WO2010113997A1 - マイクロ流路チップ及びそれを用いた気液相分離方法 - Google Patents

マイクロ流路チップ及びそれを用いた気液相分離方法 Download PDF

Info

Publication number
WO2010113997A1
WO2010113997A1 PCT/JP2010/055797 JP2010055797W WO2010113997A1 WO 2010113997 A1 WO2010113997 A1 WO 2010113997A1 JP 2010055797 W JP2010055797 W JP 2010055797W WO 2010113997 A1 WO2010113997 A1 WO 2010113997A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannel
gas
liquid phase
liquid
phase flow
Prior art date
Application number
PCT/JP2010/055797
Other languages
English (en)
French (fr)
Inventor
新 青田
ゆう子 木平
真理 佐々木
武彦 北森
和真 馬渡
Original Assignee
マイクロ化学技研株式会社
国立大学法人東京大学
財団法人神奈川科学技術アカデミー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロ化学技研株式会社, 国立大学法人東京大学, 財団法人神奈川科学技術アカデミー filed Critical マイクロ化学技研株式会社
Priority to CN201080024006.2A priority Critical patent/CN102448602B/zh
Priority to US13/262,103 priority patent/US8815604B2/en
Publication of WO2010113997A1 publication Critical patent/WO2010113997A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0031Degasification of liquids by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/36Polytetrafluoroethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/38Hydrophobic membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L5/00Gas handling apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/08Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a stream of discrete samples flowing along a tube system, e.g. flow injection analysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • Y10T436/173845Amine and quaternary ammonium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/17Nitrogen containing
    • Y10T436/173845Amine and quaternary ammonium
    • Y10T436/175383Ammonia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]

Definitions

  • the present invention relates to a micro-channel chip capable of eliminating a gas-phase flow from a two-phase flow consisting of a gas-phase flow and a liquid-phase flow flowing in the micro-channel and making it a liquid-phase flow, and a gas using the micro-channel chip
  • the present invention relates to a liquid phase separation method, a microchannel chip for measuring a gas test substance, and a gas test substance measuring method.
  • Semiconductor devices are manufactured in a clean room with very little dust to reduce the defect rate.
  • the air in the clean room is required not only to contain no dust but also to contain no ammonia. If ammonia is contained in the air in the clean room even at a low concentration of several ppb, the precision of ultra fine patterning is reduced and the defect rate is increased. For this reason, it is necessary to constantly monitor the ammonia concentration in the air in the clean room.
  • the ammonia concentration in the air in the clean room is measured by using a pump to pass the air in the clean room through a collection liquid of about 100 mL, and the ammonia in the air is collected in the collection liquid. This is measured by transferring ammonia to the analysis center and quantifying ammonia in the collected liquid.
  • a measurement method of ammonia concentration in air that can be measured in a clean room for a short time, preferably within about 20 minutes, without transporting to the analysis center, and the measurement sensitivity is on the order of 1 ppb. It is desirable to do.
  • Non-patent Document 1 The inventors of the present application have developed a method for measuring the ammonia concentration in the air using a microchannel chip (Non-patent Document 1).
  • air which is a test sample containing ammonia, and a collected liquid are introduced into a microchannel, and a gas-liquid two-phase flow is generated in the microchannel to extract ammonia from the gas phase to the liquid phase.
  • the gas phase is discharged through a micro-channel with a 2 mm diameter hole in the upper part to convert the two-phase flow into a liquid-phase flow.
  • the ammonia concentration is measured by introducing a color and measuring the color with a thermal lens microscope (TLM).
  • TLM thermal lens microscope
  • the ammonia concentration in the air can be measured on the spot in the order of 1 ppb in a time of about 10 minutes, and the above requirements can be met.
  • An object of the present invention is to provide a method for measuring gas soluble in a liquid such as ammonia with high reproducibility and high sensitivity, a gas-liquid phase separation method used therefor, and a microchannel chip for the method.
  • Non-Patent Document 1 the low reproducibility in the method described in Non-Patent Document 1 is caused by the unstable gas-liquid phase separation in the microchannel.
  • the depth of the microchannels is set within a specific range, and the upper part of the microchannels is filled with gas.
  • the present invention was completed by finding that sufficient gas-liquid phase separation can be achieved by coating with a porous membrane capable of flowing.
  • the present invention relates to a microchannel provided in a substrate, a gas-liquid phase separation connected to a downstream end of the microchannel, a depth of 10 ⁇ m to 100 ⁇ m, and an upper portion covered with a porous membrane
  • a microchannel chip comprising a microchannel is provided.
  • the present invention is a two-phase flow composed of a gas phase and a liquid phase flowing through the micro flow channel, wherein the liquid phase flow flows through the periphery of the micro flow channel, and the gas phase flow flows through the inside thereof.
  • a gas-liquid phase separation method in which a gas phase is excluded from a two-phase flow to obtain a liquid-phase flow, wherein the two-phase flow is circulated through the microchannel in the microchannel chip of the present invention.
  • Gas-liquid phase separation comprising leading to a liquid phase separation microchannel and flowing through the region, thereby discharging the gas phase flow out of the gas-liquid phase separation microchannel through the porous membrane Provide a method.
  • the present invention provides A sample gas introduction microchannel for introducing a sample gas containing a test substance that is a soluble gas in the collection liquid;
  • a collection liquid introduction microchannel for introducing the collection liquid;
  • a gas extraction microchannel located downstream of a confluence of the sample gas introduction microchannel and the collected liquid introduction microchannel, wherein a liquid phase flow circulates in a peripheral portion of the gas extraction microchannel
  • a gas extraction microchannel through which a two-phase flow in which a gas phase flow circulates, and
  • a gas-liquid phase separation microchannel connected to the downstream end of the gas extraction microchannel, having a depth of 10 ⁇ m to 100 ⁇ m, and having an upper portion covered with a porous membrane;
  • the remaining liquid phase flow which is connected downstream of the gas-liquid phase separation microchannel and passes through the gas-liquid phase separation microchannel, is discharged from the porous membrane, and flows.
  • a micro-channel chip for measuring a gas test substance comprising a test substance measurement micro-channel for measuring the test substance contained in a
  • the present invention includes a step of introducing the sample gas into the sample gas introduction microchannel of the microchannel chip of the present invention, Introducing the collection liquid into the collection liquid introduction microchannel; A step of causing the two-phase flow formed by the sample gas and the collection liquid to flow through the gas extraction microchannel, and thereby collecting the test substance in the sample gas in the collection liquid; When, Flowing the two-phase flow through the gas-liquid phase separation micro-channel, thereby discharging the gas-phase flow from the porous membrane to the liquid phase flow; And a step of measuring the test substance contained in the obtained liquid phase flow.
  • a novel gas-liquid phase separation method capable of stably performing sufficient gas-liquid phase separation in a microchannel and a microchannel chip therefor have been provided.
  • the gas-liquid phase separation method of the present invention to the measurement method of a test gas using a microchannel described in Non-Patent Document 1, etc., the test gas is reproduced with high sensitivity in a short time. Can be measured with good performance.
  • microchannel chip of the present invention has a gas-liquid phase separation microchannel. It is a figure which shows typically the two-phase flow which flows through the inside of a microchannel. It is a figure which shows typically the microchannel chip of this invention for the measurement of the to-be-tested substance soluble in a liquid. It is a schematic top view of the microchannel chip
  • the microchannel chip itself provided with a microchannel in the substrate can perform various chemical reactions efficiently and is already widely used.
  • the microchannel is formed in a groove shape on a substrate of glass, plastic, metal, etc., and its upper part is covered with a flat plate such as a glass plate, and its cross-sectional shape is usually almost semicircular or It is semi-elliptical.
  • the cross-sectional shape of the microchannel is not limited to a semicircular shape or a semielliptical shape, and may be any other shape such as a rectangular shape, a circular shape, or an elliptical shape.
  • the width of the microchannel is usually about 10 ⁇ m to 600 ⁇ m, preferably about 100 ⁇ m to 500 ⁇ m, and the depth is usually about 5 ⁇ m to 300 ⁇ m, preferably about 50 ⁇ m to 200 ⁇ m.
  • the gas-liquid phase separation microchannel in the microchannel chip of the present invention is connected to the downstream end of such a microchannel provided in the substrate and has a depth of 10 ⁇ m to 100 ⁇ m, preferably 40 ⁇ m to 90 ⁇ m.
  • a microchannel whose upper part is covered with a porous membrane.
  • FIG. 1 is a cross-sectional view of a substrate on which a microchannel is formed as viewed from the side.
  • a microchannel 12 is formed in the substrate 10.
  • the depth of the microchannel 12 is d1.
  • a gas-liquid phase separation microchannel 14 is connected to the downstream end of the microchannel 12.
  • the depth of the microchannel is d2, and d2 is smaller than d1 as shown.
  • the width of the microchannel (width in the direction perpendicular to the paper surface of FIG. 1) may be the same or different between the microchannel 12 and the gas-liquid phase separation microchannel 14.
  • the length of the gas-liquid phase separation microchannel 14 is not particularly limited, but is usually about 0.5 cm to 5 cm, preferably about 1 cm to 2 cm.
  • the upper part of the gas-liquid phase separation microchannel 14 is covered with a porous membrane 16.
  • the porous membrane 16 is not particularly limited as long as gas can flow therethrough, but the average pore size is usually about 0.1 ⁇ m to 2.0 ⁇ m, preferably the average pore size is about 0.4 ⁇ m to 1 ⁇ m, and the porosity is Is about 50% to 90%, preferably about 70% to 80%.
  • the thickness of the porous membrane is not particularly limited, but is usually about 10 ⁇ m to 200 ⁇ m, preferably about 50 ⁇ m to 100 ⁇ m.
  • the material of the porous film 16 is not particularly limited as long as gas can flow, but a material made of a hydrophobic material is preferable.
  • the porous film made of a hydrophobic material means a porous film having a hydrophobic property so that water does not infiltrate on the opposite side even when it comes into contact with water.
  • Preferable hydrophobic materials for forming the porous membrane include polytetrafluoroethylene (trade name Teflon (registered trademark)), perfluoroalkoxyethylene, polyethylene, polypropylene, polyvinyl alcohol, nylon and the like. Since Teflon (registered trademark) that can be preferably used as the porous membrane 16 is commercially available (model number: T080A025A, manufactured by Advantech), a commercially available product can be preferably used.
  • a microchannel 12 is formed in a groove shape on the upper surface of the lower substrate 10a.
  • a gas-liquid phase separation microchannel 14 is formed in a groove shape on the upper surface of the upper substrate 10b.
  • two-phase gas-liquid separation consisting of a gas phase and a liquid phase that circulates in the microchannel can be performed. That is, the gas phase can be discharged from the inside of the microchannel to form a liquid phase flow.
  • a gas phase flow and a liquid phase flow are introduced into the micro flow channel 12 using a pump in an upstream portion of the micro flow channel 12 (described later).
  • the liquid phase flow 20 flows in a film form along the inner surface of the microchannel 12 due to the surface tension (liquid film flow), and the gas phase flow 18 It flows in (center side).
  • the gas phase stream 18 is outlined and the liquid phase stream 20 is shown in dark grey.
  • a two-phase flow including such a liquid phase flow 20 and a gas phase flow 18 flowing inside the liquid phase flow 20 circulates in the microchannel 12.
  • the gas-phase flow 18 is discharged to the outside through the porous membrane 16 (indicated by the white upward arrow in FIG. 1), and the two-phase flow Becomes the liquid phase flow 20 (only the liquid phase flow 20 is shown in the right half of the gas-liquid phase separation microchannel 14 in FIG. 1).
  • the depth d2 of the gas-liquid phase separation microchannel 14 is shallower than the depth d1 of the microchannel 12, it is preferable because the gas phase is more easily discharged.
  • the liquid phase stream 20 is subjected to measurement using any chemical reaction further downstream.
  • the gas-liquid phase separation can be stably performed over 24 hours.
  • gas-liquid phase separation can be continuously performed only for a maximum of 8 hours.
  • the pressure conditions for phase separation are narrow, and phase separation may fail due to pump disturbance or humidity / temperature changes.
  • the pressure condition in the microchannel capable of phase separation is widened, and the phase separation method is strong against disturbances and changes in the surrounding environment.
  • gas-liquid phase separation method of the present invention can be used for measurement of a gaseous test substance that is soluble in a liquid such as ammonia.
  • a liquid such as ammonia
  • a micro-channel chip 22 for measuring a gas-soluble test substance in a liquid introduces a sample gas-introducing micro-channel for introducing a sample gas containing a test substance that is a soluble gas in a collecting liquid. 24 and a collection liquid introduction microchannel 26 for introducing the collection liquid.
  • the sample gas introduction microchannel 24 and the collected liquid introduction microchannel 26 merge to form the microchannel 12 described above.
  • a gaseous test substance 28 in the gas phase flow 18 is extracted into a liquid phase flow 20 made of a collected liquid (FIG. 2). 2), so that it functions as a gas extraction microchannel.
  • the liquid phase flow 20 flows along the inner surface of the microchannel, and the two-phase flow in which the gas phase flow 18 flows inside is formed.
  • the test substance 28 in the gas phase flow 18 is efficiently extracted into the liquid phase flow 20 made of the collected liquid.
  • the length of the gas extraction microchannel 12 is not particularly limited, but is usually about 1 cm to 60 cm, preferably about 30 cm to 40 cm.
  • the downstream end of the gas extraction micro-channel 12 is connected to the gas-liquid phase separation micro-channel 14 as described above, and the gas-liquid phase separation is performed in the gas-liquid phase separation micro-channel 14 as described above.
  • the flow becomes a liquid phase flow.
  • test substance measurement microchannel 30 (FIG. 1) for measuring the test substance 28 (FIG. 2) contained in the phase flow 20 is connected.
  • the size of the test substance measurement microchannel 30 may be a normal size as described for the microchannel 12, and may be the same as or different from the size of the microchannel 12.
  • the length of the test substance measurement microchannel 30 is appropriately selected according to the chemical reaction performed therein, but is usually about 1 cm to 80 cm, preferably about 35 cm to 55 cm.
  • the test substance measurement microchannel 30 may be connected to one or two or more microchannels for introducing a reagent necessary for measurement of the test substance.
  • a reagent necessary for measurement of the test substance is ammonia, for example, by the indophenol method in which an oxidizing solution such as hypochlorite such as sodium hypochlorite and a coloring solution such as phenol are allowed to act to produce a blue pigment. Can be measured.
  • the chemical reaction formula of the indophenol method is as follows.
  • the micro-channel for introducing the oxidizing solution and the micro-channel for introducing the color developing solution are used to measure the test substance. Connected to the microchannel 30.
  • test substance measurement microchannel 30 After a chemical reaction necessary for the measurement is performed in the test substance measurement microchannel 30, the liquid is discharged from the downstream portion of the test substance measurement microchannel 30 or the downstream end of the test substance measurement microchannel 30 to the outside of the chip. After discharging the phase flow 20, the test substance is measured.
  • “measurement” is used in the meaning including any of detection, quantification, and semi-quantification.
  • the test substance measurement microchannel 30 is connected to a thermal lens microscope (TLM) in a downstream portion of the test substance measurement microchannel 30. ) Can be quantified.
  • TLM thermal lens microscope
  • the thermal lens microscope irradiates two laser beams called excitation light and probe light onto a substance in the microchannel, and changes in the refractive index of the liquid caused by the laser irradiation (the refractive index changes depending on the temperature of the liquid) Is a device that modulates the excitation light and synchronously detects the change in the light amount of the probe light, and can quantitate the substance in the microchannel with high sensitivity. Since the thermal lens microscope is already commercially available (Micro Chemical Engineering Co., Ltd.), a commercially available product can be preferably used.
  • sample air for measuring the ammonia concentration is injected into the sample gas introduction microchannel 24 and water is used as a collection liquid. It is injected into the collection liquid introduction microchannel 26.
  • the sample gas injection rate is not particularly limited, but is usually about 10 mL / min to 1000 mL / min, preferably about 50 mL / min to 150 mL / min.
  • the water injection rate is not particularly limited, but is usually about 0.5 ⁇ L / min to 10 ⁇ L / min, preferably about 1 ⁇ L / min to 5 ⁇ L / min.
  • the sample gas introduction microchannel 24 and the collected liquid introduction microchannel 26 merge to form the gas extraction microchannel 12, where the two-phase flow described above is formed, and ammonia in the sample air is collected into the collection solution. Is extracted into water. Since the solubility of ammonia in water is extremely high, 100% extraction is possible if ammonia is contained in room air.
  • the test substance measurement micro-channel 30 following the gas-liquid phase separation micro-channel 14 is connected to the above-described oxidation solution introduction micro-channel and coloring solution introduction micro-channel. An oxidizing solution and a coloring solution are respectively introduced (see FIG. 4 described later).
  • the chemical reaction in the above-described indophenol method occurs in the test substance measurement microchannel 30, and the generated blue pigment is quantified with the thermal lens microscope.
  • the detection limit concentration of 1 ppb of ammonia can be achieved. Further, according to this method, since the air flow is discharged more completely than the method described in Non-Patent Document 1, the variation in the measurement values by the thermal lens microscope is reduced, and the reproducibility is high.
  • Example 1 A microchannel chip having the gas-liquid phase separation microchannel shown in FIG. 1 was produced. A schematic plan view thereof is shown in FIG. An oxidizing solution introduction microchannel 34 and a color developing solution introduction microchannel 36 were connected to the test substance measurement microchannel 30.
  • the collected liquid in which ammonia gas is dissolved is allowed to pass through the gas-liquid phase separation part, and then once guided to a tube (solid arrow in FIG. 4). It is re-introduced into the inner channel and merged with the color developing solution and the oxidizing solution, and reacted in the micro channel downstream thereof.
  • FIG. 1 A microchannel chip having the gas-liquid phase separation microchannel shown in FIG. 1 was produced. A schematic plan view thereof is shown in FIG. An oxidizing solution introduction microchannel 34 and a color developing solution introduction microchannel 36 were connected to the test substance measurement microchannel 30.
  • the collected liquid in which ammonia gas is dissolved is allowed to pass through the gas-liquid phase separation part, and then once guided to a tube (solid arrow in FIG.
  • the microchannel chip was prepared by forming microchannels on the upper surfaces of two glass substrates and laminating these glass substrates.
  • NH 3 gas diluted with nitrogen gas is introduced at a flow rate of 100 ml / min and water as a collection liquid is introduced at a flow rate of 3 ⁇ L / min.
  • the gas-liquid phase separation microchannel portion was observed with a microscope. As a result, the gas-liquid phase separation could be stably performed for 24 hours or more, and the flow of the liquid after the gas-liquid phase separation was smooth.
  • Comparative Example 1 instead of the gas-liquid phase separation microchannel 14, a microchannel chip similar to that in Example 1 was prepared except that an air hole having a diameter of 2 mm was provided at the top of the microchannel, and the gas-liquid was similar to the above. The state of phase separation was observed with a microscope. As a result, gas-liquid phase separation could only be achieved for a maximum of 8 hours continuously. Moreover, the case where the flow of the liquid after gas-liquid phase separation was not smooth was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 アンモニア等の液体に可溶性のガスを、再現性良く、高感度に測定する方法及びそれに用いられる気液相分離方法並びにそのためのマイクロ流路チップが開示されている。マイクロ流路チップは、基板内に設けられたマイクロ流路と、マイクロ流路の下流端に接続され、深さが10μm~100μmであり、上部が多孔性膜で被覆された気液相分離マイクロ流路とを具備する。マイクロ流路内を流通する気相と液相から成る二相流であって液相流がマイクロ流路の周縁部を流通し、気相流がその内側を流通する二相流から、気相を排除して液相流にする気液相分離方法は、マイクロ流路チップ内のマイクロ流路に二相流を流通させ、気液相分離マイクロ流路に導き、この領域を流通させ、それによって気相流を多孔性膜を介して気液相分離マイクロ流路から外部に排出することを含む。

Description

マイクロ流路チップ及びそれを用いた気液相分離方法
 本発明は、マイクロ流路内を流れる、気相流と液相流から成る二相流から気相流を排除して液相流にすることが可能なマイクロ流路チップ及びそれを用いた気液相分離方法並びに気体被検物質測定用マイクロ流路チップ及び気体被検物質測定方法に関する。
 半導体装置は、不良率を下げるため、塵埃等が極めて少ないクリーンルーム内で製造されている。クリーンルーム内の空気は、塵埃を含まないだけではなく、アンモニアを含まないことも要求される。クリーンルーム内の空気中にアンモニアが数ppbの低濃度でも含まれると、超微細加工パターニングの精度が低下し、不良率が増大する。このため、クリーンルーム内の空気中のアンモニア濃度は、常時監視する必要がある。
 現在、クリーンルーム内の空気中のアンモニア濃度は、ポンプにより所定の流量でクリーンルーム内の空気を約100mL程度の捕集液に通し、空気中のアンモニアを捕集液に捕集し、この捕集液を分析センターに移送して、捕集液内のアンモニアを定量することにより測定されている。
 しかしながら、この方法では、分析センターまでの搬送時間も含めると、測定開始から分析結果が出るまでに約3日を要し、アンモニア濃度が高くなっても迅速な対応をとることができない。また、この方法によるアンモニアの検出限界は、50ppb程度であり、不十分である。
 分析センターに搬送することなく、クリーンルーム内でその場で短時間、好ましくは20分程度以内で測定することが可能で、測定感度が1ppbのオーダーである、空気中のアンモニア濃度の測定方法を開発することが望まれる。
 本願発明者らは、マイクロ流路チップを利用して空気中のアンモニア濃度を測定する方法を開発した(非特許文献1)。この方法では、アンモニアを含む被検試料である空気と、捕集液をマイクロ流路内に導入し、マイクロ流路内において気液二相流を生成させて気相から液相にアンモニアを抽出し、上部に直径2mmの孔を開けたマイクロ流路を通過させて気相を排出して二相流を液相流に変換し、この液相流にアンモニア分析のための発色液と酸化液を導入して発色させ、熱レンズ顕微鏡(TLM)で発色を測定することにより、アンモニア濃度を測定する。
 この方法によれば、10分間程度の時間で1ppbのオーダーで、その場で空気中のアンモニア濃度を測定することができ、上記要求に応えることができる。
 しかしながら、この方法では、測定の再現性が低く、測定値の変動係数(CV)が20%である。従って、より再現性の高い測定方法を開発することが望まれる。
第69回分析化学討論会要旨集、31頁、2008年、日本分析化学会
 本発明の目的は、アンモニア等の液体に可溶性のガスを、再現性良く、高感度に測定する方法及びそれに用いられる気液相分離方法並びにそのためのマイクロ流路チップを提供することである。
 本願発明者らは、鋭意研究の結果、非特許文献1に記載された方法における再現性の低さは、マイクロ流路における気液相分離が不安定であることに起因することを見出した。そして、再現性良く測定結果が得られる方法を鋭意研究した結果、気液相分離を行うマイクロ流路では、マイクロ流路の深さを特定の範囲内にすると共にマイクロ流路の上部をガスの流通が可能な多孔性膜で被覆することにより十分な気液相分離が行えることを見出し、本発明を完成した。
 すなわち、本発明は、基板内に設けられたマイクロ流路と、該マイクロ流路の下流端に接続され、深さが10μm~100μmであり、上部が多孔性膜で被覆された気液相分離マイクロ流路とを具備するマイクロ流路チップを提供する。
 また、本発明は、マイクロ流路内を流通する気相と液相から成る二相流であって液相流が前記マイクロ流路の周縁部を流通し、気相流がその内側を流通する二相流から、気相を排除して液相流にする気液相分離方法であって、上記本発明のマイクロ流路チップ内の前記マイクロ流路に前記二相流を流通させ、前記気液相分離マイクロ流路に導き、該領域を流通させ、それによって前記気相流を前記多孔性膜を介して前記気液相分離マイクロ流路から外部に排出することを含む、気液相分離方法を提供する。
 さらに、本発明は、
 捕集液に可溶性の気体である被検物質を含む試料ガスを導入する試料ガス導入マイクロ流路と、
 前記捕集液を導入する捕集液導入マイクロ流路と、
 前記試料ガス導入マイクロ流路と前記捕集液導入マイクロ流路との合流部の下流に位置するガス抽出マイクロ流路であって、液相流が前記ガス抽出マイクロ流路の周縁部を流通し、気相流がその内側を流通する二相流が流通するガス抽出マイクロ流路と、
 該ガス抽出マイクロ流路の下流端に接続され、深さが10μm~100μmであり、上部が多孔性膜で被覆された気液相分離マイクロ流路と、
 該気液相分離マイクロ流路の下流に接続され、該気液相分離マイクロ流路を通過することによって気相流が前記多孔性膜から排出された残りの液相流が流通し、該液相流中に含まれる前記被検物質を測定する被検物質測定マイクロ流路とを具備する、気体被検物質測定用マイクロ流路チップを提供する。
 さらに、本発明は、上記本発明のマイクロ流路チップの前記試料ガス導入マイクロ流路に前記試料ガスを導入する工程と、
 前記捕集液導入マイクロ流路に前記捕集液を導入する工程と、
 前記試料ガスと前記捕集液とにより形成される前記二相流を前記ガス抽出マイクロ流路に流通させ、それによって前記試料ガス中の前記被検物質を前記捕集液中に捕集する工程と、
 前記二相流を、前記気液相分離マイクロ流路に流通させ、それによって気相流を前記多孔性膜から外部に排出して液相流にする工程と、
 得られた液相流中に含まれる前記被検物質を測定する工程とを含む、気体被検物質の測定方法を提供する。
 本発明によれば、マイクロ流路中で十分な気液相分離を安定して行うことができる新規な気液相分離方法及びそのためのマイクロ流路チップが提供された。本発明の気液相分離方法を非特許文献1等に記載されている、マイクロ流路を用いた被検ガスの測定方法に適用することにより、被検ガスを、短時間、高感度に再現性良く測定することができる。
気液相分離マイクロ流路を具備する本発明のマイクロ流路チップの1具体例の模式断面図である。 マイクロ流路内を流れる二相流を模式的に示す図である。 液体に可溶性の気体の被検物質の測定のための本発明のマイクロ流路チップを模式的に示す図である。 本発明の実施例になるマイクロ流路チップの模式平面図である。
 10 基板
 12 マイクロ流路
 14 気液相分離マイクロ流路
 16 多孔性膜
 18 気相流
 20 液相流
 22 液体に可溶性の気体の被検物質の測定のためのマイクロ流路チップ
 24 試料ガス導入マイクロ流路
 26 捕集液導入マイクロ流路
 28 被検物質
 30 被検物質測定マイクロ流路
 34 酸化液導入マイクロ流路
 36 発色液導入マイクロ流路
 基板内にマイクロ流路を設けたマイクロ流路チップ自体は、種々の化学反応を行う効率良く行うことができ、既に広く用いられている。マイクロ流路は、多くの場合、ガラス、プラスチック、金属等の基板に溝状に設けられ、その上部をガラス板等の平板で被覆したものであり、その断面形状は、通常、ほぼ半円形又は半楕円形である。もちろん、マイクロ流路の断面形状は半円形又は半楕円形に限定されるものではなく、矩形、円形、楕円形等、他の任意の形状であり得る。マイクロ流路の幅は、通常、10μm~600μm程度、好ましくは100μm~500μm程度、深さは、通常、5μm~300μm程度、好ましくは50μm~200μm程度である。
 本発明のマイクロ流路チップにおける気液相分離マイクロ流路は、このような、基板内に設けられたマイクロ流路の下流端に接続され、深さが10μm~100μm、好ましくは40μm~90μmであり、上部が多孔性膜で被覆されたマイクロ流路である。
 以下、図面に基づき、本発明のマイクロ流路チップの好ましい具体例を説明する。気液相分離マイクロ流路を具備する本発明のマイクロ流路チップの1具体例の模式断面図を図1に示す。図1は、マイクロ流路を形成した基板を側面から見た断面図である。基板10内にマイクロ流路12が形成されている。図示の具体例では、マイクロ流路12の深さはd1である。マイクロ流路12の下流端には、気液相分離マイクロ流路14が接続されている。マイクロ流路の深さはd2であり、図示の通り、d2はd1よりも小さい。マイクロ流路の幅(図1の紙面に垂直な方向の幅)は、マイクロ流路12と気液相分離マイクロ流路14とも同じでもよいし、異なっていてもよい。また、気液相分離マイクロ流路14の長さは、特に限定されないが、通常、0.5cm~5cm程度、好ましくは1cm~2cm程度である。
 気液相分離マイクロ流路14の上部は、多孔性膜16で被覆されている。多孔性膜16は、ガスが流通できるものであれば、特に限定されないが、その平均孔径は、通常、0.1μm~2.0μm程度、好ましくは平均孔径が0.4μm~1μm程度であり、空孔率は、50%~90%程度、好ましくは70%~80%程度である。また、多孔性膜の厚さは、特に限定されないが、通常、10μm~200μm、好ましくは50μm~100μm程度である。多孔性膜16の材質としては、ガスが流通できるものであれば、特に限定されないが、疎水性材料から成るものが好ましい。ここで、疎水性材料から成る多孔性膜は、水と接触しても反対側に水が浸潤して来ない程度の疎水性がある多孔性膜を意味する。多孔性膜を形成する好ましい疎水性材料として、ポリテトラフロロエチレン(商品名テフロン(登録商標))、パーフルオロアルコキシエチレン、ポリエチレン、ポリプロピレン、ポリビニルアルコール、ナイロン等を挙げることができる。多孔性膜16として好ましく用いることができるテフロン(登録商標)は、市販されている(型番:T080A025A、アドバンテック社製)ので、市販品を好ましく用いることができる。
 なお、図1に示す具体例のマイクロ流路チップは、2枚の基板、すなわち、下部基板10aと上部基板10bから構成され、下部基板10aの上面にマイクロ流路12が溝状に形成され、上部基板10bの上面に気液相分離マイクロ流路14が溝状に形成されている。上部基板10b内に鉛直方向の孔を形成して気液相分離マイクロ流路14の上流端にマイクロ流路12を接続することによりマイクロ流路12の下流端と気液相分離マイクロ流路14の上流端が接続される。また、上部基板10bの底面により、マイクロ流路12の上部が被覆され、マイクロ流路12は閉じられる。このような構成にすれば、容易に本発明のマイクロ流路チップを作製することができる。もっとも、マイクロ流路12と気液相分離マイクロ流路14を同一の基板内に形成し、マイクロ流路12の上部はガラス板等の平板で被覆し、気液相分離マイクロ流路14の上部のみ上記多孔性膜16で被覆してもよい。
 本発明のマイクロ流路チップを用いて、マイクロ流路内を流通する、気相と液相から成る二相流の気液分離を行うことができる。すなわち、マイクロ流路内から気相を排出して液相流にすることができる。まず、マイクロ流路12の上流部分で、気相流と液相流をマイクロ流路12にポンプを用いて導入する(後述)。そうすると、図2に模式的に示すように、液相流20は、表面張力によりマイクロ流路12の内面に沿って膜状になって流れ(液膜流)、気相流18は、その内側(中心側)を流れる。図1において、気相流18は白抜きで、液相流20は、濃い灰色で示されている。このような液相流20と、その内側を流れる気相流18を含む二相流がマイクロ流路12内を流通する。この二相流が気液相分離マイクロ流路14に到達すると、気相流18が多孔性膜16を介して外部に排出され(図1中、白抜きの上向き矢印で示す)、二相流は液相流20になる(図1の気液相分離マイクロ流路14の右側半分は、液相流20のみが図示されている)。この際、気液相分離マイクロ流路14の深さd2が、マイクロ流路12の深さd1よりも浅いと、気相がさらに排出されやすくなり好ましい。液相流20は、さらに下流において、任意の化学反応を利用した測定に供される。
 上記した、本発明の気液相分離方法によれば、気液相分離を24時間以上に亘って安定に行うことができる。これに対し、直径2mmの穴から気相を排出する、非特許文献1記載の方法では、気液相分離はこれまで最大8時間しか連続して行うことができていない。また、非特許文献1記載の方法では、液が溜まる体積が大きくなるため、分離した液をスムーズに下流へ送液できなくなる。これに対し、多孔性膜を用い、好ましくは気液相分離マイクロ流路の深さを浅くすることで液溜まりの体積を低減し、送液がスムーズになる。さらに、非特許文献1記載の方法では、相分離するための圧力条件が狭く、ポンプの乱れや湿度・温度変化によって相分離に失敗する場合がある。本発明の方法によれば、相分離可能なマイクロ流路内の圧力条件が広がり、外乱や周辺環境の変化に対して強い相分離法となる。
 上記した、本発明の気液相分離方法は、アンモニアのような、液体に可溶性の気体の被検物質の測定に利用することができる。以下、好ましい具体例を図面に基づいて説明する。
 液体に可溶性の気体の被検物質の測定のためのマイクロ流路チップ22(図3)は、捕集液に可溶性の気体である被検物質を含む試料ガスを導入する試料ガス導入マイクロ流路24と、前記捕集液を導入する捕集液導入マイクロ流路26とを含む。試料ガス導入マイクロ流路24と捕集液導入マイクロ流路26とが合流し、上記したマイクロ流路12となる。マイクロ流路12は、その内部において、図2に模式的に示されるように、気相流18中の気体の被検物質28が、捕集液から成る液相流20に抽出される(図2の矢印)ので、ガス抽出マイクロ流路として機能する。上記の通り、液相流20がマイクロ流路の内面に沿って流れ、気相流18がその内側を流れる二相流が形成される。この二相流状態において、気相流18中の被検物質28は、効率良く捕集液から成る液相流20中に抽出される。ガス抽出マイクロ流路12の長さは、特に限定されないが、通常、1 cm~60cm程度、好ましくは30cm~40cm程度である。
 ガス抽出マイクロ流路12の下流端は、上記のように気液相分離マイクロ流路14に接続され、気液相分離マイクロ流路14内で上記の通り気液相分離が行われ、二相流は液相流になる。
 気液相分離マイクロ流路14の下流には、気液相分離マイクロ流路14を通過することによって気相流18が多孔性膜16から排出された残りの液相流20が流通し、液相流20中に含まれる被検物質28(図2)を測定する被検物質測定マイクロ流路30(図1)が接続されている。被検物質測定マイクロ流路30のサイズは、マイクロ流路12について述べた通りの通常のサイズでよく、また、マイクロ流路12のサイズと同じでよいが、異なっていてもよい。被検物質測定マイクロ流路30の長さは、その中で行う化学反応に応じて適宜選択されるが、通常1cm~80cm程度、好ましくは35cm~55cm程度である。
 被検物質測定マイクロ流路30には、被検物質の測定に必要な試薬を導入する1個又は2個以上のマイクロ流路が接続されていてもよい。被検物質がアンモニアである場合には、例えば、次亜塩素酸ナトリウムのような次亜塩素酸塩等の酸化液と、フェノールなどの発色液を作用させて青色色素を生成させるインドフェノール法により測定することができる。インドフェノール法の化学反応式は次の通りである。
Figure JPOXMLDOC01-appb-C000001
 従って、被検物質がアンモニアであり、インドフェノール法により発色させて比色定量を行う場合には、酸化液を導入するマイクロ流路と、発色液を導入するマイクロ流路とが被検物質測定マイクロ流路30に接続される。
 被検物質測定マイクロ流路30内で、測定に必要な化学反応を行った後、被検物質測定マイクロ流路30の下流部分又は被検物質測定マイクロ流路30の下流端からチップ外へ液相流20を排出後、被検物質の測定を行う。ここで、「測定」は、検出、定量、半定量のいずれをも包含する意味で用いている。被検物質であるアンモニアを上記したインドフェノール法により比色定量する場合には、例えば、被検物質測定マイクロ流路30の下流部分で、被検物質測定マイクロ流路30を熱レンズ顕微鏡(TLM)で観察することにより、生成した青色色素を定量することができる。熱レンズ顕微鏡は、励起光、プローブ光と呼ばれる2本のレーザー光をマイクロ流路内の物質に照射し、レーザーの照射により生じる液の屈折率の変化(屈折率は液の温度により変化する)を、励起光を変調させてプローブ光の光量変化を同期検出する装置であり、マイクロ流路内の物質を高感度で定量できるものである。熱レンズ顕微鏡は、既に市販されている(マイクロ化学技研株式会社)ので、市販品を好ましく用いることができる。
 上記したマイクロ流路チップを用いて空気中に含まれるアンモニアの濃度を測定する場合には、試料ガス導入マイクロ流路24にアンモニア濃度を測定する試料空気を注入すると共に、捕集液として水を捕集液導入マイクロ流路26に注入する。試料ガスの注入速度は、特に限定されないが、通常、10mL/分~1000mL/分程度、好ましくは50mL/分~150mL/分程度である。水の注入速度は、特に限定されないが、通常、0.5μL/分~10μL/分程度、好ましくは1μL/分~5μL/分程度である。試料ガス導入マイクロ流路24と捕集液導入マイクロ流路26とが合流してガス抽出マイクロ流路12となり、ここで、上記した二相流が形成され、試料空気中のアンモニアは捕集液である水に抽出される。アンモニアの水に対する溶解度は極めて大きいので、室内空気中に含まれる程度のアンモニアであれば、100%抽出される。ガス抽出マイクロ流路12に続く気液相分離マイクロ流路14を通過中に、上記の通り空気流は多孔性膜16から外部に排出され、液相流(水流)20になる。気液相分離マイクロ流路14に続く被検物質測定マイクロ流路30には、上記した酸化液導入マイクロ流路と発色液導入マイクロ流路が接続されており、これらのマイクロ流路からそれぞれ上記酸化液及び発色液がそれぞれ導入される(後述の図4参照)。上記したインドフェノール法における化学反応が被検物質測定マイクロ流路30で起き、生成した青色色素を上記熱レンズ顕微鏡で定量する。
 下記実施例において具体的に説明するように、この方法によれば、アンモニアの検出限界濃度1ppbを達成することができる。また、この方法によれば、空気流の排出が非特許文献1記載の方法に比べてより完全に行われるので、熱レンズ顕微鏡による測定値のばらつきが小さくなり、再現性が高い。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
実施例1
 図1に示す気液相分離マイクロ流路を有するマイクロ流路チップを作製した。その模式平面図を図4に示す。被検物質測定マイクロ流路30には、酸化液導入マイクロ流路34と発色液導入マイクロ流路36を接続した。図4に示すマイクロ流路チップでは、アンモニアガスを溶解した捕集液を、気液相分離部分を通過させた後、一旦チップの外のチューブ(図4中、実線の矢印)に導き、チップ内の流路に再び導入して発色液及び酸化液と合流させ、それよりも下流のマイクロ流路内で反応させている。なお、図4は、マイクロ流路を形成した基板を示しており、「気液相分離部」として長方形で囲まれている部分にあるマイクロ流路はテフロン(登録商標)膜で被覆される。気液相分離マイクロ流路14の断面は、幅400μm、深さ80μmの半楕円形であり、これ以外のマイクロ流路の断面は、全て幅500μm、深さ150μmの半楕円形であった。ガス抽出マイクロ流路12の長さは、35cm、気液相分離マイクロ流路の長さは1cm、被検物質測定マイクロ流路30の長さは50cmであった。マイクロ流路チップは、図1に基づいて上記した通り、2枚のガラス基板の上面に、それぞれマイクロ流路を形成してこれらのガラス基板を積層することにより作製した。
 このマイクロ流路の上流(図4中、「NH3ガス」と記載)とから、窒素ガスで希釈したNH3ガスを100ml/分、捕集液である水を3μL/分の流速で導入し、気液相分離マイクロ流路の部分を顕微鏡で観察した。その結果、気液相分離を、24時間以上に亘って安定に行うことができ、気液相分離後の液の流れもスムーズであった。
比較例1
 気液相分離マイクロ流路14に代えて、直径2mmの空気孔をマイクロ流路の上部に設けたこと以外は、実施例1と同様なマイクロ流路チップを作製し、上記と同様に気液相分離の様子を顕微鏡観察した。その結果、気液相分離は、最大で連続8時間しか達成できなかった。また、気液相分離後の液の流れがスムーズでない場合が観察された。

Claims (14)

  1.  基板内に設けられたマイクロ流路と、該マイクロ流路の下流端に接続され、深さが10μm~100μmであり、上部が多孔性膜で被覆された気液相分離マイクロ流路とを具備するマイクロ流路チップ。
  2.  前記気液相分離マイクロ流路の深さが、前記マイクロ流路の深さよりも浅い請求項1記載のマイクロ流路チップ。
  3.  前記多孔性膜の平均孔径が0.1μm~2.0μmである請求項1又は2記載のマイクロ流路チップ。
  4.  前記多孔性膜が疎水性材料から成る請求項1ないし3のいずれか1項に記載のマイクロ流路チップ。
  5.  前記多孔性膜がポリテトラフロロエチレン膜である請求項4記載のマイクロ流路チップ。
  6.  前記マイクロ流路の幅が10μm~600μm、深さが5μm~300μmである請求項1ないし5のいずれか1項に記載のマイクロ流路チップ。
  7.  前記気液相分離マイクロ流路の長さが0.5cm~5cmである請求項1ないし6のいずれか1項に記載のマイクロ流路チップ。
  8.  マイクロ流路内を流通する気相と液相から成る二相流であって液相流が前記マイクロ流路の周縁部を流通し、気相流がその内側を流通する二相流から、気相を排除して液相流にする気液相分離方法であって、請求項1ないし7のいずれか1項に記載のマイクロ流路チップ内の前記マイクロ流路に前記二相流を流通させ、前記気液相分離マイクロ流路に導き、該領域を流通させ、それによって前記気相流を前記多孔性膜を介して前記気液相分離マイクロ流路から外部に排出することを含む、気液相分離方法。
  9.  捕集液に可溶性の気体である被検物質を含む試料ガスを導入する試料ガス導入マイクロ流路と、
     前記捕集液を導入する捕集液導入マイクロ流路と、
     前記試料ガス導入マイクロ流路と前記捕集液導入マイクロ流路との合流部の下流に位置するガス抽出マイクロ流路であって、液相流が前記ガス抽出マイクロ流路の周縁部を流通し、気相流がその内側を流通する二相流が流通するガス抽出マイクロ流路と、
     該ガス抽出マイクロ流路の下流端に接続され、その深さが10μm~100μmであり、上部が多孔性膜で被覆された気液相分離マイクロ流路と、
     該気液相分離マイクロ流路の下流に接続され、該気液相分離マイクロ流路を通過することによって気相流が前記多孔性膜から排出された残りの液相流が流通し、該液相流中に含まれる前記被検物質を測定する被検物質測定マイクロ流路とを具備する、気体被検物質測定用マイクロ流路チップ。
  10.  前記いずれかのマイクロ流路に合流する少なくとも1つのマイクロ流路であって、前記被検物質の測定に必要な試薬を供給する試薬導入マイクロ流路をさらに具備する請求項9記載のマイクロ流路チップ。
  11.  請求項9又は10記載のマイクロ流路チップの前記試料ガス導入マイクロ流路に前記試料ガスを導入する工程と、
     前記捕集液導入マイクロ流路に前記捕集液を導入する工程と、
     前記試料ガスと前記捕集液とにより形成される前記二相流を前記ガス抽出マイクロ流路に流通させ、それによって前記試料ガス中の前記被検物質を前記捕集液中に捕集する工程と、
     前記二相流を、前記気液相分離マイクロ流路に流通させ、それによって気相流を前記多孔性膜から外部に排出して液相流にする工程と、
     得られた液相流中に含まれる前記被検物質を測定する工程とを含む、気体被検物質の測定方法。
  12.  前記気体被検物質がアンモニアである請求項11記載の方法。
  13.  前記マイクロ流路チップが、2個の前記試薬導入マイクロ流路をさらに具備する請求項9記載のマイクロ流路チップであり、一方の試薬導入マイクロ流路から発色液を導入し、もう一方の試薬導入マイクロ流路から酸化液を導入する、請求項12記載の方法。
  14.  アンモニアの測定を、熱レンズ顕微鏡を用いて行う請求項13記載の方法。
PCT/JP2010/055797 2009-03-31 2010-03-31 マイクロ流路チップ及びそれを用いた気液相分離方法 WO2010113997A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080024006.2A CN102448602B (zh) 2009-03-31 2010-03-31 微流路芯片及使用该微流路芯片的气液相分离方法
US13/262,103 US8815604B2 (en) 2009-03-31 2010-03-31 Microchannel chip and method for gas-liquid phase separation using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009086805A JP5765722B2 (ja) 2009-03-31 2009-03-31 マイクロ流路チップ及びそれを用いた気液相分離方法
JP2009-086805 2009-03-31

Publications (1)

Publication Number Publication Date
WO2010113997A1 true WO2010113997A1 (ja) 2010-10-07

Family

ID=42828286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055797 WO2010113997A1 (ja) 2009-03-31 2010-03-31 マイクロ流路チップ及びそれを用いた気液相分離方法

Country Status (4)

Country Link
US (1) US8815604B2 (ja)
JP (1) JP5765722B2 (ja)
CN (1) CN102448602B (ja)
WO (1) WO2010113997A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201422817A (zh) * 2012-12-14 2014-06-16 Ardic Instr Co 生物感測晶片結構
US20160349188A1 (en) * 2014-01-14 2016-12-01 Center National De La Recherche Scientifique (Cnrs) Microfluidic device for analysis of flowing pollutants
US9920315B2 (en) 2014-10-10 2018-03-20 California Institute Of Technology Methods and devices for micro-isolation, extraction, and/or analysis of microscale components in an array
JP6190352B2 (ja) * 2014-12-19 2017-08-30 株式会社神戸製鋼所 流体流通装置及びその運転方法
KR101768037B1 (ko) * 2016-07-29 2017-08-14 한국과학기술원 필터 및 믹서를 구비하는 랩온어칩
CN106629928B (zh) * 2017-01-19 2018-10-02 中国石油大学(华东) 一种带有疏水表面过滤壳的气水分离装置及其分离方法
AU2018250317B2 (en) * 2017-04-06 2023-05-11 Sri International Modular systems for performing multistep chemical reactions, and methods of using same
WO2018187717A1 (en) 2017-04-06 2018-10-11 Sri International Continuous flow synthesis of ibuprofen
KR101910818B1 (ko) 2017-06-02 2018-10-30 대한민국 유전자 판독용 랩온어칩
CN108318394B (zh) * 2018-05-09 2024-04-16 南京安控易创计算机科技有限公司 一种微流控分选测量可吸入颗粒物的方法及装置
KR102185548B1 (ko) * 2018-12-04 2020-12-03 한국기계연구원 기상시료의 유해인자 포집장치
FR3104450B1 (fr) * 2019-12-17 2022-06-03 Univ Grenoble Alpes Procédé de dégazage d’un fluide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113874A (ja) * 2002-09-24 2004-04-15 National Institute Of Advanced Industrial & Technology マイクロ流路利用反応方法
JP2005329364A (ja) * 2004-05-21 2005-12-02 Dkk Toa Corp 気液反応ユニットおよび分析装置
JP2006223118A (ja) * 2005-02-15 2006-08-31 Yamaha Corp マイクロチップ
JP2008023418A (ja) * 2006-07-18 2008-02-07 Fuji Xerox Co Ltd マイクロ流路デバイス

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113874A (ja) * 2002-09-24 2004-04-15 National Institute Of Advanced Industrial & Technology マイクロ流路利用反応方法
JP2005329364A (ja) * 2004-05-21 2005-12-02 Dkk Toa Corp 気液反応ユニットおよび分析装置
JP2006223118A (ja) * 2005-02-15 2006-08-31 Yamaha Corp マイクロチップ
JP2008023418A (ja) * 2006-07-18 2008-02-07 Fuji Xerox Co Ltd マイクロ流路デバイス

Also Published As

Publication number Publication date
CN102448602A (zh) 2012-05-09
JP2010234313A (ja) 2010-10-21
JP5765722B2 (ja) 2015-08-19
US20120164743A1 (en) 2012-06-28
US8815604B2 (en) 2014-08-26
CN102448602B (zh) 2014-11-26

Similar Documents

Publication Publication Date Title
JP5765722B2 (ja) マイクロ流路チップ及びそれを用いた気液相分離方法
Chen et al. Microfluidic chip-based liquid–liquid extraction and preconcentration using a subnanoliter-droplet trapping technique
RU2478431C2 (ru) Микроструйное устройство и способ его изготовления и содержащий его сенсор
EP1970110B1 (en) Gas exchange system and method of controlling pressure-diference bubble transfer
Létant et al. Functionalized silicon membranes for selective bio-organism capture
US20100098588A1 (en) Apparatus for determining total organic carbon
JP2005181095A (ja) チップ、反応分析装置、反応分析方法
Kuswandi et al. Optical fiber chemical sensing of Hg (II) ions in aqueous samples using a microfluidic device containing a selective tripodal chromoionophore-PVC film
Gitlin et al. Micro flow reactor chips with integrated luminescent chemosensors for spatially resolved on-line chemical reaction monitoring
Xing et al. Label-free biosensors based on in situ formed and functionalized microwires in microfluidic devices
US8354069B2 (en) Plug flow system for identification and authentication of markers
Ghosh et al. Enhancement of limit of detection by inducing coffee-ring effect in water quality monitoring microfluidic paper-based devices
Moehlenbrock et al. Use of microchip-based hydrodynamic focusing to measure the deformation-induced release of ATP from erythrocytes
JP5425757B2 (ja) 液体サンプルを処理するための装置
Toda et al. Micro-gas analysis system μGAS comprising a microchannel scrubber and a micro-fluorescence detector for measurement of hydrogen sulfide
Wang et al. Pervaporation-flow injection determination of ammonia in the presence of surfactants
Ranaweera et al. Highly efficient preconcentration using anodically generated shrinking gas bubbles for per-and polyfluoroalkyl substances (PFAS) detection
JP5781937B2 (ja) 鉛の定量
WO2009125493A1 (ja) 全有機体炭素測定装置
JP2009174891A (ja) マイクロチップ
US20150191772A1 (en) Method of charging a test carrier and a test carrier
JP2001074724A (ja) 分子拡散を用いた反応法およびその装置
Ma et al. Droplet microfluidic chip for precise monitoring of dynamic solution changes
Baniya et al. Lab‐on‐a‐chip for hydrogen sulphide detection—Part I: Sulphide separation from plasma sample
CN211426258U (zh) 一种光流控水体溶解氧探测器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024006.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13262103

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10758768

Country of ref document: EP

Kind code of ref document: A1