WO2010110316A1 - 電動加圧式抵抗溶接機 - Google Patents

電動加圧式抵抗溶接機 Download PDF

Info

Publication number
WO2010110316A1
WO2010110316A1 PCT/JP2010/055083 JP2010055083W WO2010110316A1 WO 2010110316 A1 WO2010110316 A1 WO 2010110316A1 JP 2010055083 W JP2010055083 W JP 2010055083W WO 2010110316 A1 WO2010110316 A1 WO 2010110316A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
displacement
welding
piezoelectric element
piezoelectric
Prior art date
Application number
PCT/JP2010/055083
Other languages
English (en)
French (fr)
Inventor
中野和明
甲山喜代志
砂村正幸
Original Assignee
有限会社中▲野▼製作所
ミヤチテクノス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社中▲野▼製作所, ミヤチテクノス株式会社 filed Critical 有限会社中▲野▼製作所
Priority to JP2011506085A priority Critical patent/JPWO2010110316A1/ja
Publication of WO2010110316A1 publication Critical patent/WO2010110316A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/31Electrode holders and actuating devices therefor
    • B23K11/314Spot welding guns, e.g. mounted on robots
    • B23K11/315Spot welding guns, e.g. mounted on robots with one electrode moving on a linear path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/255Monitoring devices using digital means the measured parameter being a force

Definitions

  • the present invention relates to a pressure resistance welding machine that energizes and welds an object to be welded between a pair of welding electrodes, and more specifically, two types of electric drive source and pressure source having two different properties for moving the welding electrode and 2
  • the present invention relates to an electric pressure resistance welding machine that obtains desired welding conditions while taking advantage of both advantages while having pressure load detectors of different types of properties.
  • Japanese Patent Application Laid-Open Nos. 4-224081, 11-291060, and 2002-126878 disclose an electric pressure resistance welding apparatus using an elastic body.
  • JP-A-4-224081 and JP-A-11-291060 disclose a method of controlling the operation of an electric motor so as to follow the fluctuation of the applied pressure during welding current application and the displacement of the work piece. In addition, it is described that the fluctuation of the applied pressure and the displacement of the work piece are measured while energizing the welding current while the short period fluctuation is followed by the elastic body.
  • the piezoelectric element actuator is controlled so as to be able to follow short cycle fluctuations, and the welding current of the surface to be welded is detected, and internal melting is performed according to the increase or decrease of the current.
  • a resistance welding apparatus that determines the state and controls the applied pressure is known.
  • JP-A-7-108384 a piezoelectric element actuator is controlled so as to be able to follow a short period fluctuation, and a welding current of a surface to be welded is detected, and an internal melting is performed according to the increase or decrease of the current. Since the state is determined and the pressurizing force is controlled, it is difficult for a commercially available welding power source to determine the internal melting state according to the increase or decrease of the welding current and control the pressurizing force. This is because most of the welding power sources that are commercially available generally perform feedback control that suppresses fluctuations in the current value during energization.
  • Piezoelectric actuators have characteristics such as a small stroke (generally about several ⁇ m to 200 ⁇ m on the market), weak against impact, weak against tensile force, weak against uneven pressure.
  • Piezoelectric load sensors are suitable for dynamic load measurement, but on the other hand, they have the property of spontaneous discharge, and they maintain long pressurization (hold pressurization) and cycle for long periods of welding and after welding. When the interval is extremely short, it is affected by the natural discharge, and it is difficult to accurately measure the applied pressure.
  • Resistance welding is a technology that uses the contact surface resistance of the workpiece to be welded and energizes a large current to instantaneously raise the weld surface to the melting temperature. Stress and strain occur. This may cause defects such as cracks in the weld.
  • elements that are disadvantageous to the conditions during welding such as an oxide film in the material manufacturing process, are included.
  • the electric drive source / pressure source and / or the two types of characteristics are different. It becomes a subject to realize an electric pressure resistance welding machine that obtains desired welding conditions while having the advantages of both while having different pressure load detectors.
  • An electric pressurizing resistance welding machine detects a pressurizing load by a load detecting means when a workpiece is sandwiched between a pair of welding electrodes and energized while being pressed.
  • the electric pressurization source is an electric motor.
  • a first mechanism having a ball screw and a second mechanism having a driving piezoelectric element is an electric motor.
  • the control unit controls the first and second mechanisms to move the welding electrode so as to obtain a load.
  • the piezoelectric actuator (drive piezoelectric element 32) of the second mechanism follows the short-cycle fluctuation, and if the thermal expansion or welding displacement is likely to exceed the stroke, the piezoelectric actuator (drive In accordance with the output value to the piezoelectric element 32) and the detected value of the actual drive displacement, the first mechanism is actuated as appropriate to move the welding electrode up and down.
  • the piezoelectric load sensor (piezoelectric load detector 31) is suitable for dynamic load measurement, but at the same time, in order to cope with the measured value drop due to natural discharge, which is its property, the electrode shaft and A non-piezoelectric load sensor (non-piezoelectric load detector 21) that is stable in static load measurement is disposed on the vertical line of the tracking mechanism.
  • the control unit includes a first determination unit that determines whether or not a detected pressurization load based on a detection value of the load detection unit matches a set welding load, and the detected pressurization load
  • the first determination unit determines that does not match the set welding load
  • the drive piezoelectric element is expanded and contracted, and the detected pressurizing load matches the set welding load
  • the drive piezoelectric element is not expanded and contracted when determined by the first determination unit.
  • Displacement detecting means for detecting the displacement of the workpiece being energized is further provided, and the control unit is configured such that the displacement amount of the workpiece based on the detection value of the displacement detecting means is the driving piezoelectric.
  • a second determination unit configured to determine whether or not the element is within a movable range, and the electric motor is operated when the second determination unit determines that the amount of displacement is larger than the movable range; It is characterized by doing.
  • This monitoring function is used to monitor the thermal expansion of only the electrodes when the welding current is applied at a constant pressure and the displacement data at the time of contraction after energization, with no workpiece or only one piece of the workpiece being sandwiched. can do.
  • This data By acquiring this data in advance and accurately grasping the displacement of the workpiece during the actual welding cycle excluding the thermal expansion and contraction of only the electrodes, more appropriate conditions such as welding displacement measurement, energization stop, and current switching It becomes.
  • a dedicated elastic body corresponding to the welding conditions depending on the material and shape of the workpiece, such as Japanese Patent Application Laid-Open No. 2002-126878, it can be applied to a wider pressure range.
  • FIG. 2A is a front view of the piezoelectric pressure displacement follow-up mechanism
  • FIG. 2B is a side sectional view of the piezoelectric pressure displacement follow-up mechanism.
  • It is a block diagram of a control part.
  • 4A is a waveform example of a DC welding current and an AC welding current
  • FIG. 4B is a waveform example of a detection value of a displacement detector
  • FIG. 4C is a waveform example of a signal during basic operation
  • 4D is a waveform example of a detection value of a non-piezoelectric load detector
  • FIG. 4E is a waveform example of a piezoelectric load detector.
  • 5A is a waveform example of a DC welding current
  • FIG. 5B is a waveform example of a detection value of a displacement detector
  • FIG. 5C is a constant pressurization.
  • FIG. 5D is a waveform example showing the displacement of the electrode thermal expansion
  • FIG. 5E is a waveform example showing the displacement of the workpiece.
  • FIG. 6A is a waveform example of a DC welding current
  • FIG. 6B is a waveform example showing control for gradually increasing the pressurizing force during energization, in the waveform for controlling the heat generation amount of the welding surface by changing the pressurizing force during energization.
  • FIG. 6A is a waveform example of a DC welding current
  • FIG. 6B is a waveform example showing control for gradually increasing the pressurizing force during energization, in the waveform for controlling the heat generation amount of the welding surface by changing the pressurizing
  • FIG. 6C is a waveform example showing control for increasing the F pressure at a stroke after a certain time.
  • FIG. 7A is a first waveform example in the waveform example when the applied pressure and displacement are monitored and the oxide film removal before welding, main welding, and annealing treatment after welding are performed while switching the energization amount of the welding current.
  • FIG. 7B is a second waveform example. It is a 1st flowchart which shows the procedure of the resistance welding by the resistance welding machine which concerns on this embodiment. It is a 2nd flowchart which shows the procedure of the resistance welding by the resistance welding machine which concerns on this embodiment. It is a 3rd flowchart which shows the procedure of the resistance welding by the resistance welding machine which concerns on this embodiment.
  • FIG. 12A is a waveform example of a DC welding current
  • FIG. 12B is a waveform example of a pressurizing load without tracking control
  • FIG. 12C is a waveform of a pressing load with tracking control. It is an example.
  • the apparatus housing includes a base base 1, a side plate 2, a guide module support plate 3, and a ceiling plate 4.
  • the rotational motion of the servo motor 5 is transmitted to the ball screw 11 by the timing pulleys 6 and 8 and the timing belt 7 and is converted into a linear motion by the ball screw 11 supported by the radial bearing unit 9 and the thrust bearing unit 10.
  • the linear motion is slidably guided by the guide module 12 with a detent.
  • a piezoelectric pressure displacement follow-up mechanism 14 is attached to the lower end of the ball screw 11 via an intermediate plate 13.
  • An upper electrode unit 15 including an electrode and an electrode holder is attached to the upper electrode unit support plate 25 of the piezoelectric pressure displacement follow-up mechanism 14 (see FIG. 2A) (see FIG. 1).
  • the displacement of the upper electrode is detected by the displacement detection reference block 37 (see FIG. 2B) and the displacement detector 16 (see FIG. 1).
  • non-piezoelectric load detector 21 such as a load cell for detecting a static load on the base stand 1, and the lower electrode is applied so that the non-piezoelectric load detector 21 is not subjected to a partial load.
  • the unit support plate 19 is supported by the guide module 20.
  • the lower electrode unit support plate 19 includes a lower electrode unit 18 composed of an electrode and an electrode holder. The workpiece 17 is welded while being pressed between the lower electrode unit 18 and the upper electrode unit 15. It has become.
  • the mechanism unit housing is constituted by the plate 25.
  • a piezoelectric load detector 31 piezoelectric load sensor
  • a driving piezoelectric element 32 piezoelectric actuator
  • a disc spring 34 for bringing the stacked driving piezoelectric elements 32 into close contact with each other.
  • a casing 33 for supporting them.
  • the hemispherical contact 35 and the flat contact are formed.
  • a child 36 is interposed.
  • Contact force adjusting mechanisms comprising spring hooks 26 and 28, a tension spring 27, an adjusting nut 29 and an adjusting screw 30 are provided on both sides of the piezoelectric element portion.
  • a displacement detection reference block 37 is attached to the upper electrode unit support plate 25, and the displacement of the driving piezoelectric element 32 is detected by a displacement detector 38.
  • the control unit 56 includes a dedicated amplifier 40 that converts the detection value D1 of the displacement detector 16 that detects the displacement of the upper electrode into a voltage signal, an A / D converter 41 that captures the voltage signal, and a drive.
  • Non-dedicated amplifier 42 for converting the detected value D2 of the displacement detector 38 for detecting the displacement of the piezoelectric element 32 into a voltage signal, an A / D converter 43 for capturing the voltage signal, and a load cell for detecting a static load.
  • a circuit 44 that converts the detection value P1 of the piezoelectric load detector 21 into a voltage signal, an A / D converter 45 that takes in the voltage signal, and a detection value P2 of the piezoelectric load detector 31 that detects a dynamic load is a voltage.
  • a motion controller 49 for instructing the operation, a D / A converter 51 for outputting an analog signal for speed control and torque control to the servo driver 50, and a digital control value for the driving piezoelectric element 32 are converted into an analog voltage.
  • a D / A converter 52 and a voltage amplifying circuit 53 are provided.
  • various parameters are input by a data input means such as an LCD display 55 and a set touch panel, and stored in the memory of the digital control unit 48. Communication such as welding current switching is performed between the welding power source 54 and the digital control unit 48.
  • 4A to 4E are waveform examples of various signals during basic operation in which only welding is performed under a constant pressure condition.
  • FIG. 4A is a waveform example including the time of energization of the DC welding current Ia and the AC welding current Ib.
  • FIG. 4B is a waveform example of the detection value D1 of the displacement detector 16. Thermal expansion starts from the moment when the welding current Ia is energized, and when the weld surface eventually reaches the melting point, it begins to shrink, and after energization, shrinkage due to natural cooling begins.
  • the displacement ⁇ D after t0 seconds from the start of energization is the displacement result of the upper electrode before and after welding.
  • FIG. 4C shows a waveform example of data P obtained by switching data obtained by correcting detection values of a non-piezoelectric load detector 21 such as a load cell that detects a static load and a piezoelectric load detector 31 that detects a dynamic load. It is. Actual feedback follow-up control is performed based on this data P.
  • a non-piezoelectric load detector 21 such as a load cell that detects a static load and a piezoelectric load detector 31 that detects a dynamic load. It is. Actual feedback follow-up control is performed based on this data P.
  • the upper electrode is lowered by a first drive source / pressurization source consisting of a servo motor 5 and a ball screw 11 and a second drive source / pressurization source consisting of a piezoelectric actuator, and is applied for a certain period of time after reaching the applied pressure of the target set load P0.
  • the feedback follow-up control of the applied pressure is performed based on the detection value P1 of the non-piezoelectric load detector 21 until the pressure is maintained and until the upper electrode returns to the start position after the pressurization after welding ( FIG. 4D).
  • the pressure detection is switched to the detection value P2 of the piezoelectric load detector 31 immediately before energization (see FIG. 4E).
  • the initial correction of ⁇ Pa is performed on P2.
  • Pc (Pb ⁇ Pa) / (t2 ⁇ t1)) calculated per unit time.
  • feedback follow-up control is performed based on this data.
  • FIG. 5A to FIG. 5E are waveform examples showing a method for obtaining the displacement of the actual work piece excluding the thermal expansion of the electrodes.
  • 5A is a waveform example of the DC welding current Ia
  • FIG. 5B is a waveform example of the detection value D1 of the displacement detector 16 as in FIG. 4B.
  • the detection value D1 includes the thermal expansion of the electrode, which is different from the substantial welding displacement of the workpiece.
  • FIG. 5C shows that welding was performed under a constant pressure condition.
  • FIG. 5D is an example of a waveform when a state in which there is no workpiece to be welded or when energization is performed while only one piece of the workpiece is sandwiched and the thermal expansion of only the electrode is measured.
  • 5E is an example of a waveform showing the actual displacement D of the work piece calculated by subtracting the measured value D1 in FIG. 5D from the current detection value D1 in FIG. 5B based on FIGS. 5D and 5B. Become.
  • the actual welding displacement is ⁇ D. It is also appropriate to stop energization or switch current based on this ⁇ D.
  • FIG. 6A to FIG. 6C are waveform examples for controlling the heat generation amount of the weld surface by changing the pressing force during energization.
  • FIG. 6A is a waveform example of the DC welding current Ia
  • FIG. 6B is a state in which the contact surface resistance is large at a low applied pressure at the start of energization, the welded surface is efficiently heated, and the welding is performed by gradually increasing the applied pressure.
  • It is an example of a waveform when strengthening.
  • FIG. 6C is an example of waveforms when the purpose is the same as the previous example, but the welding surface is efficiently heated with a low applied pressure, and the applied pressure is increased and maintained at a stretch after a certain time to strengthen the joining.
  • FIG. 7 is an example of a waveform when the applied pressure and displacement are monitored and the welding current removal amount before the welding, the main welding, and the annealing treatment after the welding are performed while switching the energization amount of the welding current.
  • a direct current Ia is applied for a set time after a certain time to remove the oxide film.
  • the current is switched to a moderately weak current Ib so that the residual heat remains, and the applied pressure is increased to Pb after a set time.
  • the welding current is completed by energizing the main welding current Ic for a set time after a predetermined time, and the welding current is switched to the DC current Id for annealing.
  • the direct current Ia is applied to remove the oxide film.
  • the electrode displacement increases due to thermal expansion, and when it reaches Da, the current is switched to a moderately weak current Ib so that residual heat remains.
  • the pressurizing force is increased to Pb, and it is confirmed that the electrode displacement has decreased to Db.
  • the main welding current Ic is energized for the set time to complete the welding, and the DC current Id for annealing treatment is completed. It is a method to switch to.
  • FIGS. 8 to 11 are control flowcharts during the basic operation in which only welding is performed under a constant pressure condition. The basic operation will be described with reference to this.
  • the device will automatically operate after that. That is, in order to follow the thermal expansion during energization (S3), it is necessary to preliminarily displace the driving piezoelectric element 32 by applying a voltage, so the value D2 detected by the displacement detector 38 is the LCD display 55. The voltage is increased until the set value (set initial displacement distance) Da previously input by the set data input means is reached, and the driving piezoelectric element 32 is displaced.
  • a weight detector for detecting the pressure load for pressure follow-up control is first a non-piezoelectric load detector 21.
  • pressurization is maintained until the elapsed time T1 after reaching the pressurization set value Pa reaches the stabilization wait set value Ta (set squeeze time) input in advance by the LCD display 55 and the data input means of the set.
  • Ta set squeeze time
  • the displacement upper limit value Dc and displacement lower limit value Dd of the driving piezoelectric element 32 input to the LCD display 55 are compared with the detection value D2 of the displacement detector 38, and command means for the servo driver 50 is determined.
  • the servo motor 5 is controlled via the A converter 51 or the motion controller 49.
  • the detection value D1 of the displacement detector 16 after welding is stored in the memory of the digital control unit 48 as the displacement detection value De.
  • the displacement detection value De is subtracted from the displacement detection value Db to calculate the measured displacement actual measurement value Df.
  • FIG. 12 shows an example of a piezoelectric element control calculation method.
  • FIG. 12A is a waveform example of the DC welding current Ia
  • FIG. 12B is a waveform example of a pressurizing load without tracking control
  • FIG. 12C is a waveform example of a pressing load with tracking control.
  • the thermal expansion starts at the same time as the welding current Ia is started, and the work to be welded is sandwiched between the rigid bodies, so that the pressurizing load increases.
  • the load difference (P ⁇ ) between the set pressure P0 and the current pressurizing load P is read every control cycle t1.
  • the resistance welding machine 100 includes an apparatus housing 102, a lower electrode unit 18 provided in the apparatus housing 102, and a lower electrode unit 18.
  • a lower electrode unit support mechanism 104 that supports the electrode unit 18, an upper electrode unit 15 disposed at a position facing the lower electrode unit 18, and an upper electrode unit 15 that supports the upper electrode unit 15 movably with respect to the apparatus housing 102.
  • An electrode unit moving mechanism 106, a control unit 56, an LCD display 55 for inputting predetermined welding conditions and the like, and a welding power source 54 are provided.
  • the device casing 102 is provided on a base stand 1 placed on a floor surface of a factory, a side plate 2 that is formed in a U shape in a side view and stands on the base stand 1, and an upper portion of the side plate 2. It has a ceiling plate 4.
  • the lower electrode unit 18 is in contact with the lower surface of the workpiece 17 formed by overlapping two plate members, and is made of a metal material having good electrical conductivity such as copper or copper alloy.
  • a lower electrode 18a and a lower electrode holder 18b for holding the lower electrode 18a are provided.
  • the lower electrode unit support mechanism 104 includes a lower electrode unit support plate 19 provided below the lower electrode holder 18b, and a pair of guide modules 20 and 20 that support the lower electrode unit support plate 19.
  • a non-piezoelectric load detector 21 for detecting a static load of the lower electrode unit support plate 19 is provided between the pair of guide modules 20 and 20. Specifically, the non-piezoelectric load detector 21 outputs a signal corresponding to the static load input to the workpiece 17.
  • a load cell or the like can be used as the non-piezoelectric load detector 21. As can be seen from FIG. 1, the non-piezoelectric load detector 21 is in contact with the lower surface of the lower electrode unit support plate 19 while being provided on the base 1.
  • the upper electrode unit 15 includes an upper electrode 15a made of the same material as the lower electrode 18a and capable of contacting the upper surface of the workpiece 17 and an upper electrode holder 15b that holds the upper electrode 15a. . Note that the upper electrode 15a and the lower electrode 18a are arranged so that their tips face each other with their axes aligned.
  • the side plate 2 is provided with a displacement detector (first displacement detector) 16 that outputs a signal corresponding to the amount of displacement of the upper electrode 15a.
  • a laser displacement meter or the like is used as the first displacement detector 16.
  • the upper electrode unit moving mechanism 106 includes a first moving mechanism 108 provided in the apparatus housing 102 and a second moving mechanism 110 provided in the first moving mechanism 108.
  • the first moving mechanism 108 supports the second moving mechanism 110 so as to be movable with respect to the apparatus housing 102 along the axial direction of the upper electrode 15a.
  • the first moving mechanism 108 receives the ball screw 11 extending in the axial direction (vertical direction) of the upper electrode 15a, the radial bearing unit 9 that receives the radial load of the ball screw 11, and the thrust load of the ball screw 11.
  • a thrust bearing unit 10 a servo motor 5 for rotating the ball screw 11, a timing pulley 6 provided on the drive shaft 5a of the servo motor 5, a timing pulley 8 provided at the upper end of the ball screw 11, and a timing pulley 6 And a timing belt 7 for transmitting the rotational force to the timing pulley 8.
  • the radial bearing unit 9 and the thrust bearing unit 10 are fixed to the ceiling plate 4 respectively.
  • the second moving mechanism 110 includes a nut member 112 screwed into the ball screw 11, a cylindrical member 114 fixed to the outer surface of the nut member 112, a guide module 12 that guides the cylindrical member 114 in the extending direction of the ball screw 11, Guide module support plate 3 fixed to side plate 2 and supporting guide module 12, intermediate plate 13 provided at the lower part of cylindrical member 114, and piezoelectric pressure displacement follow-up mechanism portion provided on the lower surface of intermediate plate 13 14 and so on.
  • the piezoelectric pressure displacement follow-up mechanism 14 supports the upper electrode unit 15 so as to be movable along the axial direction of the upper electrode 15a.
  • the piezoelectric pressure displacement follow-up mechanism 14 includes a support plate 22 fixed to the lower surface of the intermediate plate 13 and an upper surface of the upper electrode unit 15 (see FIG. 1).
  • the upper electrode unit support plate 25 provided, the guide module support member 23 provided on the support plate 22, and the upper electrode unit support plate 25 supported by the guide module support member 23 along the axial direction of the upper electrode 15a.
  • a guide module 24 for guiding, a pair of contact adjusting mechanisms 116 (see FIG. 2A) for biasing the upper electrode unit support plate 25 toward the support plate 22 side, and the upper electrode unit support plate 25 on the upper electrode unit 15 side (downward) )
  • a pressing mechanism 118 see FIG. 2B).
  • the guide module support member 23 has a support portion main body 23a fixed to the lower surface of the support plate 22, and a plurality of (four in the figure) protrusion portions 23b that protrude downward from the corners of the support portion main body 23a. Yes.
  • a gap for the pressing mechanism 118 to be positioned is formed at a substantially central portion of the support portion main body 23a. Further, as can be seen from FIG. 2A, a plurality (four in the figure) of through holes 120 are formed in the guide module support member 23 and the support portion main body 23a.
  • the guide module 24 includes a plurality (four in the drawing) of guide pins 24 a extending from the upper surface of the upper electrode unit support plate 25 toward the support plate 22 (upward), and through holes 120. And a pin receiving portion 24b (see FIG. 2A) that slidably supports the guide pin 24a.
  • the contact adjustment mechanism 116 includes a tension spring 27, a spring hook 26 fixed to the lower surface of the support body 23a, connected to one end of the tension spring 27, and the tension spring 27.
  • a spring hook 28 connected to the end, an adjustment nut 29 to which the spring hook 28 is fixed, and an adjustment screw 30 screwed into the adjustment nut 29 and provided on the upper electrode unit support plate 25 are provided.
  • the pressing mechanism 118 includes a housing 122 extending downward from the lower surface of the support plate 22, a casing 33 positioned in the housing 122, a plurality of driving piezoelectric elements 32 provided in the casing 33, and a plurality of driving devices.
  • a disc spring 34 provided at the lower end of the piezoelectric element 32; a hemispherical contact 35 that contacts the disc spring 34; and a flat contact 36 that is fixed to the upper electrode unit support plate 25 and contacts the hemispherical contact 35.
  • a piezoelectric load detector 31 provided between the upper surface of the support plate 22 and the casing 33.
  • the plurality of driving piezoelectric elements 32 are stacked in the axial direction of the upper electrode 15a.
  • the plurality of stacked driving piezoelectric elements 32 may be collectively referred to as a piezoelectric element stack 123.
  • the driving piezoelectric element 32 and the piezoelectric load detector 31 are so-called piezoelectric elements, and the former uses the reverse piezoelectric effect and the latter uses the piezoelectric effect. That is, the driving piezoelectric element 32 can be expanded and contracted in the stacking direction in accordance with a change in applied voltage, and the piezoelectric load detector 31 has a voltage corresponding to the load input from the casing 33 side. Can be generated. Specifically, the driving piezoelectric element 32 is formed so as to expand when a positive voltage is applied and contract when a negative voltage is applied.
  • the response speed of the piezoelectric element stack 123 is set, for example, in a range of several hundred [ ⁇ / sec] to 10 [mm / sec], and the movable range of the piezoelectric element stack 123 is 1 It is set in the range of [ ⁇ m] to 100 [ ⁇ m].
  • the pressing mechanism 118 is configured such that the driving piezoelectric elements 32 are brought into close contact with each other by the force of the disc spring 34.
  • the upper electrode unit support plate 25 is provided with a displacement detection reference block 37.
  • the support plate 22 includes a support rod 124 extending downward, and a support rod.
  • a displacement detector (second displacement detector) 38 which is provided at the tip of 124 and is opposed to the displacement detection reference block 37 in a separated state.
  • the second displacement detector 38 outputs a signal corresponding to the distance to the displacement detection reference block 37 (interval between the second displacement detector 38 and the displacement detection reference block 37).
  • a laser displacement meter is used as the second displacement detector 38.
  • the control unit 56 converts the signals output from the first and second displacement detectors 16, 38, the non-piezoelectric load detector 21, and the piezoelectric load detector 31 into predetermined signals.
  • the conversion unit 126 is converted by the dedicated amplifier (first dedicated amplifier) 40 that converts the signal (detected value D1) output from the first displacement detector 16 into an analog voltage signal, and the first dedicated amplifier 40.
  • An A / D converter (first A / D converter) 41 that converts an analog voltage signal into a digital voltage signal and a signal (detection value D2) output from the second displacement detector 38 are converted into an analog voltage signal.
  • a dedicated amplifier (second dedicated amplifier) 42 for conversion, an A / D converter (second A / D converter) 43 for converting an analog voltage signal converted by the second dedicated amplifier 42 into a digital voltage signal, have.
  • the converter 126 converts the signal (detected value P1) output from the non-piezoelectric load detector 21 into an analog voltage signal (first circuit) 44 and the first circuit 44.
  • An A / D converter (third A / D converter) 45 that converts an analog voltage signal into a digital voltage signal and a signal (detection value P2) output from the piezoelectric load detector 31 are converted into an analog voltage signal.
  • the digital control unit 48 controls the welding power source 54 and supplies a welding current to the upper electrode 15a and the lower electrode 18a.
  • the digital control unit 48 includes a servo motor control unit 132, a piezoelectric element control unit 134, a storage unit 136, a first determination unit 138, a second determination unit 140, and a third determination unit 142.
  • Servo motor control unit 132 performs position control, speed control, and torque control for servo motor 5. That is, the servo motor control unit 132 outputs the position control signal, the speed control signal, and the torque control signal as digital signals.
  • the piezoelectric element control unit 134 expands and contracts the piezoelectric element stack 123 by applying a positive voltage or a negative voltage to the piezoelectric element stack 123.
  • the storage unit 136 stores information input from the LCD display 55.
  • the storage unit 136 stores in advance a displacement lower limit value Dc, a displacement upper limit value Dd, a set energization time Tb, a set hold time Tc, a set welding load Pb, a set hold load Pc, electrode thermal expansion measurement data Dg, and the like. Has been.
  • the displacement lower limit value Dc for example, the distance between the second displacement detector 38 and the displacement detection reference block 37 when the piezoelectric element stack 123 is slightly contracted from the most expanded state is used.
  • the lower limit displacement Dc the distance between the second displacement detector 38 and the displacement detection reference block 37 when the piezoelectric element stack 123 is arbitrarily extended may be used.
  • the displacement upper limit value Dd the distance between the second displacement detector 38 and the displacement detection reference block 37 when the piezoelectric element stack 123 is slightly expanded from the most contracted state is used.
  • a distance between the second displacement detector 38 and the displacement detection reference block 37 when the piezoelectric element stack 123 is arbitrarily contracted is used.
  • the set energization time Tb is a time during which the welding current I is applied to the upper electrode 15a and the lower electrode 18a by the welding power source 54, and is determined by the material of the workpiece 17 and welding conditions.
  • the set hold time Tc is the time from when the welding current I is turned off until the heat remaining on the workpiece 17 is released (absorbed) by the upper electrode and the lower electrode. It is determined by conditions.
  • the set welding load Pb is a load applied to the workpiece 17 during energization of the welding current I, and is determined by the material of the workpiece 17 and welding conditions.
  • the set hold load Pc is a load applied to the workpiece 17 during the hold time, and is determined by the material of the workpiece 17 and welding conditions.
  • the measurement data Dg of the electrode thermal expansion is the measurement data of the thermal expansion of the upper electrode 15a and the lower electrode 18a. Specifically, the contents described with reference to FIGS. 5A to 5E described above may be performed.
  • the first determination unit 138 determines whether or not the detected pressurization load P based on the detection value P2 of the piezoelectric load detector 31 is greater than the set welding load Pb.
  • the second determination unit 140 determines whether or not the detection value D2 of the second displacement detector 38 is within the range of the allowable displacement of the piezoelectric element.
  • the range of the allowable displacement of the piezoelectric element means a range between the displacement lower limit value Dc and the displacement upper limit value Dd.
  • the third determination unit 142 determines whether or not the detected value P1 of the non-piezoelectric load detector 21 is larger than the set hold load Pc.
  • the motor operation unit 128 includes a motion controller 49, a D / A converter (first D / A converter) 51, and a servo driver 50.
  • the motion controller 49 instructs the servo driver 50 on the position control operation with a digital signal based on the position control signal.
  • the first D / A converter 51 instructs the servo driver 50 on the speed control operation or the torque control operation with an analog signal based on the speed control signal or the torque control signal.
  • Servo driver 50 controls rotation of drive shaft 5a of servo motor 5 based on an instruction from motion controller 49 or first D / A converter 51.
  • the piezoelectric element voltage application unit 130 includes a D / A converter (second D / A converter) 52 that converts a digital control signal output from the piezoelectric element control unit 134 into an analog control signal, and a second D / A converter 52. And a voltage amplifying circuit 53 for amplifying the voltage of the analog control signal converted in (1).
  • a D / A converter second D / A converter
  • the operator places the workpiece 17 between the lower electrode 18a and the upper electrode 15a (step S1 in FIG. 8). At this time, the workpiece 17 is not in contact with the upper electrode 15a and is in contact with the lower electrode 18a.
  • step S2 the worker presses the start button displayed on the LCD display 55.
  • the control unit 56 determines whether or not the piezoelectric element stack 123 needs to be initially displaced (step S3-1).
  • the initial displacement refers to a process of balancing the expandable amount and contractible amount of the piezoelectric element stack 123 by applying a voltage to the piezoelectric element stack 123 before performing resistance welding.
  • the presence or absence of the initial displacement of the piezoelectric element stack 123 is determined based on the type of the workpiece 17 and welding conditions.
  • step S3-1 determines that the piezoelectric element stack 123 does not need to be initially displaced (step S3-1: none).
  • the welding procedure proceeds to step 4-1.
  • step S3-1 when the control unit 56 determines that the piezoelectric element stack 123 needs to be initially displaced (step S3-1: Yes), the piezoelectric element control unit 134 applies a predetermined voltage to the piezoelectric element stack 123. (Step S3-2).
  • control unit 56 determines whether or not the detection value D2 of the second displacement detector 38 has reached the set initial displacement distance Da (step S3-3).
  • the detected value D2 does not reach the set initial displacement distance Da (step S3-3: D2> Da)
  • the main welding procedure returns to the process of step S3-2.
  • the piezoelectric element control unit 134 stops the voltage applied to the piezoelectric element stack 123 (step S3-4). Thereby, the extendable amount and the contractible amount of the piezoelectric element stack 123 can be made the same. Therefore, the piezoelectric element stack 123 can be expanded and contracted with a good balance.
  • the servo motor control unit 132 controls the servo motor 5 to lower the piezoelectric pressure displacement tracking mechanism unit 14 (second movement mechanism 110) (step S4-1).
  • the servo motor control unit 132 controls the servo motor 5 to lower the piezoelectric pressure displacement tracking mechanism unit 14 (second movement mechanism 110) (step S4-1).
  • the second moving mechanism 110 is lowered, the upper electrode 15 a comes into contact with the workpiece 17. Then, when the second moving mechanism 110 is further lowered, the workpiece 17 is pressurized.
  • the control unit 56 determines whether or not the detection value P1 of the non-piezoelectric load detector 21 has reached the set initial load Pa (step S4-2). If the detected value P1 is smaller than the set initial load Pa (step S4-2: P1 ⁇ Pa), the welding procedure returns to the process of step S4-1 and further lowers the second moving mechanism. Thereby, since the upper electrode 15a is pushed into the workpiece 17, the detected value P1 is increased.
  • the servo motor control unit 132 controls the servo motor 5 to lower the second moving mechanism 110. Stop (step S4-3).
  • the control unit 56 determines whether or not a squeeze time is necessary (step S5-1 in FIG. 9).
  • the squeeze time refers to the time until the input load to the workpiece 17 is stabilized at the set initial load Pa.
  • the presence / absence of squeeze time is determined based on the type of the workpiece 17 and welding conditions.
  • Step S5-1 If no squeeze time is required (Step S5-1: None), the welding procedure proceeds to Step S6.
  • step S5-1 when the squeeze time is necessary (step S5-1: present), the control unit 56 counts the squeeze time T1 with a welding timer (not shown) (step S5-2). At this time, the control unit 56 determines whether or not the squeeze time T1 counted by the welding timer has reached the set squeeze time Ta (step S5-3).
  • step S5-3 T1 ⁇ Ta
  • the welding procedure returns to step S5-2, and continues to count the squeeze time T1 of the welding timer.
  • the digital control unit 48 causes the storage unit 136 to store the detection value D1 of the first displacement detector 16 as the displacement detection value Db (step S6).
  • the control unit 56 compares the detection value P1 of the non-piezoelectric load detector 21 with the detection value P2 of the piezoelectric load detector 31 to calculate an initial correction value and to make an initial correction to the detection value P2. (Step S7).
  • the control unit 56 calculates the change load ⁇ P due to natural discharge of the piezoelectric load detector 31 and adds the change load ⁇ P to the detection value P2.
  • the change load ⁇ P can be obtained by subtracting the detected value P2 from the detected value P1.
  • the digital control unit 48 temporarily stops the acquisition of the detection value P1 of the non-piezoelectric load detector 21 and always acquires the detection value P2 of the piezoelectric load detector 38 (step S8-1).
  • control unit 56 starts a spontaneous discharge correction calculation (step S8-2). Specifically, the control unit 56 adds the natural discharge time constant to the initially corrected detection value P2 for each unit time, and sets the added data as the detected pressurization load P.
  • control unit 56 determines whether or not there is a request for switching the welding current I due to the displacement stop or the displacement condition (step S9 in FIG. 10). If there is such a request, a conditional branch is made. However, in the present embodiment, description of the procedure when there is such a request (step S9: present) is omitted.
  • step S9 when there is no such request (step S9: none), the control unit 56 determines whether or not to perform special pressurization control (step S10).
  • step S10 it abbreviate
  • step S10 constant pressurization mode
  • the digital control unit 48 controls the welding power source 54 to pass the welding current I between the upper electrode 15a and the lower electrode 18a.
  • Step S11 the detected pressurization load P substantially matches the set welding load Pb stored in the storage unit 136.
  • the first determination unit 138 compares the detected pressurization load P calculated by the control unit 56 with the set welding load Pb stored in the storage unit 136 (step S12-1).
  • the piezoelectric element control unit 134 applies a negative voltage to the piezoelectric element stack 123.
  • the piezoelectric element stack 123 contracts (step S12-2).
  • the piezoelectric element control unit 134 applies a positive voltage to the piezoelectric element stack 123.
  • the piezoelectric element stack 123 is extended (step S12-3). Accordingly, since the piezoelectric element stack 123 is displaced downward, for example, when the workpiece 17 contracts, the contact surface of the workpiece 17 with the upper electrode 15a sinks downward due to the contraction. In addition, the upper electrode 15a can be made to follow the sinking downward of the contact surface.
  • the piezoelectric element control unit 134 applies a voltage to the piezoelectric element stack 123. Application is not performed (step S12-4).
  • the second determination unit 140 determines whether or not the detection value D2 of the second displacement detector 38 is within the piezoelectric element displacement allowable range (step S12-5).
  • the piezoelectric element displacement allowable range is determined by the displacement lower limit value Dc and the displacement upper limit value Dd as described above.
  • the servo motor control unit 132 determines that the servo motor 5 Is controlled to raise the first moving mechanism 110 (step S12-6). Thereby, for example, even when the upper electrode 15a is further pushed upward by the action of the thermal expansion in a state where the piezoelectric element stack 123 is contracted to the maximum when the workpiece 17 is thermally expanded, Since the one moving mechanism 110 is raised, the force that pushes the upper electrode 15a upward by the action of the thermal expansion can be reduced.
  • the servo motor control unit 132 When the second determination unit 140 determines that the detected value D2 is equal to or smaller than the displacement lower limit value Dc (a state where the piezoelectric element stack 123 is extended) (D2 ⁇ Dc), the servo motor control unit 132 The motor 5 is controlled to lower the first moving mechanism 110 (step S12-7).
  • the contact surface with the upper electrode 15a of the workpiece 17 sinks further downward due to the contraction action with the piezoelectric element stack 123 extended to the maximum. Even if the first moving mechanism 110 falls, the upper electrode 15a can follow the sinking downward of the contact surface.
  • the servo motor control unit 132 moves the first moving mechanism 110.
  • the elevator is not raised or lowered (step S12-8).
  • control unit 56 determines whether or not the energization time T2 of the welding power source 54 has reached the set energization time Tb (step S12-9).
  • step S12-1 the processing after step S12-1 is performed.
  • the digital control unit 48 controls the welding power source 54 to stop energization of the welding current I (step S13).
  • the digital control unit 48 temporarily stops obtaining the detection value P2 of the piezoelectric load detector 31 and always obtains the detection value P1 of the non-piezoelectric load detector 21 (step S14-1). Then, the control unit 56 stops the spontaneous discharge correction calculation (step S14-2).
  • the third determination unit 142 compares the detection value P1 of the non-piezoelectric load detector 21 with the set hold load Pc (step S15-1 in FIG. 11).
  • the piezoelectric element control unit 134 contracts the piezoelectric element stack 123 by applying a negative voltage to the piezoelectric element stack 123 (step S15). -2).
  • the piezoelectric element stack 123 is displaced upward, so that in the hold state in which the heat remaining on the workpiece 17 after the welding current I is stopped is released (absorbed) to the upper electrode 15a and the lower electrode 18a, for example,
  • the force that pushes the upper electrode 15a upward due to the thermal expansion can be reduced.
  • the piezoelectric element control unit 134 extends the piezoelectric element stack 123 by applying a positive voltage to the piezoelectric element stack 123 (Ste S15-3). Accordingly, since the piezoelectric element stack 123 is displaced downward, in the hold state, for example, when the work 17 is contracted, the contact surface of the work 17 with the upper electrode 15a is lowered due to the contraction. Even if it sinks, the upper electrode 15a can be made to follow the sinking downward of the contact surface.
  • Step S15-4 the piezoelectric element control unit 134 does not apply a voltage to the piezoelectric element stack 123 (step S15-4). Thereafter, in the welding procedure, the processes of steps S15-5 to S15-8 are performed. Steps S15-5 to S15-8 perform the same processing as the processing of steps S12-5 to S12-8 described above, and thus detailed description thereof is omitted.
  • control unit 56 determines whether or not the hold time T3 that has passed since the energization of the welding current I has reached the set hold time Tc (step S15-9).
  • step S15-1 When the hold time T3 has not reached the set hold time Tc (T3 ⁇ Tc), the welding procedure proceeds to step S15-1 and performs the processing after step S15-1.
  • the digital control unit 48 stores the detection value D1 of the first displacement detector 16 in the storage unit 136 as the displacement detection value De. (Step S16).
  • control unit 56 calculates the measured displacement actual measurement value Df by subtracting the displacement detection value De from the displacement detection value Db stored in the storage unit 136 in Step S6 described above (Step S17).
  • the control unit 56 calculates the welding displacement Dh by subtracting the measurement data Dg from the measured displacement actual measurement value Df calculated in step S17. To do. (Step S18).
  • the piezoelectric element control unit 134 applies a voltage to the piezoelectric element stack 123 to return the expansion / contraction state to the position at the start of welding, and the servo motor control unit 132 controls the servo motor 5 to perform the first movement.
  • the mechanism 108 is returned to the position at the start of welding (step S19). At this stage, the welding procedure using the resistance welding machine 100 according to the present embodiment ends.
  • the piezoelectric element stack 123 when the detected value P2 of the piezoelectric load detector 31 does not coincide with the set welding load Pb, the piezoelectric element stack 123 is expanded and contracted.
  • the upper electrode 15a can be suitably followed.
  • the response speed of the piezoelectric element stack 123 is set in the range of several hundreds [ ⁇ / sec] to 10 [mm / sec]. It is possible to cope with various thermal expansion / contraction behavior (short-period fluctuation).
  • the servo motor control unit 132 controls the servo motor 5 to move the second moving mechanism 110 up and down, so that a wide range of thermal expansion / contraction behavior is obtained. Can also respond.
  • the welding displacement Dh is calculated by removing the effects of the thermal expansion of the upper electrode 15a and the lower electrode 18a and the natural discharge of the piezoelectric element stack 123. Therefore, the workpiece 17 is welded based on the welding displacement Dh. It is possible to accurately grasp the thermal expansion / softening melting process. Therefore, based on the welding displacement Dh, the state of the object to be welded during resistance welding is monitored in parallel with step S12 described above, and the welding time, welding current, piezoelectric element stack, and servo motor are fed back to the control unit. By controlling, a constant welding strength can be obtained efficiently.
  • the present invention is not limited to the above-described embodiment, and it is naturally possible to adopt various configurations without departing from the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Resistance Welding (AREA)

Abstract

 電動加圧式抵抗溶接機(100)は、被溶接物(17)を挟む上下電極(15a、18a)と、上電極(15a)をその軸線方向に移動する第1及び第2移動機構(108、110)と、被溶接物(17)に入力される荷重を検出する非圧電式荷重検出器(21)及び圧電式荷重検出器(31)と、制御部(56)とを備える。第1移動機構(108)は、サーボモータ(5)によって回転駆動するボールネジ(11)を有し、ボールネジ(11)には、圧電素子スタック(123)が設けられた第2移動機構(110)が螺合している。制御部(56)は、非圧電式荷重検出器(21)の検出値P1と圧電式荷重検出器(31)の検出値P2とに基づいて検出加圧荷重Pを演算し、該検出加圧荷重Pが設定溶接荷重Pbとなるようにサーボモータ(5)及び圧電素子スタック(123)の動作を制御する。

Description

電動加圧式抵抗溶接機
 被溶接物を一対の溶接電極で挟んで加圧しながら通電して溶接する加圧式抵抗溶接機に関し、詳しくは、溶接電極を移動させる2種類の性質の異なる電動式駆動源兼加圧源及び2種類の性質の異なる加圧荷重検出器を有したうえで、双方の長所を生かしながら、所望の溶接条件を得る電動加圧式抵抗溶接機に関する。
 特開2004-1066号公報では、エアシリンダを採用した電動加圧式抵抗溶接機が知られている。
 また、特開平4-224081号公報、特開平11-291060号公報及び特開2002-126878号公報では、弾性体を利用した電動加圧式抵抗溶接装置が知られている。
 なお、特開平4-224081号公報及び特開平11-291060号公報では、電動モータの動作を制御して、溶接電流通電時の加圧力の変動や被溶接物の変位に追従制御させる方法が知られ、且つ短周期変動を弾性体によって追従させながら溶接電流通電時の加圧力の変動や被溶接物の変位を測定していることが記載されている。
 さらに、特開平7-108384号公報では、圧電素子アクチュエータを制御して、短周期変動への追従を可能にし、且つ被溶接面の溶接電流を検出し、その電流の増減に応じて内部の溶融状態を判断し、加圧力を制御する抵抗溶接装置が知られている。
 上述した特開平4-224081号公報及び特開平11-291060号公報では、電動モータの動作を制御して、溶接電流通電時の加圧力の変動や被溶接物の変位に追従制御させているので、これらは応答性が低く、追従制御に満足な加速度も得られないため、比較的変動量が小さく長周期的な変動には追従するが、変動量が大きくしかも短周期的な変動については追従できないため、この場合は弾性体を介在させて対処している。
 弾性体による満足な追従加速度を得るためには追従可動部分の重量を極力軽く製作する必要があり、構造や形状・材質などに制約が課せられる。
 また、特開平4-224081号公報及び特開平11-291060号公報では、短周期変動を弾性体によって追従させながら溶接電流通電時の加圧力の変動や被溶接物の変位を測定しているので、通電中の急激な熱膨張や収縮などの挙動により、弾性体が追従可動部分の慣性力などの影響を強く受けるため、正確な加圧力や変位を測定することは難しい。また、特開平11-291060号公報の変位測定には電極の熱膨張が加味されていない。電極には導電性の高い材質が使用されているが、実際にはやはり通電量や時間に応じた熱膨張を起こす。溶接変位を正確に測定し判別するには、この電極の熱膨張を無視することはできない。
すなわち、通電停止などの条件とするためには、電極の熱膨張や慣性力を除いた被溶接物の変位をもとに行うことが適切である。
 さらに、特開平4-224081号公報、特開平11-291060号公報及び特開2002-126878号公報では、ともに弾性体が内蔵されているので、その選定や調整は初心者には難しく、熟練者でも実験を行うなどの作業工数をかける必要がある。その負担は、少品種大量生産ならまだしも多品種少量生産では大きい。場合により必要加圧力に応じた品種ごとのバネまたはバネ式追従機構部またはそれらの調整が必要となり、結果的に部材費や管理・作業工数が嵩むこともある。
 また、特開平7-108384号公報では、圧電素子アクチュエータを制御して、短周期変動への追従を可能にし、かつ被溶接面の溶接電流を検出し、その電流の増減に応じて内部の溶融状態を判断し、加圧力を制御しているので、市販化されている溶接電源では溶接電流の増減に応じて内部の溶融状態を判断し、加圧力を制御することは困難である。一般的に市販化されている溶接電源の多くは通電時の電流値の変動を抑制するフィードバック制御が行われているのが主流だからである。
 圧電素子アクチュエータには、ストロークが小さい(一般的に市販化されているものは数μm~200μm程度)、衝撃に弱い、引張り力に弱い、不均等な圧力に弱いといった特質がある。また、圧電式荷重センサは動的な荷重計測には向いているが、その反面、自然放電という性質があり、長時間にわたる溶接や溶接後の長時間の加圧維持(ホールド加圧)またサイクルの間隔が極端に短い場合にはこの自然放電の影響を受け、正確な加圧力測定が困難となる。
 抵抗溶接は被溶接物の接触面抵抗を利用して、大電流を通電し、溶接面を瞬時に溶融温度まで上昇させて接合する技術であるが、溶接後、自然冷却しただけでは内部に残留応力や歪が起こる。これにより、溶接部に割れなどの不具合を起こす場合がある。また、被溶接物の種類によっては材料の製造工程における酸化皮膜など、溶接加工時の条件に不利になる要素も含まれている。
 そこで、被溶接物を一対の溶接電極で挟んで加圧しながら通電して溶接するに際し、溶接電極を移動させる2種類の性質の異なる電動式駆動源兼加圧源および/または2種類の性質の異なる加圧荷重検出器を有したうえで、双方の長所を生かしながら、所望の溶接条件を得る電動加圧式抵抗溶接機を実現することが課題となる。
 [解決手段1]本発明に係る電動加圧式抵抗溶接機は、被溶接物を一対の溶接電極で挟んで加圧しながら通電して溶接するに際し、その加圧荷重を荷重検出手段にて検出するとともに、前記加圧荷重が目標荷重になるよう制御部が電動式加圧源の動作を制御して前記溶接電極を移動させる電動加圧式抵抗溶接機において、前記電動式加圧源は、電動モータ及びボールネジを有する第1機構と、駆動用圧電素子を有する第2機構とを備えていることを特徴とする。
 すなわち、比較的大きな移動量を備えることができる電動モータ及びボールネジからなる第1機構と短周期変動に瞬時に追従できる圧電アクチュエータ(駆動用圧電素子32)からなる第2機構とを有し、目標荷重になるように制御部が第1、第2機構を制御して溶接電極を移動させる。通電中およびホールド加圧中においては第2機構の圧電アクチュエータ(駆動用圧電素子32)により短周期変動に追従しながら、熱膨張や溶接変位がストロークを超えそうな場合には、圧電アクチュエータ(駆動用圧電素子32)への出力値や実際の駆動変位の検出値に応じて、適宜、第1機構を作動させて溶接電極を上下させる。
 [解決手段2]圧電式荷重センサ(圧電式荷重検出器31)は動的な荷重計測には向いているが、同時にその性質である自然放電による測定値降下に対処するために、電極軸および追従機構部の鉛直線上に静的な荷重測定において安定である非圧電式荷重センサ(非圧電式荷重検出器21)を配置する。
 [解決手段3]通電中の変位を監視しながら、加圧力や溶接電流を制御する。
 [解決手段4]前記制御部は、前記荷重検出手段の検出値に基づく検出加圧荷重が設定溶接荷重に一致しているか否かを判定する第1判定部を有し、前記検出加圧荷重が前記設定溶接荷重に一致していないと前記第1判定部にて判定された場合に、前記駆動用圧電素子を伸縮し、前記検出加圧荷重が前記設定溶接荷重に一致していると前記第1判定部にて判定された場合に、前記駆動用圧電素子を伸縮しないことを特徴とする。
 [解決手段5]通電中の前記被溶接物の変位を検出する変位検出手段をさらに備え、前記制御部は、前記変位検出手段の検出値に基づく前記被溶接物の変位量が前記駆動用圧電素子の可動範囲内にあるか否かを判定する第2判定部を有し、前記変位量が前記可動範囲よりも大きいと前記第2判定部にて判定された場合に、前記電動モータを作動することを特徴とする。
 [解決手段1の効果]電動モータ及びボールネジからなる第1機構と短周期変動に瞬時に追従できる圧電アクチュエータからなる第2機構との双方を備えたことにより、圧電アクチュエータのストロークを超える条件にも対応できる。しかも、追従機構部に弾性体を用いていないため、追従可動部分の慣性力による影響が少なく、構造や形状・材質の制限も軽減される。また、剛体に近いため、正確な変位や加圧力を測定することが可能であり、このデータを可視化することでモニタとしての機能を果たす。このモニタ機能を用い、被溶接物の無い状態または被溶接物の一片だけを挟んで、一定加圧で溶接電流を通電した時の電極のみの熱膨張や通電後の収縮時の変位データをモニタすることができる。このデータを予め取得し電極のみの熱膨張や収縮を除外した実際の溶接サイクル中の被溶接物の変位を正確に把握することで、溶接変位測定や通電停止や電流切替えなどのより適切な条件となる。特開2002-126878号公報のような被溶接物の材質や形状による溶接条件に対応した専用の弾性体を使用した追従機構部に比べ、幅広い加圧力範囲にも適用できる。
 [解決手段2の効果]圧電式荷重センサだけでなく非圧電式荷重センサも設けたことにより、非圧電式荷重センサによる直接的な圧電式荷重センサの自然放電の補正、または規定の関数や定数による補正、1サイクルが長時間にわたる場合には、その工程により、圧電式荷重センサと非圧電式荷重センサとを使い分けることが可能となる。また、非圧電式荷重センサにある程度の剛性を持つロードセルなどの弾性体を使用した場合には、突発的な慣性力による衝撃や急激な熱膨張及び収縮による衝撃を緩和し、圧電アクチュエータを保護する役割がある。
 [解決手段3の効果]一般に溶接面の発熱効率は加圧力に依存する。加圧力が高いと接触面抵抗が減り、発熱効果を得にくい。反対に、低い加圧力では接触面抵抗が増し、高い発熱効果を得られるが、急激な変動により、爆飛を起こす可能性が高くなる。また先に述べたように、市販化されている溶接電源の多くは通電時の電流値の変動を抑制するフィードバック制御が行われているのが主流であるため、溶接電流の増減を検出しながら、溶融状態を判断し、加圧力を制御することは困難である。そこで、着目したのが溶接サイクル中の変位の挙動である。
 すなわち通電中の変位を監視しながら、加圧力や溶接電流を制御することにより、溶接面の発熱量をコントロールすることができ、最適な溶接条件を見出すことが可能となる。
 また前述でも記したが、自然冷却しただけでは被溶接物の内部には残留応力や歪が起こり、溶接部に割れなどの不具合を起こす場合がある。また、被溶接物の種類によっては酸化皮膜など、抵抗溶接の条件に不利になる要素も含まれている。通電中における変位を監視しながら、加圧力や溶接電流を制御することにより、本溶接前の酸化皮膜除去や溶接後のアニール処理などを行うことが可能となる。
 [解決手段4の効果]検出加圧荷重が設定溶接荷重に一致していないと第1判定部が判定した場合に、駆動用圧電素子を伸縮するので、被溶接物の膨張・収縮による変位(短周期変動)に電極を追従させることができる。これにより、加圧荷重と目標荷重とのずれを小さくすることができる。
 [解決手段5の効果]変位検出手段の検出値に基づく変位量が駆動用圧電素子の可動範囲内よりも大きいと第2判定部が判定した場合に、電動モータを作動するので、被溶接物の膨張・収縮による変位量が駆動用圧電素子の可動範囲(ストローク)よりも大きいときでも該被溶接物の変位に電極を追従させることができる。
本発明の電動加圧式抵抗溶接機の実施例1について、機構部全体の構造図である。 図2Aが圧電式加圧変位追従機構部の正面図、図2Bが圧電式加圧変位追従機構部の側断面図である。 制御部の構成図である。 基本動作時の各種信号の波形例において、図4Aは直流溶接電流と交流溶接電流の波形例であり、図4Bは変位検出器の検出値の波形例であり、図4Cは図4D及び図4Eを補正したデータに基づく波形例であり、図4Dは非圧電式荷重検出器の検出値の波形例であり、図4Eは圧電式荷重検出器の波形例である。 電極の熱膨張を除外する溶接変位算出方法を示す波形例において、図5Aは直流溶接電流の波形例であり、図5Bは変位検出器の検出値の波形例であり、図5Cは定加圧制御を示す波形例であり、図5Dは電極熱膨張の変位を示した波形例であり、図5Eは被溶接物の変位を示した波形例である。 通電中に加圧力を変動させて、溶接面の発熱量を制御する波形において、図6Aは直流溶接電流の波形例であり、図6Bは通電中に加圧力を次第に高くする制御を示す波形例であり、図6Cは一定時間後に一気に加F圧力を高くする制御を示す波形例である。 加圧力と変位を監視して、溶接電流の通電量を切り替えながら溶接前の酸化皮膜除去、本溶接、溶接後のアニール処理まで行う際の波形例において、図7Aは第1波形例であり、図7Bは第2波形例である。 本実施形態に係る抵抗溶接機による抵抗溶接の手順を示す第1フローチャートである。 本実施形態に係る抵抗溶接機による抵抗溶接の手順を示す第2フローチャートである。 本実施形態に係る抵抗溶接機による抵抗溶接の手順を示す第3フローチャートである。 本実施形態に係る抵抗溶接による抵抗溶接の手順を示す第4フローチャートである。 圧電素子制御演算方式の波形例において、図12Aは直流溶接電流の波形例であり、図12Bは追従制御無しの加圧荷重の波形例であり、図12Cは追従制御有りの加圧荷重の波形例である。
 このような本発明の電動加圧式抵抗溶接機について、これを実施するための具体的な実施形態を以下に説明する。
 図1において、装置筐体は、ベース台1、側板2、ガイドモジュール支持板3、天井板4を有する。サーボモータ5の回転運動は、タイミングプーリ6、8及びタイミングベルト7によりボールネジ11に伝達され、ラジアルベアリングユニット9とスラストベアリングユニット10にて支持されたボールネジ11にて直線運動に変換される。その直線運動は、回り止め付きガイドモジュール12によって摺動案内される。ボールネジ11の下端には、中間板13を介して、圧電式加圧変位追従機構部14が取り付けられている。また圧電式加圧変位追従機構部14の上電極ユニット支持板25に(図2A参照)、電極及び電極ホルダからなる上電極ユニット15が取り付けられている(図1参照)。
 また、変位検出用基準ブロック37(図2B参照)と変位検出器16(図1参照)によって上電極の変位を検出するようになっている。
 また(図1参照)、ベース台1の上には静的荷重を検出するロードセルなどの非圧電式荷重検出器21があり、その非圧電式荷重検出器21に偏加重がかからないように下電極ユニット支持板19をガイドモジュール20にて支持する構造となっている。下電極ユニット支持板19には電極及び電極ホルダからなる下電極ユニット18があり、被溶接物17を下電極ユニット18と上電極ユニット15で挟んで加圧しながら被溶接物17の溶接を行うようになっている。
 圧電式加圧変位追従機構部14(図2参照)において、水平な支持板22と上電極の動作を案内するガイドモジュール24とそのガイドモジュール24を支持するガイドモジュール支持部材23と上電極ユニット支持板25とによって当機構部筐体が構成されている。機構部中心には動的荷重を検出する圧電式荷重検出器31(圧電式荷重センサ)と駆動用圧電素子32(圧電アクチュエータ)及び積層した駆動用圧電素子32同士を密着させるための皿バネ34とこれらを支持するケーシング33がある。また、上電極ユニット支持板25と駆動用圧電素子32の間には圧電式荷重検出器31や駆動用圧電素子32に不均等な圧力がかからないようにするために半球面接触子35と平面接触子36を介在させている。前記の圧電素子部の両側にスプリングフック26、28と引張りスプリング27と調整ナット29と調整ネジ30からなる接触力調整機構部を設けてある。また、上電極ユニット支持板25には変位検出用基準ブロック37を取り付け、変位検出器38にて駆動用圧電素子32の変位を検出するようになっている。
 制御部56(図3参照)には、上電極の変位を検出する変位検出器16の検出値D1を電圧信号に変換する専用アンプ40とその電圧信号を取り込むA/D変換器41と、駆動用圧電素子32の変位を検出する変位検出器38の検出値D2を電圧信号に変換する専用アンプ42とその電圧信号を取り込むA/D変換器43と、静的荷重を検出するロードセルなどの非圧電式荷重検出器21の検出値P1を電圧信号に変換する回路44とその電圧信号を取り込むA/D変換器45と、動的荷重を検出する圧電式荷重検出器31の検出値P2を電圧信号に変換する回路46とその電圧信号を取り込むA/D変換器47と、これらの入力をもとに演算し出力を決定するデジタル制御部48と、サーボドライバ50へデジタル制御値にて位置制御等の動作を指示するモーションコントローラ49と、同じくサーボドライバ50へ速度制御やトルク制御などを行うアナログ信号を出力するD/A変換器51と、駆動用圧電素子32へのデジタル制御値をアナログ電圧に変換するD/A変換器52と電圧増幅回路53とが具備されている。
 また、LCDディスプレ55とセットのタッチパネル等のデータ入力手段によって、各種パラメータが入力され、デジタル制御部48のメモリに記憶される。溶接電源54とデジタル制御部48の間では溶接電流切替え等の通信が行われるようになっている。
 このような実施例の電動加圧式溶接機について、その仕様態様及び動作を、図面を引用して説明する。図4A~図4Eは、一定加圧条件下で溶接のみを行った基本動作時の各種信号の波形例である。
 図4Aは直流溶接電流Iaと交流溶接電流Ibの通電時を含む波形例である。図4Bは変位検出器16の検出値D1の波形例である。溶接電流Iaを通電した瞬間から熱膨張が始まり、やがて溶接面が融点まで達すると収縮に転じ、通電後も自然冷却による収縮が始まる。通電開始からt0秒後の変位ΔDが溶接前後での上電極の変位結果となる。
 図4Cは静的荷重を検出するロードセルなどの非圧電式荷重検出器21と動的荷重を検出する圧電式荷重検出器31の検出値を補正したデータの切り替えることで得られるデータPの波形例である。実際のフィードバック追従制御はこのデータPをもとに行われる。
 このデータPは以下のようにして得られる。
 サーボモータ5やボールネジ11からなる第1駆動源兼加圧源と圧電アクチュエータからなる第2駆動源兼加圧源により上電極を下降させ、目標設定荷重P0の加圧力に達してから一定時間加圧維持するまでの間と、溶接後の加圧維持から上電極が開始位置まで戻るまでの間は非圧電式荷重検出器21の検出値P1をもとに加圧力のフィードバック追従制御を行う(図4D)。
 通電直前で加圧検出を圧電式荷重検出器31の検出値P2に切り替えるが(図4E参照)、このときP1とP2の間には圧電式荷重検出器31の自然放電による影響でΔPaだけ差が生じるため、P2にΔPaの初期補正を施す。さらに通電時間中も同様に自然放電による影響がでるため、予め算出した単位時間当たりの自然放電時定数(Pc=(Pb-Pa)/(t2-t1))による補正をかける。通電中はこのデータをもとにフィードバック追従制御を行う。
これにより1サイクル終了後に最終的に得られるのが図4CデータPの波形例となる。
 図5A~図5Eは電極の熱膨張を除いた実際の被溶接物の変位を得るための方法を示した波形例である。図5Aは直流溶接電流Iaの波形例であり、図5Bは図4B同様に変位検出器16の検出値D1の波形例である。ここで、検出値D1には電極の熱膨張が含まれており、実質的な被溶接物の溶接変位とは相違する。図5Cは定加圧条件下で溶接を行ったことを示したものである。図5Dは予め被溶接物の無い状態または被溶接物の一片だけを挟んで通電し、電極のみの熱膨張を測定した時の波形例である。そして図5Eは図5Dと図5Bをもとに例えば図5Bの現検出値D1から図5Dの既測定値D1を減算することで算出した実際の被溶接物の変位Dを示した波形例となる。そして、実際の溶接変位はΔDとなる。また、このΔDをもとに通電停止や電流切替えを行うことが適切である。
 図6A~図6Cは通電中に加圧力を変動させて、溶接面の発熱量を制御する波形例である。図6Aは直流溶接電流Iaの波形例であり、図6Bは、通電開始時には低い加圧力にて接触面抵抗が大きい状態で、溶接面を効率良く発熱させ、次第に加圧力を高くして接合を強固にする際の波形例である。図6Cは目的こそ前例と同じだが、低い加圧力で溶接面を効率良く発熱させ、一定時間後に一気に加圧力を高くして維持し、接合を強固にする際の波形例である。
 図7は加圧力と変位を監視して、溶接電流の通電量を切り替えながら溶接前の酸化皮膜除去、本溶接、溶接後のアニール処理まで行う際の波形例である。
 図7Aは加圧力をPaまで上昇した後、一定時間後に設定時間分だけ直流電流Iaを通電して酸化皮膜を除去する。余熱が残るように適度に弱い電流Ibに切り替え、設定時間後に加圧力をPbまで上昇させる。Pbまで上昇したのを確認した後、一定時間後に本溶接電流Icを設定時間分だけ通電して溶接を完了し、アニール処理用の直流電流Idに切り替える方法である。
 図7Bは加圧力をPaまで上昇した後、一定時間後に直流電流Iaを通電し酸化皮膜を除去する。この際、熱膨張により電極変位は上昇し、Daに到達した時点で、余熱が残るように適度に弱い電流Ibに切り替える。設定時間後に加圧力をPbまで上昇させ、電極変位がDbまで下降したのを確認し、一定時間後に本溶接電流Icを設定時間分だけ通電して溶接を完了し、アニール処理用の直流電流Idに切り替える方法である。
図8~図11は、一定加圧条件下で溶接のみを行う基本動作時の制御フローチャートである。これを参照しながら基本動作を説明する。
 先ず(S1)、作業者が被溶接物17を上電極ユニット15と下電極ユニット18の間にセットする。次に(S2)、やはり作業者がLCDディスプレ55とセットのデータ入力手段に準備された起動釦を押す。
 そうすると、後は装置が自動で動作する。すなわち(S3)、通電時の熱膨張に追従するためには駆動用圧電素子32に予め電圧をかけて変位させておく必要があるので、変位検出器38の検出値D2の値がLCDディスプレ55とセットのデータ入力手段にて予め入力された設定値(設定初期変位距離)Daに達するまで、電圧を増加させ、駆動用圧電素子32を変位させる。なお、加圧追従制御用の加圧加重を検出する加重検出器は、先ず非圧電式荷重検出器21になっている。
 それから(S4)、サーボモータ5とボールネジ11からなる駆動源兼加圧源1を用い、圧電式加圧変位追従機構部14を下降させ、非圧電式荷重検出器21の検出値P1がLCDディスプレ55とセットのデータ入力手段にて予め入力された設定値(設定初期荷重)Paに達するまで下降する。
 次いで(S5)、加圧設定値Pa到達後の経過時間T1が、LCDディスプレ55とセットのデータ入力手段にて予め入力された安定待ち設定値Ta(設定スクイズタイム)に達するまで加圧維持を行う。
 それから(S6)、設定加圧後の変位検出器16の検出値D1をデジタル制御部48のメモリに変位検出値Dbとして記憶する。
 この時点で(S7)、P1とP2の間には圧電式荷重検出器31の自然放電による影響でΔPaだけ差が生じるため、P2に初期補正を施す。
 それから(S8)、加圧追従制御用の加圧加重を検出する加圧荷重検出器を圧電式荷重検出器31に切り替え、初期補正されたP2に単位時間あたりごとに自然放電時定数を加算していくことにより、データPを得る。
 なお(S9)、変位停止や変位条件による溶接電流Iの切り替えが要求される場合は条件分岐する。また(S10)、特殊加圧制御などが有る場合も条件分岐する。
 ここでの説明対象は基本動作だけなので、分岐はなく(S11)溶接電流の通電が開始される。そして(S12)、LCDディスプレ55とセットのデータ入力手段にて予め入力された設定時間(設定通電時間)Tbまで加圧追従制御を行う。詳述すると、現在の検出加圧荷重PとLCDディスプレ55に入力された設定値Pbを比較演算し、駆動用圧電素子32への出力を算出し、D/A変換器52に介して電圧増幅回路53を介して駆動用圧電素子32を制御する。同時にLCDディスプレ55に入力された駆動用圧電素子32の変位上限値Dc、変位下限値Ddと変位検出器38の検出値D2を比較演算し、サーボドライバ50への指令手段を決定し、D/A変換器51またはモーションコントローラ49を介してサーボモータ5を制御する。
 設定時間Tbになると(S13)、溶接電流の通電を停止する。そして(S14)、加圧追従制御用の加圧加重を検出する加圧荷重検出器を非圧電式荷重検出器21に切り替え、データPに単位時間あたりごとに自然放電時定数を加算する演算を停止する。
 それから(S15)、LCDディスプレ55に入力された設定時間(設定ホールド時間)Tcまで加圧荷重の維持を行う。具体的な制御内容は上述した加圧追従制御(S12)と同様である。
 設定時間Tcになると(S16)、溶接後の変位検出器16の検出値D1をデジタル制御部48のメモリに変位検出値Deとして記憶する。
 そして(S17)、変位検出値Dbから変位検出値Deを引き、測定変位実測値Dfを算出する。さらに、(S18)、その測定変位実測値Dfより電極熱膨張の測定データDgをもとに溶接変位Dhを式[Dh=Df-Dg]で算出する。
 最後に(S19)、駆動部を開始時点の位置に移動して、一連の動作を終了する。
 図12は、圧電素子制御演算方式の例である。
 図12Aは直流溶接電流Iaの波形例であり、図12Bは追従制御無しの加圧荷重の波形例であり、図12Cは追従制御有りの加圧荷重の波形例である。
 図12Bにおいて、溶接電流Iaを通電開始すると同時に熱膨張が始まり、被溶接物は剛体により挟まれているため、加圧荷重は増加する。制御周期t1ごとに設定加圧力P0と現在の加圧荷重Pの荷重差(Pα)を読み取る。非圧電式荷重検出器21にロードセルなどの弾性体を使用した場合、弾性係数によりこの荷重差(Pα)を変位に換算することができる。たとえばロードセルの弾性係数をEとすれば、変位Dα=Pα/Eとなり、このDαに相当する指令値をD/A変換器52と電圧増幅回路53を介して駆動用圧電素子32を制御すれば良い(図12C)。
 しかしながら、駆動用圧電素子32にも極僅かではあるが指令から動作までの間に応答遅れが存在する。また圧電素子のヒステリシスの影響も存在する。これらが起因して、発振を起こし、場合によってはその発振は増幅する可能性がある。そこで、Dαにオーバーライド値(Or)をかけて値を僅かながら小さくする場合もある(Dβ=Or×Dα)。
 上述したことを詳細に説明すると、図1及び図3に示すように、本発明に係る抵抗溶接機100は、装置筐体102と、装置筐体102に設けられた下電極ユニット18と、下電極ユニット18を支持する下電極ユニット支持機構104と、下電極ユニット18に対向した位置に配置された上電極ユニット15と、上電極ユニット15を装置筐体102に対して移動可能に支持する上電極ユニット移動機構106と、制御部56と、所定の溶接条件等を入力するためのLCDディスプレ55と、溶接電源54とを備えている。
 装置筐体102は、工場等の床面に載置されたベース台1と、側面視でコ字状に形成されてベース台1に立設する側板2と、側板2の上部に設けられた天井板4とを有している。
 下電極ユニット18は、例えば、2枚の板部材を重ね合わせることにより形成された被溶接物17の下面に接触し、且つ銅又は銅合金等の電気伝導性の良好な金属材料で構成された下電極18aと、下電極18aを保持する下電極ホルダ18bとを有している。
 下電極ユニット支持機構104は、下電極ホルダ18bの下方に設けられた下電極ユニット支持板19と、下電極ユニット支持板19を支持する一対のガイドモジュール20、20とを有している。
 また、一対のガイドモジュール20、20の間には、下電極ユニット支持板19の静荷重を検出する非圧電式荷重検出器21が設けられている。具体的には、非圧電式荷重検出器21は、被溶接物17に入力される静荷重に対応した信号を出力する。なお、非圧電式荷重検出器21としては、例えば、ロードセル等が利用することができる。また、図1から諒解されるように、非圧電式荷重検出器21は、ベース台1上に設けられた状態で下電極ユニット支持板19の下面に接触している。
 上電極ユニット15は、前記下電極18aと同一の材料で構成され、且つ被溶接物17の上面に接触可能な上電極15aと、上電極15aを保持する上電極ホルダ15bとを有している。なお、上電極15aと下電極18aは、それら軸線を揃えた状態で先端が向き合うように配置されている。
 また、側板2には、上電極15aの変位量に対応した信号を出力する変位検出器(第1変位検出器)16が設けられている。第1変位検出器16としては、レーザ変位計等が用いられる。
 上電極ユニット移動機構106は、装置筐体102に設けられた第1移動機構108と、第1移動機構108に設けられた第2移動機構110とを有している。
 第1移動機構108は、第2移動機構110を装置筐体102に対して上電極15aの軸線方向に沿って移動可能に支持している。
 そして、第1移動機構108は、上電極15aの軸線方向(上下方向)に延びたボールネジ11と、ボールネジ11のラジアル方向の荷重を受けるラジアルベアリングユニット9と、ボールネジ11のスラスト方向の荷重を受けるスラストベアリングユニット10と、ボールネジ11を回転するためのサーボモータ5と、サーボモータ5の駆動軸5aに設けられたタイミングプーリ6と、ボールネジ11の上端に設けられたタイミングプーリ8と、タイミングプーリ6の回転力をタイミングプーリ8に伝達するためのタイミングベルト7とを含んでいる。
 ラジアルベアリングユニット9とスラストベアリングユニット10は、天井板4にそれぞれ固定されている。
 第2移動機構110は、ボールネジ11に螺合するナット部材112と、ナット部材112の外面に固定された円筒部材114と、円筒部材114をボールネジ11の延在方向に案内するガイドモジュール12と、側板2に固定されてガイドモジュール12を支持するガイドモジュール支持板3と、円筒部材114の下部に設けられた中間板13と、中間板13の下面に設けられた圧電式加圧変位追従機構部14とを含んでいる。
 圧電式加圧変位追従機構部14は、上電極ユニット15を上電極15aの軸線方向に沿って移動可能に支持する。
 そして、図2A及び図2Bに示すように、圧電式加圧変位追従機構部14には、中間板13の下面に固定された支持板22と、上電極ユニット15(図1参照)の上面に設けられた上電極ユニット支持板25と、支持板22に設けられたガイドモジュール支持部材23と、ガイドモジュール支持部材23に支持されて上電極ユニット支持板25を上電極15aの軸線方向に沿って案内するガイドモジュール24と、上電極ユニット支持板25を支持板22側に付勢する一対の接触調整機構部116(図2A参照)と、上電極ユニット支持板25を上電極ユニット15側(下方)に押圧する押圧機構118(図2B参照)とが設けられている。
 ガイドモジュール支持部材23は、支持板22の下面に固定された支持部本体23aと、支持部本体23aの角部から下方に突出する複数(図では4つ)の突出部23bとを有している。
 図2Bに示すように、支持部本体23aの略中央部には、押圧機構118が位置するための隙間が形成されている。また、図2Aから諒解されるように、ガイドモジュール支持部材23と支持部本体23aには、複数(図では4つ)の貫通孔120が形成されている。
 図2A及び図2Bに示すように、ガイドモジュール24は、上電極ユニット支持板25の上面から支持板22側(上方)に延びた複数(図では4本)のガイドピン24aと、貫通孔120に位置してガイドピン24aを摺動自在に支持するピン受け部24b(図2A参照)とを備えている。
 図2Aに示すように、接触調整機構部116は、引張りスプリング27と、支持部本体23aの下面に固定された状態で引張りスプリング27の一端に接続されたスプリングフック26と、引張りスプリング27の他端に接続されたスプリングフック28と、スプリングフック28が固定される調整ナット29と、調整ナット29に螺合して上電極ユニット支持板25に設けられた調整ネジ30とを備えている。
 押圧機構118は、支持板22の下面から下方に延びた筐体122と、筐体122内に位置するケーシング33と、ケーシング33内に設けられた複数の駆動用圧電素子32と、複数の駆動用圧電素子32の下端に設けられた皿バネ34と、皿バネ34に接触する半球面接触子35と、上電極ユニット支持板25に固定されて半球面接触子35に接触する平面接触子36と、支持板22の上面とケーシング33の間に設けられた圧電式荷重検出器31とを備えている。
 複数の駆動用圧電素子32は、上電極15aの軸線方向に積層されている。なお、以下の説明では、積層された複数の駆動用圧電素子32をまとめて圧電素子スタック123と称することがある。
 駆動用圧電素子32及び圧電式荷重検出器31は、所謂ピエゾ素子であり、前者には逆圧電効果が利用され、後者には圧電効果が利用されている。つまり、駆動用圧電素子32は、印加電圧の変化に応じてその積層方向に伸縮可能となっており、圧電式荷重検出器31は、ケーシング33側から入力される荷重に応じた大きさの電圧を発生可能となっている。具体的には、駆動用圧電素子32は、正電圧が印加されることにより伸長し、負電圧が印加されることにより収縮するように形成されている。
 なお、本実施形態において、圧電素子スタック123の応答速度は、例えば、数百[μ/sec]~10[mm/sec]の範囲に設定されると共に、圧電素子スタック123の可動範囲は、1[μm]~100[μm]範囲に設定されている。
 また、押圧機構118は、皿バネ34の力によって駆動用圧電素子32同士が密着するように構成されている。
 図2A及び図2Bから諒解されるように、上電極ユニット支持板25には、変位検出用基準ブロック37が設けられており、支持板22には、下方に延びた支持棒124と、支持棒124の先端に設けられて変位検出用基準ブロック37に離間した状態で対向する変位検出器(第2変位検出器)38とを有している。第2変位検出器38は、変位検出用基準ブロック37までの距離(第2変位検出器38及び変位検出用基準ブロック37の間隔)に対応した信号を出力する。なお、第2変位検出器38としては、例えば、レーザ変位計が用いられる。
 図3に示すように、制御部56は、第1及び第2変位検出器16、38と、非圧電式荷重検出器21と、圧電式荷重検出器31から出力される信号を所定の信号に変換する変換部126と、変換部126にて変換された信号が入力されるデジタル制御部48と、サーボモータ5を作動するモータ作動部128と、駆動用圧電素子32に電圧を印加する圧電素子電圧印加部130とを備えている。
 変換部126は、第1変位検出器16から出力された信号(検出値D1)をアナログの電圧信号に変換する専用アンプ(第1専用アンプ)40と、第1専用アンプ40にて変換されたアナログの電圧信号をデジタルの電圧信号に変換するA/D変換器(第1A/D変換器)41と、第2変位検出器38から出力された信号(検出値D2)をアナログの電圧信号に変換する専用アンプ(第2専用アンプ)42と、第2専用アンプ42にて変換されたアナログの電圧信号をデジタルの電圧信号に変換するA/D変換器(第2A/D変換器)43とを有している。
 また、変換部126は、非圧電式荷重検出器21から出力された信号(検出値P1)をアナログの電圧信号に変換する回路(第1回路)44と、第1回路44にて変換されたアナログの電圧信号をデジタルの電圧信号に変換するA/D変換器(第3A/D変換器)45と、圧電式荷重検出器31から出力された信号(検出値P2)をアナログの電圧信号に変換する回路(第2回路)46と、第2回路46にて変換されたアナログの電圧信号をデジタルの電圧信号に変換するA/D変換器(第4A/D変換器)47とを有している。
 デジタル制御部48は、溶接電源54を制御して上電極15a及び下電極18aに溶接電流を通電する。
 デジタル制御部48は、サーボモータ制御部132、圧電素子制御部134、記憶部136、第1判定部138、第2判定部140、及び第3判定部142とを有している。
 サーボモータ制御部132は、サーボモータ5に対して位置制御、速度制御、及びトルク制御を行う。つまり、サーボモータ制御部132は、位置制御信号、速度制御信号、及びトルク制御信号をデジタル信号として出力する。
 圧電素子制御部134は、圧電素子スタック123に正電圧又は負電圧を印加することにより圧電素子スタック123を伸縮する。
 記憶部136は、LCDディスプレ55から入力された情報が記憶される。また、記憶部136には、変位下限値Dc、変位上限値Dd、設定通電時間Tb、設定ホールド時間Tc、設定溶接荷重Pb、及び設定ホールド荷重Pc、電極熱膨張の測定データDg等が予め記憶されている。
 変位下限値Dcとしては、例えば、圧電素子スタック123を最も伸長させた状態から僅かに収縮したときの第2変位検出器38と変位検出用基準ブロック37の間の距離が用いられる。なお、変位下限値Dcとしては、圧電素子スタック123を任意に伸長させたときの第2変位検出器38と変位検出用基準ブロック37の間の距離を用いてもよい。
 変位上限値Ddとしては、圧電素子スタック123を最も収縮させた状態から僅かに伸長させたときの第2変位検出器38と変位検出用基準ブロック37の間の距離が用いられる。なお、変位上限値Ddとしては、圧電素子スタック123を任意に収縮させたときの第2変位検出器38と変位検出用基準ブロック37の間の距離が用いられる。
 設定通電時間Tbは、溶接電源54にて上電極15a及び下電極18aに溶接電流Iを通電する時間であり、被溶接物17の材質や溶接条件等によって定められる。
 設定ホールド時間Tcは、溶接電流Iの通電を停止してから被溶接物17に残留した熱を上電極及び下電極に逃がす(吸収させる)までの時間であり、被溶接物17の材質や溶接条件等によって定められる。
 設定溶接荷重Pbは、溶接電流Iの通電中に被溶接物17に与える荷重であり、被溶接物17の材質や溶接条件等によって定められる。
 設定ホールド荷重Pcは、ホールド時間中に被溶接物17に与える荷重であり、被溶接物17の材質や溶接条件等によって定められる。
 電極熱膨張の測定データDgは、上電極15a及び下電極18aの熱膨張の測定データが用いられる。具体的には、上述した図5A~図5Eを参照して説明した内容を行えばよい。
 第1判定部138は、圧電式荷重検出器31の検出値P2に基づく検出加圧荷重Pが前記設定溶接荷重Pbよりも大きいか否か及び一致するか否かを判定する。
 第2判定部140は、第2変位検出器38の検出値D2が圧電素子変位許容値の範囲内にあるか否かを判定する。なお、ここで、圧電素子変位許容値の範囲とは、前記変位下限値Dcと前記変位上限値Ddの間の範囲を言う。
 第3判定部142は、非圧電式荷重検出器21の検出値P1が前記設定ホールド荷重Pcよりも大きいか否か及び一致するか否かを判定する。
 モータ作動部128は、モーションコントローラ49、D/A変換器(第1D/A変換器)51及びサーボドライバ50を有している。
 モーションコントローラ49は、位置制御信号に基づいてサーボドライバ50に位置制御の動作をデジタル信号で指示する。
 第1D/A変換器51は、速度制御信号又はトルク制御信号に基づいてサーボドライバ50に速度制御の動作又はトルク制御の動作をアナログ信号で指示する。
 サーボドライバ50は、モーションコントローラ49又は第1D/A変換器51からの指示に基づいてサーボモータ5の駆動軸5aを回転制御する。
 圧電素子電圧印加部130は、圧電素子制御部134から出力されたデジタル制御信号をアナログ制御信号に変換するD/A変換器(第2D/A変換器)52と、第2D/A変換器52にて変換されたアナログ制御信号の電圧を増幅する電圧増幅回路53とを有している。
 次に、本実施形態に係る抵抗溶接機100を用いた抵抗溶接の手順について図1、図8~図11を参照しながら説明する。
 先ず、図1に示すように、作業者は被溶接物17を下電極18aと上電極15aの間に配置する(図8のステップS1)。このとき、被溶接物17は、上電極15aと非接触であると共に、下電極18aと接触している。
 続いて、作業者は、LCDディスプレ55に表示されている起動釦を押す(ステップS2)。
 作業者が前記起動釦を押すと、制御部56は、圧電素子スタック123を初変位する必要があるか否かを判定する(ステップS3-1)。ここで初変位とは、抵抗溶接を行う前に圧電素子スタック123に電圧を印加することにより、圧電素子スタック123の伸長可能量と収縮可能量とのバランスをとる処理を言う。なお、圧電素子スタック123の初変位の有無は、被溶接物17の種類や溶接条件等に基づいて判定される。
 制御部56が圧電素子スタック123を初変位する必要がないと判定した場合(ステップS3-1:無し)、本溶接手順は、ステップ4-1の処理に進む。
 一方、制御部56が圧電素子スタック123を初変位する必要があると判定した場合(ステップS3-1:有り)、圧電素子制御部134は、圧電素子スタック123に対して所定の電圧を印加する(ステップS3-2)。
 このとき、制御部56は、第2変位検出器38の検出値D2が設定初期変位距離Daに達したか否かを判定する(ステップS3-3)。該検出値D2が設定初期変位距離Daに達していない場合(ステップS3-3:D2>Da)、本溶接手順は、ステップS3-2の処理に戻る。
 そして、前記検出値D2が設定初期変位距離Daに達した(D2=Da)ときに、圧電素子制御部134は、圧電素子スタック123に印加されている電圧を停止する(ステップS3-4)。これにより、圧電素子スタック123の伸長可能量及び収縮可能量を同一にすることができる。よって、圧電素子スタック123をバランスよく伸縮させることが可能となる。
 その後、サーボモータ制御部132は、サーボモータ5を制御して圧電式加圧変位追従機構部14(第2移動機構110)を下降する(ステップS4-1)。第2移動機構110が下降すると、上電極15aが被溶接物17に接触する。そして、第2移動機構110がさらに下降することにより、被溶接物17は、加圧されることとなる。
 このとき、制御部56は、非圧電式荷重検出器21の検出値P1が設定初期荷重Paに達したか否かを判定する(ステップS4-2)。該検出値P1が設定初期荷重Paよりも小さい(ステップS4-2:P1<Pa)場合、本溶接手順は、ステップS4-1の処理に戻り、さらに第2移動機構を下降する。これにより、上電極15aが被溶接物17に押し込まれるので、該検出値P1が大きくなる。
 そして、該検出値P1が該設定初期荷重Paに達した(ステップS4-2:P1=Pa)ときに、サーボモータ制御部132は、サーボモータ5を制御して第2移動機構110の下降を停止する(ステップS4-3)。
 その後、制御部56は、スクイズタイムが必要か否かを判定する(図9のステップS5-1)。ここで、スクイズタイムとは、被溶接物17への入力荷重が設定初期荷重Paに安定するまでの時間を言う。なお、スクイズタイムの有無は、被溶接物17の種類や溶接条件等に基づいて判定される。
 スクイズタイムが必要ない場合(ステップS5-1:無し)、本溶接手順は、ステップS6の処理に進む。
 一方、スクイズタイムが必要である場合(ステップS5-1:有り)、制御部56は、図示しない溶接タイマにてスクイズタイムT1をカウントする(ステップS5-2)。このとき、制御部56は、前記溶接タイマにてカウントされるスクイズタイムT1が設定スクイズタイムTaに達したか否かを判定する(ステップS5-3)。
 該スクイズタイムT1が該設定スクイズタイムTaに達していない(ステップS5-3:T1<Ta)場合、本溶接手順は、ステップS5-2に戻り、前記溶接タイマのスクイズタイムT1のカウントを続ける。
 そして、該スクイズタイムT1が該設定スクイズタイムTaに達した(ステップS5-3:T1=Ta)ときに、前記溶接タイマは、スクイズタイムT1のカウントを停止する。
 また、このとき、デジタル制御部48は、第1変位検出器16の検出値D1を変位検出値Dbとして記憶部136に記憶させる(ステップS6)。
 続いて、制御部56は、非圧電式荷重検出器21の検出値P1と圧電式荷重検出器31の検出値P2とを比較して、初期補正値を算出すると共に該検出値P2に初期補正を施す(ステップS7)。言い換えると、制御部56は、圧電式荷重検出器31の自然放電による変化荷重ΔPを算出し、該検出値P2に該変化荷重ΔPを加算する。なお、該変化荷重ΔPは、該検出値P1から該検出値P2を減算することにより求めることができる。
 その後、デジタル制御部48は、非圧電式荷重検出器21の検出値P1の取得を一旦停止すると共に、圧電式荷重検出器38の検出値P2を常時取得する(ステップS8-1)。
 そして、制御部56は、自然放電補正演算を開始する(ステップS8-2)。具体的には、制御部56は、単位時間毎に、初期補正された検出値P2に対して自然放電時定数を加算し、加算されたデータを検出加圧荷重Pとする。
 続いて、制御部56は、変位停止や変位条件による溶接電流Iの切り替えの要求があるか否かを判定する(図10のステップS9)。そして、該要求がある場合は条件分岐する。但し、本実施形態では、該要求がある場合(ステップS9:有り)の手順の説明については省略する。
 一方、該要求が無い場合(ステップS9:無し)、制御部56は、特殊加圧制御を行うか否かを判定する(ステップS10)。なお、本実施形態では、前記特殊加圧制御を行う場合の手順の説明については省略する。
 制御部56が定加圧制御を行う場合(ステップS10:定加圧モード)、デジタル制御部48は、溶接電源54を制御して上電極15aと下電極18aとの間に溶接電流Iを通電する(ステップS11)。なお、このとき、前記検出加圧荷重Pは、記憶部136に記憶されている設定溶接荷重Pbと略一致している。
 上電極15aと下電極18aとの間に溶接電流Iを供給すると、被溶接物17にジュール熱が発生するので、被溶接物17が熱膨張・収縮する。そして、例えば、被溶接物17が熱膨張すると、該熱膨張の作用で上電極15aは上方に押されることとなるので、圧電式荷重検出器31の検出値P2が大きくなる。その結果、前記検出加圧荷重Pが前記設定溶接荷重Pbよりも大きくなる。
 一方、被溶接物17が溶融等によって収縮すると、該収縮の作用で被溶接物17のうち上電極15aとの接触面が下方に沈み込むこととなるので、圧電式荷重検出器31の検出値P2が小さくなる。その結果、前記検出加圧荷重Pが前記溶接荷重設定値Pbよりも小さくなる。
 このとき、第1判定部138は、制御部56で演算された検出加圧荷重Pと記憶部136に記憶されている設定溶接荷重Pbとを比較する(ステップS12-1)。
 該検出加圧荷重Pが該設定溶接荷重Pbよりも大きいと第1判定部138にて判定された場合(P>Pb)、圧電素子制御部134は、圧電素子スタック123に負電圧を印加することにより、圧電素子スタック123を収縮する(ステップS12-2)。これにより、圧電素子スタック123が上昇変位するので、例えば、被溶接物17が熱膨張したときに、該熱膨張の作用で上電極15aが上方に押される力を緩和することができる。
 一方、該検出加圧荷重Pが該設定溶接荷重Pbよりも小さいと第1判定部138にて判定された場合(P<Pb)、圧電素子制御部134は、圧電素子スタック123に正電圧を印加することにより、圧電素子スタック123を伸長する(ステップS12-3)。これにより、圧電素子スタック123が下降変位するので、例えば、被溶接物17が収縮したときに、該収縮の作用で被溶接物17のうち上電極15aとの接触面が下方に沈み込んだとしても、該上電極15aを該接触面の下方への沈み込みに追従させることができる。
 なお、該検出加圧荷重Pが該設定溶接荷重Pbに一致すると第1判定部138にて判定された場合(P=Pb)、圧電素子制御部134は、圧電素子スタック123に対して電圧の印加を行わない(ステップS12-4)。
 続いて、第2判定部140は、第2変位検出器38の検出値D2が圧電素子変位許容範囲内にあるか否かを判定する(ステップS12-5)。なお、前記圧電素子変位許容範囲は、上述したように、変位下限値Dcと変位上限値Ddによって定められている。
 該検出値D2が変位上限値Dd以上(圧電素子スタック123が収縮した状態)であると第2判定部140にて判定された場合(D2≧Dd)、サーボモータ制御部132は、サーボモータ5を制御して第1移動機構110を上昇する(ステップS12-6)。これにより、例えば、被溶接物17が熱膨張したときに、圧電素子スタック123を最大に収縮させた状態で該熱膨張の作用により上電極15aが上方にさらに押される場合であっても、第1移動機構110が上昇するので、該熱膨張の作用で上電極15aが上方に押される力を緩和することができる。
 一方、該検出値D2が変位下限値Dc以下(圧電素子スタック123が伸長した状態)であると第2判定部140にて判定された場合(D2≦Dc)、サーボモータ制御部132は、サーボモータ5を制御して第1移動機構110を下降する(ステップS12-7)。これにより、例えば、被溶接物17が収縮したときに、圧電素子スタック123を最大に伸長させた状態で該収縮の作用により被溶接物17のうち上電極15aとの接触面がさらに下方に沈み込んだとしても、第1移動機構110が下降するので、上電極15aを該接触面の下方への沈み込みに追従させることができる。
 なお、該検出値D2が圧電素子変位許容範囲内にあると第2判定部140にて判定された場合(Dc>D2>Dd)、サーボモータ制御部132は、第1移動機構110の移動の昇降を行わない(ステップS12-8)。
 その後、制御部56は、溶接電源54の通電時間T2が設定通電時間Tbに達したか否かを判定する(ステップS12-9)。
 該通電時間T2が設定通電時間Tbに達していない場合(T2<Tb)、本溶接手順は、ステップS12-1に進み、該ステップS12-1以降の処理を行う。
 そして、該通電時間T2が該設定通電時間Tbに達した(T2=Tb)ときに、デジタル制御部48は、溶接電源54を制御して溶接電流Iの通電を停止する(ステップS13)。
 次に、デジタル制御部48は、圧電式荷重検出器31の検出値P2の取得を一旦停止すると共に、非圧電式荷重検出器21の検出値P1を常時取得する(ステップS14-1)。そして、制御部56は、自然放電補正演算を停止する(ステップS14-2)。
 次に、第3判定部142は、非圧電式荷重検出器21の検出値P1と設定ホールド荷重Pcとを比較する(図11のステップS15-1)。
 該検出値P1が該設定ホールド荷重Pcよりも大きい場合(P1>Pc)、圧電素子制御部134は、圧電素子スタック123に負電圧を印加することにより、圧電素子スタック123を収縮する(ステップS15-2)。これにより、圧電素子スタック123が上昇変位するので、溶接電流Iを停止した後の被溶接物17に残留している熱を上電極15a及び下電極18aに逃がす(吸収させる)ホールド状態において、例えば、被溶接物17が熱膨張したときに、該熱膨張の作用で上電極15aが上方に押される力を緩和することができる。
 一方、該検出値P1が該設定ホールド荷重Pcよりも小さい場合(P1<Pc)、圧電素子制御部134は、圧電素子スタック123に正電圧を印加することにより、圧電素子スタック123を伸長する(ステップS15-3)。これにより、圧電素子スタック123が下降変位するので、前記ホールド状態において、例えば、被溶接物17が収縮したときに、該収縮の作用で被溶接物17のうち上電極15aとの接触面が下方に沈み込んだとしても、該上電極15aを該接触面の下方への沈み込みに追従させることができる。
 なお、該検出値P1が該設定ホールド荷重Pcである場合(P1=Pc)、圧電素子制御部134は、圧電素子スタック123に対して電圧の印加を行わない(ステップS15-4)
 その後、本溶接手順は、ステップS15-5~ステップS15-8の処理を行う。なお、ステップS15-5~ステップS15-8は、上述したステップS12-5~ステップS12-8の処理と同一の処理を行うため、その詳細な説明を省略する。
 そして、制御部56は、溶接電流Iの通電を停止してから経過したホールド時間T3が設定ホールド時間Tcに達したか否かを判定する(ステップS15-9)。
 該ホールド時間T3が該設定ホールド時間Tcに達していない場合(T3<Tc)、本溶接手順は、ステップS15-1に進み、該ステップS15-1以降の処理を行う。
 そして、該ホールド時間T3が該設定ホールド時間Tcに達した(T3=Tc)ときに、デジタル制御部48は、第1変位検出器16の検出値D1を変位検出値Deとして記憶部136に記憶させる(ステップS16)。
 次に、制御部56は、上述したステップS6で記憶部136に記憶した変位検出値Dbから変位検出値Deを減算することにより測定変位実測値Dfを算出する(ステップS17)。
 そして、記憶部136から電極熱膨張の測定データDgを呼び出した上で、制御部56は、ステップS17で算出された測定変位実測値Dfから該測定データDgを減算することにより溶接変位Dhを算出する。(ステップS18)。
 その後、圧電素子制御部134は、圧電素子スタック123に電圧を印加することによりその伸縮状態を溶接開始時の位置に戻すと共に、サーボモータ制御部132は、サーボモータ5を制御して第1移動機構108を溶接開始時の位置に戻す(ステップS19)。この段階で、本実施形態に係る抵抗溶接機100を用いた溶接手順は終了する。
 本実施形態によれば、圧電式荷重検出器31の検出値P2が設定溶接荷重Pbと一致しない場合に、圧電素子スタック123を伸縮しているので、被溶接物17の熱膨張・収縮の変化に上電極15aを好適に追従させることができる。また、上述したように、本実施形態では、圧電素子スタック123の応答速度を数百[μ/sec]~10[mm/sec]の範囲に設定しているので、被溶接物17の瞬間的な熱膨張・収縮挙動(短周期変動)に対応することができる。
 さらに、圧電素子スタック123の伸縮範囲(可動範囲)を超える場合には、サーボモータ制御部132がサーボモータ5を制御して第2移動機構110を昇降するので、広範囲な熱膨張・収縮挙動にも対応することができる。
 つまり、駆動用圧電素子32とサーボモータ5を利用することにより、広範囲なストロークでの高速制御が可能となり、リアルタイムでの加圧力フィードバックを行うことができる。
 本実施形態では、上電極15a及び下電極18aの熱膨張、及び圧電素子スタック123の自然放電の影響を除去した溶接変位Dhを算出しているので、該溶接変位Dhに基づいて被溶接物17の熱膨張・軟化溶融プロセスを正確にとらえることができる。そのため、該溶接変位Dhに基づいて抵抗溶接中の被溶接物の状態を上述したステップS12と平行してモニタリングして、溶接時間、溶接電流、圧電素子スタック、及びサーボモータを制御部にてフィードバック制御することにより、効率的に一定の溶接強度を得ることができる。
 本発明は、上述した実施形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることは当然可能である。

Claims (5)

  1.  被溶接物(17)を一対の溶接電極(15a、18a)で挟んで加圧しながら通電して溶接するに際し、その加圧荷重を荷重検出手段にて検出するとともに、前記加圧荷重が目標荷重になるよう制御部(56)が電動式加圧源(106)の動作を制御して前記溶接電極(15a)を移動させる電動加圧式抵抗溶接機において、前記電動式加圧源(106)は、電動モータ(5)及びボールネジ(11)を有する第1機構(108)と、駆動用圧電素子(32)を有する第2機構(110)とを備えていることを特徴とする電動加圧式抵抗溶接機。
  2.  前記荷重検出手段が圧電式荷重検出器(31)と非圧電式荷重検出器(21)とを備えていることを特徴とする請求項1記載の電動加圧式抵抗溶接機。
  3.  通電中の変位を監視しながら加圧力と溶接電流を制御するようになっていることを特徴とする請求項1又は請求項2に記載された電動加圧式抵抗溶接機。
  4.  前記制御部(56)は、前記荷重検出手段の検出値に基づく検出加圧荷重が設定溶接荷重に一致しているか否かを判定する第1判定部(138)を有し、
     前記検出加圧荷重が前記設定溶接荷重に一致していないと前記第1判定部(138)にて判定された場合に、前記駆動用圧電素子(32)を伸縮し、
     前記検出加圧荷重が前記設定溶接荷重に一致していると前記第1判定部(138)にて判定された場合に、前記駆動用圧電素子(32)を伸縮しないことを特徴とする請求項2に記載された電動加圧式抵抗溶接機。
  5.  通電中の前記被溶接物(17)の変位を検出する変位検出手段(38)をさらに備え、
     前記制御部(56)は、前記変位検出手段(38)の検出値に基づく該被溶接物(17)の変位量が前記駆動用圧電素子(32)の可動範囲内にあるか否かを判定する第2判定部(140)を有し、
     前記変位量が前記可動範囲よりも大きいと前記第2判定部(140)にて判定された場合に、前記電動モータ(5)を作動することを特徴とする請求項4記載の電動加圧式抵抗溶接機。
PCT/JP2010/055083 2009-03-24 2010-03-24 電動加圧式抵抗溶接機 WO2010110316A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011506085A JPWO2010110316A1 (ja) 2009-03-24 2010-03-24 電動加圧式抵抗溶接機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-072943 2009-03-24
JP2009072943 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010110316A1 true WO2010110316A1 (ja) 2010-09-30

Family

ID=42781009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055083 WO2010110316A1 (ja) 2009-03-24 2010-03-24 電動加圧式抵抗溶接機

Country Status (2)

Country Link
JP (1) JPWO2010110316A1 (ja)
WO (1) WO2010110316A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054666A (ja) * 2012-09-14 2014-03-27 Koyo Giken:Kk スポット溶接品質監視方法及び監視装置
JP2014217854A (ja) * 2013-05-07 2014-11-20 株式会社電元社製作所 抵抗溶接装置およびプロジェクション溶接方法
JP2015050140A (ja) * 2013-09-04 2015-03-16 日本特殊陶業株式会社 スパークプラグ用の主体金具の製造方法、スパークプラグの製造方法、及びスパークプラグ用の主体金具の製造装置
CN114769828A (zh) * 2022-04-13 2022-07-22 江苏诺森特电子科技有限公司 焊接方法、焊接装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108384A (ja) * 1993-10-12 1995-04-25 Nissan Motor Co Ltd 抵抗溶接装置
JP2001269776A (ja) * 2000-01-20 2001-10-02 Nissan Motor Co Ltd 溶接電極間移動量検出方法および装置
JP2002239743A (ja) * 2001-02-09 2002-08-28 Matsushita Electric Ind Co Ltd 抵抗溶接機の制御装置および品質監視装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07108384A (ja) * 1993-10-12 1995-04-25 Nissan Motor Co Ltd 抵抗溶接装置
JP2001269776A (ja) * 2000-01-20 2001-10-02 Nissan Motor Co Ltd 溶接電極間移動量検出方法および装置
JP2002239743A (ja) * 2001-02-09 2002-08-28 Matsushita Electric Ind Co Ltd 抵抗溶接機の制御装置および品質監視装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014054666A (ja) * 2012-09-14 2014-03-27 Koyo Giken:Kk スポット溶接品質監視方法及び監視装置
JP2014217854A (ja) * 2013-05-07 2014-11-20 株式会社電元社製作所 抵抗溶接装置およびプロジェクション溶接方法
JP2015050140A (ja) * 2013-09-04 2015-03-16 日本特殊陶業株式会社 スパークプラグ用の主体金具の製造方法、スパークプラグの製造方法、及びスパークプラグ用の主体金具の製造装置
CN114769828A (zh) * 2022-04-13 2022-07-22 江苏诺森特电子科技有限公司 焊接方法、焊接装置及存储介质

Also Published As

Publication number Publication date
JPWO2010110316A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
WO2013065175A1 (ja) 通電拡散接合装置及び方法
JP3362045B2 (ja) 高速応答溶接ヘッド
CN107790861B (zh) 点焊装置
WO2010110316A1 (ja) 電動加圧式抵抗溶接機
WO1993008951A1 (en) Motorized weld head
US20090289098A1 (en) Chip Mounting Apparatus and Chip Mounting Method
KR102539529B1 (ko) 컴플라이언스 탄성 부재 및 무게 보상 탄성 부재를 구비한 서보 탄성 액추에이터 시스템을 갖춘 공작물 처리 장치
JP4890633B2 (ja) 通電拡散接合装置及び方法
US5371931A (en) Production system for molded and pressed parts
US4645896A (en) Method and apparatus for flash welding
JP4535739B2 (ja) スポット溶接装置
JP5020541B2 (ja) 圧着装置及び圧着方法
JP2010129771A (ja) 半導体チップのボンディング装置及びボンディング方法
JPH11768A (ja) スポット溶接制御装置
JPH06312273A (ja) 溶接ガン加圧力制御方法
CN113543919A (zh) 通电扩散接合装置
JP7056451B2 (ja) 抵抗溶接装置
JPH11291060A (ja) 抵抗溶接方法およびその装置
JP2000126869A (ja) 抵抗溶接装置
JP5965146B2 (ja) スポット溶接装置の異常検出方法
JP2709689B2 (ja) 荷重試験機
WO2021210518A1 (ja) 加熱拡散接合装置
CN115106632A (zh) 熔接判定方法及点焊装置
JP6636567B2 (ja) チップ実装装置
JPH09153676A (ja) 接合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10756112

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506085

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10756112

Country of ref document: EP

Kind code of ref document: A1