WO2010112253A1 - Hochdruckpumpe - Google Patents

Hochdruckpumpe Download PDF

Info

Publication number
WO2010112253A1
WO2010112253A1 PCT/EP2010/051475 EP2010051475W WO2010112253A1 WO 2010112253 A1 WO2010112253 A1 WO 2010112253A1 EP 2010051475 W EP2010051475 W EP 2010051475W WO 2010112253 A1 WO2010112253 A1 WO 2010112253A1
Authority
WO
WIPO (PCT)
Prior art keywords
cam
pump
pressure pump
piston
dead center
Prior art date
Application number
PCT/EP2010/051475
Other languages
English (en)
French (fr)
Inventor
Werner Vallon
Otto Mueller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP10702693.2A priority Critical patent/EP2414675B1/de
Priority to CN201080015086.5A priority patent/CN102378861B/zh
Publication of WO2010112253A1 publication Critical patent/WO2010112253A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/0404Details or component parts
    • F04B1/0413Cams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/06Control

Definitions

  • the present invention relates to a high-pressure pump for a fuel injection device of an internal combustion engine according to the preamble of claim 1.
  • High-pressure pumps are used, for example, in common-rail systems of motor vehicles to provide or supply pressurized fuel to a high-pressure accumulator under all operating conditions.
  • Such high-pressure diesel pumps usually have either eccentric drives or cam drives.
  • cam-driven high-pressure pumps is that in this case it is possible to design for a desired application a cam profile adapted thereto, which represents the piston stroke via a rotation angle of the drive shaft or the camshaft.
  • a slow delivery phase and a fast suction phase of the high pressure pump can be realized via an asymmetric cam profile, whereby an advantage is achieved by the resulting low maximum drive torque, which must apply the motor to drive the high pressure pump.
  • substantially symmetrical cam contours have been developed in the prior art, which have the same stroke course in the suction and delivery phase.
  • a cam contour designed in this way can therefore also be used both for the right-handed and for the anti-clockwise rotation.
  • the symmetrically designed cam contours have the advantage described above that the number of parts is kept small, they have the disadvantage that the fundamental differences that arise for the suction phase and the delivery phase of the high-pressure pump, are not taken into account or included.
  • a high-pressure pump for a fuel injection device of an internal combustion engine, in particular for a common rail injection system, which has a cam engine in which the rotational movement of a camshaft is converted via at least one cam into a lifting movement of a pump piston of the high-pressure pump, wherein a cam contour of the Cam is designed so that in a suction phase of the high pressure pump in a range from a top dead center to a bottom dead center, in which fuel is sucked into a pump working space, the piston stroke of the pump piston as a function of the cam rotation angle follows a sinusoidal course.
  • the at least one cam has an asymmetrical cam contour. This allows adaptation to special requirements, for example with regard to the suction phase and the delivery phase.
  • the sinusoidal curve in the suction phase corresponds to a falling edge of a sinusoidal function, which starts at a top dead center of the cam and ends at a bottom dead center of the cam.
  • the falling edge is formed from a sum of harmonic functions.
  • the performance of the high pressure pump is further optimized.
  • the lift-off properties of the plunger body of the high-pressure pump are improved, and depending on the acceleration curve of the rising flank in the delivery phase, larger acceleration stages in the transition region to the suction phase are avoided.
  • the sinusoidal curve in the suction phase at the top dead center of the cam corresponds to a maximum delivery stroke of the pump piston.
  • the suction phase is further optimized, the course or the cam contour of which takes place before the suction phase promotion phase is irrelevant and can follow an already optimized cam contour.
  • the sinusoidal characteristic is characterized by a slow and harmonic decrease or increase in the piston stroke, the piston speed and the piston acceleration after and before the dead centers.
  • the high piston speed in the mid-range of the delivery phase was previously the reason for high drive torques of the high-pressure pump and was not enforceable in the requirements previously imposed on the high-pressure pumps in the prior art.
  • the slow, harmonic decay after top dead center results in an improved suction phase and lower negative torques during pressure build-up. Due to the slow approach to the bottom dead center, the suction valve of the high-pressure pump can begin earlier with its closing operation and delivery losses due to a late closing of the suction valve are significantly reduced.
  • the sinusoidal curve in the suction phase at the bottom dead center of the cam corresponds to a minimum delivery stroke of the pump piston.
  • the cam contour is designed so that in the suction phase of the high-pressure pump, the piston speed of the pump piston performing a downward movement follows a sinusoidal course as a function of the cam rotation angle.
  • the cam contour is designed so that in a delivery phase of the high pressure pump, in which the fuel is compressed in the pump working space and supplied to a delivery valve, an acceleration of the pump piston as a function of the cam rotation angle follows a course, which consists of sinusoidal, linear, tangential or arcuate Composed of sections.
  • a course which consists of sinusoidal, linear, tangential or arcuate Composed of sections.
  • FIG. 1 shows a section through a high pressure pump according to the prior art.
  • FIG. 2 is a graph illustrating the delivery rate versus rotational speed of a prior art cam and a cam according to an embodiment
  • Fig. 3 is a diagram of the course of the piston stroke in response to the
  • FIG. 5 shows a diagram of the course of the piston acceleration as a function of the cam rotation angle.
  • Fig. 1 is a section through a high pressure pump 1 for a fuel injection device of an internal combustion engine is shown, as it is known from the prior art.
  • the high-pressure pump 1 has a multipart pump housing 2 in which a drive shaft or camshaft 3 driven in rotation by the internal combustion engine is arranged.
  • the camshaft 3 is rotatably supported, for example, via two bearing points spaced apart from one another in the direction of the axis of rotation 4 of the camshaft 3.
  • the bearings can be arranged in different parts of the pump housing 2, for example, a first bearing in a base body 5 of the pump housing. 2 and a second bearing point may be arranged in a flange part 6 connected to the main body 5.
  • the camshaft 3 In a region lying between the bearing points, the camshaft 3 has a cam 7, which may also be designed as a multiple cam.
  • the high pressure pump 1 has at least one or more arranged in the housing 2 pump elements 8, each with a pump piston 9 which is driven by the cam 7 of the camshaft 3 in a lifting movement in at least approximately radial direction to the axis of rotation 4 of the camshaft 3.
  • the pump piston 9 Upon rotation of the cam 7, the pump piston 9 is set in a reciprocating or upward and downward movement. This results in a cyclic change in the volume of a pump working chamber 14 delimited by the pump piston 9.
  • a pump housing part 10 connected to the main body 5 is provided, which is designed as a cylinder head.
  • the pump housing part 10 has a voltage applied to an outer side of the main body 5 and a flange 1 1 through an opening in the main body 5 to the camshaft 3 out, at least approximately cylindrical projection 12 with respect to the flange 1 1 smaller diameter.
  • the pump piston 9 is guided in a tightly displaceable manner in a bore 12 formed in the ZyMn derbohrung 13 in the pump housing part 10 and limited with its side facing away from the camshaft 3 end face in the cylinder bore 13 the pump chamber 14.
  • the cylinder bore 13 may extend into the flange 1 1 inside , in which then the pump working space 14 is arranged.
  • the pump working chamber 14 has a connection with a fuel feed, for example a feed pump (not shown), via a fuel feed channel 15 running in the pump housing 2.
  • the pump working chamber 14 also has, via a fuel outlet passage 17 extending in the pump housing 2, a connection to an outlet, which is connected to a high-pressure accumulator 18, for example.
  • One or more injectors 19 arranged on cylinders of the internal combustion engine are connected to the high-pressure accumulator 18, through which fuel is injected into the cylinders of the internal combustion engine.
  • an outlet valve or delivery valve 20 which opens out of the pump working chamber 14 is arranged.
  • Pump piston 9 moves radially inward, the pump working chamber 14 is filled with fuel through the fuel inlet channel 15 with open inlet valve 16, which acts as a suction valve, wherein the delivery valve 20 is closed.
  • Delivery valve 20 is conveyed to the high-pressure accumulator 18, wherein the inlet valve 16 is closed.
  • a plunger 21 is arranged, via which the pump piston 9 is at least indirectly supported on the cam 7 of the camshaft 3.
  • the plunger 21 is formed in a hollow cylindrical shape with a round outer cross section and is in a bore 22 of the
  • the longitudinal axis of the plunger 21 is thus at least substantially identical to the longitudinal axis 23 of the pump piston 9.
  • a support member 24 is inserted, in which a roller 25 is rotatably mounted on the cam 7 of the camshaft 3 rolls.
  • the axis of rotation 26 of the roller 25 is at least approximately parallel to the axis of rotation 4 of the camshaft 3.
  • the support member 24 has on its side facing the camshaft 3 a recess 27 in which the roller 25 is rotatably mounted.
  • the support member 24 and the plunger 21 may also be integrally formed.
  • a prestressed spring 28 which is designed as a return spring, which is supported on the pump housing part 10.
  • the pump piston 9 may be coupled to the plunger 21, at least in the direction of its longitudinal axis 23. Alternatively, the pump piston 9 may not be connected to the plunger 21, then by the return spring 28, the system of the pump piston 9 is secured to the plunger 21.
  • the return spring 28 engages, for example via a spring plate 29 on an enlarged diameter piston base of the pump piston 9, which is thereby held in abutment against a on the plunger 21 of the jacket inwardly projecting flange, which in turn held in contact with the support member 24 is, so that the entire composite of pump piston 9, plunger 21 and support member 24 is acted upon with roller 25 to the cam 7 of the camshaft 3 out.
  • a support 30 is arranged laterally next to the roller 25 for this purpose, by which the roller 25 is prevented from moving out of the support element 24 in the direction of its axis of rotation 26.
  • the roller 25 may be convexly curved at its side facing the support 30 side surfaces, for example, curved at least approximately spherical.
  • the surface of the support 30 facing the side surfaces of the roller 25 may be at least approximately planar or curved.
  • the support 30 may be formed as a ring surrounding the roller 25 or may be arranged only laterally adjacent to the side surfaces of the roller 25.
  • FIG. 2 shows a diagram representing the delivery rate of a high-pressure pump 1 as a function of the rotational speed of a cam 7 on the one hand according to the prior art and of a further cam 7 on the other hand according to an embodiment which is determined according to a simulation.
  • the simulation of the production rates or comparison of delivery rates were based on the conditions of a pressure of 1800 bar and a temperature of 40 0 C carried leads.
  • the cam 7 according to the embodiment is hereinafter referred to as a half-sine cam.
  • the delivery rate of 160 l / h achieved by the conventional cam 7 increases to 178 l / h for the half-sine cam at a speed of about 5000 rpm.
  • Cam rotation angle The promotion phase is in the left half of the diagram shown over a cam rotation angle range of 0 ° to 90 °, in which the curve of linear, sinusoidal, tangential or arcuate acceleration ranges is composed. However, it is important that in the suction phase the cam contour follows a sinusoidal course in a cam rotation angle range of 90 ° to 180 °.
  • the falling edge 33 of the cam contour can also be formed from a non-pure sinusoidal function, the falling edge 33 of the cam contour then being obtained from a sum of harmonic functions, whereby a further optimization latitude in the cam design can be obtained.
  • Hub AO + A1 * sin (1 * ( ⁇ + Q 0 )) + A2 * sin (2 * ( ⁇ + Q 1 )) + A3 * sin (3 * ( ⁇ + ⁇ 2 )) +
  • contributions from the 4th order may only be less than 1% of the 1. Be alright A1.
  • FIG. 4 shows a further diagram in which the progression of the piston speed is shown as a function of the cam rotation angle in a delivery phase and in the intake phase. Again, the piston velocity in the suction phase again follows a sinusoidal course.
  • FIG. 5 shows a diagram of the course of the piston acceleration as a function of the cam rotation angle. Again in the sucking phase the a sinusoid following course, while the course of the delivery phase of sinusoidal and linear regions is composed.
  • the piston speed and the piston stroke result from appropriate integration of the piston acceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Die Erfindung betrifft eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, insbesondere für ein Common-Rail-System, welche ein Nockentriebwerk aufweist, bei welchem die Drehbewegung einer NockenwelIe über zumindest einen Nocken in eine Hubbewegung eines Pumpenkolbens der Hochdruckpumpe umgesetzt wird, wobei eine Nockenkontur des Nockens ausgelegt ist, so dass in einer Saugphase der Hochdruckpumpe in einem Bereich von einem oberen Totpunkt bis zu einem unteren Totpunkt, in welcher Kraftstoff in einen Pumpenarbeitsraum angesaugt wird, der Kolbenhub des Pumpenkolbens als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.

Description

Beschreibung
Titel Hochdruckpumpe
Die vorliegende Erfindung betrifft eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.
Stand der Technik
Hochdruckpumpen werden beispielsweise in Common-Rail-Systemen von Kraftfahrzeugen dazu eingesetzt, einem Hochdruckspeicher bei allen Betriebsbedingungen unter Hochdruck stehenden Kraftstoff bereitzustellen bzw. zuzuführen. Dabei verfügen derartige Diesel-Hochdruckpumpen in der Regel entweder Exzenterantriebe oder aber Nockenantriebe. Der Vorteil von nockengetriebenen Hochdruckpumpen liegt darin, dass hierbei die Möglichkeit besteht, für eine gewünschte Applikation ein daran angepasstes Nockenprofil, welches den Kolbenhub über einen Drehwinkel der Antriebswelle bzw. der Nockenwelle darstellt, zu entwerfen. Beispielsweise kann über ein asymmetrisches Nockenprofil eine langsame Förderphase und eine schnelle Saugphase der Hochdruckpumpe realisiert werden, wodurch ein Vorteil durch das hierdurch bewirkte niedrige maximale Antriebsmoment erzielt wird, welches der Motor zum Antrieb der Hochdruckpumpe aufbringen muss.
Um jedoch die Teilevielfalt bei der Herstellung zu reduzieren, wurden im Stand der Technik im Wesentlichen symmetrische Nockenkonturen entwickelt, die in der Saug- und Förderphase den gleichen Hubverlauf aufweisen. Eine derartig ausgelegte Nockenkontur ist damit auch sowohl für den Rechts- als auch für den Linkslauf einsetzbar. Obwohl die symmetrisch ausgelegten Nockenkonturen den oben beschriebenen Vorteil aufweisen, dass die Teilevielfalt gering gehalten wird, haben sie jedoch den Nachteil, dass die prinzipiellen Unterschiede, die sich für die Saugphase und die Förderphase der Hochdruckpumpe ergeben, nicht berücksichtigt bzw. einbe- zogen werden.
Bei aus dem Stand der Technik bekannten Hochdruckpumpen wurden darüber hinaus die für ihre Antriebswellen eingesetzten Nocken bezüglich ihrer Nockenkontur auch lediglich hinsichtlich der Förderphase optimiert. Die hieraus resultie- renden Nockenkonturen ergaben jedoch ungünstige Eigenschaften für das Füllverhalten des Elementraums bzw. des Pumpenarbeitsraums der Hochdruckpumpe in der Saugphase.
Daher ist es notwendig, eine Hochdruckpumpe für Kraftstoffeinspritzeinrichtun- gen und insbesondere für Common-Rail-Systeme bereitzustellen, welche eine
Nockenkontur aufweist, welche auch hinsichtlich der Saugphase optimiert ist.
Offenbarung der Erfindung
Vorteile der Erfindung
Erfindungsgemäß wird eine Hochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, insbesondere für ein Common-Rail- Einspritzsystem, vorgesehen, welche ein Nockentriebwerk aufweist, bei welchem die Drehbewegung einer Nockenwelle über zumindest einen Nocken in eine Hubbewegung eines Pumpenkolbens der Hochdruckpumpe umgesetzt wird, wobei eine Nockenkontur des Nockens ausgelegt ist, so dass in einer Saugphase der Hochdruckpumpe in einem Bereich von einem oberen Totpunkt bis zu einem unteren Totpunkt, in welcher Kraftstoff in einen Pumpenarbeitsraum angesaugt wird, der Kolbenhub des Pumpenkolbens als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt. Durch die sinusförmige Auslegung der Nockenkontur wird das Füllverhalten des Elementraums bzw. des Pumpenarbeitsraums der Hochdruckpumpe in der Saugphase verbessert und starke Variationen der Kraftstofffördermenge als Funktion der Drehzahl werden reduziert. Weiterhin wird der Bereich im Druckabbau nach dem oberen Totpunkt des Nockens verbessert.
Gemäß einer bevorzugten Ausführungsform weist der zumindest eine Nocken eine asymmetrische Nockenkontur auf. Dies ermöglicht eine Anpassung an spezielle Anforderungen, beispielsweise bezüglich der Saugphase und der Förderphase.
Gemäß einer weiteren bevorzugten Ausführungsform entspricht der sinusförmige Verlauf in der Saugphase einer fallenden Flanke einer Sinusfunktion, welche an einem oberen Totpunkt des Nockens beginnt und an einem unteren Totpunkt des Nockens endet. Durch den „Halbsinusnocken" mit z. B. 2 x 6 mm Hub gemäß der Ausführungsform können deutliche Förderzuwächse im Vergleich zu herkömmlichen Nocken mit z. B. 2 x 6 mm Hub erzielt werden. Die Förderrate steigt bei- spielsweise von 160 l/h beim Einsatz eines herkömmlichen Nockens auf 178 l/h an, wenn der „Halbsinusnocken" gemäß der Ausführungsform eingesetzt wird. Darüber hinaus lassen sich hierdurch Fördermengenschwankungen über der Drehzahl beispielsweise einer Zweistempelpumpe reduzieren und das Abspringverhalten der Stößelbaugruppe der Hochdruckpumpe wird in der Saugphase verbessert. Eine Korrektur bzw. Kompensation von Fördermengenschwankungen über der Drehzahl und reduzierten Förderraten durch eine Erhöhung des Kolbenhubs ist nicht mehr notwendig, was die Dauerhaltbarkeit der Hochdruckpumpe verbessert. Insbesondere werden durch die oben beschriebene Konfiguration eine hohe Belastung der Stößelfeder, ein hohes Antriebsmoment der Hoch- druckpumpe und hohe Umpumpverluste, was zu einem Mehrverbrauch der
Hochdruckpumpe führt, vermieden.
Besonders bevorzugt ist es, wenn die fallende Flanke aus einer Summe von harmonischen Funktionen gebildet ist. Bei Bilden der fallenden Flanke des No- ckenprofils aus einer Summe von harmonischen Funktionen wird die Leistung der Hochdruckpumpe weiter optimiert. Insbesondere werden die Abhebeeigenschaften des Stößelkörpers der Hochdruckpumpe verbessert und je nach Beschleunigungsverlauf der steigenden Flanke in der Förderphase werden größere Beschleunigungsstufen im Übergangsbereich zur Saugphase vermieden. Insbe- sondere werden durch diese Ausgestaltung der Geschwindigkeits- und Be- schleunigungsverlauf des Pumpenkolbens sowie die Hertz'sche Pressung verbessert.
Gemäß noch einer weiteren bevorzugten Ausführungsform entspricht der sinus- förmige Verlauf in der Saugphase an dem oberen Totpunkt des Nockens einem maximalen Förderhub des Pumpenkolbens. Durch diese Konfiguration wird die Saugphase weiter optimiert, wobei der Verlauf bzw. die Nockenkontur der vor der Saugphase stattfindenden Förderphase unerheblich ist und einer bereits optimierten Nockenkontur folgen kann. Der Sinusverlauf zeichnet sich durch einen langsamen und harmonischen Abfall bzw. Anstieg bezüglich des Kolbenhubs, der Kolbengeschwindigkeit und der Kolbenbeschleunigung nach bzw. vor den Totpunkten aus. Die hohe Kolbengeschwindigkeit im Mittelbereich der Förderphase war bisher der Grund für hohe Antriebsmomente der Hochdruckpumpe und war bei den bisher an die Hochdruckpumpen im Stand der Technik gestell- ten Anforderungen nicht durchsetzbar. Durch den langsamen, harmonischen Abfall nach dem oberen Totpunkt werden jedoch eine verbesserte Saugphase und geringere negative Drehmomente beim Druckaufbau erreicht. Durch die langsame Annäherung an den unteren Totpunkt kann das Saugventil der Hochdruckpumpe früher mit seinem Schließvorgang beginnen und Förderverluste durch ein spätes Schließen des Saugventils werden deutlich reduziert.
Gemäß noch einer weiteren bevorzugten Ausführungsform entspricht der sinusförmige Verlauf in der Saugphase an dem unteren Totpunkt des Nockens einem minimalen Förderhub des Pumpenkolbens.
Vorzugsweise ist die Nockenkontur ausgelegt, so dass in der Saugphase der Hochdruckpumpe die Kolbengeschwindigkeit des eine Abwärtsbewegung ausführenden Pumpenkolbens als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.
Vorzugsweise ist die Nockenkontur ausgelegt, so dass in einer Förderphase der Hochdruckpumpe, in welcher der Kraftstoff in dem Pumpenarbeitsraum komprimiert und einem Förderventil zugeführt wird, eine Beschleunigung des Pumpenkolbens als Funktion des Nockendrehwinkels einem Verlauf folgt, der sich aus sinusförmigen, linearen, tangentialen oder bogenförmigen Abschnitten zusammensetzt. Kurze Beschreibung der Zeichnungen
Im Nachfolgenden werden Ausführungsbeispiele der Erfindung unter Bezugnahme auf die beigefügten Zeichnungen näher beschrieben. Es zeigt:
Fig. 1 einen Schnitt durch eine Hochdruckpumpe gemäß dem Stand der Technik;
Fig. 2 ein Diagramm, welches die Förderrate in Abhängigkeit von der Drehzahl eines Nockens gemäß dem Stand der Technik und eines Nockens gemäß einer Ausführungsform darstellt;
Fig. 3 ein Diagramm des Verlaufs des Kolbenhubs in Abhängigkeit von dem
Nockendrehwinkel;
Fig. 4 ein Diagramm des Verlaufs der Kolbengeschwindigkeit in Abhängigkeit von dem Nockendrehwinkel; und
Fig. 5 ein Diagramm des Verlaufs der Kolbenbeschleunigung in Abhängigkeit von dem Nockendrehwinkel.
Ausführungsformen der Erfindung
In Fig. 1 ist ein Schnitt durch eine Hochdruckpumpe 1 für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine dargestellt, wie sie aus dem Stand der Technik bekannt ist. Die Hochdruckpumpe 1 weist ein mehrteiliges Pumpengehäuse 2 auf, in welchem eine durch die Brennkraftmaschine rotierend angetriebene Antriebswelle bzw. Nockenwelle 3 angeordnet ist. Die Nockenwelle 3 ist beispielsweise über zwei in Richtung der Drehachse 4 der Nockenwelle 3 voneinander beabstandeten Lagerstellen drehbar gelagert. Die Lagerstellen können in verschiedenen Teilen des Pumpengehäuses 2 angeordnet sein, beispielsweise kann eine erste Lagerstelle in einem Grundkörper 5 des Pumpengehäuses 2 und eine zweite Lagerstelle in einem mit dem Grundkörper 5 verbundenen Flanschteil 6 angeordnet sein.
In einem zwischen den Lagerstellen liegenden Bereich weist die Nockenwelle 3 einen Nocken 7 auf, welcher auch als Mehrfachnocken ausgebildet sein kann.
Die Hochdruckpumpe 1 weist wenigstens ein oder mehrere im Gehäuse 2 angeordnete Pumpenelemente 8 mit jeweils einem Pumpenkolben 9 auf, der durch den Nocken 7 der Nockenwelle 3 in einer Hubbewegung in zumindest annähernd radialer Richtung zur Drehachse 4 der Nockenwelle 3 angetrieben wird. Bei Dre- hung des Nockens 7 wird der Pumpenkolben 9 in eine Hin- und Her- bzw. Aufwärts- und Abwärts-Bewegung versetzt. Hierdurch ergibt sich eine zyklische Veränderung des Volumens eines von dem Pumpenkolben 9 begrenzten Pumpenarbeitsraums 14. Im Bereich eines jeden Pumpenelements 8 ist ein mit dem Grundkörper 5 verbundenes Pumpengehäuseteil 10 vorgesehen, das als ZyMn- derkopf ausgebildet ist. Das Pumpengehäuseteil 10 weist einen an einer Außenseite des Grundkörpers 5 anliegenden Flansch 1 1 und einen durch eine Öffnung im Grundkörper 5 zur Nockenwelle 3 hin durchragenden, zumindest annähernd zylinderförmigen Ansatz 12 mit gegenüber dem Flansch 1 1 kleinerem Durchmesser auf. Der Pumpenkolben 9 ist in einer im Ansatz 12 ausgebildeten ZyMn- derbohrung 13 im Pumpengehäuseteil 10 dicht verschiebbar geführt und begrenzt mit seiner der Nockenwelle 3 abgewandten Stirnseite in der Zylinderbohrung 13 den Pumpenarbeitsraum 14. Die Zylinderbohrung 13 kann sich bis in den Flansch 1 1 hinein erstrecken, in dem dann der Pumpenarbeitsraum 14 angeordnet ist. Der Pumpenarbeitsraum 14 weist über einen im Pumpengehäuse 2 ver- laufenden Kraftstoffzulaufkanal 15 eine Verbindung mit einem Kraftstoffzulauf, beispielsweise einer Förderpumpe (nicht dargestellt), auf. An der Mündung des Kraftstoffzulaufkanals 15 in den Pumpenarbeitsraum 14 ist ein in den Pumpenarbeitsraum 14 öffnendes Einlassventil 16 angeordnet. Der Pumpenarbeitsraum 14 weist außerdem über einen im Pumpengehäuse 2 verlaufenden Kraftstoffaus- lasskanal 17 eine Verbindung mit einem Auslass auf, der beispielsweise mit einem Hochdruckspeicher 18 verbunden ist. Mit dem Hochdruckspeicher 18 sind ein oder mehrere an Zylindern der Brennkraftmaschine angeordnete Injektoren 19 verbunden, durch die Kraftstoff in die Zylinder der Brennkraftmaschine eingespritzt wird. An der Mündung des Kraftstoffauslasskanals 17 in den Pumpenar- beitsraum 14 ist ein aus dem Pumpenarbeitsraum 14 öffnendes Auslassventil bzw. Förderventil 20 angeordnet. Beim Saughub des Pumpenkolbens 9 bzw. in der Saugphase, bei dem sich der
Pumpenkolben 9 radial nach innen bewegt, wird der Pumpenarbeitsraum 14 durch den Kraftstoffzulaufkanal 15 bei geöffnetem Einlassventil 16, welches als Saugventil wirkt, mit Kraftstoff befüllt, wobei das Förderventil 20 geschlossen ist.
Beim Förderhub des Pumpenkolbens 9 bzw. in der Förderphase, bei dem sich der Pumpenkolben 9 radial nach außen bewegt, wird durch den Pumpenkolben 9
Kraftstoff unter Hochdruck durch den Kraftstoffauslasskanal 17 bei geöffnetem
Förderventil 20 zum Hochdruckspeicher 18 gefördert, wobei das Einlassventil 16 geschlossen ist.
Zwischen dem Pumpenkolben 9 und dem Nocken 7 der Nockenwelle 3 ist ein Stößel 21 angeordnet, über den sich der Pumpenkolben 9 zumindest mittelbar am Nocken 7 der Nockenwelle 3 abstützt. Der Stößel 21 ist hohlzylinderförmig mit rundem Außenquerschnitt ausgebildet und ist in einer Bohrung 22 des
Grundkörpers 5 des Pumpengehäuses 2 in Richtung der Längsachse 23 des Pumpenkolbens 20 verschiebbar geführt. Die Längsachse des Stößels 21 ist somit zumindest im Wesentlichen identisch mit der Längsachse 23 des Pumpenkolbens 9. Im Stößel 21 ist in dessen der Nockenwelle 3 zugewandtem Endbe- reich ein Stützelement 24 eingesetzt, in dem eine Rolle 25 drehbar gelagert ist, die auf dem Nocken 7 der Nockenwelle 3 abrollt. Die Drehachse 26 der Rolle 25 ist zumindest annähernd parallel zur Drehachse 4 der Nockenwelle 3. Das Stützelement 24 weist auf seiner der Nockenwelle 3 zugewandten Seite eine Vertiefung 27 auf, in der die Rolle 25 drehbar gelagert ist. Das Stützelement 24 und der Stößel 21 können auch einstückig ausgebildet sein.
Am Stößel 21 oder am Pumpenkolben 9 greift eine vorgespannte Feder 28, welche als Rückstellfeder ausgebildet ist, an, die sich am Pumpengehäuseteil 10 abstützt. Durch die Feder 28 werden der Pumpenkolben 9 und der Stößel 21 zum Nocken 7 der Nockenwelle 3 hin beaufschlagt, so dass die Anlage der Rolle
25 am Nocken 7 auch beim zur Nockenwelle 3 hin gerichteten Saughub des Pumpenkolbens 9 und auch bei hoher Drehzahl der Nockenwelle 3 sichergestellt ist. Der Pumpenkolben 9 kann mit dem Stößel 21 gekoppelt sein, zumindest in Richtung von dessen Längsachse 23. Alternativ kann der Pumpenkolben 9 auch nicht mit dem Stößel 21 verbunden sein, wobei dann durch die Rückstellfeder 28 die Anlage des Pumpenkolbens 9 am Stößel 21 sichergestellt wird. Es kann vor- gesehen sein, dass die Rückstellfeder 28 beispielsweise über einen Federteller 29 an einem im Durchmesser vergrößerten Kolbenfuß des Pumpenkolbens 9 angreift, der dadurch in Anlage an einem am Stößel 21 von dessen Mantel nach innen ragenden Flansch gehalten wird, der wiederum in Anlage am Stützelement 24 gehalten wird, so dass der gesamte Verbund aus Pumpenkolben 9, Stößel 21 und Stützelement 24 mit Rolle 25 zum Nocken 7 der Nockenwelle 3 hin beaufschlagt ist.
In Richtung der Drehachse 26 ist seitlich neben der Rolle 25 für diese eine Ab- Stützung 30 angeordnet, durch die verhindert wird, dass sich die Rolle 25 in Richtung ihrer Drehachse 26 aus dem Stützelement 24 herausbewegt. Die Rolle 25 kann an ihren der Abstützung 30 zugewandten Seitenflächen konvex gewölbt ausgebildet sein, beispielsweise zumindest annähernd kugelförmig gewölbt. Die den Seitenflächen der Rolle 25 zugewandte Fläche der Abstützung 30 kann zu- mindest annähernd eben oder gewölbt ausgebildet sein. Die Abstützung 30 kann als ein die Rolle 25 umgebender Ring ausgebildet sein oder nur seitlich neben den Seitenflächen der Rolle 25 angeordnet sein.
Fig. 2 zeigt ein Diagramm, welches die Förderrate einer Hochdruckpumpe 1 in Abhängigkeit von der Drehzahl eines Nockens 7 einerseits gemäß dem Stand der Technik und eines weiteren Nockens 7 andererseits gemäß einer Ausführungsform darstellt, welche gemäß einer Simulation ermittelt wird. Die Simulation der Förderraten bzw. der Vergleich der Förderraten wurde auf der Basis der Bedingungen eines Drucks von 1800 bar und einer Temperatur von 40 0C durchge- führt. Weiterhin wurde einerseits eine Radialkolbenpumpe gemäß dem Stand der
Technik mit einem herkömmlichen Nocken 7 mit 2 x 6 mm Hub mit einer Radialkolbenpumpe mit einem Nocken 7 gemäß einer Ausführungsform der Erfindung verglichen, welcher bezüglich der Saugphase eine Nockenkontur aufweist, die einem sinusförmigen Verlauf folgt. Der Nocken 7 gemäß der Ausführungsform wird im Folgenden als Halbsinusnocken bezeichnet. Wie aus dem Diagramm erkannt werden kann, steigt gemäß der Simulation die Förderrate von 160 l/h, welche durch den herkömmlichen Nocken 7 erzielt wird, auf 178 l/h für den Halbsinusnocken bei einer Drehzahl von ca. 5000 rpm an.
Fig. 3 zeigt ein Diagramm des Verlaufs des Kolbenhubs in Abhängigkeit von dem
Nockendrehwinkel. Dabei ist in der linken Hälfte des Diagramms die Förderphase über einen Nockendrehwinkelbereich von 0° bis 90° gezeigt, in welchem die Kurve aus linearen, sinusförmigen, tangentialen oder bogenförmigen Beschleunigungsbereichen zusammengesetzt ist. Wichtig ist jedoch, dass in der Saugphase die Nockenkontur in einem Nockendrehwinkelbereich von 90° bis 180° einem si- nusförmigen Verlauf folgt. Beginnend am durch Bezugszeichen 31 gekennzeichneten oberen Totpunkt des Nockens 7 bei einem Nockendrehwinkel von 90° fällt der Kolbenhub harmonisch ab, bis er sich bei einem Nockendrehwinkel von 180° an dem unteren Totpunkt des Nockens 7, welcher durch Bezugszeichen 32 gekennzeichnet ist, an Null annähert. Durch den langsamen, harmonischen Abfall im Beginn der Flanke nach Durchlaufen des oberen Totpunkts 31 und eine anschließende schnelle Saugphase werden u. a. eine verbesserte Saugphase und geringere negative Drehmomente beim Druckabbau erreicht.
Die fallende Flanke 33 der Nockenkontur kann auch aus einer nicht reinen Sinus- funktion gebildet werden, wobei die fallende Flanke 33 der Nockenkontur dann aus einer Summe von harmonischen Funktionen erhalten wird, wodurch ein noch weiterer Optimierungsspielraum in der Nockenauslegung erhalten werden kann.
Wenn die fallende Flanke 33 als Summe von harmonischen Funktionen ver- schiedener Ordnungen zusammengesetzt ist, dann ergibt sich der Kolbenhub aus der folgenden Gleichung:
Hub = AO + A1 * sin (1 * (α + Q0)) + A2 * sin (2 * (α + Q1)) + A3 * sin (3 * (α + α2)) +
Beiträge ab der 4. Ordnung dürfen aus Gründen der Federanregung nur kleiner als 1 % der 1 . Ordnung A1 sein.
Fig. 4 zeigt ein weiteres Diagramm, in welchem der Verlauf der Kolbengeschwin- digkeit in Abhängigkeit von dem Nockendrehwinkel in einer Förderphase und in der Saugphase dargestellt ist. Auch hier folgt die Kolbengeschwindigkeit in der Saugphase wiederum einem sinusförmigen Verlauf.
Schließlich zeigt Fig. 5 ein Diagramm des Verlaufs der Kolbenbeschleunigung in Abhängigkeit von dem Nockendrehwinkel. Wiederum ist in der Saugphase der einer Sinuskurve folgende Verlauf zu erkennen, während der Verlauf der Förderphase aus sinusförmigen und linearen Bereichen zusammengesetzt ist.
Die sinusförmige Kolbenbeschleunigung ergibt sich dabei aus der Formel:
b = bo * sin (a0 * (α + α0)) + c.
Die Kolbengeschwindigkeit und der Kolbenhub ergeben sich durch entsprechende Integration der Kolbenbeschleunigung.
Insgesamt betrachtet wird mit der erfindungsgemäßen Hochdruckpumpe 1 mit einer optimierten Saugphase geschaffen, wodurch die Förderrate gesteigert und Fördermengeneinbrüche vermieden werden können.

Claims

Ansprüche
1 . Hochdruckpumpe (1) für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine, insbesondere für ein Common-Rail-System, welche ein Nocken- triebwerk aufweist, bei welchem die Drehbewegung einer Nockenwelle (3) über zumindest einen Nocken (7) in eine Hubbewegung eines Pumpenkolbens (9) der Hochdruckpumpe (1 ) umgesetzt wird, dadurch gekennzeichnet, dass eine Nockenkontur des Nockens (7) ausgelegt ist, so dass in einer Saug- phase der Hochdruckpumpe (1 ) in einem Bereich von einem oberen Totpunkt (31 ) bis zu einem unteren Totpunkt (32), in welcher Kraftstoff in einen Pumpenarbeitsraum (14) angesaugt wird, der Kolbenhub des Pumpenkolbens (9) als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.
2. Hochdruckpumpe (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass der zumindest eine Nocken (7) eine asymmetrische Nockenkontur aufweist.
3. Hochdruckpumpe (1 ) nach Anspruch 2, dadurch gekennzeichnet, dass der sinusförmige Verlauf in der Saugphase einer fallenden Flanke (33) einer Sinusfunktion entspricht, welche an einem oberen Totpunkt (31 ) des Nockens (7) beginnt und einem unteren Totpunkt (32) des Nockens (7) endet.
4. Hochdruckpumpe (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die fallende Flanke (33) aus einer Summe von harmonischen Funktionen gebildet ist.
5. Hochdruckpumpe (1 ) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der sinusförmige Verlauf in der Saugphase an dem oberen Totpunkt (31 ) des Nockens (7) einem maximalen Förderhub des Pumpenkolbens (9) entspricht.
6. Hochdruckpumpe (1 ) nach einem oder mehreren der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der sinusförmige Verlauf in der Saugphase an dem unteren Totpunkt (32) des Nockens (7) einem minimalen Förderhub des Pumpenkolbens (9) ent- spricht.
7. Hochdruckpumpe (1 ) nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Nockenkontur ausgelegt ist, so dass in der Saugphase der Hochdruck- pumpe (1 ), die Kolbengeschwindigkeit des eine Hin- und Herbewegung ausführenden Pumpenkolbens (9) als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.
8. Hochdruckpumpe (1 ) nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Nockenkontur ausgelegt ist, so dass in einer Förderphase der Hochdruckpumpe (1 ), in welcher Kraftstoff in dem Pumpenarbeitsraum (14) komprimiert und einem Förderventil (20) zugeführt wird, der Kolbenhub des Pumpenkolbens (9) als Funktion des Nockendrehwinkels einem sinusförmigen Verlauf folgt.
9. Hochdruckpumpe (1 ) nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Nockenkontur ausgelegt ist, so dass in einer Förderphase der Hoch- druckpumpe (1 ), in welcher der Kraftstoff in dem Pumpenarbeitsraum (14) komprimiert und dem Förderventil (20) zugeführt wird, die Beschleunigung des Pumpenkolbens (9) als Funktion des Nockendrehwinkels einem Verlauf folgt, der sich aus sinusförmigen, linearen, bogenförmigen oder tangentialen Abschnitten zusammensetzt.
PCT/EP2010/051475 2009-04-02 2010-02-08 Hochdruckpumpe WO2010112253A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10702693.2A EP2414675B1 (de) 2009-04-02 2010-02-08 Hochdruckpumpe
CN201080015086.5A CN102378861B (zh) 2009-04-02 2010-02-08 高压泵

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002132.9 2009-04-02
DE200910002132 DE102009002132A1 (de) 2009-04-02 2009-04-02 Hochdruckpumpe

Publications (1)

Publication Number Publication Date
WO2010112253A1 true WO2010112253A1 (de) 2010-10-07

Family

ID=42101984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051475 WO2010112253A1 (de) 2009-04-02 2010-02-08 Hochdruckpumpe

Country Status (4)

Country Link
EP (1) EP2414675B1 (de)
CN (1) CN102378861B (de)
DE (1) DE102009002132A1 (de)
WO (1) WO2010112253A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401883B2 (en) 2020-04-03 2022-08-02 Ford Global Technologies, Llc System and method for direct injection fuel pump control

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225528A1 (de) * 2014-12-11 2016-06-16 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor
DE102015201452A1 (de) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Vorrichtung zum Antreiben einer Kolbenpumpe, Nocken für eine Vorrichtung, Kolbenpumpe und Verfahren zum Auslegen der Vorrichtung
DE102015218258B4 (de) * 2015-09-23 2017-08-24 Continental Automotive Gmbh Verfahren zur Raildruckregelung eines Einspritzsystems
DE102016216978A1 (de) * 2016-09-07 2018-03-08 Robert Bosch Gmbh Verfahren zur Ansteuerung einer Hochdruckpumpe für die Kraftstoffeinspritzung in einen Verbrennungsmotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254958A1 (de) * 1986-07-28 1988-02-03 Yoshida Kogyo K.K. Schrittschalt-Antriebsmechanismus
EP0406808A1 (de) * 1989-07-04 1991-01-09 Otto Bihler Maschinenfabrik GmbH & Co. KG Kurbelantrieb für eine Materialeinzugsvorrichtung an einer Bearbeitungsmaschine insbesondere einem Stanz- und Biegeautomaten Stichwort: Feststehende Korrekturkurve
EP1101939A2 (de) * 1999-11-19 2001-05-23 Siemens Aktiengesellschaft Mehrzylindrige Kolbenpumpe
US20020040704A1 (en) * 2000-10-05 2002-04-11 Yoshihiko Onishi Variable delivery fuel supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0254958A1 (de) * 1986-07-28 1988-02-03 Yoshida Kogyo K.K. Schrittschalt-Antriebsmechanismus
EP0406808A1 (de) * 1989-07-04 1991-01-09 Otto Bihler Maschinenfabrik GmbH & Co. KG Kurbelantrieb für eine Materialeinzugsvorrichtung an einer Bearbeitungsmaschine insbesondere einem Stanz- und Biegeautomaten Stichwort: Feststehende Korrekturkurve
EP1101939A2 (de) * 1999-11-19 2001-05-23 Siemens Aktiengesellschaft Mehrzylindrige Kolbenpumpe
US20020040704A1 (en) * 2000-10-05 2002-04-11 Yoshihiko Onishi Variable delivery fuel supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11401883B2 (en) 2020-04-03 2022-08-02 Ford Global Technologies, Llc System and method for direct injection fuel pump control

Also Published As

Publication number Publication date
EP2414675A1 (de) 2012-02-08
DE102009002132A1 (de) 2010-10-07
EP2414675B1 (de) 2019-01-02
CN102378861A (zh) 2012-03-14
CN102378861B (zh) 2016-03-16

Similar Documents

Publication Publication Date Title
EP1201913B1 (de) Kraftstoffhochdruckpumpe mit veränderlicher Fördermenge
DE102007055748A1 (de) Nockenvorrichtung
EP2414675B1 (de) Hochdruckpumpe
DE102009026596A1 (de) Hochdruckpumpe
EP1379784B1 (de) Einstempel-einspritzpumpe für ein common-rail-kraftstoffeinspritzsystem
DE102015105735B4 (de) Verfahren zum Betreiben einer Kraftstoffpumpe für einen Verbrennungsmotor, Kraftstoffpumpe und Verbrennungsmotor
EP1306553A2 (de) Kraftstoffpumpe, Kraftstoffsystem, Verfahren zum Betreiben eines Kraftstoffsystems sowie Brennkraftmaschine
EP1058001B1 (de) Hochdruckförderpumpe
DE102011082642A1 (de) Pumpe, insbesondere Kraftstoffhochdruckpumpe für eine Kraftstoffeinspritzeinrichtung einer Brennkraftmaschine
EP1269021B1 (de) Radialkolbenpumpe
EP0540529B1 (de) Kraftstoffeinspritzvorrichtung für eine fremdgezündete brennkraftmaschine
WO2016120082A1 (de) Vorrichtung zum antreiben einer kolbenpumpe, nocken für eine vorrichtung, kolbenpumpe und verfahren zum auslegen der vorrichtung
DE102007002729B3 (de) Kraftstoffpumpe für Einspritzsysteme von Brennkraftmaschinen sowie Herstellungsverfahren hierfür
DE10138362A1 (de) Einstempel-Einspritzpumpe für ein Common-Rail-Kraftstoffeinspritzsystem
EP2850318B1 (de) Hochdruckpumpe
WO2009098095A1 (de) Querkraftfreier nocken für common-rail-hochdruckpumpen
WO2011088958A1 (de) Hochdruckpumpe
WO2018046147A1 (de) Verfahren zum betreiben einer kraftstoffhochdruckpumpe, sowie kraftstoffhochdruckpumpe
WO2014096175A1 (de) Hochdruckpumpe
EP1527259B1 (de) Rollenstössel für eine brennkraftmaschine
DE102009026610A1 (de) Hochdruckpumpe
DE112020007639T5 (de) Kraftstoffpumpenbaugruppe
DE102012202717A1 (de) Hochdruckpumpe
WO2019110282A1 (de) Kraftstofffördereinrichtung für kryogene kraftstoffe
WO2011088954A1 (de) Hochdruckpumpe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015086.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702693

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010702693

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 7451/DELNP/2011

Country of ref document: IN