WO2010109965A1 - Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device - Google Patents

Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device Download PDF

Info

Publication number
WO2010109965A1
WO2010109965A1 PCT/JP2010/051947 JP2010051947W WO2010109965A1 WO 2010109965 A1 WO2010109965 A1 WO 2010109965A1 JP 2010051947 W JP2010051947 W JP 2010051947W WO 2010109965 A1 WO2010109965 A1 WO 2010109965A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
surface portion
optical element
resin molded
molded product
Prior art date
Application number
PCT/JP2010/051947
Other languages
French (fr)
Japanese (ja)
Inventor
新一朗 原
利行 真島
安弘 松本
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2011505923A priority Critical patent/JP5664546B2/en
Priority to EP10755766A priority patent/EP2412507A4/en
Priority to CN201080013296.0A priority patent/CN102361738B/en
Priority to US13/257,856 priority patent/US20120008183A1/en
Publication of WO2010109965A1 publication Critical patent/WO2010109965A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/1703Introducing an auxiliary fluid into the mould
    • B29C45/1704Introducing an auxiliary fluid into the mould the fluid being introduced into the interior of the injected material which is still in a molten state, e.g. for producing hollow articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/7613Measuring, controlling or regulating the termination of flow of material into the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/7604Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76003Measured parameter
    • B29C2945/76167Presence, absence of objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76177Location of measurement
    • B29C2945/76254Mould
    • B29C2945/76257Mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76344Phase or stage of measurement
    • B29C2945/76397Switch-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76451Measurement means
    • B29C2945/76454Electrical, e.g. thermocouples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76451Measurement means
    • B29C2945/76474Ultrasonic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76451Measurement means
    • B29C2945/76488Magnetic, electro-magnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76494Controlled parameter
    • B29C2945/76585Dimensions, e.g. thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2945/00Indexing scheme relating to injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould
    • B29C2945/76Measuring, controlling or regulating
    • B29C2945/76929Controlling method
    • B29C2945/76939Using stored or historical data sets
    • B29C2945/76943Using stored or historical data sets compare with thresholds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2011/00Optical elements, e.g. lenses, prisms
    • B29L2011/0058Mirrors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a resin molded product for an optical element, a method for manufacturing a resin molded product for an optical element, a manufacturing apparatus for a resin molded product for an optical element, and a scanning optical device, and in particular, in a resin filled in a cavity of a mold.
  • the present invention relates to a resin molded product for an optical element in which a hollow portion is formed by injecting a fluid into the liquid, a method for manufacturing a resin molded product for an optical element, a manufacturing apparatus for a resin molded product for an optical element, and a scanning optical device.
  • optical elements are generally known to be made of glass, metal, or ceramic. In recent years, those made of resin are used from the viewpoint of ease of molding, freedom of design, or cost reduction. It has come to be used.
  • optical elements can be used in a wide variety of applications.
  • a device that records and reproduces the light emitted from the light source by condensing the light emitted from the light source to form an image on a recording surface for example, optical information recording
  • a reproduction device, an optical scanning device, and the like are well known.
  • such an apparatus has been required to further increase the recording density or the like due to the recent demand for higher image quality and higher definition.
  • high control and accuracy of each component to be used are required, and even when the optical element is one of the components, the light emitted from the light source is transmitted and reflected. Therefore, higher surface accuracy of the optical surface is required for condensing, deflecting, and deforming.
  • the present inventor considered the effect of hollow injection molding and considered application to optical components.
  • the tensile stress at the time of resin shrinkage that causes warping and sink marks of the molded product is released to the hollow part, and the molded product is expressed in the form of sink marks on the surface of the hollow part. This is because warpage and sink marks generated on the surface of the film can be alleviated.
  • molten resin is injected and filled into a mold, and then a compressed gas as a fluid is injected from an injection nozzle or a gas injection nozzle provided in a cavity of the mold.
  • a compressed gas as a fluid is injected from an injection nozzle or a gas injection nozzle provided in a cavity of the mold.
  • the flow rate at the tip of the molten resin changes, and in some cases stops, the appearance of hesitation marks etc. on the surface of the tip of the molten resin Abnormality occurs and surface accuracy is significantly reduced.
  • Patent Document 1 the resin is filled from the injection nozzle, and the compressed gas is injected from a different gate in a substantially filled state. At that time, excess resin flows out from the resin outflow path to the outflow resin receiving portion.
  • a detection device detects that the gas has reached a predetermined position before reaching the resin outflow passage, and manufactures a molded product that solidifies the resin in a pressurized state by closing the resin outflow passage with an opening / closing device. Thereafter, the resin outflow path and the outflow resin receiving portion are cut in the mold by the opening / closing member. It is shown that appearance abnormalities such as hesitation marks do not occur.
  • a resin outflow passage and an outflow resin receiving portion which are unnecessary parts as a resin molded product, are provided, and a portion where an abnormality in appearance such as a hesitation mark is generated is compressed after the resin comes to the outflow passage. It is constructed by forming an abnormal appearance part in an unnecessary molding part outside the cut part and then cutting at the cut part.
  • an unnecessary cut after molding is a scanning optical element having an optical surface that requires high surface accuracy at the periphery of the cut, particularly for performing high-density recording and reproduction using short-wavelength light. It was found that application to optical elements is difficult. In addition, in the case of optical elements, there are technical obstacles that must be solved in conjunction with the generation of hesitation marks.
  • an optical surface formed on a part of a substrate needs to surely eliminate the problems caused by the curing shrinkage of the resin as described above. It needs to be controlled to some extent below. This means that since the hollow region is formed by injecting fluid into the cavity during molding, it is necessary to anticipate in advance the region where the filled resin is pushed by the fluid.
  • optical parts unlike other molded parts, optical parts also have limitations because they affect the surface accuracy depending on the resin filling position and fluid injection position. Therefore, it is considered that the resin filling position and injection position are preferably injected from one end of the cavity outside the region where the optical surface is formed.
  • An object of the present invention is to provide a resin molded product, a manufacturing method thereof, a manufacturing apparatus, and a scanning optical apparatus.
  • the first embodiment of the present invention has a first surface portion on a part of the surface of a base material molded from resin, and injects fluid into the base material from the outside.
  • a resin molded article for an optical element having a formed hollow portion, wherein the distance between the first end portion of the substrate and the end portion of the first surface portion on the side close to the first end portion is A, It is an end different from the first end of the base material, the second end on the opposite side through the first surface, and the first surface on the side close to the second end
  • the resin molded product for an optical element satisfies the following relationship.
  • the second aspect of the present invention is the resin molded product for an optical element according to the first aspect, wherein the surface roughness Ra of the entire first surface portion is Ra ⁇ 5 (nm).
  • a third aspect of the present invention is a resin molded product for an optical element according to the first aspect, wherein a mirror surface portion is formed on the first surface portion.
  • a fourth aspect of the present invention is a light source, a deflecting unit for deflecting the emitted light emitted from the light source, a condensing unit for allowing the light emitted from the light source to be incident and condensed on the deflecting unit,
  • a scanning optical device having an imaging optical system for imaging light deflected by the deflecting means on the surface to be scanned, wherein at least one of the optical elements constituting the imaging optical system is made of resin.
  • An optical element having one surface part on a part of the surface of a long shaped base material and having a hollow part formed by injecting a fluid from the outside into the base material.
  • a distance between the first end portion of the first surface portion and the end portion of the first surface portion on the side close to the first end portion is an end portion different from the first end portion of the base material, and A second end portion on the opposite side via the surface portion and an end portion of the first surface portion on the side close to the second end portion
  • a fifth aspect of the present invention is the scanning optical apparatus according to the fourth aspect, characterized in that a surface roughness Ra of the entire first surface portion is Ra ⁇ 5 (nm). .
  • a sixth aspect of the present invention is the scanning optical device according to the fourth or fifth aspect, wherein a mirror surface portion that reflects incident light is formed on the first surface portion. To do.
  • a seventh aspect of the present invention is the scanning optical apparatus according to the sixth aspect, characterized in that the surface roughness Ra of the mirror surface portion is Ra ⁇ 5 (nm).
  • a hollow portion having a first surface portion on a part of a surface of a base material formed of a resin and injecting a fluid from the outside into the base material.
  • a distance between the first end of the base and the end of the first surface near the first end is A, and the first of the base An end portion different from the first end portion, the second end portion on the opposite side through the first surface portion, and the end portion of the first surface portion on the side close to the second end portion
  • the distance of B is B
  • a first mold having a transfer surface for transferring the first surface portion, the first mold being provided opposite to the first mold.
  • a second mold for forming a cavity by clamping the mold with the mold, an injection process for injecting molten resin into the cavity from one side of the end of the cavity, and filling by the injection process A detecting step for detecting that the tip of the resin is in a predetermined position, and controlling filling of the filled resin based on detection of the detecting step, and injecting fluid into the cavity And a fluid injection step of forming a hollow portion in the manufacturing method of a resin molded product for an optical element.
  • a ninth aspect of the present invention is a method for producing a resin molded product for an optical element according to the eighth aspect, wherein the surface roughness Ra of the first surface portion is Ra ⁇ 5.
  • the 10th form of this invention is the manufacturing method of the resin molded product for optical elements which concerns on the said 8th or 9th form, Comprising: The 1st surface part of the resin molded product obtained after the said fluid injection
  • an eleventh aspect of the present invention is a method for manufacturing a resin molded product for an optical element according to any one of the eighth to tenth aspects, wherein the fluid injection step is performed for a predetermined time after stopping the resin filling. The fluid injection is started after the passage.
  • the twelfth aspect of the present invention is a hollow part formed by injecting a fluid from the outside into the base material having a first surface part on a part of the surface of the base material formed of resin.
  • a distance between the first end of the base and the end of the first surface near the first end is A, and the first of the base An end portion different from the first end portion, the second end portion on the opposite side through the first surface portion, and the end portion of the first surface portion on the side close to the second end portion
  • the distance of B is B
  • An apparatus for manufacturing a resin molded product for an optical element satisfying the first mold provided with a first mold having a transfer surface for transferring the first surface portion, facing the first mold, and the first mold A second mold for forming a cavity by clamping between the mold, a filling means for injecting a molten resin material into the cavity from one side of the end of the cavity, and filling the cavity with the filling means Detecting means
  • an abnormal appearance forming portion such as a hesitation mark is effectively formed outside the optical surface without being removed by cutting, and the optical surface itself is affected by curing shrinkage such as sink marks. Therefore, it is possible to provide a resin molded product for an optical element that maintains high surface accuracy, and a manufacturing method, a manufacturing apparatus, and a scanning optical apparatus for manufacturing the same.
  • FIG. 1 is a diagram showing an example of a laser beam scanning optical apparatus in which a resin molded product for an optical element is incorporated.
  • a laser beam scanning optical device includes a light source unit 1, a cylindrical mirror 2, a polygon mirror 3 as a deflecting means, a toric lens 4, planar mirrors 5 and 6, and an f ⁇ mirror 10 having f ⁇ characteristics. It consists of
  • the laser beam emitted from the light source unit 1 is converged into substantially parallel light by a collimator lens (not shown), and then reflected by a cylindrical mirror 2, and the beam shape is substantially linear with the long direction parallel to the main scanning direction. And the polygon mirror 3 is reached.
  • the polygon mirror 3 has four deflection surfaces on its outer peripheral surface and is driven to rotate at a constant speed in the counterclockwise direction.
  • the laser beam is deflected at a constant angular velocity in the main scanning direction by the rotation of the polygon mirror 3, and when guided to the toric lens 4, the toric lens 4 has different powers in the main scanning direction and the sub scanning direction.
  • the deflection surface of the polygon mirror 3 and the surface to be scanned are kept in a conjugate relationship, and the surface tilt error of each deflection surface of the polygon mirror 3 is obtained by combining with the cylindrical mirror 2. Correct.
  • the polygon mirror was demonstrated as an example here as a deflection
  • the laser beam that has passed through the toric lens 4 is reflected by the plane mirrors 5 and 6, further reflected by the f ⁇ mirror 10, and then condensed on the photosensitive drum 7.
  • the f ⁇ mirror 10 converts the speed of the laser beam deflected at a constant angular velocity by the polygon mirror 3 so that the linear velocity is constant on the scanning surface (on the photosensitive drum 7).
  • the photosensitive drum 7 is rotationally driven counterclockwise at a constant speed, and the photosensitive drum 7 is driven based on the main scanning of the laser beam by the polygon mirror 3, the rotation of the photosensitive drum 7 (sub scanning), and the modulated laser beam output. An image is formed on top.
  • the laser beam scanning optical apparatus is composed of various optical elements.
  • the base materials such as the flat mirrors 5 and 6 and the f ⁇ mirror 10 are formed in a long plate shape, provided with a mirror surface that reflects a laser beam received within a predetermined range in the longitudinal direction, and is photosensitive. Since an image is formed on the body drum 7, the accuracy of the surface of the optical element provided with a mirror surface directly affects the image quality.
  • FIG. 2 is a cross-sectional view showing the resin molded product for optical elements sheared in the longitudinal direction
  • FIG. 3 is a plan view of the resin molded product for optical elements.
  • Optical elements are strongly required to have specularity, dimensional accuracy, lightness, safety, durability, and economy. It is an optical element suitable for many uses such as electric and electronic parts, automobile parts, medical use, security use, building materials, and household goods.
  • the plane mirrors 5 and 6 and the f ⁇ mirror 10 incorporated in the laser printer can be cited.
  • Each substrate of the plane mirrors 5 and 6 and the f ⁇ mirror 10 has a hollow portion, and a hesitation mark is provided outside the surface with high surface accuracy.
  • the f ⁇ mirror 10 will be described as a representative, and description of the plane mirrors 5 and 6 and other optical elements will be omitted.
  • the f ⁇ mirror 10 is formed in a long plate shape, has a predetermined range H1 in the longitudinal direction, and is provided with a first surface portion 11 provided with a mirror surface portion 13 that reflects a light beam received within the predetermined range H1. And a pair of second surface portions 12 arranged so as to sandwich the first surface portion 11 from the longitudinal direction. Note that the horizontal direction toward the plane of FIG. 2 is the long direction, the vertical direction is the thickness direction, and the vertical direction in FIG. 3 is the short direction.
  • the predetermined range H1 is set to be equal to or less than the area of the mirror surface portion 13, and the area of the mirror surface portion 13 is set to be equal to or less than the area of the first surface portion 11.
  • variety of a elongate direction are shown in FIG.
  • the f ⁇ mirror 10 has a long plate-like base material, a mirror surface portion 13 located on one surface of the base material, and a hollow portion 14 located inside the base material on the mirror back surface of the mirror surface portion 13. And the length of the longitudinal direction of the hollow part 14 is longer than the length of the longitudinal direction of the mirror surface part 13, Furthermore, both ends of the hollow part 14 are formed outside the both ends of the longitudinal direction of the mirror surface part 13. Since the tensile stress generated by the shrinkage accompanying the curing of the resin is released to the hollow portion 14, warpage in the longitudinal direction due to the resin shrinkage is alleviated over the entire mirror surface portion 13 and the surface accuracy is improved.
  • the mold is held by the molded product due to the resin shrinkage, and the mirror surface portion 13 is distorted due to the mold release resistance. It is possible to suppress the occurrence of distortion of the mirror surface portion 13 due to the mold release resistance.
  • the shape of the mirror surface portion 13 is changed by correcting the mirror surface portion 13, for example, correcting the thickness of the mirror surface portion 13 partially or entirely in the thickness direction. There is a case. Even when the plate surface of the mirror surface portion 13 is buried in the base material as a result of the correction, the amount of correction of the mirror surface portion 13 is anticipated and the length by which the mirror surface portion 13 protrudes from the base material is adjusted in advance. After that, it is possible to adjust so that the plate surface of the mirror surface portion 13 protrudes on the plate surface of the substrate, and as a result, it is possible to avoid holding the mold by the molded product.
  • the length in the long direction of the mirror surface portion 13 is L1
  • the length in the short direction is W1
  • the length in the long direction of the hollow portion 14 is L2
  • the length in the short direction is W2.
  • the length in the thickness direction is D2
  • the length in the short direction of the substrate is W4
  • the distance from the end of the mirror surface portion 13 to the end of the substrate is L5 with respect to one side in the long direction, one side in the long direction
  • the distance L3 from the end of the mirror surface portion 13 to the end of the hollow portion 14 is 0 ⁇ L3 ⁇ L5
  • the distance W3 from the end of the mirror surface portion 13 to the end of the hollow portion 14 is 0 ⁇ W3 with respect to one side in the short direction. It is more preferable to configure so as to satisfy ⁇ W2 / 2.
  • the optical element shape is such that A> 0 and B> 0. is necessary.
  • a ⁇ B (A ⁇ B when resin is filled from the B side and fluid is injected) It is necessary to reliably drive the appearance abnormality formation site such as hesitation out of the first surface portion 11 and to form the hollow portion 14 below the region corresponding to the first surface portion 11.
  • a and B are 3.5 ⁇ A ⁇ 5.0 and 3.5 ⁇ B ⁇ 5.0, and it is more preferable to satisfy the above-described conditions.
  • D1 is 0.1 (mm) ⁇ D1 ⁇ 3 (mm). Since the side area of the portion 13 increases, the mold release resistance increases, and the surrounding mirror surface accuracy decreases, it is preferable that 0.1 (mm) ⁇ D1 ⁇ 0.3 (mm) is satisfied.
  • the relationship between the length W1 of the mirror surface portion 13 and the length W2 of the hollow portion 14 in the short direction is preferably 0.01 ⁇ W2 / W1 ⁇ 1.
  • the hollow portion 14 is arranged in the center in both the short direction and the thickness direction, and is described in a straight line shape parallel to the mirror surface portion 13, but this is merely a schematic example.
  • the shape and positional relationship of the hollow portion 14 are not limited.
  • a hesitation mark HM is formed on the second surface portion 12.
  • the hesitation mark HM may be formed anywhere within the width of the second surface portion 12 in the longitudinal direction, but is preferably formed as far away as possible from the first surface portion 11.
  • the f ⁇ mirror 10 is shown as a resin molded product for an optical element formed in a long plate shape. However, if the resin molded product for an optical element formed in a plate shape is used, it is long. Not limited to scales. It may be circular, elliptical, or substantially square. In this case, the hollow portion 14 may be formed along the first surface portion 11 and wider than the first surface portion in the aligned direction. (Injection molding machine) Next, an injection molding machine for manufacturing the base material of the f ⁇ mirror 10 will be described with reference to FIGS. 4A is a cross-sectional view of a mold when cut along a vertical plane including a bisector in a short direction, and FIG.
  • FIG. 4B is a cross section along a vertical plane including a bisector in a long direction.
  • FIG. 5 is a functional block diagram of an injection molding machine provided with the detecting means 33, and
  • FIG. 6 is a time chart showing the relationship between the detected temperature and the injection of compressed gas.
  • the injection molding machine includes a mold 42 having a cavity 31, filling means 32 for filling the cavity 31 with resin, detection means 33 for detecting the tip of the resin, and injecting compressed gas into the filled resin.
  • Gas injection means 34 for controlling, filling of resin, stopping of filling of resin, and control means 35 for controlling start of injection of compressed gas and stop of injection of compressed gas.
  • the cavity 31 has an inner surface for forming the first surface portion 11 and the second surface portion 12 constituting the outer surface of the optical element resin molded product.
  • FIG. 4A is a cross-sectional view of a mold cut along a vertical plane including a bisector in the short direction, and FIG.
  • the inner surface of the cavity 31 has a first region 311 for forming the first surface portion 11 and a second region 312 for forming the second surface portion 12.
  • the distance between the end of the cavity on the resin filling side and the fluid injection side and the end of the first surface portion 11 is A, and the distance between the other end and the end of the first surface portion 11 is B. Show.
  • the mirror surface forming portion 315 is cut to a surface roughness Ra of 5 nm or less in order to achieve surface accuracy used for short wavelengths of, for example, a wavelength of 500 nm or less.
  • the surface roughness Ra is more preferably 2 to 3 nm or less.
  • a gate 321, a runner 322, and a spool 323 are continuously formed.
  • a heater (not shown) is provided along the cavity 31, and the runner 322 and the spool 323 (the passage of the mold). By providing the heater, the molten resin in contact with the cavity 31 and the mold passage is cooled by heat conduction and prevented from losing fluidity and solidifying. Instead of the heater, a temperature adjusting water channel may be provided in the mold.
  • the inner surface of the cavity 31 is shown in FIG.
  • FIG. 5 shows the outer shape of the f ⁇ mirror (resin molded product) 10 filled in the cavity 31, and the gate 321, the runner 322, and the spool 323 are similarly passed through these parts.
  • the outer shape of the resin is shown in FIG. (Filling means)
  • the filling means 32 is preferably arranged in the mold so as to be filled from the short side of the f ⁇ mirror 10 toward the long direction.
  • FIG. 5 shows the short side of the f ⁇ mirror 10 as the right end side of the cavity 31.
  • a nozzle 324 of the filling means 32 communicates with the spool 323.
  • the filling means 32 has a screw (not shown) for extruding the molten resin from the nozzle 324.
  • the screw passes the molten resin from the nozzle 324 through the spool 323, the runner 322, and the gate 321 and fills the cavity 31.
  • the distance from the screw movement start position or the elapsed time from the screw movement start corresponds to the amount of extruded molten resin (injection amount).
  • the detection means 33 is a temperature sensor that detects the temperature of the inner surface of the cavity 31.
  • One or a plurality of detection means 33 includes the second region 312 on the inner surface of the cavity 31 for forming the second surface portion 12, and the cavity 31 has the same range as the second region 312 in the longitudinal direction. Arranged on the inner surface.
  • the inner surface of the cavity 31 having the same range as the range of the second region 312 in the longitudinal direction is the inner surface of the cavity 31 that circulates in the same range as the range of the second region 312 in the longitudinal direction.
  • the second region 312 is a ceiling surface
  • the bottom surface 313 and the side wall surfaces 314 are provided.
  • FIG. 5 shows the detection means 33 disposed on the bottom surface 313 facing the second region 312 (ceiling surface) opposite to the gate-side second region 312 in the longitudinal direction.
  • the detection means 33 is not limited to a temperature sensor as long as it is a sensor that can detect the tip of the resin at the time of injection in the cavity 31.
  • an ultrasonic sensor or a magnetic sensor may be used. .
  • the detection means 33 can detect the tip of the resin that has reached the second region 312 of the cavity 31.
  • the control means 35 receives a detection temperature t1 which is a detection signal from the detection means 33 via the interface 38.
  • the control means 35 controls the filling means 32 based on the detected temperature t1 from the detection means 33, stops the resin filling, controls the gas injection means 34, and starts the injection of the compressed gas.
  • the detection means 33 By providing the detection means 33 on the inner surface of the cavity 31 that includes the second region 312 and has the same range as the range of the second region 312 in the longitudinal direction, the detection means 33 is provided on the surface of the first surface portion 11. It does not cause a decrease in accuracy.
  • the detection means 33 directly detects the tip of the resin that has reached the second region 312, receives the detection signal, stops the filling of the resin, and starts the injection of the compressed gas. After the portion reaches the second region 312, the filling of the resin is stopped, and there is little time error from the start of the injection of the compressed gas, and the hesitation mark HM is reliably formed on the second surface portion 12. It becomes possible to prevent the surface accuracy of the surface portion 11 from being lowered.
  • the gas injection means 34 has a tank (not shown) in which compressed gas is stored, an electromagnetic valve 341, and an injection port 342 that communicates with the cavity 31.
  • the control means 35 controls opening and closing of the electromagnetic valve 341.
  • the compressed gas to be used may be any gas that does not react or mix with the resin.
  • an inert gas is mentioned.
  • nitrogen is preferable because it is nonflammable and toxic, and can be obtained by an inexpensive method.
  • the injection port portion 342 is a region corresponding to the second region 312 on the inner surface of the cavity 31 and is provided on the bottom surface 313. That is, it is provided on the bottom surface in the space between the first surface portion end and the position corresponding to the optical element end.
  • the storage means 36 stores a predetermined reference temperature t0 to be compared with the detected temperature t1 from the detection means 33.
  • the detected temperature t1 and the reference temperature t0 are shown in FIG. (Judgment means)
  • the determination unit 37 compares the detected temperature t1 with the reference temperature t0, and outputs a determination result to the control unit 35 when the detected temperature t1 exceeds the reference temperature t0.
  • the detection temperature t1 detected by the detection means 33 is set as a reference temperature t0.
  • the control unit 35 receives the detection temperature t1 from the detection unit 33, causes the determination unit 37 to compare the detection temperature and the reference temperature, and when the determination unit 37 determines that the detection temperature t1 exceeds the reference temperature t0,
  • the means 32 is controlled to stop the filling of the resin into the cavity 31, and the gas injection means 34 is controlled to start the injection of the compressed gas into the filled resin. Further, the control means 35 stops the injection of the compressed gas after a predetermined time has elapsed since the start of the injection of the compressed gas.
  • FIG. 6 shows an operation for stopping the filling of the resin and an operation for starting the injection of the compressed gas when the detected temperature t1 exceeds the reference temperature t0.
  • the molten resin part forming an abnormal appearance forming part such as hesitation is the second surface part opposite to the injection port part 342 side through the first surface part 11. 12
  • the resin is pushed into a space formed with a length equal to or longer than that of the injection port 342 side, so that the formed hollow portion 14 has a margin below the region corresponding to the first surface portion 11. It is formed widely throughout.
  • the formed hollow portion 14 can release the influence of tensile stress due to the thermal contraction of the resin, and the warpage of the first surface portion 11 can be reduced.
  • the hollow portion 14 is formed widely up to the region corresponding to the second surface portion 12 because the warpage of the first surface portion 11 can be more reliably reduced.
  • the injection of the compressed gas is almost simultaneously with the stop or within 1 to 5 seconds after the resin filling.
  • control means 35 When the control means 35 receives an operation by the operation means 41 via the interface 38, the control means 35 adjusts a predetermined time and causes the storage means 36 to store the predetermined time after the adjustment. By adjusting the predetermined time, the position of the hesitation mark HM can be adjusted.
  • the control unit 35 receives the instruction from the operation unit 41 and stores the changed reference temperature t0 in the storage unit 36.
  • the reference temperature t0 may be changed and adjusted.
  • the reference temperature t0 is determined empirically by repeating the manufacturing experiment of the base material of the f ⁇ mirror 10 and measuring and evaluating the manufactured f ⁇ mirror 10.
  • the reference temperature t0 is relatively determined based on the material of the base material of the f ⁇ mirror 10, the temperature of the heating cylinder, and the resin filling amount per unit time. (Materials for resin molded products for optical elements) Next, materials for the f ⁇ mirror 10 will be described.
  • Examples of the resin material constituting the base material of the f ⁇ mirror 10 include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, cycloolefin polymer, or a resin composed of two or more of these. In the f ⁇ mirror 10, it is preferable to use a polycarbonate or a cycloolefin polymer. (Mirror surface material) Next, the material etc. which comprise the mirror surface part 13 of the f (theta) mirror 10 are demonstrated. Examples of the material constituting the mirror surface portion 13 include silicon monoxide, silicon dioxide, and alumina.
  • FIG. 7 is a flowchart showing manufacturing steps of the f ⁇ mirror 10.
  • the cylinder (not shown) of the filling means 32 is set to have a predetermined melting temperature. Further, the control means 35 closes the electromagnetic valve 341. The control means 35 controls the filling means 32, rotates the screw, injects the molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S101). .
  • the cavity 31 is filled with molten resin.
  • the detection means 33 detects the tip of the molten resin that has reached the second surface portion 12.
  • the control means 35 controls the filling means 32 to stop the filling of the resin into the cavity 31.
  • the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31.
  • the injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S104). Thereby, the hollow part extended in the elongate direction can be formed in resin. Also, when the tip of the molten resin reaches the second surface portion 12, filling of the resin is stopped and compressed gas is injected into the resin, so that a hesitation mark is formed on the second surface portion 12, Since the first surface portion 11 is not formed, the surface accuracy of the first surface portion 11 is not lowered.
  • the molten resin is solidified and cooled by heat conduction with the mold.
  • the hollow portion 14 is held at a predetermined pressure until it is solidified and cooled (step S105).
  • the first surface portion 11 is pressed against the first region 311, so that the surface transfer property of the first surface portion 11 can be improved.
  • the mirror surface portion 13 is formed on the first surface portion 11 during the compressed gas injection step (step S104) to the pressure holding step (step S105).
  • the compressed gas in the hollow portion 14 is removed, the mold is opened, and the f ⁇ mirror (resin molded product) 10 is taken out (step S106).
  • step S102 the control unit 35 receives the detection temperature t1 that is a detection signal from the detection unit 33, and when the determination unit 37 determines that the detection temperature t1 exceeds the reference temperature, the filling of the resin is performed. Stopped and started the injection of compressed gas.
  • the number of detection means 33 provided on the bottom surface 313 and the like (including the side wall surface 314) facing the second region 312 is one.
  • a plurality of detection means 33 may be provided on the bottom surface 313 facing the second region 312 or the like.
  • the resin filling is stopped and the compressed gas injection is started as follows.
  • the control means 35 sets in advance whether the control means 35 controls the filling means 32 and the gas injection means 34 when the detection temperature t1 detected by the detection means 33 exceeds the reference temperature t0. Is stored in the storage means 36.
  • the control means 35 controls the filling means 32 to stop the resin filling, and controls the gas injection means 34. Then, the injection start of the compressed gas may be controlled.
  • the detection unit 33 is provided on the inner surface of the cavity 31 including the second region 312 and having the same range as the second region 312 in the longitudinal direction, and the temperature detected by the detection unit 33 is the reference temperature.
  • the control means 35 controls the filling means 32 and the gas injection means 34 when the value exceeds the above.
  • FIG. 8 is a functional block diagram of an injection molding machine provided with the detection means 33 and the timer 39
  • FIG. 9 is a time chart showing the relationship between the detected temperature and the start of injection of compressed gas.
  • the control unit 35 When the determination unit 37 determines that the detected temperature t1 from the detection unit 33 has exceeded the reference temperature t0, the control unit 35 causes the timer 39 to measure the elapsed time from the time when the detected temperature t1 has exceeded the reference temperature t0. When the determination unit 37 determines that the time has been exceeded, the control unit 35 controls the filling unit 32 to stop the filling of the resin, controls the gas injection unit 34 to start the injection of the compressed gas, and presses the compressed gas. The injection of the compressed gas is stopped after a lapse of a predetermined time from the start of the injection.
  • the operation to be started is shown in FIG.
  • One or a plurality of detection means 33 are arranged on the inner surface of the cavity 31 having the same range as the range of the first region 311 in the longitudinal direction except for the first region 311 for forming the first surface portion 11. Yes.
  • FIG. 8 shows the detection means 33 arranged on the bottom surface 313 facing the first region 311 (ceiling surface).
  • the inner surface of the cavity 31 having the same range as the first region 311 in the longitudinal direction is the bottom surface 313 and both side wall surfaces 314 when the first region 311 is a ceiling surface. Since the detection means 33 is disposed on the bottom surface 313, it does not cause a decrease in the surface accuracy of the first surface portion 11.
  • the control means 35 stops filling the resin and starts injecting compressed gas. As a result, the hesitation mark HM can be formed on the second surface portion 12.
  • the second region 312 is included and has the same range as the range of the second region 312 in the longitudinal direction.
  • the detection means 33 cannot be installed on the inner surface of the cavity 31. In this case, it can be provided on the bottom surface 313 or the side wall surface 314 which is the inner surface of the cavity 31 having the same range as the first region 311 in the longitudinal direction. Thereby, the freedom degree of installation of the detection means 33 can be improved.
  • the above predetermined time is, for example, from the determination that the determination unit 37 determines that the detection temperature t1 detected by the detection unit 33 has exceeded the reference temperature t0, until the leading end of the resin reaches the second region. Is measured for a predetermined number of times, and the movement of the tip of the resin (spreading in the cavity 31 and movement in the longitudinal direction) is calculated by approximation from the measured value, and obtained based on the calculated result. It's time.
  • the control unit 35 stores the determined predetermined time in the storage unit 36. In response to the operation of the operation unit 41, the control unit 35 adjusts a predetermined time and stores it in the storage unit 36. Thereby, it is possible to reduce an error that occurs between the determined predetermined time and the actual time until the front end of the resin reaches the second region 312.
  • a plurality of detection means 33 may be provided, and the moving speed in the longitudinal direction of the front end portion of the resin may be obtained based on the detected temperatures t1 from the plurality of detection means 33.
  • a predetermined time is corrected based on the obtained moving speed, and the corrected predetermined time is stored in the storage means 36.
  • the judging means 37 includes an elapsed time after the judging means 37 judges that the detected temperature t1 has exceeded the reference temperature t0 from the detecting means 33, and the corrected predetermined time (the resin tip is in the second region). Compared to the estimated time to reach
  • the control unit 35 controls the filling unit 32 and the gas injection unit 34 when the determination unit 37 determines that the elapsed time exceeds the corrected predetermined time.
  • FIG. 10 is a flowchart showing the manufacturing process of the base material of the f ⁇ mirror 10.
  • the control means 35 controls the filling means 32, rotates the screw, injects molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S201). .
  • the cavity 31 is filled with molten resin.
  • the detection means 33 detects the tip of the molten resin that has reached the first surface portion 11.
  • the control unit 35 causes the timer 39 to measure the elapsed time since the determination (step S203).
  • the control means 35 controls the filling means 32 to stop filling the cavity 31 with resin. (Step S205).
  • the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31. At this time, the front end portion of the molten resin reaches the second surface portion 12.
  • the injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S206). Thereby, the hollow part 14 extended in the elongate direction can be formed in resin. Further, when it is determined that the measured elapsed time has exceeded a predetermined time (when the front end of the molten resin reaches the second surface portion 12), the control means 35 stops filling the resin, Since the compressed gas is injected therein, a hesitation mark is formed on the second surface portion 12.
  • the molten resin is solidified and cooled by heat conduction with the mold.
  • the hollow portion 14 is held at a predetermined pressure until it is solidified and cooled (step S207).
  • the first surface portion 11 is pressed against the first region 311, so that the surface transfer property of the first surface portion 11 can be improved.
  • the compressed gas in the hollow portion 14 is removed, the mold is opened, and the f ⁇ mirror (resin molded product) 10 is taken out (step S208).
  • the injection molding machine includes the detection unit 33 and the timer 39, and when the determination unit 37 determines that the detected temperature t1 from the detection unit 33 exceeds the reference temperature t0, the determination is performed.
  • the elapsed time from the time is measured by the timer 39, and the control means 35 controls the filling means 32 and the gas injection means 34 based on the measurement result.
  • FIG. 11 is a functional block diagram of an injection molding machine provided with a timer 39.
  • the control means 35 controls the filling means 32 to stop the resin filling, and controls the gas injection means 34 to start the injection of the compressed gas.
  • control means 35 controls the filling means 32 and the gas injection means 34 when the elapsed time from the start of resin filling exceeds a predetermined time. .
  • the hesitation mark HM can be formed on the second surface portion 12.
  • Resin filling may be started when a screw (not shown) of the filling means 32 is started, or when the control means 35 instructs the filling means 32 to start filling.
  • the timer 39 measures the elapsed time.
  • the determination unit 37 determines whether the measured elapsed time has exceeded a predetermined time. In response to the determination by the determination means 37 that the elapsed time has exceeded a predetermined time, the control means 35 controls the filling means 32 and the gas injection means 34. Since the detection means 33 such as a temperature sensor is not required, the cost can be reduced.
  • FIG. 12 is a flowchart showing a manufacturing process of the base material of the f ⁇ mirror 10.
  • the control means 35 controls the filling means 32, rotates the screw, injects the molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S301). .
  • Timer 39 measures the elapsed time from the start of resin filling (step S302). Further, the cavity 31 is filled with molten resin.
  • the determination unit 37 determines whether the measured elapsed time has exceeded a predetermined time. When the determination means 37 determines that the measured elapsed time has exceeded a predetermined time (step S303; Y), the control means 35 controls the filling means 32 to stop filling the cavity 31 with resin. (Step S304). Next, the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31. At this time, the front end portion of the molten resin reaches the second surface portion 12.
  • the injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S305). Thereby, the hollow part 14 extended in the elongate direction can be formed in resin. Further, when the determination unit 37 determines that the measured elapsed time has exceeded a predetermined time (when the tip of the molten resin reaches the second surface portion 12), the control unit 35 fills the resin. Since the compressed gas is injected into the resin, hesitation marks are formed on the second surface portion 12.
  • FIG. 13 is a plan view of a resin molded product for optical elements, and FIG.
  • the resin molded product for the optical element according to the first embodiment has been described by using the f ⁇ mirror 10 as a representative.
  • the resin molded product for the optical element according to the second embodiment by using the f ⁇ lens 20 as a representative. To do.
  • the f ⁇ lens 20 is provided in the laser beam scanning optical device in the same manner as the f ⁇ mirror 10.
  • the f ⁇ mirror 10 has a mirror surface portion 13 that reflects a laser beam
  • the f ⁇ lens 20 has an optical surface portion 23 that transmits a laser beam.
  • the f ⁇ lens 20 having the optical surface portion 23 also has the same function as the f ⁇ mirror 10, and the laser beam deflected at a constant angular velocity by the polygon mirror 3 is made constant on the scanning surface (on the photosensitive drum 7). Change the speed so that This laser beam is a gallium nitride based semiconductor laser and has an oscillation wavelength of 408 nm.
  • the f ⁇ lens 20 is formed in a long plate shape, has a predetermined range H2 in the longitudinal direction, and is provided with an optical surface portion 23 that transmits a light beam received within the predetermined range H2. And a second surface portion 22 disposed around the first surface portion 21 and a hollow portion 24 provided therein.
  • the first surface portion 21 is provided on each of the upper surface side and the lower surface side in the paper surface of FIG.
  • the first surface portion 21 on the upper surface side is a convex surface having a predetermined curved surface shape in the short direction.
  • the first surface portion 21 on the lower surface side is a concave surface having a predetermined curved surface shape in the short direction.
  • the predetermined range is set to be equal to or less than the area of the optical surface portion 23, and the area of the optical surface portion 23 is set to be equal to or less than the area of the first surface portion 21.
  • variety of the elongate direction are shown in FIG.
  • R1 represents the range of the first surface portion 21 in the short direction
  • R2 represents the range of the second surface portion 22 in the short direction
  • a long plate-like base material, an optical surface portion 23 positioned on the upper surface side and the lower surface side of the base material, and the optical surface portion 23 are positioned in the base material along the optical surface portion 23 in the longitudinal direction.
  • the length of the hollow portion 24 in the longitudinal direction is longer than the length of the optical surface portion 23 in the longitudinal direction, and both ends of the hollow portion 14 are connected to both ends of the optical surface portion 23 in the longitudinal direction.
  • the length in the longitudinal direction of the optical surface portion 23 is L1
  • the length in the short direction is W1
  • the length in the long direction of the hollow portion 24 is L2
  • the length in the short direction is W2.
  • the distance L3 to the end of the portion 24 is 0 ⁇ L3 ⁇ L5, and the distance W3 from the end of the optical surface portion 23 to the end of the hollow portion 24 with respect to one side in the short direction satisfies 0 ⁇ W3 ⁇ W2 / 2. More preferably.
  • the relationship between the length W1 of the optical surface portion 23 and the length W2 of the hollow portion 24 in the short direction is preferably 0.01 ⁇ W2 / W1 ⁇ 1.
  • the f ⁇ lens 20 includes a first molding portion 25 including the first surface portion 21 as a surface thereof, and a second molding portion including the second surface portion 22 as a surface thereof and surrounding the first molding portion 25 in a frame shape. 26.
  • the second molding part 26 has a rib 27 and an end frame part 28.
  • the ribs 27 are thicker than the first molding part 25 and are formed on both sides of the first molding part 25 in the short direction perpendicular to the long direction along the long direction.
  • the end frame portion 28 is formed at both ends of the first molding portion 25 so as to be continuous with the first molding portion 25 with substantially the same thickness as the first molding portion 25.
  • the 2nd surface part 22 distribute
  • the ribs 27 can be provided along the first surface portion 21.
  • the shape of the rib 27 can be determined without being restricted by the shape of the first molded portion 25, etc. Can be increased.
  • the rib 27 can be formed into a shape that facilitates the formation of the hollow portion 24 with, for example, a predetermined thickness and a predetermined width in the short direction.
  • the rib 27 is linearly formed in the longitudinal direction and the hollow portion 24 is also linearly formed in the longitudinal direction, the hollow portion 24 is easily formed.
  • the warpage of the rib 27 can be reduced, and the warpage of the first molding portion 25 can also be reduced, whereby the first It becomes possible to prevent the surface accuracy of the optical surface portion 23 provided on the first surface portion 21 of the molding portion 25 from being lowered.
  • the hesitation mark HM is formed on the surface of the rib 27 and the surface of the end frame portion 28 which are the second surface portion 22. Also in the second embodiment, since the hesitation mark HM is formed on the second surface portion 22, it is possible to prevent the appearance abnormality of the first surface portion 21 on which the optical surface portion 23 is provided.
  • the one or more detection means 33 are desirably arranged on the inner surface of the cavity 31 for forming the end frame portion 28. By disposing the detection means 33 at this position, it is possible to directly detect the tip portion of the molten resin that exceeds the first surface portion 21, and the hesitation mark HM can be reliably detected by the second surface portion 22 (end frame portion). 28 surface).
  • the reliability of forming the hesitation mark HM on the second surface portion 22 can be increased by arranging the plurality of detection means 33 at the above positions.
  • the detection means 33 is arranged on the inner surface of the cavity 31 (the inner surface of the cavity 31 for forming the rib 27) having the same range as the inner surface of the cavity 31 for forming the end frame portion 28. May be.
  • the detection means 33 is arranged on the inner surface of the cavity 31 (the inner surface of the cavity 31 for forming the rib 27) having the same range as the inner surface of the cavity 31 for forming the first surface portion 21. May be.
  • the control unit 35 causes the timer 39 to measure the elapsed time since the determination, and the elapsed time is determined in advance.
  • the filling means 32 and the gas injection means 34 are controlled in response to the judgment of the judgment means 37 that the predetermined time has been exceeded. (Material of f ⁇ lens) Next, materials for the f ⁇ lens 20 will be described.
  • Examples of the resin material constituting the base material of the f ⁇ lens 20 include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, cycloolefin polymer, or a resin composed of two or more of these. In the f ⁇ mirror 10, it is preferable to use a polycarbonate or a cycloolefin polymer.
  • the base material of the f ⁇ lens 20 is manufactured by the above manufacturing apparatus and materials. Since the manufacturing method of the f ⁇ lens 20 is basically the same as the manufacturing method according to the first embodiment, the description thereof is omitted.
  • the resin molded product for optical elements was demonstrated, it is not restricted to the resin molded product for optical elements.
  • a hollow portion is provided inside and has a surface with a predetermined surface accuracy and a surface lower than the predetermined surface accuracy, it is applied to a resin molded product that forms a hesitation mark on a plane lower than the predetermined surface accuracy. It goes without saying that it is possible.
  • the resin molded product to be manufactured is a base material of the f ⁇ mirror 10.
  • the comparative example is the base material of the f ⁇ mirror 10.
  • the f ⁇ mirror 10 was molded and manufactured using the following two patterns of molds with the cavity shape as shown in FIG. 3 using the manufacturing apparatus and manufacturing method described above.
  • HM hesitation mark t1 detection temperature t0 reference temperature 10 f ⁇ mirror 11 first surface portion 12 second surface portion 13 mirror surface portion 14 hollow portion 20 f ⁇ lens 21 first surface portion 22 second surface portion 23 optical surface portion 24 hollow portion 25 first Molding part 26 Second molding part 27 Rib 28 End frame part 31 Cavity 32 Filling means 33 Detection means 34 Gas injection means 35 Control means 36 Storage means 37 Judgment means 38 Interface 39 Timer 41 Operation means 42 Mold 311 First region 312 First 2 region 313 Bottom surface 314 Side wall surface 315 Mirror surface forming part 341 Solenoid valve 342 Injection port part

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

Provided is: a resin molded article for an optical element wherein high surface precision is kept since an abnormal appearance-formed portion such as a hesitation mark is effectively formed outside an optical surface without cutting off the portion and an optical surface itself can be less likely to be influenced by shrinkage with hardening such as sink; a method and device for manufacturing the same; and a scanning optical device. The resin molded article for an optical element which comprises first surface portion at a part of the surface of a resin molded base and comprises a hollow portion formed by injecting a fluid into the inside of the base from the outside. Assuming that the distance between the first end of the base and an end of the first surface portion, the end being close to the first end, is A and the distance between the second end of the base, the end being other than the first end and being on the opposite side across the first surface portion, and the end of the first surface portion, the end being on the side close to the second end, is B, the relations of (A>0, B>0, A≤B) are satisfied.

Description

光学素子用樹脂成形品、光学素子用樹脂成形品の製造方法、光学素子用樹脂成形品の製造装置、及び、走査光学装置Optical element resin molded article, optical element resin molded article manufacturing method, optical element resin molded article manufacturing apparatus, and scanning optical apparatus
 この発明は、光学素子用樹脂成形品、光学素子用樹脂成形品の製造方法、光学素子用樹脂成形品の製造装置、及び、走査光学装置に関し、特に、金型のキャビティに充填された樹脂中に流体を注入することにより中空部が形成された光学素子用樹脂成形品、光学素子用樹脂成形品の製造方法、光学素子用樹脂成形品の製造装置、及び、走査光学装置に関する。 The present invention relates to a resin molded product for an optical element, a method for manufacturing a resin molded product for an optical element, a manufacturing apparatus for a resin molded product for an optical element, and a scanning optical device, and in particular, in a resin filled in a cavity of a mold. The present invention relates to a resin molded product for an optical element in which a hollow portion is formed by injecting a fluid into the liquid, a method for manufacturing a resin molded product for an optical element, a manufacturing apparatus for a resin molded product for an optical element, and a scanning optical device.
 これらの光学素子として一般的にはガラス製や金属製、又は、セラミック製のものが知られており、近年では成形の容易さや、設計自由度、又は、コストダウンの観点から樹脂製のものが用いられるようになってきている。 These optical elements are generally known to be made of glass, metal, or ceramic. In recent years, those made of resin are used from the viewpoint of ease of molding, freedom of design, or cost reduction. It has come to be used.
 これらの光学素子の使用用途は多種多様であるが、その一つの例として光源からの出射光を集光等を行って記録面等に結像させて記録や再生を行う装置、たとえば光情報記録再生装置や光走査装置などが良く知られている。ところがこのような装置は近年の高画質、高精細化の要求により記録密度等の更なる増大が求められてきている。しかしながら、係る高精細化等のためにはおのずと使用する部品各々の高い制御、精度が求められ、その一部品である光学素子にいたっても、光源から照射された光を透過、反射等を行って集光や偏向、変形させるため、光学面のより一層の高面精度が求められている。特に最近では、長寿命、安定出力が得られる短波長の青色レーザが注目され、これにより更に微少なスポットが形成できるため、それに対応した高面精度な光学素子が要求されてきている。 These optical elements can be used in a wide variety of applications. As an example, a device that records and reproduces the light emitted from the light source by condensing the light emitted from the light source to form an image on a recording surface, for example, optical information recording A reproduction device, an optical scanning device, and the like are well known. However, such an apparatus has been required to further increase the recording density or the like due to the recent demand for higher image quality and higher definition. However, in order to achieve such high definition, high control and accuracy of each component to be used are required, and even when the optical element is one of the components, the light emitted from the light source is transmitted and reflected. Therefore, higher surface accuracy of the optical surface is required for condensing, deflecting, and deforming. Particularly recently, attention has been focused on short-wavelength blue lasers that can provide a long life and stable output, and as a result, even finer spots can be formed. Accordingly, there has been a demand for optical elements having high surface accuracy corresponding thereto.
 ところがこのように要求される面精度が高まってくるに従い、従来それほど気にしていなかった点が大きな技術課題として顕在化してきている。その最たる課題としては、樹脂射出成形での樹脂硬化時の収縮に伴い発生する反りやヒケによる光学面の変形の影響がある。特に、fθ特性を持たせるような光学素子においては、走査方向に対し発生する反りの影響がより顕著化し、従来の射出成形ではこのような高精度な光学部品の品質を確保する事が困難な状況となってきている。また、上述したようにレーザビームに短波長、例えば青色レーザでの適用の場合、樹脂製レンズの耐候性が高面精度を維持するのに更なる障害となる。 However, as the surface accuracy required in this way is increasing, points that have not been so much of concern in the past have become a major technical issue. The most important problem is the influence of deformation of the optical surface due to warpage and sink caused by shrinkage during resin curing in resin injection molding. In particular, in an optical element having an fθ characteristic, the influence of warpage generated in the scanning direction becomes more prominent, and it is difficult to ensure the quality of such a high-precision optical component by conventional injection molding. It has become a situation. Further, as described above, when the laser beam is applied with a short wavelength, for example, a blue laser, the weather resistance of the resin lens becomes a further obstacle to maintaining high surface accuracy.
 この問題に対し、本発明者は、中空射出成形の効果に着目し光学部品への適用を考えた。中空射出成形により中空に成形することで、成形物の反りやヒケの原因となる樹脂収縮時の引張応力が中空部に解放され、中空部の表面にヒケという形で発現することで、成形物の表面に発生する反りやヒケが緩和できるからである。 In response to this problem, the present inventor considered the effect of hollow injection molding and considered application to optical components. By forming into a hollow by hollow injection molding, the tensile stress at the time of resin shrinkage that causes warping and sink marks of the molded product is released to the hollow part, and the molded product is expressed in the form of sink marks on the surface of the hollow part. This is because warpage and sink marks generated on the surface of the film can be alleviated.
 ここで、樹脂成形品に中空部を設ける方法としては、金型内に溶融樹脂を射出充填し、その後、射出ノズルや金型のキャビティ内に設けたガス注入ノズルより流体としての圧縮ガスを注入し、注入したガスにより中空成形品を得る方法がある。ところが、このように樹脂の充填後のガスの注入にタイムラグがあるため溶融樹脂の先端部の流動速度が変化、場合によっては停止することにより、溶融樹脂の先端部の表面にヘジテーションマーク等の外観異常が発生し、表面精度を著しく低下させる。 Here, as a method of providing a hollow portion in the resin molded product, molten resin is injected and filled into a mold, and then a compressed gas as a fluid is injected from an injection nozzle or a gas injection nozzle provided in a cavity of the mold. In addition, there is a method of obtaining a hollow molded article by using the injected gas. However, since there is a time lag in the gas injection after filling the resin in this way, the flow rate at the tip of the molten resin changes, and in some cases stops, the appearance of hesitation marks etc. on the surface of the tip of the molten resin Abnormality occurs and surface accuracy is significantly reduced.
 これに対して従来の技術(例えば、特許文献1)では、射出ノズルから樹脂を充填し、ほぼ充填させた状態で異なるゲートから圧縮ガスを注入する。その際、余分な樹脂を樹脂流出路から流出樹脂受部に流出させる。検出装置によりガスが樹脂流出路に到達する前に所定の位置まで到達したことを検出し、開閉装置により樹脂流出路を閉じて加圧状態で樹脂を固化させる成形品を製造する。その後、開閉部材により、樹脂流出路及び流出樹脂受部を型内でカットする。ヘジテーションマーク等の外観異常を発生させないことが示されている。 On the other hand, in the conventional technique (for example, Patent Document 1), the resin is filled from the injection nozzle, and the compressed gas is injected from a different gate in a substantially filled state. At that time, excess resin flows out from the resin outflow path to the outflow resin receiving portion. A detection device detects that the gas has reached a predetermined position before reaching the resin outflow passage, and manufactures a molded product that solidifies the resin in a pressurized state by closing the resin outflow passage with an opening / closing device. Thereafter, the resin outflow path and the outflow resin receiving portion are cut in the mold by the opening / closing member. It is shown that appearance abnormalities such as hesitation marks do not occur.
特開平11-138577号公報Japanese Patent Laid-Open No. 11-138777
 しかしながら、この従来技術では、樹脂成形品として不要な部分である樹脂流出路及び流出樹脂受部などを設けてヘジテーションマーク等外観異常が発生した部位を、流出路まで樹脂が来た後に圧縮ガスを入れ、外観異常部位をカット箇所よりも外側の不要成形部位に形成するように構成し、その後当該カット箇所でカットする事によって行っている。ところがこのような成形後の不必要なカットは、カット周辺部に高い面精度が要求される光学面を備える走査用光学素子、特に短波長光を用いて高密度の記録や再生を行うための光学素子には適用が困難である事が判った。それと共に、光学素子の場合、ヘジテーションマークの発生と併せて解決しなければならない技術的障害が存在する。 However, in this prior art, a resin outflow passage and an outflow resin receiving portion, which are unnecessary parts as a resin molded product, are provided, and a portion where an abnormality in appearance such as a hesitation mark is generated is compressed after the resin comes to the outflow passage. It is constructed by forming an abnormal appearance part in an unnecessary molding part outside the cut part and then cutting at the cut part. However, such an unnecessary cut after molding is a scanning optical element having an optical surface that requires high surface accuracy at the periphery of the cut, particularly for performing high-density recording and reproduction using short-wavelength light. It was found that application to optical elements is difficult. In addition, in the case of optical elements, there are technical obstacles that must be solved in conjunction with the generation of hesitation marks.
 それは、光学素子の場合、基材の一部に形成された光学面では上述したような樹脂の硬化収縮による問題を確実に解消する必要があるため、中空部の形成される領域を当該光学面下にある程度制御する必要がある。このことは、中空領域が成形途中で流体をキャビティ内に注入して行われるため、充填されている樹脂が流体によって押し込まれる領域を予め見込んでおく必要があることを意味する。ところが光学部品は他の成形部品と異なり、樹脂の充填位置、流体の注入位置によっても面精度に影響を与えるため、制約がある。そのため樹脂の充填位置や注入位置は光学面が形成される領域よりも外側のキャビティの一端から射出するのが望ましいと考えられる。 In the case of an optical element, an optical surface formed on a part of a substrate needs to surely eliminate the problems caused by the curing shrinkage of the resin as described above. It needs to be controlled to some extent below. This means that since the hollow region is formed by injecting fluid into the cavity during molding, it is necessary to anticipate in advance the region where the filled resin is pushed by the fluid. However, unlike other molded parts, optical parts also have limitations because they affect the surface accuracy depending on the resin filling position and fluid injection position. Therefore, it is considered that the resin filling position and injection position are preferably injected from one end of the cavity outside the region where the optical surface is formed.
 従って、このような制限のある位置から樹脂が充填、流体が注入されても、ある程度光学面下に中空領域を形成し、かつ、ヘジテーションマーク等の外観異常形成部位が光学面に影響がない領域となるよう、光学部品の形状を考慮する必要がある。 Therefore, even if resin is filled from such a restricted position and fluid is injected, a hollow region is formed to some extent below the optical surface, and an abnormal appearance forming site such as a hesitation mark does not affect the optical surface. Therefore, it is necessary to consider the shape of the optical component.
 この発明は、このような上記課題を解決するものであり、これにより樹脂硬化収縮によるヒケ等の問題による面精度劣化、ヘジテーションマーク等の外観異常形成部位の問題を効果的に解消できる光学素子用樹脂成形品、その製造方法、製造装置、及び、走査光学装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and for this purpose, for optical elements that can effectively solve the problem of surface accuracy degradation due to problems such as sink marks due to resin curing shrinkage and appearance abnormality formation sites such as hesitation marks. An object of the present invention is to provide a resin molded product, a manufacturing method thereof, a manufacturing apparatus, and a scanning optical apparatus.
 上記課題を解決するため、この発明の第1の形態は、樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係を満たすことを特徴とする光学素子用樹脂成形品である。 In order to solve the above-mentioned problem, the first embodiment of the present invention has a first surface portion on a part of the surface of a base material molded from resin, and injects fluid into the base material from the outside. A resin molded article for an optical element having a formed hollow portion, wherein the distance between the first end portion of the substrate and the end portion of the first surface portion on the side close to the first end portion is A, It is an end different from the first end of the base material, the second end on the opposite side through the first surface, and the first surface on the side close to the second end When the distance from the end of the part is B, the resin molded product for an optical element satisfies the following relationship.
     A>0
     B>0
     A≦B
 また、この発明の第2の形態は、前記第1の形態に係る光学素子用樹脂成形品であって、前記第1表面部全体の表面粗さRaがRa≦5(nm)であることを特徴とする。
A> 0
B> 0
A ≦ B
The second aspect of the present invention is the resin molded product for an optical element according to the first aspect, wherein the surface roughness Ra of the entire first surface portion is Ra ≦ 5 (nm). Features.
 さらに、この発明の第3の形態は、前記第1の形態に係る光学素子用樹脂成形品であって、第1表面部に鏡面部を形成したことを特徴とする。 Furthermore, a third aspect of the present invention is a resin molded product for an optical element according to the first aspect, wherein a mirror surface portion is formed on the first surface portion.
 さらに、この発明の第4の形態は、光源と該光源から出射した出射光を偏向させる偏向手段と、前記光源から出射した光が入射し、前記偏向手段に集光させる集光手段と、前記偏向手段で偏向した光を被走査面に結像させるための結像光学系とを有する走査光学装置であって、前記結像光学系を構成する光学素子の少なくとも一つの光学素子は、樹脂により成形された長尺の基材の表面の一部に1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子であって、前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係を満たすことを特徴とする走査光学装置である。 Furthermore, a fourth aspect of the present invention is a light source, a deflecting unit for deflecting the emitted light emitted from the light source, a condensing unit for allowing the light emitted from the light source to be incident and condensed on the deflecting unit, A scanning optical device having an imaging optical system for imaging light deflected by the deflecting means on the surface to be scanned, wherein at least one of the optical elements constituting the imaging optical system is made of resin. An optical element having one surface part on a part of the surface of a long shaped base material and having a hollow part formed by injecting a fluid from the outside into the base material. A distance between the first end portion of the first surface portion and the end portion of the first surface portion on the side close to the first end portion is an end portion different from the first end portion of the base material, and A second end portion on the opposite side via the surface portion and an end portion of the first surface portion on the side close to the second end portion When the distance was set to B, and the scanning optical apparatus which satisfy the following relationship.
     A>0
     B>0
     A≦B
 さらに、この発明の第5の形態は、前記第4の形態に係る走査光学装置であって、前記第1表面部全体の表面粗さRaがRa≦5(nm)であることを特徴とする。
A> 0
B> 0
A ≦ B
Furthermore, a fifth aspect of the present invention is the scanning optical apparatus according to the fourth aspect, characterized in that a surface roughness Ra of the entire first surface portion is Ra ≦ 5 (nm). .
 さらに、この発明の第6の形態は、前記第4又は第5の形態に係る走査光学装置であって、前記第1表面部には入射光を反射させる鏡面部が形成されることを特徴とする。 Furthermore, a sixth aspect of the present invention is the scanning optical device according to the fourth or fifth aspect, wherein a mirror surface portion that reflects incident light is formed on the first surface portion. To do.
 さらに、この発明の第7の形態は、前記第6の形態に係る走査光学装置であって、前記鏡面部の表面粗さRaがRa≦5(nm)であることを特徴とする。 Furthermore, a seventh aspect of the present invention is the scanning optical apparatus according to the sixth aspect, characterized in that the surface roughness Ra of the mirror surface portion is Ra ≦ 5 (nm).
 さらに、この発明の第8の形態は、樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係
     A>0
     B>0
     A≦B
 を満たす光学素子用樹脂成形品の製造方法であって、前記第1表面部を転写する転写面を有する第1金型と、該第1金型と対向して設けられ、前記第1金型との間で型締めする事によりキャビティを形成する第2金型とを準備する工程と、前記キャビティ内に前記キャビティ端部の一方側から溶融樹脂を射出する射出工程と、前記射出工程により充填された樹脂の先端部が所定位置にある事を検出する検出工程と、前記検出工程の検出に基づいて前記充填されている樹脂の充填を制御すると共に、流体を前記キャビティ内に注入して内部に中空部を形成する流体注入工程と、を有することを特徴とする光学素子用樹脂成形品の製造方法である。
Furthermore, according to an eighth aspect of the present invention, there is provided a hollow portion having a first surface portion on a part of a surface of a base material formed of a resin and injecting a fluid from the outside into the base material. A distance between the first end of the base and the end of the first surface near the first end is A, and the first of the base An end portion different from the first end portion, the second end portion on the opposite side through the first surface portion, and the end portion of the first surface portion on the side close to the second end portion When the distance of B is B, the following relation A> 0
B> 0
A ≦ B
And a first mold having a transfer surface for transferring the first surface portion, the first mold being provided opposite to the first mold. A second mold for forming a cavity by clamping the mold with the mold, an injection process for injecting molten resin into the cavity from one side of the end of the cavity, and filling by the injection process A detecting step for detecting that the tip of the resin is in a predetermined position, and controlling filling of the filled resin based on detection of the detecting step, and injecting fluid into the cavity And a fluid injection step of forming a hollow portion in the manufacturing method of a resin molded product for an optical element.
 さらに、この発明の第9の形態は、前記第8の形態に係る光学素子用樹脂成形品の製造方法であって、前記第1表面部の表面粗さRaがRa≦5であることを特徴とする。 Furthermore, a ninth aspect of the present invention is a method for producing a resin molded product for an optical element according to the eighth aspect, wherein the surface roughness Ra of the first surface portion is Ra ≦ 5. And
 さらに、この発明の第10の形態は、前記第8又は第9の形態に係る光学素子用樹脂成形品の製造方法であって、前記流体注入工程後に得られた樹脂成形品の第1表面部に鏡面部を形成する鏡面部形成工程と、を含むことを特徴とする。 Furthermore, the 10th form of this invention is the manufacturing method of the resin molded product for optical elements which concerns on the said 8th or 9th form, Comprising: The 1st surface part of the resin molded product obtained after the said fluid injection | pouring process And a mirror surface portion forming step of forming a mirror surface portion.
 さらに、この発明の第11の形態は、前記第8から第10のいずれかに係る光学素子用樹脂成形品の製造方法であって、前記流体注入工程は、樹脂の充填を停止後、所定時間経過後に流体の注入を開始することを特徴とする。 Furthermore, an eleventh aspect of the present invention is a method for manufacturing a resin molded product for an optical element according to any one of the eighth to tenth aspects, wherein the fluid injection step is performed for a predetermined time after stopping the resin filling. The fluid injection is started after the passage.
 さらに、この発明の第12の形態は、樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係
     A>0
     B>0
     A≦B
 を満たす光学素子用樹脂成形品の製造装置であって、前記第1表面部を転写する転写面を有する第1金型と、前記第1金型と対向して設けられ、前記第1金型との間で型締めする事によりキャビティを形成する第2金型と、前記キャビティ内に前記キャビティ端部の一方側から溶融樹脂材料を射出する充填手段と、前記充填手段により前記キャビティ内に充填された樹脂が所定位置にある事を検出する検出手段と、前記キャビティ内に流体を注入して内部に中空部を形成する流体注入手段と、前記検出手段により前記樹脂が所定位置に充填されていることの検出結果に基づき、前記充填手段による樹脂の充填を制御するとともに、前記流体注入手段によりキャビティ内に流体の注入を制御する制御手段と、を備えた光学素子用樹脂成形品の製造装置である。
Furthermore, the twelfth aspect of the present invention is a hollow part formed by injecting a fluid from the outside into the base material having a first surface part on a part of the surface of the base material formed of resin. A distance between the first end of the base and the end of the first surface near the first end is A, and the first of the base An end portion different from the first end portion, the second end portion on the opposite side through the first surface portion, and the end portion of the first surface portion on the side close to the second end portion When the distance of B is B, the following relation A> 0
B> 0
A ≦ B
An apparatus for manufacturing a resin molded product for an optical element satisfying the first mold, provided with a first mold having a transfer surface for transferring the first surface portion, facing the first mold, and the first mold A second mold for forming a cavity by clamping between the mold, a filling means for injecting a molten resin material into the cavity from one side of the end of the cavity, and filling the cavity with the filling means Detecting means for detecting that the resin is in a predetermined position; fluid injecting means for injecting a fluid into the cavity to form a hollow portion therein; and the resin is filled in the predetermined position by the detecting means. And a control means for controlling the filling of the resin by the filling means and the injection of the fluid into the cavity by the fluid injecting means. It is a device.
 本発明によれば、係る構成よりヘジテーションマーク等の外観異常形成部位をカットにより除去しなくても効果的に光学面外側に形成し、かつ、光学面自体にヒケ等の硬化収縮による影響が生じにくくする事が可能なため、高い面精度を維持した光学素子用樹脂成形品、及びそれを製造する製造方法、製造装置、並びに、走査光学装置を提供する事ができる。 According to the present invention, an abnormal appearance forming portion such as a hesitation mark is effectively formed outside the optical surface without being removed by cutting, and the optical surface itself is affected by curing shrinkage such as sink marks. Therefore, it is possible to provide a resin molded product for an optical element that maintains high surface accuracy, and a manufacturing method, a manufacturing apparatus, and a scanning optical apparatus for manufacturing the same.
この発明の第1実施形態に係る光学素子が組み込まれたレーザビーム走査光学装置の説明図である。It is explanatory drawing of the laser beam scanning optical apparatus incorporating the optical element which concerns on 1st Embodiment of this invention. 光学素子用樹脂成形品を長尺方向で剪断して示した断面図である。It is sectional drawing which sheared and showed the resin molded product for optical elements in the elongate direction. 光学素子用樹脂成形品の平面図である。It is a top view of the resin molded product for optical elements. (a)は短尺方向の二等分線を含む垂直面で切断した場合の金型の断面図であり、(b)は長尺方向の二等分線を含む垂直面で切断した場合の金型の断面図である。(A) is sectional drawing of the metal mold | die at the time of cut | disconnecting by the perpendicular surface containing the bisector of a short length direction, (b) is the metal at the time of cut | disconnecting by the perpendicular surface containing a bisector of a long direction It is sectional drawing of a type | mold. 検出手段を備えた射出成形機の機能ブロック図である。It is a functional block diagram of the injection molding machine provided with the detection means. 検出温度と圧縮ガスの注入との関係を示すタイムチャートである。It is a time chart which shows the relationship between detection temperature and injection | pouring of compressed gas. 光学素子用樹脂成形品の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the resin molded product for optical elements. 変形例に係る射出成形機の機能ブロック図である。It is a functional block diagram of the injection molding machine which concerns on a modification. 検出温度と圧縮ガスの注入との関係を示すタイムチャートである。It is a time chart which shows the relationship between detection temperature and injection | pouring of compressed gas. 変形例に係る光学素子用樹脂成形品の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the resin molded product for optical elements which concerns on a modification. 他の変形例に係る射出成形機の機能ブロック図である。It is a functional block diagram of the injection molding machine which concerns on another modification. 他の変形例に係る光学素子用樹脂成形品の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the resin molded product for optical elements which concerns on another modification. この発明の第2実施形態に係る光学素子用樹脂成形品の平面図である。It is a top view of the resin molded product for optical elements which concerns on 2nd Embodiment of this invention. 光学素子用樹脂成形品の横断面図である。It is a cross-sectional view of the resin molded product for optical elements.
[第1の実施の形態]
(構成)
 この発明の第1実施形態に係る光学素子用樹脂成形品について、図1を参照にして説明する。図1は、光学素子用樹脂成形品が組み込まれたレーザビーム走査光学装置の一例を示す図である。
[First Embodiment]
(Constitution)
A resin molded product for an optical element according to a first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an example of a laser beam scanning optical apparatus in which a resin molded product for an optical element is incorporated.
 図1において、レーザビーム走査光学装置は、光源ユニット1と、シリンドリカルミラー2と、偏向手段としてのポリゴンミラー3と、トーリックレンズ4と、平面ミラー5、6と、fθ特性を備えるfθミラー10とで構成されている。 In FIG. 1, a laser beam scanning optical device includes a light source unit 1, a cylindrical mirror 2, a polygon mirror 3 as a deflecting means, a toric lens 4, planar mirrors 5 and 6, and an fθ mirror 10 having fθ characteristics. It consists of
 光源ユニット1から放射されたレーザビームはコリメータレンズ(図示省略)で略平行光に収束された後、シリンドリカルミラー2で反射され、そのビーム形状を長尺方向が主走査方向と平行な略直線状に変更され、ポリゴンミラー3に到達する。 The laser beam emitted from the light source unit 1 is converged into substantially parallel light by a collimator lens (not shown), and then reflected by a cylindrical mirror 2, and the beam shape is substantially linear with the long direction parallel to the main scanning direction. And the polygon mirror 3 is reached.
 ポリゴンミラー3はその外周面に四つの偏向面を有し、反時計方向に一定速度で回転駆動される。レーザビームはポリゴンミラー3の回転により、主走査方向に等角速度に偏向され、トーリックレンズ4に導かれた場合トーリックレンズ4は主走査方向と副走査方向に異なるパワーを有し、副走査方向についてレーザビームを被走査面上に集光させることで、ポリゴンミラー3の偏向面と被走査面とを共役関係に保ち、シリンドリカルミラー2との組み合わせにより、ポリゴンミラー3の各偏向面の面倒れ誤差を補正する。 The polygon mirror 3 has four deflection surfaces on its outer peripheral surface and is driven to rotate at a constant speed in the counterclockwise direction. The laser beam is deflected at a constant angular velocity in the main scanning direction by the rotation of the polygon mirror 3, and when guided to the toric lens 4, the toric lens 4 has different powers in the main scanning direction and the sub scanning direction. By converging the laser beam on the surface to be scanned, the deflection surface of the polygon mirror 3 and the surface to be scanned are kept in a conjugate relationship, and the surface tilt error of each deflection surface of the polygon mirror 3 is obtained by combining with the cylindrical mirror 2. Correct.
 なお、ここでは偏向手段としてポリゴンミラーを例にとって説明したが、特に限定されない。すなわち入射した光を別の方向に偏向できるものであればよく、ガルバノミラー等、その他公知の偏向手段を採用し得ることは言うまでも無い。 In addition, although the polygon mirror was demonstrated as an example here as a deflection | deviation means, it does not specifically limit. That is, it is only necessary that incident light can be deflected in another direction, and it is needless to say that other known deflecting means such as a galvanometer mirror can be adopted.
 トーリックレンズ4を透過したレーザビームは平面ミラー5、6で反射され、さらにfθミラー10で反射された後感光体ドラム7上に集光される。fθミラー10はポリゴンミラー3で角速度一定で偏向されたレーザビームを走査面上(感光体ドラム7上)で線速度一定になるよう速度変換する。感光体ドラム7は反時計方向に一定速度で回転駆動され、ポリゴンミラー3によるレーザビームの主走査と感光体ドラム7の回転(副走査)と変調されたレーザビーム出力に基づいて感光体ドラム7上に画像が形成される。 The laser beam that has passed through the toric lens 4 is reflected by the plane mirrors 5 and 6, further reflected by the fθ mirror 10, and then condensed on the photosensitive drum 7. The fθ mirror 10 converts the speed of the laser beam deflected at a constant angular velocity by the polygon mirror 3 so that the linear velocity is constant on the scanning surface (on the photosensitive drum 7). The photosensitive drum 7 is rotationally driven counterclockwise at a constant speed, and the photosensitive drum 7 is driven based on the main scanning of the laser beam by the polygon mirror 3, the rotation of the photosensitive drum 7 (sub scanning), and the modulated laser beam output. An image is formed on top.
 以上のように、レーザビーム走査光学装置は、様々な光学素子により構成されている。特に、平面ミラー5、6及びfθミラー10等の基材は、長尺の板状に形成されており、長尺方向の所定の範囲内で受けたレーザビームを反射させる鏡面が設けられ、感光体ドラム7上に画像を形成させるため、鏡面が設けられる光学素子の表面の精度が画像の品質に対し直接的に影響を与える構成となっている。 As described above, the laser beam scanning optical apparatus is composed of various optical elements. In particular, the base materials such as the flat mirrors 5 and 6 and the fθ mirror 10 are formed in a long plate shape, provided with a mirror surface that reflects a laser beam received within a predetermined range in the longitudinal direction, and is photosensitive. Since an image is formed on the body drum 7, the accuracy of the surface of the optical element provided with a mirror surface directly affects the image quality.
 次に、光学素子用樹脂成形品の詳細な構造について図1から図3を参照にして説明する。図2は、光学素子用樹脂成形品を長尺方向で剪断して示した断面図、図3は、光学素子用樹脂成形品の平面図である。 Next, the detailed structure of the resin molded product for an optical element will be described with reference to FIGS. FIG. 2 is a cross-sectional view showing the resin molded product for optical elements sheared in the longitudinal direction, and FIG. 3 is a plan view of the resin molded product for optical elements.
 光学素子は、鏡面性、寸法精度、軽量性、安全性、耐久性、経済性が強く要求される。電気電子部品、自動車部品、医療用、保安用、建材用、家庭用品など多くの用途に好適な光学素子である。 Optical elements are strongly required to have specularity, dimensional accuracy, lightness, safety, durability, and economy. It is an optical element suitable for many uses such as electric and electronic parts, automobile parts, medical use, security use, building materials, and household goods.
 この発明に係る光学素子の一例として、上述したように、レーザプリンターに組み込まれた平面ミラー5、6及びfθミラー10を挙げることができる。平面ミラー5、6及びfθミラー10の各基材は、中空部を有し、高い表面精度の表面の外にヘジテーションマークを設けている。以下、fθミラー10を代表して説明し、平面ミラー5、6、その他の光学素子の説明を省略する。 As an example of the optical element according to the present invention, as described above, the plane mirrors 5 and 6 and the fθ mirror 10 incorporated in the laser printer can be cited. Each substrate of the plane mirrors 5 and 6 and the fθ mirror 10 has a hollow portion, and a hesitation mark is provided outside the surface with high surface accuracy. Hereinafter, the fθ mirror 10 will be described as a representative, and description of the plane mirrors 5 and 6 and other optical elements will be omitted.
 fθミラー10は、長尺の板状に形成され、長尺方向の所定の範囲H1を有し、所定の範囲H1内で受けた光ビームを反射させる鏡面部13が設けられる第1表面部11と、第1表面部11を長尺方向から挟むように配された一対の第2表面部12とを有する。なお、図2の紙面に向かって横の方向を長尺方向とし、縦の方向を厚さ方向とし、図3の縦の方向を短尺方向とする。 The fθ mirror 10 is formed in a long plate shape, has a predetermined range H1 in the longitudinal direction, and is provided with a first surface portion 11 provided with a mirror surface portion 13 that reflects a light beam received within the predetermined range H1. And a pair of second surface portions 12 arranged so as to sandwich the first surface portion 11 from the longitudinal direction. Note that the horizontal direction toward the plane of FIG. 2 is the long direction, the vertical direction is the thickness direction, and the vertical direction in FIG. 3 is the short direction.
 長尺方向の幅において、所定の範囲H1を鏡面部13の領域以下とし、鏡面部13の領域を第1表面部11の領域以下とした。なお、長尺方向の幅で一致させた鏡面部13の領域と第1表面部11の領域とを図2及び図3に示す。 In the width in the longitudinal direction, the predetermined range H1 is set to be equal to or less than the area of the mirror surface portion 13, and the area of the mirror surface portion 13 is set to be equal to or less than the area of the first surface portion 11. In addition, the area | region of the mirror surface part 13 and the area | region of the 1st surface part 11 made to correspond by the width | variety of a elongate direction are shown in FIG.
 fθミラー10においては、長尺の板状の基材と、基材の一つの表面に位置する鏡面部13と、鏡面部13の鏡面裏面の基材内部に位置する中空部14とを有し、かつ、中空部14の長尺方向の長さが鏡面部13の長尺方向の長さより長く、さらに、中空部14の両端を鏡面部13の長尺方向の両端より外側に形成することで、樹脂の硬化に伴う収縮により発生する引張応力が形成された中空部14に解放されるため、樹脂収縮に伴う長尺方向の反りが鏡面部13全体にわたり緩和され面精度が向上する。 The fθ mirror 10 has a long plate-like base material, a mirror surface portion 13 located on one surface of the base material, and a hollow portion 14 located inside the base material on the mirror back surface of the mirror surface portion 13. And the length of the longitudinal direction of the hollow part 14 is longer than the length of the longitudinal direction of the mirror surface part 13, Furthermore, both ends of the hollow part 14 are formed outside the both ends of the longitudinal direction of the mirror surface part 13. Since the tensile stress generated by the shrinkage accompanying the curing of the resin is released to the hollow portion 14, warpage in the longitudinal direction due to the resin shrinkage is alleviated over the entire mirror surface portion 13 and the surface accuracy is improved.
 従来技術では、樹脂収縮に伴い成形品による金型の抱え込みが発生し、離型抵抗による鏡面部13の歪みが発生していたが、鏡面部13を、板面全体にわたり基材より厚さ方向に突出させることで、離型抵抗による鏡面部13の歪みの発生を抑制することが可能となる。さらに、光学素子(樹脂成形品)製作時に鏡面部13の補正、例えば、鏡面部13の厚さを部分的もしくは全体にわたり厚さ方向に削るような補正を行うことで鏡面部13の形状が変わる場合がある。補正の結果として鏡面部13の板面が基材に埋没するような場合においても、鏡面部13の補正量を見越し、あらかじめ鏡面部13を基材より突出させる長さを調整することで、補正後も鏡面部13の板面を基材の板面上に突出させるように調整することが可能となり、結果として成形品による金型の抱え込みを回避することができる。 In the prior art, the mold is held by the molded product due to the resin shrinkage, and the mirror surface portion 13 is distorted due to the mold release resistance. It is possible to suppress the occurrence of distortion of the mirror surface portion 13 due to the mold release resistance. Further, when the optical element (resin molded product) is manufactured, the shape of the mirror surface portion 13 is changed by correcting the mirror surface portion 13, for example, correcting the thickness of the mirror surface portion 13 partially or entirely in the thickness direction. There is a case. Even when the plate surface of the mirror surface portion 13 is buried in the base material as a result of the correction, the amount of correction of the mirror surface portion 13 is anticipated and the length by which the mirror surface portion 13 protrudes from the base material is adjusted in advance. After that, it is possible to adjust so that the plate surface of the mirror surface portion 13 protrudes on the plate surface of the substrate, and as a result, it is possible to avoid holding the mold by the molded product.
 本実施形態の樹脂成形品において、鏡面部13の長尺方向の長さをL1、短尺方向の長さをW1、中空部14の長尺方向の長さをL2、短尺方向の長さをW2、厚さ方向の長さをD2、基材の短尺方向の長さをW4、長尺方向片側に対し鏡面部13の端から基材の端までの距離をL5としたとき、長尺方向片側に対し鏡面部13の端から中空部14の端までの距離L3は0≦L3<L5であり、短尺方向片側に対し鏡面部13の端から中空部14の端までの距離W3は0≦W3<W2/2を満足するように構成するのがより好ましい。 In the resin molded product of the present embodiment, the length in the long direction of the mirror surface portion 13 is L1, the length in the short direction is W1, the length in the long direction of the hollow portion 14 is L2, and the length in the short direction is W2. When the length in the thickness direction is D2, the length in the short direction of the substrate is W4, and the distance from the end of the mirror surface portion 13 to the end of the substrate is L5 with respect to one side in the long direction, one side in the long direction On the other hand, the distance L3 from the end of the mirror surface portion 13 to the end of the hollow portion 14 is 0 ≦ L3 <L5, and the distance W3 from the end of the mirror surface portion 13 to the end of the hollow portion 14 is 0 ≦ W3 with respect to one side in the short direction. It is more preferable to configure so as to satisfy <W2 / 2.
 また、第1表面部11の端部と同じ側にある光学素子の端部との距離をA、第1表面部11の端部とは異なる端部であって、中空部14を介して反対側に形成された第1表面部11の端部と同じ側にある光学素子の端部との距離をBとしたとき、A>0、B>0となるような光学素子形状であることが必要である。 Also, the distance from the end of the optical element on the same side as the end of the first surface portion 11 is A, and is an end different from the end of the first surface 11 and is opposite via the hollow portion 14 When the distance between the end of the first surface portion 11 formed on the side and the end of the optical element on the same side is B, the optical element shape is such that A> 0 and B> 0. is necessary.
 また、併せて、この時、A側における樹脂充填端Jから樹脂を充填、流体を注入する場合にはA≦B(B側から樹脂を充填、流体を注入する場合にはA≧B)であることが、ヘジテーション等の外観異常形成部位を第1表面部11外に確実に追い込み、且つ中空部14を第1表面部11に相当する領域下に形成するためには必要である。 In addition, at this time, when resin is filled from the resin filling end J on the A side and fluid is injected, A ≦ B (A ≧ B when resin is filled from the B side and fluid is injected) It is necessary to reliably drive the appearance abnormality formation site such as hesitation out of the first surface portion 11 and to form the hollow portion 14 below the region corresponding to the first surface portion 11.
 なお、小型の光学素子の場合、A、Bは3.5≦A≦5.0、3.5≦B≦5.0であって、前述した条件を満足する事がより好ましい。 In the case of a small optical element, A and B are 3.5 ≦ A ≦ 5.0 and 3.5 ≦ B ≦ 5.0, and it is more preferable to satisfy the above-described conditions.
 また、基材の板面から突出させる鏡面部13の厚さ方向の長さをD1としたとき、D1は0.1(mm)<D1≦3(mm)、離型を鑑みた場合、鏡面部13の側面積が大きくなり離型抵抗が大きくなり周囲の鏡面精度が低下することから、好ましくは0.1(mm)<D1≦0.3(mm)を満たすことが望ましい。 Further, when the length in the thickness direction of the mirror surface portion 13 protruding from the plate surface of the base material is D1, D1 is 0.1 (mm) <D1 ≦ 3 (mm). Since the side area of the portion 13 increases, the mold release resistance increases, and the surrounding mirror surface accuracy decreases, it is preferable that 0.1 (mm) <D1 ≦ 0.3 (mm) is satisfied.
 また、短尺方向における鏡面部13の長さW1と中空部14の長さW2との関係は、0.01≦W2/W1≦1が望ましい。 In addition, the relationship between the length W1 of the mirror surface portion 13 and the length W2 of the hollow portion 14 in the short direction is preferably 0.01 ≦ W2 / W1 ≦ 1.
 なお、図1及び図2においては、中空部14を短尺方向及び厚さ方向の双方において中心に配置し、鏡面部13と平行に直線の形状にて記載しているが、これはあくまで模式的に説明するためのものであって、中空部14の形状や位置関係を限定するものではない。 In FIG. 1 and FIG. 2, the hollow portion 14 is arranged in the center in both the short direction and the thickness direction, and is described in a straight line shape parallel to the mirror surface portion 13, but this is merely a schematic example. However, the shape and positional relationship of the hollow portion 14 are not limited.
 第2表面部12には、ヘジテーションマークHMが形成されている。ヘジテーションマークHMは、第2表面部12の長尺方向の幅内のどこに形成されても良いが、第1表面部11からなるべく離間した場所に形成されるのが望ましい。 A hesitation mark HM is formed on the second surface portion 12. The hesitation mark HM may be formed anywhere within the width of the second surface portion 12 in the longitudinal direction, but is preferably formed as far away as possible from the first surface portion 11.
 なお、前記第1実施形態では、長尺の板状に形成された光学素子用樹脂成形品としてfθミラー10を示したが、板状に形成された光学素子用樹脂成形品であれば、長尺に限らない。円形状、楕円形状、略正方形状であっても良い。この場合、中空部14を第1表面部11に沿わせ、その沿わせた方向で第1表面部より幅広に形成すれば良い。
(射出成形機)
 次に、fθミラー10の基材を製造するための射出成形機について図1から図6を参照にして説明する。図4は、(a)は短尺方向の二等分線を含む垂直面で切断した場合の金型の断面図、(b)は長尺方向の二等分線を含む垂直面で切断した場合の金型の断面図、図5は、検出手段33を備えた射出成形機の機能ブロック図、図6は、検出温度と圧縮ガスの注入との関係を示すタイムチャートである。
In the first embodiment, the fθ mirror 10 is shown as a resin molded product for an optical element formed in a long plate shape. However, if the resin molded product for an optical element formed in a plate shape is used, it is long. Not limited to scales. It may be circular, elliptical, or substantially square. In this case, the hollow portion 14 may be formed along the first surface portion 11 and wider than the first surface portion in the aligned direction.
(Injection molding machine)
Next, an injection molding machine for manufacturing the base material of the fθ mirror 10 will be described with reference to FIGS. 4A is a cross-sectional view of a mold when cut along a vertical plane including a bisector in a short direction, and FIG. 4B is a cross section along a vertical plane including a bisector in a long direction. FIG. 5 is a functional block diagram of an injection molding machine provided with the detecting means 33, and FIG. 6 is a time chart showing the relationship between the detected temperature and the injection of compressed gas.
 射出成形機は、キャビティ31を有する金型42と、キャビティ31に樹脂を充填させる充填手段32と、樹脂の先端部を検出するための検出手段33と、充填された樹脂中に圧縮ガスを注入するためのガス注入手段34、樹脂の充填、樹脂の充填停止、及び、圧縮ガスの注入開始、圧縮ガスの注入停止を制御する制御手段35を有している。
(金型)
 キャビティ31は、光学素子用樹脂成形品の外面を構成する第1表面部11及び第2表面部12を形成するための内表面を有している。ここで金型の形状について図4を用いて説明する。なお、図4(a)は短尺方向の二等分線を含む垂直面で切断した場合の金型の断面図であり、図4(b)は長尺方向の二等分線を含む垂直面で切断した場合の金型の断面図である。キャビティ31の内表面は、第1表面部11を形成するための第1領域311と、第2表面部12を形成するための第2領域312とを有している。なお、図4において、樹脂の充填側、流体の注入側のキャビティ端部と第1表面部11端との距離をAとして、他方の端部と第1表面部11端との距離をBとして示す。
The injection molding machine includes a mold 42 having a cavity 31, filling means 32 for filling the cavity 31 with resin, detection means 33 for detecting the tip of the resin, and injecting compressed gas into the filled resin. Gas injection means 34 for controlling, filling of resin, stopping of filling of resin, and control means 35 for controlling start of injection of compressed gas and stop of injection of compressed gas.
(Mold)
The cavity 31 has an inner surface for forming the first surface portion 11 and the second surface portion 12 constituting the outer surface of the optical element resin molded product. Here, the shape of the mold will be described with reference to FIG. 4A is a cross-sectional view of a mold cut along a vertical plane including a bisector in the short direction, and FIG. 4B is a vertical plane including a bisector in the long direction. It is sectional drawing of the metal mold | die at the time of cut | disconnecting by. The inner surface of the cavity 31 has a first region 311 for forming the first surface portion 11 and a second region 312 for forming the second surface portion 12. In FIG. 4, the distance between the end of the cavity on the resin filling side and the fluid injection side and the end of the first surface portion 11 is A, and the distance between the other end and the end of the first surface portion 11 is B. Show.
 ここで鏡面形成部315は、例えば、波長500nm以下の短波長用で用いられる面精度を達成するため、表面粗さRaが5nm以下に切削加工されている。なお当該表面粗さRaは2~3nm以下がより好ましい。 Here, the mirror surface forming portion 315 is cut to a surface roughness Ra of 5 nm or less in order to achieve surface accuracy used for short wavelengths of, for example, a wavelength of 500 nm or less. The surface roughness Ra is more preferably 2 to 3 nm or less.
 さらに、射出成形機における金型周辺の構成について図5を用いて説明する。キャビティ31には、ゲート321、ランナー322、及び、スプール323が連続して形成されている。キャビティ31、並びに、ランナー322及びスプール323(金型の通路)に沿ってヒータ(図示省略)が設けられている。ヒータを設けたことにより、キャビティ31及び金型の通路に接触した溶融樹脂が熱伝導によって冷却され流動性を失って固化するのを防止している。ヒータに代えて、金型に温度調節用の水路を設けても良い。なお、キャビティ31の内表面を、キャビティ31に充填されるfθミラー(樹脂成形品)10の外形として図5に示し、同じく、ゲート321、ランナー322、及び、スプール323をそれらの部分に通された樹脂の外形として、図5にそれぞれ示す。
(充填手段)
 充填手段32は、fθミラー10の短尺側から長尺方向に向かって充填させるように、金型に配置されることが望ましい。fθミラー10の短尺側をキャビティ31の右端側として図5に示す。
Further, the configuration around the mold in the injection molding machine will be described with reference to FIG. In the cavity 31, a gate 321, a runner 322, and a spool 323 are continuously formed. A heater (not shown) is provided along the cavity 31, and the runner 322 and the spool 323 (the passage of the mold). By providing the heater, the molten resin in contact with the cavity 31 and the mold passage is cooled by heat conduction and prevented from losing fluidity and solidifying. Instead of the heater, a temperature adjusting water channel may be provided in the mold. The inner surface of the cavity 31 is shown in FIG. 5 as the outer shape of the fθ mirror (resin molded product) 10 filled in the cavity 31, and the gate 321, the runner 322, and the spool 323 are similarly passed through these parts. The outer shape of the resin is shown in FIG.
(Filling means)
The filling means 32 is preferably arranged in the mold so as to be filled from the short side of the fθ mirror 10 toward the long direction. FIG. 5 shows the short side of the fθ mirror 10 as the right end side of the cavity 31.
 充填手段32のノズル324が前記スプール323に通じている。充填手段32は溶融樹脂をノズル324から押し出すためのスクリュー(図示省略)を有している。スクリューは、溶融樹脂をノズル324からスプール323、ランナー322、ゲート321に通し、キャビティ31に充填させる。スクリューの移動開始位置からの距離、又は、スクリューの移動開始からの経過時間は、溶融樹脂を押し出す量(射出量)に対応している。また、スプール323からゲート321までの金型の通路の容積、及び、長尺方向の各位置でのキャビティ31の横断面形状は分かっているから、スクリューの移動開始位置からの距離、又は、スクリューの移動開始からの経過時間を基に、キャビティ31に充填される溶融樹脂の先端部の位置を求めることが可能となる。
(検出手段)
 検出手段33は、キャビティ31の内表面の温度を検出する温度センサである。1又は複数の検出手段33が、第2表面部12を形成するためのキャビティ31の内表面の第2領域312を含み、長尺方向で第2領域312の範囲と同じ範囲を有するキャビティ31の内表面に配されている。ここで、長尺方向で第2領域312の範囲と同じ範囲を有するキャビティ31の内表面とは、長尺方向で第2領域312の範囲と同じ範囲で周状に巡らしたキャビティ31の内表面をいい、第2領域312を天井面とする場合、底面313及び両側壁面314である。長尺方向に対し、ゲート側の第2領域312とは反対側の第2領域312(天井面)に対向する底面313に配された検出手段33を図5に示す。なお、検出手段33としては、キャビティ31内における射出時の樹脂の先端部を検出することが可能なセンサであれば、温度センサに限らない、例えば、超音波センサや磁気センサであっても良い。
A nozzle 324 of the filling means 32 communicates with the spool 323. The filling means 32 has a screw (not shown) for extruding the molten resin from the nozzle 324. The screw passes the molten resin from the nozzle 324 through the spool 323, the runner 322, and the gate 321 and fills the cavity 31. The distance from the screw movement start position or the elapsed time from the screw movement start corresponds to the amount of extruded molten resin (injection amount). Further, since the volume of the mold passage from the spool 323 to the gate 321 and the cross-sectional shape of the cavity 31 at each position in the longitudinal direction are known, the distance from the screw movement start position or the screw Based on the elapsed time from the start of the movement, the position of the tip of the molten resin filled in the cavity 31 can be obtained.
(Detection means)
The detection means 33 is a temperature sensor that detects the temperature of the inner surface of the cavity 31. One or a plurality of detection means 33 includes the second region 312 on the inner surface of the cavity 31 for forming the second surface portion 12, and the cavity 31 has the same range as the second region 312 in the longitudinal direction. Arranged on the inner surface. Here, the inner surface of the cavity 31 having the same range as the range of the second region 312 in the longitudinal direction is the inner surface of the cavity 31 that circulates in the same range as the range of the second region 312 in the longitudinal direction. When the second region 312 is a ceiling surface, the bottom surface 313 and the side wall surfaces 314 are provided. FIG. 5 shows the detection means 33 disposed on the bottom surface 313 facing the second region 312 (ceiling surface) opposite to the gate-side second region 312 in the longitudinal direction. The detection means 33 is not limited to a temperature sensor as long as it is a sensor that can detect the tip of the resin at the time of injection in the cavity 31. For example, an ultrasonic sensor or a magnetic sensor may be used. .
 検出手段33は、キャビティ31の第2領域312に到達した樹脂の先端部を検出することが可能となる。制御手段35がインターフェース38を介して検出手段33からの検出信号である検出温度t1を受ける。制御手段35は、検出手段33からの検出温度t1を基に、充填手段32を制御し、樹脂の充填を停止させ、ガス注入手段34を制御し、圧縮ガスの注入を開始させる。 The detection means 33 can detect the tip of the resin that has reached the second region 312 of the cavity 31. The control means 35 receives a detection temperature t1 which is a detection signal from the detection means 33 via the interface 38. The control means 35 controls the filling means 32 based on the detected temperature t1 from the detection means 33, stops the resin filling, controls the gas injection means 34, and starts the injection of the compressed gas.
 上記の第2領域312を含み、長尺方向で第2領域312の範囲と同じ範囲を有するキャビティ31の内表面に検出手段33を設けたことにより、検出手段33が第1表面部11の表面精度を低下させる要因とならない。また、第2領域312に到達した樹脂の先端部を検出手段33が直接的に検出し、その検出信号を受けて、樹脂の充填を停止し、圧縮ガスの注入を開始するため、樹脂の先端部が第2領域312に到達してから樹脂の充填を停止し、圧縮ガスの注入を開始するまでに時間的な誤差が少なく、ヘジテーションマークHMを第2表面部12に確実に形成させ、第1表面部11の表面精度の低下を防止することが可能となる。
(ガス注入手段)
 ガス注入手段34は、圧縮ガスが貯留されるタンク(図示省略)、電磁弁341と、キャビティ31内に通じる射出口部342とを有している。制御手段35は、電磁弁341の開閉を制御する。使用する圧縮ガスは、樹脂と反応や混合しないものであれば良い。例えば、不活性ガスが挙げられる。安全面とコスト面を鑑みた場合、不燃性と中毒性、また安価な方法で得られることから、好ましくは、窒素が良い。射出口部342は、キャビティ31の内表面の第2領域312に対応する領域であって底面313に設けられている。つまり、第1表面部端部と光学素子端部に相当する位置との間のスペース内の底面部に設けられている。
(記憶手段)
 記憶手段36は、検出手段33からの検出温度t1に対し比較すべき予め定められた基準温度t0が記憶されている。検出温度t1及び基準温度t0を図6に示す。
(判断手段)
 判断手段37は、検出温度t1と基準温度t0とを比較し、検出温度t1が基準温度t0を超えた場合、制御手段35に判断結果を出力する。溶融樹脂の先端部が検出手段33の位置に達したとき、検出手段33が検出する検出温度t1を基準温度t0とする。
(制御手段)
 制御手段35は、検出手段33からの検出温度t1を受けて、判断手段37に検出温度と基準温度とを比較させ、検出温度t1が基準温度t0を超えたと判断手段37が判断した場合、充填手段32を制御し、キャビティ31への樹脂の充填を停止させ、ガス注入手段34を制御して、充填された樹脂中に圧縮ガスの注入を開始させる。また、制御手段35は、圧縮ガスの注入を開始してから所定時間経過後に、圧縮ガスの注入を停止させる。検出温度t1が基準温度t0を超えたときに、樹脂の充填を停止させる動作、及び、圧縮ガスの注入を開始させる動作を図6に示す。
By providing the detection means 33 on the inner surface of the cavity 31 that includes the second region 312 and has the same range as the range of the second region 312 in the longitudinal direction, the detection means 33 is provided on the surface of the first surface portion 11. It does not cause a decrease in accuracy. In addition, the detection means 33 directly detects the tip of the resin that has reached the second region 312, receives the detection signal, stops the filling of the resin, and starts the injection of the compressed gas. After the portion reaches the second region 312, the filling of the resin is stopped, and there is little time error from the start of the injection of the compressed gas, and the hesitation mark HM is reliably formed on the second surface portion 12. It becomes possible to prevent the surface accuracy of the surface portion 11 from being lowered.
(Gas injection means)
The gas injection means 34 has a tank (not shown) in which compressed gas is stored, an electromagnetic valve 341, and an injection port 342 that communicates with the cavity 31. The control means 35 controls opening and closing of the electromagnetic valve 341. The compressed gas to be used may be any gas that does not react or mix with the resin. For example, an inert gas is mentioned. In view of safety and cost, nitrogen is preferable because it is nonflammable and toxic, and can be obtained by an inexpensive method. The injection port portion 342 is a region corresponding to the second region 312 on the inner surface of the cavity 31 and is provided on the bottom surface 313. That is, it is provided on the bottom surface in the space between the first surface portion end and the position corresponding to the optical element end.
(Memory means)
The storage means 36 stores a predetermined reference temperature t0 to be compared with the detected temperature t1 from the detection means 33. The detected temperature t1 and the reference temperature t0 are shown in FIG.
(Judgment means)
The determination unit 37 compares the detected temperature t1 with the reference temperature t0, and outputs a determination result to the control unit 35 when the detected temperature t1 exceeds the reference temperature t0. When the tip of the molten resin reaches the position of the detection means 33, the detection temperature t1 detected by the detection means 33 is set as a reference temperature t0.
(Control means)
The control unit 35 receives the detection temperature t1 from the detection unit 33, causes the determination unit 37 to compare the detection temperature and the reference temperature, and when the determination unit 37 determines that the detection temperature t1 exceeds the reference temperature t0, The means 32 is controlled to stop the filling of the resin into the cavity 31, and the gas injection means 34 is controlled to start the injection of the compressed gas into the filled resin. Further, the control means 35 stops the injection of the compressed gas after a predetermined time has elapsed since the start of the injection of the compressed gas. FIG. 6 shows an operation for stopping the filling of the resin and an operation for starting the injection of the compressed gas when the detected temperature t1 exceeds the reference temperature t0.
 充填された樹脂中に圧縮ガスを注入することにより、ヘジテーション等の外観異常形成部位を形成する溶融樹脂部は射出口部342側とは第1表面部11を介して反対側の第2表面部12に相当する領域に射出口部342側と同等もしくはそれ以上の長さをもって形成された空間に樹脂が押し込まれるため、形成される中空部14は第1表面部11に相当する領域下に余裕をもって全体に亘って広く形成される。形成された中空部14により樹脂の熱収縮による引張応力の影響を解放させることができ、第1表面部11のソリを低減させることができる。 By injecting compressed gas into the filled resin, the molten resin part forming an abnormal appearance forming part such as hesitation is the second surface part opposite to the injection port part 342 side through the first surface part 11. 12, the resin is pushed into a space formed with a length equal to or longer than that of the injection port 342 side, so that the formed hollow portion 14 has a margin below the region corresponding to the first surface portion 11. It is formed widely throughout. The formed hollow portion 14 can release the influence of tensile stress due to the thermal contraction of the resin, and the warpage of the first surface portion 11 can be reduced.
 また、当該中空部14を第2表面部12に相当する領域まで広く形成する事により、より確実に第1表面部11のソリを低減させる事ができるため、好ましい。 Further, it is preferable that the hollow portion 14 is formed widely up to the region corresponding to the second surface portion 12 because the warpage of the first surface portion 11 can be more reliably reduced.
 なお、圧縮ガスの注入の開始は、樹脂の充填を停止後の樹脂冷却進行前である事を考慮すると停止とほぼ同時又は樹脂の充填後1~5秒以内が好ましい。 In consideration of the fact that the start of the injection of the compressed gas is before the resin cooling proceeds after the resin filling is stopped, it is preferable that the injection of the compressed gas is almost simultaneously with the stop or within 1 to 5 seconds after the resin filling.
 制御手段35は、インターフェース38を介して操作手段41による操作を受けた場合、予め定められた時間を調整し、調整後の予め定められた時間を記憶手段36に記憶させる。予め定められた時間を調整することにより、ヘジテーションマークHMの位置調節をすることが可能となる。 When the control means 35 receives an operation by the operation means 41 via the interface 38, the control means 35 adjusts a predetermined time and causes the storage means 36 to store the predetermined time after the adjustment. By adjusting the predetermined time, the position of the hesitation mark HM can be adjusted.
 また、制御手段35は、操作手段41による指示を受けて、変更された基準温度t0を記憶手段36に記憶させる。樹脂の充填の停止及び圧縮ガスの注入開始時を調整するためには基準温度t0を変更調整すれば良い。基準温度t0は、fθミラー10の基材の製造実験を繰り返し、製造されたfθミラー10を測定、評価すことにより、経験的に決められる。基準温度t0は、fθミラー10の基材の材料、加熱シリンダーの温度、及び、単位時間毎の樹脂の充填量を基に相対的に決められる。
(光学素子用樹脂成形品の材料)
 次に、fθミラー10の材料等について説明する。fθミラー10の基材を構成する樹脂材料は、例えば、ポリカーボネイト、ポリエチレンテレフタレート、ポリメチルメタクリレート、シクロオレフィンポリマー、又は、これらの2種以上からなる樹脂を挙げることができる。fθミラー10においては、中でも、ポリカーボネイト、シクロオレフィンポリマーを使用することが好ましい。
(鏡面部の材料)
 次に、fθミラー10の鏡面部13を構成する材料等について説明する。鏡面部13を構成する材料として、例えば、一酸化ケイ素、二酸化ケイ素、アルミナを挙げることができる。成膜方法としては、真空蒸着法、スパッタリング法、イオンプレーティング法等の公知の成膜方法を用いる事ができる。
(製造方法)
 次に、fθミラー10の製造方法について図7を参照にして説明する。図7は、fθミラー10の製造工程を示すフローチャートである。
The control unit 35 receives the instruction from the operation unit 41 and stores the changed reference temperature t0 in the storage unit 36. In order to adjust the stop of the filling of the resin and the start of the injection of the compressed gas, the reference temperature t0 may be changed and adjusted. The reference temperature t0 is determined empirically by repeating the manufacturing experiment of the base material of the fθ mirror 10 and measuring and evaluating the manufactured fθ mirror 10. The reference temperature t0 is relatively determined based on the material of the base material of the fθ mirror 10, the temperature of the heating cylinder, and the resin filling amount per unit time.
(Materials for resin molded products for optical elements)
Next, materials for the fθ mirror 10 will be described. Examples of the resin material constituting the base material of the fθ mirror 10 include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, cycloolefin polymer, or a resin composed of two or more of these. In the fθ mirror 10, it is preferable to use a polycarbonate or a cycloolefin polymer.
(Mirror surface material)
Next, the material etc. which comprise the mirror surface part 13 of the f (theta) mirror 10 are demonstrated. Examples of the material constituting the mirror surface portion 13 include silicon monoxide, silicon dioxide, and alumina. As a film forming method, a known film forming method such as a vacuum deposition method, a sputtering method, or an ion plating method can be used.
(Production method)
Next, a method for manufacturing the fθ mirror 10 will be described with reference to FIG. FIG. 7 is a flowchart showing manufacturing steps of the fθ mirror 10.
 金型のキャビティ31に樹脂を充填する前において、充填手段32のシリンダー(図示省略)は所定の溶融温度になるように設定されている。また、制御手段35は、電磁弁341を閉じさせている。制御手段35が、充填手段32を制御し、スクリューを回転させて、溶融樹脂をノズル324から射出させ、スプール323、ランナー322、及び、ゲート321に通させ、キャビティ31に充填させる(ステップS101)。 Before filling the mold cavity 31 with resin, the cylinder (not shown) of the filling means 32 is set to have a predetermined melting temperature. Further, the control means 35 closes the electromagnetic valve 341. The control means 35 controls the filling means 32, rotates the screw, injects the molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S101). .
 さらに溶融樹脂をキャビティ31に充填させる。第2表面部12に到達した溶融樹脂の先端部を検出手段33が検出する。検出手段33による検出温度t1が基準温度t0を超えたと判断手段37が判断した場合(ステップS102;Y)、制御手段35は、充填手段32を制御し、キャビティ31への樹脂の充填を停止させる(ステップS103)。次に、制御手段35は、ガス注入手段34を制御して、電磁弁341を開放させる。それにより、タンク(図示省略)内の圧縮ガスを射出口部342からキャビティ31内に噴出させる。 Further, the cavity 31 is filled with molten resin. The detection means 33 detects the tip of the molten resin that has reached the second surface portion 12. When the determination means 37 determines that the detected temperature t1 detected by the detection means 33 has exceeded the reference temperature t0 (step S102; Y), the control means 35 controls the filling means 32 to stop the filling of the resin into the cavity 31. (Step S103). Next, the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31.
 射出口部342が第2領域312に対向する底面313に配され、また、射出口部342が長尺方向に向かって開口されていることにより、充填された樹脂中に長尺方向へ圧縮ガスを注入させる(ステップS104)。それにより、樹脂中に長尺方向へ延びた中空部を形成させることができる。また、溶融樹脂の先端部が第2表面部12に到達したとき、樹脂の充填を停止させ、樹脂中に圧縮ガスを注入させたので、ヘジテーションマークが第2表面部12に形成されるが、第1表面部11には形成されないため、第1表面部11の表面精度を低下させることがない。 The injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S104). Thereby, the hollow part extended in the elongate direction can be formed in resin. Also, when the tip of the molten resin reaches the second surface portion 12, filling of the resin is stopped and compressed gas is injected into the resin, so that a hesitation mark is formed on the second surface portion 12, Since the first surface portion 11 is not formed, the surface accuracy of the first surface portion 11 is not lowered.
 次に、金型との熱伝導により、溶融樹脂を固化、冷却させる。固化、冷却させるまで間、中空部14を所定圧力に保圧する(ステップS105)。保圧することにより、第1表面部11を第1領域311に押し付けるので、第1表面部11の面転写性を向上させることが可能となる。なお、圧縮ガスの注入工程(ステップS104)から保圧工程(ステップS105)の中で、第1表面部11に鏡面部13が形成される。次に、中空部14内の圧縮ガスを除去し、金型を開き、fθミラー(樹脂成形品)10を取り出す(ステップS106)。 Next, the molten resin is solidified and cooled by heat conduction with the mold. The hollow portion 14 is held at a predetermined pressure until it is solidified and cooled (step S105). By holding the pressure, the first surface portion 11 is pressed against the first region 311, so that the surface transfer property of the first surface portion 11 can be improved. The mirror surface portion 13 is formed on the first surface portion 11 during the compressed gas injection step (step S104) to the pressure holding step (step S105). Next, the compressed gas in the hollow portion 14 is removed, the mold is opened, and the fθ mirror (resin molded product) 10 is taken out (step S106).
 なお、上記ステップS102においては、制御手段35が、検出手段33からの検出信号である検出温度t1を受け、判断手段37が検出温度t1が基準温度を超えたと判断した場合に、樹脂の充填を停止させ、圧縮ガスの注入を開始させた。以上のことから分かるように、第2領域312に対向する底面313等(側壁面314を含む)に設けられた検出手段33の数は1個である。複数の検出手段33を、第2領域312に対向する底面313等に設けても良い。 In step S102, the control unit 35 receives the detection temperature t1 that is a detection signal from the detection unit 33, and when the determination unit 37 determines that the detection temperature t1 exceeds the reference temperature, the filling of the resin is performed. Stopped and started the injection of compressed gas. As can be seen from the above, the number of detection means 33 provided on the bottom surface 313 and the like (including the side wall surface 314) facing the second region 312 is one. A plurality of detection means 33 may be provided on the bottom surface 313 facing the second region 312 or the like.
 複数の検出手段33を設けた場合、樹脂の充填の停止、及び、圧縮ガスの注入の開始を次のように行う。制御手段35が、何番目の検出手段33による検出温度t1が基準温度t0を超えた場合に、充填手段32及びガス注入手段34を制御するのかを予め設定しておき、設定した前記検出手段33を記憶手段36に記憶させておく。そして、制御手段35が、所定の検出手段33による検出温度t1が基準温度t0を超えた場合、制御手段35が、充填手段32を制御して樹脂の充填を停止させ、ガス注入手段34を制御して圧縮ガスの注入開始を制御すれば良い。複数の検出手段33を設けることにより、樹脂の充填を停止させ、圧縮ガスを注入させる時期の正確性が向上し、ヘジテーションマークHMを確実に第2表面部12に形成させることが可能となる。 When a plurality of detection means 33 are provided, the resin filling is stopped and the compressed gas injection is started as follows. The control means 35 sets in advance whether the control means 35 controls the filling means 32 and the gas injection means 34 when the detection temperature t1 detected by the detection means 33 exceeds the reference temperature t0. Is stored in the storage means 36. When the control temperature 35 detected by the predetermined detection means 33 exceeds the reference temperature t0, the control means 35 controls the filling means 32 to stop the resin filling, and controls the gas injection means 34. Then, the injection start of the compressed gas may be controlled. By providing a plurality of detection means 33, the filling of the resin is stopped, the accuracy of the timing of injecting the compressed gas is improved, and the hesitation mark HM can be reliably formed on the second surface portion 12.
 前記第1実施形態では、第2領域312を含む、長尺方向で第2領域312の範囲と同じ範囲を有するキャビティ31の内表面に検出手段33を設け、検出手段33による検出温度が基準温度を超えた場合に、制御手段35が充填手段32及びガス注入手段34を制御するものについて説明した。 In the first embodiment, the detection unit 33 is provided on the inner surface of the cavity 31 including the second region 312 and having the same range as the second region 312 in the longitudinal direction, and the temperature detected by the detection unit 33 is the reference temperature. In the above description, the control means 35 controls the filling means 32 and the gas injection means 34 when the value exceeds the above.
 次に、第1実施形態の変形例に係る製造装置について、図8及び図9を参照にして説明する。図8は、検出手段33及びタイマー39を備えた射出成形機の機能ブロック図、図9は、検出温度と圧縮ガスの注入の開始との関係を示すタイムチャートである。タイマー39を備えることにより、検出手段33を第1領域311に設けることが可能となる。 Next, a manufacturing apparatus according to a modification of the first embodiment will be described with reference to FIGS. FIG. 8 is a functional block diagram of an injection molding machine provided with the detection means 33 and the timer 39, and FIG. 9 is a time chart showing the relationship between the detected temperature and the start of injection of compressed gas. By providing the timer 39, the detection means 33 can be provided in the first region 311.
 制御手段35は、検出手段33からの検出温度t1が基準温度t0を超えたと判断手段37が判断した場合、その超えた時からの経過時間をタイマー39に計測させ、経過時間が予め定められた時間を超えたと判断手段37が判断した場合、制御手段35が、充填手段32を制御して樹脂の充填を停止させ、ガス注入手段34を制御して、圧縮ガスの注入を開始させ、圧縮ガスの注入を開始してから所定時間経過後に、圧縮ガスの注入を停止させる。検出温度t1が基準温度t0を超えたときに、経過時間を計数させる動作、並びに、経過時間が予め定められた時間を超えたとき、樹脂の充填を停止させる動作、及び、圧縮ガスの注入を開始させる動作を図9にそれぞれ示す。 When the determination unit 37 determines that the detected temperature t1 from the detection unit 33 has exceeded the reference temperature t0, the control unit 35 causes the timer 39 to measure the elapsed time from the time when the detected temperature t1 has exceeded the reference temperature t0. When the determination unit 37 determines that the time has been exceeded, the control unit 35 controls the filling unit 32 to stop the filling of the resin, controls the gas injection unit 34 to start the injection of the compressed gas, and presses the compressed gas. The injection of the compressed gas is stopped after a lapse of a predetermined time from the start of the injection. An operation for counting the elapsed time when the detected temperature t1 exceeds the reference temperature t0, an operation for stopping the filling of the resin when the elapsed time exceeds a predetermined time, and injection of compressed gas. The operation to be started is shown in FIG.
 1又は複数の検出手段33が、第1表面部11を形成するための第1領域311を除き、長尺方向で第1領域311の範囲と同じ範囲を有するキャビティ31の内表面に配されている。第1領域311(天井面)に対向する底面313に配されている検出手段33を図8に示す。長尺方向で第1領域311の範囲と同じ範囲を有するキャビティ31の内表面とは、第1領域311を天井面とする場合、底面313及び両側壁面314である。検出手段33を底面313に配したので、第1表面部11の表面精度の低下の要因とならない。 One or a plurality of detection means 33 are arranged on the inner surface of the cavity 31 having the same range as the range of the first region 311 in the longitudinal direction except for the first region 311 for forming the first surface portion 11. Yes. FIG. 8 shows the detection means 33 arranged on the bottom surface 313 facing the first region 311 (ceiling surface). The inner surface of the cavity 31 having the same range as the first region 311 in the longitudinal direction is the bottom surface 313 and both side wall surfaces 314 when the first region 311 is a ceiling surface. Since the detection means 33 is disposed on the bottom surface 313, it does not cause a decrease in the surface accuracy of the first surface portion 11.
 溶融樹脂の先端部が第1領域311から第2領域312に達したと推定されるとき、制御手段35は、樹脂の充填を停止し、圧縮ガスの注入を開始する。それにより、第2表面部12にヘジテーションマークHMを形成させることが可能となる。 When it is estimated that the tip of the molten resin has reached the second region 312 from the first region 311, the control means 35 stops filling the resin and starts injecting compressed gas. As a result, the hesitation mark HM can be formed on the second surface portion 12.
 また、例えば、検出手段33の設置スペースの制限又はfθミラー10(樹脂成形品)の形状の制限下で、第2領域312を含み、長尺方向で第2領域312の範囲と同じ範囲を有するキャビティ31の内表面に検出手段33を設置することができない場合がある。この場合には、長尺方向で第1領域311の範囲と同じ範囲を有するキャビティ31の内表面である底面313又は側壁面314に設けることが可能となる。それにより、検出手段33の設置の自由度を向上させることできる。 Further, for example, under the limitation of the installation space of the detection means 33 or the limitation of the shape of the fθ mirror 10 (resin molded product), the second region 312 is included and has the same range as the range of the second region 312 in the longitudinal direction. In some cases, the detection means 33 cannot be installed on the inner surface of the cavity 31. In this case, it can be provided on the bottom surface 313 or the side wall surface 314 which is the inner surface of the cavity 31 having the same range as the first region 311 in the longitudinal direction. Thereby, the freedom degree of installation of the detection means 33 can be improved.
 なお、上記の予め定められた時間は、例えば、実験により、検出手段33による検出温度t1が基準温度t0を超えたと判断手段37が判断してから樹脂の先端部が第2領域に到達するまでの時間を所定の複数回実測し、その実測値から樹脂の先端部の動き(キャビティ31内での広がり、長尺方向への移動)を近似により計算し、その計算した結果を基に求められる時間である。制御手段35は、求められた予め定められた時間を記憶手段36に記憶させる。また、操作手段41の操作を受けて、制御手段35は、予め定められた時間を調整し、記憶手段36に記憶させる。それにより、求められた予め定められた時間と、樹脂の先端部が第2領域312に到達するまでの実際の時間との間に生じる誤差を少なくすることが可能となる。 Note that the above predetermined time is, for example, from the determination that the determination unit 37 determines that the detection temperature t1 detected by the detection unit 33 has exceeded the reference temperature t0, until the leading end of the resin reaches the second region. Is measured for a predetermined number of times, and the movement of the tip of the resin (spreading in the cavity 31 and movement in the longitudinal direction) is calculated by approximation from the measured value, and obtained based on the calculated result. It's time. The control unit 35 stores the determined predetermined time in the storage unit 36. In response to the operation of the operation unit 41, the control unit 35 adjusts a predetermined time and stores it in the storage unit 36. Thereby, it is possible to reduce an error that occurs between the determined predetermined time and the actual time until the front end of the resin reaches the second region 312.
 さらに、複数の検出手段33を設け、複数の検出手段33からの各検出温度t1を基に、樹脂の先端部の長尺方向の移動速度を求めるようにしても良い。この場合、前記求められた移動速度を基に、予め定められた時間を補正し、補正した予め定められた時間を記憶手段36に記憶させる。判断手段37は、前記検出手段33から検出温度t1が基準温度t0を超えたと判断手段37が判断してからの経過時間と、前記補正した予め定められた時間(樹脂の先端部が第2領域に到達する予測時間)とを比較する。制御手段35は、前記経過時間が前記補正した予め定められた時間を超えたと判断手段37が判断した場合、充填手段32及びガス注入手段34を制御する。 Furthermore, a plurality of detection means 33 may be provided, and the moving speed in the longitudinal direction of the front end portion of the resin may be obtained based on the detected temperatures t1 from the plurality of detection means 33. In this case, a predetermined time is corrected based on the obtained moving speed, and the corrected predetermined time is stored in the storage means 36. The judging means 37 includes an elapsed time after the judging means 37 judges that the detected temperature t1 has exceeded the reference temperature t0 from the detecting means 33, and the corrected predetermined time (the resin tip is in the second region). Compared to the estimated time to reach The control unit 35 controls the filling unit 32 and the gas injection unit 34 when the determination unit 37 determines that the elapsed time exceeds the corrected predetermined time.
 次に、変形例に係るfθミラー10の基材の製造方法について図10を参照にして説明する。図10は、fθミラー10の基材の製造工程を示すフローチャートである。 Next, a method for manufacturing the base material of the fθ mirror 10 according to the modification will be described with reference to FIG. FIG. 10 is a flowchart showing the manufacturing process of the base material of the fθ mirror 10.
 制御手段35が、充填手段32を制御し、スクリューを回転させて、溶融樹脂をノズル324から射出させ、スプール323、ランナー322、及び、ゲート321に通させ、キャビティ31に充填させる(ステップS201)。 The control means 35 controls the filling means 32, rotates the screw, injects molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S201). .
 さらに溶融樹脂をキャビティ31に充填させる。第1表面部11に到達した溶融樹脂の先端部を検出手段33が検出する。制御手段35は、検出手段33による検出温度t1が基準温度t0を超えたと判断手段37が判断した場合(ステップS202;Y)、判断してからの経過時間をタイマー39に計測させる(ステップS203)。計測された経過時間が、予め定められた時間を超えたと判断手段37が判断した場合(ステップS204;Y)、制御手段35は、充填手段32を制御し、キャビティ31への樹脂の充填を停止させる(ステップS205)。次に、制御手段35は、ガス注入手段34を制御して、電磁弁341を開放させる。それにより、タンク(図示省略)内の圧縮ガスを射出口部342からキャビティ31内に噴出させる。このとき、溶融樹脂の先端部は、第2表面部12に到達している。 Further, the cavity 31 is filled with molten resin. The detection means 33 detects the tip of the molten resin that has reached the first surface portion 11. When the determination unit 37 determines that the detected temperature t1 detected by the detection unit 33 exceeds the reference temperature t0 (step S202; Y), the control unit 35 causes the timer 39 to measure the elapsed time since the determination (step S203). . When the determination means 37 determines that the measured elapsed time has exceeded a predetermined time (step S204; Y), the control means 35 controls the filling means 32 to stop filling the cavity 31 with resin. (Step S205). Next, the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31. At this time, the front end portion of the molten resin reaches the second surface portion 12.
 射出口部342が第2領域312に対向する底面313に配され、また、射出口部342が長尺方向に向かって開口されていることにより、充填された樹脂中に長尺方向へ圧縮ガスを注入させる(ステップS206)。それにより、樹脂中に長尺方向へ延びた中空部14を形成させることができる。また、前記計測された経過時間が予め定められた時間を超えたと判断した場合(溶融樹脂の先端部が第2表面部12に到達した場合)、制御手段35が樹脂の充填を停止させ、樹脂中に圧縮ガスを注入させたので、ヘジテーションマークが第2表面部12に形成される。 The injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S206). Thereby, the hollow part 14 extended in the elongate direction can be formed in resin. Further, when it is determined that the measured elapsed time has exceeded a predetermined time (when the front end of the molten resin reaches the second surface portion 12), the control means 35 stops filling the resin, Since the compressed gas is injected therein, a hesitation mark is formed on the second surface portion 12.
 次に、金型との熱伝導により、溶融樹脂を固化、冷却させる。固化、冷却させるまで間、中空部14を所定圧力に保圧する(ステップS207)。保圧することにより、第1表面部11を第1領域311に押し付けるので、第1表面部11の面転写性を向上させることが可能となる。次に、中空部14内の圧縮ガスを除去し、金型を開き、fθミラー(樹脂成形品)10を取り出す(ステップS208)。 Next, the molten resin is solidified and cooled by heat conduction with the mold. The hollow portion 14 is held at a predetermined pressure until it is solidified and cooled (step S207). By holding the pressure, the first surface portion 11 is pressed against the first region 311, so that the surface transfer property of the first surface portion 11 can be improved. Next, the compressed gas in the hollow portion 14 is removed, the mold is opened, and the fθ mirror (resin molded product) 10 is taken out (step S208).
 第1実施形態の変形例に係る射出成形機では、検出手段33及びタイマー39を備え、検出手段33からの検出温度t1が基準温度t0を超えたと判断手段37が判断した場合、その判断してからの経過時間をタイマー39に計測させ、計測結果を基に、制御手段35が充填手段32及びガス注入手段34を制御した。 The injection molding machine according to the modification of the first embodiment includes the detection unit 33 and the timer 39, and when the determination unit 37 determines that the detected temperature t1 from the detection unit 33 exceeds the reference temperature t0, the determination is performed. The elapsed time from the time is measured by the timer 39, and the control means 35 controls the filling means 32 and the gas injection means 34 based on the measurement result.
 次に、第1実施形態の他の変形例に係る製造装置について図11を参照にして説明する。図11は、タイマー39を備えた射出成形機の機能ブロック図である。タイマー39により計測された経過時間を受けて、制御手段35は、充填手段32を制御して樹脂の充填を停止させ、ガス注入手段34を制御して圧縮ガスの注入を開始させる。 Next, a manufacturing apparatus according to another modification of the first embodiment will be described with reference to FIG. FIG. 11 is a functional block diagram of an injection molding machine provided with a timer 39. Upon receiving the elapsed time measured by the timer 39, the control means 35 controls the filling means 32 to stop the resin filling, and controls the gas injection means 34 to start the injection of the compressed gas.
 この変形例に係る射出成形機では、樹脂の充填を開始してからの経過時間が予め定められた時間を超えた場合、制御手段35が充填手段32及びガス注入手段34を制御することとした。それにより、第2表面部12にヘジテーションマークHMを形成させることが可能となる。 In the injection molding machine according to this modification, the control means 35 controls the filling means 32 and the gas injection means 34 when the elapsed time from the start of resin filling exceeds a predetermined time. . As a result, the hesitation mark HM can be formed on the second surface portion 12.
 樹脂の充填の開始は、充填手段32のスクリュー(図示省略)を始動したときであっても良く、制御手段35が充填手段32に充填の開始を指示したときであっても良い。タイマー39は、経過時間を計測する。判断手段37は、計測された経過時間が予め定められた時間を超えたか否かを判断する。経過時間が予め定められた時間を超えたとの判断手段37の判断を受けて、制御手段35は、充填手段32及びガス注入手段34を制御する。温度センサ等の検出手段33を必要としないので、コストを低減させることが可能となる。 Resin filling may be started when a screw (not shown) of the filling means 32 is started, or when the control means 35 instructs the filling means 32 to start filling. The timer 39 measures the elapsed time. The determination unit 37 determines whether the measured elapsed time has exceeded a predetermined time. In response to the determination by the determination means 37 that the elapsed time has exceeded a predetermined time, the control means 35 controls the filling means 32 and the gas injection means 34. Since the detection means 33 such as a temperature sensor is not required, the cost can be reduced.
 次に、他の変形例に係るfθミラー10の基材の製造方法について図12を参照にして説明する。図12は、fθミラー10の基材の製造工程を示すフローチャートである。 Next, a method for manufacturing the base material of the fθ mirror 10 according to another modification will be described with reference to FIG. FIG. 12 is a flowchart showing a manufacturing process of the base material of the fθ mirror 10.
 制御手段35が、充填手段32を制御し、スクリューを回転させて、溶融樹脂をノズル324から射出させ、スプール323、ランナー322、及び、ゲート321に通させ、キャビティ31に充填させる(ステップS301)。 The control means 35 controls the filling means 32, rotates the screw, injects the molten resin from the nozzle 324, passes through the spool 323, the runner 322, and the gate 321 and fills the cavity 31 (step S301). .
 タイマー39は、樹脂の充填を開始してからの経過時間を計測する(ステップS302)。さらに溶融樹脂をキャビティ31に充填させていく。判断手段37は、計測された経過時間が、予め定められた時間を超えたか否かを判断する。計測された経過時間が、予め定められた時間を超えたと判断手段37が判断した場合(ステップS303;Y)、制御手段35は、充填手段32を制御し、キャビティ31への樹脂の充填を停止させる(ステップS304)。次に、制御手段35は、ガス注入手段34を制御して、電磁弁341を開放させる。それにより、タンク(図示省略)内の圧縮ガスを射出口部342からキャビティ31内に噴出させる。このとき、溶融樹脂の先端部は、第2表面部12に到達している。 Timer 39 measures the elapsed time from the start of resin filling (step S302). Further, the cavity 31 is filled with molten resin. The determination unit 37 determines whether the measured elapsed time has exceeded a predetermined time. When the determination means 37 determines that the measured elapsed time has exceeded a predetermined time (step S303; Y), the control means 35 controls the filling means 32 to stop filling the cavity 31 with resin. (Step S304). Next, the control means 35 controls the gas injection means 34 to open the electromagnetic valve 341. Thereby, the compressed gas in the tank (not shown) is ejected from the injection port portion 342 into the cavity 31. At this time, the front end portion of the molten resin reaches the second surface portion 12.
 射出口部342が第2領域312に対向する底面313に配され、また、射出口部342が長尺方向に向かって開口されていることにより、充填された樹脂中に長尺方向へ圧縮ガスを注入させる(ステップS305)。それにより、樹脂中に長尺方向へ延びた中空部14を形成させることができる。また、判断手段37が前記計測された経過時間が予め定められた時間を超えたと判断した場合(溶融樹脂の先端部が第2表面部12に到達した場合)、制御手段35が樹脂の充填を停止させ、樹脂中に圧縮ガスを注入させたので、ヘジテーションマークが第2表面部12に形成される。 The injection port portion 342 is disposed on the bottom surface 313 facing the second region 312, and the injection port portion 342 is opened in the longitudinal direction, whereby compressed gas is filled in the longitudinal direction in the filled resin. Is injected (step S305). Thereby, the hollow part 14 extended in the elongate direction can be formed in resin. Further, when the determination unit 37 determines that the measured elapsed time has exceeded a predetermined time (when the tip of the molten resin reaches the second surface portion 12), the control unit 35 fills the resin. Since the compressed gas is injected into the resin, hesitation marks are formed on the second surface portion 12.
 次に、金型との熱伝導により、溶融樹脂を固化、冷却させる。固化、冷却させるまで間、中空部14を所定圧力に保圧する(ステップS306)。保圧することにより、第1表面部11を第1領域311に押し付けるので、第1表面部11の面転写性を向上させることが可能となる。次に、中空部14内の圧縮ガスを除去し、金型を開き、fθミラー(樹脂成形品)10を取り出す(ステップS307)。
[第2の実施の形態]
 次に、この発明の第2実施形態に係る光学素子用樹脂成形品について図13及び図14を参照にして説明する。図13は光学素子用樹脂成形品の平面図、図14は光学素子用樹脂成形品の横断面図である。前記第1実施形態に係る光学素子用樹脂成形品については、fθミラー10を代表して説明したが、第2実施形態に係る光学素子用樹脂成形品については、fθレンズ20を代表して説明する。
Next, the molten resin is solidified and cooled by heat conduction with the mold. The hollow portion 14 is maintained at a predetermined pressure until it is solidified and cooled (step S306). By holding the pressure, the first surface portion 11 is pressed against the first region 311, so that the surface transfer property of the first surface portion 11 can be improved. Next, the compressed gas in the hollow portion 14 is removed, the mold is opened, and the fθ mirror (resin molded product) 10 is taken out (step S307).
[Second Embodiment]
Next, a resin molded product for an optical element according to a second embodiment of the present invention will be described with reference to FIGS. FIG. 13 is a plan view of a resin molded product for optical elements, and FIG. 14 is a cross-sectional view of the resin molded product for optical elements. The resin molded product for the optical element according to the first embodiment has been described by using the fθ mirror 10 as a representative. However, the resin molded product for the optical element according to the second embodiment by using the fθ lens 20 as a representative. To do.
 fθレンズ20は、fθミラー10と同様にレーザビーム走査光学装置に設けられる。fθミラー10がレーザビームを反射させる鏡面部13を有するのに対し、fθレンズ20は、レーザビームを透過させる光学面部23を有する点で異なる。光学面部23を有するfθレンズ20においても、fθミラー10と同様の機能を有し、ポリゴンミラー3で角速度一定で偏向されたレーザビームを走査面上(感光体ドラム7上)で線速度一定になるよう速度変換する。このレーザビームは窒化ガリウム系の半導体レーザであって、発振波長は408nmである。 The fθ lens 20 is provided in the laser beam scanning optical device in the same manner as the fθ mirror 10. The fθ mirror 10 has a mirror surface portion 13 that reflects a laser beam, whereas the fθ lens 20 has an optical surface portion 23 that transmits a laser beam. The fθ lens 20 having the optical surface portion 23 also has the same function as the fθ mirror 10, and the laser beam deflected at a constant angular velocity by the polygon mirror 3 is made constant on the scanning surface (on the photosensitive drum 7). Change the speed so that This laser beam is a gallium nitride based semiconductor laser and has an oscillation wavelength of 408 nm.
 fθレンズ20は、長尺の板状に形成され、長尺方向の所定の範囲H2を有し、所定の範囲H2内で受けた光ビームを透過させる光学面部23が設けられる第1表面部21と、第1表面部21の周辺に配された第2表面部22と、内部に設けられた中空部24とを有している。第1表面部21は、図14の紙面において上面側と下面側とにそれぞれ設けられている。上面側の第1表面部21は、短尺方向に所定の曲面形状を有する凸面となっている。下面側の第1表面部21は、短尺方向に所定の曲面形状を有する凹面となっている。 The fθ lens 20 is formed in a long plate shape, has a predetermined range H2 in the longitudinal direction, and is provided with an optical surface portion 23 that transmits a light beam received within the predetermined range H2. And a second surface portion 22 disposed around the first surface portion 21 and a hollow portion 24 provided therein. The first surface portion 21 is provided on each of the upper surface side and the lower surface side in the paper surface of FIG. The first surface portion 21 on the upper surface side is a convex surface having a predetermined curved surface shape in the short direction. The first surface portion 21 on the lower surface side is a concave surface having a predetermined curved surface shape in the short direction.
 長尺方向の幅において、所定範囲を光学面部23の領域以下とし、光学面部23の領域を第1表面部21の領域以下とした。なお、長尺方向の幅で一致させた光学面部23の領域と第1表面部21の領域とを図13に示す。 In the width in the longitudinal direction, the predetermined range is set to be equal to or less than the area of the optical surface portion 23, and the area of the optical surface portion 23 is set to be equal to or less than the area of the first surface portion 21. In addition, the area | region of the optical surface part 23 and the area | region of the 1st surface part 21 matched by the width | variety of the elongate direction are shown in FIG.
 なお、図13中、R1は短尺方向の第1表面部21の範囲を表し、R2は短尺方向の第2表面部22の範囲を表す。 In FIG. 13, R1 represents the range of the first surface portion 21 in the short direction, and R2 represents the range of the second surface portion 22 in the short direction.
 fθレンズ20においては、長尺の板状の基材と、基材の上面側と下面側の表面に位置する光学面部23と、光学面部23に長手方向で沿うように基材内部に位置する中空部24とを有し、かつ、中空部24の長尺方向の長さが光学面部23の長尺方向の長さより長く、さらに、中空部14の両端を光学面部23の長尺方向の両端より外側に形成することで、樹脂の硬化に伴う収縮により発生する引張応力が形成された中空部24に解放されるため、樹脂収縮に伴う長尺方向の反りが光学面部23全体にわたり緩和され面精度が向上する。 In the fθ lens 20, a long plate-like base material, an optical surface portion 23 positioned on the upper surface side and the lower surface side of the base material, and the optical surface portion 23 are positioned in the base material along the optical surface portion 23 in the longitudinal direction. And the length of the hollow portion 24 in the longitudinal direction is longer than the length of the optical surface portion 23 in the longitudinal direction, and both ends of the hollow portion 14 are connected to both ends of the optical surface portion 23 in the longitudinal direction. By forming it on the outer side, it is released to the hollow portion 24 in which the tensile stress generated by the shrinkage accompanying the curing of the resin is formed. Accuracy is improved.
 本実施形態の樹脂成形品において、光学面部23の長尺方向の長さをL1、短尺方向の長さをW1、中空部24の長尺方向の長さをL2、短尺方向の長さをW2、基材の短尺方向の長さをW4、長尺方向片側に対し光学面部23の端から基材の端までの距離をL5としたとき、長尺方向片側に対し光学面部23の端から中空部24の端までの距離L3は0≦L3<L5であり、短尺方向片側に対し光学面部23の端から中空部24の端までの距離W3は0≦W3<W2/2を満足するように構成するのがより好ましい。 In the resin molded product of this embodiment, the length in the longitudinal direction of the optical surface portion 23 is L1, the length in the short direction is W1, the length in the long direction of the hollow portion 24 is L2, and the length in the short direction is W2. When the length in the short direction of the base material is W4 and the distance from the end of the optical surface portion 23 to the end of the base material is L5 with respect to one side in the long direction, it is hollow from the end of the optical surface portion 23 with respect to one side in the long direction. The distance L3 to the end of the portion 24 is 0 ≦ L3 <L5, and the distance W3 from the end of the optical surface portion 23 to the end of the hollow portion 24 with respect to one side in the short direction satisfies 0 ≦ W3 <W2 / 2. More preferably.
 また、短尺方向における光学面部23の長さW1と中空部24の長さW2との関係は、0.01≦W2/W1≦1が望ましい。 Also, the relationship between the length W1 of the optical surface portion 23 and the length W2 of the hollow portion 24 in the short direction is preferably 0.01 ≦ W2 / W1 ≦ 1.
 また、fθレンズ20は、第1表面部21をその表面として含む第1成形部25と、第2表面部22をその表面として含み、第1成形部25を枠状に包囲する第2成形部26とを有している。第2成形部26はリブ27及び端枠部28を有している。リブ27は、第1成形部25より肉厚であって、長尺方向に対し直交する短尺方向で第1成形部25の両側に、長尺方向に沿うように形成されている。また、端枠部28は、第1成形部25の両端に、第1成形部25とほぼ同じ肉厚で、第1成形部25に連続させて形成されている。したがって、第1表面部21の周辺に配された第2表面部22は、リブ27の表面(上面及び下面)、及び、長尺方向で第1表面部21の両側に配された端枠部28の表面(上面及び下面)を含む。 Further, the fθ lens 20 includes a first molding portion 25 including the first surface portion 21 as a surface thereof, and a second molding portion including the second surface portion 22 as a surface thereof and surrounding the first molding portion 25 in a frame shape. 26. The second molding part 26 has a rib 27 and an end frame part 28. The ribs 27 are thicker than the first molding part 25 and are formed on both sides of the first molding part 25 in the short direction perpendicular to the long direction along the long direction. Further, the end frame portion 28 is formed at both ends of the first molding portion 25 so as to be continuous with the first molding portion 25 with substantially the same thickness as the first molding portion 25. Therefore, the 2nd surface part 22 distribute | arranged to the circumference | surroundings of the 1st surface part 21 is the end frame part distribute | arranged to the surface (upper surface and lower surface) of the rib 27, and the both sides of the 1st surface portion 21 in the elongate direction. 28 surfaces (upper and lower surfaces).
 リブ27を第1表面部21に沿って設けたことにより、fθレンズ20の全体的な剛性を向上させることが可能となる。また、リブ27を第1表面部21に沿って設けたことにより、第1成形部25の形状等に制約を受けることなくリブ27の形状を定めることができるため、リブ27の形状の自由度を高めることが可能となる。それにより、中空部24を形成し易い形状に、リブ27を例えば所定の肉厚及び所定の短尺方向の幅で成形することができる。さらに、リブ27を長尺方向に直線状に形成され、中空部24も、長尺方向に直線状に形成されるため、中空部24を形成し易い。 It is possible to improve the overall rigidity of the fθ lens 20 by providing the ribs 27 along the first surface portion 21. In addition, since the rib 27 is provided along the first surface portion 21, the shape of the rib 27 can be determined without being restricted by the shape of the first molded portion 25, etc. Can be increased. Thereby, the rib 27 can be formed into a shape that facilitates the formation of the hollow portion 24 with, for example, a predetermined thickness and a predetermined width in the short direction. Furthermore, since the rib 27 is linearly formed in the longitudinal direction and the hollow portion 24 is also linearly formed in the longitudinal direction, the hollow portion 24 is easily formed.
 さらに、リブ27の内部に中空部24を設けたことにより、リブ27のソリを低減させることができ、しいては、第1成形部25のソリも低減させることができ、それにより、第1成形部25の第1表面部21に設けられる光学面部23の表面精度の低下を防止することが可能となる。 Furthermore, by providing the hollow portion 24 inside the rib 27, the warpage of the rib 27 can be reduced, and the warpage of the first molding portion 25 can also be reduced, whereby the first It becomes possible to prevent the surface accuracy of the optical surface portion 23 provided on the first surface portion 21 of the molding portion 25 from being lowered.
 ヘジテーションマークHMは、第2表面部22である、リブ27の表面及び端枠部28の表面に形成されている。第2実施形態においても、ヘジテーションマークHMを第2表面部22に形成したので、光学面部23が設けられる第1表面部21の外観異常の発生を防止することが可能となる。 The hesitation mark HM is formed on the surface of the rib 27 and the surface of the end frame portion 28 which are the second surface portion 22. Also in the second embodiment, since the hesitation mark HM is formed on the second surface portion 22, it is possible to prevent the appearance abnormality of the first surface portion 21 on which the optical surface portion 23 is provided.
 次に、fθレンズ20の基材を製造するための射出成形機について説明する。この射出成形機の基本的な構成は、前述したfθミラー10の射出成形機と同じであり、その説明を省略する。以下、異なる構成について説明する。
(検出手段)
 1又は複数の検出手段33は、端枠部28を形成するためのキャビティ31の内表面に配されることが望ましい。この位置に検出手段33を配することにより、第1表面部21を超えた溶融樹脂の先端部を直接的に検出することができ、ヘジテーションマークHMを確実に第2表面部22(端枠部28の表面)に形成することが可能となる。さらに、上記位置に複数の検出手段33を配することにより、ヘジテーションマークHMを第2表面部22に形成させる確実性を高めることができる。なお、検出手段33は、端枠部28を形成するためのキャビティ31の内表面の範囲と同じ範囲を有するキャビティ31の内表面(リブ27を形成するためのキャビティ31の内表面)に配されても良い。
Next, an injection molding machine for manufacturing the base material of the fθ lens 20 will be described. The basic configuration of this injection molding machine is the same as that of the above-described injection molding machine of the fθ mirror 10, and the description thereof is omitted. Hereinafter, different configurations will be described.
(Detection means)
The one or more detection means 33 are desirably arranged on the inner surface of the cavity 31 for forming the end frame portion 28. By disposing the detection means 33 at this position, it is possible to directly detect the tip portion of the molten resin that exceeds the first surface portion 21, and the hesitation mark HM can be reliably detected by the second surface portion 22 (end frame portion). 28 surface). Furthermore, the reliability of forming the hesitation mark HM on the second surface portion 22 can be increased by arranging the plurality of detection means 33 at the above positions. The detection means 33 is arranged on the inner surface of the cavity 31 (the inner surface of the cavity 31 for forming the rib 27) having the same range as the inner surface of the cavity 31 for forming the end frame portion 28. May be.
 また、検出手段33を、第1表面部21を形成するためのキャビティ31の内表面の範囲と同じ範囲を有するキャビティ31の内表面(リブ27を形成するためのキャビティ31の内表面)に配されても良い。この場合、制御手段35は、検出手段33からの検出温度t1が基準温度t0を超えたと判断手段37が判断した場合、その判断してからの経過時間をタイマー39に計測させ、経過時間が予め定められた時間を超えたとの判断手段37の判断を受けて、充填手段32及びガス注入手段34を制御する。
(fθレンズの材料)
 次に、fθレンズ20の材料等について説明する。fθレンズ20の基材を構成する樹脂材料は、例えば、ポリカーボネイト、ポリエチレンテレフタレート、ポリメチルメタクリレート、シクロオレフィンポリマー、又は、これらの2種以上からなる樹脂を挙げることができる。fθミラー10においては、中でも、ポリカーボネイト、シクロオレフィンポリマーを使用することが好ましい。
(製造方法)
 以上の製造装置及び材料等により、fθレンズ20の基材を製造する。fθレンズ20の製造方法については、第1実施形態に係る製造方法と基本的に同じであるので、その説明を省略する。
Further, the detection means 33 is arranged on the inner surface of the cavity 31 (the inner surface of the cavity 31 for forming the rib 27) having the same range as the inner surface of the cavity 31 for forming the first surface portion 21. May be. In this case, when the determination unit 37 determines that the detected temperature t1 from the detection unit 33 exceeds the reference temperature t0, the control unit 35 causes the timer 39 to measure the elapsed time since the determination, and the elapsed time is determined in advance. The filling means 32 and the gas injection means 34 are controlled in response to the judgment of the judgment means 37 that the predetermined time has been exceeded.
(Material of fθ lens)
Next, materials for the fθ lens 20 will be described. Examples of the resin material constituting the base material of the fθ lens 20 include polycarbonate, polyethylene terephthalate, polymethyl methacrylate, cycloolefin polymer, or a resin composed of two or more of these. In the fθ mirror 10, it is preferable to use a polycarbonate or a cycloolefin polymer.
(Production method)
The base material of the fθ lens 20 is manufactured by the above manufacturing apparatus and materials. Since the manufacturing method of the fθ lens 20 is basically the same as the manufacturing method according to the first embodiment, the description thereof is omitted.
 なお、前記実施形態においては、光学素子用樹脂成形品について説明したが、光学素子用樹脂成形品に限らない。例えば、内部に中空部が設けられ、所定の表面精度の表面と、所定の表面精度より低い表面とを有する場合に、所定の表面精度より低い平面にヘジテーションマークを形成する樹脂成形品に適用することが可能であることは言うまでもない。 In addition, in the said embodiment, although the resin molded product for optical elements was demonstrated, it is not restricted to the resin molded product for optical elements. For example, when a hollow portion is provided inside and has a surface with a predetermined surface accuracy and a surface lower than the predetermined surface accuracy, it is applied to a resin molded product that forms a hesitation mark on a plane lower than the predetermined surface accuracy. It goes without saying that it is possible.
 以下、好ましい実施例に基づき本発明を説明する。実施例において、製造される樹脂成形品はfθミラー10の基材である。また、比較例においても同様に、fθミラー10の基材である。 Hereinafter, the present invention will be described based on preferred embodiments. In the embodiment, the resin molded product to be manufactured is a base material of the fθ mirror 10. Similarly, the comparative example is the base material of the fθ mirror 10.
 上述した製造装置、製造方法を用いてfθミラー10を、キャビティ形状が図3のような形状で以下の2つのパターンの金型を用いてそれぞれ成形製造した。 The fθ mirror 10 was molded and manufactured using the following two patterns of molds with the cavity shape as shown in FIG. 3 using the manufacturing apparatus and manufacturing method described above.
 (パターン1)
 A=B=5.0mm
 係る成形により得られた2つのfθミラーを評価したところ、双方とも第1表面部の全体にわたりヒケ等による形状劣化が抑えられた高い面精度のミラー形状が得られていることを確認した。
(Pattern 1)
A = B = 5.0mm
When two fθ mirrors obtained by such molding were evaluated, it was confirmed that a mirror shape with high surface accuracy in which shape deterioration due to sink marks or the like was suppressed over the entire first surface portion was obtained.
 また、波長408nmのレーザ光を用いた走査光学装置に当該ミラーを用いる事により、スポットが充分絞られ、高精細の画像形成が行えることを確認した。 In addition, it was confirmed that by using the mirror in a scanning optical device using a laser beam having a wavelength of 408 nm, the spot was sufficiently narrowed and high-definition image formation could be performed.
 (パターン2)
 一方、比較例として、第1表面部と光学素子端部が一致したキャビティ形状の金型を用いて同様にfθミラーを成形製造したが、こちらについては第1表面部にヘジテーションによる外観異常が確認され、また一部はヒケによる形状劣化が認められ、上述した走査光学装置において満足のいく画像形成が行えない事が判明した。
(Pattern 2)
On the other hand, as a comparative example, an fθ mirror was formed and manufactured in the same manner using a cavity-shaped mold in which the first surface portion and the end of the optical element coincided. In addition, it was found that some of the shapes were deteriorated due to sink marks, and satisfactory image formation could not be performed in the above-described scanning optical apparatus.
 HM ヘジテーションマーク
 t1 検出温度
 t0 基準温度
 10 fθミラー
 11 第1表面部
 12 第2表面部
 13 鏡面部
 14 中空部
 20 fθレンズ
 21 第1表面部
 22 第2表面部
 23 光学面部
 24 中空部
 25 第1成形部
 26 第2成形部
 27 リブ
 28 端枠部
 31 キャビティ
 32 充填手段
 33 検出手段
 34 ガス注入手段
 35 制御手段
 36 記憶手段
 37 判断手段
 38 インターフェース
 39 タイマー
 41 操作手段
 42 金型
 311 第1領域
 312 第2領域
 313 底面
 314 側壁面
 315 鏡面形成部
 341 電磁弁
 342 射出口部
HM hesitation mark t1 detection temperature t0 reference temperature 10 fθ mirror 11 first surface portion 12 second surface portion 13 mirror surface portion 14 hollow portion 20 fθ lens 21 first surface portion 22 second surface portion 23 optical surface portion 24 hollow portion 25 first Molding part 26 Second molding part 27 Rib 28 End frame part 31 Cavity 32 Filling means 33 Detection means 34 Gas injection means 35 Control means 36 Storage means 37 Judgment means 38 Interface 39 Timer 41 Operation means 42 Mold 311 First region 312 First 2 region 313 Bottom surface 314 Side wall surface 315 Mirror surface forming part 341 Solenoid valve 342 Injection port part

Claims (12)

  1.  樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、
     前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係を満たすことを特徴とする光学素子用樹脂成形品。
         A>0
         B>0
         A≦B
    A resin molded product for an optical element having a first surface portion on a part of a surface of a base material molded from a resin and having a hollow portion formed by injecting a fluid from the outside into the base material. ,
    A distance between the first end of the base and the end of the first surface near the first end is A, and the end is different from the first end of the base. When the distance between the second end portion on the opposite side through the first surface portion and the end portion of the first surface portion on the side close to the second end portion is B, the following relationship is established: A resin molded product for optical elements characterized by satisfying.
    A> 0
    B> 0
    A ≦ B
  2.  前記第1表面部全体の表面粗さRaがRa≦5(nm)であることを特徴とする請求項1に記載の光学素子用樹脂成形品。 The resin molded product for an optical element according to claim 1, wherein the surface roughness Ra of the entire first surface portion is Ra ≦ 5 (nm).
  3.  請求項1記載の光学素子用樹脂成形品の第1表面部に鏡面部を形成したことを特徴とする光学素子用樹脂成形品。 A resin molded product for an optical element, wherein a mirror surface portion is formed on the first surface portion of the resin molded product for an optical element according to claim 1.
  4.  光源と該光源から出射した出射光を偏向させる偏向手段と、前記光源から出射した光が入射し、前記偏向手段に集光させる集光手段と、前記偏向手段で偏向した光を被走査面に結像させるための結像光学系とを有する走査光学装置であって、
     前記結像光学系を構成する光学素子の少なくとも一つの光学素子は、樹脂により成形された長尺の基材の表面の一部に1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子であって、前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係を満たすことを特徴とする走査光学装置。
         A>0
         B>0
         A≦B
    A light source, a deflecting means for deflecting the light emitted from the light source, a condensing means for allowing the light emitted from the light source to enter and condensing on the deflecting means, and the light deflected by the deflecting means on the surface to be scanned A scanning optical device having an imaging optical system for imaging,
    At least one optical element of the optical elements constituting the imaging optical system has one surface portion on a part of the surface of a long base material formed of resin, and fluid is supplied to the inside of the base material from the outside. An optical element having a hollow portion formed by injection, wherein the distance between the first end portion of the substrate and the end portion of the first surface portion on the side close to the first end portion is A, A second end portion that is different from the first end portion of the substrate and is opposite to the second end portion through the first surface portion, and the first surface portion on the side close to the second end portion. A scanning optical device characterized by satisfying the following relationship, where B is the distance from the end of:
    A> 0
    B> 0
    A ≦ B
  5.  前記第1表面部全体の表面粗さRaがRa≦5(nm)であることを特徴とする請求項4に記載の走査光学装置。 5. The scanning optical apparatus according to claim 4, wherein a surface roughness Ra of the entire first surface portion is Ra ≦ 5 (nm).
  6.  前記第1表面部には入射光を反射させる鏡面部が形成されることを特徴とする請求項4又は請求項5に記載の走査光学装置。 6. The scanning optical device according to claim 4, wherein a mirror surface portion that reflects incident light is formed on the first surface portion.
  7.  前記鏡面部の表面粗さRaがRa≦5(nm)であることを特徴とする請求項6に記載の走査光学装置。 The scanning optical device according to claim 6, wherein a surface roughness Ra of the mirror surface portion is Ra ≦ 5 (nm).
  8.  樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、
     前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係
         A>0
         B>0
         A≦B
     を満たす光学素子用樹脂成形品の製造方法であって、
     前記第1表面部を転写する転写面を有する第1金型と、該第1金型と対向して設けられ、前記第1金型との間で型締めする事によりキャビティを形成する第2金型とを準備する工程と、
     前記キャビティ内に前記キャビティ端部の一方側から溶融樹脂を射出する射出工程と、
     前記射出工程により充填された樹脂の先端部が所定位置にある事を検出する検出工程と、
     前記検出工程の検出に基づいて前記充填されている樹脂の充填を制御すると共に、流体を前記キャビティ内に注入して内部に中空部を形成する流体注入工程と、
     を有することを特徴とする光学素子用樹脂成形品の製造方法。
    A resin molded product for an optical element having a first surface portion on a part of a surface of a base material molded from a resin and having a hollow portion formed by injecting a fluid from the outside into the base material. ,
    A distance between the first end of the base and the end of the first surface near the first end is A, and the end is different from the first end of the base. When the distance between the second end portion on the opposite side through the first surface portion and the end portion of the first surface portion on the side close to the second end portion is B, the following relationship A > 0
    B> 0
    A ≦ B
    A method for producing a resin molded product for an optical element satisfying
    A first mold having a transfer surface for transferring the first surface portion; and a second mold that is provided opposite to the first mold, and that forms a cavity by clamping between the first mold and the first mold. Preparing the mold, and
    An injection step of injecting a molten resin from one side of the cavity end into the cavity;
    A detection step of detecting that the tip portion of the resin filled by the injection step is in a predetermined position;
    Controlling the filling of the filled resin based on the detection of the detection step, and injecting a fluid into the cavity to form a hollow portion therein;
    A method for producing a resin molded product for an optical element, comprising:
  9.  前記第1表面部の表面粗さRaがRa≦5であることを特徴とする請求項8に記載の光学素子用樹脂成形品の製造方法。 The method for producing a resin molded product for an optical element according to claim 8, wherein the surface roughness Ra of the first surface portion is Ra ≦ 5.
  10.  前記流体注入工程後に得られた樹脂成形品の第1表面部に鏡面部を形成する鏡面部形成工程と、を含むことを特徴とする請求項8又は請求項9に記載の光学素子用樹脂成形品の製造方法。 The resin molding for optical elements according to claim 8, further comprising: a mirror surface portion forming step of forming a mirror surface portion on the first surface portion of the resin molded product obtained after the fluid injection step. Product manufacturing method.
  11.  前記流体注入工程は、樹脂の充填を停止後、所定時間経過後に流体の注入を開始することを特徴とする請求項8から請求項10のいずれかに記載の光学素子用樹脂成形品の製造方法。 The method for producing a resin molded product for an optical element according to any one of claims 8 to 10, wherein in the fluid injection step, the injection of the fluid is started after a lapse of a predetermined time after stopping the resin filling. .
  12.  樹脂により成形された基材の表面の一部に第1表面部を有し、前記基材内部に流体を外部から注入する事によって形成された中空部を有する光学素子用樹脂成形品であって、
     前記基材の第1の端部と当該第1の端部に近い側の第1表面部の端部との距離をA、前記基材の第1の端部とは異なる端部であって、前記第1表面部を介して反対側の第2の端部と、当該第2の端部に近い側の前記第1表面部の端部との距離をBとしたとき、以下の関係
         A>0
         B>0
         A≦B
     を満たす光学素子用樹脂成形品の製造装置であって、
     前記第1表面部を転写する転写面を有する第1金型と、
     前記第1金型と対向して設けられ、前記第1金型との間で型締めする事によりキャビティを形成する第2金型と、
     前記キャビティ内に前記キャビティ端部の一方側から溶融樹脂材料を射出する充填手段と、
     前記充填手段により前記キャビティ内に充填された樹脂が所定位置にある事を検出する検出手段と、
     前記キャビティ内に流体を注入して内部に中空部を形成する流体注入手段と、
     前記検出手段により前記樹脂が所定位置に充填されていることの検出結果に基づき、前記充填手段による樹脂の充填を制御するとともに、前記流体注入手段によりキャビティ内に流体の注入を制御する制御手段と、
     を備えたことを特徴とする光学素子用樹脂成形品の製造装置。
    A resin molded product for an optical element having a first surface portion on a part of a surface of a base material molded from a resin and having a hollow portion formed by injecting a fluid from the outside into the base material. ,
    A distance between the first end of the base and the end of the first surface near the first end is A, and the end is different from the first end of the base. When the distance between the second end portion on the opposite side through the first surface portion and the end portion of the first surface portion on the side close to the second end portion is B, the following relationship A > 0
    B> 0
    A ≦ B
    An apparatus for manufacturing a resin molded product for an optical element satisfying
    A first mold having a transfer surface for transferring the first surface portion;
    A second mold which is provided opposite to the first mold and forms a cavity by clamping between the first mold and the first mold;
    Filling means for injecting a molten resin material into the cavity from one side of the cavity end;
    Detecting means for detecting that the resin filled in the cavity by the filling means is in a predetermined position;
    Fluid injecting means for injecting fluid into the cavity to form a hollow portion therein;
    Control means for controlling the filling of the resin by the filling means based on the detection result that the resin is filled in a predetermined position by the detecting means, and for controlling the injection of the fluid into the cavity by the fluid injecting means; ,
    An apparatus for producing a resin molded product for an optical element.
PCT/JP2010/051947 2009-03-27 2010-02-10 Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device WO2010109965A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011505923A JP5664546B2 (en) 2009-03-27 2010-02-10 Manufacturing method of resin molded product for optical element and manufacturing apparatus of resin molded product for optical element
EP10755766A EP2412507A4 (en) 2009-03-27 2010-02-10 Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device
CN201080013296.0A CN102361738B (en) 2009-03-27 2010-02-10 Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device
US13/257,856 US20120008183A1 (en) 2009-03-27 2010-02-10 Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-079452 2009-03-27
JP2009079452 2009-03-27

Publications (1)

Publication Number Publication Date
WO2010109965A1 true WO2010109965A1 (en) 2010-09-30

Family

ID=42780661

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051947 WO2010109965A1 (en) 2009-03-27 2010-02-10 Resin molded article for optical element, method for manufacturing resin molded article for optical element, device for manufacturing resin molded article for optical element, and scanning optical device

Country Status (6)

Country Link
US (1) US20120008183A1 (en)
EP (1) EP2412507A4 (en)
JP (1) JP5664546B2 (en)
KR (1) KR20120002573A (en)
CN (1) CN102361738B (en)
WO (1) WO2010109965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013118580A1 (en) * 2012-02-09 2015-05-11 コニカミノルタ株式会社 Optical element, optical scanning device, optical element manufacturing method, and molding die

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5464208B2 (en) * 2009-03-19 2014-04-09 コニカミノルタ株式会社 Method for manufacturing a reflective optical element
CN104768602B (en) * 2012-02-27 2017-09-26 康乐保有限公司 The manufacture method of catheter
WO2015019721A1 (en) * 2013-08-09 2015-02-12 日産自動車株式会社 Injection control method, and injection control device
KR102204535B1 (en) 2014-05-19 2021-01-19 동우 화인켐 주식회사 Apparatus for processing edge of glass substrate and method for processing edge of glass substrate using the same
KR102218983B1 (en) 2014-05-19 2021-02-23 동우 화인켐 주식회사 Method for processing a cutting part of glass substrate and apparatus for processing a cutting part of glass substrate
KR102204539B1 (en) 2014-05-19 2021-01-19 동우 화인켐 주식회사 Apparatus for processing cutting part of glass substrate
KR102218982B1 (en) 2014-05-19 2021-02-23 동우 화인켐 주식회사 Method for processing a cutting part of glass substrate
KR102218981B1 (en) 2014-05-19 2021-02-23 동우 화인켐 주식회사 Method for processing a edge part of glass substrate
KR102219327B1 (en) 2014-10-17 2021-02-22 동우 화인켐 주식회사 Method of chamfering glass
WO2019240370A1 (en) * 2018-06-14 2019-12-19 주식회사 케이오씨솔루션 Method for automatically injecting monomer for aryl-based optical material into mold

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133133A (en) * 1996-10-29 1998-05-22 Matsushita Electric Ind Co Ltd Optical scanning device, image read-out device and image forming device using the same
JPH11138577A (en) 1997-11-12 1999-05-25 Hashimoto Forming Ind Co Ltd Method and device for injection molding
JP2001105449A (en) * 1999-07-30 2001-04-17 Mitsubishi Engineering Plastics Corp Optical reflecting member made of thermoplastic resin and method of manufacturing the same
JP2003071850A (en) * 2001-06-19 2003-03-12 Ricoh Co Ltd Mold, mold manufacturing method, mold manufacturing system, mold designing apparatus, mold design program, molding method, molded article and optical system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4828769A (en) * 1986-05-05 1989-05-09 Galic/Maus Ventures Method for injection molding articles
JP2004341048A (en) * 2003-05-13 2004-12-02 Fuji Photo Optical Co Ltd Optical reflection mirror
US7327507B2 (en) * 2005-08-02 2008-02-05 Kabushiki Kaisha Toshiba Optical beam scanning device having two sets of fθ mirrors where the mirror base and mirror face have differing coefficients of linear expansion
CN201044114Y (en) * 2006-08-23 2008-04-02 浦比俊引特艾克堤夫科技公司 Automatic sale machine with midair display system
JP5464208B2 (en) * 2009-03-19 2014-04-09 コニカミノルタ株式会社 Method for manufacturing a reflective optical element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10133133A (en) * 1996-10-29 1998-05-22 Matsushita Electric Ind Co Ltd Optical scanning device, image read-out device and image forming device using the same
JPH11138577A (en) 1997-11-12 1999-05-25 Hashimoto Forming Ind Co Ltd Method and device for injection molding
JP2001105449A (en) * 1999-07-30 2001-04-17 Mitsubishi Engineering Plastics Corp Optical reflecting member made of thermoplastic resin and method of manufacturing the same
JP2003071850A (en) * 2001-06-19 2003-03-12 Ricoh Co Ltd Mold, mold manufacturing method, mold manufacturing system, mold designing apparatus, mold design program, molding method, molded article and optical system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412507A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013118580A1 (en) * 2012-02-09 2015-05-11 コニカミノルタ株式会社 Optical element, optical scanning device, optical element manufacturing method, and molding die
US9625710B2 (en) 2012-02-09 2017-04-18 Konica Minolta, Inc. Optical element, an optical scanning device, a manufacturing method of the optical element, and a molding die

Also Published As

Publication number Publication date
EP2412507A4 (en) 2012-11-07
US20120008183A1 (en) 2012-01-12
KR20120002573A (en) 2012-01-06
CN102361738B (en) 2014-08-13
JPWO2010109965A1 (en) 2012-09-27
EP2412507A1 (en) 2012-02-01
CN102361738A (en) 2012-02-22
JP5664546B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP5664546B2 (en) Manufacturing method of resin molded product for optical element and manufacturing apparatus of resin molded product for optical element
US20100171798A1 (en) Liquid jet recording head and manufacturing method thereof
JP5464208B2 (en) Method for manufacturing a reflective optical element
WO2011040186A1 (en) Device for manufacturing resin molded articles for use in optical elements, and method for manufacturing optical elements
WO2011040158A1 (en) Apparatus for manufacturing resin molded article for optical element, and method for manufacturing resin molded article for optical element
JP4714491B2 (en) Manufacturing method of resin molded product, mold for resin molding, plastic optical element and display device, and image forming apparatus
WO2011030523A1 (en) Disc substrate forming device, disc substrate forming method, and disc substrate forming die
JP4371525B2 (en) Optical reflection member made of thermoplastic resin and method for manufacturing the same
JPH10323872A (en) Method and machine for injection molding
JPH09300417A (en) Injection molding, injection molding die and injection molding device
JP4227712B2 (en) Optical reflecting member made of thermoplastic resin
JP5751796B2 (en) Optical element manufacturing method and optical element
JP4714391B2 (en) Injection molding method and plastic molded product
JP2002096361A (en) Method for manufacturing plastic molded article, mold for injection molding, and plastic molded article
JP2001096584A (en) Plastic molding apparatus
JP4579898B2 (en) Molding method and molding apparatus
JP2001096578A (en) Plastic molding apparatus
JP2009113227A (en) Method of manufacturing plastic molded article, plastic molding device, and plastic molded article
JP2811533B2 (en) Control method of injection molding machine
JP2004058470A (en) Mold for molding optical element and method for molding optical element
JPH0427516A (en) Injection molding device
JPH071523A (en) Vacuum injection molding device
JPH09104050A (en) Disk injection molding machine
KR20050033970A (en) F-θlens using laser scanning unit and mold structure used to form the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013296.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505923

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257856

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010755766

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022245

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE