WO2010109045A1 - Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa - Google Patents

Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa Download PDF

Info

Publication number
WO2010109045A1
WO2010109045A1 PCT/ES2010/070158 ES2010070158W WO2010109045A1 WO 2010109045 A1 WO2010109045 A1 WO 2010109045A1 ES 2010070158 W ES2010070158 W ES 2010070158W WO 2010109045 A1 WO2010109045 A1 WO 2010109045A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssiv
atssiv
starch
plant
plants
Prior art date
Application number
PCT/ES2010/070158
Other languages
English (en)
French (fr)
Inventor
Francisco José MUÑOZ PÉREZ
Jun Li
Javier Pozueta-Romero
Sandy Raynaud
Paula Ragel De La Torre
Ángel MÉRIDA BERLANGA
Miren Edurne Baroja
Manuel Montero
Original Assignee
Iden Biotechnology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iden Biotechnology filed Critical Iden Biotechnology
Priority to US13/258,656 priority Critical patent/US20120102597A1/en
Priority to EP10714044.4A priority patent/EP2412814B1/en
Priority to CA2756034A priority patent/CA2756034A1/en
Publication of WO2010109045A1 publication Critical patent/WO2010109045A1/es
Priority to IL215269A priority patent/IL215269A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present invention falls within the field of genetic engineering and plant physiology. Specifically, the invention comprises a process for the production of transgenic plants with high content and yield in starch and biomass; as well as the vectors used to transform the plant cells, the transformed plant cells themselves, as well as the transgenic plants obtained by said procedure and their respective uses.
  • Glycogen in animals and bacteria
  • starch in plants
  • starch accumulates in large quantities in organs such as seeds and tubers, and is a fundamental constituent of the human diet.
  • starch is a source of renewable and completely biodegradable material, being frequently used in the paper, cosmetic, pharmaceutical and food industries, as well as being used as a fundamental component for the manufacture of biodegradable plastics, low environmental impact paints and bioethanol .
  • Starch biosynthesis is a complex process that requires the concerted action of different enzymatic activities such as sucrose synthase, phosphoglucomutase, ADP-glucose pyrophosphorylase and different types of glucosyl transferases, commonly referred to as starch synthases (SS), and enzymes branching and de-branching of starch (1).
  • SS starch synthases
  • GS glycogen synthase
  • GBSSI is involved in the production of amylose
  • SSI, SSII and SSIII are involved in the production of short, intermediate and long amylopectin starch chains, respectively (3).
  • SSIV is the least known of the family of proteins commonly referred to as soluble SSs. Its amino acid sequence with respect to SSI, SSII and
  • SSIII varies between 30% and 50% (4, 5). Despite its designation, its SS activity has not yet been demonstrated. Moreover, the idea that SSIV does not cover the scope and function of the other SSs (6) has recently been installed. However, there is evidence to suggest that SSIV may be involved in determining the number of starch granules in plastide (7).
  • SSIV overexpression is a biotechnological strategy for production of transgenic plants with high levels of starch and high yields of starch and biomass.
  • the present invention relates to a process for the production of transgenic plants that have high content and yield in starch and biomass, by means of the ectopic expression of SSIV. Furthermore, the present invention relates to the transgenic plants themselves characterized by said properties.
  • the technical effects shown in the present invention are extrapolated to any type of plant organ such as tubers, leaves, fruits and seeds; as well as any type of plant such as: Arabidopsis, potato, tobacco, tomato, rice, barley, wheat and corn.
  • the results shown in the present invention were achieved, both constitutively expressing AtSSIV (the gene coding for SSIV in A. thaliana) under the control of the 35S promoter, and expressing AtSSIV under the control of a specific tuber promoter (gene promoter the patatin). It should be said that the constitutive expression was particularly preferred.
  • the results shown in the present invention were achieved after over-expressing any isoform and sequence of SSIV (Arabidopsis SSIV being particularly preferred). That is, any plant-expressible promoter that produces over-expression of AtSSIV, as well as that of any other SSIV isoform, would be comprised in the present invention.
  • the following terms are defined:
  • Transgenic plant plant whose genome has been modified by genetic engineering with the objective of achieving different and / or improved biological characteristics compared to those of the wild control plant (WT), both grown under the same conditions.
  • Transformed plant cell these are plant cells that have a genetic alteration resulting from the introduction and expression of external genetic material in their genome.
  • Over-expression of SSIV a plant over-expresses the enzyme SSIV when the intensity of the band obtained in a western blot of an extract of a transformed plant is significantly higher than that obtained with an extract of WT plants grown under the same conditions and at the same time.
  • High starch content as used in the present invention, this expression is directly referred to a statistically significant value, at least 10% higher, than the values observed in the control plants.
  • SSIV Activity The activity of the SSIV enzyme consists of transferring glucose units from ADPglucose to maltotriose and polyglucans such as starch, amylose, amylopectin and glycogen.
  • FIG. 1 Restriction map of plasmid pAtSSIV resulting from the cloning of a complete cDNA encoding the AtSSIV gene of Arabidopsis thaliana in the vector pGEM-T easy (Promega).
  • Figure 2. Comparison of amino acid sequences deduced from AtSSI, AtSSII, AtSSIII and AtSSIV. The amino acids conserved in all SSs are framed in black. The AtSSIV fragment used to obtain specific antibodies against this protein is indicated with a black line, underlined.
  • Figure 3. Restriction map of plasmid pGEX-4T3_FragSSIV used for the synthesis of the peptide necessary for the production of the SSIV specific antibody.
  • Figure 4. Stages of construction of binary plasmid pK2GW7, 0-AtSSIV (alternatively designated pKan-35S-AtSSIV) necessary for the transformation of plants with Agrobacterium tumefaciens.
  • FIG. 7 Zimogram of SS activity using glycogen as bait.
  • the SSIV enzyme is electrophoretically separated in a glycogen-containing gel. To provide the signal shown in the figure, said gel is incubated in a solution with ADPglucose and subsequently in a lugol solution, giving rise to the dark band shown. This staining is due to the affinity that lugol has for long-chain glucose polymers.
  • Figure 8. Substrate specificity. In vitro assay of SSI, SSII, SSIII and SSIV with different malate - or saccharide ligo s as substrate.
  • SSIV is able to complement the "glycogen-less" phenotype of AgIgAP cells. Iodine staining pattern after 12, 24 and 36 hours of incubation of (A) AgIgAP, (B) AgIgAP expressing GIgA and (C, D) AgIgAP expressing SSIV. An extension of the iodine staining pattern is observed in Figure D after 36 hours of incubation of AgIgAP cells expressing SSIV.
  • FIG. 10 Subcellular location of AtSSIV.
  • the illustration shows the fluorescence produced in cells of Arabidopsis plants transformed with AtSSIV-GFP that have been subjected to analysis using a D-Eclipse Cl (NIKON) confocal microscope equipped with an Ar 488 excitation laser, a BA515 / green emission filter 30, a filter for red emission BA650LP and a light detector.
  • NIKON D-Eclipse Cl
  • the white circles correspond to wild plants of Arabidopsis thaliana, CoI-O ecotype.
  • the black circles correspond to transgenic Arabidopsis plants that overexpress the AtSSIV gene encoding the SSIV of Arabidopsis thaliana.
  • FIG. 13 Starch content in tubers of wild potato plants and potato plants expressing AtASSIV, grown in a greenhouse, after integrating the 35S-AtSSIV construct into its genome using the strain of A. tumefaciens DSM 19675. Wild tubers analyzed are designated as WT. Transgenic plants are designated 2, 6, 7, 8 and 9. The values represented correspond to the mean and standard deviation of tubers of 10 different plants per line.
  • Figure 14 Starch content in tubers of wild potato plants and potato plants expressing AtASSIV, cultivated in the field, after integrating the 35S-AtSSIV construct into its genome using the strain of A. tumefaciens DSM 19675. Wild tubers analyzed are designated as WT. Transgenic plants are designated 7, 8 and 9. The values represented correspond to the mean and standard deviation of tubers of 30 different plants per line.
  • Figure 15. (A) Evolution of the fresh weight of wild Arabidopsis thaliana plants, CoI-O ecotype (white circles) and transgenic Arabidopsis plants that overexpress the AtSSIV gene (black circles), both grown in greenhouse, throughout of growth The data is the average of three measurements.
  • the illustration shows the fluorescence produced in tubers of Potato plants transformed with AtSSIV-GFP that have been subjected to analysis using a D-Eclipse Cl (NIKON) confocal microscope equipped with an Ar 488 excitation laser, a BA515 / 30 green emission filter, a BA650LP red emission filter and a light detector
  • NIKON D-Eclipse Cl
  • SSIV-GFP is located at the poles of the starch granules present in the tubers of said transgenic plants (indicated by arrows).
  • White bar 5 ⁇ m.
  • tumefaciens DSM 19675. The figure shows the presence of a single insert of the p35S construct. -AtSSIV in these plants. Unprocessed control plants (WT) do not have such a construction in their genome. The transgenic plants belong to different lines: 2, 7, 8 and 9.
  • FIG. 18 Amylose / amylopectin balance, expressed as% amylose, in tubers of unprocessed control potato plants (WT) and potato plants that overexpress AtSSIV after integrating the p35S-AtSSIV construct into their genome using strains of A. tumefaciens DSM 19675.
  • the data shown in the figure belong to plants grown in the field. The values represented correspond to the mean and standard deviation of tubers of 30 different plants per line.
  • Figure 19 Glucose (A), fructose (B) and sucrose (C) content in tubers of unprocessed control potato plants (WT) and in potato plants that overexpress AtSSIV after integrating the p35S- construction into its genome AtSSIV using the strains of A. tumefaciens DSM 19675.
  • the values represented correspond to the mean and standard deviation of tubers of 30 different plants per line, grown in the field. The concentration of each of the sugars is expressed as ⁇ mol / g of fresh tuber
  • FIG. 20 Protein content in tubers of plants of unprocessed control potato plants (WT) and in potato plants that overexpress AtSSIV after integrating the p35S-AtSSIV construct into their genome making use of strains of A. tumefaciens DSM 19675
  • the values represented correspond to the mean and standard deviation of tubers of 30 different plants per line, grown in the countryside.
  • the protein concentration is expressed as mg / g of fresh tuber weight.
  • One of the objects described in the present invention relates to the process for obtaining transgenic plants with high content and yield in starch and biomass, characterized by the transformation of the wild plant with an expression vector comprising a nucleotide sequence coding for an enzyme with SSIV activity and the expression of said nucleotide sequence inside the transformed plant.
  • the process of the invention is characterized in that the level of SSIV expression inside the transformed plant is at least 2 times higher than the level of SSIV expression of the wild plant.
  • the process of the invention is characterized in that the nucleotide sequence comprised in the expression vector used to transform the wild plant is SEQ ID NO: 3 which codes for SEQ ID NO: 4.
  • the expression vector used to transform the plant is Agrobacterium tumefaciens DSM 19675, which comprises plasmid pK2GW7, O_AtSSIV.
  • Another object of the present invention relates to cells transformed with an expression vector, preferably a plasmid, comprising a nucleotide sequence encoding a protein or a protein fragment with SSIV activity.
  • the cells of the invention are characterized in that they are transformed with an expression vector selected from: Agrobacterium tumefaciens DSM 19675, plasmid pET-AtSSIV or plasmid pGEX-4T3_FragSSIV, preferably with the expression vector Agrobacterium tumefaciens DSM 19675.
  • these cells belong to any of the following plant species: potato (Solanum tuberosum), tobacco (Nicotiana tabacum), barley (Hordeum vulgare), rice (Oryza sativa), corn (Zea mays) or arabidopsis (Arabidopsis thaliana).
  • potato Solanum tuberosum
  • tobacco Natural
  • Barley Hadeum vulgare
  • rice Oryza sativa
  • corn Zea mays
  • arabidopsis Arabidopsis thaliana
  • Another object of the present invention relates to the use of said cells for the production of starch and / or biomass.
  • Another object of the present invention relates to bacterial cells, as described above and characterized in that they have been transformed with a bacterial plasmid selected from: pET-AtSSIV or pGEX-4T3_FragSSIV and belong to a strain of E. coli selected from : BL21 (DE3), BL21 (DE3) AglgAP or BL21 (DE3) AglgCAP.
  • a bacterial plasmid selected from: pET-AtSSIV or pGEX-4T3_FragSSIV and belong to a strain of E. coli selected from : BL21 (DE3), BL21 (DE3) AglgAP or BL21 (DE3) AglgCAP.
  • Another object of the present invention relates to the use of bacterial cells transformed with the plasmid pET-AtSSIV, described above, for the production of an enzyme with SSIV activity.
  • Another object of the present invention relates to the use of bacterial cells transformed with the plasmid pGEX-4T3_FragSSIV, described above, for the production of antibodies against a specific fragment of an enzyme with SSIV activity.
  • Another object of the present invention relates to the expression vector
  • Agrobacterium tumefaciens DSM 19675 characterized by comprising the plasmid pK2GW7, 0.AtSSIV that codes for an enzyme with SSIV activity.
  • 4T3_FragSSIV characterized by coding for an antigenic fragment of an enzyme with SSIV activity.
  • Another object of the present invention relates to transgenic plants characterized by being transformed with the expression vector Agrobacterium tumefaciens DSM 19675 characterized by comprising the plasmid pK2GW7, O_ AtSSIV which codes for an enzyme with SSIV activity and having high content and yield in starch and biomass, compared to wild plants without processing.
  • the transgenic plants of the invention are characterized by presenting a level of SSIV expression at least 2 times higher than that observed in the unprocessed wild plant.
  • the transgenic plants of the invention are characterized by having a starch and / or biomass content of at least 10% higher than the starch and / or biomass content of unprocessed wild plants, grown under the same conditions and at the same time.
  • the transgenic plants of the invention are characterized in that they are selected from the group comprising: potato (Solanum tuberosum), tobacco (Nicotiana tabacum), barley (Hordeum vulgare), rice (Oryza sativa), corn (Zea mays) or arabidopsis (Arabidopsis thaliana).
  • Another object of the present invention relates to the use of the transgenic plants described above, for the production of carbohydrates, selected among others: starch, glucose, fructose and sucrose and also for the production of biomass.
  • AtSSIV is encoded by the At4gl8240 (or AtSSIV) gene. From its nucleotide sequence oligonucleotides specific for the AtSSIV gene were synthesized. These oligonucleotides were used to amplify the complete cDNA fragment encoding for AtSSIV by means of RT-PCR from total RNA of Arabidopsis leaves. The amplified fragment was cloned into the pGEM-T easy vector (Promega) giving rise to plasmid pAtSSIV ( Figure 1) which was amplified in the host bacteria XLl Blue.
  • pGEM-T easy vector Promega
  • a fragment of the amino terminal region of the protein that did not show homology with the other SSs present in Arabidopsis was selected as an antigenic zone ( Figure 2). Specifically the region between the amino acids Glutamic 236 and Glutamic 414 of the amino acid sequence of AtSSIV.
  • oligonucleotides characterized by SEQ ID NO: 5 and 6 were used.
  • the 512 base pair fragment was amplified by PCR using said oligonucleotides and first-chain cDNA (SEQ ID NO: 3) obtained from leaf mRNA as a template.
  • the oligonucleotides introduce restriction sites for the Ndel and Xhol enzymes at the 5 'and 3' ends respectively of the amplified fragment, which were used to clone the cDNA fragment into the expression vector pGEX-4T (Amersham Biosciences) giving rise to plasmid pGEX- 4T3_FragSSIV ( Figure 3).
  • This expression vector contains the coding sequence for the glutathione S-transferase protein (GST).
  • GST glutathione S-transferase protein
  • the cloning of the AtSSIV cDNA fragment into the vector was carried out respecting the reading pattern marked by the gene encoding the GST, allowing the translational fusion of the AtSSIV polypeptide fragment with the carboxy-terminal end of the GST protein.
  • the construction was confirmed by DNA sequencing and with it the strain of E. coli BL21 (DE3) was transformed.
  • the expression and purification of the GST-SSIV fusion polypeptide was then carried out with glutathione agarose, and the subsequent purification of the AtSSIV polypeptide fragment of the GST by thrombin rupture and binding of the GST to a glutathione matrix.
  • the expression of pGEX-4T3_FragSSIV took place by adding 1 mM isopropyl-D-thiogalactopyranoside (IPTG) in 100 ml of cell culture when the optical density thereof was 0.6. After an additional 2 hours of culture the cells were centrifuged at 10,000 g for 5 minutes, resuspended in 50 mM HEPES (pH 7.0) and sonicated.
  • the supernatant containing the GST-fused recombinant AtSSIV fragment was passed through an affinity column of Glutathione-Sepharose (GE Healthcare). After washing the column to remove proteins that had not bound to it, the SSIV fragment was eluted by thrombin treatment, which cuts the union of the SSIV fragment with the GST protein, which remains attached to the affinity column.
  • the purified recombinant AtSSIV fragment was mixed with Freund's complete adjuvant (in a 50/50 ratio) and subsequently aliquoted into three equal fractions, which were sent to the Animal Production and Experimentation Center of the University of Seville, where antibodies were obtained rabbit polyclonal against said polypeptide. Finally, the anti-SSIV antibody was purified by FPLC using a Sepharose Protein A column (Amersham Bioscience). Obtaining transgenic plants that overexpress AtSSIV
  • AtSSIV The constitutive over-expression of AtSSIV required the production of a binary plasmid whose production process is illustrated in Figure 4.
  • AtSSIV was amplified by PCR from pAtSSIV and subsequently cloned into pDONR / Zeo, giving rise to plasmid pDONR / Zeo -AtSSIV.
  • pK2GW7,0-AtSSIV or pKan-35S-AtSSIV
  • pK2GW7,0- AtSSIV was introduced by electroporation in A.
  • strain DSM 19675 which was deposited in the "German National Resource Center for Biological Material” on September 18, 2007, located at DMSZ, Mascheroder Weg Ib D-38124 (Braunschweig, Germany). This strain was used to transform potato and Arabidopsis plants according to protocols described in the literature (15,16).
  • AtSSIV sequence encoding the mature AtSSIV protein was amplified by PCR from pATSSIV and subsequently cloned into pET-45b (+) (Novagen) giving rise to plasmid pET-AtSSIV as illustrated in Figure 5.
  • pET- AtSSIV was introduced by electroporation into E. coli BL21 (DE3) AgIgAP and AgIgCAP (17) strains. These strains do not possess glycogen synthase activity that may interfere with SS activity.
  • the overexpression of AtSSIV took place by the addition of 1 mM isopropyl-D-thiogalactopyranoside (IPTG) in 100 ml of cell culture when the optical density thereof was 0.6. After an additional 2 hours of culture the cells were centrifuged at 10,000 g for 5 minutes, resuspended in 50 mM HEPES (pH 7.0) and sonicated.
  • IPTG isopropyl-D-thiogalactopyranoside
  • SSIV SS (EC 2.4.1.21) that transfers glucose from the ADP-glucose to the end of a starch or glycogen chain (or another type of polysaccharide of glucose molecules linked together by covalent bonds of type ⁇ - (l, 4 )) by creating a new link of type ⁇ - (l, 4).
  • the identification of SSIV may be made from any of the following ways: (a) by zymograms, (b) by analysis of the incorporation of radioactivity from radioactively labeled ADP-glucose into glucose polysaccharides, (c) by complementing the "glycogen-less" phenotype of the AgIgAP strain of E. coli, (d) by immunoblots using specific antibodies against AtSSIV and (e) by confocal microscopy analysis of the subcellular location of SSIV fused with the green fluorescence protein (GFP):
  • GFP green fluorescence protein
  • Radioactivity incorporated in such a polymer can be measured using a scintillation counter •
  • the E. coli AgIgAP insertion mutant does not accumulate glycogen since it does not possess the glgA gene that codes for GIgA.
  • This enzyme is responsible for glycogen synthesis from ADPglucose in the cell.
  • the identification of SSIV activity in AgIgAP cells of E. coli manifests itself. a by observing the accumulation of glycogen in the mutant transformed with pET-AISSIV.
  • Potato and / or Arabidopsis plants were transformed with the AtSSIV-GFP chimeric construction obtained as illustrated in Figure 6. The plants were subjected to observation by confocal microscopy to identify the subcellular location of GFP fluorescence.
  • the starch was quantified by a spectrophotometric method consisting of the total degradation of starch to glucose residues by the action of the enzyme amyloglucosidase and subsequent quantification of glucose using an enzymatic assay coupled with the enzymes hexokinase and dehydrogenated glucose-6-phosphate enzymes (7 ).
  • the amylose / amylopectin balance was determined using a spectrophotometric method (19).
  • AtSSIV gene coding for AtSSIV allowed the creation of two specific primers whose sequences are, in sense 5 '-3', SEQ ID NO: 1 and SEQ ID NO: 2. Using these primers and Arabidopsis leaf RNA was amplified by conventional RT-PCR methods a complete AtSSIV cDNA (At4gl8240), which was cloned into pGEM-T easy (Promega) ( Figure 1).
  • the nucleotide sequences of the amplified DNA and the deduced amino acid sequence are represented in SEQ ID NO: 3 and SEQ ID NO: 4, respectively.
  • Example 2 Product identification with SSIV activity
  • the purified enzymes were incubated at 3O 0 C for 30 min in 100 ⁇ l of the following reaction mixture: 50 mM Glygly / NaOH pH 9; 100 mM (NH4) 2SO4; (5 mM 3-mercaptoethanol; 5 mM MgC12; 0.25 g / 1 BSA; 1 mM ADP- [U-C] Glucose (3.7 GBq / mol).
  • IC Beckman Elongation with phosphorylase as and omitted when the substrate used was amylopectin.
  • SSIV substrate specificity tests show that SSIV is capable of transferring glucose molecules from ADP-glucose to polyglucans such as amylopectin. Malto-oligosaccharides of 4, 5, 6 or 7 glucose units are not good substrates for SSIV. Surprisingly, maltotriose is an excellent substrate for SSIV (as good as amylopectin). This substrate specificity pattern distinguishes SSIV from other SSs because, as illustrated in Figure 8, SSI, SSII and SSIII do not act efficiently on maltotriose (3).
  • AtSSIV protein is an SS with glucosyl transferase activity from the ADP-glucose donor molecule to the chains of a long chain polyglucan such as amylopectin, amylose or glycogen.
  • SSIV is able to add glucose units to maltotriose.
  • SSIV is the only member of the "soluble starch synthase" family that is associated with the starch granule.
  • transgenic plants of Arabidopsis thaliana and potato were obtained constitutively expressing AtSSIV.
  • crops of transgenic potato plants that overexpress the AtSSIV gene and control plants were carried out in the countryside. These crops were carried out between May and September 2009 on a plot of the 25th term of Sartaguda (Navarra, Spain). The plants were randomly distributed in plots of 50 square meters, making use of 30 plants per line. The separation between rails was 90 cm. The separation between plant and plant of the same lane was 35 cm.
  • tubers of potato plants that overexpress AtSSIV, grown in the field accumulate significantly higher levels of starch than the corresponding organs of the control plants, data that correlate with the significant increase in starch concentration shown in the leaves of the transgenic plants of the invention with respect to the control plants grown in the greenhouse.
  • Table 1 shows the starch content of the tubers of plants that overexpress AtSSIV and the control plant tubers grown in the field. The results shown in this table include the mean and standard deviation of 30 different plants per line. Values significantly different from those registered in control plants are indicated in bold. The results shown in Table 1 show that potato plant tubers that overexpress AtSSIV have a significant increase, approximately 30%, in starch concentration, expressed as a percentage of dry weight (% DW), with respect to potato tubers of unprocessed control plants (WT).
  • % DW percentage of dry weight
  • tubers of transgenic potato plants that overexpress AtSIV, grown in the field produce significantly higher concentration of starch than tubers of potato control plants (WT).
  • WT tubers of potato control plants
  • control plant tubers produce 94.65 grams of starch per plant
  • plants that overexpress AtSIV produce between 103.9-137 grams of starch per plant.
  • Table 1 Quantitative parameters of transgenic plants that overexpress AtSIV grown in the field.
  • FW fresh weight
  • DW dry weight
  • amylose / amylopectin balance expressed as a percentage of amylose
  • WT non-transformed control plants
  • transgenic plants of the invention have an increase in the tubers of the soluble sugar content, such as glucose, fructose and sucrose (Figure 19), with respect to the unprocessed control plants (WT).
  • soluble sugar content such as glucose, fructose and sucrose
  • Potato tubers act as starch and protein reservoirs.
  • Figure 20 it can be seen that the protein content existing in potato plant tubers that overexpress AtSSIV is similar to that observed in the tubers of unprocessed control potato plants. Therefore, said figure puts It is clear that the overexpression of AtSSIV in transgenic plants does not alter the protein content present in the tubers of said transgenic plants, thus showing the specificity of the overexpression of AtSSIV for the specific accumulation of starch, in said transgenic plants, with respect to the transgenic plants. Unprocessed control plants.

Abstract

Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa. Las SSs en plantas (incluida la SSIV) y la glucógeno sintasa en bacterias catalizan la transferencia de la parte glucosídica de la molécula de ADP-glucosa (el donador activado de glucosa) a un glucano α(l-4) preexistente. Sin embargo, a diferencia de lo que ocurre con otras SSs, la SSIV es capaz de añadir unidades de glucosa sobre maltotriosas. Además, a diferencia de lo que ocurre con otras SSs "solubles", SSIV está unida al granulo de almidón. En esta invención se describe por primera vez la obtención de plantas que poseen altos niveles y rendimientos de almidón y biomasa, como consecuencia de la expresión de genes que codifican para SSIV.

Description

PROCEDIMIENTO PARA LA PRODUCCIÓN DE PLANTAS
TRANSGÉNICAS QUE PRESENTAN ALTO CONTENIDO Y
RENDIMIENTO EN ALMIDÓN Y BIOMASA
CAMPO DE LA INVENCIÓN
La presente invención se engloba dentro del campo de la ingeniería genética y de la fisiología vegetal. Concretamente la invención comprende un procedimiento para la producción de plantas transgénicas con alto contenido y rendimiento en almidón y biomasa; así como los vectores utilizados para transformar las células vegetales, las propias células vegetales transformadas, así como las plantas transgénicas obtenidas por dicho procedimiento y sus respectivos usos.
ESTADO DE LA TÉCNICA
El glucógeno (en animales y bacterias) y el almidón (en plantas) constituyen las formas principales de almacenamiento de carbohidratos de reserva. En plantas el almidón se acumula en grandes cantidades en órganos tales como semillas y tubérculos, y es un constituyente fundamental de la dieta del ser humano. Por otro lado, el almidón constituye una fuente de material renovable y completamente biodegradable, siendo utilizado frecuentemente en las industrias papelera, cosmética, farmacéutica y alimentaria, además de emplearse como componente fundamental para la fabricación de plásticos biodegradables, pinturas de bajo impacto medioambiental y bioetanol. La biosíntesis de almidón es un proceso complejo que requiere la acción concertada de diferentes actividades enzimáticas tales como la sacarosa sintasa, la fosfoglucomutasa, la ADP-glucosa pirofosforilasa y diferentes tipos de glucosil transferasas, comúnmente designadas como almidón sintasas (SS), y las enzimas ramificante y desrramificante del almidón (1). La SS en plantas y la glucógeno sintasa (GIgA) en bacterias catalizan la transferencia de la mitad glucosídica de la molécula de ADP-Glucosa (el donador activado de glucosa) a un glucano α(l-4) preexistente. En todos los organismos foto sintético s que acumulan almidón se han encontrado las mismas SSs denominadas:
SSI, SSII, SSIII, SSIV y GBSSI. Este alto grado de conservación indica que cada una de estas proteínas desempeña funciones diferentes en el proceso de creación del granulo de almidón (2). Así por ejemplo, la GBSSI está implicada en la producción de amilosa, mientras que la SSI, la SSII y la SSIII están implicadas en la producción de cadenas de almidón cortas, intermedias y largas de amilopectina, respectivamente (3).
La SSIV es la menos conocida de la familia de proteínas comúnmente designadas como SSs solubles. Su secuencia aminoacídica con respecto a SSI, SSII y
SSIII varía entre un 30% y un 50% (4, 5). A pesar de su designación, todavía no se ha demostrado su actividad SS. Es más, recientemente se ha instalado la idea de que SSIV no cubre el campo de acción y función de las otras SSs (6). Sin embargo, existen evidencias que sugieren que SSIV puede estar implicada en la determinación del número de granulos de almidón existentes en el plastidio (7).
Son múltiples las referencias que muestran que la reducción de la actividad SSI, SSII y SSIII conlleva una reducción en los niveles de almidón y la alteración de la estructura y composición del granulo (8, 9). Mutantes de Arabidopsis que no poseen SSIV acumulan niveles reducidos de almidón porque, aunque el balance amilosa/amilopectina y la estructura molecular de la amilopectina son normales, tan solo producen un granulo de almidón por cloroplasto (7). Contrariamente a lo esperado, plantas transgénicas que sobre-expresan la GIgA de Escherichia coli acumulan bajo contenido en almidón (10). Si bien la expresión ectópica de SSI, SSII y SSIII ha sido utilizada como estrategia para incrementar el contenido en almidón (WO 00/66745) y modificar propiedades del almidón tales como el contenido en fosfato (WO2007/009823) ( 1 1-13) o el balance amilosa/amilopectina (WO 2006/084336; WO 2002/018606), no existen evidencias experimentales que indiquen que SSIV tenga actividad SS o que la expresión ectópica de SSIV pueda ser utilizada como una estrategia biotecnológica para incrementar la cantidad del almidón, así como el rendimiento y tasa de acumulación de biomasa de las plantas. En la presente invención, tras demostrar que SSIV es una SS que reúne propiedades totalmente diferentes a las SSs solubles SSI, SSII y SSIII, se describe por primera vez que la sobre-expresión de SSIV es una estrategia biotecnológica para la producción de plantas transgénicas con altos niveles de almidón y altos rendimientos de almidón y biomasa.
DESCRIPCIÓN DE LA INVENCIÓN
Breve descripción de la invención
La presente invención se refiere a un procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa, mediante la expresión ectópica de SSIV. Además la presente invención se refiere a las propias plantas transgénicas caracterizadas por dichas propiedades.
Los efectos técnicos mostrados en la presente invención son extrapolables a cualquier tipo de órgano de la planta tal como tubérculos, hojas, frutos y semillas; así como a cualquier tipo de planta como por ejemplo: Arabidopsis, patata, tabaco, tomate, arroz, cebada, trigo y maíz. Los resultados mostrados en la presente invención fueron conseguidos, tanto expresando constitutivamente AtSSIV (el gen que codifica para SSIV en A. thaliana) bajo el control del promotor 35S, como expresando AtSSIV bajo el control de un promotor específico de tubérculo (promotor del gen de la patatina). Cabe decir que la expresión constitutiva fue la particularmente preferida. Los resultados mostrados en la presente invención fueron conseguidos tras sobre- expresar cualquier isoforma y secuencia de SSIV (siendo particularmente preferida la SSIV de Arabidopsis). Es decir, cualquier promotor expresable en plantas que produzca la sobre-expresión bien de AtSSIV, así como la de cualquier otra isoforma de SSIV, estarían comprendidos en la presente invención. A efectos de la presente invención, se definen los siguientes términos:
• Planta transgénica: planta cuyo genoma ha sido modificado mediante ingeniería genética con el objetivo de conseguir características biológicas diferentes y/o mejoradas respecto a las de la planta silvestre control (WT), cultivadas ambas en las mismas condiciones. • Célula vegetal transformada: son células vegetales que presentan una alteración genética resultado de la introducción y expresión de material genético externo en su genoma. • Sobre-expresión de SSIV: una planta sobre-expresa el enzima SSIV cuando la intensidad de la banda obtenida en un western blot de un extracto de una planta transformada es significativamente superior a la obtenida con un extracto de plantas WT cultivadas en las mismas condiciones y en el mismo momento. • Alto contenido de almidón: según se utiliza en la presente invención, esta expresión está directamente referida a un valor estadísticamente significativo, superior en al menos un 10%, a los valores observados en las plantas control.
• Alta productividad en biomasa: según se utiliza en la presente invención, esta expresión está directamente referida a un valor estadísticamente significativo, que se define como el incremento del peso fresco de plantas transgénicas a lo largo de su desarrollo, siendo este más acelerado que en las plantas silvestres.
• Actividad SSIV: la actividad de la enzima SSIV consiste en transferir unidades de glucosa desde ADPglucosa a maltotriosa y poliglucanos tales como almidón, amilosa, amilopectina y glucógeno.
Breve descripción de las figuras
Figura 1. Mapa de restricción del plásmido pAtSSIV resultante del clonaje de un cDNA completo que codifica para el gen AtSSIV de Arabidopsis thaliana en el vector pGEM-T easy (Promega).
Figura 2. (a-h) Comparación de secuencias aminoacídicas deducidas de AtSSI, AtSSII, AtSSIII y AtSSIV. Los aminoácidos conservados en todas las SSs están enmarcados en negro. El fragmento de AtSSIV empleado para obtener anticuerpos específicos contra esta proteína se indica con una línea negra, subrayada. Figura 3. Mapa de restricción del plásmido pGEX-4T3_FragSSIV utilizado para la síntesis del péptido necesario para la producción del anticuerpo específico de SSIV. Figura 4. Etapas de construcción del plásmido binario pK2GW7, 0-AtSSIV (alternativamente designado pKan-35S-AtSSIV) necesario para la transformación de plantas con Agrobacterium tumefaciens. Figura 5. Mapa de restricción del plásmido pET-AtSSIV necesario para la expresión en E. coli de la SSIV madura. Figura 6. Etapas de construcción del plásmido binario pAtSSIV-GFP necesario para la transformación de plantas en Agrobacterium tumefaciens .
Figura 7. Zimograma de actividad SS empleando glucógeno como cebo. La enzima SSIV es separada electroforéticamente en un gel que contiene glucógeno. Para proporcionar la señal mostrada en la figura, dicho gel se incuba en una solución con ADPglucosa y posteriormente en una solución de lugol, dando lugar a la banda obscura mostrada. Dicha tinción es debida a la afinidad que presenta el lugol por los polímeros de glucosa de cadena larga. Figura 8. Especificidad de sustrato. Ensayo in vitro de SSI, SSII, SSIII y SSIV con diferentes malto -o ligo sacárido s como sustrato .
Figura 9. SSIV es capaz de complementar el fenotipo "glycogen-less" de las células AgIgAP. Patrón de tinción en iodina tras 12, 24 y 36 horas de incubación de (A) AgIgAP, (B) AgIgAP que expresan GIgA y (C,D) AgIgAP que expresan SSIV. En la figura D se observa una ampliación del patrón de tinción con iodina tras 36 horas de incubación de las células AgIgAP que expresan SSIV.
Figura 10. Localización subcelular de AtSSIV. La ilustración muestra la fluorescencia producida en células de plantas de Arabidopsis transformadas con AtSSIV-GFP que han sido sometidas a análisis mediante un microscopio confocal D- Eclipse Cl (NIKON) equipado con un láser con excitación Ar 488, un filtro para emisión verde BA515/30, un filtro para emisión roja BA650LP y un detector de luz. En las fotografías puede observarse (flechas) que SSIV-GFP está localizado en la superficie de granulos de almidón, chlor: clorofila; GFP: son las siglas de "Green Fluorescent Protein", es la proteína fluorescente fusionada a SSIV capaz de emitir fluorescencia que se recoge mediante un microscopio confocal. Figura 11. Análisis mediante western blot (A) y cuantificación (B) de los niveles de proteína SSIV en el eco tipo silvestre CoI-O (WT) y en las líneas transgénicas que sobre-expresan el gen AtSSIV (LIO, LI l, L12 y L13) tras integrar en su genoma la construcción 35S-AtSSIV haciendo uso de la cepa de A. tumefaciens DSM 19675. En (C), análisis mediante western blot de SSIV en tubérculos de patata que expresan AtASSIV tras integrar en su genoma la construcción 35S-AtSSIV haciendo uso de la cepa de A. tumefaciens DSM 19675. Las plantas transgénicas reciben la designación 2, 6, 7, 8 y 9. Figura 12. Niveles de almidón en hojas de plantas de Arabidopsis, cultivadas en invernadero, a lo largo de un ciclo 16 h luz/8 h oscuridad. Los círculos blancos corresponden a plantas silvestres de Arabidopsis thaliana, ecotipo CoI-O. Los círculos negros corresponden a plantas transgénicas de Arabidopsis que sobre-expresan el gen AtSSIV que codifica para la SSIV de Arabidopsis thaliana.
Figura 13. Contenido de almidón en tubérculos de plantas de patata silvestres y plantas de patata que expresan AtASSIV, cultivadas en invernadero, tras integrar en su genoma la construcción 35S-AtSSIV haciendo uso de la cepa de A. tumefaciens DSM 19675. Los tubérculos silvestres analizados se designan como WT. Las plantas transgénicas reciben la designación 2, 6, 7, 8 y 9. Los valores representados se corresponden a la media y desviación típica de tubérculos de 10 plantas diferentes por línea.
Figura 14. Contenido de almidón en tubérculos de plantas de patata silvestres y plantas de patata que expresan AtASSIV, cultivadas en campo, tras integrar en su genoma la construcción 35S-AtSSIV haciendo uso de la cepa de A. tumefaciens DSM 19675. Los tubérculos silvestres analizados se designan como WT. Las plantas transgénicas reciben la designación 7, 8 y 9. Los valores representados se corresponden a la media y desviación típica de tubérculos de 30 plantas diferentes por línea. Figura 15. (A) Evolución del peso fresco de plantas silvestres de Arabidopsis thaliana, ecotipo CoI-O (círculos blancos) y plantas transgénicas de Arabidopsis que sobre-expresan el gen AtSSIV (círculos negros), ambas cultivadas en invernadero, a lo largo del crecimiento. Los datos son la media de tres medidas. Cada medida se realizó pesando conjuntamente la parte aérea de 5 plantas y dividiendo el valor obtenido por cinco. Las barras indican la desviación estándar de las medidas. (B) Comparación visual entre plantas de Arabidopsis ecotipo CoI-O (parte izquierda de la fotografía) y plantas transgénicas de Arabidopsis que sobre-expresan el gen AtSSIV (parte derecha de la fotografía). Figura 16. Localización subcelular de AtSSIV en amiloplastos de tubérculos de plantas de patata, cultivadas en campo, que sobre-expresan AtSSIV tras integrar en su genoma la construcción p35S-AtSSIV haciendo uso de las cepas de A. tumefaciens DSM 19675. La ilustración muestra la fluorescencia producida en tubérculos de plantas de patata transformadas con AtSSIV-GFP que han sido sometidas a análisis mediante un microscopio confocal D-Eclipse Cl (NIKON) equipado con un láser con excitación Ar 488, un filtro para emisión verde BA515/30, un filtro para emisión roja BA650LP y un detector de luz. En las fotografías puede observarse (flechas) que SSIV-GFP está localizado en los polos de los granulos de almidón presentes en los tubérculos de dichas plantas transgénicas (indicado con flechas). Barra blanca: 5μm. Figura 17. Southern blot de plantas transgénicas de patata que sobre-expresan AtSSIV tras integrar en su genoma la construcción p35S-AtSSIV haciendo uso de las cepas de A. tumefaciens DSM 19675. La figura muestra la presencia de una única inserción de la construcción p35S-AtSSIV en dichas plantas. Las plantas control sin transformar (WT), no presentan dicha construcción en su genoma. Las plantas transgénicas pertenecen a diferentes líneas: 2, 7, 8 y 9.
Figura 18. Balance amilosa/amilopectina, expresado como % amilosa, en tubérculos de plantas de patata control sin transformar (WT) y plantas de patata que sobre- expresan AtSSIV tras integrar en su genoma la construcción p35S-AtSSIV haciendo uso de las cepas de A. tumefaciens DSM 19675. Los datos mostrados en la figura pertenecen a plantas cultivadas en el campo. Los valores representados se corresponden a la media y desviación típica de tubérculos de 30 plantas diferentes por línea. Figura 19. Contenido en glucosa (A), fructosa (B) y sacarosa (C) en tubérculos de plantas de patata control sin transformar (WT) y en plantas de patata que sobre- expresan AtSSIV tras integrar en su genoma la construcción p35S-AtSSIV haciendo uso de las cepas de A. tumefaciens DSM 19675. Los valores representados se corresponden a la media y desviación típica de tubérculos de 30 plantas diferentes por línea, cultivadas en el campo. La concentración de cada uno de los azúcares aparece expresada como μmol/g de peso fresco del tubérculo.
Figura 20. Contenido proteico en tubérculos de plantas de plantas de patata control sin transformar (WT) y en plantas de patata que sobre-expresan AtSSIV tras integrar en su genoma la construcción p35S-AtSSIV haciendo uso de las cepas de A. tumefaciens DSM 19675. Los valores representados se corresponden a la media y desviación típica de tubérculos de 30 plantas diferentes por línea, cultivadas en el campo. La concentración proteica aparece expresada como mg/g de peso fresco de tubérculo.
Descripción detallada de la invención
Uno de los objetos descritos en la presente invención se refiere al procedimiento para la obtención de plantas transgénicas con alto contenido y rendimiento en almidón y biomasa, caracterizado por la transformación de la planta silvestre con un vector de expresión que comprende una secuencia nucleotídica que codifica para una enzima con actividad SSIV y la expresión de dicha secuencia nucleotídica en el interior de la planta transformada.
En una realización preferida, el procedimiento de la invención se caracteriza porque el nivel de expresión de SSIV en el interior de la planta transformada es al menos 2 veces superior al nivel de expresión de SSIV de la planta silvestre. En otra realización preferida, el procedimiento de la invención se caracteriza porque la secuencia nucleotídica comprendida en el vector de expresión utilizado para transformar la planta silvestre es la SEQ ID NO: 3 que codifica para la SEQ ID NO: 4. En otra realización preferida, el procedimiento de la invención se caracteriza porque el vector de expresión utilizado para transformar la planta es Agrobacterium tumefaciens DSM 19675 que comprende el plásmido pK2GW7,O_AtSSIV.
Otro objeto de la presente invención se refiere a las célula transformadas con un vector de expresión, preferentemente un plásmido, que comprende una secuencia nucleotídica que codifica para una proteína o un fragmento proteico con actividad SSIV. En una realización preferida, las células de la invención se caracterizan porque son transformadas con un vector de expresión seleccionado entre: Agrobacterium tumefaciens DSM 19675, plásmido pET-AtSSIV o plásmido pGEX-4T3_FragSSIV, preferentemente con el vector de expresión Agrobacterium tumefaciens DSM 19675.
Además dichas células pertenecen a cualquiera de las siguientes especies de plantas: patata (Solanum tuberosum), tabaco (Nicotiana tabacum), cebada (Hordeum vulgare), arroz (Oryza sativa), maíz (Zea mays) o arabidopsis (Arabidopsis thaliana). Otro objeto de la presente invención se refiere al uso de dichas células para la producción de almidón y/o biomasa.
Otro objeto de la presente invención se refiere a las células bacterianas, según se describe anteriormente y que se caracterizan porque han sido transformadas con un plásmido bacteriano seleccionado entre: pET-AtSSIV o pGEX-4T3_FragSSIV y pertenecer a una cepa de E. coli seleccionada entre: BL21(DE3), BL21(DE3)AglgAP o BL21(DE3)AglgCAP.
Otro de los objetos de la presente invención se refiere al uso de las células bacterianas transformadas con el plásmido pET-AtSSIV, descritas anteriormente, para la producción de una enzima con actividad SSIV.
Otro de los objetos de la presente invención se refiere al uso de las células bacterianas transformadas con el plásmido pGEX-4T3_FragSSIV, descritas anteriormente, para la producción de anticuerpos frente a un fragmento específico de una enzima con actividad SSIV. Otro objeto de la presente invención se refiere al vector de expresión
Agrobacterium tumefaciens DSM 19675 caracterizado por comprender el plásmido pK2GW7, 0.AtSSIV que codifica para una enzima con actividad SSIV.
Otro objeto de la presente invención se refiere al plásmido pET-AtSSIV caracterizado por codificar para una enzima con actividad SSIV. Otro objeto de la presente invención se refiere al plásmido pGEX-
4T3_FragSSIV caracterizado por codificar para un fragmento antigénico de una enzima con actividad SSIV.
Otro objeto de la presente invención se refiere a las plantas transgénicas caracterizadas por estar transformadas con el vector de expresión Agrobacterium tumefaciens DSM 19675 caracterizado por comprender el plásmido pK2GW7,O_ AtSSIV que codifica para una enzima con actividad SSIV y por poseer alto contenido y rendimiento en almidón y biomasa, en comparación con las plantas silvestres sin transformar.
En una realización preferida, las plantas transgénicas de la invención se caracterizan por presentar un nivel de expresión de SSIV al menos 2 veces superior al observado en la planta silvestre sin transformar. En otra realización preferida, las plantas transgénicas de la invención se caracterizan por presentar un contenido en almidón y/o biomasa de al menos un 10% superior al contenido en almidón y/o biomasa de las plantas silvestres sin transformar, cultivadas en las mismas condiciones y en la misma época. En otra realización preferida, las plantas transgénicas de la invención se caracterizan porque se seleccionan del grupo que comprende: patata (Solanum tuberosum), tabaco (Nicotiana tabacum), cebada (Hordeum vulgare), arroz (Oryza sativa), maíz (Zea mays) o arabidopsis (Arabidopsis thaliana).
Otro objeto de la presente invención se refiere al uso de las plantas transgénicas descritas anteriormente, para la producción de hidratos de carbono, seleccionados entre otros: almidón, glucosa, fructosa y sacarosa y también para la producción de biomasa.
Obtención del cDNA que codifica para SSIV AtSSIV está codificada por el gen At4gl8240 (o AtSSIV). A partir de su secuencia nucleotídica se sintetizaron oligonucleótidos específicos para el gen AtSSIV. Estos oligonucleótidos se emplearon para amplificar mediante RT-PCR a partir de RNA total de hojas de Arabidopsis el fragmento completo de cDNA que codifica para AtSSIV. El fragmento amplificado se clonó en el vector pGEM-T easy (Promega) dando lugar al plásmido pAtSSIV (Figura 1) que fue amplificado en la bacteria hospedadora XLl Blue.
Obtención de anticuerpos policlonales específicos contra la proteína AtSSIV
Para la obtención de un anticuerpo policlonal contra AtSSIV se seleccionó como zona antigénica un fragmento de la región amino terminal de la proteína que no presentaba homología con las otras SSs presentes en Arabidopsis (Figura 2). En concreto la región comprendida entre los aminoácidos Glutámico 236 y Glutámico 414 de la secuencia de aminoácidos de AtSSIV. En la clonación de la secuencia de cDNA que codifica para dicho fragmento se emplearon los oligonucleótidos caracterizados por las SEQ ID NO: 5 y 6. El fragmento de 512 pares de bases se amplificó mediante PCR empleando dichos oligonucleótidos y cDNA (SEQ ID NO: 3) de primera cadena obtenido a partir de mRNA de hojas como molde. Los oligonucleótidos introducen sitios de restricción para las enzimas Ndel y Xhol en los extremos 5 ' y 3 ' respectivamente del fragmento amplificado, los cuales fueron usados para clonar el fragmento de cDNA en el vector de expresión pGEX-4T (Amersham Biosciences) dando lugar al plásmido pGEX- 4T3_FragSSIV (Figura 3). Este vector de expresión contiene la secuencia codificante para la proteína glutatión S-transferasa (GST). La clonación del fragmento de cDNA de AtSSIV en el vector se llevó a cabo respetando la pauta de lectura marcada por el gen que codifica la GST, permitiendo la fusión traduccional del fragmento de polipéptido de AtSSIV con el extremo carboxi-terminal de la proteína GST. La construcción fue confirmada mediante secuenciación de DNA y con ella se transformó la estirpe de E. coli BL21 (DE3).
Se procedió entonces a la expresión y purificación del polipéptido de fusión GST-SSIV con glutatión agarosa, y la posterior purificación del fragmento polipeptídico de AtSSIV de la GST mediante rotura con trombina y unión de la GST a una matriz de glutatión. La expresión de pGEX-4T3_FragSSIV tuvo lugar mediante la adición de 1 mM isopropyl-D-thiogalactopyranoside (IPTG) en 100 mi de cultivo celular cuando la densidad óptica del mismo era de 0.6. Tras 2 horas adicionales de cultivo las células se centrifugaron a 10,000 g durante 5 minutos, se resuspendieron en 50 mM HEPES (pH 7.0) y se sonicaron. El sobrenadante que contiene el fragmento de AtSSIV recombinante fusionado con GST (GST-SSIV) se hizo pasar por una columna de afinidad de Glutation-Sefarosa (GE Healthcare). Después de lavar la columna para eliminar las proteínas que no se habían unido a ella, el fragmento de SSIV se eluyó mediante tratamiento con trombina, que corta la unión del fragmento SSIV con la proteína GST, la cual permanece unida a la columna de afinidad. El fragmento de AtSSIV recombinante purificado fue mezclado con adyuvante completo de Freund (en una relación 50/50) y posteriormente fue alicuotado en tres fracciones iguales, que se enviaron al Centro de Producción y Experimentación Animal de la Universidad de Sevilla, donde se obtuvieron anticuerpos policlonales de conejo contra dicho polipéptido. Finalmente, el anticuerpo anti-SSIV se purificó mediante FPLC usando una columna de Proteína A Sepharosa (Amersham Bioscience). Obtención de plantas transgénicas que sobreexpresan AtSSIV
La sobre-expresión constitutiva de AtSSIV requirió la producción de un plásmido binario cuyo proceso de producción se ilustra en la Figura 4. AtSSIV fue amplificado por PCR a partir de pAtSSIV y posteriormente se clonó en pDONR/Zeo, dando lugar al plásmido pDONR/Zeo-AtSSIV. A partir de pDONR/Zeo-AtSSIV y pK2GW7,0 (14) se obtuvo el plásmido pK2GW7,0-AtSSIV (o pKan-35S-AtSSIV), el cual posee el promotor constitutivo 35S, AtSSIV y el terminador 35S. pK2GW7,0- AtSSIV se introdujo por electroporación en A. tumefaciens, dando lugar a la cepa DSM 19675, que fue depositada en el "Germán National Resource Centre for Biological Material" el 18 de septiembre de 2007, sita en el DMSZ, Mascheroder Weg Ib D-38124 (Braunschweig, Alemania). Esta cepa se utilizó para transformar plantas de patata y Arabidopsis según protocolos descritos en la literatura (15,16).
Obtención de células de Escherichia coli AgIgAP y AgIgCAP que sobre-expresan AtSSIV
La secuencia de AtSSIV que codifica para la proteína madura AtSSIV fue amplificada por PCR a partir de pATSSIV y posteriormente se clonó en pET-45b(+) (Novagen) dando lugar al plásmido pET-AtSSIV según se ilustra en la Figura 5. pET- AtSSIV fue introducido por electroporación en las cepas de E. coli BL21(DE3) AgIgAP y AgIgCAP (17). Estas cepas no poseen actividad glucógeno sintasa que pueda interferir con la actividad SS. La sobre-expresión de AtSSIV tuvo lugar mediante la adición de 1 mM isopropyl-D-thiogalactopyranoside (IPTG) en 100 mi de cultivo celular cuando la densidad óptica del mismo era de 0.6. Tras 2 horas adicionales de cultivo las células se centrifugaron a 10,000 g durante 5 minutos, se resuspendieron en 50 mM HEPES (pH 7.0) y se sonicaron.
Identificación de SSIV
Es una SS (EC 2.4.1.21) que transfiere la glucosa desde el ADP-glucosa al extremo de una cadena almidón o glucógeno (u otro tipo de polisacárido de moléculas de glucosa unidas entre sí por enlaces covalentes de tipo α-(l,4)) mediante la creación de un nuevo enlace de tipo α-(l,4). Además, posee la peculiaridad de utilizar maltotriosa como sustrato. La identificación de SSIV podrá realizarse de cualquiera de las maneras siguientes: (a) mediante zimogramas, (b) mediante análisis de la incorporación de radiactividad a partir de ADP-glucosa marcada radiactivamente en polisacáridos de glucosa, (c) mediante complementación del fenotipo "glycogen-less" de la cepa AgIgAP de E. coli, (d) mediante immunoblots haciendo uso de anticuerpos específicos contra AtSSIV y (e) mediante análisis por microscopía confocal de la localización subcelular de SSIV fusionada con la green fluorescence protein (GFP):
• Por zimogramas: SSIV separado electroforéticamente en un gel nativo (50 mM GlyGly/NaOH pH 9; 100 mM (NH4)SO4; 5 mM (3-mercaptoetanol; 5 mM MgC12, 0,25 g 1 BSA) que contenga glucógeno (o cualquier otro tipo de polisacárido de moléculas de glucosa unidas entre sí por enlaces α-(l,4)) y que haya sido incubado en una solución con ADPglucosa dará lugar a una banda obscura en una solución de lugol (0,5% 1/1,5% KI). Dicha tinción es debida a la afinidad que presenta el lugol por los polímeros de glucosa de larga cadena.
• Por medida de radiactividad de polímeros de glucosa generados a partir de ADPglucosa marcada radiactivamente: SSIV incubado según se describe en
(3) con ADPglucosa marcada radiactivamente en una solución glicina/NaOH 50 mM (pH 9.0), 100 mM (NH4)2SO4, 5 mM (3-mercaptoetanol, 5 mM MgC12 que contenga maltotriosa (10 miligramos/mililitro), glucógeno o cualquier otro tipo de polisacárido largo de moléculas de glucosa unidas entre sí por enlaces α-(l ,4) (l miligramo/mililitro) dará lugar a un polímero de glucosa marcado radiactivamente como resultado de la incorporación de la glucosa marcada radiactivamente del ADPglucosa. La radiactividad incorporada en tal polímero puede ser medida haciendo uso de un contador de centelleo. • Por complementación del fenotipo "glycogen-less" de la cepa AgIgAP de E. coli: la muíante insercional AgIgAP de E. coli no acumula glucógeno ya que no posee el gen glgA que codifica para la GIgA. Este enzima es responsable de la síntesis de glucógeno a partir del ADPglucosa existente en la célula. Por lo tanto, la identificación de la actividad SSIV en células AgIgAP de E. coli se manifiesta mediante la observación de acumulo de glucógeno en la muíante transformada con pET-AíSSIV. • Por western blot: En el caso de plantas de patata, la AtSSIV se detectó haciendo uso del anticuerpo específico anti- AtSSIV según la metodología de western blot descrita en (18). En el caso de Arabidopsis, el complejo antígeno- anticuerpo se detectó mediante incubación con un anticuerpo secundario anti- IgG de conejo conjugado con peroxidasa y empleando el Kit de detección ECL
Advanced® (Amersham) el cual da lugar a un producto quimioluminiscente. La señal lumínica se detectó y cuantificó mediante el captador de imágenes ChemiDoc de Bio-Rad empleando el software de análisis de imágenes "Quantity One" de la misma casa comercial. • Por análisis de su localización subcelular mediante microscopía confocal.
Plantas de patata y/o Arabidopsis fueron transformadas con la construcción quimérica AtSSIV-GFP obtenida según se ilustra en la Figura 6. Las plantas fueron sometidas a observación por microscopía confocal para identificar la localización subcelular de la fluorescencia de GFP.
Determinación del contenido en azúcares solubles y almidón
Hojas y tubérculos se trituraron en un mortero con nitrógeno líquido. El almidón se cuantificó mediante un método espectrofotométrico consistente en la degradación total del almidón a residuos de glucosa mediante la acción de la enzima amiloglucosidasa y posterior cuantificación de la glucosa usando un ensayo enzimático acoplado con las enzimas hexoquinasa y glucosa-6-fosfato deshidrogenada (7). El balance amilosa/amilopectina se determinó haciendo uso de un método espectrofotométrico (19).
DEPÓSITO DE MICROORGANISMOS SEGÚN EL TRATADO DE BUDAPEST
Los microorganismos utilizados en la presente invención fueron depositados en el "Germán National Resource Centre for Biological Material" el 18 de septiembre de 2007, sita en el DMSZ, Mascheroder Weg Ib D-38124 (Braunschweig, Alemania) con n° de depósito DSM 19675. EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
A continuación se procede a la exposición de los ejemplos en los que se muestra detalladamente el procedimiento para la obtención de las plantas transgénicas de Arabidopsis y patata con alto contenido en almidón, alto rendimiento y alta productividad de biomasa como consecuencia del incremento de la actividad SSIV. Los modos de realización, ejemplos y las figuras que siguen se proporcionan a modo de ilustración y no pretenden ser limitantes de la presente invención.
Ejemplo 1 : Obtención del cDNA completo que codifica para AtSSIV
El conocimiento de la secuencia nucleotídica del gen AtSSIV que codifica para AtSSIV permitió la creación de dos cebadores específicos cuyas secuencias son, en sentido 5' -3', SEQ ID NO: 1 y SEQ ID NO: 2. Haciendo uso de estos cebadores y de RNA de hojas de Arabidopsis se amplificó por métodos convencionales de RT-PCR un cDNA completo de AtSSIV (At4gl8240), que se clonó en pGEM-T easy (Promega) (Figura 1).
Las secuencias nucleotídicas del DNA amplificado y la secuencia aminoacídica deducida se representan en SEQ ID NO: 3 y SEQ ID NO: 4, respectivamente.
Ejemplo 2: Identificación del producto con actividad SSIV
• Identificación zimográmica: 100 μg de proteína de extractos crudos de células de E. coli BL21(DE3) AgIgCAP transformadas con pET-45b(+) o con pET- AtSSIV se sometieron a electro foresis en condiciones nativas en un gel de poliacrilamida al 7,5% sin SDS, el cual contenía 0,3% (p/v) de glucógeno de hígado de cerdo (SIGMA). Tras incubar el gel durante una noche a temperatura ambiente en GlyGly/NaOH 50 mM pH 9; (NH4)SO4 100 mM; (3- mercaptoetanol 5 mM; MgC12 5 mM, BSA 0,25 g 1 y ADP-glucosa 1 mM, éste fue incubado en una solución yodada (Lugol) compuesta por 0,5% 1/1,5% KI.
La presencia de nuevas cadenas de glucógeno quedará revelada gracias a la aparición de una banda obscura en el gel. Dicha banda obscura es debida a la afinidad que presenta el Lugol por los polímeros de glucosa de larga cadena, de manera que allí donde una SS haya detenido su migración y hayan elongado cadenas del poliglucano por la adición de glucosas mediante enlaces α-(l,4), se observará una zona más teñida y oscura en el gel. Tal como se puede apreciar en el zimograma de la Figura 7, células BL21(DE3) AgIgCAP transformadas con pET-AtSSIV presentan una actividad elongante del glucógeno dependiente de ADP-glucosa. Dicha actividad está ausente en BL21(DE3) transformada con pET-45(+). Identificación por incorporación de radiactividad a partir de ADPglucosa radiactiva (Figura 8). Las enzimas purificadas se incubaron a 3O0C durante 30 min en 100 μl de la siguiente mezcla de reacción: 50 mM Glygly/NaOH pH 9; 100 mM (NH4)2SO4; (3-mercaptoetanol 5 mM; 5 mM MgC12; 0.25 g/1 BSA; 1 mM ADP-[U- C] Glucosa (3.7 GBq/mol). Por ultimo, se añadió 10 mg/ml de malto-oligosacárido (con grado de polimerización entre 2 y 7) o amilopectina de maíz dependiendo del sustrato analizado. La reacción se paró hirviendo la muestra durante 10 min y los glucanos producidos se elongaron mediante incubación a 3O0C durante toda la noche con 7,5 U de fosforilasa a de conejo (Sigma) en presencia de 50 mM de Glucosa- 1 -P (concentración final). La reacción se detuvo mediante la adición de 3.5 mi de una solución de 75% metanol y 1% KCl y posterior centrifugación para precipitar el glucano sintetizado. El pellet obtenido se lavó tres veces con la misma solución de parado y finalmente se cuantificó la radioactividad incorporada al mismo mediante la adición de 5 mi de líquido de centelleo Ready Protein MR (Beckman) y posterior lectura en un contador de centelleo modelo LS 6000 IC (Beckman). La elongación con fosforilasa a se omitió cuando el sustrato empleado era amilopectina. Tal y como se observa en la Figura 8, ensayos de especificidad de sustrato de SSIV muestran que SSIV es capaz de transferir moléculas de glucosa a partir de ADP-glucosa a poliglucanos tales como amilopectina. Malto-oligosacáridos de 4, 5, 6 ó 7 unidades de glucosa no son buenos sustratos para SSIV. Sorprendentemente, la maltotriosa es un excelente sustrato para la SSIV (tan bueno como la amilopectina). Este patrón de especificidad de sustrato distingue a SSIV de otras SSs ya que, tal y como se ilustra en la Figura 8, SSI, SSII y SSIII no actúan eficientemente sobre la maltotriosa (3).
• Identificación por complementación del fenotipo "glycogen-less" de la cepa AgIgAP de E. colϊ. tal y como se observa en la Figura 9A, las células AgIgAP de E. coli no acumulan glucógeno ya que no poseen GIgA. El fenotipo
"glycogen-less" de esta cepa desaparece al expresar ectópicamente el gen glgA que codifica para la GIgA de E. coli (Figura 9B). Al igual que las células AgIgAP de E. coli transformadas con pET-glgA, células AgIgAP de E. coli transformadas con pET-AtSSIV acumulan glucógeno (Figura 9C, D). • Identificación por localización subcelular: plantas de patata y/o Arabidopsis fueron transformadas con la construcción quimérica AtSSIV-GFP obtenida según se ilustra en la Figura 6. Las plantas fueron sometidas a análisis de la localización subcelular de la fluorescencia de GFP mediante un microscopio confocal D-Eclipse Cl (NIKON) equipado con un láser con excitación Ar 488, un filtro para emisión verde BA515/30, un filtro para emisión roja BA650LP y un detector de luz. En las fotografías de la Figura 10 puede observarse que, a diferencia de lo que ocurre con otros miembros de la familia de "almidón sintasas solubles", SSIV-GFP está unido a granulos de almidón. De igual manera, se analizó la localización celular de SSIV en tubérculos de plantas de patata transformadas con la construcción quimérica AtSSIV-GFP. En las fotografías de la Figura 16 se observa que SSIV-GFP, se localiza en los polos de los granulos de almidón presentes en los amiloplastos de los tubérculos de las plantas de patata transformadas según la invención.
Estos métodos de identificación de SSIV demuestran que la proteína AtSSIV es una SS con actividad glucosil transferasa desde la molécula donadora ADP-glucosa hasta las cadenas de un poliglucano de larga cadena tal como la amilopectina, la amilosa o el glucógeno. Además, a diferencia de lo que ocurre con otras SSs, SSIV es capaz de añadir unidades de glucosa a la maltotriosa. Finalmente, SSIV es el único miembro de la familia de "almidón sintasas solubles" que está asociada al granulo de almidón. Ejemplo 3: Obtención y caracterización de plantas transgénicas que sobre expresan SSIV
Utilizando la cepa de Agrobacterium tumefaciens DSM 19675 (que alberga al plásmido pK2GW7,0-AtSSIV, alternativamente designado como pKan-35S-AtSSIV) se obtuvieron plantas transgénicas de Arabidopsis thaliana y patata (Solanum tuberosum) que sobre-expresan AtSSIV de manera constitutiva.
Para demostrar que las plantas transgénicas transformadas con la cepa A. tumefaciens DSM 19675, incluyen en su genoma una única inserción de la construcción mencionada, se realizó un Southern blot de dichas plantas transformadas. La sonda utilizada para la detección mediante dicha técnica se creó marcando radiactivamente con el isótopo dCTP 32P, el gen que confiere resistencia a kanamicina. Como se puede observar en la Figura 17, todas las líneas de plantas de patata transgénicas (2, 7, 8 y 9) muestran una única inserción de la construcción pKan-35S-AtSSIV en su genoma, mientras que las plantas control no transformadas no presentan dicha construcción en su genoma.
Cuando se compara con plantas no transformadas, las plantas que sobre-expresan AtSSIV acumulan niveles significativamente superiores de una proteína de aproximadamente 112 kDa que es reconocida por el anticuerpo policlonal específico de la AtSSIV (Figura 11). En el caso de la patata, tal proteína sufre recortes internos que dan lugar a fragmentos de aproximadamente 80 y 100 kDa. En la Figura 13 se observa que los niveles de almidón en las hojas de las plantas de Arabidopsis que sobre-expresan AtSSIV, cultivadas en invernadero, están incrementados significativamente respecto a las plantas control sin transformar (WT). Además, se observa una correlación positiva entre los niveles de expresión de SSIV (Figura HC) y los niveles de almidón en tubérculos de plantas crecidas en invernadero. Por otro lado, las plantas de Arabidopsis, cultivadas en invernadero, mostraron un rendimiento en la producción de biomasa y crecimiento superior al observado en las plantas control no transformadas (Figura 15 A) y su morfología es similar a la de las plantas no transformadas (Figura 15 B).
Además de los cultivos en invernadero, se realizaron cultivos de plantas de patata transgénicas que sobreexpresan el gen AtSSIV y de plantas control, en el campo. Dichos cultivos fueron realizados entre Mayo y Septiembre de 2009 en una parcela del término 25 de Sartaguda (Navarra, España). Las plantas fueron distribuidas al azar en parcelas de 50 metros cuadrados, haciendo uso de 30 plantas por línea. La separación entre carriles fue de 90 cm. La separación entre planta y planta de un mismo carril fue de 35 cm.
Como se observa en la Figura 14, los tubérculos de plantas de patata que sobre-expresan AtSSIV, cultivadas en el campo, acumulan niveles significativamente superiores de almidón que los correspondientes órganos de las plantas control, datos que se correlacionan con el incremento significativo en la concentración de almidón mostrado en las hojas de las plantas transgénicas de la invención respecto de las plantas control cultivadas en invernadero.
La Tabla 1 muestra el contenido en almidón de los tubérculo de plantas que sobre-expresan AtSSIV y de los tubérculos de plantas control, cultivadas en el campo. Los resultados mostrados en dicha tabla recogen la media y desviación típica de 30 plantas diferentes por línea. Los valores significativamente diferentes a los registrados en plantas control se indican en negrita. Los resultados mostrados en la Tabla 1 ponen de manifiesto que los tubérculos de plantas de patata que sobre-expresan AtSSIV presentan un incremento significativo, aproximadamente de un 30%, en la concentración de almidón, expresada como porcentaje de peso seco (% DW), respecto a los tubérculos de patata de plantas control sin transformar (WT).
Los datos de productividad por unidad de superficie (Kg/ha) mostrados en la Tabla 1, indican que los tubérculos de las plantas transgénicas que sobre-expresan AtSSIV presentan un incremento significativo en el contenido de almidón, respecto a los tubérculos de las plantas control (WT). Por otro lado, los tubérculos de plantas transgénicas de patata que sobre- expresan AtSIV, cultivadas en el campo, producen significativamente mayor concentración de almidón que los tubérculos de plantas de patata control (WT). Mientras que los tubérculos de las plantas control producen 94.65 gramos de almidón por planta, las plantas que sobreexpresan AtSIV producen entre 103.9-137 gramos de almidón por planta. Tabla 1. Parámetros cuantitativos de las plantas transgénicas que sobre-expresan AtSIV cultivadas en el campo.
35S-AtSIV
WT SS4-7 SS4-8 SS4-9
Almidón del tubérculo (% FW) 11 ,3 ± 0,3 15,3 ± 0,8 13,2 ± 0,3 13,7 ± 0,5
Almidón del tubérculo (% DW) 56 ,1 ± 9,8 80,2 ± 4,5 72,5 ± 1,8 70,1 ± 2,5
Almidón del tubérculo (g/planta) 94 ,6 ± 1,2 137 ± 2,9 98,6 ± 1,4 104 ± 2,0
Almidón del tubérculo (Kg/ha) 4254 ± 52 6091 ± 108 4381 ± 160 4619 ± 197
FW: peso fresco; DW: peso seco. Los valores significativamente diferentes a los registrados en plantas control se indican en negrita.
Por otro lado, tal y como se observa en la Figura 18 el balance amilosa/amilopectina, expresado en porcentaje de amilosa, en los tubérculos de las plantas transgénicas que sobreexpresan AtSIV es similar al observado en los tubérculos de plantas control no transformadas (WT). Por lo tanto, aunque la sobreexpresión de AtSSIV conlleva un incremento en la cantidad de almidón acumulado en los tubérculos de plantas de patata que sobre-expresan AtSSIV, la calidad del almidón de dichos tubérculos transgénicos es similar a la calidad de los tubérculos de plantas de patata control sin transformar, es decir, es el mismo tipo de almidón el encontrado tanto en plantas silvestres no transformadas, como en las plantas transformadas de la invención.
Otra de las características que definen a las plantas transgénicas de la invención es que presentan un incremento en los tubérculos del contenido en azúcares solubles, tales como glucosa, fructosa y sacarosa (Figura 19), respecto a las plantas control sin transformar (WT).
Los tubérculos de patata actúan como reservónos de almidón y proteínas. En la Figura 20 se puede observar que el contenido proteico existente en los tubérculos de plantas de patata que sobre-expresan AtSSIV es similar al observado en los tubérculos de las plantas de patata control sin transformar. Por lo tanto, dicha figura pone de manifiesto que la sobreexpresión de AtSSIV en plantas transgénicas, no altera el contenido proteico presente los tubérculos de dichas plantas transgénicas, mostrando por tanto la especificidad de la sobre-expresión de AtSSIV para el acumulo específico de almidón, en dichas plantas transgénicas, respecto a las plantas control sin transformar.
BIBLIOGRAFÍA
1. BaIl, S., and Morell, M. (2003). From bacterial glycogen to starch: understanding the biogénesis of the plant sttarch granule. Annu. Rev. Plant Biol. 54, 207-233.
2. Ral, J.P., Derelle, E., Ferraz, C, Wattebled, F., Fariñas, B., Corellou, F., Buléon, A., Slomianny, M. C, Delvalle, D., d'Hulst, C, Rombauts, S., Moreau, H., BaIl, S. (2004). Starch división and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri. Plant Physiol. 136, 3333-3340.
3. Delvalle, D., Dumez, S., Wattlebled, F., Roldan, L, Planchot, V., Berbezy, P., Colonna, P., Vyas, D., Chatterjee, M., BaIl, S., Mérida, A., D'Hulst, C. (2005) Soluble starch synthase I: a major determinant for the síntesis of amylopectin in Arabidopsis thaliana leaves. Plant J. 43, 398-412. 4. Hirose, T., Terao, T. (2004) A comprehensive expresión análisis of the starch synthase gene family in rice (Oriza sativa L.) Planta 220, 9-16.
5. Leterrier, M., Holappa, L.D., Broglie, K.E., Beckles, D.M. (2008) Cloning, characterization and comparative análisis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol. Doi: 10.1186/1471-2229-8-98.
6. Zhang, X., Szydlowski, N., Delvalle, D., D'Hulst, C, James, M. G., Myers, A.M. (2008) Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosíntesis in Arabidopsis. BMC Plant Biol. doi:10.1186/1471- 2229-8-96 7. Roldan, L, Wattebled, F., Lucas, M.M., Delvalle, D., Planchot, V., Jiménez, S.,
Pérez, R., BaIl, S., D'Hulst, C, and Mérida, A. (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal 49:492-504. 8. Edwards, A., Fulton, D.C., Hylton, C.M., Jobling, S.A., Gidley, M., Róssner, U., Martín, C, Smith, A.M. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. Plant J. 17, 251-261. 9. Jobling, S.A., Westcott, R.J., Tayal, A., Jeffcoat, R., Schwall, G.P. (2002)
Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes. Nat. Biotechnol 20, 295-299.
10. Shewmaker, C. K., Boyer, CD. , Wiesenborn, D. P., Thompson, D. B., Boersig, M.R., Oakes, J.V., Stalker, D.M. (1994) Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes results in a highly branched starch. Plant Physiol. 104, 1159-1166. l l. Lloyd, J.R., Landschütze, V., Kossmann, J. (1999) Simultaneous antisense inhibition of two starch- synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochem. J. 338, 515-521. 12. Abel, GJ. W., Springer, F., Willmitzer, L., Kossmann, J. (1996) Cloning and functional análisis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.). Plant J. 10, 981-991.
13. Zhang, X., Myers, A.M., James, M. G. (2005) Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch síntesis. Plant Physiol. 138, 663-674.
14. Karimi, M., Inze, D., Depicker, A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7: 193-195.
15. Rocha-Sosa, M., Sonnewald, U., Frommer, W., Stratmann, M., Schell, J., Willmitzer, L. (1989) Both developmental and metabolic signáis actívate the promoter of a class I patatine gene. EMBO J. 8, 23-29.
16. Clough, S.J., Bent, A.F. (1998) Floral dip: a simplifϊed method for Agrobacterium-mediated transformation o f Arabidopsis thaliana. Plant J 16:
735-43.
17. Morán-Zorzano, M.T., Alonso-Casajús, N., Muñoz, F. J., Viale, A.M., Baroja- Fernández, Eydallin G., Pozueta-Romero, J. (2007) Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella entérica. FEBS Lett. 581, 4423-4429
18. Towbin, H., Staehelin, T., Gordon, J. (1979) "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications" Proc. Nati. Acad. Sci. USA 76, 4350-4354.
19. Andersson, M., Melander, M., Pojmark, P., Larsson, H., Bülow, L, Hofvander, P. (2006) "Targeted gene supresión by RNA interference: an efficient method for production of high-amylose potato lines" J. Biotechnol. 123, 137-148.

Claims

REIVINDICACIONES
1. Procedimiento para la obtención de plantas transgénicas con alto contenido y rendimiento en almidón y biomasa, caracterizado por la transformación de la planta silvestre con un vector de expresión que comprende una secuencia nucleotídica que codifica para una enzima con actividad SSIV y la expresión de dicha secuencia nucleotídica en el interior de la planta transformada.
2. Procedimiento, según la reivindicación 1, caracterizado porque el nivel de expresión de SSIV en el interior de la planta transformada es al menos 2 veces superior al nivel de expresión de SSIV de la planta silvestre.
3. Procedimiento, según la reivindicación 1, caracterizado porque la secuencia nucleotídica comprendida en el vector de expresión utilizado para transformar la planta silvestre es la SEQ ID NO: 3 que codifica para la SEQ ID NO: 4.
4. Procedimiento, según la reivindicación 1, caracterizado porque el vector de expresión utilizado para transformar la planta es Agrobacterium tumefaciens DSM 19675 que comprende el plásmido pK2GW7,O.AtSSIV.
5. Célula transformada con un vector de expresión, preferentemente un plásmido, que comprende una secuencia nucleotídica que codifica para una proteína o un fragmento proteico con actividad SSIV.
6. Célula, según la reivindicación 5, transformada con un vector de expresión seleccionado entre: Agrobacterium tumefaciens DSM 19675, plásmido pET- AtSSIV o plásmido pGEX-4T3_FragSSIV.
7. Célula vegetal, según la reivindicación 6, caracterizada por haber sido transformada con Agrobacterium tumefaciens DSM 19675 y pertenecer a cualquiera de las siguientes especies de plantas: patata (Solanum tuberosum), tabaco (Nicotiana tabacum), cebada (Hordeum vulgare), arroz (Oryza sativa), maíz (Zea mays) o arabidopsis (Arabidopsis thaliana).
8. Célula bacteriana, según cualquiera de las reivindicaciones 5 o 6, caracterizada por haber sido transformada con un plásmido bacteriano seleccionado entre: pET-AtSSIV o pGEX-4T3_FragSSIV y pertenecer a una cepa de E. coli seleccionada entre: BL21(DE3), BL21(DE3)AglgAP o BL21(DE3)AglgCAP.
9. Vector de expresión Agrobacterium tumefaciens DSM 19675 caracterizado por comprender el plásmido pK2GW7, 0.AtSSIV que codifica para una enzima con actividad SSIV.
10. Plásmido pET- AtSSIV caracterizado por codificar para una enzima con actividad SSIV.
11. Plásmido pGEX-4T3_FragSSIV caracterizado por codificar para un fragmento antigénico de una enzima con actividad SSIV.
12. Uso de las células bacterianas transformadas con el plásmido pET-AtSSIV de la reivindicación 8, para la producción de una enzima con actividad SSIV.
13. Uso de las células bacterianas transformadas con el plásmido pGEX- 4T3_FragSSIV de la reivindicación 8, para la producción de anticuerpos frente a un fragmento específico de una enzima con actividad SSIV.
14. Uso de la célula transformada de la reivindicación 6 para la producción de almidón y/o biomasa.
15. Planta transgénica caracterizada por estar transformada con el vector de la reivindicación 9 y por poseer alto contenido y rendimiento en almidón y biomasa, en comparación con la planta silvestre sin transformar.
16. Planta transgénica, según la reivindicación 15, caracterizada por presentar un nivel de expresión de SSIV al menos 2 veces superior al observado en la planta silvestre sin transformar.
17. Planta transgénica, según la reivindicación 15, caracterizada porque su contenido en almidón y/o biomasa es al menos un 10% superior al contenido en almidón y/o biomasa de las plantas silvestres sin transformar, cultivadas en las mismas condiciones y en la misma época.
18. Planta transgénica, según la reivindicación 15, seleccionada del grupo que comprende: patata (Solanum tuberosum), tabaco (Nicotiana tabacum), cebada (Hordeum vulgare), arroz (Oryza sativa), maíz (Zea mays) o arabidopsis (Arabidopsis thaliana).
19. Uso de las plantas transgénicas de las reivindicaciones 15 a 18, para la producción de hidratos de carbono, seleccionados entre otros: almidón, glucosa, fructosa y sacarosa.
20. Uso de las plantas transgénicas de las reivindicaciones 15 a 18 para la producción de biomasa.
PCT/ES2010/070158 2009-03-24 2010-03-17 Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa WO2010109045A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/258,656 US20120102597A1 (en) 2009-03-24 2010-03-17 Method for the production of transgenic plants having high starch and biomass content and yield
EP10714044.4A EP2412814B1 (en) 2009-03-24 2010-03-17 Method for the production of transgenic plants having high starch and biomass content and yield
CA2756034A CA2756034A1 (en) 2009-03-24 2010-03-17 Process for the production of transgenic plants that have a high content and yield of starch and biomass
IL215269A IL215269A0 (en) 2009-03-24 2011-09-21 Method for the production of transgenic plants having high starch and biomass content and yeild

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200930009A ES2354897B1 (es) 2009-03-24 2009-03-24 Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa.
ESP200930009 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109045A1 true WO2010109045A1 (es) 2010-09-30

Family

ID=42199590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2010/070158 WO2010109045A1 (es) 2009-03-24 2010-03-17 Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa

Country Status (6)

Country Link
US (1) US20120102597A1 (es)
EP (1) EP2412814B1 (es)
CA (1) CA2756034A1 (es)
ES (1) ES2354897B1 (es)
IL (1) IL215269A0 (es)
WO (1) WO2010109045A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066745A1 (en) 1999-04-29 2000-11-09 Commonwealth Scientific And Industrial Research Organisation Novel genes encoding wheat starch synthases and uses therefor
WO2002018606A1 (en) 2000-08-28 2002-03-07 E. I. Du Pont De Nemours And Company Novel starches produced by the expression of heterologous granule bound starch synthase genes
US6734341B2 (en) * 1999-09-02 2004-05-11 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
US6849781B2 (en) * 2001-06-08 2005-02-01 E. I. Du Pont De Nemours And Company Starch synthase isoform V
WO2006084336A1 (en) 2005-02-11 2006-08-17 Southern Cross University Gelatinization temperature manipulation
WO2007009823A1 (en) 2005-07-22 2007-01-25 Bayer Cropscience Ag Overexpression of starch synthase in plants
WO2008012356A1 (en) * 2006-07-28 2008-01-31 Institut National De La Recherche Agronomique - Inra Plants defective for soluble starch synthase iv (ssiv) activity, methods for obtaining the same, ans uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0420874D0 (en) * 2004-09-20 2004-10-20 Swetree Technologies Ab Modulation of flowering time and growth cessation in perennial plants
WO2006098340A1 (ja) * 2005-03-14 2006-09-21 Japan Science And Technology Agency モリブデントランスポーター及びその遺伝子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000066745A1 (en) 1999-04-29 2000-11-09 Commonwealth Scientific And Industrial Research Organisation Novel genes encoding wheat starch synthases and uses therefor
US6734341B2 (en) * 1999-09-02 2004-05-11 Pioneer Hi-Bred International, Inc. Starch synthase polynucleotides and their use in the production of new starches
WO2002018606A1 (en) 2000-08-28 2002-03-07 E. I. Du Pont De Nemours And Company Novel starches produced by the expression of heterologous granule bound starch synthase genes
US6849781B2 (en) * 2001-06-08 2005-02-01 E. I. Du Pont De Nemours And Company Starch synthase isoform V
WO2006084336A1 (en) 2005-02-11 2006-08-17 Southern Cross University Gelatinization temperature manipulation
WO2007009823A1 (en) 2005-07-22 2007-01-25 Bayer Cropscience Ag Overexpression of starch synthase in plants
WO2008012356A1 (en) * 2006-07-28 2008-01-31 Institut National De La Recherche Agronomique - Inra Plants defective for soluble starch synthase iv (ssiv) activity, methods for obtaining the same, ans uses thereof

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
ABEL, G.J.W.; SPRINGER, F.; WILLMITZER, L.; KOSSMANN, J.: "Cloning and functional analysis of a cDNA encoding a novel 139 kDa starch synthase from potato (Solanum tuberosum L.)", PLANT J., vol. 10, 1996, pages 981 - 991, XP002920636, DOI: doi:10.1046/j.1365-313X.1996.10060981.x
ANDERSSON, M.; MELANDER, M.; POJMARK, P.; LARSSON, H.; BÜLOW, L.; HOFVANDER, P.: "Targeted gene suppression by RNA interference: an efficient method for production of high-amylose potato lines", J. BIOTECHNOL., vol. 123, 2006, pages 137 - 148, XP024956799, DOI: doi:10.1016/j.jbiotec.2005.11.001
BALL, S.; MORELL, M.: "From bacterial glycogen to starch: understanding the biogenesis of the plant sttarch granule", ANNU. REV. PLANT BIOL., vol. 54, 2003, pages 207 - 233, XP009019712, DOI: doi:10.1146/annurev.arplant.54.031902.134927
CLOUGH, S.J.; BENT, A.F.: "Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana", PLANT J., vol. 16, 1998, pages 735 - 43, XP002132452, DOI: doi:10.1046/j.1365-313x.1998.00343.x
DELVALLÉ, D.; DUMEZ, S.; WATTLEBLED, F.; ROLDAN, I.; PLANCHOT, V.; BERBEZY, P.; COLONNA, P.; VYAS, D.; CHATTERJEE, M.; BALL, S.: "Soluble starch synthase I: a major determinant for the synthesis of amylopectin in Arabidopsis thaliana leaves", PLANT J., vol. 43, 2005, pages 398 - 412
DIAN WEIMIN ET AL: "Evolution and expression analysis of starch synthase III and IV in rice", JOURNAL OF EXPERIMENTAL BOTANY, OXFORD UNIVERSITY PRESS, GB LNKD- DOI:10.1093/JXB/ERI065, vol. 56, no. 412, 1 February 2005 (2005-02-01), pages 623 - 632, XP002403602, ISSN: 0022-0957 *
EDWARDS, A.; FULTON, D.C.; HYLTON, C.M.; JOBLING, S.A.; GIDLEY, M.; R6SSNER, U.; MARTIN, C.; SMITH, A.M.: "A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers", PLANT J., vol. 17, 1999, pages 251 - 261, XP002115084, DOI: doi:10.1046/j.1365-313X.1999.00371.x
HIROSE, T.; TERAO, T.: "A comprehensive expression analysis of the starch synthase gene family in rice (Oriza sativa L.)", PLANTA, vol. 220, 2004, pages 9 - 16
JOBLING, S.A.; WESTCOTT, R.J.; TAYAL, A.; JEFFCOAT, R.; SCHWALL, G.P.: "Production of a freeze-thaw-stable potato starch by antisense inhibition of three starch synthase genes", NAT. BIOTECHNOL, vol. 20, 2002, pages 295 - 299, XP002346240, DOI: doi:10.1038/nbt0302-295
KARIMI, M.; INZE, D.; DEPICKER, A.: "GATEWAYTM vectors for Agrobacterium-mediated plant transformation", TRENDS PLANT SCI., vol. 7, 2002, pages 193 - 195, XP002714178, DOI: doi:10.1016/S1360-1385(02)02251-3
LETERRIER, M.; HOLAPPA, L.D.; BROGLIE, K.E.; BECKLES, D.M.: "Cloning, characterization and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications", BMC PLANT BIOL., 2008
LLOYD, J.R.; LANDSCHUTZE, V.; KOSSMANN, J.: "Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin", BIOCHEM. J., vol. 338, 1999, pages 515 - 521, XP002115085, DOI: doi:10.1042/0264-6021:3380515
MORÁN-ZORZANO, M.T.; ALONSO-CASAJGS, N.; MUNOZ, F.J.; VIALE, A.M.; BAROJA-FERNÁNDEZ, EYDALLIN G.; POZUETA-ROMERO, J.: "Occurrence of more than one important source of ADPglucose linked to glycogen biosynthesis in Escherichia coli and Salmonella enterica", FEBS LETT., vol. 581, 2007, pages 4423 - 4429, XP022235043, DOI: doi:10.1016/j.febslet.2007.08.017
RAL, J.P.; DERELLE, E.; FERRAZ, C.; WATTEBLED, F.; FARINAS, B.; CORELLOU, F.; BULÉON, A.; SLOMIANNY, M.C.; DELVALLE, D.; D'HULST,: "Starch division and partitioning. A mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri", PLANT PHYSIOL., vol. 136, 2004, pages 3333 - 3340
ROCHA-SOSA, M.; SONNEWALD, U.; FROMMER, W.; STRATMANN, M.; SCHELL, J.; WILLMITZER, L.: "Both developmental and metabolic signals activate the promoter of a class I patatine gene", EMBO J., vol. 8, 1989, pages 23 - 29, XP002038303
ROLDAN I ET AL: "The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation", PLANT JOURNAL FEBRUARY 2007 BLACKWELL PUBLISHING LTD GB LNKD- DOI:10.1111/J.1365-313X.2006.02968.X, vol. 49, no. 3, February 2007 (2007-02-01), pages 492 - 504, XP002585103 *
ROLDÁN, I.; WATTEBLED, F.; LUCAS, M.M.; DELVALLÉ, D.; PLANCHOT, V.; JIMÉNEZ, S.; PEREZ, R.; BALL, S.; D'HULST, C.; MERIDA, A.: "The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation", THE PLANT JOURNAL, vol. 49, 2007, pages 492 - 504, XP002585103, DOI: doi:10.1111/J.1365-313X.2006.02968.X
SHEWMAKER, C.K.; BOYER, C.D.; WIESENBORN, D.P.; THOMPSON, D.B.; BOERSIG, M.R.; OAKES, J.V.; STALKER, D.M.: "Expression of Escherichia coli glycogen synthase in the tubers of transgenic potatoes results in a highly branched starch", PLANT PHYSIOL., vol. 104, 1994, pages 1159 - 1166, XP002033871, DOI: doi:10.1104/pp.104.4.1159
SZYDLOWSKI NICOLAS ET AL: "Starch Granule Initiation in Arabidopsis Requires the Presence of Either Class IV or Class III Starch Synthases", PLANT CELL, vol. 21, no. 8, August 2009 (2009-08-01), pages 2443 - 2457, XP002585102, ISSN: 1040-4651 *
TOWBIN, H.; STAEHELIN, T.; GORDON, J.: "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications", PROC. NATL. ACAD. SCI. USA, vol. 76, 1979, pages 4350 - 4354, XP000884060, DOI: doi:10.1073/pnas.76.9.4350
ZHANG, X.; MYERS, A.M.; JAMES, M.G.: "Mutations affecting starch synthase III in Arabidopsis alter leaf starch structure and increase the rate of starch synthesis", PLANT PHYSIOL., vol. 138, 2005, pages 663 - 674
ZHANG, X.; SZYDLOWSKI, N.; DELVALLÉ, D.; D'HULST, C.; JAMES, M.G.; MYERS, A.M.: "Overlapping functions of the starch synthases SSII and SSIII in amylopectin biosynthesis in Arabidopsis", BMC PLANT BIOL., 2008

Also Published As

Publication number Publication date
ES2354897A1 (es) 2011-03-21
US20120102597A1 (en) 2012-04-26
EP2412814B1 (en) 2016-08-10
CA2756034A1 (en) 2010-09-30
EP2412814A1 (en) 2012-02-01
ES2354897B1 (es) 2012-01-26
IL215269A0 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
Baunsgaard et al. A novel isoform of glucan, water dikinase phosphorylates pre‐phosphorylated α‐glucans and is involved in starch degradation in Arabidopsis
Van Der Meer et al. Fructan as a new carbohydrate sink in transgenic potato plants.
Peng et al. FLOURY ENDOSPERM 6 encodes a CBM 48 domain‐containing protein involved in compound granule formation and starch synthesis in rice endosperm
Edwards et al. A combined reduction in activity of starch synthases II and III of potato has novel effects on the starch of tubers
Kuang et al. Role of UDP-glucuronic acid decarboxylase in xylan biosynthesis in Arabidopsis
Yu et al. The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter
Wang et al. GBSS‐BINDING PROTEIN, encoding a CBM48 domain‐containing protein, affects rice quality and yield
JP5695422B2 (ja) デンプン代謝改変植物
EP0455316B1 (en) Plasmide containing DNA sequences that bring about changes in the carbohydrate and protein concentration and the carbohydrate and protein composition in plants, and plant cells and plants containing those plasmids
Gámez‐Arjona et al. Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long‐term storage starch
Ji et al. Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis
Lu et al. The role of cytosolic α-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli
PT1725667E (pt) Plantas com um aumento na actividade de múltiplas enzimas de fosforilação do amido
BRPI9808154B1 (pt) Molécula de ácido nucléico, vetor, processos para a produção de sst e para produção de molécula contendo pelo menos dois, porém não mais do que cem resíduos de frutosila que são ligados de forma beta-2,1 glicosídica ou beta -2,6 glicosídicas e métodos para a produção in vitro da referida molécula e para a produção da referida molécula
Kortstee et al. Expression of Escherichia coli branching enzyme in tubers of amylose‐free transgenic potato leads to an increased branching degree of the amylopectin
Takaha et al. Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-α-glucanotransferase)
Higgins et al. Characterization of starch phosphorylases in barley grains
US8217226B2 (en) Nucleic acids and proteins associated with galactomannan synthesis in coffee
Qin et al. Overexpression of the starch phosphorylase-like gene (PHO3) in Lotus japonicus has a profound effect on the growth of plants and reduction of transitory starch accumulation
KR101730074B1 (ko) 플라보놀 합성 유전자 및 이로 형질전환된 형질전환 식물
KR100990118B1 (ko) 글루코스 센서로서 OsHXK5 유전자의 용도
WO2010109045A1 (es) Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y biomasa
ES2354895A1 (es) Procedimiento para la producción de plantas transgénicas que presentan alto contenido y rendimiento en almidón y alto balance amilosa/amilopectina.
Xu et al. Heterologous expression of two Arabidopsis starch dikinases in potato
Kumar et al. A sucrose non-fermenting-1-related protein kinase 1 gene from wheat, TaSnRK1α regulates starch biosynthesis by modulating AGPase activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10714044

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2756034

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2166/MUMNP/2011

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010714044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010714044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258656

Country of ref document: US