WO2010109937A1 - Method for forming thin film, method for forming multilayer thin film having the thin film therein, electronic device, and organic electroluminescence element - Google Patents

Method for forming thin film, method for forming multilayer thin film having the thin film therein, electronic device, and organic electroluminescence element Download PDF

Info

Publication number
WO2010109937A1
WO2010109937A1 PCT/JP2010/050885 JP2010050885W WO2010109937A1 WO 2010109937 A1 WO2010109937 A1 WO 2010109937A1 JP 2010050885 W JP2010050885 W JP 2010050885W WO 2010109937 A1 WO2010109937 A1 WO 2010109937A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
group
organic
forming
compound
Prior art date
Application number
PCT/JP2010/050885
Other languages
French (fr)
Japanese (ja)
Inventor
達夫 田中
弘志 北
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2011505909A priority Critical patent/JP5594286B2/en
Publication of WO2010109937A1 publication Critical patent/WO2010109937A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to a method for forming a thin film made of an organic material, a method for forming a thin film of thin films, and an electronic device and an organic electroluminescence element using them.
  • ELD electroluminescence display
  • inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements).
  • organic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons.
  • This is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton (exciton) is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a self-luminous type, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it has attracted attention from the viewpoints of space saving and portability.
  • organic EL elements For the development of organic EL elements for practical use in the future, organic EL elements that emit light efficiently and with high luminance with lower power consumption are desired.
  • Japanese Patent No. 3093796 discloses a technique of doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a small amount of a phosphor to improve emission luminance and extend the lifetime of the device.
  • Japanese Patent Application Laid-Open No. 63-264692 discloses an element having an organic light emitting layer in which 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped therein.
  • an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a quinacridone dye is doped is known.
  • the generation ratio of the singlet exciton and the triplet exciton is 1: 3, so the generation probability of the luminescent excited species is 25%. Since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency ( ⁇ ext) is set to 5%.
  • the organic EL element is an all-solid element composed of an organic material film having a thickness of only about 0.1 ⁇ m between the electrodes, and can emit light at a relatively low voltage of about 2V to 20V. Therefore, it is a technology that is expected as a next-generation flat display and illumination.
  • the structure of the organic EL element is a simple one in which an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of parts is overwhelmingly smaller than that of a liquid crystal display, which is a typical flat display.
  • the cost should be kept low, this is not always the case at present, and a large amount of water is drained from the liquid crystal display in terms of performance and cost. In particular, in terms of cost, poor productivity is considered as a factor.
  • organic EL is one of the causes not practically used for such applications.
  • the present invention has been made in view of the above-mentioned problems, and the object of the present invention is to form an organic thin film or an organic laminated thin film by a coating method that enables continuous production.
  • An electronic device including an organic thin film and an organic EL element are provided.
  • Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 represent an atomic group necessary for bonding to each other to form a 5-membered or 6-membered aromatic ring, provided that (The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.) 3. 3. The method for forming a thin film according to 1 or 2, wherein the change in physicochemical properties of the thin film is a change from amorphous to crystalline.
  • a thin film adjacent to the thin film is formed on the thin film formed by the thin film forming method according to any one of 1 to 6, using the thin film forming method according to any one of 1 to 6.
  • An electronic device comprising a thin film formed by the method for forming a thin film according to any one of 1 to 6 above.
  • An electronic device comprising a laminated thin film formed by the method for forming a laminated thin film as described in 7 above.
  • An organic electroluminescence device comprising a thin film formed by the method for forming a thin film according to any one of 1 to 6 above.
  • An organic electroluminescence device comprising a laminated thin film formed by the method for forming a laminated thin film as described in 7 above.
  • Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 represent an atomic group necessary for bonding to each other to form a 5-membered or 6-membered aromatic ring, provided that (The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.) 3. 3. The method for forming a thin film according to 1 or 2, wherein the organic substance has at least two partial structures of the general formula (1).
  • Ar 1 in the general formula (1) is any one of an aryl ring, a carbazole ring, a carboline ring, or a 1,10-phenanthroline ring of a substituted or unsubstituted triarylamine.
  • the compound having the partial structure of the general formula (1) is at least one of at least one selected from “triarylamine, carbazole ring, or carboline ring” as Ar 1 of the partial structure of the general formula (1).
  • the compound having the partial structure of the general formula (1) is represented by Ar 1 of at least two partial structures of the general formula (1), “a structure in which at least two triarylamines are linked via a single bond”. 10. The method for forming a thin film according to any one of 2 to 9, wherein the compound shares one of the aryl rings of the triarylamine at both terminal positions.
  • the compound having the partial structure of the general formula (1) is a biphenyl ring as Ar 1 of at least two partial structures of the general formula (1) “at least two carbazole rings are in the N atom position ( ⁇ 9 position)”. , A dibenzofuran ring or a structure linked via at least one selected from a benzene ring ”, a compound sharing one or both of the carbazole rings at both terminal positions.
  • the method for forming a thin film according to any one of 2 to 9.
  • the compound having the partial structure of the general formula (1) shares at least two “1,10-phenanthroline ring” structures as Ar 1 of the partial structure of the general formula (1) at both terminal ring sites. 10.
  • the compound having the partial structure of the general formula (1) is represented by “at least two carboline rings at the N atom position ( ⁇ 9 position) as Ar 1 of the partial structure of the general formula (1), Any one of 2 to 9, wherein the carboline ring at both terminal positions of the structure connected through at least one selected from dibenzofuran ring or benzene ring is shared.
  • the compound having the partial structure of the general formula (1) is a biphenyl ring as Ar 1 of at least two partial structures of the general formula (1) “at least two carbazole rings are in the N atom position ( ⁇ 9 position)”.
  • a dibenzofuran ring, or a structure connected via at least one selected from a benzene ring, the carbazole ring at both terminal positions, and Ar 2 is an aromatic heterocyclic ring. 10.
  • a thin film adjacent to the thin film is formed on the thin film formed by the thin film forming method according to any one of 19.1 to 18, using the thin film forming method according to any one of 1 to 18.
  • An electronic device comprising a thin film formed by the method for forming a thin film according to any one of 20.1 to 18.
  • An electronic device comprising a laminated thin film formed by the method for forming a laminated thin film according to 21.19.
  • An organic electroluminescence element comprising a thin film formed by the method for forming a thin film according to any one of 22.1 to 18.
  • An organic electroluminescent device comprising a laminated thin film formed by the method for forming a laminated thin film described in 23.19.
  • the coating method when a thin film is to be laminated in the coating process, when the thin film adjacent to the first formed thin film is formed, the first formed thin film dissolves in the solvent. There were difficulties unique to the coating process, such as contamination and interface disturbance.
  • dissolution of an organic compound means that a state in which organic compound molecules are solvated by a solvent stably exists.
  • the solution depends on the structure of the organic compound, the type of the solvent, etc. It was noted that it was decided whether it could exist stably.
  • organic compounds that are easy to form solutions from the amorphous state and difficult to form solutions from the crystallized state, and applying these properties to thin film formation, It has been possible to easily achieve the lamination of thin films of organic compounds, which has been difficult until now.
  • by making it possible to arbitrarily form a crystal film it is possible to achieve expression of electrical characteristics peculiar to the crystal film and improvement of charge mobility. That is, changing the state of the thin film by subjecting the thin film to physicochemical treatment after forming the thin film can be applied in a wide range, and the object of the present invention can be achieved.
  • the organic thin film with improved mixing (contamination) of the lower layer material and disturbance of the interface is improved.
  • FIG. 3 is a diagram showing the measurement results of X-ray diffraction XRD (X-ray diffraction method apparatus, manufactured by Rigaku Corporation, model RINT-TTR2 apparatus) of Sample 1-1 in Example 1.
  • FIG. 3 is a diagram showing the measurement results of X-ray diffraction XRD (X-ray diffraction apparatus, manufactured by Rigaku Corporation, model RINT-TTR2 apparatus) of Sample 1-2 in Example 1. It is the schematic of an illuminating device. It is sectional drawing of an illuminating device.
  • the thin film formation method of the present invention changes the physicochemical properties of the thin film without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. It is characterized by that.
  • Organic substance according to the present invention First, the organic substance according to the present invention will be described.
  • Preferred examples of the organic substance according to the present invention include compounds having the partial structure represented by the general formula (1).
  • the organic substance according to the present invention is preferably a so-called host compound that is conventionally used in an organic EL device, and is not particularly limited in terms of structure, but is typically a carbazole derivative, a triarylamine derivative, a carboline derivative, or a diazacarbazole derivative.
  • the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom
  • 1,10-phenanthroline derivative aromatic
  • compounds having a partial structure of the general formula (1) of the present invention are preferable in carbazole derivatives, triarylamine derivatives, carboline derivatives, diazacarbazole derivatives, 1,10-phenanthroline derivatives, and the like. It is more preferable to have at least two partial structures of the general formula (1).
  • Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 are bonded to each other to form a 5-membered or Represents a group of atoms required to form a 6-membered aromatic ring.
  • the aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
  • Ar 1 in the general formula (1) is preferably a condensed ring formed from at least two aromatic rings.
  • Ar 1 in the general formula (1) is preferably a condensed ring formed from at least three aromatic rings.
  • Ar 1 in the general formula (1) may be a part of a chemical structure of any one of a substituted or unsubstituted triarylamine structure, carbazole structure, carboline structure, or 1,10-phenanthroline structure. preferable.
  • Ar 2 in the general formula (1) is preferably a substituted or unsubstituted phenyl group.
  • Ar 2 in the general formula (1) is preferably a substituted or unsubstituted nitrogen-containing 6-membered ring.
  • the compound having the partial structure of the general formula (1) is selected as “tria” as Ar 1 of at least two partial structures of the general formula (1).
  • the compound having the partial structure of the general formula (1) is a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1).
  • Examples include compounds in which at least two triarylamines each share one of the aryl rings of the triarylamine at both terminal positions of the structure in which the structure is linked via a single bond.
  • the compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1).
  • Ar 1 of at least two partial structures of the general formula (1).
  • One or both ends of a structure in which at least two carbazole rings are linked via at least one selected from a biphenyl ring, a dibenzofuran ring, or a benzene ring at the N atom position ( ⁇ 9 position) And a compound sharing each carbazole ring at the position.
  • the compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). And a compound having a “1,10-phenanthroline ring” structure at both terminal ring sites.
  • the compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1).
  • the carboline ring at both terminal positions of“ a structure in which at least two carboline rings are linked at the N atom position ( ⁇ 9 position) via at least one selected from a biphenyl ring, a dibenzofuran ring, and a benzene ring ” a structure in which at least two carboline rings are linked at the N atom position ( ⁇ 9 position) via at least one selected from a biphenyl ring, a dibenzofuran ring, and a benzene ring ” , And the like.
  • the compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1).
  • Ar 2 is an aromatic heterocyclic ring.
  • the aromatic hydrocarbon ring represented by Ar 1 , Ar 2 , R 1 and R 2 is also referred to as an aryl ring, for example, a benzene ring, a naphthalene ring, an anthracene ring, Examples thereof include an azulene ring, an acenaphthylene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyrene ring, and a biphenyl ring.
  • aryl ring for example, a benzene ring, a naphthalene ring, an anthracene ring, Examples thereof include an azulene ring, an acenaphthylene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyrene ring, and a biphenyl ring.
  • examples of the aromatic heterocycle represented by Ar 1 , Ar 2 , R 1 and R 2 include a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidin ring, and a pyrazine.
  • the aromatic hydrocarbon ring represented by Ar 1 is preferably a benzene ring, a naphthalene ring, or the like.
  • examples of the aromatic heterocycle represented by Ar 1 include a carbazole ring, an azacarbazole (carboline ( ⁇ -carboline, ⁇ -carboline, ⁇ -carboline)) ring, and a 1,10-phenanthroline ring. , Etc. are preferred.
  • the aromatic hydrocarbon ring represented by Ar 2 is preferably a benzene ring, a naphthalene ring, or the like.
  • the aromatic heterocyclic ring represented by Ar 2 is preferably a pyridine ring.
  • Examples of the 5-membered or 6-membered aromatic ring formed by combining R 1 and R 2 with each other include an aromatic hydrocarbon ring and an aromatic heterocyclic ring.
  • Examples of the aromatic hydrocarbon ring include benzene A ring, a naphthalene ring, and the like, and a benzene ring is preferable.
  • As an aromatic heterocyclic ring a thiophen ring, a pyridine ring, etc. are mentioned, for example, A pyridine ring is preferable.
  • the compound of the present invention may further have a substituent, and examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group).
  • substituents include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group).
  • octyl group dodecyl group, tridecyl group, tetradecyl group, pentadecyl group etc.
  • cycloalkyl group eg cyclopentyl group, cyclohexyl group etc.
  • alkenyl group eg vinyl group, allyl group etc.
  • alkynyl group eg , Ethynyl group, propargyl group etc.
  • aryl group eg phenyl group, naphthyl group etc.
  • aromatic heterocyclic group eg furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group
  • Imidazolyl group pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group A carbolinyl group, a diazacarbazolyl group
  • organic substance according to the present invention preferably a compound having the partial structure represented by the general formula (1) (hereinafter also referred to as the compound of the present invention), are shown below. It is not limited.
  • the compound of the present invention can be synthesized by known synthesis methods such as Buchwald-Hartwig reaction and Suzuki reaction.
  • compounds 2-1 to 2-5 are preferably used in the light emitting layer as the host compound of the present invention.
  • Compounds 3-1 to 3-5 are preferably used as the electron transport material of the present invention, and compounds 1-1 to 1-5 are preferably used as the hole transport material of the present invention.
  • Thin film formation In the method for forming a thin film of the present invention, the physicochemical properties of the thin film can be obtained without changing the chemical structure of the molecules forming the thin film by applying a physicochemical treatment after the formation of the organic thin film of the present invention. It is characterized by changing.
  • ⁇ Formation of organic thin films> (Dissolving, coating, forming a thin film)
  • the formation of a thin film made of an organic material is not particularly limited, but it is preferable to use a coating process.
  • the compound of the present invention can be easily dissolved in an organic solvent to prepare a coating solution, and a thin film can be easily formed by a coating method.
  • organic solvent for the coating solution examples include aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, halogenated hydrocarbons such as dichlorobenzene, methanol, Organic solvents such as alcohols such as ethanyl, propanol and butanol, ketones such as methyl ethyl ketone and cyclohexanone, and fatty acid esters such as ethyl acetate can be used.
  • aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene
  • aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • halogenated hydrocarbons such as dichlorobenzene
  • methanol Organic solvents such as alcohols such as ethan
  • toluene o-dichlorobenzene, butanol, halogenated hydrocarbons and the like can be preferably used.
  • a coating method that is known as a wet process and that can use a relatively simple apparatus such as a spin coating method, a casting method, an ink jet method, a printing method, and a coating coater method is used. be able to. From the viewpoint that a homogeneous film can be easily obtained and pinholes are difficult to be generated, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable.
  • the compound of the present invention when it is not an amorphous type but a crystal type, it can be changed to an amorphous type by a treatment such as sublimation purification, reprecipitation using a good solvent and a poor solvent, By using this, dissolution, coating, and thin film can be suitably formed in the same manner as in the case of the amorphous type from the beginning.
  • the physicochemical treatment of the thin film can be performed without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. It is characterized by changing properties.
  • the change in the physicochemical properties of the thin film is preferably a change from amorphous to crystalline.
  • the thin film formed by a coating method or the like in the state where the organic substance of the present invention is amorphous is subjected to heat treatment (physical Treatment), treatment with a specific solvent (chemical treatment), preferably, crystallization is performed by further applying physicochemical treatment such as heat treatment (physical treatment), and a thin film is formed.
  • the physicochemical treatment for crystallizing the thin film from amorphous is preferably a physical treatment, especially a thermal treatment, and the heat treatment is preferably in the range of 50 ° C to 250 ° C, and 70 ° C to 200 ° C. The range of is more preferable. Further, the heating time is preferably in the range of 5 seconds to 120 minutes, and from the viewpoint of increasing production efficiency, it is preferably in the range of 10 seconds to 60 minutes.
  • the heating method examples include blast heating, heating by radiant heat, microwave heating, infrared heating, and hot plate heating.
  • the physicochemical treatment for crystallizing the thin film from amorphous is preferably a chemical treatment, and among the chemical treatments, a solvent treatment is preferably used.
  • a solvent treatment a solvent having a large crystallization ability is preferably used for the compound of the present invention, and can be appropriately selected and used depending on the type of the compound of the thin film. Examples include acetonitrile, methanol, ethanol, acetone, hexane, ethyl acetate, toluene, tetrahydrofuran, chloroform, and the like. Crystallization can be easily carried out by applying a solvent by a known treatment method such as dipping, spraying, spin coating and the like.
  • the first formed thin film does not dissolve in the solvent, and the lower layer material
  • the laminated thin film can be applied without the difficulties inherent in the coating process, such as mixing (contamination) with the upper layer and disorder of the interface. Thereafter, the thin film can be crystallized to form a crystallized laminated thin film.
  • a thin layer sample is treated with a solvent that dissolves in the case of an amorphous structure and has no action of crystallization, such as toluene.
  • the degree of crystallization can be measured from the degree of mass reduction.
  • the organic thin film of the present invention thus obtained can be suitably used for the organic EL element of the present invention, the electronic device of the present invention and the like.
  • the electronic device of the present invention can be formed into various electronic devices using the organic thin film of the present invention. Among them, an element involving light is preferably used.
  • elements that involve light include liquid crystal display elements, electrophotography using organic photoreceptor thin films, organic photovoltaic cells, photochemical hole burning (PHB) recording elements, organic electroluminescence elements (organic EL elements), Langmuir / Blodgets.
  • PHB photochemical hole burning
  • organic EL elements organic electroluminescence elements
  • Langmuir / Blodgets Various optical functional elements using the (LB) film can be mentioned, and an organic EL element is particularly preferable.
  • organic EL element which is a preferred embodiment among the electronic devices of the present invention, will be described in more detail.
  • Organic EL element >> The organic EL element of the present invention having an organic thin film obtained by the method for forming an organic thin film of the present invention will be described.
  • the first thin film is not dissolved in the solvent, and there is no mixing (contamination) of the lower layer material to the upper layer or disturbance of the interface.
  • the organic EL device manufactured by this method can improve the light emission efficiency of the organic EL device, improve the device lifetime, and the like.
  • the blue light emitting layer preferably has an emission maximum wavelength of 430 nm to 480 nm
  • the green light emitting layer has an emission maximum wavelength of 510 nm to 550 nm
  • the red light emitting layer is preferably a monochromatic light
  • a white light emitting layer may be formed by laminating at least three light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
  • the total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 ⁇ m, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
  • a light-emitting dopant or a host compound (also referred to as a light-emitting host compound) to be described later is used, for example, spin coating method, casting method, LB method, inkjet method, vacuum deposition method, etc.
  • the film can be formed by the thinning method.
  • the light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant).
  • a light emitting host compound such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant).
  • the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1.
  • the phosphorescence quantum yield is preferably less than 0.01.
  • the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
  • the compounds of the present invention for example, exemplified compounds 2-1 to 2-5 can be preferably used.
  • the host compound may be used alone or in combination of two or more.
  • the host compound By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.
  • a known host compound that may be used in combination as long as the effect of the present invention is not impaired, it has a hole transporting ability and an electron transporting ability, and prevents a long wavelength emission, and has a high Tg (glass transition). Compound) is preferred.
  • Luminescent dopant As a light-emitting dopant that can be used in the present invention, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, or a phosphorescent compound) can be used.
  • the above-mentioned host is used as a light-emitting dopant (sometimes referred to simply as a light-emitting material) used in the light-emitting layer or light-emitting unit of the organic EL device of the present invention. It is preferable to contain a phosphorescent dopant simultaneously with the compound.
  • the phosphorescent dopant that can be used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
  • the phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • the energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained.
  • the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
  • the phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
  • the phosphorescent dopant that can be used in the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex).
  • System compounds preferably iridium compounds, an osmium compound, or a platinum compound (platinum complex).
  • System compounds rare earth complexes, and most preferred are iridium compounds.
  • fluorescent dopants also referred to as fluorescent compounds
  • coumarin dyes include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes
  • Examples include perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • Injection layer electron injection layer, hole injection layer >> The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
  • An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance.
  • Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
  • anode buffer layer hole injection layer
  • copper phthalocyanine is used.
  • examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc.
  • Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc.
  • the buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 ⁇ m, although it depends on the material.
  • ⁇ Blocking layer hole blocking layer, electron blocking layer>
  • the blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
  • the hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
  • the hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
  • the hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound described above.
  • the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • the ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *.
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • the ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy.
  • a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
  • the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
  • the hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the compound of the present invention can be used as the hole transport material.
  • exemplary compounds 1-1 to 1-5 can be preferably used. It can be suitably formed by a coating method.
  • a well-known hole transport material can be used in combination as long as the effects of the present invention are not significantly impaired.
  • the known hole transport material has either hole injection or transport or electron barrier property, and may be either organic or inorganic.
  • triazole derivatives for example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • the above-mentioned materials can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminoph
  • No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
  • NPD 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl
  • JP-A-4-308 4,4 ′, 4 ′′ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067 J. Org. Huang et. al.
  • a so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
  • the hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the hole transport layer may have a single layer structure composed of one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • a hole transport layer having such a high p property because a device with lower power consumption can be produced.
  • the electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • the electron transport layer can be provided as a single layer or a plurality of layers.
  • an electron transport material also serving as a hole blocking material used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode.
  • the compound of the present invention can be used as the material as long as it has a function of transferring electrons to the light emitting layer.
  • exemplary compounds 3-1 to 3-5 can be preferably used. It can be suitably formed by a coating method.
  • a well-known hole transport material can be used in combination as long as the effects of the present invention are not significantly impaired.
  • Conventionally known compounds include, for example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • the electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer may have a single layer structure composed of one or more of the above materials.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • an electron transport layer having such a high n property because an element with lower power consumption can be produced.
  • an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is preferably several hundred ⁇ / ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade
  • an inorganic film, an organic film or a hybrid film of both may be formed on the surface of the resin film.
  • the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • ⁇ Sealing> As a sealing means used for this invention, the method of adhere
  • the sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured in (1) is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma
  • a combination method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil
  • a vacuum is also possible.
  • a hygroscopic compound can also be enclosed inside.
  • Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • metal oxides eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt
  • a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • the organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because the light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or the light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • a method of improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.
  • quadrangular pyramids having a side of 30 ⁇ m and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably 10 ⁇ m to 100 ⁇ m. If it becomes smaller than this, the effect of diffraction will generate
  • the condensing sheet it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • the shape of the prism sheet for example, the base material may be formed by forming a ⁇ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 ⁇ m, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired electrode material for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm.
  • a method for forming each of these layers there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes.
  • film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used.
  • a dispersion method it can disperse
  • a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL element can be obtained.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode.
  • An alternating voltage may be applied.
  • the alternating current waveform to be applied may be arbitrary.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • the light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
  • Example 1 Preparation of X-ray diffraction measurement sample >> Compound 3-3 (10 g) was dissolved in 50 ml of o-dichlorobenzene, and this solution was added little by little to 500 ml of acetonitrile while stirring. After the addition was completed, stirring was continued for 3 hours at room temperature. The sample was blown and dried at 70 ° C. for 6 hours to obtain Sample 1-1.
  • the compound having a specific structure of the present invention can stably extract the amorphous state (sample 1-2) and the crystalline state (sample 1-1) by properly using any treatment method. did it.
  • a substrate with a 150 nm ITO film formed on glass (NH Techno Glass: NA-45) was ultrasonically cleaned with iso-propyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and a transparent support substrate Got.
  • the substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving compound 2-2 (60 mg) in 6 ml of toluene was formed into a film by spin coating at 1000 rpm for 30 seconds, and heated in vacuum at 150 ° C. for 3 hours. And Sample 2-1 was obtained. Subsequently, the sample 2-1 was set on a spin coater, and 6 ml of acetonitrile was used to obtain a sample 2-2 treated with acetonitrile by a spin coating method under conditions of 1000 rpm and 300 seconds. Next, Sample 2-2 was heated in vacuum at 150 ° C. for 3 hours to obtain Sample 2-3.
  • Residual rate (absorbance after rinsing) / (absorbance before rinsing) ⁇ 100
  • Compound A Compound (23) described in JP-A No. 2004-292784 From Table 1, by applying a physicochemical treatment after forming a thin film using the compound of the present invention, the solvent solubility is changed, and it is possible to form a thin film having excellent thin film durability (solvent resistance). I understood it. When the UV spectral absorption spectrum was measured, the waveform did not change, and the chemical structure of the molecules forming the thin film did not change.
  • Example 3 Preparation of organic EL element 3-1 >> This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the substrate was transferred to a nitrogen atmosphere, and a solution of CBP (60 mg), compound Ir-9 (3.0 mg), and Ir-12 (3.0 mg) dissolved in 6 ml of toluene was used on the hole transport layer at 1000 rpm. For 30 seconds under the condition of spin coating. Heating was performed in vacuum at 150 ° C. for 1 hour to obtain a light emitting layer having a thickness of 30 nm.
  • this transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while BCP and Alq 3 were placed in five tantalum resistance heating boats, respectively, and attached to the vacuum deposition apparatus (first vacuum chamber). . Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing BCP, and the first vacuum chamber having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / sec.
  • An electron transport layer was provided.
  • the heating boat containing Alq 3 was heated by energization to provide a second electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 to 0.2 nm / second.
  • a stainless steel rectangular perforated mask is arranged on the electron transport layer from the outside of the apparatus. Installed with remote control.
  • a current was passed through a boat containing lithium fluoride to provide a cathode buffer layer having a thickness of 0.5 nm at a deposition rate of 0.01 to 0.02 nm / second,
  • a boat containing aluminum was energized, and a cathode having a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second to produce an organic EL element 3-1.
  • ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving ⁇ -NPD (60 mg) in 6 ml of toluene on a transparent support substrate was formed by spin coating at 1000 rpm for 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A hole transport layer having a thickness of 30 nm was provided.
  • This substrate was transferred to a nitrogen atmosphere, and a spin coating method was performed on the hole transport layer using a solution of CBP (60 mg) and Ir-12 (6.0 mg) dissolved in 6 ml of toluene at 1000 rpm for 30 seconds. To form a film. Heating was performed in vacuum at 150 ° C. for 1 hour to obtain a light emitting layer having a thickness of 30 nm.
  • this transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while BCP and Alq 3 were placed in five tantalum resistance heating boats, respectively, and attached to the vacuum deposition apparatus (first vacuum chamber). . Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
  • the first vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing BCP, and the first vacuum chamber having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / sec.
  • An electron transport layer was provided.
  • the heating boat containing Alq 3 was heated by energization to provide a second electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 to 0.2 nm / second.
  • a stainless steel rectangular perforated mask is arranged on the electron transport layer from the outside of the apparatus. Installed with remote control.
  • a current was passed through a boat containing lithium fluoride to provide a cathode buffer layer having a thickness of 0.5 nm at a deposition rate of 0.01 to 0.02 nm / second,
  • a boat containing aluminum was energized, a cathode having a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second, and an organic EL element 3-2 was produced.
  • FIG. 3 is a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. (In a high purity nitrogen gas atmosphere with a purity of 99.999% or more).
  • FIG. 4 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • the organic EL element was continuously lit at a constant current of 2.5 mA / cm 2 at room temperature, and the time ( ⁇ 1/2 ) required to reach half the initial luminance was measured.
  • the light emission lifetime is expressed as a relative value where the organic EL element 3-1 is set to 100.
  • the comparative organic EL device 3-2 did not function as a light emitting device, and performance evaluation could not be performed.
  • the organic EL element of the present invention can achieve a longer emission lifetime than the comparative organic EL element 3-1, and the manufacturing method of the present invention is used as a manufacturing method of the organic EL element. I found it suitable.
  • Example 4 Preparation of organic EL element 4-1 >> This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate as an anode.
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving compound 1-4 (60 mg) in 6 ml of toluene on a transparent support substrate was formed by spin coating at 1000 rpm for 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A hole transport layer having a thickness of 30 nm was provided.
  • the substrate was transferred to a nitrogen atmosphere, and a solution of compound 2-1 (60 mg), compound Ir-9 (3.0 mg), and Ir-12 (3.0 mg) dissolved in 6 ml of toluene was placed on the hole transport layer.
  • the film was formed by spin coating under conditions of 1000 rpm and 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour.
  • a light emitting layer having a thickness of 30 nm was provided.
  • a film obtained by dissolving Exemplified Compound 3-2 (60 mg) in 6 ml of butanol was formed into a film by spin coating under conditions of 1000 rpm and 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A first electron transport layer having a thickness of 30 nm was provided.
  • this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq 3 was put into a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus.
  • the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
  • the substrate temperature at the time of vapor deposition was room temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is a thin film forming method wherein the physicochemical properties of a thin film composed of an organic material are changed by forming the thin film and then by physicochemically processing the thin film, without changing the chemical structure of the organic material which forms the thin film. In the method, even in the cases of forming the organic thin film and an organic multilayer thin film by employing an application method which enables continuous manufacture, mixing of the lower layer material with the upper layer (contamination) and interface troubles are improved. An organic EL element having a high external extraction quantum efficiency and a long light emitting service life is provided using the method, and the electronic device and the organic EL element which include the organic thin film are also provided.

Description

薄膜の形成方法、当該薄膜の積層薄膜の形成方法、電子デバイスおよび有機エレクトロルミネッセンス素子Thin film forming method, laminated thin film forming method, electronic device and organic electroluminescence element
 本発明は、有機物からなる薄膜の形成方法、薄膜の積層薄膜の形成方法、およびそれらを用いた、電子デバイスおよび有機エレクトロルミネッセンス素子に関する。 The present invention relates to a method for forming a thin film made of an organic material, a method for forming a thin film of thin films, and an electronic device and an organic electroluminescence element using them.
 従来、発光型の電子ディスプレイデバイスとして、エレクトロルミネッセンスディスプレイ(以下、ELDともいう)がある。ELDの構成要素としては、無機エレクトロルミネッセンス素子や有機エレクトロルミネッセンス素子(以下、有機EL素子ともいう)が挙げられる。無機エレクトロルミネッセンス素子は平面型光源として使用されてきたが、発光素子を駆動させるためには交流の高電圧が必要である。 Conventionally, as a light-emitting electronic display device, there is an electroluminescence display (hereinafter also referred to as ELD). Examples of the constituent elements of ELD include inorganic electroluminescent elements and organic electroluminescent elements (hereinafter also referred to as organic EL elements). Inorganic electroluminescent elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
 一方、有機EL素子は、発光する化合物を含有する発光層を陰極と陽極で挟んだ構成を有し、発光層に電子及び正孔を注入して、再結合させることにより励起子(エキシトン)を生成させ、この励起子(エキシトン)が失活する際の光の放出(蛍光・燐光)を利用して発光する素子であり、数V~数十V程度の電圧で発光が可能であり、更に自己発光型であるために視野角に富み、視認性が高く、薄膜型の完全固体素子であるために省スペース、携帯性等の観点から注目されている。 On the other hand, an organic EL element has a configuration in which a light emitting layer containing a compound that emits light is sandwiched between a cathode and an anode, and injects electrons and holes into the light emitting layer to recombine excitons. This is an element that emits light by utilizing the emission of light (fluorescence / phosphorescence) when the exciton (exciton) is deactivated, and can emit light at a voltage of several volts to several tens of volts. Since it is a self-luminous type, it has a wide viewing angle, high visibility, and since it is a thin-film type complete solid-state device, it has attracted attention from the viewpoints of space saving and portability.
 今後の実用化に向けた有機EL素子の開発としては、更に低消費電力で、効率よく高輝度に発光する有機EL素子が望まれている。 For the development of organic EL elements for practical use in the future, organic EL elements that emit light efficiently and with high luminance with lower power consumption are desired.
 例えば、特許第3093796号公報には、スチルベン誘導体、ジスチリルアリーレン誘導体またはトリススチリルアリーレン誘導体に、微量の蛍光体をドープし、発光輝度の向上、素子の長寿命化を達成する技術が開示され、特開昭63-264692号公報には、8-ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これに微量の蛍光体をドープした有機発光層を有する素子が開示されており、特開平3-255190号公報には、8-ヒドロキシキノリンアルミニウム錯体をホスト化合物として、これにキナクリドン系色素をドープした有機発光層を有する素子等が知られている。 For example, Japanese Patent No. 3093796 discloses a technique of doping a stilbene derivative, a distyrylarylene derivative or a tristyrylarylene derivative with a small amount of a phosphor to improve emission luminance and extend the lifetime of the device. Japanese Patent Application Laid-Open No. 63-264692 discloses an element having an organic light emitting layer in which 8-hydroxyquinoline aluminum complex is used as a host compound and a small amount of phosphor is doped therein. For example, an element having an organic light emitting layer in which an 8-hydroxyquinoline aluminum complex is used as a host compound and a quinacridone dye is doped is known.
 上記特許文献に開示されている技術では、励起一重項からの発光を用いる場合、一重項励起子と三重項励起子の生成比が1:3であるため発光性励起種の生成確率が25%であることと、光の取り出し効率が約20%であるため、外部取り出し量子効率(ηext)の限界は5%とされている。 In the technique disclosed in the above-mentioned patent document, when the emission from the excited singlet is used, the generation ratio of the singlet exciton and the triplet exciton is 1: 3, so the generation probability of the luminescent excited species is 25%. Since the light extraction efficiency is about 20%, the limit of the external extraction quantum efficiency (ηext) is set to 5%.
 ところが、M.A.Baldo et al.,nature、395巻、151~154ページ(1998年)により、プリンストン大より、励起三重項からのリン光発光を用いる有機EL素子の報告がされて以来、M.A.Baldo et al.,nature、403巻、17号、750~753ページ(2000年)、米国特許第6,097,147号明細書により、室温で燐光を示す材料の研究が活発になってきている。 However, M.M. A. Baldo et al. , Nature, 395, 151-154 (1998), since Princeton University reported on an organic EL device using phosphorescence emission from an excited triplet. A. Baldo et al. , Nature, 403, 17, 750-753 (2000), US Pat. No. 6,097,147, research on materials that exhibit phosphorescence at room temperature has become active.
 更に、最近発見されたリン光発光を利用する有機EL素子では、以前の蛍光発光を利用する素子に比べ原理的に約4倍の発光効率が実現可能であることから、その材料開発を初めとし、発光素子の層構成や電極の研究開発が世界中で行われている。 In addition, recently discovered organic EL devices that use phosphorescence can realize a luminous efficiency that is approximately four times that of previous devices that use fluorescence. Research and development of light-emitting element layer configurations and electrodes are performed all over the world.
 例えば、S.Lamansky et al.,J.Am.Chem.Soc.,123巻、4304ページ(2001年)には、多くの化合物がイリジウム錯体系等重金属錯体を中心に合成検討がなされている。 For example, S. Lamansky et al. , J .; Am. Chem. Soc. , 123, 4304 (2001), a number of compounds are being studied for synthesis centering on heavy metal complexes such as iridium complexes.
 また、有機EL素子は、電極と電極の間を厚さわずか0.1μm程度の有機材料の膜で構成するオールソリッド素子であり、なおかつその発光が2V~20V程度の比較的低い電圧で達成できることから、次世代の平面ディスプレイや照明として期待されている技術である。 In addition, the organic EL element is an all-solid element composed of an organic material film having a thickness of only about 0.1 μm between the electrodes, and can emit light at a relatively low voltage of about 2V to 20V. Therefore, it is a technology that is expected as a next-generation flat display and illumination.
 また、有機EL素子の構成は、透明電極と対抗電極に有機層が挟まれただけの単純なものであり、平面ディスプレイの代表である液晶ディスプレイに比べ、部品点数が圧倒的に少ないため、製造コストも低く抑えられるはずであるが、現状では必ずしもそうではなく、性能的にもコスト的にも液晶ディスプレイに大きく水をあけられている。特にコストに対しては、生産性の悪さがその要因と考えられる。 In addition, the structure of the organic EL element is a simple one in which an organic layer is sandwiched between a transparent electrode and a counter electrode, and the number of parts is overwhelmingly smaller than that of a liquid crystal display, which is a typical flat display. Although the cost should be kept low, this is not always the case at present, and a large amount of water is drained from the liquid crystal display in terms of performance and cost. In particular, in terms of cost, poor productivity is considered as a factor.
 現在商品化されている有機ELの殆どが、低分子材料を蒸着して成膜する、いわゆる蒸着法で製造されている。この蒸着法は精製が容易な低分子化合物を有機EL材料として用いることができる(高純度材料が得やすい)こと、更に積層構造を作るのが容易なことから、効率、寿命という面で非常に優れている。 Most of the organic EL currently commercialized are manufactured by a so-called vapor deposition method in which a low molecular material is vapor deposited. In this vapor deposition method, a low-molecular compound that can be easily purified can be used as an organic EL material (high-purity material is easy to obtain), and a laminated structure can be easily formed. Are better.
 しかし、反面、10-4Pa以下という高真空条件下で蒸着を行うため、成膜する装置に制約が加わり、実際には小さい面積の基板にしか適用できず、さらに複数層積層するとなると成膜に時間がかかりスループットが低いことが欠点である。 However, since vapor deposition is performed under a high vacuum condition of 10 −4 Pa or less, restrictions are imposed on the film forming apparatus, and in practice it can be applied only to a substrate with a small area. It takes a long time and has a low throughput.
 特に、照明用途や大面積の電子ディスプレイに適用する場合は問題となり、有機ELがそのようなアプリケーションに実用されていないひとつの原因となっている。 Especially, it becomes a problem when applied to lighting applications and large-area electronic displays, and organic EL is one of the causes not practically used for such applications.
 一方、有機化合物層をスピンコート、インクジェット、印刷、スプレーといったプロセスで製造する塗布法は、常圧で薄膜を作製することができ、さらには大面積に均一な膜を作製するのに適しており、連続生産を可能とする手段のひとつとして、有機EL材料を含む溶液を用いた方法が提案されている(例えば、特許文献1参照。)。 On the other hand, coating methods that produce organic compound layers by processes such as spin coating, inkjet, printing, and spraying can produce thin films at normal pressure, and are suitable for producing uniform films over large areas. As one of means for enabling continuous production, a method using a solution containing an organic EL material has been proposed (for example, see Patent Document 1).
 しかしながら、高い発光効率、長寿命を同時に達成するためには、複数の機能層を積層することが望ましい。塗布法を用いて複数の層を積層するためには下層が上層の塗布液に溶解しないことが前提条件であるが、数十nmオーダーという非常に薄い膜に対しては、わずかに溶解性を示す溶剤であっても下層の膜の一部が溶け出し、または溶媒によって界面が乱れてしまうという問題が生じる。 However, in order to achieve high luminous efficiency and long life at the same time, it is desirable to stack a plurality of functional layers. In order to laminate a plurality of layers using the coating method, it is a prerequisite that the lower layer does not dissolve in the upper layer coating solution, but it is slightly soluble for very thin films of the order of several tens of nm. Even if it is a solvent to show, a part of lower layer film | membrane melt | dissolves or the problem that an interface will be disturb | confused by a solvent arises.
 このような下層材料の上層へのコンタミ(混合)や界面の乱れは、素子の発光効率の低下や素子寿命の劣化を引き起こすため、改善の必要があり、これらの問題の解決が要望されている。 Such contamination (mixing) on the upper layer material and disturbance of the interface cause a decrease in the light emission efficiency of the device and a deterioration in the device life, and therefore there is a need for improvement, and a solution to these problems is desired. .
特開2004-292782号公報JP 2004-292882 A
 本発明は、上記課題に鑑みなされたものであり、本発明の目的は、連続生産を可能にする塗布法による有機薄膜、有機積層薄膜の形成の場合であっても、下層材料の上層への混合(コンタミ)や界面の乱れが改善された有機薄膜の形成方法を提供すること、該形成方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子を提供することである。 The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to form an organic thin film or an organic laminated thin film by a coating method that enables continuous production. Providing a method for forming an organic thin film in which mixing (contamination) and interface disturbance are improved, and using the formation method, an organic EL device having high external extraction quantum efficiency and a long emission lifetime is provided. An electronic device including an organic thin film and an organic EL element are provided.
 本発明の上記目的は、下記の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.有機物からなる薄膜を形成した後に物理化学的な処理を加えることにより、前記薄膜を形成する前記有機物の化学的構造を変えることなく、前記薄膜の物理化学的性質を変化させることを特徴とする薄膜の形成方法。 1. A thin film characterized by changing the physicochemical properties of the thin film without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. Forming method.
 2.前記有機物が下記一般式(1)の部分構造を有する化合物であることを特徴とする前記1に記載の薄膜の形成方法。 2. 2. The method for forming a thin film as described in 1 above, wherein the organic substance is a compound having a partial structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 (式中、Ar、Arは芳香族環を表し、R、Rは互いに結合して、5員または6員の芳香族環を形成するのに必要な原子郡を表す。但し、前記芳香族環は、芳香族炭化水素環または芳香族複素環を表す。)
 3.前記薄膜の物理化学的性質の変化がアモルファスから結晶への変化であることを特徴とする前記1または2に記載の薄膜の形成方法。
(In the formula, Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 represent an atomic group necessary for bonding to each other to form a 5-membered or 6-membered aromatic ring, provided that (The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.)
3. 3. The method for forming a thin film according to 1 or 2, wherein the change in physicochemical properties of the thin film is a change from amorphous to crystalline.
 4.前記物理化学的な処理が熱的処理であることを特徴とする前記1~3のいずれか1項に記載の薄膜の形成方法。 4. 4. The method for forming a thin film according to any one of 1 to 3, wherein the physicochemical treatment is thermal treatment.
 5.前記物理化学的な処理が化学的処理であることを特徴とする前記1~3のいずれか1項に記載の薄膜の形成方法。 5. 4. The method for forming a thin film according to any one of 1 to 3, wherein the physicochemical treatment is a chemical treatment.
 6.前記薄膜の形成で塗布工程を用いることを特徴とする前記1~5のいずれか1項に記載の薄膜の形成方法。 6. 6. The method for forming a thin film according to any one of 1 to 5, wherein a coating process is used for forming the thin film.
 7.前記1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜上に、当該薄膜に隣接した薄膜を、前記1~6のいずれか1項に記載の薄膜の形成方法を用いてもよい塗布工程で形成し、積層薄膜を形成することを特徴とする積層薄膜の形成方法。 7. A thin film adjacent to the thin film is formed on the thin film formed by the thin film forming method according to any one of 1 to 6, using the thin film forming method according to any one of 1 to 6. A method for forming a laminated thin film, wherein the laminated thin film is formed by a coating step that may be performed.
 8.前記1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする電子デバイス。 8. An electronic device comprising a thin film formed by the method for forming a thin film according to any one of 1 to 6 above.
 9.前記7に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする電子デバイス。 9. 8. An electronic device comprising a laminated thin film formed by the method for forming a laminated thin film as described in 7 above.
 10.前記1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 10. 7. An organic electroluminescence device comprising a thin film formed by the method for forming a thin film according to any one of 1 to 6 above.
 11.前記7に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 11. 8. An organic electroluminescence device comprising a laminated thin film formed by the method for forming a laminated thin film as described in 7 above.
 本発明の上記目的は、更に詳しくは、下記の構成により達成される。 More specifically, the above object of the present invention is achieved by the following configuration.
 1.有機物からなる薄膜を形成した後に物理化学的な処理を加えることにより、前記薄膜を形成する前記有機物の化学的構造を変えることなく、前記薄膜の物理化学的性質を変化させることを特徴とする薄膜の形成方法。 1. A thin film characterized by changing the physicochemical properties of the thin film without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. Forming method.
 2.前記有機物が下記一般式(1)の部分構造を有する化合物であることを特徴とする1に記載の薄膜の形成方法。 2. 2. The method for forming a thin film according to 1, wherein the organic substance is a compound having a partial structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Ar、Arは芳香族環を表し、R、Rは互いに結合して、5員または6員の芳香族環を形成するのに必要な原子郡を表す。但し、前記芳香族環は、芳香族炭化水素環または芳香族複素環を表す。)
 3.前記有機物が一般式(1)の部分構造を少なくとも2つ有することを特徴とする1または2に記載の薄膜の形成方法。
(In the formula, Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 represent an atomic group necessary for bonding to each other to form a 5-membered or 6-membered aromatic ring, provided that (The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.)
3. 3. The method for forming a thin film according to 1 or 2, wherein the organic substance has at least two partial structures of the general formula (1).
 4.前記一般式(1)のArが、少なくとも2個の芳香族環から形成された縮合環であることを特徴とする1~3のいずれか1項に記載の薄膜の形成方法。 4). 4. The method for forming a thin film according to any one of 1 to 3, wherein Ar 1 in the general formula (1) is a condensed ring formed from at least two aromatic rings.
 5.前記一般式(1)のArが、少なくとも3個の芳香族環から形成された縮合環であることを特徴とする1~4のいずれか1項に記載の薄膜の形成方法。 5). 5. The method for forming a thin film according to any one of 1 to 4, wherein Ar 1 in the general formula (1) is a condensed ring formed from at least three aromatic rings.
 6.前記一般式(1)のArが、置換または無置換のトリアリールアミンのアリール環、カルバゾール環、カルボリン環、または1,10-フェナントロリン環、のいずれかであることを特徴とする1~5のいずれか1項に記載の薄膜の形成方法。 6). Ar 1 in the general formula (1) is any one of an aryl ring, a carbazole ring, a carboline ring, or a 1,10-phenanthroline ring of a substituted or unsubstituted triarylamine. The method for forming a thin film according to any one of the above.
 7.前記一般式(1)のArが、置換又は無置換のフェニル基であることを特徴とする1~6のいずれか1項に記載の薄膜の形成方法。 7). 7. The method for forming a thin film according to any one of 1 to 6, wherein Ar 2 in the general formula (1) is a substituted or unsubstituted phenyl group.
 8.前記一般式(1)のArが、置換又は無置換の含窒素6員環であることを特徴とする1~6のいずれか1項に記載の薄膜の形成方法。 8). 7. The method for forming a thin film according to any one of 1 to 6, wherein Ar 2 in the general formula (1) is a substituted or unsubstituted nitrogen-containing 6-membered ring.
 9.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「トリアリールアミン、カルバゾール環、またはカルボリン環、から選ばれる1種の少なくとも2つ同士が、単結合、トリアリールアミン、ジベンゾフラン環、または、ベンゼン環、から選ばれる少なくとも1つを介して連結された構造」の両末端、または、片末端の、トリアリールアミンの1つのアリール環、カルバゾール環、またはカルボリン環、をそれぞれ共有している化合物であることを特徴とする2~8のいずれか1項に記載の薄膜の形成方法。 9. The compound having the partial structure of the general formula (1) is at least one of at least one selected from “triarylamine, carbazole ring, or carboline ring” as Ar 1 of the partial structure of the general formula (1). One of triarylamines at one end or at one end of a structure in which two are linked via at least one selected from a single bond, a triarylamine, a dibenzofuran ring, or a benzene ring 9. The method for forming a thin film according to any one of 2 to 8, wherein the thin film is a compound sharing an aryl ring, a carbazole ring, or a carboline ring.
 10.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのトリアリールアミンが、単結合を介して連結された構造」の両末端位の該トリアリールアミンのアリール環の1つ、をそれぞれ共有している化合物であることを特徴とする2~9のいずれか1項に記載の薄膜の形成方法。 10. The compound having the partial structure of the general formula (1) is represented by Ar 1 of at least two partial structures of the general formula (1), “a structure in which at least two triarylamines are linked via a single bond”. 10. The method for forming a thin film according to any one of 2 to 9, wherein the compound shares one of the aryl rings of the triarylamine at both terminal positions.
 11.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルバゾール環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環、から選ばれる少なくとも1つを介して連結された構造」の片末端位または両末端位の当該カルバゾール環、をそれぞれ共有している化合物であることを特徴とする2~9のいずれか1項に記載の薄膜の形成方法。 11. The compound having the partial structure of the general formula (1) is a biphenyl ring as Ar 1 of at least two partial structures of the general formula (1) “at least two carbazole rings are in the N atom position (−9 position)”. , A dibenzofuran ring or a structure linked via at least one selected from a benzene ring ”, a compound sharing one or both of the carbazole rings at both terminal positions. The method for forming a thin film according to any one of 2 to 9.
 12.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「1,10-フェナントロリン環」構造、を両末端環部位でそれぞれ共有している化合物であることを特徴とする2~9のいずれか1項に記載の薄膜の形成方法。 12 The compound having the partial structure of the general formula (1) shares at least two “1,10-phenanthroline ring” structures as Ar 1 of the partial structure of the general formula (1) at both terminal ring sites. 10. The method for forming a thin film according to any one of 2 to 9, wherein the thin film is a compound.
 13.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルボリン環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環から選ばれる少なくとも1つを介して連結された構造」の両末端位の当該カルボリン環、をそれぞれ共有している化合物であることを特徴とする2~9のいずれか1項に記載の薄膜の形成方法。 13. The compound having the partial structure of the general formula (1) is represented by “at least two carboline rings at the N atom position (−9 position) as Ar 1 of the partial structure of the general formula (1), Any one of 2 to 9, wherein the carboline ring at both terminal positions of the structure connected through at least one selected from dibenzofuran ring or benzene ring is shared The method for forming a thin film according to claim 1.
 14.前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルバゾール環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環から選ばれる少なくとも1つを介して連結された構造」の両末端位の当該カルバゾール環、をそれぞれ共有し、且つ、Arが芳香族複素環である化合物であることを特徴とする2~9のいずれか1項に記載の薄膜の形成方法。 14 The compound having the partial structure of the general formula (1) is a biphenyl ring as Ar 1 of at least two partial structures of the general formula (1) “at least two carbazole rings are in the N atom position (−9 position)”. , A dibenzofuran ring, or a structure connected via at least one selected from a benzene ring, the carbazole ring at both terminal positions, and Ar 2 is an aromatic heterocyclic ring. 10. The method for forming a thin film according to any one of 2 to 9, wherein
 15.前記薄膜の物理化学的性質の変化がアモルファスから結晶への変化であることを特徴とする1~14のいずれか1項に記載の薄膜の形成方法。 15. 15. The method for forming a thin film according to any one of 1 to 14, wherein the change in physicochemical properties of the thin film is a change from amorphous to crystalline.
 16.前記物理化学的な処理が熱的処理であることを特徴とする1~15のいずれか1項に記載の薄膜の形成方法。 16. 16. The method for forming a thin film according to any one of 1 to 15, wherein the physicochemical treatment is thermal treatment.
 17.前記物理化学的な処理が化学的処理であることを特徴とする1~15のいずれか1項に記載の薄膜の形成方法。 17. 16. The method for forming a thin film according to any one of 1 to 15, wherein the physicochemical treatment is a chemical treatment.
 18.前記薄膜の形成で塗布工程を用いることを特徴とする1~17のいずれか1項に記載の薄膜の形成方法。 18. 18. The method for forming a thin film according to any one of 1 to 17, wherein a coating process is used for forming the thin film.
 19.1~18のいずれか1項に記載の薄膜の形成方法で形成された薄膜上に、当該薄膜に隣接した薄膜を、1~18のいずれか1項に記載の薄膜の形成方法を用いてもよい塗布工程で形成し、積層薄膜を形成することを特徴とする積層薄膜の形成方法。 19. A thin film adjacent to the thin film is formed on the thin film formed by the thin film forming method according to any one of 19.1 to 18, using the thin film forming method according to any one of 1 to 18. A method for forming a laminated thin film, wherein the laminated thin film is formed by a coating step that may be performed.
 20.1~18のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする電子デバイス。 An electronic device comprising a thin film formed by the method for forming a thin film according to any one of 20.1 to 18.
 21.19に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする電子デバイス。 An electronic device comprising a laminated thin film formed by the method for forming a laminated thin film according to 21.19.
 22.1~18のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence element comprising a thin film formed by the method for forming a thin film according to any one of 22.1 to 18.
 23.19に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescent device comprising a laminated thin film formed by the method for forming a laminated thin film described in 23.19.
 従来公知の有機物の薄膜の形成には、薄膜形成が容易であるが高真空を必要とする高真空蒸着法や、スピンコート、インクジェット、塗布コーターなどの比較的簡単な装置を用いることが可能な塗布法などが一般的に知られている。 For forming a conventionally known organic thin film, it is possible to use a relatively simple apparatus such as a high vacuum deposition method that requires high vacuum, spin coating, ink jet, coating coater, etc., although thin film formation is easy. A coating method is generally known.
 薄膜を積層する場合、高真空蒸着法では任意の膜厚の積層膜を得ることが可能である反面、高真空が必要であり連続生産が難しいことや、大掛かりな装置が必要であるといった欠点がある。 When laminating thin films, it is possible to obtain a laminated film of any film thickness by the high vacuum vapor deposition method, but there are drawbacks such as high vacuum is necessary and continuous production is difficult, and large-scale equipment is required. is there.
 一方、塗布法では、薄膜を塗布工程で積層しようとすると最初に形成した薄膜に隣接する薄膜を形成する際に、最初に形成した薄膜が溶剤に溶解してしまう、下層材料の上層への混合(コンタミ)や界面の乱れ、など塗布工程ならではの難しさが存在した。 On the other hand, in the coating method, when a thin film is to be laminated in the coating process, when the thin film adjacent to the first formed thin film is formed, the first formed thin film dissolves in the solvent. There were difficulties unique to the coating process, such as contamination and interface disturbance.
 そこで、本発明等は、有機化合物の溶解とは、溶媒によって有機化合物分子が溶媒和された状態が安定的に存在していることを指すが、有機化合物の構造、溶媒の種類などによって溶液として安定的に存在できるかどうかが決定されることに注目した。更に、アモルファス状態からの溶液形成が容易であり、結晶化状態からの溶液形成が困難である有機化合物が存在していることに着目し、その特性を薄膜形成に応用することで、塗布工程ではこれまで困難であった有機化合物の薄膜の積層を容易になせることを達成し得たものである。更には、結晶膜を任意に形成することを可能にすることにより、結晶膜に特有の電気的特性の発現、電荷移動度の向上を達成することが可能としたものである。すなわち、薄膜形成後に薄膜に物理化学的処理を施すことにより薄膜の状態を変化させることが広範囲に応用可能であり本発明の目的を達成し得た。 Accordingly, in the present invention and the like, dissolution of an organic compound means that a state in which organic compound molecules are solvated by a solvent stably exists. However, the solution depends on the structure of the organic compound, the type of the solvent, etc. It was noted that it was decided whether it could exist stably. Furthermore, paying attention to the existence of organic compounds that are easy to form solutions from the amorphous state and difficult to form solutions from the crystallized state, and applying these properties to thin film formation, It has been possible to easily achieve the lamination of thin films of organic compounds, which has been difficult until now. Furthermore, by making it possible to arbitrarily form a crystal film, it is possible to achieve expression of electrical characteristics peculiar to the crystal film and improvement of charge mobility. That is, changing the state of the thin film by subjecting the thin film to physicochemical treatment after forming the thin film can be applied in a wide range, and the object of the present invention can be achieved.
 本発明によれば、連続生産を可能にする塗布法による有機薄膜、有機積層薄膜の形成の場合であっても、下層材料の上層への混合(コンタミ)や界面の乱れが改善された有機薄膜の形成方法を提供すること、該形成方法を用いて、外部取り出し量子効率が高く、且つ、発光寿命の長い有機EL素子を提供し、該有機薄膜を含む電子デバイス、有機EL素子を提供することができる。 According to the present invention, even in the case of forming an organic thin film or an organic laminated thin film by a coating method that enables continuous production, the organic thin film with improved mixing (contamination) of the lower layer material and disturbance of the interface is improved. Providing an organic EL element having a high external extraction quantum efficiency and a long light emission lifetime, and providing an electronic device and an organic EL element including the organic thin film. Can do.
実施例1における、試料1-1のX線回折XRD(X線回折法装置、理学電機社製、形式RINT-TTR2装置)の測定結果を示す図である。FIG. 3 is a diagram showing the measurement results of X-ray diffraction XRD (X-ray diffraction method apparatus, manufactured by Rigaku Corporation, model RINT-TTR2 apparatus) of Sample 1-1 in Example 1. 実施例1における、試料1-2のX線回折XRD(X線回折法装置、理学電機社製、形式RINT-TTR2装置)の測定結果を示す図である。FIG. 3 is a diagram showing the measurement results of X-ray diffraction XRD (X-ray diffraction apparatus, manufactured by Rigaku Corporation, model RINT-TTR2 apparatus) of Sample 1-2 in Example 1. 照明装置の概略図である。It is the schematic of an illuminating device. 照明装置の断面図である。It is sectional drawing of an illuminating device.
 以下、本発明を実施するための最良の形態について説明するが、本発明はこれらに限定されない。 Hereinafter, the best mode for carrying out the present invention will be described, but the present invention is not limited thereto.
 本発明の薄膜の形成方法は、有機物からなる薄膜を形成した後に物理化学的な処理を加えることにより、薄膜を形成する有機物の化学的構造を変えることなく、薄膜の物理化学的性質を変化させることを特徴とする。
(本発明に係る有機物)
 先ず、本発明に係る有機物について説明する。
The thin film formation method of the present invention changes the physicochemical properties of the thin film without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. It is characterized by that.
(Organic substance according to the present invention)
First, the organic substance according to the present invention will be described.
 本発明に係る有機物として、好ましくは、前記一般式(1)の部分構造を有する化合物を挙げることができる。 Preferred examples of the organic substance according to the present invention include compounds having the partial structure represented by the general formula (1).
 本発明に係る有機物として、好ましくは、従来有機EL素子に用いられる所謂ホスト化合物、構造的には特に制限はないが、代表的にはカルバゾール誘導体、トリアリールアミン誘導体、カルボリン誘導体やジアザカルバゾール誘導体(ここで、ジアザカルバゾール誘導体とは、カルボリン誘導体のカルボリン環を構成する炭化水素環の少なくとも一つの炭素原子が窒素原子で置換されているものを表す。)、1,10-フェナントロリン誘導体、芳香族ボラン誘導体、含窒素複素環化合物、チオフェン誘導体、フラン誘導体、オリゴアリーレン化合物等の基本骨格を有するもの等において、本発明の前記一般式(1)の部分構造を有する化合物を挙げることができる。 The organic substance according to the present invention is preferably a so-called host compound that is conventionally used in an organic EL device, and is not particularly limited in terms of structure, but is typically a carbazole derivative, a triarylamine derivative, a carboline derivative, or a diazacarbazole derivative. (Here, the diazacarbazole derivative represents one in which at least one carbon atom of the hydrocarbon ring constituting the carboline ring of the carboline derivative is substituted with a nitrogen atom), 1,10-phenanthroline derivative, aromatic Examples of compounds having a basic skeleton such as a group borane derivative, a nitrogen-containing heterocyclic compound, a thiophene derivative, a furan derivative, and an oligoarylene compound include compounds having the partial structure of the general formula (1) of the present invention.
 中でも、カルバゾール誘導体、トリアリールアミン誘導体、カルボリン誘導体、ジアザカルバゾール誘導体、1,10-フェナントロリン誘導体、等において、本発明の前記一般式(1)の部分構造を有する化合物が好ましい。一般式(1)の部分構造を少なくとも2つ有することがより好ましい。 Among these, compounds having a partial structure of the general formula (1) of the present invention are preferable in carbazole derivatives, triarylamine derivatives, carboline derivatives, diazacarbazole derivatives, 1,10-phenanthroline derivatives, and the like. It is more preferable to have at least two partial structures of the general formula (1).
 本発明の前記一般式(1)の部分構造を有する化合物の前記一般式(1)において、Ar、Arは芳香族環を表し、R、Rは互いに結合して、5員または6員の芳香族環を形成するのに必要な原子郡を表す。但し、前記芳香族環は、芳香族炭化水素環または芳香族複素環を表す。 In the general formula (1) of the compound having the partial structure of the general formula (1) of the present invention, Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 are bonded to each other to form a 5-membered or Represents a group of atoms required to form a 6-membered aromatic ring. However, the aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.
 前記一般式(1)のArが、少なくとも2個の芳香族環から形成された縮合環であることが好ましい。 Ar 1 in the general formula (1) is preferably a condensed ring formed from at least two aromatic rings.
 また、前記一般式(1)のArが、少なくとも3個の芳香族環から形成された縮合環であることが好ましい。 In addition, Ar 1 in the general formula (1) is preferably a condensed ring formed from at least three aromatic rings.
 また、前記一般式(1)のArが、置換または無置換のトリアリールアミン構造、カルバゾール構造、カルボリン構造、または1,10-フェナントロリン構造、のいずれかの化学構造の一部であることが好ましい。 In addition, Ar 1 in the general formula (1) may be a part of a chemical structure of any one of a substituted or unsubstituted triarylamine structure, carbazole structure, carboline structure, or 1,10-phenanthroline structure. preferable.
 また、前記一般式(1)のArが、置換又は無置換のフェニル基であることが好ましい。 Further, Ar 2 in the general formula (1) is preferably a substituted or unsubstituted phenyl group.
 また、前記一般式(1)のArが、置換又は無置換の含窒素6員環であることが好ましい。 In addition, Ar 2 in the general formula (1) is preferably a substituted or unsubstituted nitrogen-containing 6-membered ring.
 前記一般式(1)の部分構造を有する化合物として、好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「トリアリールアミン、カルバゾール環、またはカルボリン環、から選ばれる1種の少なくとも2つ同士が、単結合、トリアリールアミン、ジベンゾフラン環、または、ベンゼン環、から選ばれる少なくとも1つを介して連結された構造」の両末端、または、片末端の、トリアリールアミンの1つのアリール環、カルバゾール環、またはカルボリン環、をそれぞれ共有している化合物を挙げることができる。 As the compound having the partial structure of the general formula (1), preferably, the compound having the partial structure of the general formula (1) is selected as “tria” as Ar 1 of at least two partial structures of the general formula (1). A structure in which at least two members selected from a reelamine, a carbazole ring, or a carboline ring are linked via at least one selected from a single bond, a triarylamine, a dibenzofuran ring, or a benzene ring And a single terminal of the aryl ring, carbazole ring, or carboline ring of the triarylamine, respectively.
 前記一般式(1)の部分構造を有する化合物として、より好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのトリアリールアミンが、単結合を介して連結された構造」の両末端位の該トリアリールアミンのアリール環の1つ、をそれぞれ共有している化合物を挙げることができる。 More preferably, the compound having the partial structure of the general formula (1) is a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). Examples include compounds in which at least two triarylamines each share one of the aryl rings of the triarylamine at both terminal positions of the structure in which the structure is linked via a single bond.
 そのような化合物の具体的な例示化合物として例えば、後述する例示化合物(1-1)~(1-5)を挙げることができる。 Specific examples of such compounds include exemplified compounds (1-1) to (1-5) described later.
 又、前記一般式(1)の部分構造を有する化合物として、より好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルバゾール環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環、から選ばれる少なくとも1つを介して連結された構造」の片末端位または両末端位の当該カルバゾール環、をそれぞれ共有している化合物を挙げることができる。 The compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). , “One or both ends of a structure in which at least two carbazole rings are linked via at least one selected from a biphenyl ring, a dibenzofuran ring, or a benzene ring at the N atom position (−9 position)” And a compound sharing each carbazole ring at the position.
 そのような化合物の具体的な例示化合物としては、例えば、後述する例示化合物(2-1)~(2-5)を挙げることができる。 Specific examples of such compounds include exemplified compounds (2-1) to (2-5) described later.
 又、前記一般式(1)の部分構造を有する化合物として、より好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「1,10-フェナントロリン環」構造、を両末端環部位でそれぞれ共有している化合物を挙げることができる。 The compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). And a compound having a “1,10-phenanthroline ring” structure at both terminal ring sites.
 そのような化合物の具体的な例示化合物として例えば、後述する例示化合物(3-1)を挙げることができる。 As a specific example compound of such a compound, for example, exemplified compound (3-1) described later can be mentioned.
 又、前記一般式(1)の部分構造を有する化合物として、より好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルボリン環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環から選ばれる少なくとも1つを介して連結された構造」の両末端位の当該カルボリン環、をそれぞれ共有している化合物を挙げることができる。 The compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). , “The carboline ring at both terminal positions of“ a structure in which at least two carboline rings are linked at the N atom position (−9 position) via at least one selected from a biphenyl ring, a dibenzofuran ring, and a benzene ring ” , And the like.
 そのような化合物の具体的な例示化合物として例えば、後述する例示化合物(3-2)、(3-3)を挙げることができる。 Specific examples of such compounds include exemplified compounds (3-2) and (3-3) described later.
 又、前記一般式(1)の部分構造を有する化合物として、より好ましくは、前記一般式(1)の部分構造を有する化合物が、少なくとも2つの前記一般式(1)の部分構造のArとして、「少なくとも2つのカルバゾール環がN原子位(-9位)で、ビフェニル環、ジベンゾフラン環、または、ベンゼン環から選ばれる少なくとも1つを介して連結された構造」の両末端位の当該カルバゾール環、をそれぞれ共有し、且つ、Arが芳香族複素環である化合物を挙げることができる。 The compound having the partial structure of the general formula (1) is more preferably a compound having the partial structure of the general formula (1) as Ar 1 of at least two partial structures of the general formula (1). , “The carbazole ring at both terminal positions of“ a structure in which at least two carbazole rings are linked via at least one selected from a biphenyl ring, a dibenzofuran ring, or a benzene ring at the N atom position (−9 position) ” , And Ar 2 is an aromatic heterocyclic ring.
 そのような化合物の具体的な例示化合物として例えば、後述する例示化合物(3-4)、(3-5)を挙げることができる。 Specific examples of such compounds include exemplified compounds (3-4) and (3-5) described later.
 前記一般式(1)において、Ar、Ar、RとR、で表される、芳香族炭化水素環としては、アリール環等ともいい、例えば、ベンゼン環、ナフタレン環、アントラセン環、アズレン環、アセナフチレン環、フルオレン環、フェナンスレン環、インデン環、ピレン環、ビフェニル環、等が、挙げられる。 In the general formula (1), the aromatic hydrocarbon ring represented by Ar 1 , Ar 2 , R 1 and R 2 is also referred to as an aryl ring, for example, a benzene ring, a naphthalene ring, an anthracene ring, Examples thereof include an azulene ring, an acenaphthylene ring, a fluorene ring, a phenanthrene ring, an indene ring, a pyrene ring, and a biphenyl ring.
 前記一般式(1)において、Ar、Ar、RとR、で表される、芳香族複素環としては、例えば、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミヂン環、ピラジン環、トリアジン環、イミダゾール環、ピラゾール環、チアゾール環、キナゾリン環、カルバゾール環、カルボリン環、ジアザカルボリン環(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、1,10-フェナントロリン環、フタラジン環、等が挙げられる。 In the general formula (1), examples of the aromatic heterocycle represented by Ar 1 , Ar 2 , R 1 and R 2 include a furan ring, a thiophene ring, a pyridine ring, a pyridazine ring, a pyrimidin ring, and a pyrazine. Ring, triazine ring, imidazole ring, pyrazole ring, thiazole ring, quinazoline ring, carbazole ring, carboline ring, diazacarboline ring (in which one of the carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom) ), 1,10-phenanthroline ring, phthalazine ring, and the like.
 前記一般式(1)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ナフタレン環、等が好ましい。 In the general formula (1), the aromatic hydrocarbon ring represented by Ar 1 is preferably a benzene ring, a naphthalene ring, or the like.
 前記一般式(1)において、Arで表される芳香族複素環としては、カルバゾール環、アザカルバゾール(カルボリン(α-カルボリン、β-カルボリン、γ-カルボリン))環、1,10-フェナントロリン環、等が好ましい。 In the general formula (1), examples of the aromatic heterocycle represented by Ar 1 include a carbazole ring, an azacarbazole (carboline (α-carboline, β-carboline, γ-carboline)) ring, and a 1,10-phenanthroline ring. , Etc. are preferred.
 前記一般式(1)において、Arで表される芳香族炭化水素環としては、ベンゼン環、ナフタレン環、等が好ましい。 In the general formula (1), the aromatic hydrocarbon ring represented by Ar 2 is preferably a benzene ring, a naphthalene ring, or the like.
 前記一般式(1)において、Arで表される芳香族複素環としては、ピリジン環等が好ましい。 In the general formula (1), the aromatic heterocyclic ring represented by Ar 2 is preferably a pyridine ring.
 R、Rが互いに結合して形成する、5員または6員の芳香族環としては、芳香族炭化水素環及び芳香族複素環が挙げられ、芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、等が挙げられ、ベンゼン環が好ましい。芳香族複素環としては、例えば、チオフェン環、ピリジン環、等が挙げられ、ピリジン環が好ましい。 Examples of the 5-membered or 6-membered aromatic ring formed by combining R 1 and R 2 with each other include an aromatic hydrocarbon ring and an aromatic heterocyclic ring. Examples of the aromatic hydrocarbon ring include benzene A ring, a naphthalene ring, and the like, and a benzene ring is preferable. As an aromatic heterocyclic ring, a thiophen ring, a pyridine ring, etc. are mentioned, for example, A pyridine ring is preferable.
 上記の本発明の化合物は更に置換基を有していてもよく、該置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、アリール基(例えば、フェニル基、ナフチル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(前記カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基またはヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)等が挙げられる。尚、これらの置換基は、上記の置換基によってさらに置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。 The compound of the present invention may further have a substituent, and examples of the substituent include an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group). Group, octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group etc.), cycloalkyl group (eg cyclopentyl group, cyclohexyl group etc.), alkenyl group (eg vinyl group, allyl group etc.), alkynyl group (eg , Ethynyl group, propargyl group etc.), aryl group (eg phenyl group, naphthyl group etc.), aromatic heterocyclic group (eg furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group) , Imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, carbazolyl group A carbolinyl group, a diazacarbazolyl group (in which one of carbon atoms constituting the carboline ring of the carbolinyl group is replaced by a nitrogen atom), a phthalazinyl group, etc.), a heterocyclic group (for example, a pyrrolidyl group, Imidazolidyl group, morpholyl group, oxazolidyl group, etc.), alkoxy group (for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.), cycloalkoxy group (for example, Cyclopentyloxy group, cyclohexyloxy group, etc.), aryloxy group (eg, phenoxy group, naphthyloxy group, etc.), alkylthio group (eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group) Etc.), A cycloalkylthio group (eg, cyclopentylthio group, cyclohexylthio group, etc.), an arylthio group (eg, phenylthio group, naphthylthio group, etc.), an alkoxycarbonyl group (eg, methyloxycarbonyl group, ethyloxycarbonyl group, butyloxycarbonyl group, Octyloxycarbonyl group, dodecyloxycarbonyl group, etc.), aryloxycarbonyl group (eg, phenyloxycarbonyl group, naphthyloxycarbonyl group, etc.), sulfamoyl group (eg, aminosulfonyl group, methylaminosulfonyl group, dimethylaminosulfonyl group, Butylaminosulfonyl group, hexylaminosulfonyl group, cyclohexylaminosulfonyl group, octylaminosulfonyl group, dodecylaminosulfonyl group, phenylaminosulfonyl group Group, naphthylaminosulfonyl group, 2-pyridylaminosulfonyl group, etc.), acyl group (for example, acetyl group, ethylcarbonyl group, propylcarbonyl group, pentylcarbonyl group, cyclohexylcarbonyl group, octylcarbonyl group, 2-ethylhexylcarbonyl group, Dodecylcarbonyl group, phenylcarbonyl group, naphthylcarbonyl group, pyridylcarbonyl group, etc.), acyloxy group (for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy) Group), amide group (for example, methylcarbonylamino group, ethylcarbonylamino group, dimethylcarbonylamino group, propylcarbonylamino group, pentylcarbonyl group). Group, cyclohexylcarbonylamino group, 2-ethylhexylcarbonylamino group, octylcarbonylamino group, dodecylcarbonylamino group, phenylcarbonylamino group, naphthylcarbonylamino group, etc.), carbamoyl group (for example, aminocarbonyl group, methylaminocarbonyl group) Dimethylaminocarbonyl group, propylaminocarbonyl group, pentylaminocarbonyl group, cyclohexylaminocarbonyl group, octylaminocarbonyl group, 2-ethylhexylaminocarbonyl group, dodecylaminocarbonyl group, phenylaminocarbonyl group, naphthylaminocarbonyl group, 2- Pyridylaminocarbonyl group, etc.), ureido group (for example, methylureido group, ethylureido group, pentylureido group, cyclohexylurea) Group, octylureido group, dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.), sulfinyl group (for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group) Group, dodecylsulfinyl group, phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.), alkylsulfonyl group (for example, methylsulfonyl group, ethylsulfonyl group, butylsulfonyl group, cyclohexylsulfonyl group, 2-ethylhexylsulfonyl group, Dodecylsulfonyl group, etc.), arylsulfonyl group or heteroarylsulfonyl group (for example, phenylsulfonyl group, naphthylsulfonyl group, 2-pyridyl) Rusulfonyl group, etc.), amino group (eg, amino group, ethylamino group, dimethylamino group, butylamino group, cyclopentylamino group, 2-ethylhexylamino group, dodecylamino group, anilino group, naphthylamino group, 2-pyridylamino group) Group), halogen atom (eg fluorine atom, chlorine atom, bromine atom etc.), fluorinated hydrocarbon group (eg fluoromethyl group, trifluoromethyl group, pentafluoroethyl group, pentafluorophenyl group etc.), cyano Group, nitro group, hydroxy group, mercapto group, silyl group (for example, trimethylsilyl group, triisopropylsilyl group, triphenylsilyl group, phenyldiethylsilyl group, etc.). These substituents may be further substituted with the above substituents. In addition, a plurality of these substituents may be bonded to each other to form a ring.
 以下に、本発明に係る有機物、好ましくは、前記一般式(1)の部分構造を有する化合物(以下、本発明の化合物とも言う。)の具体的な例示化合物を挙げるが、本発明はこれに限定されない。 Specific examples of the organic substance according to the present invention, preferably a compound having the partial structure represented by the general formula (1) (hereinafter also referred to as the compound of the present invention), are shown below. It is not limited.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 上記本発明の化合物はブッフバルト・ハートウィッグ反応、鈴木反応、等公知の合成方法によって、合成することができる。 The compound of the present invention can be synthesized by known synthesis methods such as Buchwald-Hartwig reaction and Suzuki reaction.
 尚、上記の本発明の化合物の具体例の中で、化合物2-1~2-5は、本発明のホスト化合物として発光層に好ましく用いられる。 Of the above-described specific examples of the compound of the present invention, compounds 2-1 to 2-5 are preferably used in the light emitting layer as the host compound of the present invention.
 また、化合物3-1~3-5は、本発明の電子輸送材料として好ましく用いられ、化合物1-1~1-5は、本発明の正孔輸送材料として好ましく用いられる。
(薄膜の形成)
 本発明の薄膜の形成方法においては、上記本発明の有機物からなる薄膜形成後に物理化学的な処理を加えることにより、薄膜を形成する分子の化学的構造を変えることなく、薄膜の物理化学的性質を変化させることを特徴とする。
Compounds 3-1 to 3-5 are preferably used as the electron transport material of the present invention, and compounds 1-1 to 1-5 are preferably used as the hole transport material of the present invention.
(Thin film formation)
In the method for forming a thin film of the present invention, the physicochemical properties of the thin film can be obtained without changing the chemical structure of the molecules forming the thin film by applying a physicochemical treatment after the formation of the organic thin film of the present invention. It is characterized by changing.
 《有機物からなる薄膜形成》
(溶解、塗布、薄膜を形成)
 本発明において、有機物からなる薄膜形成には、特には限定されないが、塗布工程を用いることが好ましい。
<Formation of organic thin films>
(Dissolving, coating, forming a thin film)
In the present invention, the formation of a thin film made of an organic material is not particularly limited, but it is preferable to use a coating process.
 本発明の化合物は、アモルファスタイプの場合には、有機溶媒に容易に溶解して塗布液を調製することができ、塗布法により容易に薄膜を形成することができる。 In the case of the amorphous type, the compound of the present invention can be easily dissolved in an organic solvent to prepare a coating solution, and a thin film can be easily formed by a coating method.
 塗布液用の有機溶媒としては、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、ジクロロベンゼン等のハロゲン化炭化水素類、メタノール、エタニール、プロパノール、ブタノール等のアルコール類、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、等の有機溶媒を用いることができる。 Examples of the organic solvent for the coating solution include aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, halogenated hydrocarbons such as dichlorobenzene, methanol, Organic solvents such as alcohols such as ethanyl, propanol and butanol, ketones such as methyl ethyl ketone and cyclohexanone, and fatty acid esters such as ethyl acetate can be used.
 中でも、トルエン、o-ジクロロベンゼン、ブタノール、ハロゲン化炭化水素類等を好ましく用いることができる。 Of these, toluene, o-dichlorobenzene, butanol, halogenated hydrocarbons and the like can be preferably used.
 塗布液を安定に保つ(結晶化能の小さい)観点から極性の小さい溶媒を用いることが好ましい。 From the viewpoint of keeping the coating solution stable (low crystallization ability), it is preferable to use a solvent having a small polarity.
 塗布法としては、ウェットプロセスとして一般的に知られている、スピンコート法、キャスト法、インクジェット法、印刷法、塗布コーター法、などの比較的簡単な装置を用いることが可能な塗布法を用いることができる。均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、スピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。 As the coating method, a coating method that is known as a wet process and that can use a relatively simple apparatus such as a spin coating method, a casting method, an ink jet method, a printing method, and a coating coater method is used. be able to. From the viewpoint that a homogeneous film can be easily obtained and pinholes are difficult to be generated, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable.
 尚、本発明の化合物が、アモルファスタイプでなくて結晶タイプである場合には、昇華精製、良溶媒と貧溶媒を用いた再沈澱等の処理をすることにより、アモルファスタイプに変えることができ、これを用いることのより、上記当初からアモルファスタイプの場合と同様にして好適に溶解、塗布、薄膜を形成することができる。
(薄膜の結晶化)
 本発明の薄膜の形成方法においては、有機物からなる薄膜を形成した後に物理化学的な処理を加えることにより、前記薄膜を形成する前記有機物の化学的構造を変えることなく、前記薄膜の物理化学的性質を変化させることを特徴とする。
In addition, when the compound of the present invention is not an amorphous type but a crystal type, it can be changed to an amorphous type by a treatment such as sublimation purification, reprecipitation using a good solvent and a poor solvent, By using this, dissolution, coating, and thin film can be suitably formed in the same manner as in the case of the amorphous type from the beginning.
(Thin film crystallization)
In the method for forming a thin film of the present invention, the physicochemical treatment of the thin film can be performed without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. It is characterized by changing properties.
 本発明においては、薄膜の物理化学的性質の変化がアモルファスから結晶への変化であることが好ましく、本発明の有機物がアモルファスの状態で塗布法等により形成した薄膜は、加熱処理(物理的な処理)、特定の溶剤での処理(化学的な処理)、好ましくは、後、更に加熱処理(物理的な処理)、等の物理化学的な処理を加えることにより結晶化させ、薄膜を形成する分子の化学的構造を変えることなく薄膜の物理化学的性質を変化させて、薄膜を塗布液に不溶にさせることができる。
(加熱処理での薄膜の結晶化)
 薄膜をアモルファスから結晶化するための物理化学的な処理が物理的な処理、中でも熱的処理であることが好ましく、加熱処理としては、50℃~250℃の範囲が好ましく、70℃~200℃の範囲がより好ましい。また、加熱時間は5秒~120分の範囲が好ましく、製造効率アップの観点から、10秒~60分の範囲が好ましい。
In the present invention, the change in the physicochemical properties of the thin film is preferably a change from amorphous to crystalline. The thin film formed by a coating method or the like in the state where the organic substance of the present invention is amorphous is subjected to heat treatment (physical Treatment), treatment with a specific solvent (chemical treatment), preferably, crystallization is performed by further applying physicochemical treatment such as heat treatment (physical treatment), and a thin film is formed. By changing the physicochemical properties of the thin film without changing the chemical structure of the molecule, the thin film can be made insoluble in the coating solution.
(Thin film crystallization by heat treatment)
The physicochemical treatment for crystallizing the thin film from amorphous is preferably a physical treatment, especially a thermal treatment, and the heat treatment is preferably in the range of 50 ° C to 250 ° C, and 70 ° C to 200 ° C. The range of is more preferable. Further, the heating time is preferably in the range of 5 seconds to 120 minutes, and from the viewpoint of increasing production efficiency, it is preferably in the range of 10 seconds to 60 minutes.
 加熱方法としては、送風加熱、輻射熱による加熱、マイクロ波加熱、赤外線加熱、ホットプレート加熱等が挙げられる。
(特定の溶剤処理での薄膜の結晶化)
 又、薄膜をアモルファスから結晶化するための物理化学的な処理が化学的処理であることが好ましく、化学的処理のうちでも、溶剤処理が好ましく用いられる。溶剤処理としては、本発明の化合物にたいして結晶化能の大きな溶剤を用いることが好ましく、薄膜の化合物の種類に応じて適宜選択して用いることができる。例えば、アセトニトリル、メタノール、エタノール、アセトン、ヘキサン、酢酸エチル、トルエン、テトラヒドロフラン、クロロホルム、等が挙げられる。浸漬法、スプレー、スピンコート等公知の処理法で溶剤を施し結晶化を簡便に行うことができる。
Examples of the heating method include blast heating, heating by radiant heat, microwave heating, infrared heating, and hot plate heating.
(Thin film crystallization by specific solvent treatment)
The physicochemical treatment for crystallizing the thin film from amorphous is preferably a chemical treatment, and among the chemical treatments, a solvent treatment is preferably used. As the solvent treatment, a solvent having a large crystallization ability is preferably used for the compound of the present invention, and can be appropriately selected and used depending on the type of the compound of the thin film. Examples include acetonitrile, methanol, ethanol, acetone, hexane, ethyl acetate, toluene, tetrahydrofuran, chloroform, and the like. Crystallization can be easily carried out by applying a solvent by a known treatment method such as dipping, spraying, spin coating and the like.
 薄膜の結晶化には、物理化学的な処理として、物理的な処理、化学的な処理を、単用で、より好ましくは併用で用いることが好ましい。
(積層薄膜の形成)
 本発明においては、上記で作製した結晶化した薄膜の上に、前述した本発明の化合物の塗布液を塗布することにより、最初に形成した薄膜が溶剤に溶解してしまうことなしに、下層材料の上層への混合(コンタミ)や界面の乱れ、など塗布工程ならではの難しさなしに、積層薄膜を塗布することができる。後、薄膜の結晶化処理を行い、結晶化した積層薄膜を形成することができる。
For the crystallization of the thin film, it is preferable to use physical treatment and chemical treatment as physicochemical treatments, and more preferably in combination.
(Formation of laminated thin film)
In the present invention, by applying the above-described coating solution of the compound of the present invention on the crystallized thin film produced as described above, the first formed thin film does not dissolve in the solvent, and the lower layer material The laminated thin film can be applied without the difficulties inherent in the coating process, such as mixing (contamination) with the upper layer and disorder of the interface. Thereafter, the thin film can be crystallized to form a crystallized laminated thin film.
 塗布工程ではこれまで困難であった有機化合物の薄膜の積層を容易に形成することができ、更に、結晶膜を任意に形成することを可能にすることにより、結晶膜に特有の電気的特性の発現、電荷移動度の向上をすることができる。
(アモルファス構造、または、結晶構造、の確認)
 本発明の化合物、や、薄膜が、アモルファス構造、または、結晶構造、であることの確認や測定は、試料のX線回折(XRD)(X線回折法装置、例えば、理学電気社製、形式RINT-TTR2装置)の測定により容易に行うことができる。
It is possible to easily form a stack of organic compound thin films, which has been difficult in the coating process, and to make it possible to arbitrarily form a crystalline film. Expression and charge mobility can be improved.
(Confirmation of amorphous structure or crystal structure)
Confirmation and measurement of the compound of the present invention and the thin film having an amorphous structure or a crystal structure can be carried out using X-ray diffraction (XRD) (X-ray diffractometer, for example, manufactured by Rigaku Denki Co., Ltd. RINT-TTR2 apparatus) can be easily performed.
 更には、結晶化の程度を定量的に測定する方法としては、例えば、薄層の試料を、アモルファス構造であれば溶解し且つ結晶化の作用がない溶剤、例えばトルエン等にて処理して、質量の減少の程度から結晶化の程度を測定することができる。 Furthermore, as a method for quantitatively measuring the degree of crystallization, for example, a thin layer sample is treated with a solvent that dissolves in the case of an amorphous structure and has no action of crystallization, such as toluene. The degree of crystallization can be measured from the degree of mass reduction.
 このようにして得られた本発明の有機薄膜は、本発明の有機EL素子や本発明の電子デバイス等に好適に用いることができる。 The organic thin film of the present invention thus obtained can be suitably used for the organic EL element of the present invention, the electronic device of the present invention and the like.
 《電子デバイス》
 本発明の電子デバイスについて説明する。
《Electronic device》
The electronic device of the present invention will be described.
 本発明の電子デバイスは、本発明の有機薄膜を用いて種々の電子デバイスが形成可能であるが、中でも、光が関与する素子が好ましく用いられる。 The electronic device of the present invention can be formed into various electronic devices using the organic thin film of the present invention. Among them, an element involving light is preferably used.
 光が関与する素子としては、例えば、液晶表示素子、有機感光体薄膜を用いた電子写真、有機光電池、光化学ホールバーニング(PHB)記録素子、有機エレクトロルミネッセンス素子(有機EL素子)、ラングミュア・ブロジェット(LB)膜を用いた各種光機能素子等が挙げられるが、特に好ましくは、有機EL素子が挙げられる。 Examples of elements that involve light include liquid crystal display elements, electrophotography using organic photoreceptor thin films, organic photovoltaic cells, photochemical hole burning (PHB) recording elements, organic electroluminescence elements (organic EL elements), Langmuir / Blodgets. Various optical functional elements using the (LB) film can be mentioned, and an organic EL element is particularly preferable.
 以下、本発明の電子デバイスの中で、好ましい態様である、有機EL素子について更に詳しく説明する。 Hereinafter, the organic EL element, which is a preferred embodiment among the electronic devices of the present invention, will be described in more detail.
 《有機EL素子》
 本発明の有機薄膜の形成方法により得られた有機薄膜を有する、本発明の有機EL素子について説明する。
<< Organic EL element >>
The organic EL element of the present invention having an organic thin film obtained by the method for forming an organic thin film of the present invention will be described.
 本発明の有機薄膜の形成方法により、最初に形成した薄膜が溶剤に溶解してしまうことなしに、下層材料の上層への混合(コンタミ)や界面の乱れのない、有機薄膜(単層膜でも、積層膜でもよい)の形成が可能となり、この方法で製造した有機EL素子は、有機EL素子の発光効率の向上、素子寿命の改善などが可能となる。 By the organic thin film formation method of the present invention, the first thin film is not dissolved in the solvent, and there is no mixing (contamination) of the lower layer material to the upper layer or disturbance of the interface. The organic EL device manufactured by this method can improve the light emission efficiency of the organic EL device, improve the device lifetime, and the like.
 《有機EL素子の構成層》
 本発明の有機EL素子の構成層について説明する。本発明において、有機EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれらに限定されない。
<< Constituent layers of organic EL elements >>
The constituent layers of the organic EL element of the present invention will be described. In this invention, although the preferable specific example of the layer structure of an organic EL element is shown below, this invention is not limited to these.
 (i)陽極/発光層/電子輸送層/陰極
 (ii)陽極/正孔輸送層/発光層/電子輸送層/陰極
 (iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
 (iv)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 (v)陽極/陽極バッファー層/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極バッファー層/陰極
 本発明の有機EL素子においては、青色発光層の発光極大波長は430nm~480nmにあるものが好ましく、緑色発光層は発光極大波長が510nm~550nm、赤色発光層は発光極大波長が600nm~640nmの範囲にある単色発光層であることが好ましく、これらを用いた表示装置であることが好ましい。また、これらの少なくとも3層の発光層を積層して白色発光層としたものであってもよい。更に、発光層間には非発光性の中間層を有していてもよい。本発明の有機EL素子としては白色発光層であることが好ましく、これらを用いた照明装置であることが好ましい。
(I) Anode / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / electron transport layer / cathode (iii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron Transport layer / cathode (iv) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode buffer layer / cathode (v) Anode / anode buffer layer / hole transport layer / light emitting layer / hole Blocking layer / electron transport layer / cathode buffer layer / cathode In the organic EL device of the present invention, the blue light emitting layer preferably has an emission maximum wavelength of 430 nm to 480 nm, and the green light emitting layer has an emission maximum wavelength of 510 nm to 550 nm, The red light emitting layer is preferably a monochromatic light emitting layer having a light emission maximum wavelength in the range of 600 nm to 640 nm, and is preferably a display device using these. Alternatively, a white light emitting layer may be formed by laminating at least three light emitting layers. Further, a non-light emitting intermediate layer may be provided between the light emitting layers. The organic EL element of the present invention is preferably a white light emitting layer, and is preferably a lighting device using these.
 本発明の有機EL素子を構成する各層について説明する。 Each layer constituting the organic EL element of the present invention will be described.
 《発光層》
 本発明に係る発光層は、電極または電子輸送層、正孔輸送層から注入されてくる電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であっても発光層と隣接層との界面であってもよい。
<Light emitting layer>
The light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from the electrode, the electron transport layer, or the hole transport layer, and the light emitting portion is in the layer of the light emitting layer. May be the interface between the light emitting layer and the adjacent layer.
 発光層の膜厚の総和は特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、さらに好ましくは2nm~200nmの範囲に調整され、特に好ましくは、10nm~20nmの範囲である。 The total film thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emission color with respect to the drive current. It is preferable to adjust in the range of 2 nm to 5 μm, more preferably in the range of 2 nm to 200 nm, and particularly preferably in the range of 10 nm to 20 nm.
 本発明に係る発光層の作製には、後述する発光ドーパントやホスト化合物(発光ホスト化合物等ともいう)を、例えば、スピンコート法、キャスト法、LB法、インクジェット法、真空蒸着法、等の公知の薄膜化法により製膜して形成することができる。 For the production of the light-emitting layer according to the present invention, a light-emitting dopant or a host compound (also referred to as a light-emitting host compound) to be described later is used, for example, spin coating method, casting method, LB method, inkjet method, vacuum deposition method, etc. The film can be formed by the thinning method.
 本発明の有機EL素子の発光層には、発光ホスト化合物と、発光ドーパント(リン光ドーパント(リン光発光性ドーパントともいう)や蛍光ドーパント等)の少なくとも1種類とを含有することが好ましい。 The light emitting layer of the organic EL device of the present invention preferably contains a light emitting host compound and at least one kind of light emitting dopant (such as a phosphorescent dopant (also referred to as a phosphorescent dopant) or a fluorescent dopant).
 (ホスト化合物)
 本発明に用いられるホスト化合物について説明する。
(Host compound)
The host compound used in the present invention will be described.
 ここで、本発明においてホスト化合物とは、発光層に含有される化合物の内でその層中での質量比が20%以上であり、且つ室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物と定義される。好ましくはリン光量子収率が0.01未満である。また、発光層に含有される化合物の中で、その層中での質量比が20%以上であることが好ましい。 Here, the host compound in the present invention is a phosphorescent quantum yield of phosphorescence emission at a room temperature (25 ° C.) having a mass ratio of 20% or more in the compound contained in the light emitting layer. Is defined as a compound of less than 0.1. The phosphorescence quantum yield is preferably less than 0.01. Moreover, it is preferable that the mass ratio in the layer is 20% or more among the compounds contained in a light emitting layer.
 ホスト化合物としては、本発明の化合物、例えば、例示化合物2-1~2-5を好ましく用いることができる。 As the host compound, the compounds of the present invention, for example, exemplified compounds 2-1 to 2-5 can be preferably used.
 ホスト化合物を単独で用いてもよく、または複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。また、後述する発光ドーパントを複数種用いることで、異なる発光を混ぜることが可能となり、これにより任意の発光色を得ることができる。 The host compound may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient. Moreover, it becomes possible to mix different light emission by using multiple types of light emission dopants mentioned later, and, thereby, arbitrary luminescent colors can be obtained.
 本発明の効果を損なわない範囲において併用してもよい公知のホスト化合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長波長化を防ぎ、なお且つ高Tg(ガラス転移温度)である化合物が好ましい。 As a known host compound that may be used in combination as long as the effect of the present invention is not impaired, it has a hole transporting ability and an electron transporting ability, and prevents a long wavelength emission, and has a high Tg (glass transition). Compound) is preferred.
 公知のホスト化合物の具体例としては、以下の文献に記載されている化合物が挙げられる。 Specific examples of known host compounds include compounds described in the following documents.
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等。 JP-A-2001-257076, 2002-308855, 2001-313179, 2002-319491, 2001-357777, 2002-334786, 2002-8860, 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060, 2002 -302516, 2002-305083, 2002-305084, 2002-308837, and the like.
 (発光ドーパント)
 本発明に用いることができる発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができるが、より発光効率の高い有機EL素子を得る観点からは、本発明の有機EL素子の発光層や発光ユニットに使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホスト化合物を含有すると同時に、リン光ドーパントを含有することが好ましい。
(Luminescent dopant)
As a light-emitting dopant that can be used in the present invention, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, or a phosphorescent compound) can be used. However, from the viewpoint of obtaining an organic EL device with higher luminous efficiency, the above-mentioned host is used as a light-emitting dopant (sometimes referred to simply as a light-emitting material) used in the light-emitting layer or light-emitting unit of the organic EL device of the present invention. It is preferable to contain a phosphorescent dopant simultaneously with the compound.
 (リン光ドーパント)
 本発明に用いることができるリン光ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
(Phosphorescent dopant)
The phosphorescent dopant that can be used in the present invention is a compound in which light emission from an excited triplet is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and a phosphorescence quantum yield. Is defined as a compound of 0.01 or more at 25 ° C., but a preferable phosphorescence quantum yield is 0.1 or more.
 上記リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。 The phosphorescent quantum yield can be measured by the method described in Spectroscopic II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
 リン光ドーパントの発光は原理としては2種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型、もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型であるが、いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。 There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. The energy transfer type that obtains light emission from the phosphorescent dopant, and the other is that the phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. Although it is a trap type, in any case, the excited state energy of the phosphorescent dopant is required to be lower than the excited state energy of the host compound.
 リン光ドーパントは、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。 The phosphorescent dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL element.
 本発明に用いることができるリン光ドーパントとしては、好ましくは元素の周期表で8~10族の金属を含有する錯体系化合物であり、さらに好ましくはイリジウム化合物、オスミウム化合物、または白金化合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化合物である。 The phosphorescent dopant that can be used in the present invention is preferably a complex compound containing a group 8-10 metal in the periodic table of elements, more preferably an iridium compound, an osmium compound, or a platinum compound (platinum complex). System compounds), rare earth complexes, and most preferred are iridium compounds.
 以下に、リン光ドーパントとして用いられる化合物の具体例を示すが、本発明はこれらに限定されない。これらの化合物は、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等により合成できる。 Specific examples of compounds used as phosphorescent dopants are shown below, but the present invention is not limited to these. These compounds are described, for example, in Inorg. Chem. 40, 1704 to 1711, and the like.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 (蛍光ドーパント)
 蛍光ドーパント(蛍光性化合物ともいう)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、または希土類錯体系蛍光体等が挙げられる。
(Fluorescent dopant)
As fluorescent dopants (also referred to as fluorescent compounds), coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, Examples include perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
 次に、本発明の有機EL素子の構成層として用いられる、注入層、阻止層、電子輸送層等について説明する。 Next, an injection layer, a blocking layer, an electron transport layer, and the like used as a constituent layer of the organic EL element of the present invention will be described.
 《注入層:電子注入層、正孔注入層》
 注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記の如く陽極と発光層または正孔輸送層の間、及び陰極と発光層または電子輸送層との間に存在させてもよい。
<< Injection layer: electron injection layer, hole injection layer >>
The injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer, and as described above, it exists between the anode and the light emitting layer or the hole transport layer and between the cathode and the light emitting layer or the electron transport layer. May be.
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されており、正孔注入層(陽極バッファー層)と電子注入層(陰極バッファー層)とがある。 An injection layer is a layer provided between an electrode and an organic layer in order to reduce drive voltage and improve light emission luminance. “Organic EL element and its forefront of industrialization (issued by NTT Corporation on November 30, 1998) 2), Chapter 2, “Electrode Materials” (pages 123 to 166) in detail, and includes a hole injection layer (anode buffer layer) and an electron injection layer (cathode buffer layer).
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、具体例として、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。 The details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. As a specific example, copper phthalocyanine is used. Examples thereof include a phthalocyanine buffer layer represented by an oxide, an oxide buffer layer represented by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer layer using a conductive polymer such as polyaniline (emeraldine) or polythiophene.
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、具体的にはストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるがその膜厚は0.1nm~5μmの範囲が好ましい。 The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like. Specifically, strontium, aluminum, etc. Metal buffer layer typified by lithium, alkali metal compound buffer layer typified by lithium fluoride, alkaline earth metal compound buffer layer typified by magnesium fluoride, oxide buffer layer typified by aluminum oxide, etc. . The buffer layer (injection layer) is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 5 μm, although it depends on the material.
 《阻止層:正孔阻止層、電子阻止層》
 阻止層は、上記の如く有機化合物薄膜の基本構成層の他に必要に応じて設けられるものである。例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層がある。
<Blocking layer: hole blocking layer, electron blocking layer>
The blocking layer is provided as necessary in addition to the basic constituent layer of the organic compound thin film as described above. For example, it is described in JP-A Nos. 11-204258 and 11-204359, and “Organic EL elements and the forefront of industrialization (published by NTT Corporation on November 30, 1998)” on page 237. There is a hole blocking (hole blocking) layer.
 正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係わる正孔阻止層として用いることができる。 The hole blocking layer has a function of an electron transport layer in a broad sense, and is made of a hole blocking material that has a function of transporting electrons and has a remarkably small ability to transport holes. The probability of recombination of electrons and holes can be improved by blocking. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer concerning this invention as needed.
 本発明の有機EL素子の正孔阻止層は、発光層に隣接して設けられていることが好ましい。 The hole blocking layer of the organic EL device of the present invention is preferably provided adjacent to the light emitting layer.
 正孔阻止層には、前述のホスト化合物として挙げたアザカルバゾール誘導体を含有することが好ましい。 The hole blocking layer preferably contains the azacarbazole derivative mentioned as the host compound described above.
 また、本発明においては、複数の発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波にある発光層が、全発光層中、最も陽極に近いことが好ましいが、このような場合、該最短波層と該層の次に陽極に近い発光層との間に正孔阻止層を追加して設けることが好ましい。更には、該位置に設けられる正孔阻止層に含有される化合物の50質量%以上が、前記最短波発光層のホスト化合物に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。 In the present invention, when a plurality of light emitting layers having different light emission colors are provided, the light emitting layer having the shortest wavelength of light emission is preferably closest to the anode among all the light emitting layers. In this case, it is preferable to additionally provide a hole blocking layer between the shortest wave layer and the light emitting layer next to the anode next to the anode. Furthermore, it is preferable that 50% by mass or more of the compound contained in the hole blocking layer provided at the position has an ionization potential of 0.3 eV or more larger than the host compound of the shortest wave emitting layer.
 イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。 The ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
 (1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求めることができる。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いためである。 (1) Using Gaussian 98 (Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.), a molecular orbital calculation software manufactured by Gaussian, USA The ionization potential can be obtained as a value obtained by rounding off the second decimal place of the value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *. The reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
 (2)イオン化ポテンシャルは光電子分光法で直接測定する方法により求めることもできる。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いて、あるいは紫外光電子分光として知られている方法を好適に用いることができる。 (2) The ionization potential can also be obtained by a method of directly measuring by photoelectron spectroscopy. For example, a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd. or a method known as ultraviolet photoelectron spectroscopy can be suitably used.
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。本発明に係る正孔阻止層、電子輸送層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。 On the other hand, the electron blocking layer has a function of a hole transport layer in a broad sense, and is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports electrons while transporting holes. By blocking, the recombination probability of electrons and holes can be improved. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed. The film thickness of the hole blocking layer and the electron transport layer according to the present invention is preferably 3 nm to 100 nm, and more preferably 5 nm to 30 nm.
 《正孔輸送層》
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料からなり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
《Hole transport layer》
The hole transport layer is made of a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. The hole transport layer can be provided as a single layer or a plurality of layers.
 正孔輸送材料としては、本発明の化合物を用いることができる。例えば、例示化合物1-1~1-5を好ましく用いることができる。塗布法により好適に形成することができる。 As the hole transport material, the compound of the present invention can be used. For example, exemplary compounds 1-1 to 1-5 can be preferably used. It can be suitably formed by a coating method.
 本発明の効果を著しく損なわない範囲において、公知の正孔輸送材料を併用することもできる。 A well-known hole transport material can be used in combination as long as the effects of the present invention are not significantly impaired.
 公知の正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にチオフェンオリゴマー等が挙げられる。 The known hole transport material has either hole injection or transport or electron barrier property, and may be either organic or inorganic. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
 公知の正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。 As the known hole transport material, the above-mentioned materials can be used, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
 芳香族第3級アミン化合物及びスチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル;N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD);2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン;1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン;N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル;1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン;ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン;ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン;N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル;N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル;4,4′-ビス(ジフェニルアミノ)クオードリフェニル;N,N,N-トリ(p-トリル)アミン;4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン;4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン;3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン;N-フェニルカルバゾール、更には米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有するもの、例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)、特開平4-308688号公報に記載されているトリフェニルアミンユニットが3つスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン(MTDATA)等が挙げられる。 Representative examples of aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl; N, N′-diphenyl-N, N′— Bis (3-methylphenyl)-[1,1′-biphenyl] -4,4′-diamine (TPD); 2,2-bis (4-di-p-tolylaminophenyl) propane; 1,1-bis (4-di-p-tolylaminophenyl) cyclohexane; N, N, N ′, N′-tetra-p-tolyl-4,4′-diaminobiphenyl; 1,1-bis (4-di-p-tolyl) Aminophenyl) -4-phenylcyclohexane; bis (4-dimethylamino-2-methylphenyl) phenylmethane; bis (4-di-p-tolylaminophenyl) phenylmethane; N, N'-diphenyl-N, N ' Di (4-methoxyphenyl) -4,4'-diaminobiphenyl; N, N, N ', N'-tetraphenyl-4,4'-diaminodiphenyl ether; 4,4'-bis (diphenylamino) quadriphenyl N, N, N-tri (p-tolyl) amine; 4- (di-p-tolylamino) -4 '-[4- (di-p-tolylamino) styryl] stilbene; 4-N, N-diphenylamino -(2-diphenylvinyl) benzene; 3-methoxy-4'-N, N-diphenylaminostilbenzene; N-phenylcarbazole, and also two described in US Pat. No. 5,061,569 Having a condensed aromatic ring of, for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), JP-A-4-308 4,4 ′, 4 ″ -tris [N- (3-methylphenyl) -N-phenylamino] triphenylamine in which three triphenylamine units described in Japanese Patent No. 88 are linked in a starburst type ( MTDATA) and the like.
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。 Further, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used. In addition, inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、所謂p型正孔輸送材料を用いることもできる。本発明においては、より高効率の発光素子が得られることからこれらの材料を用いることが好ましい。 Also, JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used. In the present invention, these materials are preferably used because a light-emitting element with higher efficiency can be obtained.
 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。この正孔輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The hole transport layer can be formed by thinning the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. it can. The thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The hole transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use a hole transport layer having a high p property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなp性の高い正孔輸送層を用いることが、より低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use a hole transport layer having such a high p property because a device with lower power consumption can be produced.
 《電子輸送層》
 電子輸送層とは電子を輸送する機能を有する材料からなり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
《Electron transport layer》
The electron transport layer is made of a material having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. The electron transport layer can be provided as a single layer or a plurality of layers.
 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)としては、陰極より注入された電子を発光層に伝達する機能を有していればよく、その材料としては本発明の化合物を用いることができる。例えば、例示化合物3-1~3-5を好ましく用いることができる。塗布法により好適に形成することができる。 Conventionally, in the case of a single electron transport layer and a plurality of layers, an electron transport material (also serving as a hole blocking material) used for an electron transport layer adjacent to the light emitting layer on the cathode side is injected from the cathode. The compound of the present invention can be used as the material as long as it has a function of transferring electrons to the light emitting layer. For example, exemplary compounds 3-1 to 3-5 can be preferably used. It can be suitably formed by a coating method.
 本発明の効果を著しく損なわない範囲において、公知の正孔輸送材料を併用することもできる。 A well-known hole transport material can be used in combination as long as the effects of the present invention are not significantly impaired.
 従来公知の化合物としては、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。 Conventionally known compounds include, for example, nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like. Furthermore, in the above oxadiazole derivative, a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material. Furthermore, a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
 また8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。 Also, metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum, Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc., and the central metals of these metal complexes are In, Mg, Cu , Ca, Sn, Ga, or Pb can also be used as an electron transport material.
 その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。 In addition, metal-free or metal phthalocyanine, or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material. In addition, the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により、薄膜化することにより形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。電子輸送層は上記材料の1種または2種以上からなる一層構造であってもよい。 The electron transport layer can be formed by thinning the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. The thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 μm, preferably 5 nm to 200 nm. The electron transport layer may have a single layer structure composed of one or more of the above materials.
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。 It is also possible to use an electron transport layer having a high n property doped with impurities. Examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
 本発明においては、このようなn性の高い電子輸送層を用いることがより低消費電力の素子を作製することができるため好ましい。 In the present invention, it is preferable to use an electron transport layer having such a high n property because an element with lower power consumption can be produced.
 《陽極》
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
"anode"
As the anode in the organic EL element, an electrode material made of a metal, an alloy, an electrically conductive compound, or a mixture thereof having a high work function (4 eV or more) is preferably used. Specific examples of such electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO. Alternatively, an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、あるいはパターン精度をあまり必要としない場合は(100μm以上程度)、上記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。 For the anode, these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern having a desired shape may be formed by a photolithography method, or when pattern accuracy is not so high (about 100 μm or more) A pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material.
 あるいは、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式成膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲で選ばれる。 Alternatively, when a material that can be applied such as an organic conductive compound is used, a wet film forming method such as a printing method or a coating method can be used. When light emission is extracted from the anode, it is desirable that the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
 《陰極》
 一方、陰極としては仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
"cathode"
On the other hand, as the cathode, a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the point of durability against electron injection and oxidation, etc., a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this, for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。 The cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
 また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、膜厚は通常10nm~5μm、好ましくは50nm~200nmの範囲で選ばれる。尚、発光した光を透過させるため、有機EL素子の陽極または陰極のいずれか一方が透明または半透明であれば発光輝度が向上し好都合である。 The sheet resistance as a cathode is preferably several hundred Ω / □ or less, and the film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 nm to 200 nm. In order to transmit the emitted light, if either one of the anode or the cathode of the organic EL element is transparent or translucent, the light emission luminance is improved, which is convenient.
 また、陰極に上記金属を1nm~20nmの膜厚で作製した後に、陽極の説明で挙げた導電性透明材料をその上に作製することで、透明または半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。 In addition, a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a film thickness of 1 nm to 20 nm. By applying this, an element in which both the anode and the cathode are transmissive can be manufactured.
 《支持基板》
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
《Support substrate》
As a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート(TAC)、セルロースナイトレート等のセルロースエステル類またはそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリルあるいはポリアリレート類、アートン(商品名JSR社製)あるいはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。 Examples of the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate (TAC) and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfone , Polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic or polyarylates, cyclone resins such as Arton (trade name, manufactured by JSR) or Appel (trade name, manufactured by Mitsui Chemicals) Etc.
 樹脂フィルムの表面には、無機物、有機物の被膜またはその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。 On the surface of the resin film, an inorganic film, an organic film or a hybrid film of both may be formed. The water vapor permeability (25 ± 0.5 ° C.) measured by a method according to JIS K 7129-1992. , Relative humidity (90 ± 2)% RH) is preferably 0.01 g / (m 2 · 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987. A high barrier film having a permeability of 10 −3 ml / (m 2 · 24 h · MPa) or less and a water vapor permeability of 10 −5 g / (m 2 · 24 h) or less is preferable.
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。 The material for forming the barrier film may be any material that has a function of suppressing the intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like can be used. Further, in order to improve the brittleness of the film, it is more preferable to have a laminated structure of these inorganic layers and organic material layers. Although there is no restriction | limiting in particular about the lamination | stacking order of an inorganic layer and an organic layer, It is preferable to laminate | stack both alternately several times.
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。 The method for forming the barrier film is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。 Examples of the opaque support substrate include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
 本発明の有機EL素子の発光の室温における外部取り出し効率は、1%以上であることが好ましく、より好ましくは5%以上である。 The external extraction efficiency at room temperature of light emission of the organic EL element of the present invention is preferably 1% or more, more preferably 5% or more.
 ここに、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。 Here, the external extraction quantum efficiency (%) = the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element × 100.
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。 Also, a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination. In the case of using a color conversion filter, the λmax of light emission of the organic EL element is preferably 480 nm or less.
 《封止》
 本発明に用いられる封止手段としては、例えば、封止部材と電極、支持基板とを接着剤で接着する方法を挙げることができる。
<Sealing>
As a sealing means used for this invention, the method of adhere | attaching a sealing member, an electrode, and a support substrate with an adhesive agent can be mentioned, for example.
 封止部材としては、有機EL素子の表示領域を覆うように配置されておればよく、凹板状でも平板状でもよい。また透明性、電気絶縁性は特に問わない。 The sealing member may be disposed so as to cover the display area of the organic EL element, and may be a concave plate shape or a flat plate shape. Further, transparency and electrical insulation are not particularly limited.
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属または合金からなるものが挙げられる。 Specific examples include a glass plate, a polymer plate / film, and a metal plate / film. Examples of the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone. Examples of the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
 本発明においては、素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムは、JIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・MPa)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下のものであることが好ましい。 In the present invention, a polymer film and a metal film can be preferably used because the element can be thinned. Furthermore, the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 × 10 −3 ml / (m 2 · 24 h · MPa) or less, and a method according to JIS K 7129-1992. It is preferable that the water vapor permeability (25 ± 0.5 ° C., relative humidity (90 ± 2)% RH) measured in (1) is 1 × 10 −3 g / (m 2 · 24 h) or less.
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。 For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。 Specific examples of the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to. Moreover, heat | fever and chemical curing types (two-component mixing), such as an epoxy type, can be mentioned. Moreover, hot-melt type polyamide, polyester, and polyolefin can be mentioned. Moreover, a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。 In addition, since an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable. A desiccant may be dispersed in the adhesive. Application | coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。 In addition, it is also preferable that the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film. . In this case, the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen. For example, silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can. Further, in order to improve the brittleness of the film, it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials. The method for forming these films is not particularly limited. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。 In the gap between the sealing member and the display area of the organic EL element, an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase. preferable. A vacuum is also possible. Moreover, a hygroscopic compound can also be enclosed inside.
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。 Examples of the hygroscopic compound include metal oxides (eg, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide), sulfates (eg, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate). Etc.), metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, and the like), and anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
 《保護膜、保護板》
 有機層を挟み支持基板と対向する側の前記封止膜、あるいは前記封止用フィルムの外側に、素子の機械的強度を高めるために保護膜、あるいは保護板を設けてもよい。特に封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量且つ薄膜化ということからポリマーフィルムを用いることが好ましい。
《Protective film, protective plate》
In order to increase the mechanical strength of the element, a protective film or a protective plate may be provided on the outer side of the sealing film on the side facing the support substrate with the organic layer interposed therebetween or on the sealing film. In particular, when the sealing is performed by the sealing film, the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate. As a material that can be used for this, the same glass plate, polymer plate / film, metal plate / film, and the like used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
 《光取り出し》
 有機EL素子は空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないことが一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として光が素子側面方向に逃げるためである。
《Light extraction》
The organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1) and can extract only about 15% to 20% of the light generated in the light emitting layer. It is generally said. This is because the light incident on the interface (interface between the transparent substrate and air) at an angle θ greater than the critical angle causes total reflection and cannot be taken out of the element, or between the transparent electrode or the light emitting layer and the transparent substrate. This is because the light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等がある。 As a method of improving the light extraction efficiency, for example, a method of forming irregularities on the surface of the transparent substrate and preventing total reflection at the transparent substrate and the air interface (US Pat. No. 4,774,435), A method for improving efficiency by giving light condensing property to a substrate (Japanese Patent Laid-Open No. 63-314795), a method of forming a reflective surface on the side surface of an element (Japanese Patent Laid-Open No. 1-220394), and light emission from the substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the bodies (Japanese Patent Laid-Open No. 62-172691), a flat having a lower refractive index between the substrate and the light emitter than the substrate A method of introducing a layer (Japanese Patent Laid-Open No. 2001-202827), a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) (Japanese Patent Laid-Open No. 11-283951) Gazette).
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。 In the present invention, these methods can be used in combination with the organic EL device of the present invention. However, a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
 本発明はこれらの手段を組み合わせることにより、更に高輝度あるいは耐久性に優れた素子を得ることができる。 In the present invention, by combining these means, it is possible to obtain an element having higher brightness or durability.
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど外部への取り出し効率が高くなる。 When a medium having a low refractive index is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the efficiency of taking out the light from the transparent electrode to the outside increases as the refractive index of the medium decreases.
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましい。また、更に1.35以下であることが好ましい。 Examples of the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Further, it is preferably 1.35 or less.
 また、低屈折率媒質の厚みは媒質中の波長の2倍以上となるのが望ましい。これは低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。 Also, the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave that has exuded by evanescent enters the substrate.
 全反射を起こす界面もしくはいずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち層間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。 The method of introducing a diffraction grating into an interface or any medium that causes total reflection is characterized by a high effect of improving light extraction efficiency. This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction. Light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating in any layer or medium (in a transparent substrate or transparent electrode), and the light is removed. I want to take it out.
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。 It is desirable that the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. Therefore, the light extraction efficiency does not increase so much. However, by making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and light extraction efficiency is increased.
 回折格子を導入する位置としては前述の通り、いずれかの層間もしくは媒質中(透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍が望ましい。 As described above, the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
 このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。 At this time, the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
 回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。 The arrangement of the diffraction grating is preferably two-dimensionally repeated such as a square lattice, a triangular lattice, or a honeycomb lattice.
 《集光シート》
 本発明の有機EL素子は基板の光取り出し側に、例えば、マイクロレンズアレイ状の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせることにより、特定方向、例えば、素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
<Condenser sheet>
The organic EL device of the present invention is processed on the light extraction side of the substrate so as to provide, for example, a microlens array structure, or combined with a so-called condensing sheet, for example, with respect to a specific direction, for example, the light emitting surface By condensing in the front direction, the luminance in a specific direction can be increased.
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10μm~100μmが好ましい。これより小さくなると回折の効果が発生して色付く、大きすぎると厚みが厚くなり好ましくない。 As an example of a microlens array, quadrangular pyramids having a side of 30 μm and an apex angle of 90 degrees are arranged two-dimensionally on the light extraction side of the substrate. One side is preferably 10 μm to 100 μm. If it becomes smaller than this, the effect of diffraction will generate | occur | produce and color, and if too large, thickness will become thick and is not preferable.
 集光シートとしては、例えば、液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば、基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であってもよい。 As the condensing sheet, it is possible to use, for example, a sheet that has been put to practical use in an LED backlight of a liquid crystal display device. As such a sheet, for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used. As the shape of the prism sheet, for example, the base material may be formed by forming a △ -shaped stripe having a vertex angle of 90 degrees and a pitch of 50 μm, or the vertex angle is rounded and the pitch is changed randomly. Other shapes may be used.
 また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。 Further, in order to control the light emission angle from the light emitting element, a light diffusion plate / film may be used in combination with the light collecting sheet. For example, a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
 《有機EL素子の作製方法》
 本発明の有機EL素子の作製方法の一例として、陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極からなる有機EL素子の作製法を説明する。
<< Method for producing organic EL element >>
As an example of the method for producing the organic EL device of the present invention, a method for producing an organic EL device comprising an anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode will be described.
 まず適当な基体上に所望の電極物質、例えば、陽極用物質からなる薄膜を1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成させ陽極を作製する。 First, a desired electrode material, for example, a thin film made of an anode material is formed on a suitable substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably 10 nm to 200 nm.
 次に、この上に有機EL素子材料である正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、正孔阻止層の有機化合物薄膜を形成させる。 Next, an organic compound thin film of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a hole blocking layer, which are organic EL element materials, is formed thereon.
 これら各層の形成方法としては、前記の如く蒸着法、ウェットプロセス(スピンコート法、キャスト法、インクジェット法、印刷法)等があるが、均質な膜が得られやすく、且つピンホールが生成しにくい等の点から、本発明においてはスピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。 As a method for forming each of these layers, there are a vapor deposition method, a wet process (spin coating method, casting method, ink jet method, printing method) and the like as described above, but it is easy to obtain a homogeneous film and it is difficult to generate pinholes. In view of the above, film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable in the present invention.
 本発明に係る有機EL材料を溶解または分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。 Examples of the liquid medium for dissolving or dispersing the organic EL material according to the present invention include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene. Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane, and organic solvents such as DMF and DMSO can be used. Moreover, as a dispersion method, it can disperse | distribute by dispersion methods, such as an ultrasonic wave, high shear force dispersion | distribution, and media dispersion | distribution.
 これらの層を形成後、その上に陰極用物質からなる薄膜を1μm以下、好ましくは、50nm~200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法により形成させ、陰極を設けることにより所望の有機EL素子が得られる。 After forming these layers, a thin film made of a cathode material is formed thereon by a method such as vapor deposition or sputtering so as to have a film thickness of 1 μm or less, preferably in the range of 50 nm to 200 nm. By providing, a desired organic EL element can be obtained.
 また作製順序を逆にして、陰極、電子注入層、電子輸送層、発光層、正孔輸送層、正孔注入層、陽極の順に作製することも可能である。このようにして得られた多色の表示装置に、直流電圧を印加する場合には陽極を+、陰極を-の極性として電圧2~40V程度を印加すると発光が観測できる。また交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。 It is also possible to reverse the production order to produce a cathode, an electron injection layer, an electron transport layer, a light emitting layer, a hole transport layer, a hole injection layer, and an anode in this order. When a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the positive polarity of the anode and the negative polarity of the cathode. An alternating voltage may be applied. The alternating current waveform to be applied may be arbitrary.
 《用途》
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
<Application>
The organic EL element of the present invention can be used as a display device, a display, and various light emission sources. For example, lighting devices (home lighting, interior lighting), clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light Although the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
 本発明の有機EL素子においては、必要に応じ成膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。 In the organic EL device of the present invention, patterning may be performed by a metal mask, an ink jet printing method, or the like during film formation, if necessary. In the case of patterning, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned. In the fabrication of the element, a conventionally known method is used. Can do.
 本発明の有機EL素子や本発明に係る化合物の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタセンシング社製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。 The light emission color of the organic EL device of the present invention and the compound according to the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with a total CS-1000 (manufactured by Konica Minolta Sensing) is applied to the CIE chromaticity coordinates.
 また、本発明の有機EL素子が白色素子の場合には、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることを言う。 When the organic EL element of the present invention is a white element, white means that the chromaticity in the CIE1931 color system at 1000 cd / m 2 is X when the 2 ° viewing angle front luminance is measured by the above method. = 0.33 ± 0.07 and Y = 0.33 ± 0.1.
 以下、実施例により本発明を説明するが、本発明はこれらに限定されない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, although an example explains the present invention, the present invention is not limited to these. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《X線回折測定試料の作製》
 化合物3-3(10g)を50mlのo-ジクロロベンゼンに溶解させ、この溶液を500mlのアセトニトリルに撹拌しながら少量ずつ添加し、添加終了後、室温にて3時間撹拌し続け、析出物をろ取、70℃で6時間送風乾燥を行い、試料1-1を得た。
Example 1
<< Preparation of X-ray diffraction measurement sample >>
Compound 3-3 (10 g) was dissolved in 50 ml of o-dichlorobenzene, and this solution was added little by little to 500 ml of acetonitrile while stirring. After the addition was completed, stirring was continued for 3 hours at room temperature. The sample was blown and dried at 70 ° C. for 6 hours to obtain Sample 1-1.
 また同様の手順で、アセトニトリルの代わりにn-ヘキサンを使用し、試料1-2を得た。 In the same procedure, Sample 1-2 was obtained using n-hexane instead of acetonitrile.
 《X線回折(XRD)の測定》
 試料1-1、試料1-2のX線回折XRD(X線回折法装置、理学電機社製、形式RINT-TTR2装置)の測定結果を図1、図2に示す。
<< Measurement of X-ray diffraction (XRD) >>
The measurement results of X-ray diffraction XRD (X-ray diffraction apparatus, manufactured by Rigaku Corporation, model RINT-TTR2 apparatus) of Sample 1-1 and Sample 1-2 are shown in FIGS.
 このデータから本発明の特定の構造の化合物では、任意の処理方法を使い分けることによりアモルファス状態(試料1-2)と結晶状態(試料1-1)とが安定的に取り出せることを確認することができた。 From this data, it can be confirmed that the compound having a specific structure of the present invention can stably extract the amorphous state (sample 1-2) and the crystalline state (sample 1-1) by properly using any treatment method. did it.
 X線回折測定条件
 装置:理学電機製RINT-TTR2
 X線:Cu(1.54Å)
 X線動作条件:15kV300mA
 光学系:ブラッグーブレンターノ光学系
 測定資料の形態:乳鉢にて粉砕後、無反射試料板に充填
 スリット条件
 DS、SS:1/2°
 RS:0.3mm
 走査条件:2θ=2~45°(0.04°刻み)、スキャンスピード:1°/分
 実施例2
 《積層薄膜の形成》
 ガラス上にITOを150nm成膜した基板(NHテクノグラス社製:NA-45)をiso-プロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行い、透明支持基板を得た。
X-ray diffraction measurement conditions Equipment: RINT-TTR2 manufactured by Rigaku Corporation
X-ray: Cu (1.54mm)
X-ray operating conditions: 15 kV, 300 mA
Optical system: Bragg-Brentano optical system Form of measurement materials: After grinding in a mortar and filling in a non-reflective sample plate Slit conditions DS, SS: 1/2 °
RS: 0.3mm
Scanning conditions: 2θ = 2 to 45 ° (in increments of 0.04 °), scanning speed: 1 ° / min.
<Formation of laminated thin film>
A substrate with a 150 nm ITO film formed on glass (NH Techno Glass: NA-45) was ultrasonically cleaned with iso-propyl alcohol, dried with dry nitrogen gas, UV ozone cleaned for 5 minutes, and a transparent support substrate Got.
 この基板を窒素雰囲気下に移し、化合物2-2(60mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜し、真空中150℃で3時間加熱を行い、試料2-1を得た。続いて、試料2-1をスピンコーターにセットし、アセトニトリル6mlを用い、1000rpm、300秒の条件下、スピンコート法によりアセトニトリルで処理を施した試料2-2を得た。次に、試料2-2を真空中150℃で3時間加熱を行い、試料2-3を得た。 The substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving compound 2-2 (60 mg) in 6 ml of toluene was formed into a film by spin coating at 1000 rpm for 30 seconds, and heated in vacuum at 150 ° C. for 3 hours. And Sample 2-1 was obtained. Subsequently, the sample 2-1 was set on a spin coater, and 6 ml of acetonitrile was used to obtain a sample 2-2 treated with acetonitrile by a spin coating method under conditions of 1000 rpm and 300 seconds. Next, Sample 2-2 was heated in vacuum at 150 ° C. for 3 hours to obtain Sample 2-3.
 また、試料2-3の作製において、化合物2-2を、化合物1-1、化合物1-2、化合物1-4、化合物3-1、化合物3-3、化合物3-5に代えた以外は同様の作業を実施し、試料2-4、2-5、2-6、2-7、2-8、2-9をそれぞれ得た。 In the preparation of Sample 2-3, Compound 2-2 was replaced with Compound 1-1, Compound 1-2, Compound 1-4, Compound 3-1, Compound 3-3, and Compound 3-5. Similar operations were performed to obtain Samples 2-4, 2-5, 2-6, 2-7, 2-8, and 2-9, respectively.
 また、試料2-1、試料2-2、試料2-3の作製において、化合物2-2をCBPに代えた以外は同様の作業を実施し、試料2-10、2-11、2-12をそれぞれ得た。 In the preparation of Sample 2-1, Sample 2-2, and Sample 2-3, the same operation was performed except that Compound 2-2 was replaced with CBP, and Samples 2-10, 2-11, 2-12 Respectively.
 また、試料2-1、試料2-2、試料2-3の作製において、化合物2-2をα-NPDに代えた以外は同様の作業を実施し、試料2-13、2-14、2-15をそれぞれ得た。 In the preparation of Sample 2-1, Sample 2-2, and Sample 2-3, the same operation was carried out except that Compound 2-2 was replaced with α-NPD, and Samples 2-13, 2-14, 2 -15 were obtained respectively.
 また、試料2-1、試料2-2、試料2-3の作製において、化合物2-2を化合物A(特開2004-292782号に記載の化合物(23))に代えた以外は同様の作業を実施し、試料2-16、2-17、2-18をそれぞれ得た。 In the preparation of Sample 2-1, Sample 2-2, and Sample 2-3, the same procedure was performed except that Compound 2-2 was replaced with Compound A (Compound (23) described in JP-A No. 2004-292882). And Samples 2-16, 2-17, and 2-18 were obtained.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 《薄膜の耐久性試験》
 作製した試料(試料2-1~2-18)をスピンコーターにのせトルエン6mlを用い、1000rpm、30秒の条件下、スピンコート法によるトルエンリンス処理を実施し、トルエンリンス処理実施前後の360nmの吸光度を分光光度計(日立UV-3300)にて測定した。各試料のトルエンリンス後の薄膜の残存率を次式により求め薄膜の耐久性(耐溶剤性)を示す指標とした。結果を表1に示す。
<< Durability test of thin film >>
The prepared samples (Samples 2-1 to 2-18) are placed on a spin coater, 6 ml of toluene is used, and a toluene rinsing process is performed by spin coating under conditions of 1000 rpm and 30 seconds. Absorbance was measured with a spectrophotometer (Hitachi UV-3300). The residual rate of the thin film after toluene rinsing of each sample was obtained by the following formula and used as an index indicating the durability (solvent resistance) of the thin film. The results are shown in Table 1.
 残存率=(リンス後の吸光度)/(リンス前の吸光度)×100 Residual rate = (absorbance after rinsing) / (absorbance before rinsing) × 100
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 化合物A:特開2004-292782号に記載の化合物(23)
 表1から、本発明の化合物を用いて薄膜形成後に物理化学的な処理を加えることにより、溶剤溶解性が変化し、薄膜の耐久性(耐溶剤性)に優れた薄膜の形成が可能であることがわかった。尚、UV分光吸収スペクトルを測定したところ、その波形が変化していなかったことから、薄膜を形成する分子の化学的構造は変化していなかった。
Compound A: Compound (23) described in JP-A No. 2004-292784
From Table 1, by applying a physicochemical treatment after forming a thin film using the compound of the present invention, the solvent solubility is changed, and it is possible to form a thin film having excellent thin film durability (solvent resistance). I understood it. When the UV spectral absorption spectrum was measured, the waveform did not change, and the chemical structure of the molecules forming the thin film did not change.
 実施例3
 《有機EL素子3-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 3
<< Preparation of organic EL element 3-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この透明支持基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により製膜した後、200℃にて1時間乾燥し、膜厚30nmの正孔輸送層を設けた。 On this transparent support substrate, a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water at 3000 rpm for 30 seconds. After forming the film by spin coating, the film was dried at 200 ° C. for 1 hour to provide a hole transport layer having a thickness of 30 nm.
 この基板を窒素雰囲気下に移し、正孔輸送層上に、CBP(60mg)、化合物Ir-9(3.0mg)、Ir-12(3.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行い、膜厚30nmの発光層とした。 The substrate was transferred to a nitrogen atmosphere, and a solution of CBP (60 mg), compound Ir-9 (3.0 mg), and Ir-12 (3.0 mg) dissolved in 6 ml of toluene was used on the hole transport layer at 1000 rpm. For 30 seconds under the condition of spin coating. Heating was performed in vacuum at 150 ° C. for 1 hour to obtain a light emitting layer having a thickness of 30 nm.
 次に、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートにBCP、Alqをそれぞれ入れ、真空蒸着装置(第1真空槽)に取り付けた。さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Next, this transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while BCP and Alq 3 were placed in five tantalum resistance heating boats, respectively, and attached to the vacuum deposition apparatus (first vacuum chamber). . Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
 第1の真空槽を4×10-4Paまで減圧した後、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒で厚さ10nmの第1の電子輸送層を設けた。さらにAlqの入った前記加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒で膜厚20nmの第2の電子輸送層を設けた。 The first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing the heating boat containing BCP, and the first vacuum chamber having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / sec. An electron transport layer was provided. Further, the heating boat containing Alq 3 was heated by energization to provide a second electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 to 0.2 nm / second.
 次に、第2の電子輸送層まで成膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the second electron transport layer is transferred to the second vacuum chamber while being vacuumed, a stainless steel rectangular perforated mask is arranged on the electron transport layer from the outside of the apparatus. Installed with remote control.
 第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01~0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して、蒸着速度1~2nm/秒で膜厚150nmの陰極をつけ、有機EL素子3-1を作製した。 After depressurizing the second vacuum tank to 2 × 10 −4 Pa, a current was passed through a boat containing lithium fluoride to provide a cathode buffer layer having a thickness of 0.5 nm at a deposition rate of 0.01 to 0.02 nm / second, Next, a boat containing aluminum was energized, and a cathode having a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second to produce an organic EL element 3-1.
 《有機EL素子3-2の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
<< Preparation of organic EL element 3-2 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この基板を窒素雰囲気下に移し、透明支持基板上に、α-NPD(60mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行った後、基板をスピンコーター上にセットし、アセトニトル6mlを用い、1000rpm、300秒の条件下、スピンコートし、更に真空中150℃で1時間加熱を行い、膜厚30nmの正孔輸送層を設けた。 This substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving α-NPD (60 mg) in 6 ml of toluene on a transparent support substrate was formed by spin coating at 1000 rpm for 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A hole transport layer having a thickness of 30 nm was provided.
 この基板を窒素雰囲気下に移し、正孔輸送層上に、CBP(60mg)、Ir-12(6.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行い、膜厚30nmの発光層とした。 This substrate was transferred to a nitrogen atmosphere, and a spin coating method was performed on the hole transport layer using a solution of CBP (60 mg) and Ir-12 (6.0 mg) dissolved in 6 ml of toluene at 1000 rpm for 30 seconds. To form a film. Heating was performed in vacuum at 150 ° C. for 1 hour to obtain a light emitting layer having a thickness of 30 nm.
 次に、この透明支持基板を市販の真空蒸着装置の基板ホルダーに固定し、一方、5つのタンタル製抵抗加熱ボートにBCP、Alqをそれぞれ入れ、真空蒸着装置(第1真空槽)に取り付けた。さらに、タンタル製抵抗加熱ボートにフッ化リチウムを、タングステン製抵抗加熱ボートにアルミニウムをそれぞれ入れ、真空蒸着装置の第2真空槽に取り付けた。 Next, this transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus, while BCP and Alq 3 were placed in five tantalum resistance heating boats, respectively, and attached to the vacuum deposition apparatus (first vacuum chamber). . Further, lithium fluoride was placed in a resistance heating boat made of tantalum, and aluminum was placed in a resistance heating boat made of tungsten, and attached to the second vacuum tank of the vacuum evaporation apparatus.
 第1の真空槽を4×10-4Paまで減圧した後、BCPの入った前記加熱ボートに通電して加熱し、蒸着速度0.1~0.2nm/秒で厚さ10nmの第1の電子輸送層を設けた。さらにAlqの入った前記加熱ボートを通電して加熱し、蒸着速度0.1~0.2nm/秒で膜厚20nmの第2の電子輸送層を設けた。 The first vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing the heating boat containing BCP, and the first vacuum chamber having a thickness of 10 nm at a deposition rate of 0.1 to 0.2 nm / sec. An electron transport layer was provided. Further, the heating boat containing Alq 3 was heated by energization to provide a second electron transport layer having a film thickness of 20 nm at a deposition rate of 0.1 to 0.2 nm / second.
 次に、第2の電子輸送層まで成膜した素子を真空のまま第2真空槽に移した後、電子輸送層の上にステンレス鋼製の長方形穴あきマスクが配置されるように装置外部からリモートコントロールして設置した。 Next, after the element formed up to the second electron transport layer is transferred to the second vacuum chamber while being vacuumed, a stainless steel rectangular perforated mask is arranged on the electron transport layer from the outside of the apparatus. Installed with remote control.
 第2真空槽を2×10-4Paまで減圧した後、フッ化リチウム入りのボートに通電して蒸着速度0.01~0.02nm/秒で膜厚0.5nmの陰極バッファー層を設け、次いでアルミニウムの入ったボートに通電して、蒸着速度1~2nm/秒で膜厚150nmの陰極をつけ、有機EL素子3-2を作製した。 After depressurizing the second vacuum tank to 2 × 10 −4 Pa, a current was passed through a boat containing lithium fluoride to provide a cathode buffer layer having a thickness of 0.5 nm at a deposition rate of 0.01 to 0.02 nm / second, Next, a boat containing aluminum was energized, a cathode having a film thickness of 150 nm was attached at a deposition rate of 1 to 2 nm / second, and an organic EL element 3-2 was produced.
 《有機EL素子3-3~3-5の作製》
 有機EL素子3-2の作製において、正孔輸送層を設ける際に、α-NPD(正孔輸送材料)を表2に記載の化合物に変更した以外は同様にして、有機EL素子3-3~3-5を作製した。
<< Preparation of organic EL elements 3-3 to 3-5 >>
In the production of the organic EL device 3-2, the organic EL device 3-3 was prepared in the same manner except that α-NPD (hole transport material) was changed to the compounds shown in Table 2 when the hole transport layer was provided. ~ 3-5 were produced.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 《有機EL素子の評価》
 得られた有機EL素子3-1~3-5を評価するに際しては、作製後の各有機EL素子の非発光面をガラスケースで覆い、厚み300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを上記陰極上に重ねて前記透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図3、図4に示すような照明装置を形成して評価した。
<< Evaluation of organic EL elements >>
When evaluating the obtained organic EL elements 3-1 to 3-5, the non-light emitting surface of each organic EL element after production was covered with a glass case, and a glass substrate having a thickness of 300 μm was used as a sealing substrate. An epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material in the periphery, and this is placed on the cathode to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, it was cured and sealed, and an illumination device as shown in FIGS. 3 and 4 was formed and evaluated.
 図3は照明装置の概略図を示し、有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行った)。 FIG. 3 is a schematic diagram of the lighting device, and the organic EL element 101 is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is performed in a nitrogen atmosphere without bringing the organic EL element 101 into contact with the atmosphere. (In a high purity nitrogen gas atmosphere with a purity of 99.999% or more).
 図4は照明装置の断面図を示し、図4において、105は陰極、106は有機EL層、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。 FIG. 4 shows a cross-sectional view of the lighting device. In FIG. 4, 105 denotes a cathode, 106 denotes an organic EL layer, and 107 denotes a glass substrate with a transparent electrode. The glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
 (外部取り出し量子効率)
 有機EL素子を室温(約23~25℃)、2.5mA/cmの定電流条件下による点灯を行い、点灯開始直後の発光輝度(L)[cd/m]を測定することにより、外部取り出し量子効率(ηext)を算出した。ここで、発光輝度の測定はCS-1000(コニカミノルタセンシング製)を用いた。外部取り出し量子効率は有機EL素子3-1を100とする相対値で表した。
(External quantum efficiency)
By lighting the organic EL element under a constant current condition of room temperature (about 23 to 25 ° C.) and 2.5 mA / cm 2 , and measuring the emission luminance (L) [cd / m 2 ] immediately after the start of lighting, External extraction quantum efficiency (ηext) was calculated. Here, CS-1000 (manufactured by Konica Minolta Sensing) was used for measurement of light emission luminance. The external extraction quantum efficiency was expressed as a relative value where the organic EL element 3-1 was 100.
 (発光寿命)
 有機EL素子を室温下、2.5mA/cmの定電流条件下による連続点灯を行い、初期輝度の半分の輝度になるのに要する時間(τ1/2)を測定した。発光寿命は有機EL素子3-1を100と設定する相対値で表した。
(Luminescent life)
The organic EL element was continuously lit at a constant current of 2.5 mA / cm 2 at room temperature, and the time (τ 1/2 ) required to reach half the initial luminance was measured. The light emission lifetime is expressed as a relative value where the organic EL element 3-1 is set to 100.
 得られた結果を表2に示す。 Table 2 shows the results obtained.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表2中、比較の有機EL素子3-2は発光素子として機能せず、性能評価を行うことができなかった。また、本発明の有機EL素子は、比較の有機EL素子3-1に比べても、発光寿命の長寿命化が達成できることが明らかであり、本発明の製造方法が有機EL素子の製造方法として適していることが分かった。 In Table 2, the comparative organic EL device 3-2 did not function as a light emitting device, and performance evaluation could not be performed. In addition, it is clear that the organic EL element of the present invention can achieve a longer emission lifetime than the comparative organic EL element 3-1, and the manufacturing method of the present invention is used as a manufacturing method of the organic EL element. I found it suitable.
 実施例4
 《有機EL素子4-1の作製》
 陽極として100mm×100mm×1.1mmのガラス基板上にITO(インジウムチンオキシド)を100nm製膜した基板(NHテクノグラス社製NA-45)にパターニングを行った後、このITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
Example 4
<< Preparation of organic EL element 4-1 >>
This ITO transparent electrode was provided after patterning was performed on a substrate (NA-45 manufactured by NH Techno Glass Co., Ltd.) formed by depositing 100 nm of ITO (indium tin oxide) on a 100 mm × 100 mm × 1.1 mm glass substrate as an anode. The transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
 この基板を窒素雰囲気下に移し、透明支持基板上に、化合物1-4(60mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行った後、基板をスピンコーター上にセットし、アセトニトル6mlを用い、1000rpm、300秒の条件下、スピンコートし、更に真空中150℃で1時間加熱を行い、膜厚30nmの正孔輸送層を設けた。 This substrate was transferred to a nitrogen atmosphere, and a film obtained by dissolving compound 1-4 (60 mg) in 6 ml of toluene on a transparent support substrate was formed by spin coating at 1000 rpm for 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A hole transport layer having a thickness of 30 nm was provided.
 この基板を窒素雰囲気下に移し、正孔輸送層上に、化合物2-1(60mg)、化合物Ir-9(3.0mg)、Ir-12(3.0mg)をトルエン6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行った後、基板をスピンコーター上にセットし、アセトニトル6mlを用い、1000rpm、300秒の条件下、スピンコートし、更に真空中150℃で1時間加熱を行い、膜厚30nmの発光層を設けた。 The substrate was transferred to a nitrogen atmosphere, and a solution of compound 2-1 (60 mg), compound Ir-9 (3.0 mg), and Ir-12 (3.0 mg) dissolved in 6 ml of toluene was placed on the hole transport layer. The film was formed by spin coating under conditions of 1000 rpm and 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A light emitting layer having a thickness of 30 nm was provided.
 さらに、例示化合物3-2(60mg)をブタノール6mlに溶解した溶液を用い、1000rpm、30秒の条件下、スピンコート法により製膜した。真空中150℃で1時間加熱を行った後、基板をスピンコーター上にセットし、アセトニトル6mlを用い、1000rpm、300秒の条件下、スピンコートし、更に真空中150℃で1時間加熱を行い、膜厚30nmの第1の電子輸送層を設けた。 Further, a film obtained by dissolving Exemplified Compound 3-2 (60 mg) in 6 ml of butanol was formed into a film by spin coating under conditions of 1000 rpm and 30 seconds. After heating in vacuum at 150 ° C for 1 hour, the substrate was set on a spin coater, spin-coated using 6 ml of acetonitol at 1000 rpm for 300 seconds, and further heated in vacuum at 150 ° C for 1 hour. A first electron transport layer having a thickness of 30 nm was provided.
 続いて、この基板を真空蒸着装置の基板ホルダーに固定し、モリブデン製抵抗加熱ボートにAlqを200mg入れ、真空蒸着装置に取り付けた。真空槽を4×10-4Paまで減圧した後、Alqの入った前記加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で前記第1電子輸送層の上に蒸着して、さらに膜厚40nmの第2電子輸送層を設けた。 Subsequently, this substrate was fixed to a substrate holder of a vacuum vapor deposition apparatus, and 200 mg of Alq 3 was put into a molybdenum resistance heating boat and attached to the vacuum vapor deposition apparatus. The vacuum chamber was depressurized to 4 × 10 −4 Pa, and then heated by energizing the heating boat containing Alq 3 and deposited on the first electron transport layer at a deposition rate of 0.1 nm / second, Further, a second electron transport layer having a thickness of 40 nm was provided.
 なお、蒸着時の基板温度は室温であった。 In addition, the substrate temperature at the time of vapor deposition was room temperature.
 引き続き、フッ化リチウム0.5nm及びアルミニウム110nmを蒸着して陰極を形成し、白色発光有機EL素子4-1を作製した。 Subsequently, lithium fluoride 0.5 nm and aluminum 110 nm were vapor-deposited to form a cathode, and a white light-emitting organic EL element 4-1 was produced.
 この有機EL素子4-1に通電したところほぼ白色の光が得られ、照明装置として使用できることが分かった。 When this organic EL element 4-1 was energized, almost white light was obtained, and it was found that it could be used as a lighting device.
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極付きガラス基板
 108 窒素ガス
 109 捕水剤
DESCRIPTION OF SYMBOLS 101 Organic EL element 102 Glass cover 105 Cathode 106 Organic EL layer 107 Glass substrate with a transparent electrode 108 Nitrogen gas 109 Water catching agent

Claims (11)

  1.  有機物からなる薄膜を形成した後に物理化学的な処理を加えることにより、前記薄膜を形成する前記有機物の化学的構造を変えることなく、前記薄膜の物理化学的性質を変化させることを特徴とする薄膜の形成方法。 A thin film characterized by changing the physicochemical properties of the thin film without changing the chemical structure of the organic material forming the thin film by applying a physicochemical treatment after forming the thin film made of the organic material. Forming method.
  2.  前記有機物が下記一般式(1)の部分構造を有する化合物であることを特徴とする請求項1に記載の薄膜の形成方法。
    Figure JPOXMLDOC01-appb-C000001

     (式中、Ar、Arは芳香族環を表し、R、Rは互いに結合して、5員または6員の芳香族環を形成するのに必要な原子郡を表す。但し、前記芳香族環は、芳香族炭化水素環または芳香族複素環を表す。)
    The method for forming a thin film according to claim 1, wherein the organic substance is a compound having a partial structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001

    (In the formula, Ar 1 and Ar 2 represent an aromatic ring, and R 1 and R 2 represent an atomic group necessary for bonding to each other to form a 5-membered or 6-membered aromatic ring, provided that (The aromatic ring represents an aromatic hydrocarbon ring or an aromatic heterocyclic ring.)
  3.  前記薄膜の物理化学的性質の変化がアモルファスから結晶への変化であることを特徴とする請求項1または2に記載の薄膜の形成方法。 The method for forming a thin film according to claim 1 or 2, wherein the change in the physicochemical properties of the thin film is a change from amorphous to crystalline.
  4.  前記物理化学的な処理が熱的処理であることを特徴とする請求項1~3のいずれか1項に記載の薄膜の形成方法。 The method for forming a thin film according to any one of claims 1 to 3, wherein the physicochemical treatment is thermal treatment.
  5.  前記物理化学的な処理が化学的処理であることを特徴とする請求項1~3のいずれか1項に記載の薄膜の形成方法。 4. The method for forming a thin film according to claim 1, wherein the physicochemical treatment is a chemical treatment.
  6.  前記薄膜の形成で塗布工程を用いることを特徴とする請求項1~5のいずれか1項に記載の薄膜の形成方法。 The method for forming a thin film according to any one of claims 1 to 5, wherein a coating step is used in forming the thin film.
  7.  請求項1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜上に、当該薄膜に隣接した薄膜を、請求項1~6のいずれか1項に記載の薄膜の形成方法を用いてもよい塗布工程で形成し、積層薄膜を形成することを特徴とする積層薄膜の形成方法。 The thin film forming method according to any one of claims 1 to 6, wherein a thin film adjacent to the thin film is formed on the thin film formed by the thin film forming method according to any one of claims 1 to 6. A method for forming a laminated thin film, characterized in that the laminated thin film is formed by a coating process that may be used.
  8.  請求項1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする電子デバイス。 An electronic device comprising a thin film formed by the method for forming a thin film according to any one of claims 1 to 6.
  9.  請求項7に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする電子デバイス。 An electronic device comprising a laminated thin film formed by the method for forming a laminated thin film according to claim 7.
  10.  請求項1~6のいずれか1項に記載の薄膜の形成方法で形成された薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising a thin film formed by the method for forming a thin film according to any one of claims 1 to 6.
  11.  請求項7に記載の積層薄膜の形成方法で形成された積層薄膜を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising a laminated thin film formed by the method for forming a laminated thin film according to claim 7.
PCT/JP2010/050885 2009-03-26 2010-01-25 Method for forming thin film, method for forming multilayer thin film having the thin film therein, electronic device, and organic electroluminescence element WO2010109937A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011505909A JP5594286B2 (en) 2009-03-26 2010-01-25 Method for manufacturing organic electroluminescent element, and organic electroluminescent element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009076001 2009-03-26
JP2009-076001 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010109937A1 true WO2010109937A1 (en) 2010-09-30

Family

ID=42780634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050885 WO2010109937A1 (en) 2009-03-26 2010-01-25 Method for forming thin film, method for forming multilayer thin film having the thin film therein, electronic device, and organic electroluminescence element

Country Status (2)

Country Link
JP (2) JP5594286B2 (en)
WO (1) WO2010109937A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018188513A (en) * 2017-04-28 2018-11-29 住友化学株式会社 Composition and light-emitting element using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199161A (en) * 1995-01-26 1996-08-06 Mitsubishi Chem Corp Organic electroluminescence element
JP2004281251A (en) * 2003-03-17 2004-10-07 Sharp Corp Organic el device and its manufacturing method
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032180B2 (en) * 2003-02-06 2008-01-16 東ソー株式会社 Novel triarylamine polymer, production method thereof and use thereof
JP2005268449A (en) * 2004-03-17 2005-09-29 Asahi Kasei Corp Method of reforming condensation polycyclic aromatic compound thin film, the compound thin film, and organic semiconductor device
JP5040216B2 (en) * 2005-08-30 2012-10-03 三菱化学株式会社 Organic compound, charge transport material, material for organic electroluminescence device, charge transport material composition, and organic electroluminescence device
JP5227510B2 (en) * 2005-12-28 2013-07-03 株式会社半導体エネルギー研究所 Pyrazine derivatives, and light-emitting elements, display devices, and electronic devices using the pyrazine derivatives
JP4871607B2 (en) * 2006-02-23 2012-02-08 富士フイルム株式会社 Organic electroluminescence device
JP2007311238A (en) * 2006-05-19 2007-11-29 Seiko Epson Corp Method of manufacturing light-emitting device
JP2008010364A (en) * 2006-06-30 2008-01-17 Hitachi Cable Ltd Anode for lithium ion secondary battery
JP5176343B2 (en) * 2007-03-07 2013-04-03 Jnc株式会社 Electron transport material and organic electroluminescent device using the same
JP2008231127A (en) * 2007-03-16 2008-10-02 Toyo Ink Mfg Co Ltd Organic electroluminescent element material, and element
JP2008243437A (en) * 2007-03-26 2008-10-09 Osaka Prefecture Univ Manufacturing method of conjugated polymeric thin film emitting polarized fluorescence, the thin film, organic electroluminescent element using the thin film, and display device using the element
JP5359869B2 (en) * 2007-05-30 2013-12-04 コニカミノルタ株式会社 ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP2008300503A (en) * 2007-05-30 2008-12-11 Sony Corp Organic electroluminescent device, and display device
JP5453824B2 (en) * 2009-02-02 2014-03-26 株式会社デンソー Organic EL device and method for manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199161A (en) * 1995-01-26 1996-08-06 Mitsubishi Chem Corp Organic electroluminescence element
JP2004281251A (en) * 2003-03-17 2004-10-07 Sharp Corp Organic el device and its manufacturing method
WO2007108327A1 (en) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. Organic electroluminescence element, display device, and illumination device

Also Published As

Publication number Publication date
JPWO2010109937A1 (en) 2012-09-27
JP2014212328A (en) 2014-11-13
JP5831596B2 (en) 2015-12-09
JP5594286B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
JP5967057B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND ITS MANUFACTURING METHOD, LIGHTING DEVICE AND DISPLAY DEVICE
JP5765223B2 (en) MANUFACTURING METHOD FOR ORGANIC ELECTROLUMINESCENT ELEMENT, AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH ORGANIC ELECTROLUMINESCENT ELEMENT
JP5018891B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5359869B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5593696B2 (en) Method for manufacturing organic electroluminescence device
JP5387563B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE
JP5103781B2 (en) COMPOUND, ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING THE COMPOUND, AND LIGHTING DEVICE
JP5088025B2 (en) ORGANIC ELECTROLUMINESCENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE
JP5560517B2 (en) Organic electroluminescence element, display device and lighting device
JP5267557B2 (en) Organic electroluminescence element, lighting device and display device
JP2008207520A (en) Organic thin film, method for producing the same, electronic device, organic luminescence element, display device and lightening equipment
JP2009114370A (en) Organic electroluminescence element material, organic electroluminescence element, display device, and lighting system
JP6056884B2 (en) Method for manufacturing organic electroluminescence device
JPWO2008090795A1 (en) Organic electroluminescence element, display device and lighting device
JP2010205815A (en) Organic electroluminescent element material, organic electroluminescent element, display and lighting device
WO2012173079A1 (en) Organic electroluminescence element, illumination device, and display device
JP2008210941A (en) Organic electroluminescent element, display unit, and lighting fixture
JP5629970B2 (en) Organic electroluminescence element, display device and lighting device
JP2012069737A (en) Organic electroluminescent element, display device and luminaire
JP4935024B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP5577579B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT MATERIAL, DISPLAY DEVICE AND LIGHTING DEVICE
JP5831596B2 (en) Organic electroluminescent materials
JP2010027970A (en) Organic electroluminescence element, display, illuminating apparatus and organic electroluminescence element material
JP5267649B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME
JP5316583B2 (en) ORGANIC ELECTROLUMINESCENT ELEMENT, DISPLAY DEVICE AND LIGHTING DEVICE USING THE SAME

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505909

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10755738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1201003215

Country of ref document: TH