end, and a voltage signal (detection result; current supplied to the kneading motor 50 or the grinding motor 60) appearing at the connection node.
  • a signal indicating a value is input to the control device 120.
  • the diode D1 and the capacitor C rectify and smooth the current generated in the secondary coil L2 (convert alternating current into direct current).
  • the resistor R1 generates a signal that can be acquired by the control device 120 by converting the current signal into a voltage signal.
  • the diode D1, the resistor R1, and the capacitor C are examples of the detection result generation circuit of the present invention. Further, the current transformer CT, the diode D1, the resistor R1, and the capacitor C in this example correspond to the above-described supply current detection unit 121c (see FIG. 10).
  • the control device 120 acquires the detection result, which is an analog voltage signal obtained as described above, and converts it into a digital signal. As a result, the control device 120 can check the magnitude of the alternating current supplied by the alternating current power supply P and the triac TRI.
  • the relay RY includes an AC power supply P and a triac TRI, a switch Sry that can switch an electrical and mechanical connection with any of the kneading motor 50 and the grinding motor 60, and a control coil Lry that controls the connection of the switch Sry.
  • the control coil Lry has one end grounded and connected to the anode of the diode D2, and the other end connected to the cathode of the diode D2.
  • the switch Sry connects the AC power supply P and the triac TRI to the kneading motor 50 when no current is passed to the control coil Lry, and the AC power supply P and the triac TRI when the current is passed to the control coil Lry.
  • the grinding motor 60 is connected.
  • the collector of the PNP transistor TR is connected to the connection node between the other end of the control coil Lry and the cathode of the diode D2.
  • One end of the resistor R2 is connected to the emitter of the transistor TR, and a DC power source VE (for example, a power source that generates and supplies DC power based on AC power supplied from a commercial power source) is connected.
  • the other end of the resistor R2 is connected to the base of the transistor TR, and one end of the resistor R3 is connected to the connection node.
  • the control device 120 outputs a switching signal for controlling switching of the relay RY to the other end of the resistor R3.
  • the control device 120 when the control device 120 outputs a switching signal having a voltage (low) that is low enough to turn on the transistor (conducting between the emitter and the collector), the direct current supplied from the direct current power source VE is passed to the control coil Lry, The AC power supply P, the triac TRI, and the grinding motor 60 are connected.
  • the control device 120 when the control device 120 outputs a switching signal having a voltage (high) that is high enough to turn off the transistor (non-conduction between the emitter and the collector), the DC current supplied from the DC power supply VE is passed to the control coil Lry.
  • the AC power supply P and the triac TRI and the kneading motor 50 are connected.
  • the control device 120 does not output a switching signal (high impedance)
  • the AC power supply P and the triac TRI are connected to the kneading motor 50 (the motor that rotates the driving shaft 11 at a low speed), and the grinding motor ( Since a motor that rotates the driving shaft 11 at a high speed is not connected, it is preferable from the viewpoint of ensuring safety.
  • the AC power supply P and the triac TRI can be electrically and mechanically connected to any one of the kneading motor 50 and the grinding motor 60, and the connection can be switched.
  • FIG. 13 is a flowchart showing an operation for confirming a relay abnormality by the control device.
  • the confirmation operation of the control device 120 shown in FIG. 13 can be performed in each step included in the manufacturing course described above (for example, each step obtained by subdividing the step shown in FIG. 11). Note that it is assumed that neither the kneading motor 50 nor the grinding motor 60 is driven in one step.
  • the control device 120 controls the relay RY to connect the AC power supply P, the triac TRI, and the kneading motor 50 to supply (drive) AC power to the kneading motor 50 (STEP1, YES), a detection result (a signal indicating the magnitude of the AC current supplied by the AC power supply P and the triac TRI) is acquired.
  • the control device 120 confirms the detection result (value obtained by the above-mentioned AD conversion) at every predetermined timing (for example, every 144 ms) (STEP 2). And the control apparatus 120 confirms whether the confirmed detection result is more than the threshold value A continuously X times or more (STEP3).
  • the threshold value A is a value that cannot be confirmed when the kneading motor 50 is driven by supplying AC power.
  • a detection result equal to or higher than the threshold A can be confirmed by the control device 120.
  • X times is the number of times that a state where a value that is suddenly greater than or equal to the threshold value A can be excluded can be excluded. For example, when the control device 120 confirms the detection result every 144 ms, X times may be set to 7 times.
  • the control device 120 is a case where the confirmed detection result does not continuously exceed the threshold A for X times or more (STEP 3, NO), and when the driving of the kneading motor 50 is not finished (STEP 4, NO), STEP 2 Return to and continue to check the detection results.
  • the control device 120 is a case where the confirmed detection result does not continuously exceed the threshold value A more than X times (STEP 3, NO), and when the driving of the kneading motor 50 is finished (STEP 4, YES). Then, the manufacturing course is advanced to perform the next process (STEP 5), and the confirmation operation in the current process is terminated.
  • the control device 120 indicates that the connection state of the relay RY is abnormal (for example, the AC power supply P, for example) when the confirmed detection result is a value equal to or greater than the threshold value A for X times or more (STEP 3, YES). And the triac TRI and the grinding motor 60 are erroneously connected), the manufacturing course is stopped (STEP 6), and the confirmation operation is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
  • the connection state of the relay RY is abnormal (for example, the AC power supply P, for example) when the confirmed detection result is a value equal to or greater than the threshold value A for X times or more (STEP 3, YES).
  • the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
  • the control device 120 controls to drive the kneading motor 50, the control device 120 stops the bread making operation if it determines that the connection state of the relay RY is abnormal based on the detection result. Therefore, for example, it is possible to prevent the control device 120 from driving the grinding motor 60 by mistake.
  • control device 120 suddenly detects a detection result indicating that the connection state is abnormal although the connection state of the relay RY is correct (the AC power supply P, the triac TRI and the kneading motor 50 are connected). Therefore, it is possible to suppress stopping the bread making operation.
  • control device 120 controls the relay RY to connect the AC power supply P and the triac TRI and the grinding motor 60 to supply (drive) AC power to the grinding motor 60 (STEP1, NO and STEP7, YES). ),
  • the detection result is acquired in the same manner as in the above STEP 2 (STEP 8).
  • the control apparatus 120 confirms whether the confirmed detection result is below the threshold value B continuously Y times or more (STEP9).
  • the threshold value B is a value that cannot be confirmed when the pulverization motor 60 is driven by supplying AC power. Note that when AC power is supplied to the kneading motor 50, a detection result equal to or lower than the threshold value B can be confirmed by the control device 120.
  • Y times is the number of times that a state in which a value less than or equal to the threshold value B can be taken suddenly and transiently (when rotation of the grinding motor 60 starts) can be excluded. For example, when the control device 120 confirms the detection result every 144 ms, the Y times may be 15 times.
  • the number of times that the control device 120 determines that the connection state of the relay RY is abnormal is such that the detection result indicating that the connection state of the relay RY is abnormal is unlikely to occur transiently ( It is preferable to set (X ⁇ Y) so that the case where the abnormality is likely to occur transiently (set to number Y) is larger than (set to number X). Thereby, control device 120 can more accurately determine that the connection state of relay RY is abnormal.
  • the control device 120 is a case where the detected result that has been confirmed does not continuously become the value of the threshold value B or more continuously Y times (STEP 9, NO), and when the driving of the crushing motor 60 is not finished (STEP 10, NO), STEP 8 Return to and continue to check the detection results.
  • the control device 120 is a case where the confirmed detection result does not continuously become a value equal to or less than the threshold value B for more than Y times (STEP 9, NO), and when the driving of the grinding motor 60 is finished (STEP 10, YES). Then, the manufacturing course is advanced to perform the next process (STEP 5), and the confirmation operation in the current process is terminated.
  • the control device 120 indicates that the connection state of the relay RY is abnormal (for example, the AC power supply P) when the confirmed detection result is a value equal to or less than the threshold value B continuously for Y times or more (STEP 9, YES). And the triac TRI and the kneading motor 50 are erroneously connected), the manufacturing course is stopped (STEP 11), and the confirmation operation is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
  • the connection state of the relay RY is abnormal (for example, the AC power supply P) when the confirmed detection result is a value equal to or less than the threshold value B continuously for Y times or more (STEP 9, YES).
  • the triac TRI and the kneading motor 50 are erroneously connected
  • the manufacturing course is stopped (STEP 11), and the confirmation operation is terminated.
  • control device 120 performs control to drive the grinding motor 60, if the connection state of the relay RY is determined to be abnormal based on the detection result, the bread making operation is stopped. Therefore, for example, it is possible to prevent the controller 120 from driving the kneading motor 50 by mistake.
  • control device 120 detects that the connection state of the relay RY is correct (the AC power supply P and the grinding motor 60 are connected), but the detection result indicating that the connection state is abnormal is sudden and transient. Therefore, it is possible to suppress stopping the bread making operation.
  • control device 120 advances the manufacturing course without confirming the detection result (STEP 5).
  • the relay RY electrically and mechanically connects the AC power source P and the triac TRI to any one of the kneading motor 50 and the grinding motor 60. That is, it is possible to prevent the AC power supply P and the TRIAC TRI from being connected to both the kneading motor 50 and the grinding motor 60 and supplying AC power to each of them. Therefore, each of the kneading motor 50 and the crushing motor 60 can be driven accurately.
  • the kneading motor 50 and the grinding motor 60 are prevented from being driven simultaneously by the relay RY. Therefore, it is possible to prevent the automatic bread maker 1 from being damaged by the kneading motor 50 and the grinding motor 60 being driven simultaneously.
  • the automatic bread maker of the second embodiment is generally the same as the configuration of the automatic bread maker 1 of the first embodiment. For this reason, about the structure of the automatic bread maker of 2nd Embodiment, it concentrates and demonstrates a characteristic part. In addition, the same code
  • FIG. 14 is a block diagram showing the configuration of the automatic bread maker of the second embodiment.
  • FIG. 15 is a circuit diagram showing a motor drive circuit provided in the automatic bread maker of the second embodiment.
  • the automatic bread maker of the second embodiment includes a power supply state detection circuit 125 that detects the state of the power supply unit 121aa of the motor drive circuit 121 (an example of the power supply state detection unit of the present invention). It differs from the structure of 1st Embodiment by the point provided with.
  • An AC power supply P (see FIG. 15) that supplies power for driving the kneading motor 50 and the grinding motor 60 corresponds to the power supply unit 121aa.
  • the power supply state detection circuit 125 generates a signal indicating the state of the AC power supply P and inputs it to the control device 120 (an example of the abnormality detection unit of the present invention).
  • a signal indicating the state of the AC power supply P for example, a signal indicating the magnitude of the voltage of the AC power supplied by the AC power supply P (for example, an effective value, hereinafter referred to as a power supply voltage value) or the AC power supply P is supplied.
  • a signal indicating the frequency (for example, 50 Hz or 60 Hz, hereinafter referred to as a power supply frequency) of AC power to be used can be employed. It should be noted that other signals may be adopted as the signal indicating the state of the AC power supply P. However, for the sake of concrete explanation, a case where the power supply state detection circuit 125 can output the above two signals will be exemplified.
  • the power supply state detection circuit 125 may use any known circuit for generating a signal indicating the power supply voltage value. For example, the power supply state detection circuit 125 performs full-wave rectification on the AC power supplied from the AC power supply P by a diode bridge or the like, and smoothes the obtained pulsating current with a capacitor or the like. You may output as a signal to show. In this case, the control device 120 can check the power supply voltage value by measuring the voltage value of this signal.
  • the power supply state detection circuit 125 may use any known circuit in order to generate a signal indicating the power supply frequency. For example, when the signal is a zero cross signal (a signal indicating the timing at which the voltage of the AC power supplied from the AC power supply P becomes 0), the power supply state detection circuit 125 converts the AC power supplied from the AC power supply P to a diode bridge or the like. Full-wave rectification is performed, and the obtained pulsating current is passed through the light-emitting diode of the photocoupler, and the signal obtained by binarizing and inverting the signal appearing in the phototransistor phototransistor with an inverter or the like is output as a signal indicating the power supply frequency It doesn't matter. In this case, the control device 120 can confirm the power supply frequency by measuring the number of times that this signal becomes high within a predetermined time (that is, the number of zero cross points).
  • the control device 120 of this embodiment can detect any abnormality of the kneading motor 50 and the crushing motor 60.
  • the control device 120 detects an abnormality of the crushing motor 60 that is highly necessary to detect the abnormality as described above will be exemplified.
  • the controller 120 detects an abnormality of the kneading motor 50, a method similar to that when detecting an abnormality of the pulverization motor 60 described later may be applied.
  • FIG. 16 is a flowchart showing an operation of detecting an abnormality of the grinding motor by the control device. Note that the detection operation of the control device 120 shown in FIG. 16 is performed in each process included in the bread manufacturing course described in the description of the first embodiment (for example, each process obtained by subdividing the process shown in FIG. 11). ) Can be performed.
  • the control device 120 when driving the crushing motor 60 (STEP1, YES), uses the AC power supply P based on the signal input from the power supply state detection circuit 125 (see FIGS. 14 and 15). Are checked (power supply voltage value and power supply frequency), and a threshold is set (STEP 2). Further, the control device 120 checks the supply current value based on the signals input from the supply current detection unit 121b (see FIG. 14; in FIG. 15, the current transformer CT, the diode D1, the resistor R1, and the capacitor C) ( (Step 3).
  • the threshold value is a value that can be compared with the supply current value. If the supply current value is equal to or greater than the threshold value, the crushing motor 60 is abnormal (for example, an excessive current is generated in the motor drive circuit 121 due to locking or the like). It is a value that can be determined to be highly likely.
  • the control device 120 records a table of candidate values (respective threshold values corresponding to each power supply voltage value and each power supply frequency) obtained in advance by experiments or the like, and supports both the confirmed power supply voltage value and power supply frequency. The threshold value is set by reading out the candidate value obtained from the table.
  • the power supply voltage value when the power supply frequency is the same, the power supply voltage value is within a predetermined range (for example, within a range excluding a value close to the lower limit and a value close to the upper limit, in other words, an intermediate range).
  • a predetermined range for example, within a range excluding a value close to the lower limit and a value close to the upper limit, in other words, an intermediate range.
  • the larger the value the larger the candidate value.
  • the candidate value if the power supply voltage value is outside the above predetermined range, the candidate value becomes substantially constant (stops raising and stopping) even if the power supply voltage value fluctuates.
  • the power supply frequency is different, the candidate value may be different even when the power supply voltage value is the same.
  • the control device 120 sets the threshold value suitable for the power supply voltage value and the power supply frequency, it is possible to detect the abnormality of the motor with high accuracy.
  • the control device 120 supplies the normal power to the AC power supply P when the AC power supply P supplies power smaller than normal and the grinding motor 60 has an abnormality.
  • the control device 120 supplies normal power and the pulverization motor 60 has abnormality. It is possible not to be confused with and not to detect anomalies.
  • the above STEP2 and STEP3 are performed every predetermined timing (for example, every 144 ms). And the control apparatus 120 confirms whether the confirmed supply current value is more than a threshold value continuously X times or more (STEP4).
  • This X times is the number of times that a state where the supply current value can suddenly take a threshold value or more can be excluded. For example, when the control device 120 sets a threshold value every 144 ms and confirms the supply current value, X may be set to 7 times.
  • the control device 120 is STEP 2. Return to, and continue to set the threshold and confirm the supply current value. On the other hand, the control device 120 is the case where the confirmed supply current value does not continuously exceed the threshold value X times or more (STEP 4, NO), and when the driving of the grinding motor 60 is finished (STEP 5, YES). Then, the manufacturing course is advanced to perform the next process (STEP 6), and the abnormality detection operation of the grinding motor 60 in the current process is terminated.
  • the control device 120 when the confirmed supply current value continuously exceeds the threshold value X times or more (STEP 4, YES), the crushing motor 60 is abnormal (for example, locked). Thus, the manufacturing course is stopped (STEP 7), and the abnormality detection operation of the grinding motor 60 is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound. In STEP 7, if the control device 120 stops the supply of power to the grinding motor 60 by stopping the drive signal to the triac TRI (see FIG. 15), the manufacturing course is set as described above. It may be stopped or stopped (trying to resume the manufacturing course after a predetermined time has elapsed).
  • control device 120 advances the manufacturing course without setting the threshold value or confirming the supply current value (STEP 6).
  • the control device 120 sets a reference (a threshold value in the above-described specific example) corresponding to a change in the state of the power supply (in the above-described specific example, the AC power supply P), and the motor ( In the specific example described above, an abnormality of the grinding motor 60) is detected. Therefore, it is possible to detect abnormality of the motor with high accuracy according to the state of the power source. Therefore, the safety of the automatic bread maker can be improved and the occurrence of failure can be suppressed.
  • the driving shaft 11 needs to be rotated at a high speed, and the pulverization motor 60 may be locked in order to pulverize the cereal grains (rice grains).
  • the control device 120 can detect an abnormality (lock) of the crushing motor 60. Therefore, it is possible to effectively increase the safety of the automatic bread maker and effectively suppress the occurrence of failure.
  • the configuration example of the motor drive circuit 121 shown in FIG. 15 includes a common drive system (current transformer CT, diode D1, resistor R1, capacitor C, and triac TRI) for the kneading motor 50 and the grinding motor 60.
  • a configuration for selecting a motor to be selected (relay RY, diode D2, transistor TR, resistor R2, and resistor R3) is provided, but the following modifications are also possible.
  • the control device 120 controls each drive system (particularly, the triac TRI) to select the kneading motor 50 and the grinding motor 60.
  • it may be configured to drive automatically.
  • the AC power supply P and the triac TRI and any of the kneading motor 50 and the grinding motor 60 are electrically and mechanically connected. Therefore, for example, even if a malfunction of the control device 120 occurs, it is preferable because both the kneading motor 50 and the grinding motor 60 are prevented from being driven.
  • the control device 120 detects an abnormality of the pulverization motor 60 mainly described. However, as described above, the control device 120 detects the abnormality of the pulverization motor 60 (see FIG. 16). It is possible to detect an abnormality in the kneading motor 50 by a similar method. However, in this case, it is preferable that the control device 120 records a table (candidate value) corresponding to the kneading motor 50 and sets a threshold different from that in the case of detecting an abnormality of the grinding motor 60.
  • the automatic bread maker of the third embodiment is generally the same as the configuration of the automatic bread maker 1 of the first embodiment. For this reason, about the structure of the automatic bread maker of 3rd Embodiment, it concentrates and demonstrates a characteristic part. In addition, the same code
  • FIG. 17 is a block diagram showing the configuration of the automatic bread maker according to the third embodiment.
  • FIG. 18 is a circuit diagram showing a motor drive circuit provided in the automatic bread maker of the third embodiment.
  • the automatic bread maker of the third embodiment is provided with a power frequency detection circuit 126 (power frequency detection unit) that detects the power frequency of the power source 121 aa of the motor drive circuit 121.
  • An AC power supply P (see FIG. 18) that supplies power for driving the kneading motor 50 and the grinding motor 60 corresponds to the power supply unit 121aa.
  • the triac TRI in FIG. 18 corresponds to the supply power adjustment unit 121ab (see FIG. 17) that adjusts the magnitude of the alternating current supplied to the kneading motor 50 and the crushing motor 60.
  • the kneading process performed mainly by driving the kneading motor 50 is greatly affected by the power frequency. Specifically, when the power supply frequency is low (for example, 50 Hz), the bread dough may be insufficiently kneaded as compared to when the power supply frequency is high (for example, 60 Hz).
  • the control device 120 suppresses the influence of the power supply frequency by adjusting the length of the kneading process according to the power supply frequency detected by the power supply frequency detection circuit 126 (see FIGS. 17 and 18). Specifically, the control device 120 eliminates the shortage of kneading of the bread dough by increasing the time of the kneading process as the power frequency detected by the power frequency detecting circuit 126 is smaller. Details of a method for adjusting the length of the kneading process by the control device 120 (control method for driving the kneading motor 50) will be described below.
  • the influence of the power supply frequency can also occur mainly in the pulverization process driven by the pulverization motor 60.
  • the control device 120 may adjust the length of the pulverization step (for example, the longer the pulverization step is, the lower the power frequency is), as in the kneading step.
  • the influence of the power supply frequency in the pulverization process is smaller than the influence of the power supply frequency in the kneading process. Therefore, adjustment of the length of the pulverization process by the control device 120 can be unnecessary (the difference in the length of the manufacturing course caused by the difference in the power supply frequency can be reduced).
  • the control device 120 inputs the pulsed drive signal to the control electrode of the triac TRI so that the AC power supplied from the AC power source P is converted into the kneading motor 50 or the grinding motor 60. Can be partially supplied.
  • the control device 120 intermittently adjusts the length and frequency of the pulsed drive signal input to the triac TRI, thereby rotating the kneading motor 50 or the crushing motor 60 and the driving state (intermittent driving). Or continuous drive).
  • the controller 120 can supply the AC power supplied from the AC power source P to the kneading motor 50 or the grinding motor 60 substantially as it is by inputting a continuous drive signal to the control electrode of the TRIAC TRI. it can.
  • the control device 120 can continuously drive the kneading motor 50 or the grinding motor 60 by continuously inputting a continuous drive signal to the control electrode of the triac TRI.
  • the control device 120 adjusts the length of time for which the continuous drive signal is continuously input to the control electrode of the triac TRI, thereby adjusting the length of time for continuously driving the kneading motor 50 or the grinding motor 60.
  • the “continuous driving” of the kneading motor 50 or the pulverizing motor 60 is, for example, a continuous driving for 1 minute or longer, preferably 2 minutes or longer, and more preferably 2 minutes 30 seconds or longer.
  • the power supply frequency detection circuit 125 generates a signal indicating the power supply frequency (for example, 50 Hz or 60 Hz) of the AC power supply P and inputs the signal to the control device 120. For example, the power frequency detection circuit 125 generates a zero cross signal and inputs it to the control device 120.
  • the power supply frequency detection circuit 125 generates a zero cross signal and inputs it to the control device 120.
  • the power supply frequency detection circuit 125 may use any known circuit in order to generate a zero cross signal.
  • the power supply frequency detection circuit 125 performs full-wave rectification on the AC power supplied from the AC power supply P by a diode bridge or the like, passes the obtained pulsating current to the light emitting diode of the photocoupler, and converts the signal appearing in the phototransistor of the photocoupler
  • a zero-cross signal may be generated by binarization and inversion with the above.
  • the control device 120 can confirm the power supply frequency by measuring the number of times that this signal becomes high within a predetermined time (that is, the number of zero cross points).
  • the kneading motor 50 when the kneading motor 50 is continuously driven, it is greatly affected by the power supply frequency. Specifically, when the power supply frequency is low (for example, 50 Hz), the rotation of the kneading motor 50 may be insufficient compared to when the power supply frequency is high (for example, 60 Hz).
  • the control device 120 suppresses the influence of the power supply frequency by adjusting the length of time for continuously driving the kneading motor 50 according to the power supply frequency detected by the power supply frequency detection circuit 125. Specifically, the control device 120 eliminates insufficient rotation of the kneading motor 50 by increasing the time during which the kneading motor 50 is continuously driven as the power frequency detected by the power frequency detecting circuit 125 is lower.
  • the control device 120 drives the kneading motor 50 continuously for 8 minutes after confirming that the power supply frequency is 60 Hz.
  • the control apparatus 120 confirms that a power supply frequency is 50 Hz, it will drive the kneading motor 50 continuously for 9 minutes.
  • the controller 120 increases the time for continuously driving the kneading motor 50 by, for example, about 30 seconds to 1 minute.
  • the control device 120 adjusts the length of time for at least the step of continuously driving the kneading motor for the longest time. Thereby, it is possible to effectively suppress the influence of the power supply frequency that occurs when the kneading motor 50 is continuously driven.
  • the controller 120 When the controller 120 continuously inputs a continuous drive signal to the TRIAC TRI so that the kneading motor 50 is continuously driven, the frequency of the AC power supplied by the AC power supply P is determined by the kneading motor 50. Directly affects the behavior of In this case, there is less room for the control device 120 to adjust the AC power supplied to the kneading motor 50. However, even in such a case, the control device 120 adjusts the length of time for which the kneading motor 50 is continuously driven, thereby suppressing the influence of the power frequency generated when the kneading motor 50 is continuously driven. It becomes possible.
  • the control device 120 adjusts the length of time for continuous driving (for example, adjustment for increasing the time for which the crushing motor 60 is continuously driven as the power frequency decreases). You may do. However, the influence of the power supply frequency in the crushing motor 60 is smaller than the influence of the power supply frequency in the kneading motor 50. Therefore, adjustment of the length of time for which the crushing motor 60 is continuously driven by the control device 120 can be unnecessary (reducing the difference in the length of the manufacturing course caused by the difference in the power supply frequency). can do).
  • the control device 120 suppresses the influence of the frequency of the AC power supplied from the AC power supply P by adjusting the length of time for driving the motor (for example, the kneading motor 50). Therefore, the configuration of the motor (for example, the kneading motor 50) and the driving device (for example, the motor driving circuit 121) and the driving method of the motor (for example, the kneading motor 50) can be simplified. Therefore, it becomes possible to suppress the difference in the performance of the automatic bread maker 1 caused by the difference in the frequency of the AC power supplied from the AC power supply P by a simple method.
  • the configuration example of the motor drive circuit 121 shown in FIG. 18 includes a common drive system (current transformer CT, diode D1, resistor R1, capacitor C, and triac TRI) for the kneading motor 50 and the grinding motor 60.
  • a configuration for selecting a motor to be selected (relay RY, diode D2, transistor TR, resistor R2, and resistor R3) is provided, but the following modifications are also possible.
  • the control device 120 controls each drive system (particularly, the triac TRI) to select the kneading motor 50 and the grinding motor 60.
  • it may be configured to drive automatically.
  • the AC power supply P and the triac TRI and any one of the kneading motor 50 and the grinding motor 60 are electrically and mechanically connected. Therefore, for example, even if a malfunction of the control device 120 occurs, it is preferable because both the kneading motor 50 and the grinding motor 60 are prevented from being driven.
  • connection between the AC power supply P and the triac TRI and any of the kneading motor 50 and the grinding motor 60 can be switched as a configuration including the relay RY, but the same operation is realized. Any other configuration may be used as long as it can be obtained.
  • a signal indicating the supply current value is generated by the current transformer CT, the diode D1, the resistor R1, and the capacitor C.
  • Other configurations may be used.
  • the AC power supplied to the kneading motor 50 or the pulverization motor 60 is controlled by the triac TRI.
  • other configurations may be used as long as the same operation can be realized. It does not matter.
  • the configuration and operation of the automatic bread maker have been described by taking as an example the case where rice grains are used as a starting material.
  • the present invention is also applicable when grain grains other than rice grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybean are used as starting materials.
  • the automatic bread maker of embodiment shown above uses grain flours, such as wheat flour and rice flour, as a starting material, for example. Bread can also be produced.
  • wheat flour or rice flour is used as a starting material, the grinding blade 92 is not necessary. In this case, a bread container or a blade unit different from those shown above may be used.
  • the automatic bread maker 1 which can perform all the processes concerning the manufacture of bread, such as a dough manufacturing process (dipping process, crushing process and kneading process), fermentation process and baking process
  • the automatic bread maker of the present invention is not necessarily limited to one capable of executing all these steps.
  • those that cannot execute at least one step except the dough manufacturing step can be included in the automatic bread maker of the present invention.
  • the configuration related to the process that cannot be executed for example, the sheathed heater 31 and the heater driving circuit 122
  • the operation of the automatic bread maker that can execute only a part of the bread manufacturing process for example, the bread dough manufacturing process
  • the action is similar to the operation of the automatic bread maker of the above-described embodiment. Is the action.
  • the present invention is suitable for an automatic bread maker for home use.

Abstract

This automatic breadmaker is provided with: a kneading/mixing motor (50) that can apply rotary power that causes low-speed rotation to a driving shaft; a pulverizing motor (60) that can apply rotary power that causes high-speed rotation to the driving shaft; an AC power source (P) and TRIAC (TRI) that can supply AC power to the kneading/mixing motor (50) and the pulverizing motor (60); and a relay (RY) that can electrically and mechanically connect the AC power source (P) and TRIAC (TRI) to either the kneading/mixing motor (50) or the pulverizing motor (60), and that can switch the connection. As a result, the AC power source (P) and TRIAC (TRI) are prevented from connecting to both the kneading/mixing motor (50) and the pulverizing motor (60) and supplying AC power to both.

Description

自動製パン器Automatic bread machine
 本発明は、主として一般家庭で使用される自動製パン器に関する。 The present invention relates to an automatic bread maker mainly used in general households.
 市販の家庭用自動製パン器は、パン原料を入れるパン容器をそのまま焼き型としてパンを製造する仕組みのものが一般的である(例えば、特許文献1参照)。このような自動製パン器では、まず、パン原料が入れられたパン容器が本体内の焼成室に入れられる。そして、パン容器内のパン原料がパン容器内に設けられる混練ブレードでパン生地に練り上げられる(練り工程)。その後、練り上げられたパン生地を発酵させる発酵工程が行われ、パン容器が焼き型として使用されてパンが焼き上げられる(焼成工程)。 Commercially available automatic bread maker for home use generally has a mechanism for producing bread by directly using a bread container into which bread ingredients are placed (see, for example, Patent Document 1). In such an automatic bread maker, first, a bread container in which bread ingredients are placed is placed in a baking chamber in the main body. And the bread raw material in a bread container is kneaded into bread dough with the kneading blade provided in a bread container (kneading process). Thereafter, a fermentation process for fermenting the kneaded bread dough is performed, and the bread container is used as a baking mold to bake the bread (baking process).
 このような自動製パン器を用いてパンの製造が行われる場合、これまでは、パン原料として、小麦や米などの穀物を製粉した粉(小麦粉、米粉等)や、そのような製粉した粉に各種の補助原料が混ぜられたミックス粉が必要とされた。しかしながら、一般家庭においては、米粒に代表されるように、粉の形態ではなく粒の形態で穀物が所持されることがある。このために、自動製パン器が穀物粒から直接パンを製造する仕組みを有すれば、非常に便利である。このようなことを念頭において、本出願人らは、穀物粒を出発原料としてパンを製造するパンの製造方法を開発している(特許文献2参照)。 When bread is manufactured using such an automatic bread maker, so far, flour (wheat flour, rice flour, etc.) or flour such as wheat or rice is used as the raw material for bread. It was necessary to have a mixed powder in which various auxiliary materials were mixed. However, in general households, as represented by rice grains, grains are sometimes held in the form of grains instead of in the form of flour. For this reason, it would be very convenient if the automatic bread maker had a mechanism for producing bread directly from grains. With this in mind, the present applicants have developed a bread production method for producing bread using cereal grains as a starting material (see Patent Document 2).
 このパンの製造方法では、まず、穀物粒と液体とが混合され、この混合物の中で粉砕ブレードが回転されて穀物粒が粉砕される(粉砕工程)。そして、粉砕工程を経て得られたペースト状の粉砕粉を含むパン原料が、混練ブレードを用いてパン生地に練り上げられる(練り工程)。その後、練り上げられたパン生地を発酵させる発酵工程が行われ、続いてパンを焼き上げる焼成工程が行われる。 In this bread manufacturing method, first, cereal grains and liquid are mixed, and the crushed blade is rotated in this mixture to pulverize the cereal grains (grinding step). And the bread raw material containing the paste-form ground powder obtained through the grinding process is kneaded into bread dough using a kneading blade (kneading process). Thereafter, a fermentation process for fermenting the kneaded bread dough is performed, followed by a baking process for baking the bread.
特開2000-116526号公報JP 2000-116526 A 特開2010-35476号公報JP 2010-35476 A
 特許文献2のパンの製造方法では、粉砕ブレードによって穀物粒を粉砕する場合、粉砕ブレードが高速回転(例えば7000~8000rpm)されると、好適である。一方、混練ブレードによってパン生地を練り上げる場合、混練ブレードが低速回転(例えば180rpm等)されると、好適である。 In the bread manufacturing method of Patent Document 2, when cereal grains are crushed by a pulverizing blade, it is preferable that the pulverizing blade is rotated at a high speed (eg, 7000 to 8000 rpm). On the other hand, when the dough is kneaded with the kneading blade, it is preferable that the kneading blade is rotated at a low speed (for example, 180 rpm).
 このため、穀物粒を出発原料としてパンを製造することが可能な自動製パン器の構成としては、粉砕工程の際に使用される粉砕用のモータと、練り工程の際に使用される混練用のモータとが別々に備えられる構成を採用するのが好ましいと考えられる。このような2つのモータを備える自動製パン器はこれまでに類がなく、これら2つのモータのそれぞれを正確に駆動させてパンを製造する新しい仕組みが求められる。 For this reason, the structure of an automatic bread maker that can produce bread using cereal grains as a starting material includes a motor for crushing used in the crushing process and a kneading machine used in the kneading process. It is considered preferable to employ a configuration in which the motor is separately provided. Such an automatic bread maker having two motors is unprecedented, and a new mechanism for manufacturing bread by accurately driving each of these two motors is required.
 そこで、本発明の目的は、複数のモータのそれぞれを正確に駆動させ得る自動製パン器を提供することである。 Therefore, an object of the present invention is to provide an automatic bread maker that can accurately drive each of a plurality of motors.
 上記目的を達成するために本発明の自動製パン器は、パン原料が投入されるパン容器に回転動力を伝達可能に連結し得る原動軸と、前記原動軸に、低速回転させる回転動力を付与可能な第1のモータと、前記原動軸に、高速回転させる回転動力を付与可能な第2のモータと、前記第1のモータ及び前記第2のモータに電力を供給し得る電力供給部と、前記電力供給部と、前記第1のモータ及び前記第2のモータのいずれかと、を電気的及び機械的に接続し得るものであり、接続を切替可能である切替部と、を備える。 In order to achieve the above object, the automatic bread maker of the present invention provides a driving shaft that can be connected to a bread container into which bread ingredients are charged so that the rotating power can be transmitted, and a rotating power that rotates at a low speed to the driving shaft. A possible first motor, a second motor capable of imparting rotational power for high-speed rotation to the driving shaft, a power supply unit capable of supplying power to the first motor and the second motor, The power supply unit and any one of the first motor and the second motor can be electrically and mechanically connected, and includes a switching unit capable of switching connection.
 本構成によれば、切替部が、電力供給部と、第1のモータ及び第2のモータのいずれかと、を電気的及び機械的に接続する。即ち、電力供給部が、第1のモータ及び第2のモータの両方に接続されてそれぞれに電力を供給することを、防止することが可能になる。 According to this configuration, the switching unit electrically and mechanically connects the power supply unit and one of the first motor and the second motor. That is, it is possible to prevent the power supply unit from being connected to both the first motor and the second motor and supplying power thereto.
 上記構成の自動製パン器において、前記第1のモータが前記原動軸を回転させる方向と、前記第2のモータが前記原動軸を回転させる方向と、を逆としてもよい。本構成によれば、切替部により、第1のモータと第2のモータとが同時に駆動することが防止される。そのため、第1のモータと第2のモータとが同時に駆動することによる自動製パン器の破損を、防止することが可能になる。 In the automatic bread maker configured as described above, the direction in which the first motor rotates the driving shaft and the direction in which the second motor rotates the driving shaft may be reversed. According to this configuration, the switching unit prevents the first motor and the second motor from being driven simultaneously. Therefore, it is possible to prevent the automatic bread maker from being damaged by the simultaneous driving of the first motor and the second motor.
 上記構成の自動製パン器において、前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、をさらに備え、前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、取得した前記検知部の検知結果に基づいて、前記電力供給部が第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御してもよい。本構成によれば、制御部が、第1のモータを駆動させるべく制御する場合に、検知結果に基づいて切替部の接続状態が異常である(例えば、電力供給部と第2のモータとが誤って接続されている)と判断すると、製パン動作を停止する。そのため、例えば制御部が誤って第2のモータを駆動することを、防止することが可能になる。 In the automatic bread maker configured as described above, the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled. A control unit that acquires a detection result of the detection unit, and the control unit acquires the control unit so that the power supply unit and the first motor are connected to each other. If it is confirmed that the power supply unit supplies a current having a magnitude equal to or larger than the first threshold based on the detection result of the detection unit, the bread making operation may be stopped. According to this configuration, when the control unit performs control to drive the first motor, the connection state of the switching unit is abnormal based on the detection result (for example, the power supply unit and the second motor are If it is determined that it is connected by mistake, the bread making operation is stopped. Therefore, for example, it is possible to prevent the control unit from driving the second motor by mistake.
 上記構成の自動製パン器において、前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、第1の回数以上連続して、前記電力供給部が前記第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御してもよい。本構成によれば、制御部が、切替部の接続状態が異常であることを示す検知結果を確認したとしても、第1の回数以上確認しなければ異常と判断せず、製パン動作を停止しない。そのため、切替部の接続状態が正しい(電力供給部と第1のモータとが接続されている)にもかかわらず、接続状態が異常であることを示す検知結果が突発的に発生する場合に、制御部が製パン動作を停止することを、抑制することが可能になる。 In the automatic bread maker configured as described above, the control unit checks a detection result of the detection unit at predetermined timings, and the control unit connects the power supply unit and the first motor. When the switching unit is controlled as described above, when it is confirmed that the power supply unit supplies a current having a magnitude equal to or larger than the first threshold continuously for the first number of times or more, You may control to stop operation | movement. According to this configuration, even if the control unit confirms the detection result indicating that the connection state of the switching unit is abnormal, if it does not confirm the first number of times or more, it is not determined to be abnormal, and the bread making operation is stopped. do not do. Therefore, when the detection state indicating that the connection state is abnormal occurs suddenly even though the connection state of the switching unit is correct (the power supply unit and the first motor are connected), It is possible to suppress the control unit from stopping the bread making operation.
 上記構成の自動製パン器において、前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、をさらに備え、前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、取得した前記検知部の検知結果に基づいて、前記電力供給部が第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御してもよい。本構成によれば、制御部が、第2のモータを駆動させるべく制御する場合に、検知結果に基づいて切替部の接続状態が異常である(例えば、電力供給部と第1のモータとが誤って接続されている)と判断すると、製パン動作を停止する。そのため、例えば制御部が誤って第1のモータを駆動することを、防止することが可能になる。 In the automatic bread maker configured as described above, the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled. A control unit that acquires a detection result of the detection unit, and the control unit acquires the control unit so that the power supply unit and the second motor are connected to each other. If it is confirmed that the power supply unit supplies a current having a magnitude equal to or smaller than the second threshold based on the detection result of the detection unit, the bread making operation may be stopped. According to this configuration, when the control unit performs control to drive the second motor, the connection state of the switching unit is abnormal based on the detection result (for example, the power supply unit and the first motor are If it is determined that it is connected by mistake, the bread making operation is stopped. Therefore, for example, it is possible to prevent the control unit from driving the first motor by mistake.
 上記構成の自動製パン器において、前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、第2の回数以上連続して、前記電力供給部が前記第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御してもよい。本構成によれば、制御部が、切替部の接続状態が異常であることを示す検知結果を確認したとしても、第2の回数以上確認しなければ異常と判断せず、製パン動作を停止しない。そのため、切替部の接続状態が正しい(電力供給部と第2のモータとが接続されている)にもかかわらず、接続状態が異常であることを示す検知結果が突発的または過渡的に発生する場合に、制御部が製パン動作を停止することを抑制することが可能になる。 In the automatic bread maker configured as described above, the control unit checks a detection result of the detection unit at predetermined timings, and the control unit connects the power supply unit and the second motor. When the switching unit is controlled as described above, when it is confirmed that the power supply unit supplies a current having a magnitude equal to or smaller than the second threshold continuously for a second number of times or more, You may control to stop operation | movement. According to this configuration, even if the control unit confirms the detection result indicating that the connection state of the switching unit is abnormal, it does not determine that there is an abnormality unless it is confirmed more than the second number of times, and stops the bread making operation. do not do. Therefore, a detection result indicating that the connection state is abnormal occurs suddenly or transiently even though the connection state of the switching unit is correct (the power supply unit and the second motor are connected). In this case, it is possible to suppress the control unit from stopping the bread making operation.
 上記構成の自動製パン器において、前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、をさらに備え、前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、第1の回数以上連続して、前記電力供給部が第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御するものであり、前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、第2の回数以上連続して、前記電力供給部が第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御するものであり、前記第2の回数が、前記第1の回数よりも大きいこととしてもよい。本構成によれば、切替部の接続状態が異常であることを示す検知結果が過渡的に発生し易い場合に、制御部が切替部の接続状態を異常と判断するための第2の回数が、切替部の接続状態が異常であることを示す検知結果が過渡的に発生し難い場合に、制御部が切替部の接続状態を異常と判断するための第1の回数よりも、大きくなる。そのため、切替部の接続状態が異常であることを、制御部がより精度よく判断することが可能になる。 In the automatic bread maker configured as described above, the detection unit that detects the magnitude of the current supplied from the power supply unit to the first motor or the second motor, and the switching of the switching unit are controlled. And a control unit that acquires a detection result of the detection unit, wherein the control unit checks a detection result of the detection unit at every predetermined timing, and the control unit includes the power supply unit. When the switching unit is controlled so that the first motor is connected to the first motor, the power supply unit supplies a current having a magnitude greater than or equal to the first threshold continuously for the first number of times or more. When confirming that the bread making operation is stopped, the control unit controls the switching unit so that the power supply unit and the second motor are connected. , Continuously for the second or more times. When it is confirmed that the supply unit supplies a current having a magnitude equal to or smaller than the second threshold value, the bread making operation is controlled to stop, and the second number is more than the first number. May be large. According to this configuration, when the detection result indicating that the connection state of the switching unit is abnormal is likely to occur transiently, the second number of times for the control unit to determine that the connection state of the switching unit is abnormal is determined. When the detection result indicating that the connection state of the switching unit is abnormal is unlikely to occur transiently, the control unit is larger than the first number of times for determining that the connection state of the switching unit is abnormal. Therefore, the control unit can more accurately determine that the connection state of the switching unit is abnormal.
 上記構成の自動製パン器において、前記検知部が、前記電力供給部と前記第1のモータ及び前記第2のモータとに対して直列に接続される第1のコイルと、前記第1のコイルに電流が通じられることで生じる磁界により電流が発生する第2のコイルと、前記第2のコイルに発生する電流に基づいて検知結果を生成し、前記制御部に入力する検知結果生成回路と、を備える構成であってもよい。本構成によれば、簡易な構成で、電力供給部が供給する電流の大きさを検知して、制御部に入力することが可能になる。 In the automatic bread maker configured as described above, the detection unit includes a first coil connected in series to the power supply unit, the first motor, and the second motor, and the first coil. A detection result generation circuit for generating a detection result based on a current generated in the second coil and inputting the detection result to the control unit; May be provided. According to this configuration, it is possible to detect the magnitude of the current supplied by the power supply unit and input it to the control unit with a simple configuration.
 上記構成の自動製パン器において、前記切替部が、前記電力供給部と前記第1のモータ及び前記第2のモータとの接続が切り替えられるスイッチと、通電の有無で前記スイッチの接続を切り替える第3のコイルと、を備えたリレーである構成としてもよい。本構成によれば、簡易な構成で、電力供給部と第1のモータ及び第2のモータのいずれかとを電気的及び機械的に接続し、かつ接続を切替可能にすることができる。 In the automatic bread maker configured as described above, the switching unit switches a connection between the power supply unit and the first motor and the second motor, and switches the connection of the switch depending on whether power is supplied or not. It is good also as a structure which is a relay provided with 3 coils. According to this configuration, the power supply unit and any of the first motor and the second motor can be electrically and mechanically connected with a simple configuration, and the connection can be switched.
 上記構成の自動製パン器において、前記電力供給部に含まれる電源部の状態を検知する電源状態検知部と、前記第1のモータと前記第2のモータとのうちの少なくともいずれか一方の異常を検知する異常検知部と、を備え、前記異常検知部が、前記モータの異常を検知するための基準を、前記電源状態検知部の検知結果に応じて異なり得るものとして設定する構成としてもよい。本構成によれば、異常検知部が、電源部の状態に応じた基準を設定し、当該基準に基づいてモータの異常を検知する。そのため、電源部の状態変動に応じて、精度良くモータの異常を検知することが可能になる。 In the automatic bread maker configured as described above, an abnormality in at least one of the power supply state detection unit that detects the state of the power supply unit included in the power supply unit, and the first motor and the second motor An abnormality detection unit that detects the abnormality of the motor, and the abnormality detection unit may set a reference for detecting an abnormality of the motor as being different depending on a detection result of the power supply state detection unit. . According to this configuration, the abnormality detection unit sets a reference according to the state of the power supply unit, and detects a motor abnormality based on the reference. Therefore, it is possible to detect an abnormality of the motor with high accuracy according to the state fluctuation of the power supply unit.
 上記構成の自動製パン器において、前記モータに供給される電流の大きさを検知する供給電流検知部をさらに備え、前記異常検知部が、前記電源状態検知部の検知結果に応じた閾値を、前記基準として設定するものであり、前記異常検知部が、前記供給電流検知部の検知結果に基づいて、前記モータに供給される電流の大きさが前記閾値以上であることを確認すると、前記モータの異常を検知することとしてもよい。本構成によれば、モータがロックするなどして回路内に過剰な電流が生じる状況になったとしても、当該状況を異常として検知することが可能になる。 In the automatic bread maker configured as described above, the automatic bread maker further includes a supply current detection unit that detects the magnitude of the current supplied to the motor, and the abnormality detection unit has a threshold value according to the detection result of the power supply state detection unit, When the abnormality detection unit confirms that the magnitude of the current supplied to the motor is greater than or equal to the threshold based on the detection result of the supply current detection unit, the motor is set as the reference. It is good also as detecting abnormality of. According to this configuration, even if an excessive current is generated in the circuit due to the motor being locked or the like, the situation can be detected as abnormal.
 上記構成の自動製パン器において、前記異常検知部が、前記供給電流検知部の検知結果を所定のタイミング毎に確認するものであり、前記異常検知部が、所定の回数以上連続して、前記モータに供給される電流の大きさが前記閾値以上であることを確認すると、前記モータの異常を検知することとしてもよい。本構成によれば、異常検知部が、閾値以上の電流がモータに供給されていることを示す検知結果が供給電流検知部から継続的に得ない限り、異常と判断しない。そのため、異常検知部が、モータに供給される電流が突発的に閾値以上になる場合にまで異常を検知して自動製パン器の動作を阻害することを、抑制することが可能になる。 In the automatic bread maker configured as described above, the abnormality detection unit confirms the detection result of the supply current detection unit at a predetermined timing, and the abnormality detection unit is continuously performed a predetermined number of times or more. If it is confirmed that the magnitude of the current supplied to the motor is equal to or greater than the threshold value, an abnormality of the motor may be detected. According to this configuration, the abnormality detection unit does not determine that there is an abnormality unless a detection result indicating that a current equal to or greater than the threshold is supplied to the motor is continuously obtained from the supply current detection unit. Therefore, it is possible to suppress the abnormality detection unit from detecting an abnormality and inhibiting the operation of the automatic bread maker until the current supplied to the motor suddenly exceeds the threshold value.
 上記構成の自動製パン器において、前記電源部が供給する電圧が所定の範囲内である場合、前記異常検知部は、前記電源部が供給する電圧が大きいほど、大きい前記閾値を設定することとしてもよい。本構成によれば、電源部が供給する電力に適した閾値が設定され得る。そのため、異常検知部が、精度良くモータの異常を検知することが可能になる。 In the automatic bread maker configured as described above, when the voltage supplied by the power supply unit is within a predetermined range, the abnormality detection unit sets the larger threshold as the voltage supplied by the power supply unit increases. Also good. According to this configuration, a threshold suitable for the power supplied by the power supply unit can be set. Therefore, the abnormality detection unit can detect the abnormality of the motor with high accuracy.
 具体的に例えば、異常検知部は、電源部が通常よりも小さい電力を供給してモータに異常がある場合に、電源部が通常の電力を供給してモータに異常がない場合と混同せず、モータの異常を検知することが可能になる。同様に、異常検知部は、電源部が通常よりも大きい電力を供給してモータに異常がない場合に、電源部が通常の電力を供給してモータに異常がある場合と混同せず、異常を検知しないことが可能になる。 Specifically, for example, the abnormality detection unit is not confused with the case where the power supply unit supplies normal power and the motor does not have an abnormality when the motor has an abnormality and the motor has an abnormality. It becomes possible to detect abnormality of the motor. Similarly, the abnormality detection unit is not confused when the power supply unit supplies normal power and the motor is normal, and the power supply unit supplies normal power and the motor is abnormal. It becomes possible not to detect.
 上記構成の自動製パン器において、前記電源部が、交流電力を供給するものであり、前記異常検知部が、前記電源部が供給する交流電力の周波数に応じて異なり得る前記閾値を設定することとしてもよい。本構成によれば、電源部が供給する交流電力の周波数に適した閾値が設定され得る。そのため、異常検知部が、精度良くモータの異常を検知することが可能になる。 In the automatic bread maker configured as described above, the power supply unit supplies AC power, and the abnormality detection unit sets the threshold value that can vary depending on the frequency of AC power supplied by the power supply unit. It is good. According to this configuration, a threshold suitable for the frequency of the AC power supplied by the power supply unit can be set. Therefore, the abnormality detection unit can detect the abnormality of the motor with high accuracy.
 上記構成の自動製パン器において、前記異常検知部は、少なくとも前記第2のモータの異常を検知し、前記第2のモータは、前記原動軸と連動する粉砕ブレードにより前記パン容器内に投入された穀物粒を粉砕する際に、前記原動軸に回転動力を付与するものであることとしてもよい。本構成によれば、異常検知部が、原動軸の高速回転が必要であり穀物粒を粉砕するためにロックが懸念されるモータの異常を、検知する。そのため、自動製パン器の安全性を効果的に高め、故障の発生を効果的に抑制することが可能になる。 In the automatic bread maker configured as described above, the abnormality detection unit detects at least an abnormality of the second motor, and the second motor is put into the bread container by a pulverization blade interlocked with the driving shaft. When pulverizing cereal grains, the driving shaft may be given rotational power. According to this configuration, the abnormality detection unit detects an abnormality of the motor that requires high-speed rotation of the driving shaft and that is likely to be locked due to pulverization of the grain. Therefore, it is possible to effectively increase the safety of the automatic bread maker and effectively suppress the occurrence of failure.
 本発明によると、切替部が、電力供給部と、第1のモータ及び第2のモータのいずれかと、を電気的及び機械的に接続する。したがって、第1のモータ及び第2のモータのそれぞれを、正確に駆動させることが可能になる。また、本発明によると、電源部の状態に応じて、精度良くモータの異常を検知することが可能になる。したがって、自動製パン器の安全性を高め、故障の発生を抑制することが可能になる。 According to the present invention, the switching unit electrically and mechanically connects the power supply unit and one of the first motor and the second motor. Therefore, each of the first motor and the second motor can be accurately driven. In addition, according to the present invention, it is possible to detect a motor abnormality with high accuracy according to the state of the power supply unit. Therefore, the safety of the automatic bread maker can be improved and the occurrence of failure can be suppressed.
第1実施形態の自動製パン器の外観構成を示す概略斜視図The schematic perspective view which shows the external appearance structure of the automatic bread maker of 1st Embodiment. 第1実施形態の自動製パン器の本体内部の構成を説明するための模式図The schematic diagram for demonstrating the structure inside the main body of the automatic bread maker of 1st Embodiment. 第1実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図で、クラッチが動力遮断を行う状態を示す図The figure for demonstrating the clutch contained in the 1st power transmission part with which the automatic bread maker of 1st Embodiment is provided, The figure which shows the state which a clutch cuts off power 第1実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図で、クラッチが動力伝達を行う状態を示す図The figure for demonstrating the clutch contained in the 1st power transmission part with which the automatic bread maker of 1st Embodiment is equipped, The figure which shows the state in which a clutch transmits power 第1実施形態の自動製パン器における、パン容器が収容された焼成室及びその周辺の構成を模式的に示す図The figure which shows typically the structure of the baking chamber in which the bread container was accommodated, and its periphery in the automatic bread maker of 1st Embodiment. 第1実施形態の自動製パン器が備えるブレードユニットの構成を示す概略斜視図The schematic perspective view which shows the structure of the blade unit with which the automatic bread maker of 1st Embodiment is provided. 第1実施形態の自動製パン器が備えるブレードユニットの構成を示す概略分解斜視図Schematic exploded perspective view showing a configuration of a blade unit provided in the automatic bread maker of the first embodiment 第1実施形態の自動製パン器が備えるブレードユニットの構成を示す概略側面図The schematic side view which shows the structure of the blade unit with which the automatic bread maker of 1st Embodiment is provided. 図7AのA-A位置における断面図Sectional view at the position AA in FIG. 7A 第1実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、混練ブレードが折り畳み姿勢にある場合の図FIG. 3 is a schematic plan view of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, and a view when the kneading blade is in a folded posture. 第1実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、混練ブレードが開き姿勢にある場合の図FIG. 3 is a schematic plan view of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, and a view when the kneading blade is in an open posture. 第1実施形態の自動製パン器が備えるパン容器を上から見た場合の図で、混練ブレードが折り畳み姿勢にある場合の図The figure when the bread container with which the automatic bread maker of 1st Embodiment is provided is seen from the top, and the figure when a kneading blade is in a folding posture 第1実施形態の自動製パン器が備えるパン容器を上から見た場合の図で、混練ブレードが開き姿勢にある場合の図The figure when the bread container provided in the automatic bread maker of the first embodiment is viewed from above, and the figure when the kneading blade is in the open posture 第1実施形態の自動製パン器の構成を示すブロック図The block diagram which shows the structure of the automatic bread maker of 1st Embodiment. 第1実施形態の自動製パン器によって実行される米粒用製パンコースの流れを示す模式図The schematic diagram which shows the flow of the bread-making course for rice grains performed with the automatic bread maker of 1st Embodiment. 第1実施形態の自動製パン器が備えるモータの駆動回路を示す回路図The circuit diagram which shows the drive circuit of the motor with which the automatic bread maker of 1st Embodiment is provided. 第1実施形態の自動製パン器が備える制御装置によるリレーの異常の確認動作を示すフローチャートThe flowchart which shows the confirmation operation of the abnormality of the relay by the control apparatus with which the automatic bread maker of 1st Embodiment is provided. 第2実施形態の自動製パン器の構成を示すブロック図The block diagram which shows the structure of the automatic bread maker of 2nd Embodiment. 第2実施形態の自動製パン器が備えるモータ駆動回路を示す回路図The circuit diagram which shows the motor drive circuit with which the automatic bread maker of 2nd Embodiment is provided. 第2実施形態の自動製パン器が備える制御装置による粉砕モータの異常の検知動作を示すフローチャートThe flowchart which shows the abnormality detection operation | movement of the grinding | pulverization motor by the control apparatus with which the automatic bread maker of 2nd Embodiment is provided. 第3実施形態の自動製パン器の構成を示すブロック図The block diagram which shows the structure of the automatic bread maker of 3rd Embodiment. 第3実施形態の自動製パン器が備えるモータ駆動回路を示す回路図The circuit diagram which shows the motor drive circuit with which the automatic bread maker of 3rd Embodiment is provided.
 以下、本発明の自動製パン器の実施形態について、図面を参照しながら詳細に説明する。なお、本明細書に登場する具体的な時間や温度等はあくまでも例示であり、それらは本発明の内容を限定するものではない。 Hereinafter, embodiments of the automatic bread maker of the present invention will be described in detail with reference to the drawings. In addition, the specific time, temperature, etc. which appear in this specification are illustrations to the last, and they do not limit the content of this invention.
1.第1実施形態
(自動製パン器の構成)
 図1は、第1実施形態の自動製パン器の外観構成を示す概略斜視図である。図1に示すように、略直方体形状に設けられる自動製パン器1の本体10(その外殻は例えば金属や合成樹脂等によって形成される)の上面の一部には、操作部20が設けられている。この操作部20は、操作キー群と、時間、操作キー群によって設定された内容、エラー等を表示する表示部と、によって構成されている。操作キー群には、例えば、スタートキー、取り消しキー、タイマーキー、予約キー、パンの製造コース(米粒を出発原料に用いてパンを製造するコース、米粉を出発原料に用いてパンを製造するコース、小麦粉を出発原料に用いてパンを製造するコース等)を選択する選択キー等が含まれる。表示部は、例えば、液晶表示パネル等によって構成される。
1. First embodiment (configuration of automatic bread maker)
FIG. 1 is a schematic perspective view showing an external configuration of the automatic bread maker according to the first embodiment. As shown in FIG. 1, an operation unit 20 is provided on a part of the upper surface of a main body 10 (the outer shell of which is formed of, for example, metal or synthetic resin) of an automatic bread maker 1 provided in a substantially rectangular parallelepiped shape. It has been. The operation unit 20 includes an operation key group and a display unit that displays time, contents set by the operation key group, errors, and the like. The operation key group includes, for example, a start key, a cancel key, a timer key, a reservation key, a bread manufacturing course (a course for manufacturing bread using rice grains as a starting material, a course for manufacturing bread using rice flour as a starting material) And a selection key for selecting a course for producing bread using flour as a starting material. The display unit is configured by, for example, a liquid crystal display panel.
 本体10内部には、詳細は後述するパン容器80が収容される焼成室30が設けられている。この焼成室30は、例えば板金からなる底壁30a及び4つの側壁30b(後述の図4も参照)で構成されている。焼成室30は、平面形状略矩形の箱形状で、その上面は開口している。この焼成室30は、本体10上部に設けられる蓋40によって開閉可能となっている。蓋40は、図示しない蝶番軸で本体10の背面側に取り付けられており、その蝶番軸を支点として回動することで、焼成室30の開閉が可能になっている。なお、図1は、この蓋40が開かれた状態を示している。 Inside the main body 10 is provided a baking chamber 30 in which a bread container 80, which will be described later in detail, is accommodated. The firing chamber 30 is composed of, for example, a bottom wall 30a made of sheet metal and four side walls 30b (see also FIG. 4 described later). The baking chamber 30 has a substantially rectangular box shape in plan view, and its upper surface is open. The firing chamber 30 can be opened and closed by a lid 40 provided on the upper part of the main body 10. The lid 40 is attached to the back side of the main body 10 with a hinge shaft (not shown), and the firing chamber 30 can be opened and closed by rotating about the hinge shaft as a fulcrum. FIG. 1 shows a state where the lid 40 is opened.
 この蓋40には、焼成室30内を覗けるように、例えば耐熱ガラスからなる覗き窓41が設けられている。また、蓋40には、パン原料収納容器42が取り付けられている。このパン原料収納容器42は、パンの製造工程の途中で一部のパン原料を自動投入することを可能にしている。パン原料収納容器42は、平面形状略長方形の箱形状の容器本体42aと、容器本体42aに対して回動可能に設けられて、容器本体42aの開口を開閉する容器蓋42bとを備えている。また、パン原料収納容器42は、容器蓋42bを外面(下面)側から支えて容器本体42aの開口が閉じられた状態を維持可能であると共に、外部からの力によって動かされて容器蓋42bとの係合が解除される可動フック42cも備えている。 The lid 40 is provided with a viewing window 41 made of heat-resistant glass, for example, so that the inside of the baking chamber 30 can be seen. A bread ingredient storage container 42 is attached to the lid 40. This bread ingredient storage container 42 makes it possible to automatically feed some bread ingredients during the bread production process. The bread raw material storage container 42 includes a box-shaped container body 42a having a substantially rectangular plane shape, and a container lid 42b that is provided so as to be rotatable with respect to the container body 42a and opens and closes the opening of the container body 42a. . Further, the bread ingredient storage container 42 can support the container lid 42b from the outer surface (lower surface) side and maintain the closed state of the opening of the container body 42a, and is moved by an external force to move the container lid 42b to the container lid 42b. There is also provided a movable hook 42c for releasing the engagement.
 操作部20下部側の本体10内には自動投入用ソレノイド16(後述の図10参照)が設けられており、この自動投入用ソレノイドが駆動すると、そのプランジャーが、蓋40に隣接する本体壁面10aに設けられる開口10bから突出するようになっている。そして、この突出したプランジャーによって可動する可動部材(図示せず)によって可動フック42cが動かされ、容器蓋42bと可動フック42cとの係合が外れて容器蓋42bが回動し、容器本体42aの開口が開かれた状態になる。なお、図1においては、容器本体42aの開口が開かれた状態が示されている。 An automatic closing solenoid 16 (see FIG. 10 to be described later) is provided in the main body 10 on the lower side of the operation unit 20, and when the automatic closing solenoid is driven, the plunger wall surface of the main body adjacent to the lid 40. It protrudes from an opening 10b provided in 10a. Then, the movable hook 42c is moved by a movable member (not shown) movable by the protruding plunger, the engagement between the container lid 42b and the movable hook 42c is released, the container lid 42b is rotated, and the container main body 42a. The opening of is opened. Note that FIG. 1 shows a state where the opening of the container main body 42a is opened.
 容器本体42a及び容器蓋42bは、容器内に収納される粉体パン原料(例えばグルテンやドライイースト等)が容器内に残留し難いように、アルミニウム等の金属で設けられるのが好ましい。そして、それらの表面は、シリコン系やフッ素系等のコーティング層で覆われるのが好ましく、アルマイト層で覆われるように構成するとさらに好ましい。また、容器本体42a及び容器蓋42bは、凹凸がなるべく設けられず、滑らかに形成されるのが好ましい。なお、蓋40の内側(パン原料収納容器42が取り付けられる側)の部材も同様であり、基材をアルミニウムとして、表面をシリコンやフッ素等のコーティング層やアルマイト層で覆うように構成すると、好ましい。 The container main body 42a and the container lid 42b are preferably provided with a metal such as aluminum so that powder bread materials (for example, gluten, dry yeast, etc.) stored in the container do not remain in the container. These surfaces are preferably covered with a silicon-based or fluorine-based coating layer, and more preferably configured to be covered with an alumite layer. Moreover, it is preferable that the container main body 42a and the container lid 42b are formed as smoothly as possible without being uneven. The same applies to the members on the inner side of the lid 40 (the side on which the bread ingredient storage container 42 is attached), and it is preferable that the base is made of aluminum and the surface is covered with a coating layer such as silicon or fluorine or an alumite layer. .
 また、米粒等の穀物粒を粉砕する際に発生する蒸気等が容器本体42a内に入り込むと、パン原料が容器内面に付着し易くなって好ましくない。このために、容器内に前述の蒸気等が入り込まないように、容器本体42aの開口側縁には鍔部(フランジ部)が設けられて、この鍔部と容器蓋42bとの間にはパッキン(シール部材)42dが介在するようになっている。 In addition, if steam or the like generated when pulverizing grains such as rice grains enters the container body 42a, it is not preferable because the bread material easily adheres to the inner surface of the container. For this purpose, a flange (flange) is provided at the opening side edge of the container main body 42a so that the aforementioned steam or the like does not enter the container, and a packing is provided between the flange and the container lid 42b. (Seal member) 42d is interposed.
 図2は、第1実施形態の自動製パン器の本体内部の構成を説明するための模式図である。図2は、自動製パン器1を上側から見た場合を想定しており、図の下側が自動製パン器1の正面側、図の上側が背面側である。図2に示すように、自動製パン器1には、焼成室30の右横に練り工程で用いられる低速・高トルクタイプの混練モータ50が固定配置され、焼成室30の後ろ側に粉砕工程で用いられる高速回転タイプの粉砕モータ60が固定配置されている。混練モータ50及び粉砕モータ60はいずれも竪軸である。なお、混練モータ50は本発明の第1のモータの一例であり、粉砕モータ60は本発明の第2のモータの一例である。 FIG. 2 is a schematic diagram for explaining the internal configuration of the main body of the automatic bread maker according to the first embodiment. FIG. 2 assumes a case where the automatic bread maker 1 is viewed from above, and the lower side of the figure is the front side of the automatic bread maker 1 and the upper side of the figure is the back side. As shown in FIG. 2, in the automatic bread maker 1, a low-speed / high-torque type kneading motor 50 used in the kneading process is fixedly disposed on the right side of the baking chamber 30, and the grinding process is performed behind the baking chamber 30. The high-speed rotation type crushing motor 60 used in the above is fixedly arranged. The kneading motor 50 and the crushing motor 60 are both shafts. The kneading motor 50 is an example of the first motor of the present invention, and the crushing motor 60 is an example of the second motor of the present invention.
 混練モータ50の上面から突出する出力軸51には第1のプーリ52が固定される。この第1のプーリ52は、第1のベルト53によって、その径が第1のプーリ52よりも大きく形成されるとともに第1の回転軸54の上部側に固定される第2のプーリ55に連結されている。第1の回転軸54の下部側には、その回転中心が第1の回転軸54とほぼ同一となるように第2の回転軸57が設けられている(後述の図3A及び図3B参照)。なお、第1の回転軸54及び第2の回転軸57は、本体10内部に回転可能に支持されている。また、第1の回転軸54と第2の回転軸57との間には、動力伝達と動力遮断を行うクラッチ56が設けられている(後述の図3A及び図3B参照)。このクラッチ56の構成については後述する。 The first pulley 52 is fixed to the output shaft 51 protruding from the upper surface of the kneading motor 50. The first pulley 52 is connected by a first belt 53 to a second pulley 55 having a diameter larger than that of the first pulley 52 and fixed to the upper side of the first rotating shaft 54. Has been. A second rotating shaft 57 is provided on the lower side of the first rotating shaft 54 so that the center of rotation is substantially the same as the first rotating shaft 54 (see FIGS. 3A and 3B described later). . The first rotating shaft 54 and the second rotating shaft 57 are rotatably supported inside the main body 10. Further, a clutch 56 that performs power transmission and power interruption is provided between the first rotating shaft 54 and the second rotating shaft 57 (see FIGS. 3A and 3B described later). The configuration of the clutch 56 will be described later.
 第2の回転軸57の下部側には第3のプーリ58が固定されている(後述の図3A及び図3B参照)。第3のプーリ58は、第2のベルト59によって、焼成室30の下部側に設けられるとともに原動軸11に固定される第1の原動軸用プーリ12(第3のプーリ58とほぼ同一の径を有する)に連結されている(後述の図3A及び図3B参照)。混練モータ50自身が低速・高トルクタイプであり、その上、第1のプーリ52の回転が第2のプーリ55によって減速回転される(例えば1/5の速度に減速される)。このため、クラッチ56が動力伝達を行う状態で混練モータ50を駆動すると、原動軸11は低速で回転する。 A third pulley 58 is fixed to the lower side of the second rotating shaft 57 (see FIGS. 3A and 3B described later). The third pulley 58 is provided on the lower side of the firing chamber 30 by the second belt 59 and is fixed to the driving shaft 11 and has a first driving shaft pulley 12 (having substantially the same diameter as the third pulley 58). (See FIGS. 3A and 3B described later). The kneading motor 50 itself is a low speed / high torque type, and the rotation of the first pulley 52 is decelerated and rotated by the second pulley 55 (for example, decelerated to 1/5 speed). For this reason, when the kneading motor 50 is driven in a state where the clutch 56 transmits power, the driving shaft 11 rotates at a low speed.
 以下においては、第1のプーリ52、第1のベルト53、第1の回転軸54、第2のプーリ55、クラッチ56、第2の回転軸57、第3のプーリ58、第2のベルト59、及び第1の原動軸用プーリ12で構成される動力伝達部は、第1の動力伝達部PT1と表現されることがある。 In the following, the first pulley 52, the first belt 53, the first rotating shaft 54, the second pulley 55, the clutch 56, the second rotating shaft 57, the third pulley 58, and the second belt 59 are used. , And the first driving shaft pulley 12 may be expressed as a first power transmission unit PT1.
 粉砕モータ60の下面から突出する出力軸61には、第4のプーリ62が固定されている。この第4のプーリ62は、第3のベルト63によって、原動軸11に固定される第2の原動軸用プーリ13(第1の原動軸用プーリ12より下側で固定される;後述の図3A及び図3B参照)に連結されている。第2の原動軸用プーリ13は第4のプーリ62とほぼ同一の径を有する。粉砕モータ60には高速回転のものが選定され、第4のプーリ62の回転は第2の原動軸用プーリ13においてほぼ同一速度で維持されるために、粉砕モータ60を駆動すると、原動軸11は高速回転(例えば7000~8000rpm)を行う。 A fourth pulley 62 is fixed to the output shaft 61 protruding from the lower surface of the grinding motor 60. The fourth pulley 62 is fixed by a third belt 63 below the second driving shaft pulley 13 (below the first driving shaft pulley 12) fixed to the driving shaft 11; 3A and FIG. 3B). The second driving shaft pulley 13 has substantially the same diameter as the fourth pulley 62. As the crushing motor 60, a high-speed rotating one is selected, and the rotation of the fourth pulley 62 is maintained at substantially the same speed in the second driving shaft pulley 13. Therefore, when the crushing motor 60 is driven, the driving shaft 11 is driven. Performs high-speed rotation (for example, 7000 to 8000 rpm).
 以下においては、第4のプーリ62、第3のベルト63、及び第2の原動軸用プーリ13で構成される動力伝達部は、第2の動力伝達部PT2と表現されることがある。第2の動力伝達部PT2は、クラッチを有さない構成であり、粉砕モータ60の出力軸61と原動軸11とを常時動力伝達可能に連結する。 Hereinafter, the power transmission unit including the fourth pulley 62, the third belt 63, and the second driving shaft pulley 13 may be expressed as a second power transmission unit PT2. The second power transmission unit PT2 has a configuration that does not have a clutch, and connects the output shaft 61 of the crushing motor 60 and the driving shaft 11 so that power can be transmitted constantly.
 図3A及び図3Bは、第1実施形態の自動製パン器が備える第1の動力伝達部に含まれるクラッチについて説明するための図である。図3A及び図3Bは、図2の矢印X方向に沿って見た場合を想定した図である。なお図3Aはクラッチ56が動力遮断を行う状態を示し、図3Bはクラッチ56が動力伝達を行う状態を示す。 3A and 3B are views for explaining a clutch included in the first power transmission unit included in the automatic bread maker of the first embodiment. 3A and 3B are diagrams assuming a case of viewing along the direction of the arrow X in FIG. 3A shows a state in which the clutch 56 performs power interruption, and FIG. 3B shows a state in which the clutch 56 transmits power.
 図3A及び図3Bに示すように、クラッチ56は、第1のクラッチ部材561と第2のクラッチ部材562とを有する。そして、第1のクラッチ部材561に設けられる爪561aと、第2のクラッチ部材562に設けられる爪562aとが噛み合う場合(図3Bの状態)に、クラッチ56は動力伝達を行う。また、2つの爪561a、562aが噛み合わない場合(図3Aの状態)に、クラッチ56は動力遮断を行う。すなわち、クラッチ56は噛み合いクラッチとなっている。 3A and 3B, the clutch 56 includes a first clutch member 561 and a second clutch member 562. Then, when the claw 561a provided on the first clutch member 561 and the claw 562a provided on the second clutch member 562 are engaged with each other (the state shown in FIG. 3B), the clutch 56 transmits power. Further, when the two claws 561a and 562a are not engaged with each other (the state shown in FIG. 3A), the clutch 56 cuts off the power. That is, the clutch 56 is a meshing clutch.
 なお、本実施形態では、2つのクラッチ部材561、562のそれぞれには、周方向(第1のクラッチ部材561を下から平面視した場合、或いは、第2のクラッチ部材562を上から平面視した場合を想定)にほぼ等間隔に並ぶ6つの爪561a、562aが設けられているが、この爪の数は適宜変更してもよい。また、爪561a、562aの形状は、好ましい形状を適宜選択すればよい。 In the present embodiment, each of the two clutch members 561 and 562 has a circumferential direction (when the first clutch member 561 is seen in plan view from below, or the second clutch member 562 is seen in plan view from above. Assuming the case), six claws 561a and 562a arranged at almost equal intervals are provided, but the number of the claws may be appropriately changed. Moreover, what is necessary is just to select a preferable shape suitably for the shape of nail | claw 561a and 562a.
 第1のクラッチ部材561は、抜け止め対策を施された上で、第1の回転軸54に、その軸方向(図3A及び図3Bにおいて上下方向)に摺動可能、且つ、相対回転不能に取り付けられている。第1の回転軸54の第1のクラッチ部材561の上部側には、バネ71が遊嵌されている。このバネ71は、第1の回転軸54に設けられるストッパ部54aと第1のクラッチ部材561とに挟まれるように配置されており、第1のクラッチ部材561を下側に向けて付勢している。一方、第2のクラッチ部材562は、第2の回転軸57の上端に固定されている。 The first clutch member 561 is slidable in the axial direction (vertical direction in FIGS. 3A and 3B) with respect to the first rotating shaft 54 and is not relatively rotatable. It is attached. A spring 71 is loosely fitted on the upper side of the first clutch member 561 of the first rotating shaft 54. The spring 71 is disposed so as to be sandwiched between a stopper portion 54a provided on the first rotating shaft 54 and the first clutch member 561, and biases the first clutch member 561 downward. ing. On the other hand, the second clutch member 562 is fixed to the upper end of the second rotating shaft 57.
 クラッチ56における、動力伝達状態と動力遮断状態との切り替えは、下位置と上位置とに選択配置可能なアーム部72を用いて行われる。アーム部72は、その一部が第1のクラッチ部材561の下側に配置され、第1のクラッチ部材561の外周部と当接可能となっている。 Switching between the power transmission state and the power cut-off state in the clutch 56 is performed using the arm portion 72 that can be selectively arranged at the lower position and the upper position. A part of the arm portion 72 is disposed below the first clutch member 561 and can contact the outer peripheral portion of the first clutch member 561.
 アーム部72が下位置(図3Bの状態)から上位置(図3Aの状態)に移動すると、第1のクラッチ部材561はバネ71の付勢力に抗して上方向に移動する。アーム部72が上位置にある場合には、第1のクラッチ部材561と第2のクラッチ部材562とは噛み合わない。すなわち、アーム部72が上位置にある場合には、クラッチ56は動力遮断を行う。 When the arm portion 72 moves from the lower position (state shown in FIG. 3B) to the upper position (state shown in FIG. 3A), the first clutch member 561 moves upward against the urging force of the spring 71. When the arm portion 72 is in the upper position, the first clutch member 561 and the second clutch member 562 do not mesh with each other. That is, when the arm portion 72 is in the upper position, the clutch 56 performs power interruption.
 一方、アーム部72が上位置から下位置に移動すると、第1のクラッチ部材561はバネ71の付勢力によって押される形で下方向に移動する。アーム部72が下位置にある場合には、第1のクラッチ部材561と第2のクラッチ部材562とは噛み合う。すなわち、アーム部72が下位置にある場合には、クラッチ56は動力伝達を行う。 On the other hand, when the arm part 72 moves from the upper position to the lower position, the first clutch member 561 moves downward while being pushed by the urging force of the spring 71. When the arm portion 72 is in the lower position, the first clutch member 561 and the second clutch member 562 are engaged with each other. That is, when the arm portion 72 is in the lower position, the clutch 56 transmits power.
 粉砕モータ60を駆動する際に、クラッチ56が動力伝達を行う状態(図3Bの状態)であると、原動軸11を高速回転させる回転動力が混練モータ50の出力軸51に伝達される(図2参照)。この場合、粉砕モータ60が例えば8000rpmで回転されるとすると、第1のプーリ52と第2のプーリ55との半径比(例えば1:5)によって、混練モータ50の出力軸51を40000rpmで回転させる力が必要になる。その結果、粉砕モータ60に非常に大きな負荷が加わるために、粉砕モータ60が破損する可能性がある。このため、粉砕モータ60を駆動する際には、原動軸11を高速回転させる回転動力が混練モータ50の出力軸51に伝達されないようにする必要がある。そこで、自動製パン器1は、上述のように、動力伝達と動力遮断を行うクラッチ56を第1の動力伝達部PT1に含む構成となっている。 When the crushing motor 60 is driven, if the clutch 56 is in a state where power is transmitted (the state shown in FIG. 3B), rotational power for rotating the driving shaft 11 at high speed is transmitted to the output shaft 51 of the kneading motor 50 (FIG. 2). In this case, if the crushing motor 60 is rotated at, for example, 8000 rpm, the output shaft 51 of the kneading motor 50 is rotated at 40000 rpm depending on the radius ratio (for example, 1: 5) between the first pulley 52 and the second pulley 55. The power to make it necessary. As a result, a very large load is applied to the pulverization motor 60, and the pulverization motor 60 may be damaged. For this reason, when driving the grinding motor 60, it is necessary to prevent the rotational power for rotating the driving shaft 11 from being transmitted to the output shaft 51 of the kneading motor 50. Thus, as described above, the automatic bread maker 1 includes the clutch 56 that performs power transmission and power interruption in the first power transmission unit PT1.
 なお、上述のように自動製パン器1においては、第2の動力伝達部PT2にはクラッチが設けられない構成としているが、これは次の理由による。すなわち、混練モータ50を駆動しても原動軸11は低速回転(例えば180rpm等)されるのみである。このため、原動軸11を回転させる回転動力が粉砕モータ60の出力軸に伝達されるようになっていても、混練モータ50に大きな負荷が加わることはない。そして、このように第2の動力伝達部PT2にクラッチが設けられない構成を敢えて採用することで、自動製パン器1の製造コストが抑制される。ただし、第2の動力伝達部PT2にクラッチが設けられる構成を採用しても、勿論構わない。 Note that, as described above, in the automatic bread maker 1, the second power transmission unit PT2 is not provided with a clutch, for the following reason. That is, even if the kneading motor 50 is driven, the driving shaft 11 is only rotated at a low speed (for example, 180 rpm). For this reason, even if the rotational power for rotating the driving shaft 11 is transmitted to the output shaft of the crushing motor 60, a large load is not applied to the kneading motor 50. And the manufacturing cost of the automatic bread maker 1 is suppressed by adopting the structure in which the clutch is not provided in the second power transmission part PT2 in this way. However, it goes without saying that a configuration in which a clutch is provided in the second power transmission unit PT2 may be adopted.
 図4は、第1実施形態の自動製パン器における、パン容器が収容された焼成室及びその周辺の構成を模式的に示す図である。図4は、自動製パン器1を正面側から見た場合の構成を想定しており、焼成室30及びパン容器80の構成は概ね断面図で示されている。なお、パン原料が投入されるとともにパン焼き型として使用されるパン容器80は、焼成室30に対して出し入れ自在となっている。 FIG. 4 is a diagram schematically showing a configuration of a baking chamber in which a bread container is accommodated and its surroundings in the automatic bread maker of the first embodiment. FIG. 4 assumes a configuration when the automatic bread maker 1 is viewed from the front side, and the configurations of the baking chamber 30 and the bread container 80 are generally shown in cross-sectional views. In addition, the bread container 80 used as a baking mold while the bread raw material is input can be taken in and out of the baking chamber 30.
 図4に示すように、焼成室30の内部には、シーズヒータ31が焼成室30に収容されたパン容器80を包囲するように配置されている。このシーズヒータ31を用いることにより、パン容器80内のパン原料(この表現にはパン生地を含む場合がある)の加熱が可能になる。 As shown in FIG. 4, a sheathed heater 31 is arranged inside the baking chamber 30 so as to surround a bread container 80 accommodated in the baking chamber 30. By using this sheathed heater 31, it is possible to heat the bread ingredients in the bread container 80 (this expression may include bread dough).
 また、焼成室30の底壁30aの略中心にあたる箇所には、パン容器80を支持するパン容器支持部14(例えばアルミニウム合金のダイキャスト成型品からなる)が固定されている。このパン容器支持部14は、焼成室30の底壁30aから窪むように形成され、その窪みの形状は上から見た場合に略円形となっている。このパン容器支持部14の中心には、上述の原動軸11が底壁30aに対して略垂直となるように支持されている。 Further, a bread container support portion 14 (for example, made of an aluminum alloy die-cast product) that supports the bread container 80 is fixed to a location that is substantially at the center of the bottom wall 30a of the baking chamber 30. The bread container support portion 14 is formed so as to be recessed from the bottom wall 30a of the baking chamber 30, and the shape of the recess is substantially circular when viewed from above. At the center of the bread container support portion 14, the above-described driving shaft 11 is supported so as to be substantially perpendicular to the bottom wall 30a.
 パン容器80は例えばアルミニウム合金のダイキャスト成型品(その他、板金等で構成しても構わない)であり、バケツのような形状をしており、開口部側縁に設けられる鍔部80aに手提げ用のハンドル(図示せず)が取り付けられている。パン容器80の水平断面は四隅を丸めた矩形である。また、パン容器80の底部には、詳細は後述するブレードユニット90の一部を収容する平面視略円形状の凹部81が形成されている。 The bread container 80 is, for example, an aluminum alloy die-cast molded product (others may be made of sheet metal or the like), has a bucket-like shape, and is handed to the flange 80a provided on the side edge of the opening. A handle (not shown) is attached. The horizontal cross section of the bread container 80 is a rectangle with rounded corners. Further, a concave portion 81 having a substantially circular shape in a plan view is formed on the bottom of the bread container 80 so as to accommodate a part of a blade unit 90 which will be described in detail later.
 パン容器80の底部中心には、垂直方向に延びるブレード回転軸82が、シール対策を施された状態で回転可能に支持されている。このブレード回転軸82の下端(パン容器80の底部から外部側に突き出ている)には、容器側カップリング部材82aが固定されている。また、パン容器80の底部外面側には筒状の台座83が設けられており、パン容器80は、この台座83がパン容器支持部14に受け入れられた状態で、焼成室30内に収容されるようになっている。なお、台座83は、パン容器80とは別に形成してもよいし、パン容器80と一体的に形成してもよい。 At the center of the bottom of the bread container 80, a blade rotating shaft 82 extending in the vertical direction is rotatably supported in a state where a countermeasure against sealing is taken. A container side coupling member 82a is fixed to the lower end of the blade rotation shaft 82 (projecting outward from the bottom of the bread container 80). In addition, a cylindrical pedestal 83 is provided on the bottom outer surface side of the bread container 80, and the bread container 80 is accommodated in the baking chamber 30 in a state where the pedestal 83 is received by the bread container support part 14. It has become so. The pedestal 83 may be formed separately from the bread container 80 or may be formed integrally with the bread container 80.
 パン容器80の台座83がパン容器支持部14に受け入れられた状態で焼成室30内に収容されると、ブレード回転軸82の下端に設けられる前述の容器側カップリング部材82aと、原動軸11の上端に固定される原動軸側カップリング部材11aとの連結(カップリング)が得られるようになる。そして、これにより、ブレード回転軸82は原動軸11から回転動力を伝えられるようになる。 When the pedestal 83 of the bread container 80 is received in the baking chamber 30 in a state of being received by the bread container support portion 14, the container-side coupling member 82 a provided at the lower end of the blade rotation shaft 82 and the driving shaft 11. The coupling (coupling) with the driving shaft side coupling member 11a fixed to the upper end of the shaft can be obtained. As a result, the blade rotation shaft 82 can transmit the rotational power from the driving shaft 11.
 ブレード回転軸82のパン容器80内部に突出する部分には、その上からブレードユニット90が着脱可能に取り付けられるようになっている。このブレードユニット90の構成について、図5、図6、図7A、図7B、図8A、図8B、図9A及び図9Bを参照しながら説明する。 The blade unit 90 is detachably attached to a portion of the blade rotating shaft 82 protruding into the bread container 80 from above. The configuration of the blade unit 90 will be described with reference to FIGS. 5, 6, 7A, 7B, 8A, 8B, 9A, and 9B.
 なお、図5は、第1実施形態の自動製パン器が備えるブレードユニットの構成を示す概略斜視図である。図6は、第1実施形態の自動製パン器が備えるブレードユニットの構成を示す概略分解斜視図である。図7A及び図7Bは、第1実施形態の自動製パン器が備えるブレードユニットの構成を示す図で、図7Aは概略側面図、図7Bは図7AのA-A位置における断面図である。図8A及び図8Bは、第1実施形態の自動製パン器が備えるブレードユニットを下から見た場合の概略平面図で、図8Aは混練ブレードが折り畳み姿勢にある場合の図、図8Bは混練ブレードが開き姿勢にある場合の図である。図8A及び図8Bにおいては、後述のガードが取り外された状態を示している。図9A及び図9Bは、第1実施形態の自動製パン器が備えるパン容器を上から見た場合の図である。図9Aは混練ブレードが折り畳み姿勢にある場合の図、図9Bは混練ブレードが開き姿勢にある場合の図である。 FIG. 5 is a schematic perspective view showing the configuration of the blade unit provided in the automatic bread maker of the first embodiment. FIG. 6 is a schematic exploded perspective view showing a configuration of a blade unit provided in the automatic bread maker of the first embodiment. 7A and 7B are views showing a configuration of a blade unit provided in the automatic bread maker of the first embodiment, FIG. 7A is a schematic side view, and FIG. 7B is a cross-sectional view at the position AA in FIG. 7A. 8A and 8B are schematic plan views of the blade unit included in the automatic bread maker according to the first embodiment when viewed from below, FIG. 8A is a view when the kneading blade is in a folded position, and FIG. 8B is a kneading position. It is a figure in case a braid | blade exists in an open attitude | position. 8A and 8B show a state in which a guard to be described later is removed. FIG. 9A and FIG. 9B are diagrams when the bread container provided in the automatic bread maker of the first embodiment is viewed from above. FIG. 9A is a view when the kneading blade is in a folded position, and FIG. 9B is a view when the kneading blade is in an open position.
 ブレードユニット90は、大きくは、ユニット用シャフト91と、ユニット用シャフト91に相対回転不能に取り付けられる粉砕ブレード92と、ユニット用シャフト91に相対回転可能且つ粉砕ブレード92を覆うように取り付けられる平面視略円形のドーム状カバー93と、ドーム状カバー93に相対回転可能に取り付けられる混練ブレード101と、を備える構成となっている(例えば、図5、図6、図7A及び図7B参照)。ブレードユニット90がブレード回転軸82に取り付けられた状態において、粉砕ブレード92は、パン容器80の凹部81底面より少し上の箇所に位置する。また、粉砕ブレード92及びドーム状カバー93のほぼ全体は凹部81に収容される。 The blade unit 90 is roughly divided into a unit shaft 91, a crushing blade 92 attached to the unit shaft 91 so as not to rotate relative to the unit shaft 91, and a plan view attached to the unit shaft 91 so as to be relatively rotatable and covering the crushing blade 92. A substantially circular dome-shaped cover 93 and a kneading blade 101 attached to the dome-shaped cover 93 so as to be relatively rotatable are configured (see, for example, FIGS. 5, 6, 7A and 7B). In a state where the blade unit 90 is attached to the blade rotation shaft 82, the crushing blade 92 is positioned slightly above the bottom surface of the recess 81 of the bread container 80. Further, almost the entire grinding blade 92 and the dome-shaped cover 93 are accommodated in the recess 81.
 ユニット用シャフト91は、例えばステンレス鋼板等の金属によって形成される略円柱状の部材であり、一方端(図6及び図7Bの下端)に開口が設けられ、その内部は中空となっている。すなわち、ユニット用シャフト91には、挿入孔91cが形成されている(図7B参照)。また、ユニット用シャフト91の側壁の下部側(開口側)には、ユニット用シャフト91の回転中心を挟んで対称配置される一対の切り欠き91aが形成されている(例えば図6参照。ただし図6では一方のみが示されている)。ユニット用シャフト91がブレード回転軸82に被せられた場合に、ブレード回転軸82を水平に貫くピン821(図7B参照)が切り欠き91aに係合し、ユニット用シャフト91はブレード回転軸82に相対回転不能に取り付けられた状態になる。 The unit shaft 91 is a substantially cylindrical member formed of a metal such as a stainless steel plate, for example, and has an opening at one end (the lower end in FIGS. 6 and 7B), and the inside is hollow. That is, the insertion shaft 91c is formed in the unit shaft 91 (see FIG. 7B). In addition, a pair of notches 91a are formed on the lower side (opening side) of the side wall of the unit shaft 91 so as to be symmetrically arranged with respect to the rotation center of the unit shaft 91 (see, for example, FIG. 6). 6 shows only one of them). When the unit shaft 91 is put on the blade rotation shaft 82, a pin 821 (see FIG. 7B) that penetrates the blade rotation shaft 82 horizontally engages with the notch 91 a, and the unit shaft 91 is attached to the blade rotation shaft 82. It is attached so that it cannot rotate relative to it.
 なお、図7Bに示すように、ブレード回転軸82(破線で示す)の上面(略円形状)の中央部に設けられる凸部82bと係合するように、ユニット用シャフト91の上部側内面の中央部には凹部91bが形成されている。これにより、ユニット用シャフト91とブレード回転軸82との中心を合わせた状態で、ブレードユニット90はブレード回転軸82に容易に取り付けることができる。このために、ブレードを回転する際における、不要なガタツキが抑制される。本実施形態では、ブレード回転軸82側に凸部82b、ユニット用シャフト91側に凹部91bを設ける構成としたが、これとは逆に、ブレード回転軸82側に凹部、ユニット用シャフト91側に凸部が設けられる構成としても構わない。 As shown in FIG. 7B, the upper inner surface of the unit shaft 91 is engaged with the convex portion 82b provided at the center of the upper surface (substantially circular) of the blade rotation shaft 82 (shown by a broken line). A recess 91b is formed at the center. Accordingly, the blade unit 90 can be easily attached to the blade rotation shaft 82 in a state where the centers of the unit shaft 91 and the blade rotation shaft 82 are aligned. For this reason, unnecessary rattling during rotation of the blade is suppressed. In the present embodiment, the convex portion 82b is provided on the blade rotating shaft 82 side and the concave portion 91b is provided on the unit shaft 91 side, but conversely, the concave portion is provided on the blade rotating shaft 82 side and the unit shaft 91 side is provided. A configuration in which a convex portion is provided may be employed.
 穀物粒粉砕用の粉砕ブレード92は例えばステンレス鋼板によって形成され、その形状は例えば飛行機のプロペラのようになっている。粉砕ブレード92の中心部には、図6に示すように、平面視略矩形状の開口923aが形成されている。粉砕ブレード92は、ユニット用シャフト91の下部側から、開口923aにユニット用シャフト91が嵌め込まれるようにして取り付けられる。 The pulverizing blade 92 for pulverizing grains is formed of, for example, a stainless steel plate, and the shape thereof is, for example, an airplane propeller. As shown in FIG. 6, an opening 923 a having a substantially rectangular shape in plan view is formed at the center of the crushing blade 92. The crushing blade 92 is attached from the lower side of the unit shaft 91 so that the unit shaft 91 is fitted into the opening 923a.
 ユニット用シャフト91の下部側は、円柱の側面を削ったような形状となっており、下から見た場合に、粉砕ブレード92の開口923aとほぼ同形状(略矩形状)となっている。また、ユニット用シャフト91の下部側を下から見た場合の面積は、開口923aより、ほんの僅かだけ小さくなっている。このような形状を採用しているために、粉砕ブレード92はユニット用シャフト91に相対回転不能に取り付けられる。粉砕ブレード92の下部側には抜け止め用のストッパ部材94がユニット用シャフト91に嵌め込まれるために、粉砕ブレード92がユニット用シャフト91から脱落することはない。 The lower side of the unit shaft 91 has a shape that is obtained by scraping the side surface of the cylinder, and is substantially the same shape (substantially rectangular shape) as the opening 923a of the grinding blade 92 when viewed from below. The area when the lower side of the unit shaft 91 is viewed from below is slightly smaller than the opening 923a. Since such a shape is adopted, the grinding blade 92 is attached to the unit shaft 91 so as not to be relatively rotatable. Since the stopper member 94 for preventing the retaining member 94 is fitted into the unit shaft 91 on the lower side of the pulverizing blade 92, the pulverizing blade 92 does not fall off the unit shaft 91.
 粉砕ブレード92を囲んで覆い隠すように配置されるドーム状カバー93は、例えばアルミニウム合金のダイキャスト成型品からなり、その内面側には、ベアリング95(本実施形態では転がり軸受けを使用している)を収容する凹状の収容部931(図7B参照)が形成されている。換言すると、この収容部931を形成するために、ドーム状カバー93は、それを外面から見た場合に、中央部に略円柱状の凸部93aが形成された構成となっている。なお、凸部93aには開口が形成されておらず、収容部931に収容されるベアリング95はその側面及び上面が収容部931の壁面に囲い込まれた状態となっている。 The dome-shaped cover 93 disposed so as to surround and cover the crushing blade 92 is made of, for example, an aluminum alloy die-cast product, and a bearing 95 (in this embodiment, a rolling bearing is used on the inner surface side thereof. ) (See FIG. 7B) is formed. In other words, in order to form the accommodating portion 931, the dome-shaped cover 93 has a configuration in which a substantially cylindrical convex portion 93a is formed at the center when viewed from the outer surface. In addition, the opening is not formed in the convex part 93a, and the bearing 95 accommodated in the accommodating part 931 is in the state in which the side surface and the upper surface are enclosed by the wall surface of the accommodating part 931.
 ベアリング95は上下に抜け止めリング96a、96bが配置された状態で、その内輪95aがユニット用シャフト91に相対回転不能に取り付けられている(内輪95a内側の貫通孔にユニット用シャフト91が圧入されている)。また、ベアリング95は、その外輪95bの外壁が収容部931の側壁に固定されるように、収容部931に圧入されている。このベアリング95(内輪95aが外輪95bに対して相対回転する)の介在によって、ドーム状カバー93はユニット用シャフト91に相対回転可能に取り付けられている。 The inner ring 95a is attached to the unit shaft 91 so as not to rotate relative to the bearing 95 with the retaining rings 96a and 96b arranged on the upper and lower sides (the unit shaft 91 is press-fitted into a through hole inside the inner ring 95a. ing). The bearing 95 is press-fitted into the housing portion 931 so that the outer wall of the outer ring 95b is fixed to the side wall of the housing portion 931. The dome-shaped cover 93 is attached to the unit shaft 91 so as to be rotatable relative to the bearing 95 (the inner ring 95a rotates relative to the outer ring 95b).
 また、ドーム状カバー93の収容部931には、外部からベアリング95内に異物(例えば穀物粒の粉砕時に用いられる液体や粉砕により得られたペースト状物等)が入り込まないように、例えばシリコン系或いはフッ素系の材料によって形成されるシール材97及び、このシール材97を保持する金属製のシールカバー98が、ベアリング95の下部側から圧入されている。シールカバー98は、ドーム状カバー93への固定が確実となるように、リベット99によってドーム状カバー93に固着されている。このリベット99による固定は行わなくてもよいが、確実な固定を得るために、本実施形態のように構成するのが好ましい。なお、シール材97及びシールカバー98はシール手段として機能する。また、シールカバー98は、フッ素などによりコーティングすると好ましい。特に、銀色の塗料を用いると、塗装が剥がれ難く、万が一剥がれたとしても目立ち難いため、好ましい。 In addition, the housing portion 931 of the dome-shaped cover 93 is made of, for example, a silicon-based material so that foreign matter (for example, liquid used when pulverizing grain grains or paste-like material obtained by pulverization) does not enter the bearing 95 from the outside. Alternatively, a seal material 97 formed of a fluorine-based material and a metal seal cover 98 that holds the seal material 97 are press-fitted from the lower side of the bearing 95. The seal cover 98 is fixed to the dome-shaped cover 93 with a rivet 99 so that the fixing to the dome-shaped cover 93 is ensured. Although fixing with the rivet 99 may not be performed, it is preferable to configure as in the present embodiment in order to obtain reliable fixing. The sealing material 97 and the sealing cover 98 function as sealing means. The seal cover 98 is preferably coated with fluorine or the like. In particular, it is preferable to use a silver paint because the coating is difficult to peel off and even if it is peeled off, it is difficult to stand out.
 ドーム状カバー93の外面には、凸部93aに隣接する箇所に垂直方向に延びるように配置される支軸100(図6参照)により、平面形状「く」の字形の混練ブレード101(例えばアルミニウム合金のダイキャスト成型品からなる)が取り付けられている。混練ブレード101は、支軸100に相対回転不能に取り付けられており、ドーム状カバー93に相対回転可能に取り付けられる支軸100と動きを共にする。換言すると、混練ブレード101は、ドーム状カバー93に対して相対回転可能に取り付けられた構成となっている。 On the outer surface of the dome-shaped cover 93, a kneading blade 101 (for example, aluminum) in a planar shape is formed by a support shaft 100 (see FIG. 6) disposed so as to extend in a vertical direction at a location adjacent to the convex portion 93 a. (Made of die-cast alloy product) is attached. The kneading blade 101 is attached to the support shaft 100 so as not to be relatively rotatable, and moves together with the support shaft 100 attached to the dome-shaped cover 93 so as to be relatively rotatable. In other words, the kneading blade 101 is attached to the dome-shaped cover 93 so as to be relatively rotatable.
 混練ブレード101の先端(支軸100を中心として混練ブレード101を回転したときに最も大きな円を描く部分を想定)側近傍の一方面には、図5、図6、図7A、図7B、図8A、図8B、図9A及び図9Bに示すように緩衝材107が取り付けられている。緩衝材107は、混練ブレード101の先端から僅かに突出するように設けられている(例えば図9B参照)。 On one surface near the tip of the kneading blade 101 (assuming a portion that draws the largest circle when the kneading blade 101 is rotated about the support shaft 100), FIG. 5, FIG. 6, FIG. 7A, FIG. As shown in FIGS. 8A, 8B, 9A, and 9B, a cushioning material 107 is attached. The buffer material 107 is provided so as to slightly protrude from the tip of the kneading blade 101 (see, for example, FIG. 9B).
 緩衝材107の固定は、混練ブレード101の一方面と固定用板108とで緩衝材107を挟持した状態とし、混練ブレード101の他方面側から挿入されるリベット109のカシメで得られる構成となっている。なお、本実施形態ではリベット109の数を2つとしているが、その数が限定されないのは言うまでもない。 The buffer material 107 is fixed in a state where the buffer material 107 is sandwiched between one surface of the kneading blade 101 and the fixing plate 108 and obtained by caulking the rivet 109 inserted from the other surface side of the kneading blade 101. ing. In the present embodiment, the number of rivets 109 is two, but it goes without saying that the number is not limited.
 この緩衝材107は、混練ブレード101が詳細は後述する開き姿勢となった場合に、パン容器80(の内壁)と直接接触しないように配置されている。混練ブレード101とパン容器80とが直接接触すると、それらの間の干渉が原因となって破損が発生する可能性があり、このような破損を防止すべく緩衝材107は設けられている。 The buffer material 107 is disposed so as not to directly contact the bread container 80 (inner wall) when the kneading blade 101 is in an open posture, which will be described in detail later. When the kneading blade 101 and the bread container 80 are in direct contact with each other, damage may occur due to interference between them, and the buffer material 107 is provided to prevent such damage.
 本実施形態の自動製パン器1においては、パン容器80及び混練ブレード101の表面にはフッ素コーティングが施されている。このため、本実施形態の緩衝材107は、このフッ素コーティングが混練ブレード101とパン容器80との接触で剥がれないように設けられたものといえる。そして、この点から、緩衝材107を構成する材料としては、フッ素コーティングを剥がさないようにコーティング材よりも柔らかい材料が好ましく、例えば、シリコーンゴムやTPE(Thermoplastic Elastomers;熱可塑性エラストマ)等が用いられる。また、緩衝材107は防音対策としても機能するが、この点は後述する。なお、以下では、この緩衝材107も混練ブレード101の一部と見なして説明が行われる場合がある。 In the automatic bread maker 1 of the present embodiment, the surface of the bread container 80 and the kneading blade 101 is coated with fluorine. For this reason, it can be said that the buffer material 107 of the present embodiment is provided so that the fluorine coating is not peeled off by contact between the kneading blade 101 and the pan container 80. From this point, the material constituting the cushioning material 107 is preferably a material softer than the coating material so as not to peel off the fluorine coating. For example, silicone rubber or TPE (Thermoplastic Elastomers) is used. . The buffer material 107 also functions as a soundproofing measure, which will be described later. In the following description, the buffer material 107 may be regarded as a part of the kneading blade 101.
 また、本実施形態では、ドーム状カバー93の外面に、混練ブレード101に並ぶように補完混練ブレード102(例えばアルミニウム合金のダイキャスト成型品からなる)が固定配置されている。この補完混練ブレード102は、必ずしも設ける必要がないが、パン生地を練り上げる練り工程における混練効率を高めるために設けるのが好ましい。 Further, in this embodiment, the complementary kneading blade 102 (for example, made of an aluminum alloy die cast product) is fixedly arranged on the outer surface of the dome-shaped cover 93 so as to be aligned with the kneading blade 101. The complementary kneading blade 102 is not necessarily provided, but is preferably provided in order to increase the kneading efficiency in the kneading process of kneading the bread dough.
 ここで、混練ブレード101の動作について説明する。混練ブレード101は、支軸100と共に支軸100の軸線周りに回転し、図5、図7A、図8A及び図9Aに示す折り畳み姿勢と、図8B及び図9Bに示す開き姿勢との2姿勢をとる。折り畳み姿勢では、混練ブレード101の下縁から垂下した突起101a(図6参照)がドーム状カバー93の上面(外面)に設けられた第1のストッパ部93bに当接する。このために、混練ブレード101は、それ以上ドーム状カバー93に対して反時計方向(上から見た場合を想定)の回動を行うことができない。この折り畳み姿勢では、混練ブレード101の先端がドーム状カバー93から少し突き出している。 Here, the operation of the kneading blade 101 will be described. The kneading blade 101 rotates about the axis of the support shaft 100 together with the support shaft 100, and has two postures, a folded posture shown in FIGS. 5, 7A, 8A and 9A, and an open posture shown in FIGS. 8B and 9B. Take. In the folded position, the protrusion 101a (see FIG. 6) hanging from the lower edge of the kneading blade 101 comes into contact with the first stopper portion 93b provided on the upper surface (outer surface) of the dome-shaped cover 93. For this reason, the kneading blade 101 cannot further rotate counterclockwise (assuming the case viewed from above) with respect to the dome-shaped cover 93. In this folded position, the tip of the kneading blade 101 protrudes slightly from the dome-shaped cover 93.
 この姿勢(図9Aの状態)から混練ブレード101がドーム状カバー93に対して時計方向(上から見た場合を想定)に回動して図9Bに示す開き姿勢になると、混練ブレード101の先端はドーム状カバー93から大きく突き出す。この開き姿勢における混練ブレード101の開き角度は、ドーム状カバー93の内面に設けられる第2のストッパ部93c(図8B参照)によって制限される。詳細は後述する第2係合体103b(支軸100に固定される)が、ドーム状カバー93の内面に設けられる第2のストッパ部93cに当って回転できなくなった時点で、混練ブレード101は最大開き角度となる。 When the kneading blade 101 is rotated clockwise (assumed when viewed from above) with respect to the dome-shaped cover 93 from this posture (the state shown in FIG. 9A), the tip of the kneading blade 101 is moved to the open posture shown in FIG. Protrudes greatly from the dome-shaped cover 93. The opening angle of the kneading blade 101 in this opening posture is limited by the second stopper portion 93 c (see FIG. 8B) provided on the inner surface of the dome-shaped cover 93. When the second engagement body 103b (fixed to the support shaft 100), which will be described in detail later, is unable to rotate by hitting the second stopper portion 93c provided on the inner surface of the dome-shaped cover 93, the kneading blade 101 is at its maximum. The opening angle.
 なお、混練ブレード101が折り畳み姿勢となっている場合には、例えば図5や図7Aに示すように補完混練ブレード102は混練ブレード101に整列し、あたかも「く」の字形状の混練ブレード101のサイズが大型化したようになる。 When the kneading blade 101 is in the folded position, the complementary kneading blade 102 is aligned with the kneading blade 101 as shown in FIGS. 5 and 7A, for example. The size becomes larger.
 ところで、ユニット用シャフト91には、図6に示すように、粉砕ブレード92とシールカバー98との間にカバー用クラッチ103を構成する第1係合体103aが取り付けられている。例えば亜鉛ダイカストからなる第1係合体103aには略矩形状の開口103aaが形成されており、この開口103aaにユニット用シャフト91の下部側の平面視略矩形状部分が嵌め込まれることにより、第1係合体103aはユニット用シャフト91に相対回転不能に取り付けられている。この第1係合体103aは粉砕ブレード92よりも先に、ユニット用シャフト91の下側から嵌め込まれ、ストッパ部材94によって、粉砕ブレード92と共にユニット用シャフト91からの脱落が防止されている。なお、本実施形態では、第1係合体103aとシールカバー98との間には、第1係合体103aの劣化防止等を考慮してワッシャ104を配置する構成としているが、このワッシャ104は必ずしも設けなくてもよい。 Incidentally, as shown in FIG. 6, a first engagement body 103 a constituting the cover clutch 103 is attached to the unit shaft 91 between the pulverization blade 92 and the seal cover 98. For example, a substantially rectangular opening 103aa is formed in the first engagement body 103a made of, for example, zinc die casting, and the first rectangular body 103 in the lower side of the unit shaft 91 is fitted into the opening 103aa so that the first The engaging body 103a is attached to the unit shaft 91 so as not to be relatively rotatable. The first engaging body 103a is fitted from the lower side of the unit shaft 91 prior to the crushing blade 92, and the stopper member 94 prevents the unit shaft 91 from dropping off together with the crushing blade 92. In the present embodiment, the washer 104 is disposed between the first engagement body 103a and the seal cover 98 in consideration of prevention of deterioration of the first engagement body 103a. However, the washer 104 is not necessarily provided. It does not have to be provided.
 また、混練ブレード101が取り付けられる支軸100の下部側には、カバー用クラッチ103を構成する第2係合体103bが取り付けられている。例えば亜鉛ダイカストからなる第2係合体103bには略矩形状の開口103baが形成されており、この開口103baに支軸100の下部側の平面視略矩形状部分が嵌め込まれることにより、第2係合体103bは支軸100に相対回転不能に取り付けられている。なお、本実施形態では、第2係合体103bの上側に、第2係合体103bの劣化防止等を考慮してワッシャ105を配置する構成としているが、このワッシャ105は必ずしも設けなくてもよい。 Further, a second engagement body 103b constituting the cover clutch 103 is attached to the lower side of the support shaft 100 to which the kneading blade 101 is attached. For example, a substantially rectangular opening 103ba is formed in the second engaging body 103b made of zinc die casting, and the second engaging member is fitted into the opening 103ba by fitting a substantially rectangular portion in plan view on the lower side of the support shaft 100. The united body 103b is attached to the support shaft 100 so as not to be relatively rotatable. In the present embodiment, the washer 105 is arranged on the upper side of the second engagement body 103b in consideration of prevention of deterioration of the second engagement body 103b. However, the washer 105 is not necessarily provided.
 第1係合体103aと第2係合体103bとで構成されるカバー用クラッチ103は、ブレード回転軸82の回転動力をドーム状カバー93に伝達するか否かを切り替えるクラッチとして機能する。カバー用クラッチ103は、混練モータ50が原動軸11を回転させるときのブレード回転軸82の回転方向(この回転方向を「正方向回転」とする。図8A及び図8Bでは反時計方向回転、図9A及び図9Bでは時計方向回転となる。)において、ブレード回転軸82の回転動力をドーム状カバー93に伝達する。逆に、粉砕モータ60が原動軸11を回転させるときのブレード回転軸82の回転方向(この回転方向を「逆方向回転」とする。図8A及び図8Bでは時計方向回転、図9A及び図9Bでは反時計方向回転となる。)においては、カバー用クラッチ103は、ブレード回転軸82の回転動力をドーム状カバー93に伝達しない。 The cover clutch 103 composed of the first engagement body 103a and the second engagement body 103b functions as a clutch for switching whether or not to transmit the rotational power of the blade rotation shaft 82 to the dome-shaped cover 93. The cover clutch 103 is a rotation direction of the blade rotation shaft 82 when the kneading motor 50 rotates the driving shaft 11 (this rotation direction is referred to as “forward rotation”. In FIGS. 8A and 8B, the rotation is counterclockwise. 9A and 9B, the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93. Conversely, the rotation direction of the blade rotation shaft 82 when the crushing motor 60 rotates the drive shaft 11 (this rotation direction is referred to as “reverse rotation”. FIGS. 8A and 8B rotate clockwise, and FIGS. 9A and 9B show rotation directions). Then, the cover clutch 103 does not transmit the rotational power of the blade rotating shaft 82 to the dome-shaped cover 93.
 上記のように、混練モータ50が原動軸11を回転させる方向と、粉砕モータ60が原動軸11を回転させる方向と、は逆である。そのため、混練モータ50と粉砕モータ60とが同時に駆動することによる、自動製パン器1の破損が懸念される。しかしながら、本実施形態の自動製パン器では、混練モータ50と粉砕モータ60とが同時に駆動しない構成(詳細は後述)にしているため、このような破損を防止することが可能になる。 As described above, the direction in which the kneading motor 50 rotates the driving shaft 11 is opposite to the direction in which the grinding motor 60 rotates the driving shaft 11. Therefore, there is a concern that the automatic bread maker 1 is damaged due to the kneading motor 50 and the grinding motor 60 being driven simultaneously. However, since the automatic bread maker according to the present embodiment is configured such that the kneading motor 50 and the crushing motor 60 are not driven simultaneously (details will be described later), it is possible to prevent such damage.
 以下、このカバー用クラッチ103の動作について更に詳細に説明する。混練ブレード101が折り畳み姿勢にある場合(例えば図8A、図9Aの状態)、第2係合体103bの係合部103bbは第1係合体103aの係合部103ab(本実施形態では2つあるが1つでもよい)の回転軌道に干渉する角度となる(図8Aの破線参照)。このため、ブレード回転軸82が正方向回転すると、第1係合体103aと第2係合体103bは係合し、ブレード回転軸82の回転動力がドーム状カバー93に伝達される。 Hereinafter, the operation of the cover clutch 103 will be described in more detail. When the kneading blade 101 is in the folded position (for example, the state shown in FIGS. 8A and 9A), the engagement portion 103bb of the second engagement body 103b is the engagement portion 103ab of the first engagement body 103a (although there are two in this embodiment). It is an angle that interferes with the rotation trajectory (see FIG. 8A). Therefore, when the blade rotation shaft 82 rotates in the forward direction, the first engagement body 103 a and the second engagement body 103 b are engaged, and the rotational power of the blade rotation shaft 82 is transmitted to the dome-shaped cover 93.
 一方、混練ブレード101が開き姿勢にある場合(例えば図8B、図9Bの状態)、第2係合体103bの係合部103bbは第1係合体103aの係合部103abの回転軌道から逸脱した角度となる(図8Bの破線参照)。このために、ブレード回転軸82が回転しても、第1係合体103aと第2係合体103bは係合しない。従って、ブレード回転軸82の回転動力はドーム状カバー93に伝達されない。 On the other hand, when the kneading blade 101 is in the open posture (for example, the state shown in FIGS. 8B and 9B), the engagement portion 103bb of the second engagement body 103b deviates from the rotation trajectory of the engagement portion 103ab of the first engagement body 103a. (See the broken line in FIG. 8B). For this reason, even if the blade rotation shaft 82 rotates, the first engagement body 103a and the second engagement body 103b are not engaged. Accordingly, the rotational power of the blade rotation shaft 82 is not transmitted to the dome-shaped cover 93.
 例えば図5及び図6に示すように、ドーム状カバー93には、カバー内空間とカバー外空間を連通する窓93dが形成される。窓93dは粉砕ブレード92に並ぶ高さか、それよりも上の位置に配置される。なお、本実施形態では、計4個の窓93dが90°間隔で並んでいるが、それ以外の数と配置間隔を選択することもできる。 For example, as shown in FIGS. 5 and 6, the dome-shaped cover 93 is formed with a window 93d that communicates the space inside the cover and the space outside the cover. The window 93d is arranged at a height equal to or higher than the grinding blade 92. In the present embodiment, a total of four windows 93d are arranged at intervals of 90 °, but other numbers and arrangement intervals can be selected.
 また、ドーム状カバー93内面には、各窓93dに対応して計4個のリブ93eが形成されている。各リブ93eはドーム状カバー93の中心近傍から外周の環状壁まで半径方向に対して斜めに延び、4個合わさって一種の巴形状を構成する。また、各リブ93eは、それに向かって押し寄せるパン原料に対面する側が凸となるように湾曲している。 Further, a total of four ribs 93e are formed on the inner surface of the dome-shaped cover 93 so as to correspond to the windows 93d. Each rib 93e extends obliquely from the vicinity of the center of the dome-shaped cover 93 to the outer peripheral annular wall with respect to the radial direction, and the four ribs 93e form a kind of bowl shape. Moreover, each rib 93e is curving so that the side which faces the bread raw material pressed toward it may become convex.
 また、ドーム状カバー93の下面には、着脱可能なガード106が取り付けられている。このガード106は、ドーム状カバー93の下面を覆って粉砕ブレード92にユーザの指が接近するのを阻止する。ガード106は、例えば耐熱性を有するエンジニアリングプラスチックによって形成され、例えばPPS(ポリフェニレンサルファイド)等の成型品とできる。なお、このガード106は設けなくても構わないが、ユーザが安心して使用できるように設けるのが好ましい。 Further, a removable guard 106 is attached to the lower surface of the dome-shaped cover 93. The guard 106 covers the lower surface of the dome-shaped cover 93 and prevents the user's finger from approaching the grinding blade 92. The guard 106 is formed of, for example, an engineering plastic having heat resistance, and can be a molded product such as PPS (polyphenylene sulfide). The guard 106 need not be provided, but is preferably provided so that the user can use it with peace of mind.
 例えば図6に示すように、ガード106の中心には、ユニット用シャフト91に固定されるストッパ部材94を通すリング状のハブ106aがある。また、ガード106の周縁にはリング状のリム106bがある。ハブ106aとリム106bとは複数のスポーク106cで連結される。スポーク106c同士の間は、粉砕ブレード92によって粉砕される穀物粒を通す開口部106dとなる。開口部106dは、指が通り抜けられない程度の大きさとなっている。 For example, as shown in FIG. 6, at the center of the guard 106, there is a ring-shaped hub 106a through which a stopper member 94 fixed to the unit shaft 91 is passed. Further, a ring-shaped rim 106b is provided at the periphery of the guard 106. The hub 106a and the rim 106b are connected by a plurality of spokes 106c. Between the spokes 106c, there is an opening 106d through which the grain to be crushed by the pulverizing blade 92 is passed. The opening 106d has a size that prevents a finger from passing through.
 ガード106のスポーク106cは、ドーム状カバー93に取り付けられた時、粉砕ブレード92と近接状態となる。そして、あたかも、ガード106が回転式電気かみそりの外刃で、粉砕ブレード92が内刃のような形になる。 When the spoke 106 c of the guard 106 is attached to the dome-shaped cover 93, the spoke 106 c comes into close proximity with the grinding blade 92. The guard 106 is shaped like an outer blade of a rotary electric razor, and the grinding blade 92 is shaped like an inner blade.
 リム106bの周縁には、90°間隔で計4個(この構成に限定されないのは言うまでもない)の柱106eが一体成形されている。この柱106eのガード106中心側を向いた側面には、一端が行き止まりになった水平な溝106eaが形成される。この溝106eaと、ドーム状カバー93の外周に形成される突起93f(これも90°間隔で計4個配置されている)とを係合させることによって、ガード106はドーム状カバー93に取り付けられる。なお、溝106eaと突起93fとは、バヨネット結合を構成するように設けられている。 A total of four columns 106e (not limited to this configuration) are integrally formed at the periphery of the rim 106b at intervals of 90 °. A horizontal groove 106ea having one end dead end is formed on a side surface of the pillar 106e facing the center side of the guard 106. The guard 106 is attached to the dome-shaped cover 93 by engaging the grooves 106 ea with the projections 93 f formed on the outer periphery of the dome-shaped cover 93 (all four are arranged at intervals of 90 °). . The groove 106ea and the protrusion 93f are provided so as to constitute a bayonet connection.
 以上のように、本実施形態の自動製パン器1では、粉砕ブレード92及び混練ブレード101を1つのユニット(ブレードユニット90)に組み込む構成としているので、その取り扱いが便利である。ユーザは、ブレードユニット90をブレード回転軸82から簡単に引き抜くことが可能であり、製パン作業終了後にブレードの洗浄を手軽に行うことができる。また、ブレードユニット90が備える粉砕ブレード92は、ユニット用シャフト91に着脱可能に取り付けられるものであり、その量産が行いやすく、ブレード交換等のメンテナンス性にも優れる。 As described above, in the automatic bread maker 1 of the present embodiment, since the crushing blade 92 and the kneading blade 101 are incorporated into one unit (blade unit 90), the handling thereof is convenient. The user can easily pull out the blade unit 90 from the blade rotating shaft 82, and can easily clean the blade after the bread making operation. Further, the pulverizing blade 92 provided in the blade unit 90 is detachably attached to the unit shaft 91, and is easily mass-produced and has excellent maintainability such as blade replacement.
 また、本実施形態の自動製パン器1では、パン容器80に水等の液体が入れられるために、ベアリング95に液体が入り込まないように、ベアリング95は密閉構造とされるのが好ましい。この点、自動製パン器1では、ベアリング95がドーム状カバー93に設けられる凹状の収容部931に収容されているために、ドーム状カバー93の内面側にのみシール手段(シール材97及びシールカバー98)を設ければ、ベアリング95を密閉する構造が得られる。このため、ベアリング95の上下にシール手段を設ける必要がなく、ベアリング95のシール構造の小型化が図れる。このため、自動製パン器1では、焼き上がったパンの形状に対する悪影響(例えば、パンの底面が大きく凹む等)を抑制することが可能になる。 Further, in the automatic bread maker 1 of the present embodiment, since a liquid such as water is put in the bread container 80, the bearing 95 is preferably a sealed structure so that the liquid does not enter the bearing 95. In this respect, in the automatic bread maker 1, since the bearing 95 is accommodated in the concave accommodating portion 931 provided in the dome-shaped cover 93, the sealing means (the sealing material 97 and the sealing material 97 and the sealing material only on the inner surface side of the dome-shaped cover 93) If the cover 98) is provided, a structure for sealing the bearing 95 is obtained. For this reason, it is not necessary to provide sealing means above and below the bearing 95, and the seal structure of the bearing 95 can be downsized. For this reason, in the automatic bread maker 1, it is possible to suppress an adverse effect on the shape of the baked bread (for example, the bottom surface of the bread is greatly recessed).
 図10は、第1実施形態の自動製パン器の構成を示すブロック図である。図10に示すように、自動製パン器1における制御動作は制御装置120によって行われる。制御装置120は、例えば、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、I/O(input/output)回路部等からなるマイクロコンピュータ(マイコン)によって構成される。この制御装置120は、焼成室30の熱の影響を受け難い位置に配置するのが好ましい。また、制御装置120には、時間計測機能が備えられており、パンの製造工程における時間的な制御が可能となっている。なお、制御装置120は、本発明の制御部の一例である。 FIG. 10 is a block diagram showing the configuration of the automatic bread maker of the first embodiment. As shown in FIG. 10, the control operation in the automatic bread maker 1 is performed by the control device 120. The control device 120 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an I / O (input / output) circuit unit, and the like. . The control device 120 is preferably disposed at a position that is not easily affected by the heat of the baking chamber 30. Further, the control device 120 is provided with a time measuring function, and temporal control in the bread manufacturing process is possible. The control device 120 is an example of a control unit of the present invention.
 制御装置120には、上述の操作部20と、焼成室30の温度を検知する温度センサ15と、モータ駆動回路121と、ヒータ駆動回路122と、第1のソレノイド駆動回路123と、第2のソレノイド駆動回路124と、が電気的に接続されている。 The control device 120 includes the operation unit 20 described above, the temperature sensor 15 that detects the temperature of the baking chamber 30, a motor drive circuit 121, a heater drive circuit 122, a first solenoid drive circuit 123, and a second A solenoid drive circuit 124 is electrically connected.
 モータ駆動回路121は、制御装置120からの指令の下で混練モータ50及び粉砕モータ60のそれぞれを駆動するための回路であり、電力供給部121aと、切替部121bと、供給電流検知部121cと、を含む。電力供給部121aは、混練モータ50及び粉砕モータ60を駆動するための電力を供給し得る。切替部121bは、電力供給部121aと、混練モータ50及び粉砕モータ60のいずれかと、を電気的及び機械的に接続し得るものであり、これらの接続を切替可能なものである。供給電流検知部121cは、混練モータ50または粉砕モータ60に対して電力供給部121aが供給する電流の大きさ(供給電流値)を検知して、制御装置120に検知結果を入力する。また、制御装置120は、供給電流検知部121cが出力する検知結果を取得することで、切替部121bの異常を確認する。 The motor drive circuit 121 is a circuit for driving each of the kneading motor 50 and the pulverization motor 60 under a command from the control device 120, and includes a power supply unit 121a, a switching unit 121b, and a supply current detection unit 121c. ,including. The power supply unit 121 a can supply power for driving the kneading motor 50 and the crushing motor 60. The switching unit 121b can electrically and mechanically connect the power supply unit 121a and any one of the kneading motor 50 and the pulverizing motor 60, and can switch these connections. The supply current detection unit 121 c detects the magnitude (supply current value) of the current supplied from the power supply unit 121 a to the kneading motor 50 or the grinding motor 60 and inputs the detection result to the control device 120. Moreover, the control apparatus 120 confirms the abnormality of the switching part 121b by acquiring the detection result output from the supply current detection part 121c.
 なお、電力供給部121aは、本発明の電力供給部の一例であり、切替部121bは、本発明の切替部の一例であり、供給電流検知部121cは、本発明の検知部の一例である。また、電力供給部121a、切替部121b及び供給電流検知部121cを含むモータ駆動回路121の回路構成の詳細については、後述する。また、制御装置120による、切替部121bの異常の確認動作の詳細についても、後述する。 The power supply unit 121a is an example of the power supply unit of the present invention, the switching unit 121b is an example of the switching unit of the present invention, and the supply current detection unit 121c is an example of the detection unit of the present invention. . Details of the circuit configuration of the motor drive circuit 121 including the power supply unit 121a, the switching unit 121b, and the supply current detection unit 121c will be described later. Details of the operation for confirming the abnormality of the switching unit 121b by the control device 120 will also be described later.
 ヒータ駆動回路122は、制御装置120からの指令の下でシーズヒータ31の動作を制御するための回路である。第1のソレノイド駆動回路123は、制御装置120からの指令の下で、パンの製造工程の途中で一部のパン原料を自動投入するために駆動される自動投入用ソレノイド16の駆動を制御するための回路である。第2のソレノイド駆動回路124は、制御装置120からの指令の下で、クラッチ56(図3A及び図3B参照)の状態を切り替える際に使用されるクラッチ用ソレノイド73(図3A及び図3B参照)の駆動を制御するための回路である。 The heater drive circuit 122 is a circuit for controlling the operation of the sheathed heater 31 under a command from the control device 120. The first solenoid drive circuit 123 controls the driving of the automatic charging solenoid 16 that is driven to automatically input a part of the bread ingredients in the course of the bread manufacturing process, under a command from the control device 120. It is a circuit for. The second solenoid drive circuit 124 is a clutch solenoid 73 (see FIGS. 3A and 3B) used when switching the state of the clutch 56 (see FIGS. 3A and 3B) under a command from the control device 120. It is a circuit for controlling the drive of.
 制御装置120は、操作部20からの入力信号に基づいてROM等に格納されたパンの製造コース(製パンコース)に係るプログラムを読み出し、混練モータ駆動回路121を介して混練モータ50による混練ブレード101及び補完混練ブレード102の回転の制御、モータ駆動回路121を介して粉砕モータ60による粉砕ブレード92の回転の制御、ヒータ駆動回路122を介してシーズヒータ31による加熱動作の制御、第1のソレノイド駆動回路123を介して自動投入用ソレノイド16による可動フック42cの動作制御、第2のソレノイド駆動回路124を介してクラッチ用ソレノイド73によるクラッチ56の切替制御を行いながら、自動製パン器1にパンの製造工程を実行させる。 The control device 120 reads a program relating to a bread manufacturing course (breadmaking course) stored in a ROM or the like based on an input signal from the operation unit 20, and a kneading blade by the kneading motor 50 via the kneading motor driving circuit 121. 101, the rotation of the complementary kneading blade 102, the rotation of the grinding blade 92 by the grinding motor 60 through the motor drive circuit 121, the heating operation by the sheathed heater 31 through the heater drive circuit 122, the first solenoid While the operation control of the movable hook 42c by the automatic closing solenoid 16 is performed via the driving circuit 123 and the switching control of the clutch 56 is performed by the clutch solenoid 73 via the second solenoid driving circuit 124, The manufacturing process is executed.
(自動製パン器の動作)
 以上のように構成される自動製パン器1の動作(以下、製パン動作とする)について説明する。ここでは、自動製パン器1によって米粒を出発原料に用いてパンを製造する場合を例に、自動製パン器1の動作を説明する。
(Operation of automatic bread machine)
The operation of the automatic bread maker 1 configured as described above (hereinafter referred to as bread making operation) will be described. Here, the operation of the automatic bread maker 1 will be described by taking as an example a case where bread is produced by using the rice grain as a starting material by the automatic bread maker 1.
 米粒が出発原料に用いられる場合には、米粒用製パンコースが実行される。図11は第1実施形態の自動製パン器によって実行される米粒用製パンコースの流れを示す模式図である。図11に示すように、米粒用製パンコースにおいては、浸漬工程と、粉砕工程と、休止工程と、練り(捏ね)工程と、発酵工程と、焼成工程と、がこの順番で順次に実行される。 When the rice grain is used as a starting material, a bread-making course for rice grain is executed. FIG. 11 is a schematic diagram showing the flow of the rice grain bread-making course executed by the automatic bread maker of the first embodiment. As shown in FIG. 11, in the bread making course for rice grains, the dipping process, the crushing process, the pause process, the kneading (kneading) process, the fermentation process, and the baking process are sequentially performed in this order. The
 米粒用製パンコースを開始するにあたって、ユーザは、パン容器80のブレード回転軸82にユニット用シャフト91を被せることによって、ブレードユニット90をブレード回転軸82に取り付ける。そして、ユーザは、米粒、水、調味料(例えば食塩、砂糖、ショートニング等)をそれぞれ所定量ずつ計量してパン容器80に入れる。 In starting the bread making course for rice grains, the user attaches the blade unit 90 to the blade rotation shaft 82 by covering the blade rotation shaft 82 of the bread container 80 with the unit shaft 91. Then, the user weighs rice grains, water, and seasonings (eg, salt, sugar, shortening, etc.) by a predetermined amount and puts them into the bread container 80.
 また、ユーザは、パンの製造工程の途中で自動投入されるパン原料を計量してパン原料収納容器42の容器本体42aに入れる。そして、ユーザは、収納すべきパン原料を容器本体42aに収納したら、可動フック42cによって容器蓋42bを支えることにより、容器本体42aの開口が容器蓋42bによって閉じられた状態とする。 Also, the user weighs the bread ingredients that are automatically input during the bread manufacturing process and puts them in the container body 42a of the bread ingredient storage container 42. When the user stores the bread ingredients to be stored in the container main body 42a, the container lid 42b is supported by the movable hook 42c so that the opening of the container main body 42a is closed by the container cover 42b.
 なお、パン原料収納容器42に収納されるパン原料としては、例えば、グルテン、ドライイースト等が挙げられる。グルテンの代わりに、例えば小麦粉、増粘剤(グアガム等)及び上新粉のうちの少なくとも1つをパン原料収納容器42に収納するようにしてもよい。また、グルテン、小麦粉、増粘剤、上新粉等は用いずに、例えばドライイーストのみがパン原料収納容器42に収納されるようにしてもよい。更に、場合によっては、例えば食塩、砂糖、ショートニングといった調味料についてもパンの製造工程の途中で自動投入すべく、例えばグルテン、ドライイーストと共に、これらの原料がパン原料収納容器42に収納されるようにしてもよい。この場合には、パン容器80に予め投入しておくパン原料は米粒及び水(単なる水の代わりに、例えばだし汁のような味成分を有する液体、果汁やアルコールを含有する液体等でもよい)となる。 In addition, as a bread raw material accommodated in the bread raw material storage container 42, gluten, dry yeast, etc. are mentioned, for example. Instead of gluten, for example, at least one of flour, thickener (eg, guar gum), and upper fresh powder may be stored in the bread ingredient storage container 42. In addition, for example, only dry yeast may be stored in the bread raw material storage container 42 without using gluten, wheat flour, thickener, super fresh powder or the like. Further, in some cases, for example, salt, sugar and shortening seasonings such as salt, sugar and shortening are stored in the bread ingredient storage container 42 together with, for example, gluten and dry yeast so as to be automatically introduced during the bread manufacturing process. It may be. In this case, the bread raw material previously put into the bread container 80 is rice grains and water (in place of mere water, for example, a liquid having a taste component such as soup stock, a liquid containing fruit juice or alcohol, etc.) Become.
 この後、ユーザは、パン容器80を焼成室30に入れ、更に、パン原料収納容器42を蓋40の所定位置に取り付ける。そして、ユーザは蓋40を閉じ、操作部20によって米粒用製パンコースを選択し、スタートキーを押す。これにより、制御装置120は、米粒を出発原料に用いてパンを製造する米粒用製パンコースの制御動作を開始する。 After this, the user puts the bread container 80 into the baking chamber 30 and further attaches the bread raw material storage container 42 to a predetermined position of the lid 40. Then, the user closes the lid 40, selects the rice grain breadmaking course using the operation unit 20, and presses the start key. Thereby, the control apparatus 120 starts control operation | movement of the bread-making course for rice grains which manufactures bread using a rice grain as a starting material.
 米粒用製パンコースがスタートされると、制御装置120の指令によって浸漬工程が開始される。浸漬工程では、パン容器80に予め投入されたパン原料が静置状態とされ、この静置状態が予め定められた所定時間(本実施形態では30分)維持される。この浸漬工程は、米粒に水を含ませることによって、その後に行われる粉砕工程において、米粒を芯まで粉砕しやすくすることを狙う工程である。 When the bread making course for rice grain is started, the dipping process is started by a command from the control device 120. In the dipping process, the bread raw material previously put in the bread container 80 is set in a stationary state, and the stationary state is maintained for a predetermined time (30 minutes in the present embodiment). This dipping process is a process aimed at making the rice grains easy to be pulverized to the core in the subsequent pulverization process by adding water to the rice grains.
 なお、米粒の吸水速度は水の温度によって変動し、水温が高いと吸水速度が高まり、水温が低いと吸水速度が低下する。このために、浸漬工程の時間は、例えば自動製パン器1が使用される環境温度等によって変動されるようにしてもよい。これにより、米粒の吸水度合いのばらつきを抑制することが可能になる。また、浸漬時間を短時間とするために、シーズヒータ31に通電して、焼成室30の温度が高められるようにしてもよい。 The water absorption rate of rice grains varies depending on the temperature of the water. If the water temperature is high, the water absorption rate increases, and if the water temperature is low, the water absorption rate decreases. For this reason, you may make it fluctuate | variate the time of an immersion process with the environmental temperature etc. in which the automatic bread maker 1 is used, for example. Thereby, it becomes possible to suppress the dispersion | variation in the water absorption degree of a rice grain. Further, in order to shorten the immersion time, the sheathed heater 31 may be energized to increase the temperature of the firing chamber 30.
 また、浸漬工程の初期段階で粉砕ブレード92が回転されるようにしてもよく、更に、その後も、断続的に粉砕ブレード92が回転されるようにしてもよい。このようにすると、米粒の表面に傷をつけることができ、米粒の吸液効率が高められる。 Further, the grinding blade 92 may be rotated at the initial stage of the dipping process, and further, the grinding blade 92 may be intermittently rotated thereafter. If it does in this way, the surface of a rice grain can be damaged, and the liquid absorption efficiency of a rice grain will be improved.
 上記所定時間が経過すると、制御装置120の指令によって、浸漬工程が終了され、米粒を粉砕する粉砕工程が開始される。この粉砕工程では、米粒と水とが含まれる混合物の中で粉砕ブレード92が高速回転(例えば7000~8000rpm)される。 When the predetermined time has elapsed, the dipping process is terminated by the command of the control device 120, and the pulverizing process for pulverizing the rice grains is started. In this crushing step, the crushing blade 92 is rotated at a high speed (for example, 7000 to 8000 rpm) in a mixture containing rice grains and water.
 この粉砕工程では、制御装置120は、粉砕モータ60を制御してブレード回転軸82を逆方向回転(図8A及び図8Bでは時計方向回転、図9A及び図9Bでは反時計方向回転)させる。なお、制御装置120は、粉砕モータ60を駆動させる前に、クラッチ用ソレノイド73を駆動させて、クラッチ56が動力遮断を行うようにする(図3Aの状態とする)。 In this crushing step, the control device 120 controls the crushing motor 60 to rotate the blade rotation shaft 82 in the reverse direction (clockwise rotation in FIGS. 8A and 8B, and counterclockwise rotation in FIGS. 9A and 9B). The controller 120 drives the clutch solenoid 73 before driving the grinding motor 60 so that the clutch 56 shuts off the power (the state shown in FIG. 3A).
 粉砕ブレード92を回転させるために、ブレード回転軸82が逆方向回転された場合、ドーム状カバー93もブレード回転軸82の回転に追随して回転を開始するが、次のような動作によってドーム状カバー93の回転はすぐに阻止(停止)される。なお、粉砕ブレード92は、粉砕工程の初期段階では低速で回転され、その後、高速回転されるようにするのが好ましい。 When the blade rotation shaft 82 is rotated in the reverse direction to rotate the grinding blade 92, the dome-shaped cover 93 also starts to rotate following the rotation of the blade rotation shaft 82. The rotation of the cover 93 is immediately blocked (stopped). It is preferable that the pulverizing blade 92 is rotated at a low speed in the initial stage of the pulverization process and then rotated at a high speed.
 粉砕ブレード92を回転させるためのブレード回転軸82の回転に伴うドーム状カバー93の回転方向は、図9A及び図9Bにおいて反時計方向であり、混練ブレード101は、それまで折り畳み姿勢(図9Aに示す姿勢)であった場合には、米粒と水が含まれる混合物から受ける抵抗で開き姿勢(図9Bに示す姿勢)に転じていく。 The rotation direction of the dome-shaped cover 93 accompanying the rotation of the blade rotation shaft 82 for rotating the grinding blade 92 is the counterclockwise direction in FIGS. 9A and 9B, and the kneading blade 101 has been folded until then (see FIG. 9A). In the case of the posture shown in FIG. 9B, the resistance is changed to the open posture (posture shown in FIG. 9B) due to the resistance received from the mixture containing rice grains and water.
 混練ブレード101が開き姿勢になると、第2係合体103bの係合部103bbが第1係合体103aの係合部103abの回転軌道(図8Bの破線参照)から逸脱する。このために、カバー用クラッチ103は、ブレード回転軸82とドーム状カバー93との連結を切り離す。また、開き姿勢になった混練ブレード101は、図9Bに示すように、その一部(正確には、先端側に設けられる緩衝材107)がパン容器80の内側壁(詳細には粉砕効率を向上するためにパン容器80の内壁に設けられた畝状の凸部80b)に当接するために、ドーム状カバー93の回転は阻止(停止)される。 When the kneading blade 101 is in the open position, the engagement portion 103bb of the second engagement body 103b deviates from the rotation trajectory (see the broken line in FIG. 8B) of the engagement portion 103ab of the first engagement body 103a. For this purpose, the cover clutch 103 disconnects the blade rotation shaft 82 from the dome-shaped cover 93. Further, as shown in FIG. 9B, a part of the kneading blade 101 in the open posture (more precisely, the buffer material 107 provided on the tip side) is formed on the inner wall of the bread container 80 (specifically, the grinding efficiency is improved). The rotation of the dome-shaped cover 93 is prevented (stopped) in order to abut against the bowl-shaped convex portion 80b provided on the inner wall of the bread container 80 for improvement.
 なお、粉砕工程においては、粉砕ブレード92の回転中に振動が発生するが、緩衝材107がパン容器80と接触する構成が採用されているために、この振動によって生じる衝突音が緩和されるようになっている。 In the crushing process, vibration is generated while the crushing blade 92 is rotating. However, since the cushioning material 107 is in contact with the pan container 80, the collision sound generated by the vibration is reduced. It has become.
 粉砕工程における米粒の粉砕は、先に行われた浸漬工程によって米粒に水が浸み込んだ状態で実行されるために、米粒を芯まで容易に粉砕することができる。粉砕工程における粉砕ブレード92の回転は本実施形態では間欠回転とされる。この間欠回転は、例えば30秒回転して5分間停止するというサイクルで行われ、このサイクルが10回繰り返される。なお、最後のサイクルでは、5分間の停止は行わない。粉砕ブレード92の回転は連続回転としてもよいが、例えばパン容器80内の原料温度が高くなり過ぎることを防止する等の目的のために、間欠回転とするのが好ましい。 The pulverization of the rice grains in the pulverization step is performed in a state in which water is soaked in the rice grains by the previously performed immersion step, so that the rice grains can be easily pulverized to the core. In the present embodiment, the rotation of the pulverizing blade 92 in the pulverization step is intermittent. This intermittent rotation is performed, for example, in a cycle of rotating for 30 seconds and stopping for 5 minutes, and this cycle is repeated 10 times. In the last cycle, the stop for 5 minutes is not performed. The rotation of the crushing blade 92 may be continuous rotation, but for the purpose of, for example, preventing the temperature of the raw material in the bread container 80 from becoming too high, it is preferable to perform intermittent rotation.
 粉砕工程においては、米粒の粉砕が回転停止したドーム状カバー93内で行われるから、米粒がパン容器80の外に飛び散る可能性が低い。また、回転停止状態にあるガード106の開口部106dからドーム状カバー93内に入る米粒は、静止したスポーク106cと回転する粉砕ブレード92との間でせん断されるので、効率良く粉砕が行える。また、ドーム状カバー93に設けられるリブ93eによって、米粒と水とが含まれる混合物の流動(粉砕ブレード92の回転と同方向の流動である)が抑制されるので、効率良く粉砕が行える。 In the pulverization step, the pulverization of the rice grains is performed in the dome-shaped cover 93 that has stopped rotating, and therefore the possibility that the rice grains scatter outside the bread container 80 is low. Further, the rice grains entering the dome-shaped cover 93 from the opening 106d of the guard 106 in the rotation stopped state are sheared between the stationary spoke 106c and the rotating pulverizing blade 92, so that the pulverization can be performed efficiently. Further, the rib 93e provided on the dome-shaped cover 93 suppresses the flow of the mixture containing rice grains and water (flow in the same direction as the rotation of the grinding blade 92), so that the grinding can be performed efficiently.
 また、粉砕された米粒と水とを含む混合物は、リブ93eによって窓93dの方向に誘導されて、窓93dからドーム状カバー93の外に排出される。リブ93eは、それに向かって押し寄せる混合物に対向する側が凸となるように湾曲しているので、混合物はリブ93eの表面に滞留しにくく、スムーズに窓93dの方へ流れていく。更に、ドーム状カバー93内部から混合物が排出されるのと入れ替わりに、凹部81の上の空間に存在していた混合物が凹部81に入り、凹部81からガード106の開口部106dを通ってドーム状カバー93内に入いる。このような循環をさせつつ粉砕ブレード92による粉砕を行うので、効率良く粉砕できる。 Further, the mixture containing the pulverized rice grains and water is guided in the direction of the window 93d by the ribs 93e, and discharged from the window 93d to the outside of the dome-shaped cover 93. Since the rib 93e is curved so that the side facing the mixture pressing toward it is convex, the mixture hardly stays on the surface of the rib 93e and flows smoothly toward the window 93d. Further, instead of the mixture being discharged from the inside of the dome-shaped cover 93, the mixture existing in the space above the concave portion 81 enters the concave portion 81 and passes through the opening portion 106d of the guard 106 from the concave portion 81. Enter the cover 93. Since the pulverization by the pulverization blade 92 is performed while being circulated as described above, the pulverization can be performed efficiently.
 なお、自動製パン器1においては所定の時間(本実施形態では50分)で粉砕工程が終了するようにしている。しかしながら、米粒の硬さのばらつきや環境条件によって粉砕粉の粒度にばらつきが生じることがある。このため、粉砕工程の終了が、粉砕モータ60の負荷の大きさ(例えば、モータの制御電流等で判断できる)を指標に判断される構成等としても構わない。 In the automatic bread maker 1, the crushing process is completed in a predetermined time (in this embodiment, 50 minutes). However, the grain size of the pulverized powder may vary depending on the hardness of the rice grains and the environmental conditions. For this reason, the end of the pulverization process may be determined based on the magnitude of the load of the pulverization motor 60 (for example, it can be determined by the control current of the motor).
 粉砕工程が終了すると、制御装置120の指令によって休止工程が実行される。この休止工程は、粉砕工程によって上昇したパン容器80内の内容物の温度を下げる冷却期間として設けられている。温度を下げるのは、次に行われる練り工程が、イーストが活発に働く温度(例えば30℃前後)で実行されるようにするためである。本実施形態では、休止工程は所定時間(30分)とされているが、場合によっては、パン容器80の温度等が所定の温度となるまで、休止工程が行なわれる構成等としても構わない。 When the pulverization process is completed, the pause process is executed according to a command from the control device 120. This pause process is provided as a cooling period during which the temperature of the contents in the bread container 80 raised by the crushing process is lowered. The reason for lowering the temperature is that the next kneading step is carried out at a temperature at which the yeast is active (for example, around 30 ° C.). In the present embodiment, the pause process is a predetermined time (30 minutes). However, in some cases, the pause process may be performed until the temperature of the bread container 80 reaches a predetermined temperature.
 休止工程が終了すると、制御装置120の指令によって練り工程が開始される。なお、制御装置120は、混練モータ50を駆動させる前に、クラッチ用ソレノイド73を駆動させて、クラッチ56が動力伝達を行うようにする(図3Bの状態とする)。制御装置120は、混練モータ50の駆動を開始して、ブレード回転軸82を正方向回転(図8A及び図8Bでは反時計方向回転、図9A及び図9Bでは時計方向回転)させる。 When the pause process is completed, the kneading process is started by a command from the control device 120. Note that before the kneading motor 50 is driven, the control device 120 drives the clutch solenoid 73 so that the clutch 56 transmits power (the state shown in FIG. 3B). The control device 120 starts driving the kneading motor 50 to rotate the blade rotation shaft 82 in the forward direction (counterclockwise rotation in FIGS. 8A and 8B and clockwise rotation in FIGS. 9A and 9B).
 ブレード回転軸82を正方向回転させると、粉砕ブレード92も正方向に回転し、粉砕ブレード92の周囲のパン原料が正方向に流動する。それにつられてドーム状カバー93が正方向(図9A及び図9Bでは時計方向)に動くと、混練ブレード101は流動していないパン原料から抵抗を受けて、開き姿勢(図9B参照)から折り畳み姿勢(図9A参照)へと角度を変えて行く。これにより、第2係合体103bの係合部103bbが第1係合体103aの係合部103abの回転軌道(図8Aの破線参照)に干渉する角度となる。そして、カバー用クラッチ103がブレード回転軸82とドーム状カバー93とを連結し、ドーム状カバー93はブレード回転軸82によって本格的に駆動される態勢に入る。ドーム状カバー93と折り畳み姿勢になった混練ブレード101とは、ブレード回転軸82とともに正方向回転する。 When the blade rotation shaft 82 is rotated in the forward direction, the grinding blade 92 is also rotated in the forward direction, and the bread ingredients around the grinding blade 92 flow in the forward direction. Accordingly, when the dome-shaped cover 93 moves in the forward direction (clockwise in FIGS. 9A and 9B), the kneading blade 101 receives resistance from the non-flowing bread ingredients and is folded from the open position (see FIG. 9B). Change the angle to (see FIG. 9A). Thereby, the engaging portion 103bb of the second engaging body 103b has an angle that interferes with the rotation trajectory (see the broken line in FIG. 8A) of the engaging portion 103ab of the first engaging body 103a. Then, the cover clutch 103 connects the blade rotation shaft 82 and the dome-shaped cover 93, and the dome-shaped cover 93 enters a state of being driven in earnest by the blade rotation shaft 82. The dome-shaped cover 93 and the kneading blade 101 in the folded position rotate together with the blade rotation shaft 82 in the forward direction.
 なお、以上に説明したカバー用クラッチ103の連結を確実に行うために、練り工程初期におけるブレード回転軸82の回転は、間欠回転或いは低速回転とするのが好ましい。また、上述のように、混練ブレード101が折り畳み姿勢になると、混練ブレード101の延長上に補完混練ブレード102が並ぶために、混練ブレード101があたかも大型化したかのようになって、パン原料は力強く押される。このため、生地の練り上げをしっかり行える。 In order to surely connect the cover clutch 103 described above, the rotation of the blade rotation shaft 82 at the initial stage of the kneading process is preferably intermittent rotation or low speed rotation. Further, as described above, when the kneading blade 101 is in the folded position, the complementary kneading blade 102 is arranged on the extension of the kneading blade 101, so that the kneading blade 101 is enlarged and the bread raw material is pressed strongly. It is. For this reason, the dough can be kneaded firmly.
 混練ブレード101(この用語は、折り畳み姿勢においては、補完混練ブレード102を含む表現として用いる。以下同様。)の回転は、練り工程の初期においては非常にゆっくりとされ、段階的に速度が速められるように制御装置120によって制御される。混練ブレード101の回転が非常にゆっくりである練り工程の初期段階において、制御装置120は自動投入用ソレノイド16を駆動させて、パン原料収納容器42の可動フック42cが容器蓋42bを支えた状態を解消させる。これにより、容器本体42aの開口が開かれて、例えば、グルテン、ドライイーストといったパン原料がパン容器80内に自動投入される。 The rotation of the kneading blade 101 (this term is used as an expression including the complementary kneading blade 102 in the folded position, the same applies hereinafter) is very slow in the initial stage of the kneading process, and the speed is increased stepwise. Control is performed by the control device 120. In the initial stage of the kneading process in which the kneading blade 101 rotates very slowly, the control device 120 drives the automatic charging solenoid 16 so that the movable hook 42c of the bread ingredient storage container 42 supports the container lid 42b. Let go. Thereby, the opening of the container main body 42a is opened, and for example, bread ingredients such as gluten and dry yeast are automatically charged into the bread container 80.
 上述のように、パン原料収納容器42は、容器本体42a及び容器蓋42bの内部にコーティング層が設けられて滑りがよくなっており、また、内部に凹凸部が設けられないように工夫されている。更に、パッキン42dの配置方法の工夫により、パン原料がパッキン42dに引っ掛かるという事態も抑制されている。このために、パン原料収納容器42にはパン原料がほとんど残ることなく、自動投入が完了する。 As described above, the bread raw material storage container 42 is provided with a coating layer inside the container body 42a and the container lid 42b to improve slipping, and is devised so that there is no uneven portion inside. Yes. Furthermore, the situation where the bread raw material is caught by the packing 42d is also suppressed by the device for arranging the packing 42d. For this reason, the automatic charging is completed with almost no bread ingredients remaining in the bread ingredient storage container 42.
 なお、本実施形態では、パン原料収納容器42に収納されるパン原料が、混練ブレード101が回転している状態で投入されることにしているが、これに限定されず、混練ブレード101が停止している状態で投入されることにしてもよい。ただし、本実施形態のように、混練ブレード101が回転した状態でパン原料を投入するようにした方が、パン原料が均一に分散されるので好ましい。 In this embodiment, the bread ingredients stored in the bread ingredient storage container 42 are charged while the kneading blade 101 is rotating. However, the present invention is not limited to this, and the kneading blade 101 is stopped. You may decide to throw in in the state which is carrying out. However, as in this embodiment, it is preferable to add the bread ingredients while the kneading blade 101 is rotated because the bread ingredients are uniformly dispersed.
 パン原料収納容器42に収納されたパン原料がパン容器80に投入された後は、混練ブレード101の回転によって、パン原料は所定の弾力を有する一つにつながった生地(dough)に練り上げられていく。混練ブレード101が生地を振り回してパン容器80の内壁にたたきつけることにより、混練に「捏ね」の要素が加わることになる。混練ブレード101の回転とともにドーム状カバー93も回転する。ドーム状カバー93が回転すると、ドーム状カバー93に形成されるリブ93eも回転するために、ドーム状カバー93内のパン原料は速やかに窓93dから排出され、混練ブレード101が混練しているパン原料の塊(生地)に同化する。 After the bread ingredients stored in the bread ingredient storage container 42 are put into the bread container 80, the bread ingredients are kneaded into a dough connected to one having a predetermined elasticity by the rotation of the kneading blade 101. Go. When the kneading blade 101 swings the dough and knocks it against the inner wall of the bread container 80, an element of “kneading” is added to the kneading. As the kneading blade 101 rotates, the dome-shaped cover 93 also rotates. When the dome-shaped cover 93 rotates, the rib 93e formed on the dome-shaped cover 93 also rotates, so that the bread material in the dome-shaped cover 93 is quickly discharged from the window 93d and the kneading blade 101 kneads the bread. Assimilate into a lump of material.
 なお、練り工程においては、ドーム状カバー93と共にガード106も正方向に回転する。ガード106のスポーク106cは、正方向回転時、ガード106の中心側が先行しガード106の外周側が後続する形状とされている。このために、ガード106は、正方向に回転することにより、ドーム状カバー93内外のパン原料をスポーク106cで外側に押しやる。これにより、パンを焼き上げた後に廃棄分となる原料の割合を減らすことができる。 In the kneading process, the guard 106 also rotates in the forward direction together with the dome-shaped cover 93. The spoke 106c of the guard 106 has a shape in which the center side of the guard 106 precedes and the outer peripheral side of the guard 106 follows when rotating in the forward direction. For this purpose, the guard 106 rotates in the forward direction to push the bread ingredients inside and outside the dome-shaped cover 93 outward with the spokes 106c. Thereby, the ratio of the raw material used as a waste after baking bread can be reduced.
 また、ガード106の柱106eは、ガード106が正方向に回転するときに回転方向前面となる側面106eb(図6参照)が上向きに傾斜しているから、混練時、ドーム状カバー93の周囲のパン原料が柱106eの前面で上方に跳ね上げられる。このために、パンを焼き上げた後に廃棄分となる原料の割合を減らすことができる。 Further, the pillar 106e of the guard 106 has a side surface 106eb (see FIG. 6) which is the front surface in the rotation direction when the guard 106 rotates in the forward direction, and is inclined upward. Bread ingredients are sprung upward on the front surface of the column 106e. For this reason, the ratio of the raw material which becomes waste after baking bread can be reduced.
 自動製パン器1においては、練り工程の時間は、所望の弾力を有するパン生地が得られる時間として実験的に求められた所定の時間(本実施形態では10分)が採用されている。ただし、練り工程の時間が一定とされると、環境温度等によってパン生地の出来上がり具合が変動する場合がある。このため、例えば、混練モータ50の負荷の大きさ(例えば、モータの制御電流等で判断できる)を指標に、練り工程の終了時点が判断される構成等としても構わない。 In the automatic bread maker 1, a predetermined time (10 minutes in this embodiment) obtained experimentally as a time for obtaining bread dough having a desired elasticity is employed as the time for the kneading process. However, if the time of the kneading process is constant, the degree of bread dough may vary depending on the environmental temperature or the like. For this reason, for example, a configuration in which the end point of the kneading process is determined based on the magnitude of the load of the kneading motor 50 (for example, it can be determined by the control current of the motor) may be used.
 なお、具材(例えばレーズン、ナッツ、チーズ等)入りのパンが焼かれる場合には、この練り工程の途中で具材が投入されるようにすればよい。 In addition, when bread containing ingredients (for example, raisins, nuts, cheese, etc.) is baked, the ingredients may be introduced during the kneading process.
 練り工程が終了すると、制御装置120の指令によって発酵工程が開始される。この発酵工程では、制御装置120はシーズヒータ31を制御して、焼成室30の温度を、発酵が進む温度(例えば38℃)に維持する。そして、発酵が進む環境下でパン生地が所定の時間(本実施形態では60分)放置される。 When the kneading process is completed, the fermentation process is started by a command from the control device 120. In this fermentation process, the control device 120 controls the sheathed heater 31 to maintain the temperature of the baking chamber 30 at a temperature at which fermentation proceeds (for example, 38 ° C.). Then, the dough is left for a predetermined time (in this embodiment, 60 minutes) in an environment in which fermentation proceeds.
 なお、場合によっては、この発酵工程の途中で、混練ブレード101を回転してガス抜きや生地を丸める処理が行われるようにしても構わない。 In some cases, in the middle of this fermentation process, the kneading blade 101 may be rotated to perform degassing or rounding of the dough.
 発酵工程が終了すると、制御装置120の指令によって焼成工程が開始される。制御装置120はシーズヒータ31を制御して、焼成室30の温度を、パン焼きを行うのに適した温度(例えば125℃)まで上昇させる。そして、制御装置120は、焼成環境下で所定の時間(本実施形態では50分)パンを焼くように制御する。焼成工程の終了については、例えば操作部20の液晶表示パネルにおける表示や報知音等によってユーザに知らされる。ユーザは、製パン完了を検知すると、蓋40を開けてパン容器80を取り出して、パンの製造を完了させる。 When the fermentation process is finished, the firing process is started by a command from the control device 120. The control device 120 controls the sheathed heater 31 to increase the temperature of the baking chamber 30 to a temperature suitable for baking (for example, 125 ° C.). Then, the control device 120 performs control so that the bread is baked in a baking environment for a predetermined time (in this embodiment, 50 minutes). The end of the firing process is notified to the user by, for example, a display on the liquid crystal display panel of the operation unit 20 or a notification sound. When the user detects the completion of bread making, the user opens the lid 40 and takes out the bread container 80 to complete the bread production.
 なお、パン容器80内のパンは、例えば、パン容器80の開口を斜め下に向けることで取り出すことができる。そして、このパンの取り出しと同時に、ブレード回転軸82に取り付けられたブレードユニット90もパン容器80から取り出される。パンの底には、ブレードユニット90の混練ブレード101及び補完混練ブレード102(パン容器80の凹部81から上側に突き出ている)の焼き跡が残る。しかし、ドーム状カバー93とガード106が凹部81の中に収容される構成であるために、それらがパンの底に大きな焼き跡を残すようなことは抑制される。 In addition, the bread in the bread container 80 can be taken out by, for example, directing the opening of the bread container 80 obliquely downward. Simultaneously with the removal of the bread, the blade unit 90 attached to the blade rotation shaft 82 is also removed from the bread container 80. At the bottom of the bread, burn marks of the kneading blade 101 of the blade unit 90 and the complementary kneading blade 102 (projecting upward from the recess 81 of the bread container 80) remain. However, since the dome-shaped cover 93 and the guard 106 are accommodated in the recess 81, they are prevented from leaving a large burn mark on the bottom of the bread.
(モータ駆動回路)
 次に、モータ駆動回路121の回路構成について、具体例を挙げるとともに図面を参照して説明する。図12は、モータ駆動回路121の回路図である。図12に示すように、本例のモータ駆動回路121は、上述した電力供給部121a(図10参照)に相当する交流電源P(電源部)及びトライアックTRI(電力調整部)と、上述した切替部121b(図10参照)に相当するリレーRYと、上述した供給電流検知部121cの一部に相当するカレントトランスCTと、を備える。これらは、混練モータ50及び粉砕モータ60に対して直列に接続される。
(Motor drive circuit)
Next, the circuit configuration of the motor drive circuit 121 will be described with reference to the drawings while giving specific examples. FIG. 12 is a circuit diagram of the motor drive circuit 121. As shown in FIG. 12, the motor drive circuit 121 of this example includes an AC power supply P (power supply unit) and a triac TRI (power adjustment unit) corresponding to the power supply unit 121a (see FIG. 10) described above, and the switching described above. A relay RY corresponding to the section 121b (see FIG. 10) and a current transformer CT corresponding to a part of the above-described supply current detection section 121c. These are connected in series to the kneading motor 50 and the grinding motor 60.
 交流電源Pは、例えば商用電源が供給する交流電力(または、商用電源が供給する電力を調整して得られる交流電力)を供給する電源である。トライアックTRIは、その2つの主電極が、交流電源Pと、混練モータ50及び粉砕モータ60とに対して直列に接続され、その制御電極に制御装置120が出力する駆動信号が入力される。 The AC power source P is a power source that supplies, for example, AC power supplied from a commercial power source (or AC power obtained by adjusting power supplied from the commercial power source). In the triac TRI, its two main electrodes are connected in series to the AC power source P, the kneading motor 50 and the grinding motor 60, and a drive signal output from the control device 120 is input to the control electrode.
 例えば、制御装置120は、パルス状または連続的な駆動信号(トライアックTRIの保持電流よりも大きい電流信号)をトライアックTRIの制御電極に入力することで、トライアックTRIを導通状態(ON)にする。トライアックTRIは、駆動信号が制御電極に入力されてから、交流電源Pが供給し主電極に入力される交流電流が0になるまで、当該交流電流を導通する。そのため、制御装置120は、パルス状の駆動信号をトライアックTRIの制御電極に入力することで、交流電源Pが供給する交流電力を、混練モータ50または粉砕モータ60に対して部分的に供給することができる。一方、制御装置120は、連続的な駆動信号をトライアックTRIの制御電極に入力することで、交流電源Pが供給する交流電力を、混練モータ50または粉砕モータ60に対して略そのまま供給することができる。 For example, the control device 120 inputs a pulsed or continuous drive signal (current signal larger than the holding current of the triac TRI) to the control electrode of the triac TRI, thereby turning the triac TRI into a conductive state (ON). The triac TRI conducts the alternating current from when the drive signal is input to the control electrode until the alternating current supplied by the alternating current power supply P and input to the main electrode becomes zero. Therefore, the control device 120 partially supplies the AC power supplied from the AC power supply P to the kneading motor 50 or the grinding motor 60 by inputting a pulsed drive signal to the control electrode of the TRIAC TRI. Can do. On the other hand, the controller 120 can supply the AC power supplied from the AC power source P to the kneading motor 50 or the grinding motor 60 substantially as it is by inputting a continuous drive signal to the control electrode of the TRIAC TRI. it can.
 なお、制御装置120は、ゼロクロス信号(交流電源Pが供給する交流電力の電圧が0になるタイミングを示す信号)に基づいて、パルス状の駆動信号をトライアックTRIの制御電極に入力するタイミングを決定しても構わない。この場合、制御装置120は、トライアックTRIを導通させて混練モータ50または粉砕モータ60に供給する交流電力の電力量を、容易に制御することが可能になる。 Note that the control device 120 determines the timing for inputting the pulse-shaped drive signal to the control electrode of the triac TRI based on the zero cross signal (the signal indicating the timing at which the voltage of the AC power supplied from the AC power supply P becomes 0). It doesn't matter. In this case, the control device 120 can easily control the amount of AC power supplied to the kneading motor 50 or the grinding motor 60 by turning on the triac TRI.
 カレントトランスCTは、交流電源Pと、トライアックTRIと、混練モータ50及び粉砕モータ60と、に対して直列に接続される一次側コイルL1と、一次側コイルL1に電流が通じられることで生じる磁界により電流を生じる二次側コイルL2と、を備える。二次側コイルL2の一端は接地され、他端にはダイオードD1のアノードが接続されている。ダイオードD1のカソードには、一端が接地された抵抗R1の他端が接続される。そして、抵抗R1及びダイオードD1の接続ノードには、一端が接地されたコンデンサCの他端が接続され、当該接続ノードに現れる電圧信号(検知結果;混練モータ50または粉砕モータ60に供給される電流値を示す信号)が、制御装置120に入力される。 The current transformer CT includes a primary side coil L1 connected in series to the AC power supply P, the triac TRI, the kneading motor 50 and the grinding motor 60, and a magnetic field generated by passing a current through the primary side coil L1. And a secondary coil L2 that generates a current. One end of the secondary coil L2 is grounded, and the anode of the diode D1 is connected to the other end. The other end of the resistor R1 whose one end is grounded is connected to the cathode of the diode D1. The connection node between the resistor R1 and the diode D1 is connected to the other end of the capacitor C grounded at one end, and a voltage signal (detection result; current supplied to the kneading motor 50 or the grinding motor 60) appearing at the connection node. A signal indicating a value) is input to the control device 120.
 ダイオードD1及びコンデンサCは、二次側コイルL2で発生した電流を整流及び平滑化する(交流を直流に変換する)。抵抗R1は、電流信号を電圧信号に変換することで、制御装置120が取得可能な信号を生成する。なお、ダイオードD1、抵抗R1及びコンデンサCは、本発明の検知結果生成回路の一例である。また、本例のカレントトランスCT、ダイオードD1、抵抗R1及びコンデンサCが、上述した供給電流検知部121c(図10参照)に相当する。 The diode D1 and the capacitor C rectify and smooth the current generated in the secondary coil L2 (convert alternating current into direct current). The resistor R1 generates a signal that can be acquired by the control device 120 by converting the current signal into a voltage signal. The diode D1, the resistor R1, and the capacitor C are examples of the detection result generation circuit of the present invention. Further, the current transformer CT, the diode D1, the resistor R1, and the capacitor C in this example correspond to the above-described supply current detection unit 121c (see FIG. 10).
 制御装置120は、上記のようにして得られたアナログの電圧信号である検知結果を取得して、デジタルの信号に変換する。これにより、制御装置120は、交流電源P及びトライアックTRIが供給する交流電流の大きさを、確認することが可能になる。 The control device 120 acquires the detection result, which is an analog voltage signal obtained as described above, and converts it into a digital signal. As a result, the control device 120 can check the magnitude of the alternating current supplied by the alternating current power supply P and the triac TRI.
 リレーRYは、交流電源P及びトライアックTRIと、混練モータ50及び粉砕モータ60のいずれかとの電気的及び機械的な接続を切替可能なスイッチSryと、スイッチSryの接続を制御する制御コイルLryとを備える。制御コイルLryは、一端が接地されるとともにダイオードD2のアノードに接続され、他端がダイオードD2のカソードに接続される。例えば、スイッチSryは、制御コイルLryに電流が通じられない場合、交流電源P及びトライアックTRIと混練モータ50とを接続し、制御コイルLryに電流が通じられる場合に、交流電源P及びトライアックTRIと粉砕モータ60とを接続する。 The relay RY includes an AC power supply P and a triac TRI, a switch Sry that can switch an electrical and mechanical connection with any of the kneading motor 50 and the grinding motor 60, and a control coil Lry that controls the connection of the switch Sry. Prepare. The control coil Lry has one end grounded and connected to the anode of the diode D2, and the other end connected to the cathode of the diode D2. For example, the switch Sry connects the AC power supply P and the triac TRI to the kneading motor 50 when no current is passed to the control coil Lry, and the AC power supply P and the triac TRI when the current is passed to the control coil Lry. The grinding motor 60 is connected.
 また、制御コイルLryの他端及びダイオードD2のカソードの接続ノードには、PNP型のトランシスタTRのコレクタが接続される。トランジスタTRのエミッタには、抵抗R2の一端が接続されるとともに、直流電源VE(例えば、商用電源が供給する交流電力に基づいて直流電力を生成及び供給する電源)が接続される。抵抗R2の他端はトランジスタTRのベースに接続され、その接続ノードに抵抗R3の一端が接続される。制御装置120は、抵抗R3の他端に、リレーRYの切替を制御する切替信号を出力する。 The collector of the PNP transistor TR is connected to the connection node between the other end of the control coil Lry and the cathode of the diode D2. One end of the resistor R2 is connected to the emitter of the transistor TR, and a DC power source VE (for example, a power source that generates and supplies DC power based on AC power supplied from a commercial power source) is connected. The other end of the resistor R2 is connected to the base of the transistor TR, and one end of the resistor R3 is connected to the connection node. The control device 120 outputs a switching signal for controlling switching of the relay RY to the other end of the resistor R3.
 例えば、制御装置120が、トランジスタがON(エミッタ-コレクタ間が導通)になる程度に低い電圧(ロー)の切替信号を出力すると、直流電源VEが供給する直流電流が制御コイルLryに通じられ、交流電源P及びトライアックTRIと粉砕モータ60とが接続される。一方、制御装置120が、トランジスタがOFF(エミッタ-コレクタ間が非導通)になる程度に高い電圧(ハイ)の切替信号を出力すると、直流電源VEが供給する直流電流が制御コイルLryに通じられず、交流電源P及びトライアックTRIと混練モータ50とが接続される。 For example, when the control device 120 outputs a switching signal having a voltage (low) that is low enough to turn on the transistor (conducting between the emitter and the collector), the direct current supplied from the direct current power source VE is passed to the control coil Lry, The AC power supply P, the triac TRI, and the grinding motor 60 are connected. On the other hand, when the control device 120 outputs a switching signal having a voltage (high) that is high enough to turn off the transistor (non-conduction between the emitter and the collector), the DC current supplied from the DC power supply VE is passed to the control coil Lry. First, the AC power supply P and the triac TRI and the kneading motor 50 are connected.
 このように構成すると、制御装置120が切替信号を出力しないとき(ハイインピーダンス)に、交流電源P及びトライアックTRIと混練モータ50(原動軸11を低速回転させるモータ)とが接続され、粉砕モータ(原動軸11を高速回転させるモータ)が接続されなくなるため、安全性を確保する観点から好ましいものとなる。 With this configuration, when the control device 120 does not output a switching signal (high impedance), the AC power supply P and the triac TRI are connected to the kneading motor 50 (the motor that rotates the driving shaft 11 at a low speed), and the grinding motor ( Since a motor that rotates the driving shaft 11 at a high speed is not connected, it is preferable from the viewpoint of ensuring safety.
 上記のように構成すると、簡易な構成で、交流電源P及びトライアックTRIが供給する交流電流の大きさを検知して、制御装置120に入力することが可能になる。また、簡易な構成で、交流電源P及びトライアックTRIと混練モータ50及び粉砕モータ60のいずれかとを電気的及び機械的に接続し、かつ接続を切替可能にすることができる。 With the above configuration, it is possible to detect the magnitude of the AC current supplied from the AC power supply P and the TRIAC TRI and input it to the control device 120 with a simple configuration. In addition, with a simple configuration, the AC power supply P and the triac TRI can be electrically and mechanically connected to any one of the kneading motor 50 and the grinding motor 60, and the connection can be switched.
 次に、制御装置120によるリレーRYの異常の確認動作の詳細について、具体例を挙げるとともに図面を参照して説明する。図13は、制御装置によるリレーの異常の確認動作を示すフローチャートである。なお、図13に示す制御装置120の確認動作は、上述した製造コースに含まれるそれぞれの工程(例えば、図11に示す工程を細分化したそれぞれの工程)において、行われ得るものである。なお、1つの工程において、混練モータ50及び粉砕モータ60の両方が駆動することはないものとする。 Next, details of the confirmation operation of the abnormality of the relay RY by the control device 120 will be described with reference to the drawings while giving specific examples. FIG. 13 is a flowchart showing an operation for confirming a relay abnormality by the control device. Note that the confirmation operation of the control device 120 shown in FIG. 13 can be performed in each step included in the manufacturing course described above (for example, each step obtained by subdividing the step shown in FIG. 11). Note that it is assumed that neither the kneading motor 50 nor the grinding motor 60 is driven in one step.
 図13に示すように、制御装置120は、リレーRYを制御して交流電源P及びトライアックTRIと混練モータ50とを接続して、混練モータ50に交流電力を供給(駆動)する場合(STEP1、YES)、検知結果(交流電源P及びトライアックTRIが供給する交流電流の大きさを示す信号)を取得する。 As shown in FIG. 13, the control device 120 controls the relay RY to connect the AC power supply P, the triac TRI, and the kneading motor 50 to supply (drive) AC power to the kneading motor 50 (STEP1, YES), a detection result (a signal indicating the magnitude of the AC current supplied by the AC power supply P and the triac TRI) is acquired.
 制御装置120は、所定のタイミング毎(例えば、144ms毎)に、検知結果(上述のAD変換により得られる値)を確認する(STEP2)。そして、制御装置120は、確認した検知結果が、X回以上連続して閾値A以上であるか否かを確認する(STEP3)。 The control device 120 confirms the detection result (value obtained by the above-mentioned AD conversion) at every predetermined timing (for example, every 144 ms) (STEP 2). And the control apparatus 120 confirms whether the confirmed detection result is more than the threshold value A continuously X times or more (STEP3).
 閾値Aは、混練モータ50に交流電力を供給して駆動する場合に、確認され得ない程度に大きな値である。なお、粉砕モータ60に交流電力が供給される場合には、閾値A以上の検知結果が制御装置120に確認され得る。また、X回は、突発的に閾値A以上の値を取りうる状態を排除可能な回数である。例えば、制御装置120が144ms毎に検知結果を確認する場合、X回を7回としても構わない。 The threshold value A is a value that cannot be confirmed when the kneading motor 50 is driven by supplying AC power. When AC power is supplied to the pulverization motor 60, a detection result equal to or higher than the threshold A can be confirmed by the control device 120. Further, X times is the number of times that a state where a value that is suddenly greater than or equal to the threshold value A can be excluded can be excluded. For example, when the control device 120 confirms the detection result every 144 ms, X times may be set to 7 times.
 制御装置120は、確認した検知結果がX回以上連続して閾値A以上の値にならない場合であり(STEP3、NO)、かつ混練モータ50の駆動を終了しない場合は(STEP4、NO)、STEP2に戻り検知結果の確認を継続する。一方、制御装置120は、確認した検知結果がX回以上連続して閾値A以上の値にならない場合であり(STEP3、NO)、かつ混練モータ50の駆動を終了する場合は(STEP4、YES)、次の工程を行うべく製造コースを進行し(STEP5)、現在の工程における確認動作を終了する。 The control device 120 is a case where the confirmed detection result does not continuously exceed the threshold A for X times or more (STEP 3, NO), and when the driving of the kneading motor 50 is not finished (STEP 4, NO), STEP 2 Return to and continue to check the detection results. On the other hand, the control device 120 is a case where the confirmed detection result does not continuously exceed the threshold value A more than X times (STEP 3, NO), and when the driving of the kneading motor 50 is finished (STEP 4, YES). Then, the manufacturing course is advanced to perform the next process (STEP 5), and the confirmation operation in the current process is terminated.
 これに対して、制御装置120は、確認した検知結果がX回以上連続して閾値A以上の値になる場合(STEP3、YES)、リレーRYの接続状態が異常である(例えば、交流電源P及びトライアックTRIと粉砕モータ60とが誤って接続されている)と判断して、製造コースを中止し(STEP6)、確認動作を終了する。なお、このとき制御装置120は、異常により製造コースを中止した旨を、操作部20の液晶表示パネルにおける表示や報知音等によってユーザに知らせても構わない。 On the other hand, the control device 120 indicates that the connection state of the relay RY is abnormal (for example, the AC power supply P, for example) when the confirmed detection result is a value equal to or greater than the threshold value A for X times or more (STEP 3, YES). And the triac TRI and the grinding motor 60 are erroneously connected), the manufacturing course is stopped (STEP 6), and the confirmation operation is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
 このように、制御装置120は、混練モータ50を駆動させるべく制御する場合に、検知結果に基づいてリレーRYの接続状態が異常であると判断すると、製パン動作を停止する。そのため、例えば制御装置120が誤って粉砕モータ60を駆動することを、防止することが可能になる。 Thus, when the control device 120 controls to drive the kneading motor 50, the control device 120 stops the bread making operation if it determines that the connection state of the relay RY is abnormal based on the detection result. Therefore, for example, it is possible to prevent the control device 120 from driving the grinding motor 60 by mistake.
 さらに、制御装置120は、リレーRYの接続状態が正しい(交流電源P及びトライアックTRIと混練モータ50とが接続されている)にもかかわらず、接続状態が異常であることを示す検知結果が突発的に発生する場合に、製パン動作を停止することを抑制することが可能になる。 Further, the control device 120 suddenly detects a detection result indicating that the connection state is abnormal although the connection state of the relay RY is correct (the AC power supply P, the triac TRI and the kneading motor 50 are connected). Therefore, it is possible to suppress stopping the bread making operation.
 また、制御装置120は、リレーRYを制御して交流電源P及びトライアックTRIと粉砕モータ60とを接続して、粉砕モータ60に交流電力を供給(駆動)する場合(STEP1、NOかつSTEP7、YES)、上述のSTEP2と同様に、検知結果を取得する(STEP8)。そして、制御装置120は、確認した検知結果が、Y回以上連続して閾値B以下であるか否かを確認する(STEP9)。 Further, the control device 120 controls the relay RY to connect the AC power supply P and the triac TRI and the grinding motor 60 to supply (drive) AC power to the grinding motor 60 (STEP1, NO and STEP7, YES). ), The detection result is acquired in the same manner as in the above STEP 2 (STEP 8). And the control apparatus 120 confirms whether the confirmed detection result is below the threshold value B continuously Y times or more (STEP9).
 閾値Bは、粉砕モータ60に交流電力を供給して駆動する場合に、確認され得ない程度に小さな値である。なお、混練モータ50に交流電力が供給される場合には、閾値B以下の検知結果が制御装置120に確認され得る。また、Y回は、突発的及び過渡的(粉砕モータ60の回転開始時)に閾値B以下の値を取りうる状態を排除可能な回数である。例えば、制御装置120が144ms毎に検知結果を確認する場合、Y回を15回としても構わない。 The threshold value B is a value that cannot be confirmed when the pulverization motor 60 is driven by supplying AC power. Note that when AC power is supplied to the kneading motor 50, a detection result equal to or lower than the threshold value B can be confirmed by the control device 120. Y times is the number of times that a state in which a value less than or equal to the threshold value B can be taken suddenly and transiently (when rotation of the grinding motor 60 starts) can be excluded. For example, when the control device 120 confirms the detection result every 144 ms, the Y times may be 15 times.
 なお、本例のように、制御装置120がリレーRYの接続状態を異常と判断するための回数は、リレーRYの接続状態が異常であることを示す検知結果が過渡的に発生し難い場合(回数Xに設定)に比べて、当該異常が過渡的に発生し易い場合(回数Yに設定)の方が大きくなるように設定する(X<Y)のが好ましい。これにより、制御装置120は、リレーRYの接続状態が異常であることをより精度よく判断することが可能になる。 Note that, as in this example, the number of times that the control device 120 determines that the connection state of the relay RY is abnormal is such that the detection result indicating that the connection state of the relay RY is abnormal is unlikely to occur transiently ( It is preferable to set (X <Y) so that the case where the abnormality is likely to occur transiently (set to number Y) is larger than (set to number X). Thereby, control device 120 can more accurately determine that the connection state of relay RY is abnormal.
 制御装置120は、確認した検知結果がY回以上連続して閾値B以下の値にならない場合であり(STEP9、NO)、かつ粉砕モータ60の駆動を終了しない場合は(STEP10、NO)、STEP8に戻り検知結果の確認を継続する。一方、制御装置120は、確認した検知結果がY回以上連続して閾値B以下の値にならない場合であり(STEP9、NO)、かつ粉砕モータ60の駆動を終了する場合は(STEP10、YES)、次の工程を行うべく製造コースを進行し(STEP5)、現在の工程における確認動作を終了する。 The control device 120 is a case where the detected result that has been confirmed does not continuously become the value of the threshold value B or more continuously Y times (STEP 9, NO), and when the driving of the crushing motor 60 is not finished (STEP 10, NO), STEP 8 Return to and continue to check the detection results. On the other hand, the control device 120 is a case where the confirmed detection result does not continuously become a value equal to or less than the threshold value B for more than Y times (STEP 9, NO), and when the driving of the grinding motor 60 is finished (STEP 10, YES). Then, the manufacturing course is advanced to perform the next process (STEP 5), and the confirmation operation in the current process is terminated.
 これに対して、制御装置120は、確認した検知結果がY回以上連続して閾値B以下の値になる場合(STEP9、YES)、リレーRYの接続状態が異常である(例えば、交流電源P及びトライアックTRIと混練モータ50とが誤って接続されている)と判断して、製造コースを中止し(STEP11)、確認動作を終了する。なお、このとき制御装置120は、異常により製造コースを中止した旨を、操作部20の液晶表示パネルにおける表示や報知音等によってユーザに知らせても構わない。 On the other hand, the control device 120 indicates that the connection state of the relay RY is abnormal (for example, the AC power supply P) when the confirmed detection result is a value equal to or less than the threshold value B continuously for Y times or more (STEP 9, YES). And the triac TRI and the kneading motor 50 are erroneously connected), the manufacturing course is stopped (STEP 11), and the confirmation operation is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound.
 このように、制御装置120は、粉砕モータ60を駆動させるべく制御する場合に、検知結果に基づいてリレーRYの接続状態が異常であると判断すると、製パン動作を停止する。そのため、例えば制御装置120が誤って混練モータ50を駆動することを、防止することが可能になる。 As described above, when the control device 120 performs control to drive the grinding motor 60, if the connection state of the relay RY is determined to be abnormal based on the detection result, the bread making operation is stopped. Therefore, for example, it is possible to prevent the controller 120 from driving the kneading motor 50 by mistake.
 さらに、制御装置120は、リレーRYの接続状態が正しい(交流電源Pと粉砕モータ60とが接続されている)にもかかわらず、接続状態が異常であることを示す検知結果が突発的及び過渡的に発生する場合に、製パン動作を停止することを抑制することが可能になる。 Further, the control device 120 detects that the connection state of the relay RY is correct (the AC power supply P and the grinding motor 60 are connected), but the detection result indicating that the connection state is abnormal is sudden and transient. Therefore, it is possible to suppress stopping the bread making operation.
 また、混練モータ50及び粉砕モータ60のいずれも駆動しない工程では(STEP1、NOかつSTEP7、NO)、制御装置120は、検知結果の確認をすることなく、製造コースを進行させる(STEP5)。 Further, in a process in which neither the kneading motor 50 nor the grinding motor 60 is driven (STEP 1, NO and STEP 7, NO), the control device 120 advances the manufacturing course without confirming the detection result (STEP 5).
 以上のように、リレーRYは、交流電源P及びトライアックTRIと、混練モータ50及び粉砕モータ60のいずれかと、を電気的及び機械的に接続する。即ち、交流電源P及びトライアックTRIが、混練モータ50及び粉砕モータ60の両方に接続されてそれぞれに交流電力を供給することを、防止することが可能になる。したがって、混練モータ50及び粉砕モータ60のそれぞれを、正確に駆動させることが可能になる。 As described above, the relay RY electrically and mechanically connects the AC power source P and the triac TRI to any one of the kneading motor 50 and the grinding motor 60. That is, it is possible to prevent the AC power supply P and the TRIAC TRI from being connected to both the kneading motor 50 and the grinding motor 60 and supplying AC power to each of them. Therefore, each of the kneading motor 50 and the crushing motor 60 can be driven accurately.
 さらに、リレーRYにより、混練モータ50と粉砕モータ60とが同時に駆動することが防止される。そのため、混練モータ50と粉砕モータ60とが同時に駆動することによる自動製パン器1の破損を、防止することが可能になる。 Furthermore, the kneading motor 50 and the grinding motor 60 are prevented from being driven simultaneously by the relay RY. Therefore, it is possible to prevent the automatic bread maker 1 from being damaged by the kneading motor 50 and the grinding motor 60 being driven simultaneously.
2.第2実施形態
 次に、第2実施形態の自動製パン器について説明する。第2実施形態の自動製パン器は、概ね第1実施形態の自動製パン器1の構成と同様である。このため、第2実施形態の自動製パン器の構成については、特徴的な部分について絞って説明する。なお、第1実施形態の自動製パン器1と重複する部分には同一の符号を付して説明する。
2. Second Embodiment Next, an automatic bread maker according to a second embodiment will be described. The automatic bread maker of the second embodiment is generally the same as the configuration of the automatic bread maker 1 of the first embodiment. For this reason, about the structure of the automatic bread maker of 2nd Embodiment, it concentrates and demonstrates a characteristic part. In addition, the same code | symbol is attached | subjected and demonstrated to the part which overlaps with the automatic bread maker 1 of 1st Embodiment.
 図14は、第2実施形態の自動製パン器の構成を示すブロック図である。図15は、第2実施形態の自動製パン器が備えるモータ駆動回路を示す回路図である。図14及び図15からわかるように、第2実施形態の自動製パン器は、モータ駆動回路121の電源部121aaの状態を検知する電源状態検知回路125(本発明の電源状態検知部の一例)を備える点で第1実施形態の構成と異なる。なお、混練モータ50及び粉砕モータ60を駆動するための電力を供給する交流電源P(図15参照)が電源部121aaに相当する。 FIG. 14 is a block diagram showing the configuration of the automatic bread maker of the second embodiment. FIG. 15 is a circuit diagram showing a motor drive circuit provided in the automatic bread maker of the second embodiment. As can be seen from FIGS. 14 and 15, the automatic bread maker of the second embodiment includes a power supply state detection circuit 125 that detects the state of the power supply unit 121aa of the motor drive circuit 121 (an example of the power supply state detection unit of the present invention). It differs from the structure of 1st Embodiment by the point provided with. An AC power supply P (see FIG. 15) that supplies power for driving the kneading motor 50 and the grinding motor 60 corresponds to the power supply unit 121aa.
 電源状態検知回路125は、交流電源Pの状態を示す信号を生成して、制御装置120(本発明の異常検知部の一例)に入力する。交流電源Pの状態を示す信号として、例えば、交流電源Pが供給する交流電力の電圧の大きさ(例えば、実効値。以下、電源電圧値とする。)を示す信号や、交流電源Pが供給する交流電力の周波数(例えば、50Hzまたは60Hz。以下、電源周波数とする。)を示す信号を採用することができる。なお、交流電源Pの状態を示す信号として、これ以外の信号を採用することも可能である。ただし、以下では説明の具体化のため、電源状態検知回路125が、上記の2つの信号を出力し得る場合を例示する。 The power supply state detection circuit 125 generates a signal indicating the state of the AC power supply P and inputs it to the control device 120 (an example of the abnormality detection unit of the present invention). As a signal indicating the state of the AC power supply P, for example, a signal indicating the magnitude of the voltage of the AC power supplied by the AC power supply P (for example, an effective value, hereinafter referred to as a power supply voltage value) or the AC power supply P is supplied. A signal indicating the frequency (for example, 50 Hz or 60 Hz, hereinafter referred to as a power supply frequency) of AC power to be used can be employed. It should be noted that other signals may be adopted as the signal indicating the state of the AC power supply P. However, for the sake of concrete explanation, a case where the power supply state detection circuit 125 can output the above two signals will be exemplified.
 電源状態検知回路125は、電源電圧値を示す信号を生成するために、公知のどのような回路を利用しても構わない。例えば、電源状態検知回路125は、交流電源Pが供給する交流電力をダイオードブリッジ等により全波整流し、得られる脈流をコンデンサ等で平滑化することで得られる直流電力を、電源電圧値を示す信号として出力しても構わない。この場合、制御装置120は、この信号の電圧値を計測することで、電源電圧値を確認することができる。 The power supply state detection circuit 125 may use any known circuit for generating a signal indicating the power supply voltage value. For example, the power supply state detection circuit 125 performs full-wave rectification on the AC power supplied from the AC power supply P by a diode bridge or the like, and smoothes the obtained pulsating current with a capacitor or the like. You may output as a signal to show. In this case, the control device 120 can check the power supply voltage value by measuring the voltage value of this signal.
 また、電源状態検知回路125は、電源周波数を示す信号を生成するために、公知のどのような回路を利用しても構わない。例えば、当該信号がゼロクロス信号(交流電源Pが供給する交流電力の電圧が0になるタイミングを示す信号)である場合、電源状態検知回路125は、交流電源Pが供給する交流電力をダイオードブリッジ等により全波整流し、得られる脈流をフォトカプラの発光ダイオードに通じ、フォトカプラのフォトトランジスタに現れる信号をインバータ等で二値化及び反転させて得られる信号を、電源周波数を示す信号として出力しても構わない。この場合、制御装置120は、所定時間内にこの信号がハイになる回数(即ち、ゼロクロス点の数)を測定することで、電源周波数を確認することができる。 Further, the power supply state detection circuit 125 may use any known circuit in order to generate a signal indicating the power supply frequency. For example, when the signal is a zero cross signal (a signal indicating the timing at which the voltage of the AC power supplied from the AC power supply P becomes 0), the power supply state detection circuit 125 converts the AC power supplied from the AC power supply P to a diode bridge or the like. Full-wave rectification is performed, and the obtained pulsating current is passed through the light-emitting diode of the photocoupler, and the signal obtained by binarizing and inverting the signal appearing in the phototransistor phototransistor with an inverter or the like is output as a signal indicating the power supply frequency It doesn't matter. In this case, the control device 120 can confirm the power supply frequency by measuring the number of times that this signal becomes high within a predetermined time (that is, the number of zero cross points).
 ところで、本実施形態の制御装置120は、混練モータ50及び粉砕モータ60のいずれの異常をも検知し得る。ただし、以下では説明の具体化のため、制御装置120が、上述のように異常を検知する必要性が高い粉砕モータ60の異常を検知する場合を例示する。なお、制御装置120が混練モータ50の異常を検知する場合は、後述する粉砕モータ60の異常を検知する場合と同様の方法を適用すればよい。 Incidentally, the control device 120 of this embodiment can detect any abnormality of the kneading motor 50 and the crushing motor 60. However, in the following, for the sake of concrete explanation, a case where the control device 120 detects an abnormality of the crushing motor 60 that is highly necessary to detect the abnormality as described above will be exemplified. In addition, when the controller 120 detects an abnormality of the kneading motor 50, a method similar to that when detecting an abnormality of the pulverization motor 60 described later may be applied.
 以下、制御装置120による粉砕モータ60の異常の検知動作について、具体例を挙げるとともに図面を参照して説明する。図16は、制御装置による粉砕モータの異常の検知動作を示すフローチャートである。なお、図16に示す制御装置120の検知動作は、第1実施形態の説明の際に述べたパンの製造コースに含まれるそれぞれの工程(例えば、図11に示す工程を細分化したそれぞれの工程)において、行われ得るものである。 Hereinafter, the detection operation of the abnormality of the grinding motor 60 by the control device 120 will be described with reference to the drawings while giving a specific example. FIG. 16 is a flowchart showing an operation of detecting an abnormality of the grinding motor by the control device. Note that the detection operation of the control device 120 shown in FIG. 16 is performed in each process included in the bread manufacturing course described in the description of the first embodiment (for example, each process obtained by subdividing the process shown in FIG. 11). ) Can be performed.
 図16に示すように、制御装置120は、粉砕モータ60を駆動する場合(STEP1、YES)、電源状態検知回路125(図14及び図15参照)から入力される信号に基づいて、交流電源Pの状態(電源電圧値及び電源周波数)を確認し、閾値を設定する(STEP2)。また、制御装置120は、供給電流検知部121b(図14参照。図15ではカレントトランスCT、ダイオードD1、抵抗R1及びコンデンサC。)から入力される信号に基づいて、供給電流値を確認する(STEP3)。 As shown in FIG. 16, when driving the crushing motor 60 (STEP1, YES), the control device 120 uses the AC power supply P based on the signal input from the power supply state detection circuit 125 (see FIGS. 14 and 15). Are checked (power supply voltage value and power supply frequency), and a threshold is set (STEP 2). Further, the control device 120 checks the supply current value based on the signals input from the supply current detection unit 121b (see FIG. 14; in FIG. 15, the current transformer CT, the diode D1, the resistor R1, and the capacitor C) ( (Step 3).
 閾値とは、供給電流値と比較され得る値であり、供給電流値が閾値以上であると、粉砕モータ60が異常である(例えば、ロックなどによってモータ駆動回路121内に過剰な電流が生じている)可能性が高いと判断することができる値である。例えば、制御装置120は、実験等により事前に求めた候補値(各電源電圧値及び各電源周波数に対応するそれぞれの閾値)のテーブルを記録し、確認した電源電圧値及び電源周波数の双方に対応した候補値をテーブルから読み出すことで、閾値を設定する。 The threshold value is a value that can be compared with the supply current value. If the supply current value is equal to or greater than the threshold value, the crushing motor 60 is abnormal (for example, an excessive current is generated in the motor drive circuit 121 due to locking or the like). It is a value that can be determined to be highly likely. For example, the control device 120 records a table of candidate values (respective threshold values corresponding to each power supply voltage value and each power supply frequency) obtained in advance by experiments or the like, and supports both the confirmed power supply voltage value and power supply frequency. The threshold value is set by reading out the candidate value obtained from the table.
 上記のテーブルにおいて、同じ電源周波数の場合、電源電圧値が所定の範囲内(例えば、下限に近い値と上限に近い値とを除いた範囲内、換言すると中間の範囲内)では、電源電圧値が大きいほど、候補値も大きくなる。なお、この例の場合、電源電圧値が上記の所定の範囲外であると、電源電圧値が変動しても、候補値が略一定になる(上げ止まり及び下げ止まりする)。また、電源周波数が異なると、同じ電源電圧値の場合でも、候補値が異なり得る。このように、制御装置120は、電源電圧値や電源周波数に適した閾値を設定するため、精度良くモータの異常を検知することが可能になる。 In the above table, when the power supply frequency is the same, the power supply voltage value is within a predetermined range (for example, within a range excluding a value close to the lower limit and a value close to the upper limit, in other words, an intermediate range). The larger the value, the larger the candidate value. In the case of this example, if the power supply voltage value is outside the above predetermined range, the candidate value becomes substantially constant (stops raising and stopping) even if the power supply voltage value fluctuates. Also, if the power supply frequency is different, the candidate value may be different even when the power supply voltage value is the same. As described above, since the control device 120 sets the threshold value suitable for the power supply voltage value and the power supply frequency, it is possible to detect the abnormality of the motor with high accuracy.
 例えば、上記のようなテーブルが採用されると、制御装置120は、交流電源Pが通常よりも小さい電力を供給して粉砕モータ60に異常がある場合に、交流電源Pが通常の電力を供給して粉砕モータ60に異常がない場合と混同せず、粉砕モータ60の異常を検知することが可能になる。同様に、制御装置120は、交流電源Pが通常よりも大きい電力を供給して粉砕モータ60に異常がない場合に、交流電源Pが通常の電力を供給して粉砕モータ60に異常がある場合と混同せず、異常を検知しないことが可能になる。 For example, when the table as described above is employed, the control device 120 supplies the normal power to the AC power supply P when the AC power supply P supplies power smaller than normal and the grinding motor 60 has an abnormality. Thus, it is possible to detect the abnormality of the grinding motor 60 without being confused with the case where the grinding motor 60 is normal. Similarly, when the AC power supply P supplies power larger than normal and the pulverization motor 60 has no abnormality, the control device 120 supplies normal power and the pulverization motor 60 has abnormality. It is possible not to be confused with and not to detect anomalies.
 上記のSTEP2及びSTEP3は、所定のタイミング毎(例えば、144ms毎)に行われる。そして、制御装置120は、確認した供給電流値が、X回以上連続して閾値以上であるか否かを確認する(STEP4)。このX回は、供給電流値が突発的に閾値以上を取りうる状態を排除可能な回数である。例えば、制御装置120が、144ms毎に閾値を設定し、供給電流値を確認する場合、X回を7回としても構わない。 The above STEP2 and STEP3 are performed every predetermined timing (for example, every 144 ms). And the control apparatus 120 confirms whether the confirmed supply current value is more than a threshold value continuously X times or more (STEP4). This X times is the number of times that a state where the supply current value can suddenly take a threshold value or more can be excluded. For example, when the control device 120 sets a threshold value every 144 ms and confirms the supply current value, X may be set to 7 times.
 制御装置120は、確認した供給電流値がX回以上連続して閾値以上の値にならない場合であり(STEP4、NO)、かつ粉砕モータ60の駆動を終了しない場合は(STEP5、NO)、STEP2に戻り閾値の設定及び供給電流値の確認を継続する。一方、制御装置120は、確認した供給電流値がX回以上連続して閾値以上の値にならない場合であり(STEP4、NO)、かつ粉砕モータ60の駆動を終了する場合は(STEP5、YES)、次の工程を行うべく製造コースを進行し(STEP6)、現在の工程における粉砕モータ60の異常の検知動作を終了する。 If the confirmed supply current value does not continuously exceed the threshold value X times or more (STEP 4, NO) and the driving of the crushing motor 60 is not finished (STEP 5, NO), the control device 120 is STEP 2. Return to, and continue to set the threshold and confirm the supply current value. On the other hand, the control device 120 is the case where the confirmed supply current value does not continuously exceed the threshold value X times or more (STEP 4, NO), and when the driving of the grinding motor 60 is finished (STEP 5, YES). Then, the manufacturing course is advanced to perform the next process (STEP 6), and the abnormality detection operation of the grinding motor 60 in the current process is terminated.
 このように構成すると、制御装置120が、供給電流値が突発的に閾値以上になる場合にまで異常を検知して自動製パン器の動作を阻害することを、抑制することが可能になる。 With this configuration, it is possible to suppress the control device 120 from detecting an abnormality and inhibiting the operation of the automatic bread maker until the supply current value suddenly exceeds the threshold value.
 これに対して、制御装置120は、確認した供給電流値がX回以上連続して閾値以上の値になる場合(STEP4、YES)、粉砕モータ60が異常である(例えば、ロックしている)と判断して、製造コースを中止し(STEP7)、粉砕モータ60の異常の検知動作を終了する。なお、このとき制御装置120は、異常により製造コースを中止した旨を、操作部20の液晶表示パネルにおける表示や報知音等によってユーザに知らせても構わない。なお、STEP7において、制御装置120が、トライアックTRI(図15参照)への駆動信号を停止するなどして、粉砕モータ60への電力の供給を停止するのであれば、上述のように製造コースを中止しても構わないし、停止(所定の時間経過後に製造コースの再開を試行)しても構わない。 On the other hand, in the control device 120, when the confirmed supply current value continuously exceeds the threshold value X times or more (STEP 4, YES), the crushing motor 60 is abnormal (for example, locked). Thus, the manufacturing course is stopped (STEP 7), and the abnormality detection operation of the grinding motor 60 is terminated. At this time, the control device 120 may notify the user that the manufacturing course has been canceled due to an abnormality by a display on the liquid crystal display panel of the operation unit 20 or a notification sound. In STEP 7, if the control device 120 stops the supply of power to the grinding motor 60 by stopping the drive signal to the triac TRI (see FIG. 15), the manufacturing course is set as described above. It may be stopped or stopped (trying to resume the manufacturing course after a predetermined time has elapsed).
 また、粉砕モータ60を駆動しない工程では(STEP1、NO)、制御装置120が、閾値の設定や供給電流値の確認をすることなく、製造コースを進行させる(STEP6)。 In the process of not driving the grinding motor 60 (STEP 1, NO), the control device 120 advances the manufacturing course without setting the threshold value or confirming the supply current value (STEP 6).
 以上のように、制御装置120は、電源(上述の具体例では、交流電源P)の状態の変動に応じた基準(上述の具体例では、閾値)を設定し、当該基準に基づいてモータ(上述の具体例では、粉砕モータ60)の異常を検知する。そのため、電源の状態に応じて精度良くモータの異常を検知することが可能になる。したがって、自動製パン器の安全性を高め、故障の発生を抑制することが可能になる。上記のように、粉砕工程では、原動軸11の高速回転が必要であり、穀物粒(米粒)を粉砕するために、粉砕モータ60のロックが懸念される。しかしながら、本実施形態の自動製パン器では、制御装置120が、粉砕モータ60の異常(ロック)を検知することが可能である。そのため、自動製パン器の安全性を効果的に高め、故障の発生を効果的に抑制することが可能になる。 As described above, the control device 120 sets a reference (a threshold value in the above-described specific example) corresponding to a change in the state of the power supply (in the above-described specific example, the AC power supply P), and the motor ( In the specific example described above, an abnormality of the grinding motor 60) is detected. Therefore, it is possible to detect abnormality of the motor with high accuracy according to the state of the power source. Therefore, the safety of the automatic bread maker can be improved and the occurrence of failure can be suppressed. As described above, in the pulverization step, the driving shaft 11 needs to be rotated at a high speed, and the pulverization motor 60 may be locked in order to pulverize the cereal grains (rice grains). However, in the automatic bread maker of this embodiment, the control device 120 can detect an abnormality (lock) of the crushing motor 60. Therefore, it is possible to effectively increase the safety of the automatic bread maker and effectively suppress the occurrence of failure.
 なお、図15に示すモータ駆動回路121の構成例は、混練モータ50及び粉砕モータ60に対して共通の駆動系(カレントトランスCT、ダイオードD1、抵抗R1、コンデンサC及びトライアックTRI)を備え、駆動するモータを選択する構成(リレーRY、ダイオードD2、トランジスタTR、抵抗R2及び抵抗R3)を備えるものであるが、次のような変形例も可能である。例えば、駆動するモータを選択する構成を備えず、別々の駆動系を備えて、制御装置120がそれぞれの駆動系(特に、トライアックTRI)を制御することで、混練モータ50及び粉砕モータ60を選択的に駆動する構成としても構わない。ただし、図15のように構成すると、交流電源P及びトライアックTRIと、混練モータ50及び粉砕モータ60のいずれかと、が電気的及び機械的に接続される。そのため、例えば制御装置120の誤動作などが生じたとしても、混練モータ50及び粉砕モータ60の両方が駆動することが防止されるため、好ましい。 The configuration example of the motor drive circuit 121 shown in FIG. 15 includes a common drive system (current transformer CT, diode D1, resistor R1, capacitor C, and triac TRI) for the kneading motor 50 and the grinding motor 60. A configuration for selecting a motor to be selected (relay RY, diode D2, transistor TR, resistor R2, and resistor R3) is provided, but the following modifications are also possible. For example, it does not have a configuration for selecting a motor to be driven, but has a separate drive system, and the control device 120 controls each drive system (particularly, the triac TRI) to select the kneading motor 50 and the grinding motor 60. However, it may be configured to drive automatically. However, with the configuration as shown in FIG. 15, the AC power supply P and the triac TRI and any of the kneading motor 50 and the grinding motor 60 are electrically and mechanically connected. Therefore, for example, even if a malfunction of the control device 120 occurs, it is preferable because both the kneading motor 50 and the grinding motor 60 are prevented from being driven.
 また、以上では、制御装置120が、粉砕モータ60の異常を検知する場合について主に説明したが、上述のように制御装置120は、粉砕モータ60の異常を検知する方法(図16参照)と同様の方法で、混練モータ50の異常を検知することが可能である。ただしこの場合、制御装置120は、混練モータ50に対応するテーブル(候補値)を記録し、粉砕モータ60の異常を検知する場合とは異なる閾値を設定するのが、好ましい。 In the above description, the case where the control device 120 detects an abnormality of the pulverization motor 60 has been mainly described. However, as described above, the control device 120 detects the abnormality of the pulverization motor 60 (see FIG. 16). It is possible to detect an abnormality in the kneading motor 50 by a similar method. However, in this case, it is preferable that the control device 120 records a table (candidate value) corresponding to the kneading motor 50 and sets a threshold different from that in the case of detecting an abnormality of the grinding motor 60.
3.第3実施形態
 次に、第3実施形態の自動製パン器について説明する。第3実施形態の自動製パン器は、概ね第1実施形態の自動製パン器1の構成と同様である。このため、第3実施形態の自動製パン器の構成については、特徴的な部分について絞って説明する。なお、第3実施形態の自動製パン器1と重複する部分には同一の符号を付して説明する。
3. Third Embodiment Next, an automatic bread maker according to a third embodiment will be described. The automatic bread maker of the third embodiment is generally the same as the configuration of the automatic bread maker 1 of the first embodiment. For this reason, about the structure of the automatic bread maker of 3rd Embodiment, it concentrates and demonstrates a characteristic part. In addition, the same code | symbol is attached | subjected and demonstrated to the part which overlaps with the automatic bread maker 1 of 3rd Embodiment.
 図17は、第3実施形態の自動製パン器の構成を示すブロック図である。図18は、第3実施形態の自動製パン器が備えるモータ駆動回路を示す回路図である。図17及び図18からわかるように、第3実施形態の自動製パン器は、モータ駆動回路121の電源部121aaの電源周波数を検知する電源周波数検知回路126(電源周波数検知部)を備える点で第1実施形態の構成と異なる。なお、混練モータ50及び粉砕モータ60を駆動するための電力を供給する交流電源P(図18参照)が電源部121aaに相当する。また、図18におけるトライアックTRIが、混練モータ50及び粉砕モータ60に供給される交流電流の大きさを調整する供給電力調整部121ab(図17参照)に相当する。 FIG. 17 is a block diagram showing the configuration of the automatic bread maker according to the third embodiment. FIG. 18 is a circuit diagram showing a motor drive circuit provided in the automatic bread maker of the third embodiment. As can be seen from FIGS. 17 and 18, the automatic bread maker of the third embodiment is provided with a power frequency detection circuit 126 (power frequency detection unit) that detects the power frequency of the power source 121 aa of the motor drive circuit 121. Different from the configuration of the first embodiment. An AC power supply P (see FIG. 18) that supplies power for driving the kneading motor 50 and the grinding motor 60 corresponds to the power supply unit 121aa. Further, the triac TRI in FIG. 18 corresponds to the supply power adjustment unit 121ab (see FIG. 17) that adjusts the magnitude of the alternating current supplied to the kneading motor 50 and the crushing motor 60.
 ところで、主として混練モータ50が駆動して行われる練り工程は、電源周波数の影響を大きく受ける。具体的には、電源周波数が小さい場合(例えば、50Hz)、電源周波数が大きい場合(例えば、60Hz)と比較して、パン生地の練り不足が生じ得る。 Incidentally, the kneading process performed mainly by driving the kneading motor 50 is greatly affected by the power frequency. Specifically, when the power supply frequency is low (for example, 50 Hz), the bread dough may be insufficiently kneaded as compared to when the power supply frequency is high (for example, 60 Hz).
 そこで、制御装置120は、電源周波数検知回路126(図17及び図18参照)が検知した電源周波数に応じて、練り工程の時間の長短を調整することで、電源周波数の影響を抑制する。具体的には、制御装置120は、電源周波数検知回路126が検知した電源周波数が小さいほど、練り工程の時間を長くすることで、パン生地の練り不足を解消する。制御装置120による練り工程の時間の長短の調整方法(混練モータ50の駆動の制御方法)の詳細について、以下に述べる。 Therefore, the control device 120 suppresses the influence of the power supply frequency by adjusting the length of the kneading process according to the power supply frequency detected by the power supply frequency detection circuit 126 (see FIGS. 17 and 18). Specifically, the control device 120 eliminates the shortage of kneading of the bread dough by increasing the time of the kneading process as the power frequency detected by the power frequency detecting circuit 126 is smaller. Details of a method for adjusting the length of the kneading process by the control device 120 (control method for driving the kneading motor 50) will be described below.
 なお、主として粉砕モータ60が駆動する粉砕工程でも、電源周波数の影響が生じることはあり得る。そのため、制御装置120が、上記の練り工程と同様に、粉砕工程の時間の長短を調整(例えば、電源周波数が小さいほど、粉砕工程の時間を長く)しても構わない。ただし、粉砕工程における電源周波数の影響は、練り工程における電源周波数の影響と比較して小さい。そのため、制御装置120による、粉砕工程の時間の長短の調整は、不要とすることができる(電源周波数の差異に起因して生じる製造コースの時間の長短の差異を、低減することができる)。 It should be noted that the influence of the power supply frequency can also occur mainly in the pulverization process driven by the pulverization motor 60. For this reason, the control device 120 may adjust the length of the pulverization step (for example, the longer the pulverization step is, the lower the power frequency is), as in the kneading step. However, the influence of the power supply frequency in the pulverization process is smaller than the influence of the power supply frequency in the kneading process. Therefore, adjustment of the length of the pulverization process by the control device 120 can be unnecessary (the difference in the length of the manufacturing course caused by the difference in the power supply frequency can be reduced).
 図17及び図18に示すよう構成において、制御装置120は、パルス状の駆動信号をトライアックTRIの制御電極に入力することで、交流電源Pが供給する交流電力を、混練モータ50または粉砕モータ60に対して部分的に供給することができる。これにより、例えば制御装置120は、断続的にトライアックTRIに入力するパルス状の駆動信号の長さや頻度を調整することで、混練モータ50または粉砕モータ60の回転速度や駆動状態(間欠的な駆動または連続的な駆動)を調整することができる。 In the configuration shown in FIGS. 17 and 18, the control device 120 inputs the pulsed drive signal to the control electrode of the triac TRI so that the AC power supplied from the AC power source P is converted into the kneading motor 50 or the grinding motor 60. Can be partially supplied. Thus, for example, the control device 120 intermittently adjusts the length and frequency of the pulsed drive signal input to the triac TRI, thereby rotating the kneading motor 50 or the crushing motor 60 and the driving state (intermittent driving). Or continuous drive).
 一方、制御装置120は、連続的な駆動信号をトライアックTRIの制御電極に入力することで、交流電源Pが供給する交流電力を、混練モータ50または粉砕モータ60に対して略そのまま供給することができる。これにより、例えば制御装置120は、連続的な駆動信号をトライアックTRIの制御電極に継続して入力することで、混練モータ50または粉砕モータ60を連続的に駆動することができる。また、制御装置120は、連続的な駆動信号をトライアックTRIの制御電極に継続して入力する時間の長短を調整することで、混練モータ50または粉砕モータ60を連続的に駆動する時間の長短を調整することができる。なお、混練モータ50または粉砕モータ60の「連続的な駆動」とは、例えば1分以上、好ましくは2分以上、さらに好ましくは2分30秒以上連続した駆動である。 On the other hand, the controller 120 can supply the AC power supplied from the AC power source P to the kneading motor 50 or the grinding motor 60 substantially as it is by inputting a continuous drive signal to the control electrode of the TRIAC TRI. it can. Thereby, for example, the control device 120 can continuously drive the kneading motor 50 or the grinding motor 60 by continuously inputting a continuous drive signal to the control electrode of the triac TRI. Further, the control device 120 adjusts the length of time for which the continuous drive signal is continuously input to the control electrode of the triac TRI, thereby adjusting the length of time for continuously driving the kneading motor 50 or the grinding motor 60. Can be adjusted. The “continuous driving” of the kneading motor 50 or the pulverizing motor 60 is, for example, a continuous driving for 1 minute or longer, preferably 2 minutes or longer, and more preferably 2 minutes 30 seconds or longer.
 電源周波数検知回路125は、交流電源Pの電源周波数(例えば、50Hzまたは60Hz)を示す信号を生成して、制御装置120に入力する。例えば、電源周波数検知回路125は、ゼロクロス信号を生成して制御装置120に入力する。 The power supply frequency detection circuit 125 generates a signal indicating the power supply frequency (for example, 50 Hz or 60 Hz) of the AC power supply P and inputs the signal to the control device 120. For example, the power frequency detection circuit 125 generates a zero cross signal and inputs it to the control device 120.
 電源周波数検知回路125は、ゼロクロス信号を生成するために、公知のどのような回路を利用しても構わない。例えば、電源周波数検知回路125は、交流電源Pが供給する交流電力をダイオードブリッジ等により全波整流し、得られる脈流をフォトカプラの発光ダイオードに通じ、フォトカプラのフォトトランジスタに現れる信号をインバータ等で二値化及び反転させることで、ゼロクロス信号を生成しても構わない。この場合、制御装置120は、所定時間内にこの信号がハイになる回数(即ち、ゼロクロス点の数)を測定することで、電源周波数を確認することができる。 The power supply frequency detection circuit 125 may use any known circuit in order to generate a zero cross signal. For example, the power supply frequency detection circuit 125 performs full-wave rectification on the AC power supplied from the AC power supply P by a diode bridge or the like, passes the obtained pulsating current to the light emitting diode of the photocoupler, and converts the signal appearing in the phototransistor of the photocoupler A zero-cross signal may be generated by binarization and inversion with the above. In this case, the control device 120 can confirm the power supply frequency by measuring the number of times that this signal becomes high within a predetermined time (that is, the number of zero cross points).
 ところで、上述のように、混練モータ50が連続的に駆動する場合、電源周波数の影響を大きく受ける。具体的には、電源周波数が小さい場合(例えば、50Hz)、電源周波数が大きい場合(例えば、60Hz)と比較して、混練モータ50の回転不足が生じ得る。 Incidentally, as described above, when the kneading motor 50 is continuously driven, it is greatly affected by the power supply frequency. Specifically, when the power supply frequency is low (for example, 50 Hz), the rotation of the kneading motor 50 may be insufficient compared to when the power supply frequency is high (for example, 60 Hz).
 そこで、制御装置120は、電源周波数検知回路125が検知した電源周波数に応じて、混練モータ50を連続的に駆動する時間の長短を調整することで、電源周波数の影響を抑制する。具体的に、制御装置120は、電源周波数検知回路125が検知した電源周波数が小さいほど、混練モータ50が連続的に駆動する時間を長くすることで、混練モータ50の回転不足を解消する。 Therefore, the control device 120 suppresses the influence of the power supply frequency by adjusting the length of time for continuously driving the kneading motor 50 according to the power supply frequency detected by the power supply frequency detection circuit 125. Specifically, the control device 120 eliminates insufficient rotation of the kneading motor 50 by increasing the time during which the kneading motor 50 is continuously driven as the power frequency detected by the power frequency detecting circuit 125 is lower.
 具体的に例えば、上述の練り工程に含まれる1つの工程において、制御装置120は、電源周波数が60Hzであることを確認すると、混練モータ50を8分間連続的に駆動する。一方、当該工程において、制御装置120は、電源周波数が50Hzであることを確認すると、混練モータ50を9分間連続的に駆動する。このように、制御装置120は、電源周波数が小さいことを確認すると、それに応じて混練モータ50を連続的に駆動する時間を、例えば30秒~1分程度長くする。 Specifically, for example, in one process included in the above-described kneading process, the control device 120 drives the kneading motor 50 continuously for 8 minutes after confirming that the power supply frequency is 60 Hz. On the other hand, in the said process, if the control apparatus 120 confirms that a power supply frequency is 50 Hz, it will drive the kneading motor 50 continuously for 9 minutes. As described above, when the control device 120 confirms that the power supply frequency is low, the controller 120 increases the time for continuously driving the kneading motor 50 by, for example, about 30 seconds to 1 minute.
 また、混練モータ50が連続的に駆動する場合でも、連続的に駆動する時間が長い工程は、電源周波数の影響を特に大きく受ける。そこで、制御装置120は、少なくとも混練モータを最も長い時間連続的に駆動する工程については、時間の長短を調整する。これにより、混練モータ50が連続的に駆動する際に生じる電源周波数の影響を、効果的に抑制することが可能になる。 Further, even when the kneading motor 50 is continuously driven, a process in which the continuous driving time is long is particularly greatly affected by the power supply frequency. Therefore, the control device 120 adjusts the length of time for at least the step of continuously driving the kneading motor for the longest time. Thereby, it is possible to effectively suppress the influence of the power supply frequency that occurs when the kneading motor 50 is continuously driven.
 また、制御装置120が、トライアックTRIに連続的な駆動信号を継続して入力することで、混練モータ50が連続的に駆動する場合、交流電源Pが供給する交流電力の周波数が、混練モータ50の挙動に直接的に影響する。この場合、制御装置120が、混練モータ50に供給する交流電力を調整する余地が、少なくなる。しかしながら、このような場合でも、混練モータ50が連続的に駆動する時間の長短を制御装置120が調整することで、混練モータ50が連続的に駆動する際に生じる電源周波数の影響を、抑制することが可能になる。 When the controller 120 continuously inputs a continuous drive signal to the TRIAC TRI so that the kneading motor 50 is continuously driven, the frequency of the AC power supplied by the AC power supply P is determined by the kneading motor 50. Directly affects the behavior of In this case, there is less room for the control device 120 to adjust the AC power supplied to the kneading motor 50. However, even in such a case, the control device 120 adjusts the length of time for which the kneading motor 50 is continuously driven, thereby suppressing the influence of the power frequency generated when the kneading motor 50 is continuously driven. It becomes possible.
 なお、粉砕モータ60が連続的に駆動する場合でも、電源周波数の影響が生じることはあり得る。そのため、制御装置120が、上記の混練モータ50と同様に、連続的に駆動する時間の長短を調整(例えば、電源周波数が小さいほど、粉砕モータ60が連続的に駆動する時間を長くする調整)を行っても構わない。ただし、粉砕モータ60における電源周波数の影響は、混練モータ50における電源周波数の影響と比較して小さい。そのため、制御装置120による、粉砕モータ60が連続的に駆動する時間の長短の調整は、不要とすることができる(電源周波数の差異に起因して生じる製造コースの時間の長短の差異を、低減することができる)。 Even when the crushing motor 60 is continuously driven, the influence of the power supply frequency can occur. Therefore, similarly to the kneading motor 50 described above, the control device 120 adjusts the length of time for continuous driving (for example, adjustment for increasing the time for which the crushing motor 60 is continuously driven as the power frequency decreases). You may do. However, the influence of the power supply frequency in the crushing motor 60 is smaller than the influence of the power supply frequency in the kneading motor 50. Therefore, adjustment of the length of time for which the crushing motor 60 is continuously driven by the control device 120 can be unnecessary (reducing the difference in the length of the manufacturing course caused by the difference in the power supply frequency). can do).
 以上のように、制御装置120は、モータ(例えば、混練モータ50)を駆動する時間の長短を調整することで、交流電源Pが供給する交流電力の周波数の影響を抑制する。そのため、モータ(例えば、混練モータ50)及び駆動装置(例えば、モータ駆動回路121)の構成やモータ(例えば、混練モータ50)の駆動方法を、簡易的なものにすることが可能になる。したがって、交流電源Pが供給する交流電力の周波数の差異に起因して生じる自動製パン器1の性能の差異を、簡易的な方法で抑制することが可能になる。 As described above, the control device 120 suppresses the influence of the frequency of the AC power supplied from the AC power supply P by adjusting the length of time for driving the motor (for example, the kneading motor 50). Therefore, the configuration of the motor (for example, the kneading motor 50) and the driving device (for example, the motor driving circuit 121) and the driving method of the motor (for example, the kneading motor 50) can be simplified. Therefore, it becomes possible to suppress the difference in the performance of the automatic bread maker 1 caused by the difference in the frequency of the AC power supplied from the AC power supply P by a simple method.
 なお、図18に示すモータ駆動回路121の構成例は、混練モータ50及び粉砕モータ60に対して共通の駆動系(カレントトランスCT、ダイオードD1、抵抗R1、コンデンサC及びトライアックTRI)を備え、駆動するモータを選択する構成(リレーRY、ダイオードD2、トランジスタTR、抵抗R2及び抵抗R3)を備えるものであるが、次のような変形例も可能である。例えば、駆動するモータを選択する構成を備えず、別々の駆動系を備えて、制御装置120がそれぞれの駆動系(特に、トライアックTRI)を制御することで、混練モータ50及び粉砕モータ60を選択的に駆動する構成としても構わない。ただし、図18のように構成すると、交流電源P及びトライアックTRIと、混練モータ50及び粉砕モータ60のいずれかと、が電気的及び機械的に接続される。そのため、例えば制御装置120の誤動作などが生じたとしても、混練モータ50及び粉砕モータ60の両方が駆動することが防止されるため、好ましい。 The configuration example of the motor drive circuit 121 shown in FIG. 18 includes a common drive system (current transformer CT, diode D1, resistor R1, capacitor C, and triac TRI) for the kneading motor 50 and the grinding motor 60. A configuration for selecting a motor to be selected (relay RY, diode D2, transistor TR, resistor R2, and resistor R3) is provided, but the following modifications are also possible. For example, it does not have a configuration for selecting a motor to be driven, but has a separate drive system, and the control device 120 controls each drive system (particularly, the triac TRI) to select the kneading motor 50 and the grinding motor 60. However, it may be configured to drive automatically. However, when configured as shown in FIG. 18, the AC power supply P and the triac TRI and any one of the kneading motor 50 and the grinding motor 60 are electrically and mechanically connected. Therefore, for example, even if a malfunction of the control device 120 occurs, it is preferable because both the kneading motor 50 and the grinding motor 60 are prevented from being driven.
4.その他
 以上に示した自動製パン器の実施形態は本発明の例示であり、本発明が適用される自動製パン器の構成は、以上に示した実施形態に限定されるものではない。
4). Others The embodiment of the automatic bread maker described above is an exemplification of the present invention, and the configuration of the automatic bread maker to which the present invention is applied is not limited to the embodiment described above.
 例えば、以上に示した実施形態では、リレーRYを備える構成として、交流電源P及びトライアックTRIと、混練モータ50及び粉砕モータ60のいずれかとの接続を切替可能としたが、同様の動作を実現し得るものであれば、他の構成としても構わない。同様に、以上に示した実施形態では、カレントトランスCT、ダイオードD1、抵抗R1及びコンデンサCによって、供給電流値を示す信号を生成する構成としたが、同様の動作を実現し得るものであれば、他の構成としても構わない。同様に、以上に示した実施形態では、トライアックTRIによって、混練モータ50または粉砕モータ60に供給する交流電力を制御する構成としたが、同様の動作を実現し得るものであれば、他の構成としても構わない。 For example, in the embodiment described above, the connection between the AC power supply P and the triac TRI and any of the kneading motor 50 and the grinding motor 60 can be switched as a configuration including the relay RY, but the same operation is realized. Any other configuration may be used as long as it can be obtained. Similarly, in the embodiment described above, a signal indicating the supply current value is generated by the current transformer CT, the diode D1, the resistor R1, and the capacitor C. However, as long as the same operation can be realized, Other configurations may be used. Similarly, in the embodiment described above, the AC power supplied to the kneading motor 50 or the pulverization motor 60 is controlled by the triac TRI. However, other configurations may be used as long as the same operation can be realized. It does not matter.
 また、以上に示した実施形態においては、米粒が出発原料として用いられる場合を例に、自動製パン器の構成及び動作が説明された。しかし、本発明は、例えば小麦、大麦、粟、稗、蕎麦、とうもろこし、大豆等の米粒以外の穀物粒が出発原料として用いられる場合にも、適用可能である。 In the embodiment described above, the configuration and operation of the automatic bread maker have been described by taking as an example the case where rice grains are used as a starting material. However, the present invention is also applicable when grain grains other than rice grains such as wheat, barley, straw, buckwheat, buckwheat, corn, and soybean are used as starting materials.
 また、以上においては、米粒(穀物粒)が出発原料として用いられる場合を示したが、以上に示した実施形態の自動製パン器は、例えば小麦粉や米粉等の穀物粉を出発原料に用いてパンを製造することもできる。小麦粉や米粉が出発原料として用いられる場合には、粉砕ブレード92は不要である。この場合には、以上に示したのとは異なるパン容器やブレードユニットが使用されるようにしてもよい。 Moreover, in the above, the case where the rice grain (grain grain) was used as a starting material was shown, However, the automatic bread maker of embodiment shown above uses grain flours, such as wheat flour and rice flour, as a starting material, for example. Bread can also be produced. When wheat flour or rice flour is used as a starting material, the grinding blade 92 is not necessary. In this case, a bread container or a blade unit different from those shown above may be used.
 また、以上においては、生地の製造工程(浸漬工程、粉砕工程及び練り工程)、発酵工程及び焼成工程の、パンの製造にかかる全ての工程を実行し得る自動製パン器1について例示したが、本発明の自動製パン器は、必ずしもこれら全ての工程を実行可能なものに限られない。例えば、上記工程のうち、生地の製造工程を除く少なくとも一つの工程を実行し得ないものも、本発明の自動製パン器に含まれ得る。この場合、実行し得ない工程に関する構成(例えば、シーズヒータ31やヒータ駆動回路122)は、自動製パン器に備えられなくても構わない。また、このようにパンの製造工程の一部(例えば、パン生地の製造工程)のみを実行し得る自動製パン器の動作も、上述した実施形態の自動製パン器の動作と同様に、製パン動作である。 Moreover, in the above, although illustrated about the automatic bread maker 1 which can perform all the processes concerning the manufacture of bread, such as a dough manufacturing process (dipping process, crushing process and kneading process), fermentation process and baking process, The automatic bread maker of the present invention is not necessarily limited to one capable of executing all these steps. For example, among the above steps, those that cannot execute at least one step except the dough manufacturing step can be included in the automatic bread maker of the present invention. In this case, the configuration related to the process that cannot be executed (for example, the sheathed heater 31 and the heater driving circuit 122) may not be provided in the automatic bread maker. In addition, the operation of the automatic bread maker that can execute only a part of the bread manufacturing process (for example, the bread dough manufacturing process) in this way is similar to the operation of the automatic bread maker of the above-described embodiment. Is the action.
 本発明は、家庭用の自動製パン器に好適である。 The present invention is suitable for an automatic bread maker for home use.
   1 自動製パン器
   11 原動軸
   50 混練モータ(第1のモータ)
   60 粉砕モータ(第2のモータ)
   80 パン容器
   82 ブレード回転軸
   92 粉砕ブレード
   101 混練ブレード
   120 制御装置(制御部、異常検知部)
   121 モータ駆動回路
   121a 電力供給部
   121aa 電源部
   121b 切替部
   121c 供給電流検知部(検知部)
   125 電源状態検知部
   CT カレントトランス
   L1 一次側コイル(第1のコイル)
   L2 二次側コイル(第2のコイル)
   D1 ダイオード
   D2 ダイオード
   R1~R3 抵抗
   C  コンデンサ
   TR トランジスタ
   RY リレー
   Sry スイッチ
   Lry コイル(第3のコイル)
   P  交流電源
   TRI トライアック
1 Automatic bread machine 11 Drive shaft 50 Kneading motor (first motor)
60 Crushing motor (second motor)
80 Bread container 82 Blade rotating shaft 92 Grinding blade 101 Kneading blade 120 Control device (control unit, abnormality detection unit)
121 motor drive circuit 121a power supply unit 121aa power supply unit 121b switching unit 121c supply current detection unit (detection unit)
125 Power supply state detection unit CT Current transformer L1 Primary coil (first coil)
L2 Secondary coil (second coil)
D1 diode D2 diode R1 to R3 resistor C capacitor TR transistor RY relay Sry switch Lry coil (third coil)
P AC power supply TRI Triac

Claims (15)

  1.  パン原料が投入されるパン容器に回転動力を伝達可能に連結し得る原動軸と、
     前記原動軸に、低速回転させる回転動力を付与可能な第1のモータと、
     前記原動軸に、高速回転させる回転動力を付与可能な第2のモータと、
     前記第1のモータ及び前記第2のモータに電力を供給し得る電力供給部と、
     前記電力供給部と、前記第1のモータ及び前記第2のモータのいずれかと、を電気的及び機械的に接続し得るものであり、接続を切替可能である切替部と、
     を備える、自動製パン器。
    A driving shaft capable of transmitting rotational power to a bread container in which bread ingredients are charged;
    A first motor capable of applying rotational power for rotating at a low speed to the driving shaft;
    A second motor capable of applying a rotational power for rotating the driving shaft at a high speed;
    A power supply unit capable of supplying power to the first motor and the second motor;
    The power supply unit and either the first motor or the second motor can be electrically and mechanically connected, and a switching unit capable of switching the connection;
    An automatic bread maker.
  2.  前記第1のモータが前記原動軸を回転させる方向と、前記第2のモータが前記原動軸を回転させる方向と、が逆である、請求項1に記載の自動製パン器。 The automatic bread maker according to claim 1, wherein a direction in which the first motor rotates the driving shaft and a direction in which the second motor rotates the driving shaft are opposite to each other.
  3.  前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、
     前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、
     をさらに備え、
     前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、取得した前記検知部の検知結果に基づいて、前記電力供給部が第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御する、請求項1または2に記載の自動製パン器。
    A detection unit for detecting a magnitude of a current supplied by the power supply unit to the first motor or the second motor;
    A control unit that controls switching of the switching unit and acquires a detection result of the detection unit;
    Further comprising
    When the control unit controls the switching unit so that the power supply unit and the first motor are connected, the power supply unit is based on the acquired detection result of the detection unit. 3. The automatic bread maker according to claim 1, wherein the bread making operation is controlled to stop when it is confirmed that a current having a magnitude equal to or greater than the threshold value is supplied.
  4.  前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、
     前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、第1の回数以上連続して、前記電力供給部が前記第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御する、請求項3に記載の自動製パン器。
    The control unit is to confirm the detection result of the detection unit for each predetermined timing,
    When the control unit controls the switching unit so that the power supply unit and the first motor are connected, the power supply unit is continuously set to the first threshold value for a first number of times or more. 4. The automatic bread maker according to claim 3, wherein the bread making operation is controlled to be stopped when it is confirmed that a current of the above magnitude is supplied.
  5.  前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、
     前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、
     をさらに備え、
     前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、取得した前記検知部の検知結果に基づいて、前記電力供給部が第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御する、請求項1または2に記載の自動製パン器。
    A detection unit for detecting a magnitude of a current supplied by the power supply unit to the first motor or the second motor;
    A control unit that controls switching of the switching unit and acquires a detection result of the detection unit;
    Further comprising
    When the control unit controls the switching unit so that the power supply unit and the second motor are connected, the power supply unit is based on the acquired detection result of the detection unit. 3. The automatic bread maker according to claim 1, wherein the bread making operation is controlled to be stopped when it is confirmed that a current having a magnitude equal to or less than the threshold value is supplied.
  6.  前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、
     前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、第2の回数以上連続して、前記電力供給部が前記第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御する、請求項5に記載の自動製パン器。
    The control unit is to confirm the detection result of the detection unit for each predetermined timing,
    When the control unit controls the switching unit so that the power supply unit and the second motor are connected, the power supply unit is continuously connected to the second threshold value for a second number of times or more. 6. The automatic bread maker according to claim 5, wherein when the current of the following magnitude is confirmed to be supplied, the bread making operation is controlled to be stopped.
  7.  前記第1のモータまたは前記第2のモータに対して前記電力供給部が供給する電流の大きさを検知する検知部と、
     前記切替部の切替を制御するとともに、前記検知部の検知結果を取得する制御部と、
     をさらに備え、
     前記制御部が、前記検知部の検知結果を所定のタイミング毎に確認するものであり、
     前記制御部が、前記電力供給部と前記第1のモータとが接続されるように前記切替部を制御するときに、第1の回数以上連続して、前記電力供給部が第1の閾値以上の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御するものであり、
     前記制御部が、前記電力供給部と前記第2のモータとが接続されるように前記切替部を制御するときに、第2の回数以上連続して、前記電力供給部が第2の閾値以下の大きさの電流を供給していることを確認すると、製パン動作を停止するように制御するものであり、
     前記第2の回数が、前記第1の回数よりも大きい、請求項1または2に記載の自動製パン器。
    A detection unit for detecting a magnitude of a current supplied by the power supply unit to the first motor or the second motor;
    A control unit that controls switching of the switching unit and acquires a detection result of the detection unit;
    Further comprising
    The control unit is to confirm the detection result of the detection unit for each predetermined timing,
    When the control unit controls the switching unit such that the power supply unit and the first motor are connected, the power supply unit is equal to or greater than a first threshold continuously for a first number of times. When it is confirmed that a current of a magnitude of is supplied, the bread making operation is controlled to stop.
    When the control unit controls the switching unit so that the power supply unit and the second motor are connected, the power supply unit is not more than a second threshold continuously for a second number of times or more. When it is confirmed that a current of a magnitude of is supplied, the bread making operation is controlled to stop.
    The automatic bread maker according to claim 1 or 2, wherein the second number of times is greater than the first number of times.
  8.  前記検知部が、
     前記電力供給部と前記第1のモータ及び前記第2のモータとに対して直列に接続される第1のコイルと、
     前記第1のコイルに電流が通じられることで生じる磁界により電流が発生する第2のコイルと、
     前記第2のコイルに発生する電流に基づいて検知結果を生成し、前記制御部に入力する検知結果生成回路と、
     を備える、請求項7に記載の自動製パン器。
    The detection unit is
    A first coil connected in series to the power supply unit and the first motor and the second motor;
    A second coil in which a current is generated by a magnetic field generated by passing a current through the first coil;
    A detection result generation circuit for generating a detection result based on a current generated in the second coil and inputting the detection result to the control unit;
    An automatic bread maker according to claim 7, comprising:
  9.  前記切替部が、
     前記電力供給部と前記第1のモータ及び前記第2のモータとの接続が切り替えられるスイッチと、
     通電の有無で前記スイッチの接続を切り替える第3のコイルと、
     を備えたリレーである、請求項1または2に記載の自動製パン器。
    The switching unit is
    A switch for switching connection between the power supply unit and the first motor and the second motor;
    A third coil that switches the connection of the switch with or without energization;
    The automatic bread maker according to claim 1 or 2, which is a relay including
  10.  前記電力供給部に含まれる電源部の状態を検知する電源状態検知部と、
     前記第1のモータと前記第2のモータとのうちの少なくともいずれか一方の異常を検知する異常検知部と、
     を備え、
     前記異常検知部が、前記モータの異常を検知するための基準を、前記電源状態検知部の検知結果に応じて異なり得るものとして設定する、請求項1に記載の自動製パン器。
    A power supply state detection unit for detecting a state of a power supply unit included in the power supply unit;
    An abnormality detection unit for detecting an abnormality in at least one of the first motor and the second motor;
    With
    The automatic bread maker according to claim 1, wherein the abnormality detection unit sets a reference for detecting abnormality of the motor as being different depending on a detection result of the power supply state detection unit.
  11.  前記モータに供給される電流の大きさを検知する供給電流検知部をさらに備え、
     前記異常検知部が、前記電源状態検知部の検知結果に応じた閾値を、前記基準として設定するものであり、
     前記異常検知部が、前記供給電流検知部の検知結果に基づいて、前記モータに供給される電流の大きさが前記閾値以上であることを確認すると、前記モータの異常を検知する、請求項10に記載の自動製パン器。
    A supply current detector for detecting the magnitude of the current supplied to the motor;
    The abnormality detection unit sets a threshold value according to the detection result of the power supply state detection unit as the reference,
    11. The abnormality of the motor is detected when the abnormality detection unit confirms that the magnitude of the current supplied to the motor is equal to or greater than the threshold based on a detection result of the supply current detection unit. Automatic bread maker described in 1.
  12.  前記異常検知部が、前記供給電流検知部の検知結果を所定のタイミング毎に確認するものであり、
     前記異常検知部が、所定の回数以上連続して、前記モータに供給される電流の大きさが前記閾値以上であることを確認すると、前記モータの異常を検知する、請求項11に記載の自動製パン器。
    The abnormality detection unit confirms the detection result of the supply current detection unit at every predetermined timing,
    The automatic detection according to claim 11, wherein the abnormality detection unit detects an abnormality of the motor when it is confirmed that the magnitude of the current supplied to the motor is equal to or greater than the threshold value continuously for a predetermined number of times or more. Baking machine.
  13.  前記電源部が供給する電圧が所定の範囲内である場合、
     前記異常検知部は、前記電源部が供給する電圧が大きいほど、大きい前記閾値を設定する、請求項11または12に記載の自動製パン器。
    When the voltage supplied by the power supply unit is within a predetermined range,
    The automatic bread maker according to claim 11 or 12, wherein the abnormality detection unit sets the threshold value to be larger as the voltage supplied from the power supply unit is larger.
  14.  前記電源部が、交流電力を供給するものであり、
     前記異常検知部が、前記電源部が供給する交流電力の周波数に応じて異なり得る前記閾値を設定する、請求項11又は12に記載の自動製パン器。
    The power supply unit supplies AC power,
    The automatic bread maker according to claim 11 or 12, wherein the abnormality detection unit sets the threshold value that can be different depending on a frequency of AC power supplied by the power supply unit.
  15.  前記異常検知部は、少なくとも前記第2のモータの異常を検知し、
     前記第2のモータは、前記原動軸と連動する粉砕ブレードにより前記パン容器内に投入された穀物粒を粉砕する際に、前記原動軸に回転動力を付与するものである、請求項10~12のいずれかに記載の自動製パン器。
     
    The abnormality detection unit detects at least an abnormality of the second motor,
    The second motor applies rotational power to the drive shaft when the grain put into the bread container is pulverized by a pulverization blade interlocked with the drive shaft. The automatic bread maker according to any one of the above.
PCT/JP2011/064739 2010-11-09 2011-06-28 Automatic breadmaker WO2012063518A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2010-250477 2010-11-09
JP2010-250476 2010-11-09
JP2010250476A JP2012100793A (en) 2010-11-09 2010-11-09 Automatic bread maker
JP2010250474A JP2012100791A (en) 2010-11-09 2010-11-09 Automatic bread maker
JP2010-250474 2010-11-09
JP2010250477A JP2012100794A (en) 2010-11-09 2010-11-09 Automatic bread maker

Publications (1)

Publication Number Publication Date
WO2012063518A1 true WO2012063518A1 (en) 2012-05-18

Family

ID=46050677

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064739 WO2012063518A1 (en) 2010-11-09 2011-06-28 Automatic breadmaker

Country Status (1)

Country Link
WO (1) WO2012063518A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359006U (en) * 1989-10-06 1991-06-10
JPH0526445A (en) * 1991-07-22 1993-02-02 Sharp Corp Heating cooking apparatus
JPH0568436U (en) * 1992-02-18 1993-09-17 船井電機株式会社 Bread machine control device
JP2001193941A (en) * 2000-01-11 2001-07-17 Matsushita Electric Ind Co Ltd Heating cooker
JP2007000193A (en) * 2005-06-21 2007-01-11 Zojirushi Corp Bread maker
JP2010184083A (en) * 2009-02-13 2010-08-26 Sanyo Electric Co Ltd Automatic bread-making machine
JP2010246404A (en) * 2009-04-10 2010-11-04 Sanyo Electric Co Ltd Method for producing cooked food dough, and device for producing dough

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359006U (en) * 1989-10-06 1991-06-10
JPH0526445A (en) * 1991-07-22 1993-02-02 Sharp Corp Heating cooking apparatus
JPH0568436U (en) * 1992-02-18 1993-09-17 船井電機株式会社 Bread machine control device
JP2001193941A (en) * 2000-01-11 2001-07-17 Matsushita Electric Ind Co Ltd Heating cooker
JP2007000193A (en) * 2005-06-21 2007-01-11 Zojirushi Corp Bread maker
JP2010184083A (en) * 2009-02-13 2010-08-26 Sanyo Electric Co Ltd Automatic bread-making machine
JP2010246404A (en) * 2009-04-10 2010-11-04 Sanyo Electric Co Ltd Method for producing cooked food dough, and device for producing dough

Similar Documents

Publication Publication Date Title
JP2012100793A (en) Automatic bread maker
WO2011105237A1 (en) Automatic bread maker
JP2012090924A (en) Automatic bread-making machine
JP2012100794A (en) Automatic bread maker
JP2012100791A (en) Automatic bread maker
WO2012008256A1 (en) Automatic bread maker
JP2011167385A (en) Automatic bread maker
WO2012063518A1 (en) Automatic breadmaker
JP2012102780A (en) Engaging clutch and automatic bread machine using the same
JP2012019818A (en) Automatic bread maker
WO2012056763A1 (en) Automatic bread maker
JP5516330B2 (en) Automatic bread machine
JP5556537B2 (en) Automatic bread machine
WO2012042981A1 (en) Automatic bread-making machine
WO2011105238A1 (en) Automatic bread maker
WO2012056764A1 (en) Automatic bread maker
JP2012223216A (en) Automatic bread maker
JP5516325B2 (en) Automatic bread machine
JP2012105690A (en) Automatic bread maker
WO2011102306A1 (en) Automatic bread maker
JP2012081051A (en) Automatic bread maker
WO2012053247A1 (en) Container for holding bread ingredient and automatic bread-maker provided with same
JP2011167407A (en) Automatic bread maker
JP2012095703A (en) Automatic bread maker
JP5477250B2 (en) Automatic bread machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11840153

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11840153

Country of ref document: EP

Kind code of ref document: A1