WO2010115921A2 - Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz - Google Patents

Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz Download PDF

Info

Publication number
WO2010115921A2
WO2010115921A2 PCT/EP2010/054585 EP2010054585W WO2010115921A2 WO 2010115921 A2 WO2010115921 A2 WO 2010115921A2 EP 2010054585 W EP2010054585 W EP 2010054585W WO 2010115921 A2 WO2010115921 A2 WO 2010115921A2
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
gas turbine
tendency
stability parameter
value
Prior art date
Application number
PCT/EP2010/054585
Other languages
German (de)
English (en)
Other versions
WO2010115921A3 (fr
Inventor
Malte Blomeyer
Eberhard Deuker
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to ES10713903T priority Critical patent/ES2700444T3/es
Priority to RU2011145037/06A priority patent/RU2548233C2/ru
Priority to EP10713903.2A priority patent/EP2417395B1/fr
Priority to CN201080015017.4A priority patent/CN102713438B/zh
Publication of WO2010115921A2 publication Critical patent/WO2010115921A2/fr
Publication of WO2010115921A3 publication Critical patent/WO2010115921A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/24Preventing development of abnormal or undesired conditions, i.e. safety arrangements
    • F23N5/242Preventing development of abnormal or undesired conditions, i.e. safety arrangements using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means

Definitions

  • the invention relates to a method for analyzing the tendency to hum of a combustion chamber and a method for controlling the operation of a gas turbine with a combustion chamber, provided that hum of the combustion chamber is prevented.
  • combustion oscillations may occur. The occurrence of
  • Combustion vibration is also known as "combustion chamber hum.”
  • the combustor of the gas turbine tends to hum when the gas turbine is operated at a high turbine inlet temperature to achieve high thermal efficiency of the gas turbine.
  • the high turbine inlet temperature can be achieved by a correspondingly high combustion temperature in the combustion chamber, whereby the combustion chamber tends to hum.
  • Combustion vibrations are based on an interaction of the combustion air / fuel mixture flowing in the combustion chamber with the instantaneous combustion conversion in the flame.
  • the combustion vibrations cause increased mechanical and thermal stress on the combustion chamber structure and its suspension.
  • the combustion vibrations can suddenly occur in such a Intensity occur that the combustion chamber structure itself or other components of the gas turbine can be damaged.
  • the gas turbine is conventionally relieved of a high load gradient, thereby adversely reducing gas turbine output.
  • Remedy is the operation of the gas turbine with sufficient distance from the limit of self-excited combustion oscillations.
  • the limit of the self-excited combustion vibrations can unfavorably shift, so that for the most unfavorable environmental conditions, a sufficient distance from the limit of self-excited combustion vibrations must be maintained. It is disadvantageous that thus the upper power range of the gas turbine must be excluded and can not be driven.
  • the object of the invention is to provide a method for analyzing the rumble tendency of a combustion chamber, a method for controlling an operation of a gas turbine with a combustion chamber and a control device for controlling an operation of a gas turbine, the method being able to effectively operate the combustion chamber with sufficiently low rumbling tendency ,
  • the method according to the invention for analyzing the rumble tendency of a combustion chamber in an operating state comprises the steps of: operating the combustion chamber in the operating state; Detecting a thermoacoustic size of the
  • Combustion chamber is operated in an operating state with just yet permissible high Brummneist, the stability parameter is in this operating state on one of the thresholds; Quantify the rumble slope using the lower distance value and / or the upper distance value.
  • the threshold values can be selected depending on the operating and ambient conditions.
  • the magnitude of the amplitude values of the parameter changes moderately with the burning load of the combustion chamber and is only of limited significance for the purpose of
  • the stability parameter is calculated with the ratio value from the division of the amplitude value of the first resonance and the amplitude value of the second resonance.
  • the stability parameter is formed as the logarithm of the ratio. Further, it is preferable that the stability parameter is attenuated over time with a damping function. In this way, excessive transient changes in the stability parameter can advantageously be contained.
  • an attenuation function may be formed such that at a time instant n the stability parameter is formed from the arithmetic mean of the ratio value at time n and the ratio value at time n-1.
  • the characteristic is measured at the same time and for each site the local spectrum is determined, the local spectra having an envelope used as the spectrum.
  • the spectrum formed by the envelope is the entire possibly determined by spatial inhomogeneities operating state of Combustion chamber represents.
  • the combustion chamber is preferably designed as an annular combustion chamber rotationally symmetrical about an axis and has a plurality of points at which the parameters are measured, wherein the number of measuring points is reduced by utilizing the symmetry of vibration modes.
  • the parameter is the sound pressure in the combustion chamber and / or the acceleration of the combustion chamber structure.
  • the method according to the invention for controlling an operation of a gas turbine with a combustion chamber comprises the steps of: performing the previous method for analyzing the tendency to hum of the combustion chamber of the gas turbine during its operation; once the quantification of the rumble tendency indicates that the stability parameter has reached at least one of the threshold values, reducing the output power of the gas turbine.
  • the stability parameter can be used directly as a controlled variable for operating the gas turbine.
  • the instantaneous load of the gas turbine is directly correlated to the stability parameter, so that with the stability parameter, a power control of the gas turbine with regard to the avoidance of the hum of the combustion chamber can be accomplished.
  • the method of controlling the operation of the gas turbine further includes the step of: once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined distance value to at least one of the threshold values, controlling the operation of the gas turbine to reduce the rumble tendency.
  • the turbine outlet temperature is reduced by changing the compressor air mass flow into the combustion chamber as a manipulated variable compared to their target value and / or the temperature of the fuel is changed in the combustion chamber as a control variable to its desired value and / or spatial distribution of the fuel supply to the combustion chamber as a manipulated variable is changed from its desired value and / or - if more than one burner stages are available - the division is changed to different burner stages as a manipulated variable to its desired value.
  • the manipulated variable is preferably reset to its desired value.
  • the method of controlling the operation of the gas turbine comprises the step of, once the quantification of the rumble tendency indicates that the stability parameter has reached a predetermined and low rumble-defining distance value to at least one of the thresholds, controlling the operation of the gas turbine such that the operation the gas turbine is optimized in particular with regard to output power, emission and / or fuel consumption.
  • a control device for controlling an operation of a gas turbine is set up to carry out the aforementioned method.
  • Figure 2 is a diagram of the time course of a
  • FIG. 4 shows a diagram of a control curve for the gas turbine with power increase.
  • the parameter is the sound pressure in a combustion chamber, which occurs during operation of the combustion chamber.
  • the sound pressure in the combustion chamber can be measured, for example, with one or more microphones in the combustion chamber.
  • the spectrum 1 results when the Brummneist the combustion chamber is low. If the operating state of the combustion chamber is changed in such a way that the tendency to humming increases, the spectrum 1 changes into the spectrum 1 '. If the operating state of the combustion chamber is further changed, that the rumbling tendency increases and reaches a just yet permissible limit range, the spectrum 1 'changes into the spectrum 1 ".As a first resonance, the spectra 1, 1', 1" first amplitude maximum 2, 2 ', 2 "and as a second resonance a second amplitude maximum 3, 3', 3" on.
  • FIG. 2 shows a coordinate system over whose abscissa 8 the time from 0 to 2 minutes is plotted.
  • the left ordinate 6 is the stability parameter and the right ordinate 7 is a turbine outlet temperature.
  • the curve 10 of the turbine outlet temperature is 579 0 C. This results in the operating state in the combustion chamber, in which the
  • Stability parameter 6 with 0.3, as shown in the course curve 9 at time 0.75 minutes in FIG. Finally, the course of the turbine outlet temperature 10 is raised to a first level 11. As shown in FIG. 2, the course 9 of the stability parameter 6 is decreasing over time, which is an indication of the combustion chamber's tendency to increase over time.
  • FIG. 2 also shows the course of the acceleration 14 of the combustion chamber structure, which is essentially constant until the turbine outlet temperature 10 is raised to the first level 11. If the turbine outlet temperature 10 is increased to a second level 12, then the course 9 of the stability parameter 6 continues to drop and, in the combustion chamber, finally, hum occurs.
  • the hum has the consequence that with it self-excited combustion vibrations the
  • Combustion structure is strongly vibrated, causing the acceleration increases 14 to an acceleration peak 15 abruptly.
  • the acceleration tip 15 is so high that damage to the combustion chamber structure is to be expected. Therefore, in order to prevent damage to the combustor structure, the gas turbine is shut down, as shown by a rapid drop in the curve 10 of the turbine exit temperature in FIG.
  • a threshold value 16 of the stability parameter 6 is plotted at 0.1.
  • the course 9 of the stability parameter 6 falls below (drawn in FIG. 2 by 17) the threshold value 16 at a first time 18, which is 1.55 minutes.
  • the first time 18 is advanced 15 seconds from the second point in time 19, when the acceleration peak 15 occurs. If, during operation of the gas turbine, the threshold value 16 is fallen below the stability parameter 6, a response time of 15 seconds remains, according to FIG. 2, during which the operation of the gas turbine is to be changed with a view to weakening the rumble tendency, such that the hum of the combustion chamber and thus the resulting rapid shutdown of the gas turbine can be avoided.
  • FIGS. 3 and 4 are similar to the diagram in FIG. 2 and show an operation of the gas turbine with the proviso of preventing hum of the combustion chamber.
  • the Brummneist the combustion chamber may increase, for example, that decreases in a compressor of the gas turbine due to wear or contamination, the pressure ratio. Further, the Brummneist the combustion chamber may increase by the fact that the ambient temperature and thus the compressor inlet temperature increases during operation of the gas turbine. For example, be the gas turbine at a level of
  • Turbine exit temperature operated, as it shows the trajectory 10 at the origin of the abscissa in FIG. Caused by, for example, one of the aforementioned Influences increase the Brummne Trent the combustion chamber, so that the course 9 of the stability parameter 6 drops. Without intervention in the operation of the gas turbine, this process would continue until eventually the combustion chamber starts to hum.
  • a second threshold value 16 ' is plotted at 0.2, which lies above the first threshold value 16 (threshold value 16 at 0.1).
  • the fuel supply into the combustion chamber is reduced at a third time 20 by means of a control device for the gas turbine such that the curve 10 of the turbine outlet temperature within 3 seconds at the fourth time 21 7 lowers by 1 Kelvin.
  • Stability parameter 6 braked and vice versa, so that finally the trajectory 9 of the stability parameter 6 exceeds the threshold 16 'again at the fifth time 22.
  • the lowering of the turbine outlet temperature 7 by 1 Kelvin was not sufficient to achieve a sufficiently large distance to the hum of the combustion chamber, so falls after the fifth time 22, the curve 9 of the stability parameter 6 again and falls below the threshold 16 '.
  • Turbine exit temperature 7 is lowered again by 1 Kelvin, which in turn slows down the course 9 of the stability parameter 6 and vice versa, until finally the curve 9 of the stability parameter 6 has exceeded the threshold value 16 '.
  • Turbine outlet temperature 7 can be raised in its course 10 back to the original level.
  • Stability parameter 6 such that it comes to reaching the threshold value 16 at 0.1, which would be carried out at this shortfall 17 an emergency shutdown of the gas turbine.
  • the drop of the curve 9 of the stability parameter 6 is decelerated and vice versa, so that finally the curve 9 of the stability parameter 6 exceeds the threshold value 16 'at 0.2 and thereafter the threshold value 16 " 0.4, so that the turbine outlet temperature 7 can be traced over the course 10 shown in FIG. 4 to the correspondingly required level 10 ', whereby the tendency to hum of the combustion chamber always remains so low in that an emergency shutdown of the gas turbine need not be made.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Testing Of Engines (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

Un procédé d'analyse de la tendance au ronflement d'une chambre de combustion en état de fonctionnement présente les étapes suivantes : mise en fonctionnement de la chambre de combustion en état de fonctionnement; saisie d'une grandeur thermoacoustique du volume de gaz de la chambre de combustion et/ou d'une grandeur de vibration de la structure de la chambre de combustion en état de fonctionnement et détermination d'une grandeur caractéristique à partir de la grandeur thermoacoustique et/ou de la grandeur de vibration; détermination du spectre (1, 1', 1'') des grandeurs caractéristiques en état de fonctionnement en tant que variation de l'amplitude de la grandeur caractéristique au cours du temps; identification d'une première résonance et d'une deuxième résonance de la grandeur caractéristique à l'aide du spectre (1, 1', 1''); détermination de la valeur d'amplitude (2, 2', 2'') de la première résonance et de la valeur d'amplitude (3, 3', 3'') de la deuxième résonance; calcul d'un paramètre de stabilité (9, 9') comme fonction de la valeur d'amplitude (2, 2', 2'') de la première résonance et de la valeur d'amplitude (3, 3', 3'') de la deuxième résonance; détermination de la valeur d'écart inférieur et/ou de la valeur d'écart supérieur, auxquelles le paramètre de stabilité (9, 9') se situe au-delà d'une valeur seuil inférieure prédéterminée (16) et/ou en deçà d'une valeur seuil supérieure prédéterminée, la valeur seuil (16) étant choisie de sorte que lorsque la chambre de combustion en état de fonctionnement fonctionne avec une tendance au ronflement juste supérieure à ce qui est toléré, le paramètre de stabilité (9, 9') se situe dans cet état de fonctionnement à l'une des valeurs seuil (16); et quantification de la tendance au ronflement au moyen de l'écart inférieur et/ou de l'écart supérieur.
PCT/EP2010/054585 2009-04-08 2010-04-07 Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz WO2010115921A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES10713903T ES2700444T3 (es) 2009-04-08 2010-04-07 Procedimiento para analizar la tendencia de zumbido de una cámara de combustión y procedimiento para controlar una turbina de gas
RU2011145037/06A RU2548233C2 (ru) 2009-04-08 2010-04-07 Способ диагностирования склонности камеры сгорания к гудению и способ управления газовой турбиной
EP10713903.2A EP2417395B1 (fr) 2009-04-08 2010-04-07 Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz
CN201080015017.4A CN102713438B (zh) 2009-04-08 2010-04-07 用于分析燃烧室的轰鸣倾向和控制燃气轮机的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09157596A EP2239505A1 (fr) 2009-04-08 2009-04-08 Procédé d'analyse de la tendance d'une chambre de combustion à émettre des bruits à basse fréquence et procédé de commande d'une turbine à gaz
EP09157596.9 2009-04-08

Publications (2)

Publication Number Publication Date
WO2010115921A2 true WO2010115921A2 (fr) 2010-10-14
WO2010115921A3 WO2010115921A3 (fr) 2013-03-14

Family

ID=41010879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/054585 WO2010115921A2 (fr) 2009-04-08 2010-04-07 Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz

Country Status (5)

Country Link
EP (2) EP2239505A1 (fr)
CN (1) CN102713438B (fr)
ES (1) ES2700444T3 (fr)
RU (1) RU2548233C2 (fr)
WO (1) WO2010115921A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520863B1 (fr) 2011-05-05 2016-11-23 General Electric Technology GmbH Procédé de protection d'un moteur à turbine à gaz contre des valeurs de processus dynamique élevées et moteur de turbine à gaz pour l'exécution de ce procédé
EP3045676A1 (fr) 2015-01-13 2016-07-20 Siemens Aktiengesellschaft Procédé destiné à éviter un détachement de courant rotatif
EP3101343A1 (fr) * 2015-06-05 2016-12-07 Siemens Aktiengesellschaft Procede de commande intelligent avec des seuils variables sur la base des lectures de vibration
EP3104078A1 (fr) * 2015-06-12 2016-12-14 IFTA Ingenieurbüro Für Thermoakustik GmbH Procédé et appareil de précurseur thermoacoustique
RU2618774C1 (ru) * 2016-01-11 2017-05-11 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ контроля вибрационного горения в камере сгорания газотурбинного двигателя
DE102019204422A1 (de) 2019-03-29 2020-10-01 Siemens Aktiengesellschaft Vorhersage einer Verbrennungsdynamik einer Gasturbine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55110823A (en) * 1979-02-16 1980-08-26 Kobe Steel Ltd Controlling method of air ratio at combustion furnace
JPH0792225B2 (ja) * 1986-08-05 1995-10-09 バブコツク日立株式会社 燃焼振動監視装置
RU2046312C1 (ru) * 1991-10-08 1995-10-20 Машиностроительное конструкторское бюро "Гранит" Способ диагностирования степени засорения коллектора с форсунками камеры сгорания газотурбинного двигателя
US5719791A (en) * 1995-03-17 1998-02-17 Georgia Tech Research Corporation Methods, apparatus and systems for real time identification and control of modes of oscillation
US5706643A (en) * 1995-11-14 1998-01-13 United Technologies Corporation Active gas turbine combustion control to minimize nitrous oxide emissions
US5865609A (en) * 1996-12-20 1999-02-02 United Technologies Corporation Method of combustion with low acoustics
GB2344883B (en) * 1998-12-16 2003-10-29 Graviner Ltd Kidde Flame monitoring methods and apparatus
EP1327824A1 (fr) * 2001-12-24 2003-07-16 ABB Schweiz AG Détection et réglage du point de fonctionnement d'une chambre de combustion de turbine à gaz en approchant la limite d'extinction
EP1688671B2 (fr) * 2005-02-03 2019-01-09 Ansaldo Energia IP UK Limited Méthode de protection et système de contrôle pour turbine à gaz

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
ES2700444T3 (es) 2019-02-15
EP2239505A1 (fr) 2010-10-13
CN102713438B (zh) 2014-09-10
WO2010115921A3 (fr) 2013-03-14
RU2011145037A (ru) 2013-05-20
EP2417395A2 (fr) 2012-02-15
EP2417395B1 (fr) 2018-09-05
RU2548233C2 (ru) 2015-04-20
CN102713438A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
EP2417395B1 (fr) Procédé d'analyse de la tendance au ronflement d'une chambre de combustion et procédé de commande d'une turbine à gaz
EP1880141B1 (fr) Procédé et dispositif de régulation du fonctionnement dans une chambre de combustion d'une turbine à gaz
EP2562369B1 (fr) Méthode pour opérer une turbine à gaz et turbine à gaz pour exécuter la méthode
DE102010016615A1 (de) Fehlererkennung und Schutz von mehrstufigen Verdichtern
EP2789914A1 (fr) Procédé destiné à la surveillance d'un état de flamme
DE112014003023B4 (de) Kompressorsteuervorrichtung, Kompressionsausrüstung, Kompressorsteuerungsverfahren und Kompressionsverschlechterungsbestimmungsverfahren
DE102007009791A1 (de) Verfahren und Systeme zur variablen Entnahme bei Gasturbinen
CH706985B1 (de) Verfahren, Vorrichtung und System zum Festlegen einer Sollabgastemperatur für eine Gasturbine.
CH703587B1 (de) Druckbetätigter Stopfen.
EP1971804B1 (fr) Procédé de fonctionnement d'un foyer
EP1934528B1 (fr) Procédé et dispositif pour contrôler le dépôt de particules solides, en particulier dans un tube de combustible d'un turbine à gaz
EP1533569B1 (fr) Méthode de fonctionnement d'un appareil de combustion
CH702827A1 (de) Verfahren zum Abkühlen einer Gasturbine.
DE102008002610A1 (de) Verfahren zur (Online-) Betriebsüberwachung und Regelung einer Gasturbinenanlage
EP1792242B1 (fr) Procede et dispositif pour determiner un etat defectueux dans un compresseur rotatif
DE102014002601B4 (de) Anzeigeeinrichtung, Verfahren und Steuerung zur Analyse eines Schwingungsverhaltens eines Feuerungssystems
DE102014115478A1 (de) Automatisierte Steuerung des Betriebs einer Gasturbine mit Minderdrehzahl
EP2638269B1 (fr) Procédé de régulation d'une turbine à gaz
WO2004010052A1 (fr) Procede permettant de commander l'introduction de milieux inertes dans une chambre de combustion
DE10352088A1 (de) Verfahren zum Betrieb einer Zerstäubungsvorrichtung
DE102011122406A1 (de) Verfahren zum Betrieb einer Gasturbine
DE102016212535A1 (de) Vorrichtung zur Drehzahlüberwachung einer Welle und Turbomaschine mit einer Vorrichtung zur Drehzahlüberwachung
EP2853717A1 (fr) Turbine à gaz pour un mode de charge partielle conforme en termes de CO
EP3865773A1 (fr) Procédé de commande d'un dispositif de combustion
DE102018101562A1 (de) Regelung einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015017.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10713903

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010713903

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011145037

Country of ref document: RU

Kind code of ref document: A