WO2010116971A1 - Solder particles and method for producing same, and solder paste and method for producing same - Google Patents

Solder particles and method for producing same, and solder paste and method for producing same Download PDF

Info

Publication number
WO2010116971A1
WO2010116971A1 PCT/JP2010/056167 JP2010056167W WO2010116971A1 WO 2010116971 A1 WO2010116971 A1 WO 2010116971A1 JP 2010056167 W JP2010056167 W JP 2010056167W WO 2010116971 A1 WO2010116971 A1 WO 2010116971A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
halogen
ppm
particles
halide
Prior art date
Application number
PCT/JP2010/056167
Other languages
French (fr)
Japanese (ja)
Inventor
和幸 田路
英志 高橋
武志 田中
Original Assignee
石川金属株式会社
株式会社東北テクノアーチ
株式会社電子実装.com
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川金属株式会社, 株式会社東北テクノアーチ, 株式会社電子実装.com filed Critical 石川金属株式会社
Priority to CN2010800158636A priority Critical patent/CN102365148A/en
Priority to JP2011508353A priority patent/JP5489179B2/en
Publication of WO2010116971A1 publication Critical patent/WO2010116971A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Definitions

  • the present invention is an invention relating to a halogen-free solder paste in which the activator halogen added to the solder paste is extremely reduced in order to improve the wettability with the bonding object when soldering.
  • solder paste that can be mounted easily and with high precision is widely recognized as an indispensable technology in the electronic device assembly process.
  • Solder paste is made by melting a solder ingot containing Sn as a main component and making it into a powder having a particle size of several to several tens of ⁇ m by a method such as atomization or centrifugation, and after classification, from pine resin component, thixotropic agent, solvent, etc. It is made by mixing the flux.
  • the surface of the Sn fine particle that becomes the base of the solder is covered with an oxide film. If the oxide remains at the time of solder formation, contact resistance is generated, and if it is present at the interface with the substrate metal, it causes peeling. Therefore, in order to form a solder that melts the solder paste by heating and maintains a uniform and high wettability to the object to be bonded, the oxide film is removed from the surface of the solder fine particles by a reduction reaction or a dissolution reaction at the stage of the heat treatment. There is a need. For these reasons, the solder paste contains a rosin component and an activator in the flux as a material for removing the oxide film. Among them, the activator mainly composed of halogen is a particularly important component for causing such a reaction to proceed.
  • Patent Documents 1 and 2 disclose that halogen is used as an activator.
  • Patent Document 1 discloses that a specific organic halogen compound is effective as a flux component that does not decompose during storage but decomposes under reflow conditions to improve the wettability of solder.
  • organic halogen compounds are added at a ratio of 0.01 wt% to 2 wt% with respect to the solder paste.
  • Dioxin is known to be extremely toxic to the human body and is one of the environmental problems. Dioxins are a kind of halogen compounds and may be generated when they are burned.
  • Solder mounting on an electronic board is performed by applying a solder paste containing a halogen component as described above to the electronic board and heating.
  • halogens are present in the substrate using the solder paste, and when these are incinerated, dioxins are generated and the environment is deteriorated. From such a viewpoint, in recent years, it has been required to develop a solder paste (halogen-free solder paste) that does not contain halogen or has a very low content.
  • the present invention has been conceived in view of the above-mentioned problems, and in order to prepare a solder paste containing only the minimum necessary halogen, an extremely small amount of halogen necessary for removing the oxide film on the surface of the fine particles is obtained.
  • the present invention provides a solder paste prepared by causing seeds to exist on the surface of solder particles and blending such particles with an organic component such as a flux containing no halogen.
  • the present invention provides a solder paste comprising a solder powder having a halide on its surface and a flux.
  • the present invention also provides: This is a solder particle characterized in that the surface is coated with a halide. In the XPS spectrum obtained by X-ray photoelectron spectroscopic analysis after an acceleration voltage of 10 kV, a current of 10 mA, and Ar etching for 3 seconds, it depends on the oxide.
  • a solder particle characterized by having a metal / oxide ratio of 1 or more as a relative ratio of peak intensity to metal-dependent peak intensity, a solder paste containing the solder particle, and a method for producing the solder paste. .
  • the solder paste of the present invention is obtained by mixing a solder powder in which a halogen compound is present on the surface to be an oxide film and a flux, and the oxide film on the solder surface can be sufficiently removed with a small amount of the halogen compound. .
  • the amount of the halogen compound is only 200 ppm or less with respect to the solder powder, and a solder paste having almost no halogen compound (halogen-free) is provided. Therefore, the solder paste of the present invention has an effect that the wettability to the object to be bonded is good, the toxicity to the human body is low, and the generation of dioxins is very small.
  • the solder paste of the present invention comprises a solder powder with an activator and a flux composition.
  • the solder powder is a binary, ternary, or quaternary alloy made of elements such as Ag, Cu, Bi, and Zn based on Sn. In addition, you may add another element and a trace amount addition element to an alloy.
  • Solder powder is obtained by melting ingots of these alloys and pulverizing them into a size of several ⁇ m to several tens of ⁇ m by a method such as an atomizing method or a centrifugal separation method.
  • an organic acid having a halogen element such as bromine or chlorine, an amine hydrohalide, or an organic halogen compound can be used.
  • the flux composition can contain an adhesive, a solvent, a thixotropic agent, and the like as components.
  • an adhesive rosin or synthetic resin can be suitably used.
  • rosins such as natural rosin, polymerized rosin, and modified rosin can be used.
  • synthetic resin polyester, polyurethane, acrylic resin, or the like can be used.
  • alcohol ether, ester, and aromatic solvents
  • solvent alcohol, ether, ester, and aromatic solvents
  • butanol, butyl cellosolve, pendyl alcohol, ethyl cellosolve, butyl carbitol, xylene, glycol and the like can be used alone or in combination.
  • silica particles silica particles, kaolin particles, hydrogenated castor oil, amide compounds, and the like can be suitably used.
  • a surfactant may be added.
  • a halogen compound is dissolved in a solvent, and the solder powder is immersed therein.
  • the immersion time is preferably 3 days or more, and more preferably 10 days or more.
  • the activator is adsorbed on the surface of the solder.
  • the time to be immersed can be shortened by applying heat in the middle.
  • the solder powder after immersion is pulled up from the solvent and dried.
  • the halide that can be used in the present invention is not only one that uses one element selected from the halogen elements F, Cl, Br, and I, but also one or more that uses a plurality of halogen elements from these elements. Different types of halogen compounds may be used.
  • solder powder having the halogen compound adsorbed on the surface is mixed with the flux composition and dispersed with a planetary mixer. This is because the solder is soft as a metal, so that the powder is slowly dispersed so that the powder is not crushed.
  • solder powder in which halogen is adsorbed on the surface by washing the solder paste already produced.
  • the solder paste containing halogen often changes with time, and is stored in a container in a prescribed amount in a low-temperature dark place. Therefore, after opening and using once, if there is a remainder, it is discarded as it is.
  • This waste solder paste is washed with an organic solvent and separated into organic substances and solder powder in the paste.
  • the organic solvent that can be used is not particularly limited.
  • the mixed solution is separated into solder powder, insoluble material, soluble material and solvent. Specifically, the mixed solution is allowed to stand to precipitate the solder powder. And the settled solder powder and a supernatant component are isolate
  • the supernatant component is a state in which an insoluble substance floats in a solvent in which a soluble substance is dissolved.
  • the mixing step and the separation step may be performed a plurality of times. This is because the flux component is adsorbed on the surface of the alloy particles of the solder powder, and may not be washed out once.
  • the surface state of the solder was determined by analyzing the Sn 3d orbit by a combination of sputter etching with argon and XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy). Both sputtering with argon and measurement of XPS were performed under conditions of 10 KV and 10 mA.
  • the amount of halogen adhering to the surface of the solder particles in the treatment solution and treatment was measured using a potentiometric automatic titrator.
  • the concentration of the treatment solution was calculated from the obtained halogen amount.
  • Example 1 A nonionic halogen activator (tris (2.3-dibromopropyl) isocyanurate) was dissolved in hexyl diglycol, 30 g of Sn3.0Ag0.5Cu particles were added, and the mixture was allowed to stand for 10 days.
  • the treatment temperature was room temperature or 35 ° C.
  • the nonionic halogen activator concentration was adjusted to 750 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 4000 ppm, 5000 ppm, 7500 ppm and 15000 ppm with respect to Sn3.0Ag0.5Cu particles. After treatment, the particles were thoroughly washed with toluene and dried.
  • “Sn3.0Ag0.5Cu” is a solder having a composition of 3.0% Ag and 0.5% Cu in the molar ratio, with the remainder being Sn.
  • Fig. 1 shows the measurement results of the amount of halogen contained in the post-heating residue of solder paste processed from various concentrations and solder paste prepared from a halogen-free flux.
  • the horizontal axis represents the halogen-containing nonionic active agent concentration (ppm) in the treatment solution, and the vertical axis represents the amount of halogen (ppm) added on the surface of the solder particles by the treatment. Since a halogen-free flux is used as the activator, the detected amount of halogen suggests the amount of halogen added on the surface of the solder particles by the treatment.
  • the solder particle surface When treated with a nonionic halogen activator solution having a concentration of 750 ppm to 1500 ppm, the solder particle surface contained about 30 to 50 ppm of halogen. On the other hand, when treated with a nonionic halogen activator solution having a concentration of 2000 ppm, the amount of halogen contained in the solder particles increased to about 150 to 160 ppm. Even when the treatment was performed at a concentration higher than that, the amount of halogen present on the surface of the solder particles did not change and was in an equilibrium state in the range of 150 to 200 ppm.
  • FIG. 2 shows the mounting results on an electronic substrate using untreated raw material particles, particles treated with a halogen-containing nonionic activator solution having a concentration of 750 ppm and 3000 ppm, and a solder paste prepared using a halogen-free flux. Show.
  • Fig. 2 (a) shows the case of raw material particles
  • Fig. 2 (b) shows the case of treatment at 750 ppm
  • Fig. 2 (c) shows the case of treatment at 3000 ppm.
  • raw material particles and particles treated with 750 ppm (solder particles contain about 30 to 50 ppm of halogen) are dissolved by heating in the circled circles (also indicated by arrows). Solder balls that flowed out were observed.
  • FIG. 3 shows the results of XPS measurement of untreated raw material particles (a) and particles processed at concentrations of 750 ppm (b), 1000 ppm (c), 1500 ppm (d), 2000 ppm (e), and 5000 ppm (f). Indicates.
  • the horizontal axis represents binding energy (eV), and the vertical axis represents strength.
  • Etching was performed using Ar gas, and etching was performed for 3 seconds per trial. That is, as the number of times of etching increases, information in the depth direction is obtained from the particle surface to the inside of the particle.
  • the applied voltage and current for etching were 10 KV and 10 mA as described above.
  • 3A to 3F trials are performed from 0 to 7 times, and the profiles of the trials are vertically arranged in each graph.
  • FIG. 4 shows a summary of only one-time etching profiles in FIGS. 3A to 3F.
  • the flux component is consumed mainly to reduce the thickness of the oxide film up to 1000 ppm. That is, since halogen is consumed in the oxide film removal reaction, it cannot be present on the particle surface.
  • the concentration is 1500 ppm or more (FIGS. 3D to 3F)
  • halogens that have not participated in the oxide film removal reaction are present on the particle surface. It is considered that the amount of the oxide film is reduced by this treatment and is made constant by an amount capable of maintaining a stable state. Therefore, it can be inferred that the surface halogen amount is also constant.
  • solder particles containing 180 ppm of halogen obtained by the above treatment were further washed twice with an organic solvent (toluene, acetone, methanol, hexane, tetrahydrofuran).
  • Table 2 shows the results of measuring the amount of halogen contained in the residue after heating, in which a solder paste was prepared from the rewashed particles and the halogen-free flux.
  • the Br-containing flux When the Br-containing flux is present on the surface of the solder particle as a surface adsorbing species, when immersed in an organic solvent, an equilibrium state is established between the particle surface and the solvent, and depending on the state, a part of the Br-containing flux is dissolved, The Br concentration on the particle surface decreases. Since the Br-containing flux used in this example is soluble in the above five types of organic solvents, if it is present as a surface adsorbed species, its concentration should be reduced when re-washing twice. However, as is apparent from the result of rewashing with toluene, the concentration hardly decreases. That is, the sample synthesized in this example shows that the solder particle surface and Br have a stronger bonding state than simple surface adsorption.
  • halogen-free refers to a halogen-free solder specified by the IPC standard, and has a halogen concentration of 900 ppm or less. As described above, the solder particles of the present invention have a halogen concentration of 900 ppm.
  • Example 2 A halogen-containing ionic activator (diphenylguanidine hydrobromide) was dissolved in hexyl diglycol, 30 g of Sn3.0Ag0.5Cu particles were added, and the mixture was allowed to stand for 10 days.
  • the treatment temperature was room temperature or 35 ° C.
  • the halogen-containing ionic activator concentration was adjusted to 2000 ppm, 3000 ppm, 4000 ppm, 5000 ppm and 15000 ppm with respect to Sn3.0Ag0.5Cu particles. After the treatment, the particles were thoroughly washed with toluene, dried and used for the subsequent analysis.
  • FIG. 5 shows the measurement results of the amount of halogen contained in the post-heating residue of solder paste processed from various concentrations and solder paste prepared from a halogen-free flux.
  • the horizontal axis represents the halogen-containing nonionic active agent concentration (ppm) in the treatment solution, and the vertical axis represents the amount of halogen (ppm) added on the surface of the solder particles by the treatment. Since a halogen-free flux is used as the activator, the detected amount of halogen suggests the amount of halogen added on the surface of the solder particles by the treatment.
  • the amount of halogen adhering to the surface of the solder particles increased.
  • the proportion of the amount of halogen adhering to the particle surface was moderate as compared with the case of using a halogen-containing nonionic activator.
  • the amount of halogen adhering to the solder particle surface was about 140 ppm. In this case, since the treatment solution is saturated, the activator adheres to the solder particles, and sufficient cleaning is required to take out only the solder particles.
  • FIG. 6 shows the result of mounting on an electronic substrate using particles treated with a halogen-containing ionic activator solution having concentrations of 750 ppm and 15000 ppm and a solder paste prepared using a halogen-free flux.
  • 6A shows the case of 750 ppm
  • FIG. 6B shows the case of 15000 ppm.
  • the primary particles are those shown in FIG.
  • the portion where the solder ball is observed is indicated by an arrow as in the case of the first embodiment.
  • solder particles recovered from an already synthesized solder paste are used.
  • solder particles recovered from an already synthesized solder paste are used.
  • halogen species are adsorbed or remain as compounds on the surface of the metal particles. Therefore, in accordance with a normal solder paste preparation method, a solder paste was prepared and washed with a solvent to recover metal particles.
  • FIG. 7 shows the evaluation results of tin by XPS of unused raw material particle FIG. 7 (a) (upper) and treated particles recovered by solder paste FIG. 7 (b) (lower).
  • the vertical axis represents the peak intensity of tin metal (black circle) and tin oxide (white circle), and the horizontal axis represents the number of etchings. Etching was performed using Ar gas, and etching was performed for 5 seconds per trial. That is, as the number of times of etching increases, information in the depth direction is obtained from the particle surface to the inside of the particle.
  • the outermost surface that was not etched was an oxide, and as the number of etchings increased, the oxide strength decreased and the metal strength increased.
  • the peak intensity of the oxide is increased when the number of trials is 1 because the surface adsorbed species (gas etc.) are removed by etching. .
  • the peak of the oxide species remains even when the number of etching trials is increased because the particles are spherical and an oxide layer is always present on the side even if etching is performed from the surface.
  • a solder paste was prepared using the treated particles and a flux not containing halogen, and heated to measure the amount of halogen contained in the residue (that is, the amount of halogen present in the treated particles).
  • the amount of halogen (bromine) contained in the heated residue was in the range of 130 ppm to 180 ppm. That is, by the treatment, about 130 ppm of halogen could be present on the particle surface.
  • the abundance of 130 ppm halogen present on the particle surface will be described.
  • the above solder particles have an average diameter of 32 ⁇ m.
  • the surface area S and volume V of this single solder particle are represented by 4 ⁇ r 2 (cm 2 ) and 4 / 3 ⁇ r 3 (cm 3 ), respectively, where r is the radius.
  • the specific gravity of Sn3.0Ag0.5Cu is ⁇ (g / cm 3 ), and the weight per mole is ⁇ (g / mol).
  • the weight per solder particle is ⁇ V (g)
  • 130 ppm (0.0013 at%) is halogen (bromine)
  • one solder particle contains ( ⁇ V ⁇ 0.00013) / ⁇ (mol) of halogen atoms. Since the halogen atoms are present on the surface of the solder particles, the number of halogen atoms per unit area can be obtained as ( ⁇ V ⁇ 0.00013) / ( ⁇ S) (mol).
  • the surface of the solder particles of the present invention is not uniform and has irregularities.
  • FIG. 8 the photograph of the solder particle of this invention by an electron microscope is shown. The photograph is a 1800 ⁇ photograph, and the length of the white line is 10 ⁇ m. There are irregularities on the surface of the particles. This unevenness is a phenomenon called “sink”, and halide is hardly present in this portion. Therefore, the halogen compound determined above may exist not only on the surface of the solder particles but also as a second layer on the halogen compound on the first layer of the surface.
  • Fig. 9 shows the state of mounting on the electronic board using the solder paste created using this method.
  • the solder was mounted on the substrate from the solder paste prepared using the treated particles and the halogen-free flux, and no solder balls were observed.
  • the primary particles are those shown in FIG. That is, it was found that characteristics such as wettability were improved as compared with the conventional product.
  • the present invention can be used not only for halogen-free solder paste but also for use when recycling the solder paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Conventional solder pastes contain an activator containing a halogen for the purpose of increasing the wettability to an object to be soldered. Halogens, however, are highly toxic to the human body and cause the formation of dioxin. Consequently, there has been demand for a solder paste that is free from halogens or has a significantly reduced halogen content. In order to meet the demand, a solder paste is produced by mixing solder particles, on the surfaces of which an extremely small amount of a halogen is present, into a flux composition which does not contain an activator and is composed of an adhesive, a solvent, a thixotropic agent and the like. Although the amount of halogen contained in this solder paste is extremely small, the wettability to an object to be soldered is practically sufficient.

Description

はんだ粒子とその製造方法およびはんだペーストとその製造方法Solder particles and manufacturing method thereof, and solder paste and manufacturing method thereof
 本発明は、はんだ付けをする際に、接着対象物との間の濡れ性を向上させるためにはんだペーストに添加される活性剤のハロゲンを極めて少なくしたハロゲンフリーのはんだペーストに関する発明である。 The present invention is an invention relating to a halogen-free solder paste in which the activator halogen added to the solder paste is extremely reduced in order to improve the wettability with the bonding object when soldering.
 近年の電子部品の微細化・高密度化に伴い、簡便に且つ高精度での実装を可能としたはんだペーストは、電子機器組み立て過程において無くてはならない技術として広く認知されている。 With the recent miniaturization and high density of electronic components, solder paste that can be mounted easily and with high precision is widely recognized as an indispensable technology in the electronic device assembly process.
 はんだペーストは、Snを主成分とするはんだインゴットを溶融し、アトマイズ法、遠心分離法といった方法で粒径数~数十μm程度の粉体とし、分級後、松脂成分、チキソ剤、溶剤等からなるフラックスを混合して作製される。 Solder paste is made by melting a solder ingot containing Sn as a main component and making it into a powder having a particle size of several to several tens of μm by a method such as atomization or centrifugation, and after classification, from pine resin component, thixotropic agent, solvent, etc. It is made by mixing the flux.
 はんだの母体となるSn微粒子の表面は酸化皮膜で覆われている。その酸化物がはんだ形成時に残留すると、接触抵抗を生じ、基板金属との界面に存在した場合は剥離の原因となる。従って、はんだペーストを加熱溶融し、均質で接着対象物に対する高い濡れ性を維持したはんだを形成するためには、加熱処理の段階ではんだ微粒子表面から、還元反応若しくは溶解反応により酸化皮膜を除去する必要がある。この様な理由から、はんだペーストには酸化皮膜の除去材としてフラックス中に松脂成分や活性剤が含まれている。中でもハロゲンを主成分とする活性剤は、その様な反応を進行させるための特に重要な成分であ
る。
The surface of the Sn fine particle that becomes the base of the solder is covered with an oxide film. If the oxide remains at the time of solder formation, contact resistance is generated, and if it is present at the interface with the substrate metal, it causes peeling. Therefore, in order to form a solder that melts the solder paste by heating and maintains a uniform and high wettability to the object to be bonded, the oxide film is removed from the surface of the solder fine particles by a reduction reaction or a dissolution reaction at the stage of the heat treatment. There is a need. For these reasons, the solder paste contains a rosin component and an activator in the flux as a material for removing the oxide film. Among them, the activator mainly composed of halogen is a particularly important component for causing such a reaction to proceed.
 活性剤にハロゲンを用いる点については、例えば特許文献1や2に開示がある。特に特許文献1では、保存中には分解せず、リフロー条件では分解してはんだの濡れ性を向上させるフラックス成分として、特定の有機ハロゲン化合物が有効である点が開示されている。 For example, Patent Documents 1 and 2 disclose that halogen is used as an activator. In particular, Patent Document 1 discloses that a specific organic halogen compound is effective as a flux component that does not decompose during storage but decomposes under reflow conditions to improve the wettability of solder.
 これらの有機ハロゲン化合物は、はんだペーストに対して、0.01wt%から2wt%の割合で添加されている。 These organic halogen compounds are added at a ratio of 0.01 wt% to 2 wt% with respect to the solder paste.
特開平10-175093号公報Japanese Patent Laid-Open No. 10-175093 特開平10-128573号公報JP-A-10-128573
 近年、環境汚染に対して世界的に関心が高まり、身の回りで使用されている製品に対しても高い安全性が求められるようになった。その一つとして、ダイオキシンが上げられる。ダイオキシンは、人体への毒性が非常に高いことが知られており、環境問題の一つとなっている。ダイオキシンは、ハロゲン化合物の一種で、これらを燃焼する際に発生することがある。 In recent years, global interest in environmental pollution has increased, and high safety has been demanded for products used around us. One example is dioxin. Dioxin is known to be extremely toxic to the human body and is one of the environmental problems. Dioxins are a kind of halogen compounds and may be generated when they are burned.
 電子基板へのはんだ実装は、前述のようなハロゲン成分を含むはんだペーストを電子基板へ塗布し加熱する事で行われる。このように、はんだペーストを用いた基板にはハロゲン物が存在することとなり、これらを焼却する際、ダイオキシンが発生し、環境を悪化させることとなる。この様な観点から、近年では、ハロゲンを含有しない若しくは含有量が極めて低いはんだペースト(ハロゲンフリーはんだペースト)を開発することが求められている。 Solder mounting on an electronic board is performed by applying a solder paste containing a halogen component as described above to the electronic board and heating. In this way, halogens are present in the substrate using the solder paste, and when these are incinerated, dioxins are generated and the environment is deteriorated. From such a viewpoint, in recent years, it has been required to develop a solder paste (halogen-free solder paste) that does not contain halogen or has a very low content.
 しかしながら、はんだペースト中のハロゲン含有フラックス量を低減させるなど単純な方法でハロゲン含有量を低下させた場合、はんだの濡れ性が低下するなどはんだペーストとしての特性が著しく低減する。従って、ハロゲンフリーと特性の維持を両立できる技術開発が求められる。 However, when the halogen content is reduced by a simple method such as reducing the halogen-containing flux amount in the solder paste, the characteristics of the solder paste are remarkably reduced, for example, the wettability of the solder is reduced. Therefore, there is a need for technological development that can achieve both halogen-free and characteristic maintenance.
 本発明では、上記の課題に鑑みて想到されたものであり、必要最小限のハロゲンだけを含んだはんだペーストを作成するために、微粒子表面の酸化皮膜を除去するのに必要な極少量のハロゲン種をはんだ粒子表面に存在させ、その様な粒子にハロゲンを含まないフラックス等の有機成分を配合することで調製されたはんだペーストを提供するものである。 The present invention has been conceived in view of the above-mentioned problems, and in order to prepare a solder paste containing only the minimum necessary halogen, an extremely small amount of halogen necessary for removing the oxide film on the surface of the fine particles is obtained. The present invention provides a solder paste prepared by causing seeds to exist on the surface of solder particles and blending such particles with an organic component such as a flux containing no halogen.
 具体的に本発明は、ハロゲン化物を表面に存在させたはんだ粉末と、フラックスからなるはんだペーストを提供する。 Specifically, the present invention provides a solder paste comprising a solder powder having a halide on its surface and a flux.
 また、本発明は、
表面にハロゲン化物が被覆されていることを特徴とするはんだ粒子であり、加速電圧10kV、電流10mA、3秒間のArエッチング後のX線光電子分光分析によって得られたXPSスペクトルにおいて、酸化物依存のピーク強度と金属依存のピーク強度の相対比率として金属/酸化物が1以上であることを特徴とするはんだ粒子とその製造方法およびそのはんだ粒子を含むはんだペーストとそのはんだペーストの製造方法を提供する。
The present invention also provides:
This is a solder particle characterized in that the surface is coated with a halide. In the XPS spectrum obtained by X-ray photoelectron spectroscopic analysis after an acceleration voltage of 10 kV, a current of 10 mA, and Ar etching for 3 seconds, it depends on the oxide. Provided is a solder particle characterized by having a metal / oxide ratio of 1 or more as a relative ratio of peak intensity to metal-dependent peak intensity, a solder paste containing the solder particle, and a method for producing the solder paste. .
 本発明のはんだペーストは、ハロゲン化合物を酸化被膜となる表面に存在させたはんだ粉末をフラックスと混合させたもので、また、微量のハロゲン化合物ではんだ表面の酸化被膜を十分に除去させることができる。本発明ではハロゲン化合物の量ははんだ粉末に対してわずか200ppm以下であり、ほとんどハロゲン化合物のない(ハロゲンフリー)のはんだペーストを提供する。従って、本発明のはんだペーストは、接着対象物への濡れ性は良好であって、なおかつ人体への毒性が低く、またダイオキシンの発生も非常に少ないという効果を奏する。 The solder paste of the present invention is obtained by mixing a solder powder in which a halogen compound is present on the surface to be an oxide film and a flux, and the oxide film on the solder surface can be sufficiently removed with a small amount of the halogen compound. . In the present invention, the amount of the halogen compound is only 200 ppm or less with respect to the solder powder, and a solder paste having almost no halogen compound (halogen-free) is provided. Therefore, the solder paste of the present invention has an effect that the wettability to the object to be bonded is good, the toxicity to the human body is low, and the generation of dioxins is very small.
各種濃度で処理を行ったはんだ粒子と、ハロゲン非含有フラックスから作成したはんだペーストの、加熱後残渣に含まれるハロゲン量の測定結果を示すグラフである。It is a graph which shows the measurement result of the amount of halogen contained in the residue after a heating of the solder paste processed from the solder particle processed with various density | concentration, and a halogen-free flux. 基板への実装結果を示す写真である。It is a photograph which shows the mounting result to a board | substrate. 未処理の原料粒子、及び750ppm, 1000ppm, 1500ppm, 2000ppm, 3000ppm, 5000ppmの濃度で処理を行った粒子のXPS測定結果を示すグラフである。It is a graph which shows the XPS measurement result of the raw material particle | grains and the particle | grains which processed by the density | concentration of 750 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 3000 ppm, 5000 ppm. 図3でエッチング処理1回のものだけをまとめたグラフである。It is the graph which put together only the thing of an etching process in FIG. 各種濃度で処理を行ったはんだ粒子と、ハロゲン非含有フラックスから作成したはんだペーストの、加熱後残渣に含まれるハロゲン量の測定結果を示すグラフである。It is a graph which shows the measurement result of the amount of halogen contained in the residue after a heating of the solder paste processed from the solder particle processed with various density | concentration, and a halogen-free flux. 電子基板への実装結果を示す写真である。It is a photograph which shows the mounting result to an electronic substrate. 未使用の原料粒子図6(a)(上段)、及び、はんだペースト化し回収した処理済み粒子図6(b)(下段)のXPSによるスズの評価結果を示すグラフである。It is a graph which shows the evaluation result of the tin by XPS of unused raw material particle | grains Fig.6 (a) (upper stage) and the processed particle | grains collect | recovered by soldering paste FIG.6 (b) (lower stage). はんだ粒子の表面写真である。It is a surface photograph of solder particles. 電子基板への実装結果を示す写真である。It is a photograph which shows the mounting result to an electronic substrate.
 本発明のはんだペーストは、活性剤付きはんだ粉末と、フラックス組成物からなる。はんだ粉末は、Snを基本としてAg、Cu、Bi、Znなどの元素から作られる2元系、3元系、4元系の合金である。なお、合金には、その他の元素や微量添加元素を加えてもよい。 The solder paste of the present invention comprises a solder powder with an activator and a flux composition. The solder powder is a binary, ternary, or quaternary alloy made of elements such as Ag, Cu, Bi, and Zn based on Sn. In addition, you may add another element and a trace amount addition element to an alloy.
 はんだ粉末とは、これらの合金のインゴットを溶融し、アトマイズ法、遠心分離法といった方法で数μmから数十μmの大きさに粉末化したものである。 Solder powder is obtained by melting ingots of these alloys and pulverizing them into a size of several μm to several tens of μm by a method such as an atomizing method or a centrifugal separation method.
 活性剤は、臭素、塩素といったハロゲン元素を有する有機酸やアミンのハロゲン化水素酸塩や、有機ハロゲン化合物を利用することができる。 As the activator, an organic acid having a halogen element such as bromine or chlorine, an amine hydrohalide, or an organic halogen compound can be used.
 フラックス組成物は、粘着剤、溶剤、チクソトロピック剤等を成分とすることができる。粘着剤は、ロジン又は合成樹脂が好適に利用できる。ロジンは、天然ロジン、重合ロジン、変性ロジンといったロジン類が利用できる。また、合成樹脂には、ポリエステル、ポリウレタン、アクリル系樹脂等が利用できる。 The flux composition can contain an adhesive, a solvent, a thixotropic agent, and the like as components. As the adhesive, rosin or synthetic resin can be suitably used. As the rosin, rosins such as natural rosin, polymerized rosin, and modified rosin can be used. As the synthetic resin, polyester, polyurethane, acrylic resin, or the like can be used.
 溶剤は、アルコール、エーテル、エステル、芳香族系の溶剤が好適に利用できる。具体的には、ブタノール、ブチルセロソルブ、ペンジルアルコール、エチルセロソルブ、ブチルカルビトール、キシレン、グリコール等を単独もしくは複数個を混合して利用できる。 As the solvent, alcohol, ether, ester, and aromatic solvents can be suitably used. Specifically, butanol, butyl cellosolve, pendyl alcohol, ethyl cellosolve, butyl carbitol, xylene, glycol and the like can be used alone or in combination.
 チクソトロピック剤としては、シリカ粒子、カオリン粒子や、水添ヒマシ油、アマイド化合物や等が好適に利用できる。なお、界面活性剤を添加してもよい。 As the thixotropic agent, silica particles, kaolin particles, hydrogenated castor oil, amide compounds, and the like can be suitably used. A surfactant may be added.
 はんだ粉末の表面に活性剤を存在させるには、溶剤にハロゲン化合物を溶解させ、その中にはんだ粉末を浸漬させる。浸漬させる時間は、好ましくは3日以上であり、10日以上であればより好ましい。この浸漬処理によって、はんだの表面に活性剤が吸着することとなる。なお、途中で熱を加えることで、浸漬される時間を短くすることができる。浸漬後のはんだ粉末は溶剤から引きあげて乾燥させる。本発明に利用できるハロゲン化物は、ハロゲン元素であるF、Cl、Br、Iから選ばれた1元素を用いたものであるだけでなく、これらの元素から複数のハロゲン元素を利用した1または複数種類のハロゲン化合物であってもよい。 In order to make the activator present on the surface of the solder powder, a halogen compound is dissolved in a solvent, and the solder powder is immersed therein. The immersion time is preferably 3 days or more, and more preferably 10 days or more. By this immersion treatment, the activator is adsorbed on the surface of the solder. In addition, the time to be immersed can be shortened by applying heat in the middle. The solder powder after immersion is pulled up from the solvent and dried. The halide that can be used in the present invention is not only one that uses one element selected from the halogen elements F, Cl, Br, and I, but also one or more that uses a plurality of halogen elements from these elements. Different types of halogen compounds may be used.
 ハロゲン化合を表面に吸着させられたはんだ粉末は、フラックス組成物と混合しプラネタリミキサーで分散させられる。はんだは金属としてはやわらかいので、粉末がつぶれてしまわないようにゆっくり分散を進めるためである。 The solder powder having the halogen compound adsorbed on the surface is mixed with the flux composition and dispersed with a planetary mixer. This is because the solder is soft as a metal, so that the powder is slowly dispersed so that the powder is not crushed.
 また、他の形態として、すでに作製されたはんだペーストを洗浄してハロゲンが表面に吸着したはんだ粉末を得ることができる。ハロゲン入りのはんだペーストは、経年変化が著しい場合が多く、低温暗所に規定量ずつ容器に密閉されて保存される。従って、一度開封して使用した後に、余りがでるとそのまま廃棄される。 Also, as another form, it is possible to obtain a solder powder in which halogen is adsorbed on the surface by washing the solder paste already produced. The solder paste containing halogen often changes with time, and is stored in a container in a prescribed amount in a low-temperature dark place. Therefore, after opening and using once, if there is a remainder, it is discarded as it is.
 このような廃はんだペーストは、ハロゲンが1wt%程度の濃度を有するフラックスにはんだ粉末が、長期間浸漬されている状態なので、はんだ粉末の表面には、ハロゲンが吸着されている。 In such a waste solder paste, since the solder powder is immersed in a flux having a concentration of about 1 wt% of halogen for a long period of time, halogen is adsorbed on the surface of the solder powder.
 この廃はんだペーストを有機溶媒で洗浄し、ペースト中の有機物とはんだ粉末に分離する。利用できる有機溶媒には特に限定されないが、例えば、ベンゼン、トルエン、ヘキサン、シクロヘキサン、ジエチルエーテル、クロロホルム、酢酸エチル、酢酸メチル、塩化メチレン、テトラクロロエチレン、石油エーテル、シンナー、ガソリン、軽油、テトラヒドロフラン、アセトン、アセトニトリル、ジメチルホルムアミド、ジメチルスルホキシド、メタノール、エタノール、プロパノール、酢酸、ギ酸、オレイン酸、ステアリン酸、イソプロピルアルコール、ヘキシルグリコール、ヘキシルジグリコール、2エチルヘキシルグリコール、2エチルヘキシルジグリコール、フェニルグリコール、フェニルジグリコール、ベンジルグリコール、ベンジルジグリコール、メチルプロピレングリコール、メチルプロピレンジグリコール、メチルプロピレントリグリコール、プロピルプロピレングリコール、プロピルプロピレンジグリコール、ブチルプロピレングリコール、ブチルプロピレンジグリコール、フェニルプロピレングリコール、ジメチルグリコール、ジメチルジグリコール、ジメチルトリグリコール、ジエチルジグリコール、ジブチルジグリコール、ジメチルプロピレンジグリコール、ターピネオールなどが挙げられる。 こ の This waste solder paste is washed with an organic solvent and separated into organic substances and solder powder in the paste. The organic solvent that can be used is not particularly limited. For example, benzene, toluene, hexane, cyclohexane, diethyl ether, chloroform, ethyl acetate, methyl acetate, methylene chloride, tetrachloroethylene, petroleum ether, thinner, gasoline, light oil, tetrahydrofuran, acetone, Acetonitrile, dimethylformamide, dimethyl sulfoxide, methanol, ethanol, propanol, acetic acid, formic acid, oleic acid, stearic acid, isopropyl alcohol, hexyl glycol, hexyl diglycol, 2 ethylhexyl glycol, 2 ethylhexyl diglycol, phenyl glycol, phenyl diglycol, Benzyl glycol, benzyl diglycol, methyl propylene glycol, methyl propylene diglycol, methyl Propylene glycol, propylpropylene glycol, propylpropylene glycol, butylpropylene glycol, butylpropylene glycol, phenylpropylene glycol, dimethyl glycol, dimethyldiglycol, dimethyltriglycol, diethyldiglycol, dibutyldiglycol, dimethylpropylenediglycol, Examples include terpineol.
 これらの溶媒の中に廃はんだペーストを攪拌しながら投入する。なお、この際の攪拌にはラバーフィンなどの比較的やわらかい素材のフィンで攪拌するのがよい。硬い金属フィンだとはんだ粉末がつぶれてしまうからである。また、攪拌は超音波を混合溶液に加えることでおこなってもよい。物理的な攪拌よりも表面に付着した有機物成分を効果的に洗い落とすことができる。 廃 Put the waste solder paste into these solvents while stirring. In this case, it is preferable to stir with a relatively soft material fin such as a rubber fin. This is because the solder powder is crushed if it is a hard metal fin. Further, the stirring may be performed by adding ultrasonic waves to the mixed solution. Organic components adhering to the surface can be washed off more effectively than physical stirring.
 次に混合液をはんだ粉末と不溶性物質と溶解性物質と溶媒に分離する。具体的には、混合液を静置して、はんだ粉末を沈降させる。そして、沈降したはんだ粉末と、上澄み成分を分離する。上澄み成分は、溶解性物質が溶解した溶媒中に不溶性物質が浮かんだ状態のものである。 Next, the mixed solution is separated into solder powder, insoluble material, soluble material and solvent. Specifically, the mixed solution is allowed to stand to precipitate the solder powder. And the settled solder powder and a supernatant component are isolate | separated. The supernatant component is a state in which an insoluble substance floats in a solvent in which a soluble substance is dissolved.
 混合工程と分離工程は、複数回ずつ行ってもよい。はんだ粉末の合金粒子表面には、フラックス成分が吸着しており、1度の洗浄では洗い取れない場合もあるからである。 The mixing step and the separation step may be performed a plurality of times. This is because the flux component is adsorbed on the surface of the alloy particles of the solder powder, and may not be washed out once.
 本実施例において、はんだの表面状態は、アルゴンによるスパッタエッチングとXPS(X-ray photoelectron spectroscopy:X線光電子分光)の組み合わせによりSnの3d軌道を分析することで行った。アルゴンによるスパッタおよびXPSの測定は共に10KV、10mAの条件で行った。 In this example, the surface state of the solder was determined by analyzing the Sn 3d orbit by a combination of sputter etching with argon and XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy). Both sputtering with argon and measurement of XPS were performed under conditions of 10 KV and 10 mA.
 また、処理溶液中および処理によりはんだ粒子の表面に付着したハロゲン量は電位差自動滴定装置を用いて測定した。処理溶液の濃度は求めたハロゲン量から計算した。 Further, the amount of halogen adhering to the surface of the solder particles in the treatment solution and treatment was measured using a potentiometric automatic titrator. The concentration of the treatment solution was calculated from the obtained halogen amount.
 (実施例1)
 非イオン性ハロゲン活性剤(トリス(2.3-ジブロモプロピル)イソシアヌレート)をヘキシルジグリコールに溶解し、30gのSn3.0Ag0.5Cu粒子を添加し、10日間静置した。処理温度は室温若しくは35℃とした。尚、非イオン性ハロゲン活性剤濃度は、Sn3.0Ag0.5Cu粒子に対して、750ppm,1000ppm,1500ppm,2000ppm,2500ppm,3000ppm,4000ppm,5000ppm,7500ppm及び15000ppmとなるように調製した。処理後、粒子はトルエンで十分洗浄し、乾燥した。なお、「Sn3.0Ag0.5Cu」は、モル比で3.0%のAgと0.5%のCuを有し、残りがSnである組成のはんだである。
Example 1
A nonionic halogen activator (tris (2.3-dibromopropyl) isocyanurate) was dissolved in hexyl diglycol, 30 g of Sn3.0Ag0.5Cu particles were added, and the mixture was allowed to stand for 10 days. The treatment temperature was room temperature or 35 ° C. The nonionic halogen activator concentration was adjusted to 750 ppm, 1000 ppm, 1500 ppm, 2000 ppm, 2500 ppm, 3000 ppm, 4000 ppm, 5000 ppm, 7500 ppm and 15000 ppm with respect to Sn3.0Ag0.5Cu particles. After treatment, the particles were thoroughly washed with toluene and dried. “Sn3.0Ag0.5Cu” is a solder having a composition of 3.0% Ag and 0.5% Cu in the molar ratio, with the remainder being Sn.
 図1に、各種濃度で処理を行ったはんだ粒子と、ハロゲン非含有フラックスから作成したはんだペーストの、加熱後残渣に含まれるハロゲン量の測定結果を示す。横軸は処理溶液中のハロゲン含有非イオン性活性剤濃度(ppm)であり、縦軸は処理によりはんだ粒子表面上に添加されたハロゲン量(ppm)である。活性剤としてハロゲン非含有フラックスを用いている為、検出されるハロゲン量は、処理によりはんだ粒子表面上に添加されたハロゲン量を示唆するものである。 Fig. 1 shows the measurement results of the amount of halogen contained in the post-heating residue of solder paste processed from various concentrations and solder paste prepared from a halogen-free flux. The horizontal axis represents the halogen-containing nonionic active agent concentration (ppm) in the treatment solution, and the vertical axis represents the amount of halogen (ppm) added on the surface of the solder particles by the treatment. Since a halogen-free flux is used as the activator, the detected amount of halogen suggests the amount of halogen added on the surface of the solder particles by the treatment.
 750ppm~1500ppmの濃度の非イオン性ハロゲン活性剤溶液で処理した場合、はんだ粒子表面には30~50ppm程度のハロゲンが含まれていた。一方、2000ppmの濃度の非イオン性ハロゲン活性剤溶液で処理した場合、はんだ粒子中に含まれるハロゲン量は150~160ppm程度に増加した。また、それ以上の濃度で処理を行った場合でも、はんだ粒子表面に存在するハロゲン量は変化せず、150~200ppmの範囲で平衡状態であった。 When treated with a nonionic halogen activator solution having a concentration of 750 ppm to 1500 ppm, the solder particle surface contained about 30 to 50 ppm of halogen. On the other hand, when treated with a nonionic halogen activator solution having a concentration of 2000 ppm, the amount of halogen contained in the solder particles increased to about 150 to 160 ppm. Even when the treatment was performed at a concentration higher than that, the amount of halogen present on the surface of the solder particles did not change and was in an equilibrium state in the range of 150 to 200 ppm.
 図2に、未処理の原料粒子、750ppm及び3000ppmの濃度のハロゲン含有非イオン性活性剤溶液で処理した粒子と、ハロゲン非含有フラックスを用いて作成したはんだペーストによる、電子基板への実装結果を示す。 FIG. 2 shows the mounting results on an electronic substrate using untreated raw material particles, particles treated with a halogen-containing nonionic activator solution having a concentration of 750 ppm and 3000 ppm, and a solder paste prepared using a halogen-free flux. Show.
 図2(a)は原料粒子の場合であり、図2(b)は750ppmで処理した場合であり、図2(c)は3000ppmで処理した場合である。原料粒子及び750ppmで処理した粒子(はんだ粒子には30~50ppm程度のハロゲンを含有している)を用いた場合、矢印で示す円で囲んだ部分(矢印でも示した)に、加熱により溶解し流れ出した、はんだボールが観測された。 Fig. 2 (a) shows the case of raw material particles, Fig. 2 (b) shows the case of treatment at 750 ppm, and Fig. 2 (c) shows the case of treatment at 3000 ppm. When raw material particles and particles treated with 750 ppm (solder particles contain about 30 to 50 ppm of halogen) are dissolved by heating in the circled circles (also indicated by arrows). Solder balls that flowed out were observed.
 一方、3000ppmで処理した粒子(はんだ粒子自体には150~200ppm程度のハロゲンを含有している)の場合、溶融したはんだが完全に一体化し、はんだボールは存在しなかった。濡れ性が悪いと、溶融したはんだは一体化できず、はんだボールが多く発生すると考えられる。したがって、ハロゲン3000ppmで処理した粒子を用いたペースとは、濡れ性等の特性が通常のはんだペーストより高く、はんだペーストとして効果的に作用できることが明らかとなった。 On the other hand, in the case of particles treated at 3000 ppm (the solder particles themselves contain about 150 to 200 ppm of halogen), the molten solder was completely integrated and no solder balls were present. If the wettability is poor, it is considered that the molten solder cannot be integrated and a lot of solder balls are generated. Therefore, it is clear that the pace using particles treated with halogen of 3000 ppm is higher in characteristics such as wettability than a normal solder paste and can effectively act as a solder paste.
 ただし、750ppmで処理した場合であっても、原料粒子の場合より、はんだボールの発生が低減しているのがわかる。従って、750ppmの濃度の非イオン性ハロゲン活性剤溶液で処理された粒子も本発明の効果を奏するものである。なお、表1には図2(a)乃至(c)のはんだボールの発生数をカウントした数字を示す。 However, it can be seen that even when the treatment is performed at 750 ppm, the generation of solder balls is reduced as compared with the case of raw material particles. Therefore, particles treated with a nonionic halogen activator solution having a concentration of 750 ppm also exhibit the effects of the present invention. Table 1 shows numbers obtained by counting the number of solder balls generated in FIGS. 2 (a) to 2 (c).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図3に、未処理の原料粒子(a)、及び750ppm(b),1000ppm(c),1500ppm(d),2000ppm(e),5000ppm(f)の濃度で処理を行った粒子のXPS測定結果を示す。横軸は結合エネルギー(eV)をあらわし、縦軸は強度を示す。エッチングはArガスを用いて行い、試行回数1回につき3秒間のエッチングを行った。即ち、エッチング回数の増加と共に、粒子表面から粒子内部へと、深さ方向の情報が得られている。なお、エッチングの印加電圧および電流は上述のように10KV、10mAであった。図3(a)から(f)について試行は0回から7回まで行い、それぞれのグラフにおいて、各試行のプロファイルを縦に並べて表す。また、図3の(a)から(f)について、エッチング1回のプロファイルだけをまとめたものを図4に示す。 FIG. 3 shows the results of XPS measurement of untreated raw material particles (a) and particles processed at concentrations of 750 ppm (b), 1000 ppm (c), 1500 ppm (d), 2000 ppm (e), and 5000 ppm (f). Indicates. The horizontal axis represents binding energy (eV), and the vertical axis represents strength. Etching was performed using Ar gas, and etching was performed for 3 seconds per trial. That is, as the number of times of etching increases, information in the depth direction is obtained from the particle surface to the inside of the particle. The applied voltage and current for etching were 10 KV and 10 mA as described above. 3A to 3F, trials are performed from 0 to 7 times, and the profiles of the trials are vertically arranged in each graph. FIG. 4 shows a summary of only one-time etching profiles in FIGS. 3A to 3F.
 図3(a)を参照して、未処理の原料粒子でエッチングを行わない場合は、酸化物のピーク(486乃至488eVのエネルギー帯)のみが観測され、エッチング回数の増加とともに酸化物のピークは減少し金属のピーク(484乃至485.7eVのエネルギー帯)が増加した。即ち、未処理の原料粒子表面は酸化物で覆われている。 Referring to FIG. 3A, when etching is not performed with untreated raw material particles, only an oxide peak (energy band of 486 to 488 eV) is observed, and the oxide peak increases as the number of etching increases. The metal peak (energy band of 484 to 485.7 eV) increased and decreased. That is, the raw material particle surface is covered with oxide.
 一方、750ppm~5000ppmで処理を行った場合(図3(b)乃至(f))は、エッチング無しでも金属のピークが観測され、その強度は処理に用いた溶液の濃度の増加に伴って増加する傾向が観測された。図4を参照して、これらの試料の場合、1回のエッチング処理で金属のピークのみが明瞭に観測された。即ち、750ppm~5000ppmの濃度の非イオン性ハロゲン活性剤溶液で処理を行った場合、10KV、10mAで3分の条件のアルゴンスパッタエッチングを1回行い、金属/酸化物の比率が1を超えれば、ハロゲンを表面に形成した効果があり、はんだ粒子の酸化皮膜の厚みが低減されていることが判る。 On the other hand, when the treatment was performed at 750 ppm to 5000 ppm (FIGS. 3B to 3F), a metal peak was observed without etching, and the intensity increased with an increase in the concentration of the solution used for the treatment. A tendency to do so was observed. Referring to FIG. 4, in the case of these samples, only the metal peak was clearly observed in one etching process. That is, when the treatment is performed with a nonionic halogen activator solution having a concentration of 750 ppm to 5000 ppm, if argon sputter etching is performed once at 10 KV and 10 mA for 3 minutes and the metal / oxide ratio exceeds 1. It can be seen that there is an effect of forming halogen on the surface, and the thickness of the oxide film of the solder particles is reduced.
 処理によるハロゲン量の増加傾向を併せて考慮すると、1000ppmまでは主に酸化皮膜の厚み低減にフラックス成分は消費されていると考えられる。即ち、ハロゲンは酸化皮膜除去反応に消費される為、粒子表面には存在し得ない。 Considering the increasing tendency of the halogen amount due to the treatment, it is considered that the flux component is consumed mainly to reduce the thickness of the oxide film up to 1000 ppm. That is, since halogen is consumed in the oxide film removal reaction, it cannot be present on the particle surface.
 一方、1500ppm以上の濃度(図3(d)乃至(f))になると、酸化皮膜除去反応に関与しなかったハロゲンが粒子表面に存在するようになる。本処理により酸化皮膜量は低下し、安定な状態を保てる量で一定化すると考えられる。従って、表面のハロゲン量も一定となると推察できる。 On the other hand, when the concentration is 1500 ppm or more (FIGS. 3D to 3F), halogens that have not participated in the oxide film removal reaction are present on the particle surface. It is considered that the amount of the oxide film is reduced by this treatment and is made constant by an amount capable of maintaining a stable state. Therefore, it can be inferred that the surface halogen amount is also constant.
 スズハロゲン化物とスズ酸化物のピーク位置は極めて近い。従って、2000ppm以上の濃度の場合に金属スズのピーク強度が低下する理由は、ハロゲン化物のピークが酸化物のピークに加算された為、相対的に金属スズのピーク強度が低下したものと推察することが出来る。 The peak positions of tin halide and tin oxide are very close. Therefore, the reason why the peak intensity of metallic tin is reduced at a concentration of 2000 ppm or more is presumed that the peak intensity of metallic tin is relatively reduced because the peak of halide is added to the peak of oxide. I can do it.
 次に、上記処理により得られた180ppmのハロゲンを含有するはんだ粒子を、有機溶媒(トルエン、アセトン、メタノール、ヘキサン、テトラヒドロフラン)で更に2回洗浄を行った。この再洗浄した粒子と、ハロゲン非含有フラックスからはんだペーストを作成した、加熱後残渣に含まれるハロゲン量の測定を行った結果を表2に示す。 Next, the solder particles containing 180 ppm of halogen obtained by the above treatment were further washed twice with an organic solvent (toluene, acetone, methanol, hexane, tetrahydrofuran). Table 2 shows the results of measuring the amount of halogen contained in the residue after heating, in which a solder paste was prepared from the rewashed particles and the halogen-free flux.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 Br含有フラックスが表面吸着種としてはんだ粒子表面上に存在する場合、有機溶媒中に浸漬すると粒子表面と溶媒の間で平衡状態となり、その状態に依存して一部のBr含有フラックスが溶解し、粒子表面上のBr濃度は低下する。本実施例で用いたBr含有フラックスは上記の5種類の有機溶媒に可溶であるため、表面吸着種として存在する場合、2回の再洗浄を行うとその濃度は低下するはずである。しかしながら、トルエンによる再洗浄の結果から明らかなように、濃度は殆ど低下しない。即ち、本実施例で合成した試料では、はんだ粒子表面とBrが単純な表面吸着よりも強固な結合状態を有していることを示している。 When the Br-containing flux is present on the surface of the solder particle as a surface adsorbing species, when immersed in an organic solvent, an equilibrium state is established between the particle surface and the solvent, and depending on the state, a part of the Br-containing flux is dissolved, The Br concentration on the particle surface decreases. Since the Br-containing flux used in this example is soluble in the above five types of organic solvents, if it is present as a surface adsorbed species, its concentration should be reduced when re-washing twice. However, as is apparent from the result of rewashing with toluene, the concentration hardly decreases. That is, the sample synthesized in this example shows that the solder particle surface and Br have a stronger bonding state than simple surface adsorption.
 以上の結果から、低濃度ハロゲン含有非イオン性活性剤溶液を用いて金属粒子表面へハロゲンを添加した場合、処理済の粒子はハロゲンフリーはんだとしての特性を示すことが明らかとなった。なお、ここで、ハロゲンフリーとは、IPC規格で規定されたハロゲン非含有はんだのことであり、ハロゲン濃度が900ppm以下のものである。本発明のはんだ粒子は上記のようにハロゲンの濃度が900ppmである。 From the above results, it was revealed that when halogen was added to the metal particle surface using a low-concentration halogen-containing nonionic activator solution, the treated particles exhibited properties as halogen-free solder. Here, the term “halogen-free” refers to a halogen-free solder specified by the IPC standard, and has a halogen concentration of 900 ppm or less. As described above, the solder particles of the present invention have a halogen concentration of 900 ppm.
 (実施例2)
 ハロゲン含有イオン性活性剤(ジフェニルグアニジン臭化水素酸塩)をヘキシルジグリコールに溶解し、30gのSn3.0Ag0.5Cu粒子を添加し、10日間静置した。処理温度は室温若しくは35℃とした。尚、ハロゲン含有イオン性活性剤濃度は、Sn3.0Ag0.5Cu粒子に対して、2000ppm、3000ppm、4000ppm、5000ppm及び15000ppmとなるように調整した。処理後、粒子はトルエンで十分洗浄し、乾燥して以降の分析に用いた。
(Example 2)
A halogen-containing ionic activator (diphenylguanidine hydrobromide) was dissolved in hexyl diglycol, 30 g of Sn3.0Ag0.5Cu particles were added, and the mixture was allowed to stand for 10 days. The treatment temperature was room temperature or 35 ° C. The halogen-containing ionic activator concentration was adjusted to 2000 ppm, 3000 ppm, 4000 ppm, 5000 ppm and 15000 ppm with respect to Sn3.0Ag0.5Cu particles. After the treatment, the particles were thoroughly washed with toluene, dried and used for the subsequent analysis.
 図5に、各種濃度で処理を行ったはんだ粒子と、ハロゲン非含有フラックスから作成したはんだペーストの、加熱後残渣に含まれるハロゲン量の測定結果を示す。横軸は処理溶液中のハロゲン含有非イオン性活性剤濃度(ppm)であり、縦軸は処理によりはんだ粒子表面上に添加されたハロゲン量(ppm)である。活性剤としてハロゲン非含有フラックスを用いている為、検出されるハロゲン量は、処理によりはんだ粒子表面上に添加されたハロゲン量を示唆するものである。 FIG. 5 shows the measurement results of the amount of halogen contained in the post-heating residue of solder paste processed from various concentrations and solder paste prepared from a halogen-free flux. The horizontal axis represents the halogen-containing nonionic active agent concentration (ppm) in the treatment solution, and the vertical axis represents the amount of halogen (ppm) added on the surface of the solder particles by the treatment. Since a halogen-free flux is used as the activator, the detected amount of halogen suggests the amount of halogen added on the surface of the solder particles by the treatment.
 処理液中のハロゲン含有イオン性活性剤濃度の増加と共に、はんだ粒子表面に付着したハロゲン量は増加した。しかし、粒子表面に付着するハロゲン量の割合は、ハロゲン含有非イオン性活性剤を用いた場合と比較して緩やかであった。飽和溶液以上の濃度となる15000ppmという条件では、はんだ粒子表面に付着したハロゲン量は約140ppmとなった。この場合、処理溶液が飽和している為、はんだ粒子に活性剤が付着し、はんだ粒子だけを取り出すには、十分な洗浄が必要となった。 As the halogen-containing ionic activator concentration in the treatment liquid increased, the amount of halogen adhering to the surface of the solder particles increased. However, the proportion of the amount of halogen adhering to the particle surface was moderate as compared with the case of using a halogen-containing nonionic activator. Under the condition of 15000 ppm at a concentration equal to or higher than that of the saturated solution, the amount of halogen adhering to the solder particle surface was about 140 ppm. In this case, since the treatment solution is saturated, the activator adheres to the solder particles, and sufficient cleaning is required to take out only the solder particles.
 図6に、750ppm及び15000ppmの濃度のハロゲン含有イオン性活性剤溶液で処理した粒子と、ハロゲン非含有フラックスを用いて作成したはんだペーストによる、電子基板への実装結果を示す。図6(a)は750ppmの場合であり、図6(b)は15000ppmの場合である。原粒子は図2(a)で示したものである。はんだボールが観測された部分を矢印で示したのは、実施例1の場合と同じである。15000ppmの条件で処理を行った場合は、はんだボールは観測されず、はんだペーストとして必須の条件である濡れ性は満足できることが明らかとなった。 FIG. 6 shows the result of mounting on an electronic substrate using particles treated with a halogen-containing ionic activator solution having concentrations of 750 ppm and 15000 ppm and a solder paste prepared using a halogen-free flux. 6A shows the case of 750 ppm, and FIG. 6B shows the case of 15000 ppm. The primary particles are those shown in FIG. The portion where the solder ball is observed is indicated by an arrow as in the case of the first embodiment. When the treatment was performed under the condition of 15000 ppm, no solder balls were observed, and it became clear that the wettability, which is an essential condition for the solder paste, was satisfactory.
 以上の結果から、低濃度ハロゲン含有イオン性活性剤溶液を用いて金属粒子表面へのハロゲン添加した場合、処理済の粒子はハロゲンフリーはんだとしての特性を示すことが明らかとなった。但し、低濃度ハロゲン含有非イオン性活性剤溶液を用いた場合より、反応は緩慢であった。 From the above results, it has been clarified that when halogen is added to the surface of metal particles using a low-concentration halogen-containing ionic activator solution, the treated particles exhibit characteristics as halogen-free solder. However, the reaction was slower than when a low-concentration halogen-containing nonionic activator solution was used.
 (実施例3)
 次に、既に合成されたはんだペーストから回収したはんだ粒子を用いる場合の実施例について説明する。この様な系の場合、濃厚系であるため、金属粒子表面にはハロゲン種が吸着若しくは化合物として残留する。そこで、通常のはんだペースト調製法に従い、はんだペーストを調製し、それを溶剤で洗浄することで、金属粒子を回収した。
(Example 3)
Next, an example in which solder particles recovered from an already synthesized solder paste are used will be described. In such a system, since it is a dense system, halogen species are adsorbed or remain as compounds on the surface of the metal particles. Therefore, in accordance with a normal solder paste preparation method, a solder paste was prepared and washed with a solvent to recover metal particles.
 図7に未使用の原料粒子図7(a)(上段)、及び、はんだペースト化し回収した処理済み粒子図7(b)(下段)のXPSによるスズの評価結果を示す。縦軸はスズ金属(黒丸)とスズ酸化物(白丸)のピーク強度を示し、横軸はエッチング回数を示す。エッチングはArガスを用いて行い、試行回数1回につき5秒間のエッチングを行った。即ち、エッチング回数の増加と共に、粒子表面から粒子内部へと、深さ方向の情報が得られている。 FIG. 7 shows the evaluation results of tin by XPS of unused raw material particle FIG. 7 (a) (upper) and treated particles recovered by solder paste FIG. 7 (b) (lower). The vertical axis represents the peak intensity of tin metal (black circle) and tin oxide (white circle), and the horizontal axis represents the number of etchings. Etching was performed using Ar gas, and etching was performed for 5 seconds per trial. That is, as the number of times of etching increases, information in the depth direction is obtained from the particle surface to the inside of the particle.
 図7(a)の原料粒子の場合、エッチングを行っていない最表面は酸化物であり、エッチング回数の増加と共に酸化物強度は低下し金属の強度が増加した。尚、エッチング試行回数0回の場合と比較して、試行回数1回の場合に酸化物のピーク強度が増加していることは、エッチングにより表面吸着種(ガス等)が除去された為である。又、エッチング試行回数を増加させても酸化物種のピークが残留することは、粒子は球状であり表面からエッチングしても横部には酸化物層が必ず存在するためである。 In the case of the raw material particles shown in FIG. 7 (a), the outermost surface that was not etched was an oxide, and as the number of etchings increased, the oxide strength decreased and the metal strength increased. In addition, compared with the case where the number of etching trials is 0, the peak intensity of the oxide is increased when the number of trials is 1 because the surface adsorbed species (gas etc.) are removed by etching. . In addition, the peak of the oxide species remains even when the number of etching trials is increased because the particles are spherical and an oxide layer is always present on the side even if etching is performed from the surface.
 一方、図7(b)の処理済み粒子の場合、エッチング前の段階で既に金属のピークが観察され、エッチング試行回数1~2回で表面には金属が露呈していた。尚、処理により粒子表面には吸着種が存在している為、エッチングを行っていない場合のピーク強度は原料のそれと比較して低い。また、1回のエッチングでピーク強度が著しく増加していることから、吸着種量は少なく、且つ表面にのみ存在していることがわかる。 On the other hand, in the case of the treated particles of FIG. 7B, a metal peak was already observed before the etching, and the metal was exposed on the surface after one or two etching trials. Since the adsorbed species are present on the particle surface due to the treatment, the peak intensity when etching is not performed is lower than that of the raw material. Further, since the peak intensity is remarkably increased by one etching, it can be seen that the amount of adsorbed species is small and exists only on the surface.
 次に、処理済みの粒子とハロゲンを含まないフラックスを用いてはんだペーストを作成し、加熱し残渣中に含まれるハロゲン量(即ち処理済み粒子中に存在させたハロゲン量)を測定した。その結果、加熱残渣に含まれるハロゲン(臭素)量は130ppm~180ppmの範囲であった。即ち、処理により、粒子表面に130ppm程度のハロゲンを存在させることができた。 Next, a solder paste was prepared using the treated particles and a flux not containing halogen, and heated to measure the amount of halogen contained in the residue (that is, the amount of halogen present in the treated particles). As a result, the amount of halogen (bromine) contained in the heated residue was in the range of 130 ppm to 180 ppm. That is, by the treatment, about 130 ppm of halogen could be present on the particle surface.
 この粒子表面に存在する130ppmのハロゲンの存在量について説明する。上記のはんだ粒子は平均的に直径32μmの大きさがある。この1個のはんだ粒子の表面積Sおよび体積Vは、半径をrとすると、それぞれ4πr(cm)、4/3πr(cm)で表される。Sn3.0Ag0.5Cuの比重をρ(g/cm)、1モル当たりの重量をξ(g/mol)とする。 The abundance of 130 ppm halogen present on the particle surface will be described. The above solder particles have an average diameter of 32 μm. The surface area S and volume V of this single solder particle are represented by 4πr 2 (cm 2 ) and 4 / 3πr 3 (cm 3 ), respectively, where r is the radius. The specific gravity of Sn3.0Ag0.5Cu is ρ (g / cm 3 ), and the weight per mole is ξ (g / mol).
 はんだ粒子1個当たりの重量はρV(g)であるので、はんだ粒子1個には、(ρV)/ξ(mol)の原子が存在する。このうち130ppm(0.0013at%)がハロゲン(臭素)であるとすると、はんだ粒子1個には、(ρV×0.00013)/ξ(mol)のハロゲン原子が存在する。このハロゲン原子ははんだ粒子の表面に存在しているのだから、単位面積あたりのハロゲン原子の数は、(ρV×0.00013)/(ξS)(mol)と求めることができる。 Since the weight per solder particle is ρV (g), there are (ρV) / ξ (mol) atoms in one solder particle. Of these, assuming that 130 ppm (0.0013 at%) is halogen (bromine), one solder particle contains (ρV × 0.00013) / ξ (mol) of halogen atoms. Since the halogen atoms are present on the surface of the solder particles, the number of halogen atoms per unit area can be obtained as (ρV × 0.00013) / (ξS) (mol).
 ここで、r=1.6×10-3(cm)、ρ=7.359(g/cm)、ξ=117.4097(g/mol)の値をそれぞれ入れると、130ppmのハロゲンが存在するということは、単位面積当たりに0.435×10-8(mol/cm)のハロゲン原子が存在するということである。はんだ粒子表面のハロゲン量が200ppm超えることがなく、また、現実にははんだ粒子の大きさにもばらつきがあることを考慮すると、本発明のはんだ粒子の表面にはハロゲン元素換算で、1.0×10-9から1.0×10-8(mol/cm)のハロゲン化物が存在するといえる。 Here, when r = 1.6 × 10 −3 (cm), ρ = 7.359 (g / cm 3 ), and ξ = 117.4097 (g / mol) are entered, 130 ppm of halogen exists. This means that there are 0.435 × 10 −8 (mol / cm 2 ) halogen atoms per unit area. Considering that the amount of halogen on the surface of the solder particles does not exceed 200 ppm and that the size of the solder particles actually varies, the surface of the solder particles of the present invention is 1.0 in terms of halogen element. It can be said that a halide of x10 −9 to 1.0 × 10 −8 (mol / cm 2 ) exists.
 また、本発明のはんだ粒子の表面は、均一ではなく、凸凹が存在する。図8には、電子顕微鏡による本発明のはんだ粒子の写真を示す。写真は1800倍の写真であり、白線の長さが10μmである。粒子の表面は、凹凸が存在する。この凹凸は「ひけ」と呼ばれる現象で、この部分にはハロゲン化物は存在しにくい。従って、上記で求めたハロゲン化合物は、はんだ粒子の表面だけでなく、表面第1層目のハロゲン化合物の上に第2層目として存在する場合もある。 Also, the surface of the solder particles of the present invention is not uniform and has irregularities. In FIG. 8, the photograph of the solder particle of this invention by an electron microscope is shown. The photograph is a 1800 × photograph, and the length of the white line is 10 μm. There are irregularities on the surface of the particles. This unevenness is a phenomenon called “sink”, and halide is hardly present in this portion. Therefore, the halogen compound determined above may exist not only on the surface of the solder particles but also as a second layer on the halogen compound on the first layer of the surface.
 図9に本手法を用いて作成したはんだペーストによる電子基板への実装の状況を示す。処理済み粒子とハロゲン非含有フラックスを用いて調整したはんだペーストから、はんだが基板に実装されており、はんだボールは全く観測されなかった。なお、原粒子は図2(a)で示したものである。すなわち、従来品と比較して濡れ性などの特性が向上していることがわかった。 Fig. 9 shows the state of mounting on the electronic board using the solder paste created using this method. The solder was mounted on the substrate from the solder paste prepared using the treated particles and the halogen-free flux, and no solder balls were observed. The primary particles are those shown in FIG. That is, it was found that characteristics such as wettability were improved as compared with the conventional product.
 ここで、用いた粒子の組成と比重、結晶格子間隔等を考慮すると、粒子表面第一層中のスズと、表面に存在するハロゲン(臭素)の比率は、Sn:Br=1:2~3となると算出される(比率は酸化物相の結晶方位により変化する)。XPSの結果から、本処理により酸化物層の厚さが低減されている為、この様な少量のハロゲンでも機能が発現されたと考えられる。 Here, considering the composition and specific gravity of the particles used, the crystal lattice spacing, etc., the ratio of tin in the first layer of the particle surface to halogen (bromine) present on the surface is Sn: Br = 1: 2 to 3 (The ratio varies depending on the crystal orientation of the oxide phase). From the XPS results, it is considered that the function was developed even with such a small amount of halogen since the thickness of the oxide layer was reduced by this treatment.
 以上の結果から、通常の作成法に従って調製したはんだペーストを洗浄することで回収したはんだ粒子は、本発明のハロゲンフリーはんだとしての特性を示すことが明らかとなった。 From the above results, it has been clarified that the solder particles recovered by washing the solder paste prepared according to the normal production method exhibit the characteristics as the halogen-free solder of the present invention.
 本発明は、ハロゲンフリーのはんだペーストに利用できるばかりでなく、はんだペーストをリサイクル際にも好適に利用することができる。 The present invention can be used not only for halogen-free solder paste but also for use when recycling the solder paste.

Claims (12)

  1. 表面にハロゲン化物が被覆されていることを特徴とするはんだ粒子であり、加速電圧10kV、電流10mA、3秒間のArエッチング後のX線光電子分光分析によって得られたXPSスペクトルにおいて、酸化物依存のピーク強度と金属依存のピーク強度の相対比率として金属/酸化物が1以上であることを特徴とするはんだ粒子。 This is a solder particle characterized in that the surface is coated with a halide. In the XPS spectrum obtained by X-ray photoelectron spectroscopic analysis after an acceleration voltage of 10 kV, a current of 10 mA, and Ar etching for 3 seconds, it depends on the oxide. Solder particles characterized in that the metal / oxide is 1 or more as a relative ratio between the peak intensity and the metal-dependent peak intensity.
  2. 前記はんだ粒子は、Snを含む合金であって、加速電圧10kV、電流10mA、3秒間のArエッチング後のX線光電子分光分析によって得られたXPSスペクトルにおいて、Snの3d軌道の酸化物依存の486~488eVに存在するピーク強度と金属Sn依存の484~485.7eVに存在するピーク強度の相対比率としてSn金属/Sn酸化物が1以上であることを特徴とする請求項1に記載されたはんだ粒子。 The solder particles are an alloy containing Sn, and in the XPS spectrum obtained by X-ray photoelectron spectroscopy after Ar etching for 3 seconds with an acceleration voltage of 10 kV, a current of 10 mA, the oxide-dependent 486 of Sn 3d orbital. The solder according to claim 1, characterized in that Sn metal / Sn oxide is 1 or more as a relative ratio of the peak intensity existing at 488 to 488 eV and the peak intensity existing at 484 to 485.7 eV depending on metal Sn. particle.
  3. 前記はんだ粒子の平均粒径が3~200μmであって、前記ハロゲン化物が前記はんだ粉末に対して10ppm以上、900ppm以下である請求項1または2のいずれかの請求項に記載されたはんだ粒子。 3. The solder particles according to claim 1, wherein the solder particles have an average particle size of 3 to 200 μm, and the halide is 10 ppm or more and 900 ppm or less with respect to the solder powder.
  4. 前記はんだ粒子の平均粒径が25~35μmであって、前記ハロゲン化物が前記はんだ粉末に対して30ppm以上、200ppm以下である請求項1または2のいずれかの請求項に記載されたはんだ粒子。 3. The solder particles according to claim 1, wherein the solder particles have an average particle size of 25 to 35 μm, and the halide is 30 ppm or more and 200 ppm or less with respect to the solder powder.
  5. 前記ハロゲン化物は、前記はんだ粉末の表面上にSnハロゲン化物の形態で一層~四層存在することを特徴とする請求項1または2のいずれかの請求項に記載されたはんだ粒子。 3. The solder particle according to claim 1, wherein the halide is present in one to four layers in the form of Sn halide on the surface of the solder powder.
  6. 前記ハロゲン化物は、前記はんだ粉末の表面上にSnハロゲン化物の形態で一層または二層である請求項5に記載されたはんだ粒子。 The solder particles according to claim 5, wherein the halide is one or two layers in the form of Sn halide on the surface of the solder powder.
  7. 前記ハロゲン化物は、前記はんだ粉末の表面上にハロゲン元素換算で、1x10-9~1x10-8mol/cm存在することを特徴とする請求項1または2のいずれかの請求項に記載されたはんだ粒子。 3. The halide according to claim 1, wherein the halide is present on the surface of the solder powder in an amount of 1 × 10 −9 to 1 × 10 −8 mol / cm 2 in terms of a halogen element. Solder particles.
  8. 前記ハロゲン化物のハロゲン元素としては、F、Cl、Br、Iから選択された1元素あるいは2元素以上の組み合わせからなることを特徴とする請求項1乃至7のいずれか一つの請求項に記載されたはんだ粒子。 The halogen element of the halide is composed of one element selected from F, Cl, Br, and I, or a combination of two or more elements. Solder particles.
  9. 非イオン性ハロゲン活性剤で処理する工程を含むことを特長とする請求項1乃至8のいずれか一つの請求項に記載されたはんだ粒子の製造方法。 The method for producing solder particles according to any one of claims 1 to 8, further comprising a step of treating with a nonionic halogen activator.
  10. 請求項1乃至7のいずれか一つの請求項に記載されたはんだ粒子と、フラックスからなるはんだペースト。 A solder paste comprising the solder particles according to any one of claims 1 to 7 and a flux.
  11. ハロゲン含有量が900ppm以下であることを特徴とする請求項10に記載のはんだペースト。 The solder paste according to claim 10, wherein the halogen content is 900 ppm or less.
  12. 請求項1乃至8のいずれか一つの請求項に記載されたはんだ粒子を得る工程と、前記はんだ粒子にフラックスを混合分散させる工程を含むはんだペーストの製造方法。 A method for producing a solder paste, comprising a step of obtaining the solder particles according to any one of claims 1 to 8 and a step of mixing and dispersing a flux in the solder particles.
PCT/JP2010/056167 2009-04-08 2010-04-05 Solder particles and method for producing same, and solder paste and method for producing same WO2010116971A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800158636A CN102365148A (en) 2009-04-08 2010-04-05 Solder particles and method for producing same, and solder paste and method for producing same
JP2011508353A JP5489179B2 (en) 2009-04-08 2010-04-05 Solder particles and manufacturing method thereof, and solder paste and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009094431 2009-04-08
JP2009-094431 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116971A1 true WO2010116971A1 (en) 2010-10-14

Family

ID=42936254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056167 WO2010116971A1 (en) 2009-04-08 2010-04-05 Solder particles and method for producing same, and solder paste and method for producing same

Country Status (4)

Country Link
JP (1) JP5489179B2 (en)
CN (1) CN102365148A (en)
TW (1) TWI428198B (en)
WO (1) WO2010116971A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023534A (en) * 2011-07-19 2013-02-04 Mitsubishi Materials Corp Solder powder-cleaning agent and method for producing solder powder
CN108687463A (en) * 2017-03-30 2018-10-23 株式会社田村制作所 The manufacturing method of precoated shet solder composition, the manufacturing method of printed circuit board, solder composition and electric substrate
JP2019136738A (en) * 2018-02-09 2019-08-22 株式会社タムラ製作所 Solder composition and method for producing electronic substrate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354139B1 (en) * 2012-04-05 2013-11-27 千住金属工業株式会社 Flux and solder paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910990A (en) * 1995-06-23 1997-01-14 Nissin Electric Co Ltd Production of solder ball and device therefor
JPH10286691A (en) * 1997-04-15 1998-10-27 Seiko Epson Corp Solder or brazer material and production
JPH11245079A (en) * 1998-02-27 1999-09-14 Toshiba Corp Metal powder for solder paste and manufacture
JP2004283841A (en) * 2003-03-19 2004-10-14 Senju Metal Ind Co Ltd Solder paste and method for coating solder powder for solder paste

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4200325B2 (en) * 2004-11-04 2008-12-24 パナソニック株式会社 Solder bonding paste and solder bonding method
JP4969794B2 (en) * 2005-04-27 2012-07-04 三井金属鉱業株式会社 Method for producing tin powder
CN100450700C (en) * 2006-04-30 2009-01-14 北京市航天焊接材料厂 Lead-free halogen-free tinol and preparation process
CN101347875B (en) * 2008-08-19 2011-04-06 深圳悍豹科技有限公司 Middle-temperature energy-saving leadless solder paste special for tuners

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0910990A (en) * 1995-06-23 1997-01-14 Nissin Electric Co Ltd Production of solder ball and device therefor
JPH10286691A (en) * 1997-04-15 1998-10-27 Seiko Epson Corp Solder or brazer material and production
JPH11245079A (en) * 1998-02-27 1999-09-14 Toshiba Corp Metal powder for solder paste and manufacture
JP2004283841A (en) * 2003-03-19 2004-10-14 Senju Metal Ind Co Ltd Solder paste and method for coating solder powder for solder paste

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013023534A (en) * 2011-07-19 2013-02-04 Mitsubishi Materials Corp Solder powder-cleaning agent and method for producing solder powder
CN108687463A (en) * 2017-03-30 2018-10-23 株式会社田村制作所 The manufacturing method of precoated shet solder composition, the manufacturing method of printed circuit board, solder composition and electric substrate
CN108687463B (en) * 2017-03-30 2021-09-21 株式会社田村制作所 Solder composition for precoating, method for producing printed wiring board, solder composition, and method for producing electronic board
JP2019136738A (en) * 2018-02-09 2019-08-22 株式会社タムラ製作所 Solder composition and method for producing electronic substrate

Also Published As

Publication number Publication date
CN102365148A (en) 2012-02-29
JP5489179B2 (en) 2014-05-14
JPWO2010116971A1 (en) 2012-10-18
TWI428198B (en) 2014-03-01
TW201036748A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
EP0045496B1 (en) Flux treated solder powder composition
JP2017192987A (en) Solder composition and method of manufacturing soldered product
JP5018978B1 (en) Conductive material, connection method using the same, and connection structure
TW202007778A (en) Solder alloy, solder powder, solder paste, and a solder joint using these
JP4895328B2 (en) Surface treatment solder ball and surface treatment method of solder ball
EP2524763B1 (en) Solder paste
JP5489179B2 (en) Solder particles and manufacturing method thereof, and solder paste and manufacturing method thereof
TWI666086B (en) Solder bump forming method
WO2017154330A1 (en) Joining material and joined body production method
JPH03193291A (en) Solder paste composition
JP3493101B2 (en) Solder powder, manufacturing method thereof, and solder paste using the solder powder
EP0486685A4 (en) Use of organic acids in low residue solder pastes
WO2010076848A1 (en) Process for separating ingredient from waste soldering paste, and process for recycling of waste soldering paste
WO2018037579A1 (en) Cleaning composition and cleaning method
TW202010592A (en) Solder material, solder paste, and solder joint
JPH06502126A (en) Solder paste with solder alloy/formate complex as oxide remover and method for producing the same
JP6810373B1 (en) Solder alloys, solder pastes, solder balls, solder preforms, and solder fittings
JP2964419B2 (en) Cream solder
JP2011115855A (en) Solder paste having blackening preventive effect, and lead-free solder blackening preventive method
EP4144477A1 (en) Solder composition and method for manufacturing electronic board
Jiang Synthesis of tin, silver and their alloy nanoparticles for lead-free interconnect applications
KR100660582B1 (en) Soldering method and soldered joint
KR20170097283A (en) Lead-free solder composition and its manufacturing method
JPH03151189A (en) Cream solder
JP2013023534A (en) Solder powder-cleaning agent and method for producing solder powder

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015863.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761670

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011508353

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761670

Country of ref document: EP

Kind code of ref document: A1