WO2010111961A1 - 用于led路灯的配光透镜 - Google Patents

用于led路灯的配光透镜 Download PDF

Info

Publication number
WO2010111961A1
WO2010111961A1 PCT/CN2010/071514 CN2010071514W WO2010111961A1 WO 2010111961 A1 WO2010111961 A1 WO 2010111961A1 CN 2010071514 W CN2010071514 W CN 2010071514W WO 2010111961 A1 WO2010111961 A1 WO 2010111961A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
angle
light distribution
optical axis
Prior art date
Application number
PCT/CN2010/071514
Other languages
English (en)
French (fr)
Inventor
蒋金波
杜雪
李荣彬
张志辉
Original Assignee
香港理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 香港理工大学 filed Critical 香港理工大学
Publication of WO2010111961A1 publication Critical patent/WO2010111961A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • F21S8/085Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light
    • F21S8/086Lighting devices intended for fixed installation with a standard of high-built type, e.g. street light with lighting device attached sideways of the standard, e.g. for roads and highways
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0061Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a LED
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • F21S8/08Lighting devices intended for fixed installation with a standard
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/10Outdoor lighting
    • F21W2131/103Outdoor lighting of streets or roads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to non-imaging optical technology for LED illumination, and more particularly to a light distribution lens for LED street lamps.
  • LED Light Emitting Diode
  • LED street lighting technology has been rapidly developed in recent years due to its small size, long life, high electro-optic efficiency, environmental protection and energy saving. Since the radiation angle distribution of most LED light sources is Lambertian distribution of 110 degrees to 120 degrees, if there is no light distribution, the light pattern on the ground will be a large circular spot. 50% of the light is scattered outside the road and is not used, and it will cause glare to distant vehicles or pedestrians, which is inconsistent with the requirements of road lighting. Good road lighting requires that the light distribution of the street light be a rectangular spot that distributes almost all of the light on the road.
  • some main roads are installed at a distance of 50 meters or 60 meters, and the existing street lamps are difficult to fully illuminate the road between the two lamps, in order to enable the area between the two lamps to be For adequate illumination, a large-angle LED light distribution lens is required, such as a light distribution lens with a full beam angle of 135° to 145°.
  • the LED street lamp needs to be designed as a light intensity distribution of a batwing shape in the light distribution design.
  • the light intensity distribution of the batwing shape can suppress the illuminance of the road surface directly under the street lamp, increase the illuminance on the road surface between the street lamps, and make the road surface illumination uniform. This is an urgent problem that needs to be solved in the field. Summary of the invention
  • the technical problem to be solved by the present invention is to provide a light distribution lens for an LED street lamp, which can increase the light between the street lamps and the light barrier of the LED street lamp in the prior art.
  • the illuminance on the road surface makes the road surface illumination very uniform.
  • the technical solution adopted by the present invention to solve the technical problem thereof is: constructing a light distribution lens for an LED street lamp, the LED comprising an LED chip, and a package lens packaged with the LED chip, and having an optical axis, Wherein the lens comprises:
  • a continuous saddle-type light distribution surface wherein the optical axis symmetry is used to match the Lambertian distribution light emitted by the corresponding LED chip to a light intensity distribution of a batwing shape at a large angle along the length of the road;
  • connection plane located at the bottom of the lens, is used to connect the light distribution surface and the hemisphere.
  • the light distribution curved surface has a common cross section along the width direction of the road and through the optical axis, and the light emitted by the corresponding LED chip is emitted through the hemispherical surface and the light distribution curved surface. focus.
  • the common focus is on the optical axis, and the common focus, the optical axis and the center point of the light emitting surface of the LED chip are conjugate points with each other.
  • the light distributing lens according to the present invention the width of the light distribution along the road surface direction and a cross-section through the optical axis, the lens angle of the marginal ray and the optical axis is ⁇ , ⁇ ⁇ 30 ° ⁇
  • is 32°.
  • the angle of the light having the largest exit angle and the optical axis along the longitudinal direction of the road and passing through the optical axis is ⁇ , 60° ⁇ ⁇ ⁇ 75°.
  • is 70°.
  • the light distribution curved surface satisfies the following conditions along the road length direction and the section curve passing through the optical axis:
  • the light distribution lens for an LED street lamp embodying the present invention has the following beneficial effects:
  • the Lambertian distribution light emitted by the corresponding LED chip can be configured as a light intensity distribution of a batwing shape at a large angle along the length of the road, on the road A rectangular spot is formed in the long direction, which improves the utilization of light, increases the illuminance on the road surface between the street lamps, and makes the road surface illumination uniform.
  • Figure 1 is an isometric view of a lens in the present invention
  • Fig. 2 is a plan view of the lens of the present invention; wherein the A-A section is a section passing through the optical axis in the width direction of the road, and the section B-B is a section passing along the long direction of the road and passing through the optical axis.
  • Figure 3 is a side view of the lens of the present invention.
  • Figure 4 is a front elevational view of the lens of the present invention.
  • Figure 5 is a bottom plan view of the lens of the present invention.
  • Figure 6 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 7 shows a mathematical model of the outline of the section in Figure 6;
  • Figure 8 is a cross-sectional view taken along line B-B of Figure 2;
  • Figure 9 shows a mathematical model of the outline of the section in Figure 8.
  • Figure 10 shows the numerical calculation results of the cross-sectional contour coordinates of A-A, B-B in Figure 2;
  • Figure 11 shows the cross-sectional curve at different angles from the Z-axis through the 0-point;
  • Figure 12 shows the position of the light rays of the lens at different angles
  • Figure 13 shows the outline of the lens at different angles
  • Figure 14 shows a solid model of the lens
  • Figure 15 shows the ray tracing of the lens
  • Figures 16a-16c show the illuminance distribution of the lens at 12 meters
  • Figure 17 is a polar plot showing the far field angular distribution of the lens light intensity in the shape of a batwing;
  • Figure 18 shows a Cartesian plot of the far field angular distribution of the lens intensity;
  • Figure 19 shows the arrangement of the lenses on the PCB
  • Figure 20 shows the ray tracing of the LED street light
  • Figures 21a-21c show the illumination distribution of an LED street light at a distance of 12 meters
  • Figure 22 shows a polar plot of the far-field angular distribution of the road light with a strong batwing shape
  • Figure 23 shows a Cartesian plot of the far-field angular distribution of the strong road light.
  • the LED street lamp of the present invention comprises: a circuit board (not shown), a plurality of LEDs 4 connected to the circuit board, and a light distribution lens 5 covering the single LED 4.
  • the LED 4 includes an LED chip 7, and a spherical package lens 6 that is packaged with the LED chip 7.
  • the shape of the lens 5 is as shown in Figs. 1-6, and includes an optical axis OY which passes through the center of the light-emitting surface of the LED chip 7 and is perpendicular to the light-emitting surface of the LED chip 7.
  • the lens 5 has a continuous saddle-type light distribution curved surface 1 which is symmetrical about the optical axis OY and is not composed of two partial spherical surfaces and a transition surface between the two partial spherical surfaces for the corresponding LED
  • the light emitted by the Lambertian distribution of 4 is matched to the light intensity distribution of the batwing shape at a large angle along the road direction, forming a uniformly distributed rectangular spot covering the road.
  • the bottom of the lens 5 has a concave hemispherical surface 2 which is centered on the center of the LED chip 7 and has a shape matching the shape of the spherical package lens 6 of the LED 4.
  • the main function of the hemispherical surface 2 is to fasten the lens 5 above the LED 4, while the hemispherical surface 2 can keep the light propagation direction of the LED 4 unchanged, and only the light of the LED 4 is distributed by the saddle surface 1 above.
  • the bottom of the lens 5 also has a connection plane 3 connecting the saddle-shaped curved surface 1 and the hemispherical surface 2, which has no influence on the optical characteristics of the lens 5, and any shape of the lens 5 for mounting the lens 5 can be disposed thereon. Card foot.
  • the beam angle of the lens 5 needs to cover the width of the road justly, assuming that the road is 3 lanes, then the spot is The width needs to cover exactly the range of 3 lanes, so this direction needs to converge the LED 4 .
  • the angle of the light distribution needs to be determined according to the width of the road and the installation height of the lamp. Generally, the full angle of the beam in this direction is designed as Around 60°.
  • 0 is the Lange distribution LED
  • F and 0 point are conjugate points, that is, mutual object relationship.
  • the angle between the edge ray FBC of the lens 5 and the optical axis OY is ⁇ , and ⁇ is an angle of 30 or more. This invention is preferably 32°.
  • the contour of the lens 5 along the ⁇ - ⁇ cross section is calculated from the mathematical model using an integral iteration method.
  • P(x, y) is a point on the contour line;
  • NN is the normal to point P;
  • KK is the tangent to point P;
  • VV is the vertical line passing through point P;
  • HH is the horizontal line passing through point P;
  • FC is the lens
  • the edge ray of 5, the angle between FC and OY axis is ⁇ , and the position of point F is determined by the edge ray angle ⁇ and the position of ⁇ point:
  • Point B is the initial point of the contour, assuming that the corresponding coordinate value is (3.5, 0).
  • Point P corresponds to the exit angle of the light emitted from the center 0 of the LED chip 7 as ⁇ , and the angle between the outgoing light and the vertical line VV after the surface is refracted is ⁇ ',
  • n sm i sm o
  • n is the refractive index of the lens 5, which is determined by the material of the lens 5, and the material of the lens 5 is
  • the coordinate point data of the contour of the AA section can be calculated by the integral iteration method.
  • the light distribution curved surface 1 is along the road length direction and passes through the optical axis OY on the cross section BB.
  • the light distribution along the cross section of the lens 5 is mainly responsible for the illumination of the road length direction, and the angle of the light distribution needs to be installed according to the lamp distance and the lamp. Height to decide. For example, when the lamp is installed at a height of 10 meters, the light distribution angle (full beam angle) of the road direction is about 120°. Some main roads are installed at a distance of 50 meters or 60 meters. In order to fully illuminate the area between the two lamps, a large-angle light distribution lens 5 is required. For example, the full angle of the beam is 135. A lens of ° ⁇ 145°.
  • the divergence full angle of the beam of the invention is 140°.
  • the lens 5 needs to be designed as a light intensity distribution of a batwing shape in the light distribution design.
  • the light intensity distribution of the batwing shape can suppress the illuminance of the road surface directly below the street lamp, increasing the road The illuminance on the road between the lights makes the road surface illumination very uniform.
  • the ray of angle ⁇ is the edge ray of the lens 5, that is, the ray with the largest exit angle, ⁇ determines the illumination position of the road lamp spot farthest along the road direction, and the size of ⁇ determines the permission between the two lamps.
  • the lamp pitch, ⁇ is greater than 60° and less than 75°, and the invention ⁇ is preferably 70°.
  • the light emitted from the center 0 of the LED chip 7, when the angle is smaller than ⁇ , passes through the lens 5, the light is divergent, and the exit angle ⁇ ' satisfies the following conditions: ⁇ , tan"
  • tan (10) ⁇
  • is the angle of the light emitted from the center of the LED chip 7
  • ⁇ ' is the angle of the exit after being refracted by the lens 5
  • is the angle of the edge of the lens 5.
  • the outline of the ⁇ - ⁇ section is calculated by the integral iteration method from the mathematical model of Fig. 9.
  • 0 is the center position of the LED chip
  • Q(x, y) is a point on the cross-sectional contour line
  • the incident light corresponding to this point is OQ
  • the angle between OQ and the optical axis OS is ⁇
  • QR For the outgoing light, the angle with the vertical line VV is ⁇ '
  • is the normal of the Q point
  • is the tangential line of the Q point
  • the angle with the horizontal line ⁇ is ⁇
  • i is the incident light OQ and the normal ⁇
  • the angle is 0; the angle between the outgoing ray QR and the normal NN.
  • the relationship between ⁇ ' and ⁇ angle is as follows:
  • n ⁇ - ⁇ ) sin o
  • n is the refractive index of the lens 5
  • the differential of the coordinate position of the Q point of the curve has the following relationship with the tangent angle of the tangent KK:
  • the contour coordinate values can also be calculated in order.
  • ⁇ of the edge ray when the angle ⁇ of the edge ray is 70°, the incident angle ⁇ in the cross section of the ⁇ - ⁇ is 15°, 30°, 45°, 60°, 75°, 90°, and it is emitted.
  • the angle ⁇ of the edge ray passing through each section of 0 can be calculated from the geometric relationship of Fig. 12.
  • 0 is the position of the lens 5
  • ABCD is the illumination range formed by the light emitted by the LED after passing through the lens 5 at a position of distance h
  • the shape is a rectangle
  • the light OL is a cut.
  • the edge ray in the face OLL', ZLOH (D, here is preferably 70°.
  • the corner will converge toward the middle of the spot, see equation (11).
  • the coordinate values of the cross-sectional contours in Fig. 11 can be calculated in the same way according to the formulas (1) to (8). Place the outlines of these sections on the same two-dimensional Cartesian axis. The relative position and shape of the outlines are shown in Figure 13.
  • the coordinates of the different cross-sectional contours calculated above are imported into the 3D modeling software. With these contours as the skeleton, a layer of the surface is enveloped to form a lens entity. At the same time, the solid model of the LED is established according to the geometrical dimensions of the high-power Lange distribution LED. The solid model of the saddle lens 5 in conjunction with the LED is shown in Fig. 14.
  • the solid model of the lens 5 and the LED is input into a ray tracing software such as LightTools, the light emitting surface of the LED chip is given to the light source characteristic, and a receiving screen is placed at 12 meters, and the lens 5 can be traced and photometrically analyzed.
  • the ray tracing of the single lens 5 is as shown in FIG.
  • the illuminance distribution of the lens 5 at 12 meters is as shown in Figs. 16a-16c.
  • the shape of the spot is rectangular, the length of the spot is about 70 m x 16 m, the length direction is the direction of the road, the width direction is the direction of the vertical road, and the peak illuminance Half of the location is about ⁇ 32 meters.
  • the far field angular distribution of the intensity of the lens 5 is shown in Fig. 17 and Fig. 18.
  • the far field angle distribution curve of the light intensity is the shape of the batwing, and the angular width at the half position of the peak light intensity is about ⁇ 70°, in the vertical direction.
  • the angular width at half the peak intensity is about ⁇ 32°.
  • An arrangement of the LEDs 4 on the PCB is as shown in Fig. 19.
  • the BB directions of all the lenses 5 are along the direction of the road, and the AA direction is perpendicular to the direction of the road.
  • the arrangement of the lenses 5 There are many ways to arrange them in a rectangular shape, or they can be arranged in a circle, an ellipse, a star shape, and any other shape, which are arranged in an elliptical shape.
  • the number of arrays can be arbitrarily increased or decreased according to the output luminous flux of the LED and the height of the street lamp installation.
  • the ray tracing of the overall LED street light is shown in Figure 20, and the receiving screen is placed on 12 meters away for photometric analysis after ray tracing.
  • the illuminance distribution on the screen is shown in Figures 21a-21c.
  • the lens 5 forms a uniformly distributed rectangular spot with a length of about 70 m x 16 m.
  • the length direction is the direction of the road, and the width direction is the direction of the vertical road.
  • Half of the peak illuminance is located. The location is approximately ⁇ 32 meters.
  • the far field angular distribution of the intensity of the lens 5 is shown in Fig. 11 and Fig. 23.
  • the far field angle distribution curve of the light intensity is the shape of the batwing, and the angular width at the half of the peak light intensity is about ⁇ 70°, in the vertical direction.
  • the angular width at half the peak intensity is about ⁇ 32°.
  • the light distribution lens 5 of the present invention can form the light intensity distribution of the Lambertian distribution corresponding to the LED chip 7 into a batwing shape having a large angle along the length of the road, and form a rectangular spot in the longitudinal direction of the road, thereby improving the light distribution.
  • the utilization of light increases the illuminance on the road between the street lamps, making the road illumination uniform.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Description

用于 LED路灯的配光透镜
技术领域
本发明涉及 LED照明的非成像光学技术,更具体地说,涉及一种用于 LED 路灯的配光透镜。
背景技术
LED (Light Emitting Diode, 发光二极管) 技术的发展开辟了照明技术革 命的新时代。 由于 LED具有体积小、 寿命长、 电光效率高、 环保节能等诸多 优点, 使得 LED 路灯照明技术在最近几年得到了迅速发展。 由于大部分 LED 光源的辐射角分布为 110度至 120度的郎伯分布(Lambertian distribution) , 如果没有经过配光, 照在地面上的光型将会为面积较大的圆型的光斑, 约 50% 的光散落到马路之外没有被利用起来, 而且会对远处的车辆或行人产生眩光, 与路面照明的要求不符。 良好的道路照明要求路灯的配光为长方形的光斑, 将 几乎所有的光都分布在路面上。
此外, 有些主干路上由于路灯安装的间距比较远, 如灯距为 50 米或 60 米,现有的路灯很难对两灯之间的路面进行充分的照明, 为了使两灯之间的区 域能够充分的照明, 需要采用大角度的 LED配光透镜, 譬如采用光束全角为 135°~145°的配光透镜。 为了使 LED路灯正下方和 LED路灯之间的路面上的 照度都差不多, LED路灯在配光设计时还需要设计成蝙蝠翼形状的光强分布。 蝙蝠翼形状的光强分布才能压制路灯正下方路面的光照度,增加路灯之间的路 面上的光照度, 使路面照明变得很均匀。 这是本领域目前急需解决的难题。 发明内容
本发明要解决的技术问题在于, 针对现有技术中 LED路灯的光线利用率 低、 灯具间隔远使得路面光照不均的缺陷, 提供一种用于 LED路灯的配光透 镜, 可增加路灯之间的路面上的光照度, 使路面照明变得很均匀。 本发明解决其技术问题所采用的技术方案是: 构造一种用于 LED路灯的 配光透镜, 所述 LED包括 LED芯片、 以及与所述 LED芯片封装在一起的封 装透镜, 且具有光轴, 其中, 所述透镜包括:
连续的马鞍型的配光曲面, 关于所述光轴对称, 用于将对应 LED芯片发 出的朗伯分布的光配成沿道路长度方向大角度的蝙蝠翼形状的光强分布;
凹陷的半球面, 位于所述透镜的底部, 关于所述光轴对称并与对应 LED 封装透镜的形状相匹配; 以及
连接平面, 位于所述透镜的底部, 用于连接所述配光曲面和所述半球面。 根据本发明所述的配光透镜,所述配光曲面沿道路宽方向且通过所述光轴 的截面上,对应 LED芯片发出的光线经所述半球面和配光曲面出射后, 具有共 同的焦点。
根据本发明所述的配光透镜,所述共同的焦点位于所述光轴上,且所述共 同的焦点、 所述光轴与 LED芯片的发光面的中心点互为共轭点。
根据本发明所述的配光透镜,所述配光曲面沿道路宽方向且通过所述光轴 的截面上, 透镜的边缘光线与所述光轴的夹角为 φ, φ^30°ο
根据本发明所述的配光透镜, φ为 32°。
根据本发明所述的配光透镜,所述配光曲面沿道路长方向且通过所述光轴 的截面上, 出射角最大的光线与所述光轴的夹角为 ω, 60°< ω <75°。
根据本发明所述的配光透镜, ω为 70°。
根据本发明所述的配光透镜,所述配光曲面沿道路长方向且通过所述光轴 的截面曲线满足以下条件:
从 LED芯片中心发出的光, 当角度小于 ω时, 经透镜后, 光线是发散的, 其出射角 δ'符合: δ
δ, = tan — tan
ω 当从 LED 芯片中心发出的光, 当角度大于 ω时, 光线向光斑中间会聚, 其出射角符合:
Figure imgf000005_0001
δ为从 LED芯片发出的光线的角度, δ'为经过透镜折射后的出射角度。 实施本发明的用于 LED路灯的配光透镜, 具有以下有益效果: 可将对应 LED 芯片发出的朗伯分布的光配成沿道路长度方向大角度的蝙蝠翼形状的光 强分布, 在道路的长方向上形成长方形的光斑, 提高了光线的利用率, 增加路 灯之间的路面上的光照度, 使路面照明变得很均匀。 附图说明
下面将结合附图及实施例对本发明作进一步说明, 附图中:
图 1是本发明中透镜的等侧图;
图 2是本发明中透镜的俯视图; 其中 A-A截面为沿道路宽方向且通过光 轴的截面, B-B截面为沿道路长方向且通过光轴的截面。
图 3是本发明中透镜的侧视图;
图 4是本发明中透镜的正视图;
图 5是本发明中透镜的仰视图;
图 6是沿着图 2中 A-A的截面图;
图 7示出了图 6中截面的轮廓线的数学模型;
图 8是沿着图 2中 B-B的截面图;
图 9示出了图 8中截面的轮廓线的数学模型;
图 10示出了图 2中 A-A、 B-B的截面轮廓线坐标的数值计算结果; 图 11示出了经过 0点与 Z轴呈不同角度的截面曲线;
图 12示出了透镜在不同角度截面的光线的位置;
图 13示出了透镜在不同角度截面的轮廓线;
图 14示出了透镜的实体模型;
图 15示出了透镜的光线追迹;
图 16a-16c示出了透镜在 12米远处的照度分布;
图 17示出了透镜光强呈蝙蝠翼形状的远场角度分布的极坐标图; 图 18示出了透镜光强的远场角度分布的直角坐标图;
图 19示出了透镜在 PCB板上的排列方式;
图 20示出了 LED路灯的光线追迹;
图 21a-21c示出了 LED路灯在 12米远处的照度分布;
图 22示出了路灯光强呈蝙蝠翼形状的远场角度分布的极坐标图; 图 23示出了路灯光强的远场角度分布的直角坐标图。 具体实施方式
如图 5和图 6所示, 本发明的 LED路灯包括: 电路板(未图示)、 连接于 电路板上的多个 LED 4、 以及覆盖于单个 LED 4上的配光透镜 5。 该 LED 4 包括 LED芯片 7、 以及与 LED芯片 7封装在一起的球形封装透镜 6。
透镜 5的形状如图 1-6所示, 包括光轴 OY, 该光轴 OY经过 LED芯片 7 的发光面中心, 且垂直于 LED芯片 7的发光面。 透镜 5具有一个连续的马鞍 型的配光曲面 1, 该配光曲面 1关于光轴 OY对称, 并非由两个局部球面及介 于两个局部球面之间的过渡面组成, 用于将对应 LED 4发出的朗伯分布的光 配成沿道路方向大角度的蝙蝠翼形状的光强分布,形成覆盖道路的均匀分布的 长方形的光斑。 透镜 5底部有凹陷的半球面 2, 该半球面 2以 LED芯片 7中 心位置 0为球心, 形状与 LED 4的球形封装透镜 6的形状相匹配。 该半球面 2的主要作用是将透镜 5扣在 LED 4上方, 同时半球面 2可以保持 LED 4发 出的光线传播方向不变, 只由上面的马鞍型曲面 1对 LED 4发出的光进行配 光。 该透镜 5底部还有一个连接马鞍型曲面 1和半球面 2之间的连接平面 3, 该连接平面 3对透镜 5的光学特性无任何影响,其上可设置任何形状的用于安 装透镜 5的卡脚。
参照图 6,在配光曲面 1沿着道路宽方向且通过光轴 OY得到的 A-A截面 上,透镜 5出来的光束角需要正好可以覆盖马路的宽度,假设马路是 3个车道 的,那么光斑的宽度需要正好覆盖 3个车道的范围,所以这个方向需要对 LED 4进行会聚的配光, 配光的角度需要根据马路的宽度和灯的安装高度来决定, 一般情况下这个方向的光束全角设计为 60°左右。图 6中, 0点为郎伯分布 LED 芯片 7中心位置, 在 A-A横截面, 从 LED 芯片 7的中心位置 0发出的所有 的光经半球面 2和马鞍型曲面 1出射后, 其反向延长线都交于焦点 F, F位于 光轴 OY上, F与 0点互为共轭点, 即互为物像关系。透镜 5的边缘光线 FBC 与光轴 OY的夹角为 φ, φ为大于等于 30°的一个角度, 此发明优选为 32°。
参照图 7,透镜 5沿 Α-Α横截面的轮廓线由该数学模型用积分迭代法来计 算。 假设 P(x,y)为轮廓线上的一点; NN为 P点的法线; KK为 P点的切线; VV为经过 P点的竖直线; HH为经过 P点的水平线; FC为透镜 5的边缘光线, FC与 OY轴的夹角为 φ, F点的位置由边缘光线角度 φ和 Β点的位置决定:
Figure imgf000007_0001
B点为该轮廓线的初始点,假设其对应的坐标值为 (3.5,0)。P点对应从 LED 芯片 7 中心 0射出的光线的出射角为 Θ, 经曲面折射后其出射光线与竖直线 VV之间的夹角为 θ', 贝 lj
tan^
y + OF
Figure imgf000007_0002
i为 P点位置的入射光线 OP与法线 NN之间的夹角; 0为 P点位置的出 射光线 PR与法线 NN之间的夹角; γ为切线 ΚΚ与水平线 ΗΗ之间的夹角。根 据直角 ZVPH, 有:
(^ - ) + ο + θ' = ^ ,
Figure imgf000007_0003
根据 P点的坐标, 有:
Figure imgf000007_0004
从三角形 OFP有:
θ = β + θ' 再从直角 ZHPV, 有:
出 ( - ) + +^ + ^' =
(—— ) + ι + θ =—
2 2
Figure imgf000008_0001
根据 Ρ点的斯涅尔 (Sndl)折射定律:
n sm i = sm o
n sin( — ff) ήη(γ θ')
n sin γ cos θ - η cos γ ήη θ - sin γ cos θ' cos y sin Θ
Figure imgf000008_0002
上式中 n为透镜 5的折射率, 由透镜 5的材料所决定, 透镜 5的材料为
PMMA或 PC。由于曲线 P点位置坐标的微分与切线 KK的正切角有如下关系:
— = - tan y (7) dx
其中 dx、 dy为 X和 Y坐标的有限微元, Ρ点下一个点的坐标为:
x„ext = x + dx
ynext = y + dy 假设微元 dy=0.01mm, 联合公式 (1)至公式 (8), AA截面的轮廓线的坐标 点数据可以由积分迭代法算出。
参照图 8, 配光曲面 1沿道路长方向且通过光轴 OY的截面 B-B上, 透镜 5沿该截面的配光主要负责道路长度方向的照明, 配光的角度需要根据灯距和 灯的安装高度来决定。譬如在灯距为 32米的情况下,灯的安装高度为 10米的 时候, 道路方向的配光角度 (光束全角) 约为 120°。 有些主干路上由于路灯 安装的间距比较远, 如灯距为 50米或 60米, 为了使两灯之间的区域能够充分 的照明, 需要采用大角度的配光透镜 5, 譬如采用光束全角为 135°~145°的透 镜。本发明优选光束的发散全角为 140°。为了使 LED路灯正下方和 LED路灯 之间的路面上的照度都差不多,透镜 5在配光设计时需要设计成蝙蝠翼形状的 光强分布。蝙蝠翼形状的光强分布可以压制路灯正下方路面的光照度, 增加路 灯之间的路面上的光照度, 使路面照明变得很均匀。
图 8中,角度为 ω的那根光线为透镜 5的边缘光线,即出射角最大的光线, ω决定了路灯光斑沿马路方向的最远处的照明位置, ω的大小决定两灯之间允 许的灯距, ω为大于 60°小于 75°, 此发明 ω优选为 70°。从 LED 芯片 7中心 0 发出的光, 当角度小于 ω时, 经透镜 5后, 光线是发散的, 其出射角 δ'满足以 下条件: δ, = tan"
Figure imgf000009_0001
当从 LED 芯片中心发出的光, 当角度大于 ω时, 光线向光斑中间会聚, 其出射角满足:
χ ω - δ
δ, = tan (10) ω 上述式中, δ为从 LED芯片 7中心 Ο发出的光线的角度, δ'为经过透镜 5 折射后的出射角度, ω为透镜 5 边缘光线的角度。 出射光线满足上述式 (9 ) 和式(10) 时, 所形成的配光为蝙蝠翼形状的光强的远场角度分布, 详细的模 拟结果参考后续内容。
Β-Β截面的轮廓线由图 9的数学模型用积分迭代法来计算。 如图 9所示, 图中 0为 LED芯片的中心位置, Q(x,y)为截面轮廓线上的一点, 该点对应的 入射光线为 OQ, OQ与光轴 OS夹角为 δ; QR为出射光线, 其与竖直线 VV 的夹角为 δ'; ΝΝ为 Q点的法线; ΚΚ为 Q点切线,其与水平线 ΗΗ的夹角为 γ; i为入射光线 OQ与法线 ΝΝ的夹角; 0为出射光线 QR与法线 NN的夹角。 δ' 与 δ角的关系如下:
δ Ί
δ, = tan — tan ^ 当 δ≤ω
ω χ ω - δ
δ' = tan - tan , 当 ω<δ≤90 (11) ω 由直角 ZKQN, 有: o = δ' - γ ( 12) 由直角 ZKQN的另外一边, 有:
Figure imgf000010_0001
i = δ - γ (13) 根据 Q点的斯涅尔折射定律 (Snell law):
n s i = sm o
n ήη{δ - γ) = sin o
n sin δ cos γ - n cos i5* sin ^ = sin Sf cos γ cos Sf sin γ tan = (14) ncos S - cos Sf
上式中 n为透镜 5的折射率, 由于曲线 Q点位置坐标的微分与切线 KK 的正切角有如下关系:
Figure imgf000010_0002
y, -- y + y
(16)
X, x + dx 以 A-A截面轮廓线的数学模型算出的 S点的坐标为起始点,联合公式 (11) 至 (16)式, B-B截面轮廓线的数值坐标也可以通过积分迭代法算出。
根据图 7和图 9的数学模型,得到如图 10所示的 A-A截面和 B-B截面轮 廓线坐标的数值的计算结果。
参照图 11, 当 A-A截面和 B-B截面轮廓线计算出来之后, 经过 0点与 Z 轴成角度分别为: δ=15°、 30°、 45°、 60°、 75°、 90°的各截面的轮廓线坐标数 值也可以依次算出。
根据图 9及公式 (11), 当边缘光线的角度 ω=70°时, Β-Β截面中入射角 δ为 15°、 30°、 45°、 60°、 75°、 90°时, 其出射角分别为: δ'=30.5°、 49.6°、 60.5°、 67°、 68.6°、 62.9°。 其经过 0的各截面的边缘光线的角度 φ, 可以根据图 12 的几何关系算出。 图中 0为透镜 5所在位置, ABCD为 LED发出的光经过透 镜 5之后在距离为 h的位置所形成的照射范围, 形状为长方形, 光线 OL为截 面 OLL'内的边缘光线, ZLOH=(D, 这里优选为 70°。 中间的三角形 AOWW'为 δ=0时候的光束截面, 其边缘光线 OW的角度为 φ=32°, 往左的各个截面依次 为 δ=15°、 30°、 45°、 90°、 60°、 75°、 70°的光束截面, 其边缘光线的角度分别 为: φ=28.3。、 22.05。、 17.1。、 15.9。、 13.7。、 12.07。、 12.06°, δ=75。和 90。时的 光束截面在 δ=70°之内, 是因为 δ=70°是边缘光线, 当 δ超过了边缘光线之后, 其光线的出射角将向光斑中间会聚, 见公式 (11)。
根据上述计算的不同截面的边缘光束的角度 φ, 用同样的方法根据公式 (1) 至公式 (8)可以算出图 11中这些截面轮廓线的坐标数值。 将这些截面的轮廓线 放在同一个二维的直角坐标轴上, 轮廓线的相对位置和形状如图 13所示。
将上述计算出来的不同截面轮廓线的坐标导入到 3维建模软件中,以这些 轮廓线为骨架, 包络一层曲面后, 就可以形成透镜实体。 同时再根据高功率郎 伯分布 LED的几何尺寸建立 LED的实体模型, 此马鞍型透镜 5联同 LED的 实体模型如图 14所示。
将透镜 5和 LED的实体模型输入到光线追迹软件如 LightTools中,将 LED 芯片的发光面赋予光源特性, 并在 12米远放置一接收屏, 即可对透镜 5进行 光线追迹及光度分析, 单个透镜 5的光线追迹如图 15所示。
透镜 5在 12米处的照度分布如图 16a-16c所示, 光斑的形状为长方形, 光斑长宽约 70米 xl6米, 长度方向为道路的方向, 宽度方向为垂直道路的方 向,峰值照度的一半所在的位置约 ±32米。透镜 5光强的远场角度分布见图 17 和图 18, 在道路方向, 光强的远场角度分布曲线为蝙蝠翼形状, 峰值光强一 半位置处的角度宽度约为 ±70°, 在垂直道路方向, 峰值光强一半位置处的角度 宽度约为 ±32°。
LED 4在 PCB板上的一种排列方式如图 19所示,所有透镜 5的 B-B方向 都沿着马路的方向, A-A方向垂直于马路的方向,只要保证透镜 5的方向一致, 透镜 5的排列方式可以有很多种, 可以排列成矩形, 也可以排列成圆形、椭圆 形、 星形和其他任何形状, 这里排列成椭圆形。 另外只要保证路面的平均照度 在 201ux以上, 排列的数量可以根据 LED的输出光通量大小和路灯安装的高 度任意增加或减少。 整体 LED路灯的光线追迹如图 20所示, 接收屏放置于 12米远处, 以进行光线追迹后的光度分析。
屏幕上的光照度分布如图 21a-21c,该透镜 5形成均匀分布的长方形光斑, 光斑长宽约 70米 xl6米, 长度方向为道路的方向, 宽度方向为垂直道路的方 向, 峰值照度的一半所在的位置约 ±32米。透镜 5光强的远场角度分布见图 11 和图 23, 在道路方向, 光强的远场角度分布曲线为蝙蝠翼形状, 峰值光强一 半位置处的角度宽度约为 ±70°, 在垂直道路方向, 峰值光强一半位置处的角度 宽度约为 ±32°。
本发明的配光透镜 5可将对应 LED芯片 7发出的朗伯分布的光配成沿道 路长度方向大角度的蝙蝠翼形状的光强分布,在道路的长方向上形成长方形的 光斑, 提高了光线的利用率, 增加路灯之间的路面上的光照度, 使路面照明变 得很均匀。

Claims

权利要求书
1、 一种用于 LED路灯的配光透镜, 所述 LED包括 LED芯片、 以及与所 述 LED芯片封装在一起的封装透镜, 且具有光轴, 其特征在于, 所述透镜包 括:
连续的马鞍型的配光曲面, 关于所述光轴对称, 用于将对应 LED芯片发 出的朗伯分布的光配成沿道路长度方向大角度的蝙蝠翼形状的光强分布; 凹陷的半球面, 位于所述透镜的底部, 关于所述光轴对称并与对应 LED 封装透镜的形状相匹配; 以及
连接平面, 位于所述透镜的底部, 用于连接所述配光曲面和所述半球面。
2、 根据权利要求 1所述的配光透镜, 其特征在于, 所述配光曲面沿道路 宽方向且通过所述光轴的截面上,对应 LED芯片发出的光线经所述半球面和配 光曲面出射后, 具有共同的焦点。
3、 根据权利要求 2所述的配光透镜, 其特征在于, 所述共同的焦点位于 所述光轴上, 且所述共同的焦点、所述光轴与 LED芯片的发光面的中心点互为 共轭点。
4、 根据权利要求 3所述的配光透镜, 其特征在于, 所述配光曲面沿道路 宽方向且通过所述光轴的截面上, 透镜的边缘光线与所述光轴的夹角为 φ, φ ^30
5、 根据权利要求 4所述的配光透镜, 其特征在于, φ为 32°。
6、 根据权利要求 1或 2所述的配光透镜, 其特征在于, 所述配光曲面沿 道路长方向且通过所述光轴的截面上,出射角最大的光线与所述光轴的夹角为 ω, 60。< ω <75。。
7、 根据权利要求 6所述的配光透镜, 其特征在于, ω为 70°。
8、 根据权利要求 6所述的配光透镜, 其特征在于, 所述配光曲面沿道路 长方向且通过所述光轴的截面曲线满足以下条件:
从 LED 芯片中心发出的光, 当角度小于 ω时, 经透镜后, 光线是发散的, 其 出射角 δ'符合: δ
δ, = tan
ω 当从 LED 芯片中心发出的光, 当角度大于 ω时, 光线向光斑中间会聚, 其出 射角符合:
2^ω-δ
δ, = tan
ω δ为从 LED芯片发出的光线的角度, δ'为经过透镜折射后的出射角度-
PCT/CN2010/071514 2009-04-01 2010-04-01 用于led路灯的配光透镜 WO2010111961A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910133428A CN101852385A (zh) 2009-04-01 2009-04-01 用于led路灯的配光透镜
CN200910133428.2 2009-04-01

Publications (1)

Publication Number Publication Date
WO2010111961A1 true WO2010111961A1 (zh) 2010-10-07

Family

ID=42804001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071514 WO2010111961A1 (zh) 2009-04-01 2010-04-01 用于led路灯的配光透镜

Country Status (2)

Country Link
CN (1) CN101852385A (zh)
WO (1) WO2010111961A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090108A1 (en) * 2010-12-30 2012-07-05 Koninklijke Philips Electronics N.V. A lens and a lighting apparatus comprising such a lens.
WO2015180979A1 (en) * 2014-05-30 2015-12-03 Koninklijke Philips N.V. Optical lens package for automotive lighting application
EP3153904A3 (en) * 2015-10-07 2017-06-07 Ligitek Electronics Co., Ltd. Illumination module for creating specific lateral rectangular illumination window
US10700780B2 (en) 2018-05-30 2020-06-30 Apple Inc. Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices
US10705347B2 (en) 2018-05-30 2020-07-07 Apple Inc. Wafer-level high aspect ratio beam shaping
US11303355B2 (en) 2018-05-30 2022-04-12 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11549799B2 (en) 2019-07-01 2023-01-10 Apple Inc. Self-mixing interference device for sensing applications

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6228944B2 (ja) * 2010-03-29 2017-11-08 東芝ライテック株式会社 照明装置
CN101975370B (zh) * 2010-11-01 2012-07-04 上海铭源光源发展有限公司 用于led光源的二次配光透镜的设计方法
CN102121665B (zh) * 2010-12-31 2015-02-04 北京航空航天大学 一种用于户外led照明的自由曲面透镜结构设计方法
CN202852712U (zh) * 2011-01-17 2013-04-03 吴峰 可调节照射角度的led路灯
CN102734690B (zh) * 2011-03-31 2015-06-10 海洋王照明科技股份有限公司 一种配光灯
CN102840544B (zh) * 2011-06-24 2015-01-21 海洋王照明科技股份有限公司 一种配光透镜及led道路灯
CN102818216B (zh) * 2012-06-05 2014-08-06 佛山市国星光电股份有限公司 一种大角度透镜及大角度出光的led光源模块
CN102777855B (zh) * 2012-06-27 2014-06-18 广东工业大学 一种以集成式平面led为光源的景观灯的配光透镜
CN103206670B (zh) * 2013-05-03 2017-12-26 深圳市耀嵘科技有限公司 配光透镜、配光透镜模组及led节能灯
US9233510B2 (en) * 2013-07-22 2016-01-12 GE Lighting Solutions, LLC Lenses for cosine cubed, typical batwing, flat batwing distributions
CN104953017B (zh) * 2015-05-05 2018-05-22 广州普希思智能科技有限公司 基于倒置涂粉带二次配光加固一体led封装件及生产工艺
CN106895303A (zh) * 2015-12-21 2017-06-27 立碁电子工业股份有限公司 产生特定横向矩形照明视窗的照明模块

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101144863A (zh) * 2007-10-16 2008-03-19 李旭亮 二次光学透镜
WO2008122941A1 (en) * 2007-04-05 2008-10-16 Koninklijke Philips Electronics N.V. Light-beam shaper.
CN101329033A (zh) * 2008-07-12 2008-12-24 鹤山丽得电子实业有限公司 一种led路灯配光透镜
CN101349384A (zh) * 2008-06-25 2009-01-21 东莞市科锐德数码光电科技有限公司 大功率led模组光源灯具
CN201401724Y (zh) * 2009-04-13 2010-02-10 珠海泰坦新能源系统有限公司 道路照明专用led光源透镜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122941A1 (en) * 2007-04-05 2008-10-16 Koninklijke Philips Electronics N.V. Light-beam shaper.
CN101144863A (zh) * 2007-10-16 2008-03-19 李旭亮 二次光学透镜
CN101349384A (zh) * 2008-06-25 2009-01-21 东莞市科锐德数码光电科技有限公司 大功率led模组光源灯具
CN101329033A (zh) * 2008-07-12 2008-12-24 鹤山丽得电子实业有限公司 一种led路灯配光透镜
CN201401724Y (zh) * 2009-04-13 2010-02-10 珠海泰坦新能源系统有限公司 道路照明专用led光源透镜

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090108A1 (en) * 2010-12-30 2012-07-05 Koninklijke Philips Electronics N.V. A lens and a lighting apparatus comprising such a lens.
WO2015180979A1 (en) * 2014-05-30 2015-12-03 Koninklijke Philips N.V. Optical lens package for automotive lighting application
US10145529B2 (en) 2014-05-30 2018-12-04 Lumileds Llc Optical lens package for automotive lighting application
EP3153904A3 (en) * 2015-10-07 2017-06-07 Ligitek Electronics Co., Ltd. Illumination module for creating specific lateral rectangular illumination window
US10700780B2 (en) 2018-05-30 2020-06-30 Apple Inc. Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices
US10705347B2 (en) 2018-05-30 2020-07-07 Apple Inc. Wafer-level high aspect ratio beam shaping
US11201669B2 (en) 2018-05-30 2021-12-14 Apple Inc. Systems and methods for adjusting movable lenses in directional free-space optical communication systems for portable electronic devices
US11303355B2 (en) 2018-05-30 2022-04-12 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11870492B2 (en) 2018-05-30 2024-01-09 Apple Inc. Optical structures in directional free-space optical communication systems for portable electronic devices
US11549799B2 (en) 2019-07-01 2023-01-10 Apple Inc. Self-mixing interference device for sensing applications

Also Published As

Publication number Publication date
CN101852385A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
WO2010111961A1 (zh) 用于led路灯的配光透镜
US9175832B2 (en) Faceted LED street lamp lens
US8511864B2 (en) LED device for wide beam generation
US8414161B2 (en) LED device for wide beam generation
WO2015109891A1 (zh) 能照射到3、5车道的cob模块led路灯透镜的配光方法
US20110320024A1 (en) Optical element of lighting device and design method of the same
TW201336120A (zh) 一種多面體的二次光學透鏡
US8801221B2 (en) Lens structure, light source device and light source module
TW201702521A (zh) 透鏡及其發光裝置
TWM461760U (zh) 光學透鏡與光源裝置
TWI738998B (zh) 用於移動載具的光學照明裝置
TW201407198A (zh) 發光二極體光源用透鏡模組
CA2787769C (en) An improved led device for wide beam generation
TW201226799A (en) Roadway lighting apparatus
CN201715446U (zh) 一种用于led路灯的光学透镜
TW201915385A (zh) Led光源導引裝置
Xu et al. Optical design of rectangular illumination with freeform lenses for the application of LED road lighting
CN104214668A (zh) 透镜及其应用该透镜的led灯具
TWM457136U (zh) 用於光線發射系統之二次光學結構
CN102777855B (zh) 一种以集成式平面led为光源的景观灯的配光透镜
TWI428637B (zh) 光學透鏡、led光學元件及led路燈
TW201310078A (zh) 光學透鏡、led光學元件及led照明燈具
TWM457297U (zh) 組合二次光學之cob封裝照明裝置
TW201118313A (en) Light emitting diode module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758063

Country of ref document: EP

Kind code of ref document: A1