WO2010115357A1 - Procédé et système de correction d'horloge pour une station de base sans fil dans un réseau à protocole internet (ip) - Google Patents
Procédé et système de correction d'horloge pour une station de base sans fil dans un réseau à protocole internet (ip) Download PDFInfo
- Publication number
- WO2010115357A1 WO2010115357A1 PCT/CN2010/071024 CN2010071024W WO2010115357A1 WO 2010115357 A1 WO2010115357 A1 WO 2010115357A1 CN 2010071024 W CN2010071024 W CN 2010071024W WO 2010115357 A1 WO2010115357 A1 WO 2010115357A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- clock
- base station
- wireless base
- correction
- timestamp
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J3/00—Time-division multiplex systems
- H04J3/02—Details
- H04J3/06—Synchronising arrangements
- H04J3/0635—Clock or time synchronisation in a network
- H04J3/0638—Clock or time synchronisation among nodes; Internode synchronisation
- H04J3/0658—Clock or time synchronisation among packet nodes
- H04J3/0661—Clock or time synchronisation among packet nodes using timestamps
- H04J3/0667—Bidirectional timestamps, e.g. NTP or PTP for compensation of clock drift and for compensation of propagation delays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/34—Reselection control
- H04W36/38—Reselection control by fixed network equipment
- H04W36/385—Reselection control by fixed network equipment of the core network
Definitions
- the present invention relates to a clock synchronization correction technology for a wireless base station in the field of mobile communication, and more particularly to a method and system for correcting a wireless base station clock based on an Internet Protocol (IP) network.
- IP Internet Protocol
- GSM Global System For Mobile Communication
- BSS Base Station Subsystem
- BSC base station controller
- BTS base transceiver station
- Wireless base stations require accurate clock signals for a variety of applications.
- a wireless base station uses a temperature compensated crystal oscillator (TCXO, Temperature Compensated Crystal Oscillator) to generate a 26 MHz oscillation frequency as a local clock signal, but as time and temperature change, the 26 MHz oscillation frequency will have a relatively large change, thereby affecting Air interface wireless transmission quality, and bring interference to other base stations and affect mobile phone access.
- TCXO Temperature Compensated Crystal Oscillator
- the BTS extracts a synchronous clock signal by means of an E1/T1 link of TDM, or a GPS device, to calibrate the oscillation of the local clock.
- Frequency to ensure the quality of air interface wireless transmission, to solve the interference problem caused by frequency offset.
- IP network networking is diverse and flexible, and IP networking has become mainstream.
- the clock signal cannot be obtained through the E1 link, but the clock accuracy obtained only through the physical layer of the IP network cannot meet the requirements of the wireless communication device. Summary of the invention
- the present invention provides a method and system for correcting a radio base station clock based on an IP network to provide a more accurate clock for a radio base station in an IP network.
- the present invention adopts the following technical solutions:
- a method for correcting a wireless base station clock based on an IP network comprising:
- the wireless base station acquires at least two sets of related correction data indicating clock synchronization; in the clock correction process, the wireless base station calculates a corrected frequency difference by using the correlation correction data, and pairs the local clock according to the corrected frequency difference Make corrections.
- the correlation correction data of each group includes a first timestamp, a second timestamp, a third timestamp, and a fourth timestamp;
- the first timestamp is a time when the wireless base station sends a clock synchronization request to the clock synchronization server;
- the second timestamp is a time when the clock synchronization server receives the clock synchronization request;
- the third timestamp is a clock a time when the synchronization server sends a clock synchronization response to the wireless base station;
- the fourth timestamp is a time when the wireless base station receives the clock synchronization response; among them, /.
- # is the correction frequency difference
- ⁇ is the standard frequency
- ⁇ ⁇ is the difference between the first time stamps corresponding to each of the two sets of the correlation correction data
- ⁇ ⁇ is the corresponding corresponding to each of the two sets of the correlation correction data a difference between the two timestamps
- ⁇ ⁇ is a difference between the third timestamps corresponding to each of the two sets of the correlation correction data
- ⁇ 4 is the difference between the fourth time stamps corresponding to each of the two sets of the correlation correction data.
- the method further includes: filtering the bad values in the corrected frequency difference.
- the method further includes: the wireless base station correcting the local clock by using an average of the plurality of corrected frequency differences.
- the clock synchronization server is a network time protocol ( ⁇ ) synchronization source, and the US electrical And the Institute of Electrical Engineers 1588 Protocol (PTP) synchronization source, or a custom synchronization source. In addition, this method can also be used as a clock synchronization source.
- ⁇ network time protocol
- PTP Institute of Electrical Engineers 1588 Protocol
- the invention also discloses a wireless base station clock correction system based on an IP network, the system comprising: a correction data acquisition module and a clock correction module; wherein
- a calibration data acquisition module configured to acquire, by the wireless base station, at least two sets of related correction data that characterize clock synchronization
- a clock correction module configured to calculate, by the wireless base station, a corrected frequency difference by using the correlation correction data, and correct the local clock according to the corrected frequency difference.
- the correction data collection module is further configured to: when acquiring at least two sets of the correlation correction data, each set of the correlation correction data includes a first timestamp, a second timestamp, a third timestamp, and a fourth Timestamp
- the first timestamp is a time when the wireless base station sends a clock synchronization request to the clock synchronization server;
- the second timestamp is a time when the clock synchronization server receives the clock synchronization request;
- the third timestamp is a clock a time when the synchronization server sends a clock synchronization response to the wireless base station;
- the fourth timestamp is a time when the wireless base station receives the clock synchronization response;
- the clock correction module is further configured to: when the local clock is corrected according to the corrected frequency difference, Wherein, the frequency difference is corrected; ⁇ is the standard frequency; ⁇ ⁇ is the difference between the first time stamps corresponding to each of the two sets of the correlation correction data; ⁇ ⁇ is corresponding to each of the two sets of the correlation correction data respectively a difference between the second time stamps; ⁇ ⁇ is a difference between the third time stamps corresponding to each of the two sets of the correlation correction data; ⁇ is a fourth time corresponding to each of the two sets of the correlation correction data The difference between the stamps.
- the system further includes: a bad value filtering module, configured to filter a bad value in the corrected frequency difference when the wireless base station performs correction by using multiple corrected frequency differences.
- the clock correction module is further configured to: when the wireless base station passes multiple correction frequencies When the difference is corrected, the radio base station corrects the local clock by the mean of the plurality of corrected frequency differences.
- the clock synchronization server is an NTP synchronization source, a PTP synchronization source, or a customized synchronization source.
- the system can be used as a clock synchronization source.
- the present invention has the following advantages:
- the invention corrects the local clock of the wireless base station by collecting data such as the sending time of the clock synchronization request of the wireless base station, the time when the clock synchronization server receives the request, the time of sending the clock synchronization response, and the time when the wireless base station receives the response. This provides accurate clock timing. DRAWINGS
- FIG. 1 is a schematic view showing the structure of a system of an example of the present invention
- FIG. 2 is a schematic flow chart of a calibration process of an example of the present invention
- FIG. 3 is a schematic structural diagram of a system hardware of an example of the present invention.
- FIG. 1 exemplarily depicts the system architecture of the present invention.
- FIG. 1 depicts only portions relevant to the present invention, and those skilled in the art will appreciate that the wireless base station has other functions and structures, but these are not within the scope of the present invention.
- the exemplary system shown in Figure 1 includes: a wireless base station at the client 1.
- the radio base station 1 includes a local clock 11, a correction data acquisition module 12, and a clock correction module 13.
- the radio base station 1 transmits a clock synchronization request 3 to the clock synchronization server 2 through the correction data acquisition module 12, and records the transmission time of the clock synchronization request 3 as the first time stamp T1.
- the first timestamp T1 can be obtained by using the local clock 11 of the radio base station 1, for example, a 26 ⁇ voltage controlled crystal oscillator.
- the clock synchronization server 2 When the clock synchronization server 2 receives the clock synchronization request 3, it records the current time as Second timestamp T2. Then, when the clock synchronization server 2 transmits the clock synchronization response 4 to the radio base station 1, the current time is also recorded, that is, the transmission time of the clock synchronization response 4 is taken as the third time stamp ⁇ 3.
- the clock synchronization response 4 sent by the clock synchronization server 2 to the radio base station 1 will contain a second time stamp ⁇ 2 and a third time stamp ⁇ 3.
- the acquisition of the second timestamp ⁇ 2 and the third timestamp ⁇ 3 may have different manners depending on the application scenario. For example, the clock synchronization server 2 may acquire the second time stamp ⁇ 2 and the third time stamp ⁇ 3 from the reference clock carried by itself, or may also be acquired by the coordinated receiving universal time (UTC) standard clock by the GPS receiving device.
- UTC coordinated receiving universal time
- the radio base station 1 When the radio base station 1 receives the clock synchronization response 4, the current time is recorded, that is, the reception time of the clock synchronization response 4 of the radio base station 1 is taken as the fourth time stamp ⁇ 4. Similarly, the fourth timestamp ⁇ 4 can be obtained by the local clock 11.
- the calibration data acquisition module 11 of the radio base station 1 receives the correction data and hands it to the clock correction module 13 for correction processing.
- the correction data includes: a first timestamp T1, a second timestamp ⁇ 2, a third timestamp ⁇ 4, and a fourth timestamp ⁇ 4.
- the data collection process needs to be repeated in one synchronization.
- the data collection can be performed periodically by the timing mode of the timer. In this mode, the next data collection may have a certain time interval from the previous data collection. Or the event triggering mode in which the wireless base station receives the clock synchronization response causes the next data acquisition to start immediately following the end of the previous data collection.
- Figure 4 depicts the process of two data acquisitions.
- the client is the wireless base station 1
- the server is the clock synchronization server 2
- the data ⁇ 10, ⁇ 20, ⁇ 30, ⁇ 40 are the first timestamp data collected
- data Tll T21, T31, T41 are the timestamp data collected for the second time
- ⁇ 2 ⁇ 1 -ul+u2
- ⁇ ⁇ 2+ ⁇ ⁇ 3 ⁇ + AT4-ul +u2-D2+Dl
- the FPGA count time is employed, and therefore, in the following derivation, the time data is expressed in the form of a count.
- the standard frequency is 26MHz, which is the difference between the actual frequency and the standard frequency.
- the bias correction voltage, the crystal oscillator is frequency corrected under the control of the correction voltage.
- the interval between two acquisitions that is, the larger the timing interval of T11-T10, the smaller the introduction error.
- multiple measurements can be taken and then averaged.
- FIG. 2 exemplarily describes the calibration processing flow of the present invention, including the following steps: Step S201, the system is started.
- Step S202 The calibration data collection module 12 of the radio base station 1 acquires and acquires data for correction and saves it by interacting with the data of the clock synchronization server 2. Thereafter, the process officially entered the correction process.
- Step S203 The calibration process first needs to perform filtering algorithm analysis on the collected data to filter the bad values. For the analysis of the filtering algorithm, it can be performed by the bad value filtering module in the wireless base station 1, and the bad value filtering module is not indicated in the drawing.
- Step S204 according to the foregoing frequency difference calculation process, , to determine whether it meets the network quality threshold requirements. After judging that the data meets the network quality threshold requirement, the process will proceed to step S205, otherwise, the process jumps to step
- Step S205 The data that meets the network quality threshold requirement is saved to a reasonable data area. Through the screening of network quality threshold requirements, it is possible to filter out data whose accuracy is greatly affected by factors such as network jitter and delay, and to save more reasonable data.
- Step S206 when the amount of reasonable data saved in the reasonable data area has not reached the predetermined number When the value is up, the process will return to step S202 to continue the above process of data collection, filtering, network quality threshold requirement judgment, etc., once the reasonable data amount in the reasonable data area reaches a predetermined value, usually set to 10, the process will The process proceeds to step S207.
- Step S207 using a reasonable data of a predetermined data amount as a correction reference, using a frequency offset calculation algorithm, calculating a corrected frequency difference, and converting the corrected frequency difference into a voltage control voltage value to the wireless base station by using a D/A conversion algorithm
- the 26M voltage controlled crystal oscillator of 1 performs correction control to realize frequency offset correction of the radio base station 1.
- Step S208 When the frequency offset correction is completed, all data areas are cleared.
- step S209 the data that does not meet the network quality threshold requirement will not be saved and will be cleared after the end of the synchronization.
- FIG. 3 exemplarily describes the hardware configuration of the radio base station 1 of the present invention. It should be understood that Figure 3 only depicts portions of the invention that are relevant to the present invention, and that other configurations that the wireless base station should have are not within the scope of the description of Figure 3. Meanwhile, FIG. 3 is also merely an example of the present invention, and does not limit the necessity of adopting the hardware structure shown in FIG. 3 to implement the present invention.
- the main components included in the wireless base station 1 and their functions are:
- Microprocessor chip used for the implementation of the IP protocol stack and the functional control of each module of the system.
- Programmable Logic Array FPGA: Used to count the output signal of the voltage controlled oscillator; 26M voltage controlled oscillator: Voltage controlled crystal oscillator, less affected by temperature drift and time drift; A/D subject to CPU control High-precision conversion chip for outputting voltage control values.
- the CPU activates the FPGA running program to complete the initialization of each hardware module parameter.
- the FPGA counts the 26M crystal oscillator output oscillation signal and converts it into a 64-bit format.
- the unit assumes that it is 1/26000000S. It periodically sends a time synchronization message to the clock synchronization server that provides the IP clock synchronization source.
- the protocol can use the network time protocol (NTP, Network Time Protocol). Or IEEE1588 protocol (PTP), after collecting a certain amount of data, you can obtain optimal multi-group data according to statistical methods, such as removing the maximum and minimum data of the offset value. After averaging these multiple sets of data, calculate the deviation of the FPGA count for a certain period of time, convert it to voltage voltage control value, and calibrate the 26M crystal oscillator signal.
- IEEE is the American Institute of Electrical and Electronics Engineers.
- Targeted Resolved the problem of clock and frequency synchronization in the current IP networking environment.
- Flexible networking The present invention can be fully integrated into the base station software; and the same device can be used as a client for frequency offset correction, and can be used as a calibration synchronization source for other clients.
- the present invention can be implemented entirely in software without the need for other external devices.
- High precision By using a stable clock synchronization source as the clock synchronization server, filtering out the bad values that are greatly affected by network jitter, and using the data after the Xuexuan calculation to calculate the voltage control voltage value, the accuracy of O.lppm in the internet network environment can be obtained. O.Olppm precision clock under LAN.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
L'invention concerne un procédé de correction d'horloge pour une station de base sans fil dans un réseau à protocole Internet (IP), le procédé comprenant les étapes suivantes : obtention, par la station de base sans fil, d'au moins deux groupes de données de correction connexes représentant une synchronisation d'horloge; calcul, par la station de base sans fil, d'une différence de fréquence de correction à partir des données de correction connexes, et correction de l'horloge locale en fonction de la différence de fréquence de correction. L'invention concerne également un système de correction d'horloge pour une station de base sans fil dans un réseau IP, le système comprenant : un module d'acquisition de données de correction (12) conçu pour obtenir au moins deux groupes de données de correction connexes représentant une synchronisation d'horloge; un module de correction d'horloge (13) conçu pour calculer une différence de fréquence de correction à partir des données de correction connexes et pour corriger l'horloge locale en fonction de la différence de fréquence de correction. Le procédé et le système selon l'invention permettent de générer une horloge plus précise pour une station de base sans fil dans un réseau IP.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009101065750A CN101860952B (zh) | 2009-04-09 | 2009-04-09 | 一种基于ip网络的无线基站时钟校正方法及系统 |
CN200910106575.0 | 2009-04-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010115357A1 true WO2010115357A1 (fr) | 2010-10-14 |
Family
ID=42935643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2010/071024 WO2010115357A1 (fr) | 2009-04-09 | 2010-03-12 | Procédé et système de correction d'horloge pour une station de base sans fil dans un réseau à protocole internet (ip) |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN101860952B (fr) |
WO (1) | WO2010115357A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111579918A (zh) * | 2020-04-13 | 2020-08-25 | 上海紫通信息科技有限公司 | 一种暂态录波型故障指示器采样同步校正方法 |
EP3979527A1 (fr) * | 2020-09-30 | 2022-04-06 | Rockwell Automation Technologies, Inc. | Système et procédé d'heure synchronisée sur le réseau dans les applications de sécurité |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105515710B (zh) * | 2011-01-26 | 2019-05-24 | 华为技术有限公司 | 一种实现时间同步的方法和装置 |
RU2551131C2 (ru) * | 2011-01-26 | 2015-05-20 | Хуавей Текнолоджиз Ко., Лтд. | Способ и устройство реализации временной синхронизации |
KR20130040641A (ko) * | 2011-10-14 | 2013-04-24 | 삼성테크윈 주식회사 | 레이다 연동 감시 시스템 |
CN102684808A (zh) * | 2012-06-06 | 2012-09-19 | 哈尔滨工业大学 | 一种自适应时钟同步系统 |
CN103475461B (zh) * | 2013-09-30 | 2016-06-08 | 武汉邮电科学研究院 | 一种1588时钟同步功能实现方法 |
TWI548294B (zh) | 2014-03-10 | 2016-09-01 | 鴻海精密工業股份有限公司 | 家庭基站及其校正頻率的方法 |
CN103945237A (zh) * | 2014-04-23 | 2014-07-23 | 海信集团有限公司 | 一种时钟同步方法、系统及数字电视设备、epg服务器 |
WO2016011601A1 (fr) * | 2014-07-22 | 2016-01-28 | 华为技术有限公司 | Point d'accès, terminal et procédé de localisation intérieur à technologie wi-fi (wifi) |
CN104935584B (zh) * | 2015-06-01 | 2018-06-15 | 广州广哈通信股份有限公司 | 一种基于电路传输方式的授时方法及装置及系统 |
CN105099649B (zh) * | 2015-08-14 | 2018-10-16 | 宋亚玲 | 一种网络时间同步嵌入的方法和系统 |
CN107171763B (zh) * | 2017-07-05 | 2018-10-23 | 北京蓝海讯通科技股份有限公司 | 一种基于时间偏移的时间处理方法、装置及移动终端 |
CN109392074B (zh) * | 2017-08-04 | 2022-02-18 | 华为技术有限公司 | 时钟校准方法和装置 |
CN111631737B (zh) * | 2020-05-14 | 2021-03-05 | 赛诺威盛科技(北京)有限公司 | Ct系统同步脉冲产生的方法和装置 |
CN111885696B (zh) * | 2020-07-07 | 2022-04-19 | 武汉虹信科技发展有限责任公司 | 5g nr时钟频率同步方法及装置 |
CN112040539B (zh) * | 2020-09-03 | 2021-09-14 | 广州视源电子科技股份有限公司 | 时钟同步方法、装置及存储介质 |
CN114221732B (zh) * | 2021-12-23 | 2024-08-09 | 北京四方继保工程技术有限公司 | 一种带同步质量的高精度乒乓同步方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003087182A (ja) * | 2001-09-12 | 2003-03-20 | Hitachi Ltd | Cdmaシステム基地局装置及びその時刻同期方法 |
CN101179316A (zh) * | 2007-11-30 | 2008-05-14 | 华为技术有限公司 | 时钟调整的方法、装置和接入点 |
WO2008143907A1 (fr) * | 2007-05-15 | 2008-11-27 | Zwire, Inc. | Synchronisation d'horloge pour système de communications sans fil |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1878054B (zh) * | 2006-02-07 | 2010-05-12 | 华为技术有限公司 | Ip网络传送基站用时钟参考的装置和方法 |
CN101222288B (zh) * | 2008-02-01 | 2011-07-20 | 华为技术有限公司 | 一种自适应网络抖动的ip网络传输方法、系统及设备 |
-
2009
- 2009-04-09 CN CN2009101065750A patent/CN101860952B/zh not_active Expired - Fee Related
-
2010
- 2010-03-12 WO PCT/CN2010/071024 patent/WO2010115357A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003087182A (ja) * | 2001-09-12 | 2003-03-20 | Hitachi Ltd | Cdmaシステム基地局装置及びその時刻同期方法 |
WO2008143907A1 (fr) * | 2007-05-15 | 2008-11-27 | Zwire, Inc. | Synchronisation d'horloge pour système de communications sans fil |
CN101179316A (zh) * | 2007-11-30 | 2008-05-14 | 华为技术有限公司 | 时钟调整的方法、装置和接入点 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111579918A (zh) * | 2020-04-13 | 2020-08-25 | 上海紫通信息科技有限公司 | 一种暂态录波型故障指示器采样同步校正方法 |
CN111579918B (zh) * | 2020-04-13 | 2022-03-04 | 上海紫通信息科技有限公司 | 一种暂态录波型故障指示器采样同步校正方法 |
EP3979527A1 (fr) * | 2020-09-30 | 2022-04-06 | Rockwell Automation Technologies, Inc. | Système et procédé d'heure synchronisée sur le réseau dans les applications de sécurité |
US11599090B2 (en) | 2020-09-30 | 2023-03-07 | Rockwell Automation Technologies, Inc. | System and method of network synchronized time in safety applications |
Also Published As
Publication number | Publication date |
---|---|
CN101860952A (zh) | 2010-10-13 |
CN101860952B (zh) | 2012-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010115357A1 (fr) | Procédé et système de correction d'horloge pour une station de base sans fil dans un réseau à protocole internet (ip) | |
EP2715956B1 (fr) | Synchronisation de précision dans un système de spécification d'interface de service de données par câble (docsis) | |
US20080075061A1 (en) | Synchronising base stations | |
JP5804086B2 (ja) | ノード装置および時刻同期方法 | |
EP2382829B1 (fr) | Procédé de synchronisation à l'intérieur d'un système de station de base | |
CN108880727B (zh) | 一种基于PTPd2协议的精确时钟同步实现方法 | |
JPWO2018123857A1 (ja) | センシングシステム及び時刻同期方法 | |
WO2012118178A1 (fr) | Système de synchronisation, procédé de synchronisation, premier dispositif de synchronisation, second dispositif de synchronisation et programme d'ordinateur | |
CN105577349A (zh) | 一种机载网络ieee1588协议主从时钟端口同步方法 | |
WO2018082665A1 (fr) | Procédé de synchronisation de fréquence et horloge esclave | |
JP7014726B2 (ja) | 無線ノードの時刻同期ネットワークと無線ノード | |
WO2011160595A1 (fr) | Procédé, noeud d'horloge esclave et système permettant de sélectionner un noeud d'horloge maître basé sur un protocole de précision temporelle (ptp) et sur une qualité de liaison | |
WO2012088931A1 (fr) | Procédé et dispositif de surveillance de synchronisation temporelle | |
WO2015089848A1 (fr) | Procédé et nœud de synchronisation de protocole de temps de précision | |
KR20090071923A (ko) | 동기식 이더넷에서 단일 타임 싱크 프레임을 이용한 통신단말 및 브리지 장치의 시간 동기화 방법 및 그 장치 | |
CN114845377A (zh) | 一种基于uwb的高精度无线时钟同步方法与系统 | |
CN113965288A (zh) | 提高精确时间协议ptp时间同步精度的方法和装置 | |
Thi et al. | IEEE 802.1 TSN time synchronization over Wi-Fi and 5G mobile networks | |
WO2012103702A1 (fr) | Procédé et dispositif de détection de performance d'équipement 1588 | |
CN105450320B (zh) | 一种智能变电站全程us级精度无线以太网络同步装置及方法 | |
JP2015188159A (ja) | スレーブノード、時刻同期方法及びコンピュータプログラム | |
Harada et al. | 20-µs accuracy time-synchronization method using bluetooth low energy for internet-of-things sensors | |
TWI314827B (en) | Time synchronization method for wireless sensor networks | |
JP6385849B2 (ja) | 時刻同期方法および時刻同期装置 | |
JP2019054479A (ja) | 基地局装置、無線通信システム、及び周波数補正方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761186 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10761186 Country of ref document: EP Kind code of ref document: A1 |