WO2010108446A1 - 用于聚焦半导体激光器输出光束的光束处理器 - Google Patents

用于聚焦半导体激光器输出光束的光束处理器 Download PDF

Info

Publication number
WO2010108446A1
WO2010108446A1 PCT/CN2010/071321 CN2010071321W WO2010108446A1 WO 2010108446 A1 WO2010108446 A1 WO 2010108446A1 CN 2010071321 W CN2010071321 W CN 2010071321W WO 2010108446 A1 WO2010108446 A1 WO 2010108446A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
passing
polarized
incident
processor
Prior art date
Application number
PCT/CN2010/071321
Other languages
English (en)
French (fr)
Inventor
肖意轩
Original Assignee
钱定榕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钱定榕 filed Critical 钱定榕
Priority to EP10755446A priority Critical patent/EP2413179A1/en
Priority to US13/260,567 priority patent/US8767304B2/en
Publication of WO2010108446A1 publication Critical patent/WO2010108446A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • G02B27/285Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining comprising arrays of elements, e.g. microprisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • G02B19/0052Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode
    • G02B19/0057Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source the light source comprising a laser diode in the form of a laser diode array, e.g. laser diode bar
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • G02B27/0922Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers the semiconductor light source comprising an array of light emitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0071Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for beam steering, e.g. using a mirror outside the cavity to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • Beam processor for focusing the output beam of a semiconductor laser
  • the present invention relates to a beam processor, and more particularly to a beam processor that can be used to retrofit an output beam of a semiconductor laser and focus it to a very small symmetrical spot, which belongs to the field of optical technology. Background technique
  • the linearity-divergence product (SDP) of a beam is constant in the optical system. It is well known that the beam properties of a side-emitting semiconductor laser in the transverse direction (parallel to the direction of the PN junction or quantum well) and the vertical direction (perpendicular to the direction of the PN junction or quantum well) are not the product of the divergence. symmetry. It is this asymmetry that makes the output beam of a semiconductor laser unable to focus into a useful spot, and therefore does not work in many applications that are promising and far superior to other types of lasers.
  • the incident beam After the incident beam is reflected by the processed surface of the light, it returns to the polarized light separation interface in the reverse direction along the original path.
  • the two treated surfaces of the light are reflective surfaces of the array of roof reflectors
  • the array of roof reflectors comprising at least two ridge reflectors arranged in parallel and having the same opening direction, each roof reflector being a plane mirror surface intersecting at two sides, the intersection of which is a ridge, the angle between the two plane mirror surfaces is ninety degrees; the ridge is at an angle of forty-five degrees with the parallel arrangement direction of the roof reflector;
  • the beam After the beam is incident on the polarizing beam splitter, it is decomposed on the spectroscopic surface to become perpendicular to each other.
  • the two straight portions are respectively sent to the corresponding roof reflector array, where they are vertically reflected.
  • each beam After the reflection, each beam is rotated by 90° in the forward direction, and the polarization state of the polarizing beam splitter is thus changed. It then returns to the polarizing beam splitter, which is superimposed on the beam splitting surface into a new beam that exits the polarizing beam splitter.
  • the exit direction is different from the incident direction.
  • the basic components of the beam processor can handle beams of any polarization state, even unpolarized beams.
  • the bevel of the polarizing beam splitter and the six faces of the hexahedron have different designs, allowing the polarized beam splitter to have many other functions, such as collimating, focusing and compressing the beam.
  • Two or even three polarized beam splitters can be combined to form an integrated optical component.
  • the ridge reflector can be incorporated into the polarizing beam splitter as a highly integrated optical component that integrates multiple functions.
  • One such component functions not only as a beam processor, but also in collimating both the fast and slow axes of the beam. In this way, the beam processing becomes very simple, which is equivalent to the collimation in the fast axis direction. Due to the high integration, the number of discrete optical components is minimized, and the resulting semiconductor laser device will be very reliable and stable.
  • the beam processor complements the beam distribution device with a series of related optical designs to meet the requirements of the application field, which is simpler and more practical than the existing market products. Industrial production.
  • the beam processor not only fundamentally avoids the optical path difference, but also further adjusts the lateral SDP and vertical SDP of the beam set, providing different options for product design to meet various purposes.
  • Figure 2 shows another embodiment of the basic unit of the beam processor comprising a polarizing beam splitter (5, 6), a roof reflector array 12, the difference being a set of S-polarized incident beams 8.
  • Figure 3 shows the basic components of the beam processor of the present invention, namely a polarized beam splitter (5, 6) and two roof reflector arrays 7 and 12.
  • Figure 4 shows a beam processor of the present invention comprising a basic component and an additional polarizing beam splitter (15, 16).
  • Figure 6 shows the integrated polarization beam splitter and roof reflector array.
  • Figure 8 shows one of the derivatives of a polarizing beam splitter.
  • Figure 9 shows the second derivative of the polarization beam splitter.
  • Figure 10 shows one of the variants of Figure 6 or Figure 8.
  • a pair of transmission-dependent light-passing surfaces of the polarization beam splitter (5, 6) evolve into a ridge reflector array and a cylinder, respectively.
  • Figure 12 shows a further variant of Figure 10 or Figure 11, in which both of the light-passing surfaces associated with the reflection and transmission of the roof reflector array evolve into cylinders.
  • Figure 14 shows a modified prism (facet prism) of a newly designed polarization beam splitter.
  • Figure 16 shows one of the derivatives of a 45 ° facet-polarized beam splitter in which the entrance and exit of a light evolves into a cylinder.
  • Figure 17 shows the second derivative of the 45 ° facet-polarized beam splitter, in which the entrance and exit of the other light evolves into a cylinder.
  • the beam processor provided by the present invention is a further development based on the beam distributing device of the patent number ZL 02 2 53490.
  • the beam processor complements a range of related optical designs that fundamentally avoid introducing optical path differences between adjacent beams of the reflected beam set.
  • the polarization beam splitter in Figure 1 is a hexahedron.
  • the four sides facing the splitting surface are the luminous surface, B, C, D.
  • the four luminous surfaces can be divided into two groups: A and B are one group, and (:, D is another group.
  • the introduction is mainly for optical design, they are perpendicular to the beam entering and exiting the polarization separation interface, which can be either a physical surface in the physical sense or a virtual surface in the geometric sense that does not exist at all; it can be either a plane or a plane. It can be non-planar.
  • the physical light surface is determined regardless of its shape or position, but any number of virtual surfaces can be set inside or in the space according to the design needs.
  • the P-polarized incident beam group (1, 1, 1) passes through the polarization separation interface and becomes a beam group (2, 2, 2).
  • the light-passing surface (C) through which the beam group (2, 2, 2) passes to the roof reflector array (7) is the light-passing surface of the light.
  • the beam set (2, 2, 2) to the roof reflector array (7) is reflected (i.e., processed) by the reflective surface of the roof reflector array (7) (i.e., processed) into a beam set (3) , 3, 3).
  • the beam group (3, 3, 3) returns to the polarization separation interface in the reverse direction along the original path, the light-passing surface (C) of the light is passed.
  • the roof reflector not only reflects the beam, but also rotates each of the reflected beams about ninety degrees about its forward direction, the beam group (3, 3, 3) becomes S-polarized light when it returns to the polarizing beam splitter, It is reflected by the polarized light separation interface and becomes the beam group (4, 4, 4). From then on, it leaves the polarization beam splitter and does not return.
  • the light passing surface (B) through which the beam group (4, 4, 4) exits the polarizing beam splitter is the light entering and exiting surface of the light. Whether it is the light-incident light-passing surface or the light-processing light-passing surface, they are perpendicular to the light beam entering and exiting the polarizing beam splitter.
  • the four light-passing surfaces are also related in two pairs: A, C two light-passing planes are related to transmission, B and D are transmitted by two light-transmitting planes; A and D are related to two light-transmitting planes, B and C The light-reflecting surface is related. It should be noted that the four luminous surfaces are identical in terms of their properties, and are divided into two groups, each having a different name because of the different functions used.
  • the processed light-passing surface of the light around the polarized light separation interface and the processed surface of the light on the roof reflector array are different faces.
  • the Y direction in Fig. 1 is the horizontal direction
  • the Y Z plane is the horizontal plane
  • the X direction is the vertical direction
  • the X Z plane is the vertical plane.
  • the horizontal, vertical, horizontal, and vertical planes are closely related to the polarization beam splitter and the polarization separation interface; after the coordinate system is changed, the XYZ direction changes, but they are separated from the polarization beam splitter and polarized light. The interface is kept the same.
  • the lateral direction is also related to the vertical direction and the direction of the PN junction or quantum well.
  • the roof reflector array (7) includes at least two ridge reflectors arranged in parallel with each other and having the same opening direction.
  • the ridge reflector is a plane mirror with two sides intersecting each other, and the intersection is a ridge.
  • the angle between the two plane mirrors is 90° and the angle between the ridge and the opening is 45 °. It should be noted that these two angles (90° and 45°) are design angles, which of course allow for unavoidable errors in machining.
  • the number and size of the roof reflectors depends on the number and size of the beams in the incident beam group. It is usually used by one or several complete beams entering a roof reflector; but when the beam is wide, multiple roofs can be used.
  • the reflector reflects (or divides) a beam.
  • the reflected beam group (10, 10, 10) becomes a P-polarized beam when it enters the polarization beam splitter (5, 6) for the second time. Passing through the polarized light separation interface, it is successfully separated from the incident beam and becomes the outgoing beam group (11, 11, 11).
  • the set of light-passing surfaces A and B are the light-incident and light-passing surfaces of the light
  • the light-passing surface D is the light-passing surface of the light.
  • Fig. 1 and Fig. 2 the difference between Fig. 1 and Fig. 2 is not that the basic unit is different in composition, but that the polarization state of the incident beam group is different, and the basic unit configuration of the beam processor is the same. If the outgoing beam group 4 is incident as the incident beam group in the opposite direction to the polarization beam splitter in Fig. 1, the subsequent process is the inverse of the foregoing process, and the incident beam group (1, 1, 1) becomes the outgoing beam group ( 4, 4, 4); Figure 1 becomes Figure 2.
  • the four illuminating surfaces are identical in terms of their physical properties, each with a different name because of the different functions.
  • Figure 3 shows the basic composition of the beam processor of the present invention, which comprises two basic units but shares a polarizing beam splitter.
  • the set of incident beams in Fig. 3 (1, 8, 8, 8, 10 8) can be a beam set of any polarization state, even an unpolarized incident beam set.
  • the polarization beam splitter (5, 6) decomposes the components of the S and P polarizations in the incident beam group into beam groups (9, 9, 9) and (2, 2, 2) respectively to the corresponding roof reflector columns.
  • Arrays (12) and (7) where the beam is reflected and rotated 90° in the forward direction, and then reversed back to the polarized beam splitter along the original path, respectively, into a P-polarized beam set (10, 10, 10) And the S-polarized beam set (3, 3, 3) are respectively transmitted and reflected at the polarization separation interface of the polarization beam splitter.
  • the processed beam set is successfully merged and separated from the incident beam set into an outgoing beam set (4, 11, 4, 11, 4, 11 11 ).
  • the output is always superimposed with two sets of processed beam groups whose polarization states are perpendicular to each other.
  • the light-passing surfaces of A and B are light-incident light-passing surfaces
  • the light-transmitting surfaces of C and D are light-treated light-passing surfaces.
  • the beam processor shown in Figure 3 can be decomposed into three parts: a polarized light separation interface; four light-passing surfaces, two of which are light-in and light-passing surfaces, and the other two are light-processing light-passing surfaces, which are equivalent
  • the face can be either a physical face or a non-physical virtual face; two light processing faces, which can be either the reflective surface of the roof reflector array or the non-physical virtual Face.
  • the two light processing planes in the figure are physical planes, but in Fig. 1 and Fig. 2, only one light processing surface is a physical surface, and the other is a non-physical surface, which must be Virtual face.
  • Figure 4 shows a beam processor of the present invention comprising a basic component and an additional polarization beam splitter (15, 16).
  • the incident beam group (13') in Fig. 4 is a group of P-polarized beam groups superimposed in the vertical direction
  • the other incident beam group (14') is a group of S-polarized beam groups superimposed in the Z direction, which are attached.
  • the polarized beam splitters (15, 16) merge and are respectively transmitted and reflected at the polarization separation interface, and are superimposed to become (1 '10 8 ') - the same as the basic components of the beam processor, and subsequent processing such as Figure 3 is described.
  • the lateral SDP and vertical SDP of the outgoing beam set (4 '10 11 ') have been modified to be focused by the optical system into small spots. Since the power of the array beam group is concentrated on the small spot, the power density is extremely high.
  • the additional polarization beam splitter acts to add more beam groups to the beam processor's basic components for processing.
  • Figure 5 shows the basic building blocks of two beam processors and an additional polarizing beam splitter.
  • the basic unit consisting of the polarizing beam splitter (5A, 6A) and the roof reflector array 12 in Figure 5 is used to process the incident S-polarized beam set (8, 8, 8).
  • the basic unit consisting of a polarizing beam splitter (5, 6) and a roof reflector array (7) is used to process the incident P-polarized beam set (1, 1, 1).
  • additional polarizing beam splitters (15, 16)
  • the output beam sets processed through the two basic units become P-polarized and S-polarized states, respectively. They enter the additional polarization beam splitters (15, 16), respectively, which are transmitted and reflected on the beam splitting surface, and are emitted together to become the outgoing beam group 4, 1 1 and no longer return.
  • the embodiment shown in Fig. 5 and the embodiment shown in Fig. 4 are intended to feed two sets of beams having mutually different polarization states into the beam processor unit for processing and to become SDPs in both the lateral and vertical directions.
  • the modified beam set output the difference is that the two sets of beams with different polarization states are combined first, and then sent together into the basic components of the beam processor shown in Figure 3 for processing. Both the lateral and vertical SDPs have been modified by the beam set output.
  • the two sets of beams with different polarization states are respectively sent to the respective beam processor units, and the two sets of beam groups whose SDPs have been modified in the horizontal and vertical directions are replaced.
  • An additional polarizing beam splitter is fed in, and the two sets of beams are combined and output together.
  • the polarization beam splitter polarized light separation interface
  • the roof reflector array light processing surface
  • Figure 6 shows an integrated polarization beam splitter and roof reflector array. Its function is equivalent to a beam processor unit as shown in Figure 1, but the half polarized beam splitter (6) and the roof reflector array (7) in Figure 1 are combined and integrated into one. (17). At this time, the light-passing light-passing surface (the C-plane in Fig. 1) automatically evolves into the light-treated surface (the reflective surface of the roof reflector array 7 in Fig. 1), which no longer exists independently, and the two And one.
  • the light processing surface and the polarization separation interface (the combined surface of the polarization beam splitter in Fig. 1) are integrated into one body and are no longer two faces on two separate elements.
  • the reflection of the beam group on the processing surface of the light is internal reflection instead of external reflection.
  • This reflection can be achieved either by internal total reflection or by plating a reflective film on the roof reflector array. Again, this reflection does not produce a depolarization effect.
  • this reflection does not produce a depolarization effect.
  • Figure 7 shows the basic components of an integrated beam processor, which is equivalent to Figure 3.
  • the polarizing beam splitter polarized light separation interface
  • the two roof reflector arrays light processing surfaces
  • the two light processing light-passing surfaces C-plane and D-plane in Fig. 3
  • the reflection of the beam set on the treated side of the light is internal rather than external.
  • Figure 8 shows one of the derivatives of a polarizing beam splitter.
  • One of the four light-passing faces of the polarizing beam splitter evolves into a cylindrical surface, and its curvature in the vertical plane (XZ) is constant along the lateral direction (Y), becoming a new type of polarizing beam splitter (5, 20).
  • this cylinder is a physical plane, and the beam passing through this plane will be processed in the vertical direction (X): collimation, or focusing.
  • this surface can be used both as a light-passing surface for light and as a light-passing surface for light.
  • Figure 9 shows the second derivative of the polarization beam splitter.
  • One of the four light-passing faces of the polarizing beam splitter evolves into a double cylinder, the curvature of the face in the vertical plane (XZ) is constant along the transverse (Y) axis, and the curvature in the transverse plane (YZ) is vertical.
  • (X) is also unchanged, becoming another new type of polarized beam splitter (5, 21). These two curvatures can be equal (spherical) or unequal.
  • the beam passing through this face will be processed in both the horizontal (Y) and vertical (X) directions: collimation, or focusing.
  • the curved surface in Figure 9 has a radius of curvature in the transverse plane ( ⁇ ) that is greater than one-half of the lateral width of the polarizing beam splitter, so there is only one arc in the transverse plane, which is the intersection of the double cylinder and the transverse plane.
  • the axis of the cylinder is an arc in the vertical plane.
  • the intersection of the double cylinder and the transverse plane is an arc of more than two semicircles, which are connected end to end, but the arcs close to the semicircle are not arranged in a straight line in the horizontal direction, but are arranged in an arc.
  • the axis of the set of cylinders is an arc on the vertical plane, which appears to be a set of curved cylinders in the vertical direction, and a set of curved cylinders in the transverse plane, the shape is different from that in FIG. But it is also called double cylinder.
  • the cylinder on each horizontal plane corresponds to one beam
  • one cylinder corresponds to a group of beams. There is also a change.
  • the radius of curvature of the vertical plane ( ⁇ ) is infinite, it is a set of straight cylinders standing in the vertical direction (X). These cylinders are still arcs in the transverse plane. Arranged in shape.
  • This article contains all the situations described here when using the term "dual cylinder".
  • the double cylinders are also physical surfaces, which can be used both as a light-passing surface for light and as a light-passing surface for light.
  • FIG. 10 shows one of the derivatives of FIG. 6 or FIG.
  • a light processing light The surface evolved into a treatment surface of light originally on the array of roof reflectors, and the light-transmitting surface of the light associated with the transmission evolved into a cylindrical surface. Its function is equivalent to a beam processor unit plus a cylindrical mirror. If the optical device (20, 17) shown in Fig. 10 is used instead of the polarization beam splitter and the roof reflector array 7 in Fig. 1, and the incident beam group 1 is from a semiconductor laser, the cylindrical mirror formed by this cylinder is A collimating cylindrical lens that diverges the fast axis of the incident beam set 1. Similarly, if the polarizing beam splitter and the roof reflector array 12 of Fig.
  • the mirror is a collimated or focused cylindrical lens that diverges from the slow axis of the exit beam set 11
  • Figure 11 shows the second derivative of Figure 6 or Figure 8.
  • the light-passing surface of a light evolves into a surface of light that is originally on the array of roof reflectors, and the light-passing surface of the light associated with the reflection evolves into a cylinder. It also functions as a beam processor unit plus a cylindrical lens, but the placement of this cylinder mirror is different from that shown in Figure 10.
  • the optical device (5, 21) shown in Fig. 11 is used instead of the polarization beam splitter and the roof reflector array 7 in Fig. 1, and the incident beam group 1 is from a semiconductor laser
  • the cylindrical lens formed by this cylinder is A collimating or focusing cylindrical lens that diverges the slow axis of the exit beam set 4.
  • the cylindrical surface is formed by the cylinder.
  • the lens is a collimating cylindrical lens that diverges the fast axis of the incident beam set 8.
  • Figure 12 shows the evolution of Figure 10 or Figure 11.
  • the light-passing surface of a light is transformed into a processing surface of light originally on the array of roof reflectors, and the light-passing surfaces of the two light rays associated with the transmission and reflection are evolved into cylinders.
  • the optical device (20, 21) shown in Fig. 12 is used instead of the beam processor unit in Figs. 1 and 2, and the incident beam group 1 is from a semiconductor laser
  • the cylindrical lenses formed by the two cylinders are respectively A collimated cylindrical lens diverging the fast axis of the incident beam set 1 and a collimated or focused cylindrical lens diverging the slow axis of the exit beam set 4.
  • Figure 13 shows the evolution of Figure 12.
  • the processing light-passing surfaces of the two lightes all evolved into the processing surface of the light originally on the array of roof reflectors, and both the light-incident surfaces of the two light rays evolved into cylinders.
  • It can also be seen as a basic component of an integrated beam processor plus two cylindrical lenses. It not only has the basic composition of the beam processor shown in Figure 3, but also has the function of collimating or focusing the fast axis divergence of the incident beam set 1 and the slow axis divergence of the outgoing beam set 4.
  • Figure 14 shows an evolved facet right angle prism of a newly designed polarization beam splitter.
  • the joint surface of the polarized light separation interface is no longer a complete large plane, but a pair of small planes.
  • One phase is formed, and the facets in each group are parallel to each other.
  • the angle between a set of facets and the light-passing surface is 45 °.
  • Each of the facets in the set is a polarized light separation interface, but the angle between the other set of facets and the light-passing surface is no longer 45 °. They don't have any optical function, you can see two groups of Xiaoping The orientations within the groups are the same but the orientations between the groups are different.
  • a large, complete polarized light separation interface is split into a set of small polarized light separation interfaces and another set of facets that do not have a polarized light separation interface function.
  • the facets in each group may be equal or unequal, depending on the incident beam, such that each small polarized light separation interface reflects or transmits one or more beams.
  • Figure 15 shows one of the application examples for a facet polarized beam splitter consisting of faceted prisms. Similar to Figures 3 and 7, it is an evolution of the basic composition of the beam processor of the present invention, consisting of a facet polarizing beam splitter and two ridge reflector arrays of different periods.
  • the arrangement period of the roof reflector in each roof reflector array is equal to the period of 45 ° facet prism projection on each roof reflector array. Therefore, the beams transmitted and reflected from each 45 ° facet fall on the corresponding roof reflectors; and the beams reflected on each of the roof reflectors fall back on the corresponding facets.
  • the polarizing beam splitter (22, 23) reaches the roof reflector array (7) where it is reflected and each beam is rotated 90° about the forward direction, then reverses back along the original path and enters 45 ° for the second time.
  • the plane-polarized beam splitter is S-polarized light, which is reflected on the 45 ° small reflecting surface of the bonding surface and is emitted from the side to become the beam group (11, 11, 11).
  • the S-polarized portion (1, 1, 1) of the incident beam group 1 8 enters the facet-polarized beam splitter (22, 23) and is reflected on the 45 ° small reflecting surface of the bonding surface to reach the roof reflector column.
  • Array (12) where it is reflected, each beam is rotated 90° in the forward direction, then reversed back along the original path and enters the 45 ° facet polarized beam splitter for the second time, becoming P-polarized light, through
  • the facet-polarized beam splitter (22, 23) is emitted from the side and becomes a beam group (4, 4, 4).
  • the width d of the outgoing beam group (4:11, 4:11, 4:11) is smaller than the width L of the incident beam group (1,8,1,8,1,8), in other words, the incident beam group
  • the width is compressed at the output. This compression facilitates focusing of the beam set.
  • Figure 16 and Figure 17 show the evolution of a 45 ° facet polarized beam splitter.
  • One of the four clear faces is made into a cylinder, similar to that shown in Figure 8. Its function is similar.
  • This cylinder can be used both as a light-passing surface for light and as a light-passing surface for light.
  • Figure 18 shows the application example of a 45 ° facet polarizing beam splitter consisting of facet prisms.
  • the optical path is exactly the same as in Figure 13, except that the combined bevel of the polarizing beam splitter is no longer a complete large plane. Instead, it consists of two sets of facets between the phases, and the roof reflector array and the polarizing beam splitter are two separate components.
  • the optical path is similar to that of Figure 15, but the entrance and exit faces of two adjacent lights of the 45 ° facet-polarized beam splitter are cylindrical. If the incident beam group is from a semiconductor laser, one cylinder will collimate the incident beam group (1, 8, 8, 8, and 10) in the fast axis direction, and the other cylinder will be processed in the outgoing beam group (4:1).
  • the roof reflector array (7) with the evolved 45° facet polarizing beam splitter (23A), another roof reflector array (12) and an evolved 45 °
  • the small plane polarized beam splitter (22A) is also integrated.
  • the two light processing surfaces are integrated with the polarization separation interface, so that the entire function of the beam processor, plus the collimation of the divergence of the fast axis and the slow axis of the incident beam group, This can be done by one device.
  • Figure 19 shows two polarized beam splitters combined together with the two bonding faces parallel to each other. If it is used instead of the two polarized beam splitters (15, 16) and (5, 6) in Figure 4, the two opposite light-passing faces (16) and (5) can be omitted. It can also be used to replace the two polarization beam splitters (15, 16) and (5A, 6A) in 5, which eliminates the two opposite light-passing surfaces (15) and (6A).
  • Figure 20 shows two polarized beam splitters combined together with the two bonding faces being perpendicular to each other. If it is used instead of the two polarized beam splitters (15, 16) and (5, 6) in Figure 5, the two opposite light-passing faces (16) and (6) can be omitted.
  • Figure 21 shows the three polarized beam splitters combined together.
  • the integrated polarized beam splitter has three splitting planes, one of which is a common splitting plane, and the other two splitting planes are parallel to the common splitting plane, one perpendicular to the common splitting plane. If it is used instead of the three polarization beam splitters (5A, 6A), (15, 16) and (5, 6) in Figure 5, the two opposite passes (6A) and (15) can be omitted. Face and the opposite light-passing faces of (16) and (6).

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laser Beam Processing (AREA)

Description

用于聚焦半导体激光器输出光束的光束处理器 技术领域
本发明涉及一种光束处理器, 尤其涉及一种可用于改造半导体激光器的 输出光束, 将其聚焦为极小的对称光点的光束处理器, 属于光学技术领域。 背景技术
根据光学不变量原理, 一个光束的线度一发散度乘积 (SDP ) 在光学系 统中是不变的。 众所周知, 侧面辐射的半导体激光器的光束性质在横向 (平 行于 PN结或量子阱的方向) 和竖向 (垂直于 PN结或量子阱的方向) 两个方 向上的线度一发散度乘积很不对称。 正是由于这种不对称, 使得半导体激光 器的输出光束无法聚焦成有用的光点, 因此在许多极有前途而且比其它种类 的激光器都优越得多的应用领域无法发挥作用。
由于半导体激光器的这种特性以及由此造成的应用上的局限都源于基 本的物理定律, 所以克服半导体激光器局限性的努力就只能放在后续的光束 处理上。 为此, 人们先后发展出了多种光束处理技术。 例如本发明人在 2002 年设计的光束分配装置(参见中国实用新型专利 ZL 02 2 53490. 3, 2003年 8 月 13日授权公告)就是其中之一。
该光束分配装置包括可发射沿单个光束横截面的横向方向排列展开的 一组光束的发光装置以及若干个屋脊反射器。 屋脊反射器为两面相互交叉的 平面反射镜,其交叉处为屋脊,两面平面反射镜之间的夹角为 45 ° 的整数倍, 且不大于 90 ° ; 屋脊反射器沿光束的横向方向平行排列, 其开口正对光束组 入射方向, 屋脊反射器固定在一个板块上, 板块底座上装有万向节; 夹角为 90 ° 的屋脊反射器的屋脊绕光束入射方向旋转 45 ° ;屋脊反射器的开口宽度 不小于到达开口处的入射光束的横向线度。
利用该光束分配装置, 屋脊反射器反射回来的每一个光束都已绕其传播 方向旋转了 90° 。 这样, 被反射回来的光束组的横向 SDP和竖向 SDP得以调 整, 从而有可能被聚焦成为极小的对称的光点。 但是被反射的光束组不能沿 原路返回, 因为这样它就会回到半导体激光器。 被反射的光束组的传播方向 必须离开入射光束组的传播方向。 为此, 将屋脊反射器绕 X轴旋转了 45 ° , 沿 Z方向传播的入射光被屋脊反射器反射后, 将绕 X轴旋转 90 ° , 在 Y轴方 向传播, 这样后续的光学处理可以在新的空间方向上进行, 不再受阻。 但与 此同时, 反射后的光束组还绕 Z轴旋转了 45 ° , 这样就在相邻光束间引进了 光程差。 为了解决这一问题, 聚焦光束组的光学系统必须采取相应的措施。 采取这类措施无疑将增加光学系统的实施成本和实现难度。
发明内容 本发明所要解决的技术问题在于提供一种用于聚焦半导体激光器输出 光束的光束处理器。 该光束处理器在上述光束分配装置的基础上进行了巧妙 的改造, 从根本上避免了在反射光束组的相邻光束之间引进光程差。
为实现上述的发明目的, 本发明采用下述的技术方案:
一种光束处理器, 用于旋转半导体激光器的输出光束组中的每一个光 束, 从而改变光束组的横向 SDP和竖向 SDP , 其特征在于:
所述光束处理器具有一个供 P偏振光透射、 S偏振光反射的偏振光分离 界面;
所述光束处理器还包括四个通光面, 其中两个通光面是光的出入通光 面, 另两个通光面是光的处理通光面; 两个光的出入通光面中, 一个光的出 入通光面垂直于从光源入射到偏振光分离界面的光束, 另一个光的出入通光 面垂直于离开偏振光分离界面不再返回的光束; 两个光的处理通光面中, 一 个光的处理通光面垂直于透过偏振光分离界面的入射光束, 另一个光的处理 通光面垂直于被偏振光分离界面反射的入射光束;
所述光束处理器还包括两个光的处理面; 其中一个光的处理面正对着透 过偏振光分离界面的入射光束, 另一个光的处理面正对着被偏振光分离界面 反射的入射光束;
所述入射光束被光的处理面反射以后, 沿原路逆向返回到所述偏振光分 离界面。
其中, 两个所述光的处理面都是屋脊反射器列阵的反射表面, 所述屋脊反射 器列阵包括至少两个平行排列、具有同一开口方向的屋脊反射器, 每个屋脊反射 器为两面相互交叉的平面反射镜面,其交叉处为屋脊, 两个平面反射镜面之间的 夹角为九十度; 所述屋脊与所述屋脊反射器的平行排列方向成四十五度夹角; 当所述光的处理面正对来自偏振光分离界面的光束时,入射到每一个屋脊反 射器的光束都被反射; 反射以后的光束逆入射方向原路返回, 同时还绕传播方向 旋转九十度。
或者, 两个所述光的处理面中的一个是屋脊反射器列阵的反射表面, 和所述 偏振光分离界面连成一体,所述屋脊反射器列阵包括至少两个平行排列、具有同 一开口方向的屋脊反射器,每个屋脊反射器为两面相互交叉的平面反射镜面, 其 交叉处为屋脊, 两个平面反射镜面之间的夹角为九十度, 所述屋脊与所述屋脊反 射器的平行排列方向成四十五度夹角; 另一个所述光的处理面是虚拟的面。
偏振光分离界面由一组小的偏振光分离界面和另一组小平面一对一相间组 成, 组内的各小的偏振光分离界面取向彼此相同, 另一组内的各小平面取向也彼 此相同, 但组间取向不同。
光束射入偏振光束分离器以后, 在分光面上被分解成为偏振方向互相垂 直的两部分, 分别送往对应的屋脊反射器列阵, 在那里被垂直地反射, 反射 后每一个光束都绕前进方向旋转了 90 ° ,相对于偏振光束分离器的偏振状态 因而被改变, 然后返回偏振光束分离器, 在分光面上被叠加成为一个新的光 束, 从偏振光束分离器中出射。 出射方向不同于入射方向。
如果入射的是光束组, 由于每一个光束都在屋脊反射器列阵上被反射及 旋转了 90 ° , 反射以后的光束组的横向 SDP和竖向 SDP都已被改变, 成为可 以被聚焦成为小光点的光束组。
值得指出的是, 光束处理器的基本组成部分可以处理任何偏振状态的光 束, 甚至非偏振的光束。
为获得高功率的输出, 可将偏振方向互相垂直的两组入射光束组在进入 光束处理器之前先由另一偏振光束分离器处理, 将它们叠加成为传播方向相 同, 偏振方向互相垂直的两个光束组, 然后一同进入光束处理器的基本组成 部分, 进行如上所述的处理。 再进一步, 在一个偏振方向上的光束组还可以 有多组, 例如从叠加的半导体激光条辐射的多组光束, 先将两个偏振方向互 相垂直的多组入射光束组分别从两个方向送入另一偏振光束分离器, 叠加在 一起以后再送入光束处理器的基本组成部分进行处理, 可以达到极高的功率 输出。 如果将其聚焦, 被聚焦的小光点上的功率密度可达到极高的数值。
偏振光束分离器的斜面和六面体的六个面有各种不同的设计, 使偏振光 束分离器还能具备许多其它功能, 例如对光束进行准直, 聚焦和压縮。 两个 甚至三个偏振光束分离器还能结合在一起, 做成集成的光学元件。 进而, 还 可以将屋脊反射器结合到偏振光束分离器上, 成为集多种功能于一体的高度 集成的光学元件。 一个这样的元件的功能不仅是光束处理器, 而且还包括对 光束快轴和慢轴两个方向的准直。 这样, 光束处理工作变得非常简单, 相当 于快轴方向的准直。由于高度集成,最大限度地减少了分立光学元件的数目, 由此做成的半导体激光器件将会非常可靠和稳定。
本光束处理器还包括重新设计的偏振光束分离器。 按照新的设计, 偏振 光束分离器的两个棱镜的结合斜面不再是一个平面, 而是由相间的两组小平 面组成, 但是其中一组小平面与通光面的夹角不再是 45 ° , 而另一组小平面 与通光面的夹角仍是 45 ° 。新设计的偏振光束分离器的入射面和出射面的宽 度因而可以做得很不相等, 例如入射面很宽而出射面很窄。 很宽的入射面适 合于接收细光束宽间距的入射光束组 (这是高功率半导体激光器输出光束 组); 很窄的出射面适合于输出窄间距的出射光束组。 光束间的间距被压縮, 这也有利于聚焦。
本光束处理器在光束分配装置的基础上补充了一系列相关的光学设计, 使之能满足应用领域的各项要求, 比现有的市场产品更简便实用, 便于进行 工业生产。 本光束处理器不仅可以从根本上避免出现光程差, 而且还可进一 步调整光束组的横向 SDP和竖向 SDP, 为产品设计提供了满足各种目的的不 同选择。
附图说明
下面结合附图和具体实施方式对本发明作进一步的说明。
图 1所示为本发明所述的光束处理器的基本单元, 包括一个偏振光束分 离器 (5, 6 ), 一个屋脊反射器列阵 7以及一组 P偏振的入射光束 1。
图 2所示为光束处理器的基本单元的另一实施例, 包括一个偏振光束分 离器 (5, 6 ), 一个屋脊反射器列阵 12, 所不同的是有一组 S偏振的入射光 束 8。
图 3所示为本发明所述的光束处理器的基本组成部分, 即一个偏振光束 分离器 (5, 6 ) 和两个屋脊反射器列阵 7和 12。
图 4所示为本发明所述的光束处理器, 包括基本组成部分和一个附加的 偏振光束分离器 (15, 16 )。
图 5所示为两个光束处理器的基本组成部分和一个附加的偏振光束分离 器 (15, 16 )。 这两个光束处理器的基本组成部分一个是 7和 (5, 6 ), 另一 个是 12和 (5A, 6A)。
图 6所示为集成的偏振光束分离器和屋脊反射器列阵。
图 7所示为集成的光束处理器的基本组成部分。
图 8所示为偏振光束分离器的衍生例之一。
图 9所示为偏振光束分离器的衍生例之二。
图 10所示为对图 6或图 8的衍生例之一, 偏振光束分离器 (5, 6 ) 的 一对透射相关的通光面分别演变为屋脊反射器列阵和柱面。
图 11所示为对图 6 的衍生例之二, 偏振光束分离器 (5, 6 ) 的一对反 射相关的通光面分别演变为屋脊反射器列阵和柱面。
图 12所示为对图 10或图 11 的又一衍生例, 其中与屋脊反射器列阵反 射相关和透射相关的两个通光面都演变为柱面。
图 13 所示为集成在一起的光束处理器的基本组成部分, 两个光的出入 面演变为柱面, 两个光的处理面演变为屋脊反射器列阵。
图 14 所示为新设计的偏振光束分离器的一个变化了的棱镜 (小平面棱 镜)。
图 15 所示为采用小平面棱镜组成的小平面偏振光束分离器的应用实施 例之一。
图 16所示为 45 ° 小平面偏振光束分离器的衍生例之一, 其中一个光的 出入面演变为柱面。 图 17所示为 45 ° 小平面偏振光束分离器的衍生例之二, 其中另一个光 的出入面演变为柱面。
图 18所示为采用小平面棱镜组成的 45 ° 小平面偏振光束分离器的应用 实施例之二, 其中两个光的出入面都演变为柱面。
图 19 所示为合并在一起的两个偏振光束分离器, 其中两个分光面互相 平行。
图 20 所示为合并在一起的两个偏振光束分离器, 其中两个分光面互相 图 21 所示为合并在一起的三个偏振光束分离器。 其中集成以后的偏振 光束分离器有三个分光面, 一个分光面为公共分光面; 另外两个分光面中的 一个和公共分光面平行, 另一个和公共分光面垂直。
具体实施方式
本发明所提供的光束处理器是在专利号为 ZL 02 2 53490. 3的光束分配 装置基础上的进一步发展。 该光束处理器补充了一系列相关的光学设计, 从 根本上避免了在反射光束组的相邻光束之间引进光程差。
图 1所示为本光束处理器的基本单元的一个实施例。 该基本单元包括一 个偏振光束分离器和一个屋脊反射器列阵 (7 )。 图中的偏振光束分离器由两 个等边直角棱镜 (5, 6 ) 组成, 棱镜的一个面为结合面, 两个棱镜沿结合面 互相结合在一起组成偏振光束分离器。 结合面能透射 P偏振光、 反射 S偏振 光, 因此按其功能被称为偏振光分离界面 (也称为分光面)。 偏振光束分离 器的形状并不重要, 核心是偏振光分离界面及其功能。
图 1中的偏振光束分离器是一个六面体。 面对分光面的四个侧面为通光 面 、 B、 C, D, 这四个通光面可分为两组: A、 B为一组, (:、 D为另一组。 通光面的引进主要是为了光学设计, 它们都垂直于进出偏振光分离界面的光 束, 既可以是物理意义上的真实面, 也可以是根本不存在的几何意义上的虚 拟面; 既可以是平面, 也可以是非平面。 物理意义上的通光面无论形状还是 位置都是确定的, 但可以根据设计需要在光学材料内部或空间中设置任意多 个虚拟面。 当棱镜 (5 ) 和 (6 ) 是非直角棱镜, 而且偏振光分离界面设计为 四十五度分光面时, 四个通光面全是虚拟面。 同样, 偏振光分离界面也不必 由两个互相结合在一起的棱镜组成, 它可以由一个棱镜的结合面甚至是光学 衬底上的一层薄膜实现。 偏振光分离界面是光学衬底上的一层薄膜时, 四个 通光面全是虚拟面。 再者, 偏振光分离界面可以设计为非四十五度分光面。 从如上所述可知, 偏振光束分离器怎么构成并不重要, 核心是偏振光分离界 面。
在使用时, 一组通光面是光的出入通光面, 而另一组通光面是光的处理 通光面。 它们的功能可以互换。 在本文行文中, 如果指出某组的某通光面是 物理意义上的面, 则该组的另一通光面必定是几何意义上的虚拟面。 图 1中 来自发光源的入射光束组 (1, 1, 1 ) 是 P偏振光, 在到达偏振光束分离器 的偏振光分离界面之前先通过通光面 (A), 它是光的出入通光面。 然后, P 偏振的入射光束组(1, 1, 1 )透过偏振光分离界面, 成了光束组(2, 2 , 2 )。 光束组 (2, 2 , 2 ) 前往屋脊反射器列阵 (7 ) 时通过的通光面 (C ) 是光的 处理通光面。 前往屋脊反射器列阵 (7 ) 的光束组 (2, 2 , 2 ) 被屋脊反射器 列阵 (7 ) 的反射表面 (即光的处理面) 反射 (即处理) 过后, 成为光束组 ( 3, 3, 3 )。 光束组 (3, 3, 3 ) 沿原路逆向返回偏振光分离界面时通过的 还是这个光的处理通光面 (C )。 由于屋脊反射器不仅反射光束, 而且还把每 一个被反射的光束都绕其前进方向旋转九十度, 光束组 (3, 3, 3 ) 在返回 偏振光束分离器时成了 S偏振光,遂被偏振光分离界面反射,成为光束组(4, 4, 4), 从此离开偏振光束分离器, 不再返回。 光束组 (4, 4, 4 ) 在离开偏 振光束分离器时通过的通光面 (B ) 是光的出入通光面。 无论是光的出入通 光面还是光的处理通光面, 它们都垂直于进出入偏振光束分离器的光束。 此 外, 这四个通光面还两两相关: A、 C 两个通光面透射相关, B、 D 两个通光 面透射相关; A、 D 两个通光面反射相关, B、 C 两个通光面反射相关。 应该 指出, 四个通光面按其属性来说是全同的, 之所以分成两组, 各有不同的名 称是因为使用功能不同。
显然, 偏振光分离界面四周的光的处理通光面和屋脊反射器列阵上的光 的处理面是不同的面。
对于偏振光束分离器和偏振光分离界面, 图 1 中的 Y方向是横方向, Y Z平面是横平面, X方向是竖方向, X Z平面是竖平面。 注意, 横方向、 竖 方向、 横平面、 竖平面是和偏振光束分离器及偏振光分离界面紧密联系在一 起的; 坐标系统改变后, X Y Z方向改变, 但它们和偏振光束分离器及偏振 光分离界面的联系保持不变。 如上所述, 当使用侧面辐射的半导体激光器做 光源时, 横方向与竖方向和 PN结或量子阱的方向也有联系。
屋脊反射器列阵 (7 ) 包括至少两个相互平行排列、 具有同一开口方向 的屋脊反射器,屋脊反射器为两面相互交叉的平面反射镜,其交叉处为屋脊。 两个平面反射镜之间的夹角为 90° ,屋脊与开口方向的夹角为 45 ° 。应当指 出, 这两个角度 (90° 和 45 ° ) 都是设计角度, 加工时当然允许无法避免的 误差。 屋脊反射器的数目和大小取决于入射光束组中光束的数目和大小, 通 常的使用方法是一个或几个完整的光束进入一个屋脊反射器; 但当光束很宽 时, 也可以用多个屋脊反射器来反射 (或者说是分割) 一个光束。 图一中所 示为一个屋脊反射器反射一个光束。 图 2 所示为光束处理器的基本单元的另一实施例。 光束组 (8, 8, 8 ) 的前进方向由光束上的箭头指示, 偏振方向由光束上的短线所示, 对于偏振 光束分离器 (5, 6 ), 它是 S 偏振, 进入偏振光束分离器后被偏振光分离界 面反射而出, 成为光束组 (9, 9, 9 ), 然后射向屋脊反射器列阵 (12 ), 在 那里被反射。 反射以后沿原路逆向返回, 成为光束组 (10, 10, 10 ), 第二 次进入偏振光束分离器 (5, 6 )。 由于每一个光束都在反射过程中绕前进方 向旋转了 90 ° , 反射后的光束组 (10, 10, 10 ) 第二次进入偏振光束分离器 ( 5, 6 ) 时成了 P偏振光束, 它穿过偏振光分离界面而出, 被成功地从入射 光束中分离出来, 成为出射光束组 (11, 11, 11 )。 在这个实施例中, A和 B 这组通光面是光的出入通光面, 通光面 D是光的处理通光面。
应当指出, 图 1和图 2的区别不在于基本单元的构成不同, 而在于入射 光束组的偏振状态不同, 光束处理器的基本单元构成是一样的。 如果在图 1 中把出射光束组 4作为入射光束组反方向入射到偏振光束分离器, 那么随后 的过程就是前述过程的逆过程, 入射光束组 (1, 1, 1 )成了出射光束组 (4, 4, 4); 图 1成了图 2。 这里我们再一次看到, 四个通光面按其物理属性来说 是全同的, 各有不同的名称是因为使用功能不同。
图 3所示为本发明所述的光束处理器的基本组成,它包括两个基本单元, 但共用一个偏振光束分离器。 图 3中的入射光束组 (1十 8, 1十 8, 1十 8 ) 可 以是任何偏振状态的光束组, 甚至是非偏振的入射光束组。 偏振光束分离器 ( 5, 6 ) 将入射光束组中的 S和 P偏振的成分分解以后分别成为光束组 (9, 9, 9 ) 和 (2, 2 , 2 ) 送到相应的屋脊反射器列阵 (12 ) 和 (7 ), 光束在那 里被反射并绕前进方向旋转了 90° 以后再沿原路逆向返回偏振光束分离器, 分别变成了 P偏振的光束组 (10, 10, 10 ) 和 S偏振的光束组 (3, 3, 3 ), 在偏振光束分离器的偏振光分离界面上分别透过和反射。 这样, 经过处理的 光束组被成功地合并而且从入射光束组分离出来, 成为出射光束组 (4十 11, 4十 11, 4十 11 )。 无论入射光束组的偏振状态如何, 输出的总是叠加在一起 的两组偏振状态互相垂直的经过处理的光束组。 在这个实施例中, A和 B这 组通光面是光的出入通光面, C和 D这组通光面是光的处理通光面。
图 3所示的光束处理器可以分解成三部分: 偏振光分离界面; 四个通光 面, 其中两个是光的出入通光面, 另外两个是光的处理通光面, 它们是等同 的面, 既可以是物理意义上的面, 也可以是非物理意义上的虚拟面; 两个光 的处理面, 它们既可以是屋脊反射器列阵的反射面, 也可以是非物理意义上 的虚拟的面。 图中的两个光的处理面都是物理意义上的面, 但在图 1和图 2 中只有一个光的处理面都是物理意义上的面, 另一个是非物理意义上的面, 必定是虚拟的面。 图 4所示为本发明所述的光束处理器, 包括基本组成部分和一个附加的 偏振光束分离器 (15, 16 )。 图 4中的入射光束组 (13 ' ) 是在竖方向叠加的 几组 P偏振光束组, 另一入射光束组 (14 ' ) 是在 Z方向叠加的几组 S偏振 光束组, 它们在附加的偏振光束分离器 (15, 16 ) 中汇合, 在偏振光分离界 面分别被透过和反射, 叠加以后成为 (1 ' 十 8 ' ) —同进入光束处理器的基 本组成部分, 随后的处理过程如图 3所述。 出射的光束组 (4 ' 十 11 ' ) 的横 向 SDP和竖向 SDP已经被改造, 可由光学系统聚焦成为小光点。 由于该小光 点上集中了数组光束组的功率, 其功率密度极高。
附加的偏振光束分离器的作用是将更多的光束组加入到光束处理器基 本组成部分进行处理。
图 5所示为两个光束处理器的基本组成单元和一个附加的偏振光束分离 器。 图 5 中的偏振光束分离器 (5A, 6A) 和屋脊反射器列阵 12组成的基本 单元用于处理入射的 S偏振光束组 (8, 8, 8 )。 而偏振光束分离器 (5, 6 ) 和屋脊反射器列阵(7 )组成的基本单元则用于处理入射的 P偏振光束组(1, 1, 1 )。 对于附加的偏振光束分离器 (15, 16 ), 经由这两个基本单元处理过 的输出光束组分别成了 P偏振和 S偏振状态。 它们分别进入附加的偏振光束 分离器 (15, 16 ), 分别在分光面被透过和反射, 一同出射, 成为出射光束 组 4十 1 1, 不再返回。
图 5所示的实施例和图 4所示的实施例的目的都是把偏振状态不同互相 垂直的两组光束送入光束处理器单元进行处理并变成在横向和竖向的 SDP都 已被改造过的光束组输出, 不同之处在于图 4所示的是先把偏振状态不同的 两组光束合并, 然后一同送入如图 3所示的光束处理器的基本组成部分进行 处理, 变成在横向和竖向的 SDP都已被改造过的光束组输出。 而图 5所示的 则是先把偏振状态不同的两组光束分别送往各自的光束处理器单元, 变成在 横向和竖向的 SDP均已被改造过的两组光束组, 然后将它们送入一个附加的 偏振光束分离器, 两组光束组合并以后一同输出。
目前为止, 偏振光束分离器 (偏振光分离界面) 和屋脊反射器列阵 (光 的处理面) 都是分离的元件。
图 6所示为集成的偏振光束分离器和屋脊反射器列阵。 它的功能相当于 一个如图 1所示的光束处理器单元, 但是图 1中的半个偏振光束分离器 (6 ) 和屋脊反射器列阵 (7 ) 合二而一, 连成一体而成为 (17 )。 此时, 光的处理 通光面 (图 1 中的 C面), 自动演变为光的处理面 (图 1 中的屋脊反射器列 阵 7 的反射表面), 不再独立存在, 二者合二而一。 光的处理面和偏振光分 离界面 (图 1中的偏振光束分离器的结合面) 连成一体, 不再是两个分离的 元件上的两个面。 现在, 光束组在光的处理面上的反射是内反射而不是外反 射。 这反射既可以由内全反射来实现, 也可以通过在屋脊反射器列阵上镀反 射膜来实现。 再者, 这种反射不会产生退偏振效应。 这里我们看到, 光的处 理通光面除了有物理意义上和几何意义上的区别以外, 还有独立存在和非独 立存在的区别,
图 7所示为集成的光束处理器的基本组成部分, 相当于图 3所示。 不同 之处在于偏振光束分离器 (偏振光分离界面) 和两个屋脊反射器列阵 (光的 处理面) 连成一体。 或者说, 两个光的处理通光面(图 3中的 C面和 D面)都 演变为光的处理面(图 3中的屋脊反射器列 7和 12的反射表面), 它们自然 是物理意义上的面。 同样, 光束组在光的处理面上的反射是内反射而不是外 反射。
图 8所示为偏振光束分离器的衍生例之一。 偏振光束分离器的四个通光 面之一演变成了柱面, 它在竖平面 (XZ ) 的曲率沿横方向 (Y ) 不变, 成为 新型的偏振光束分离器 (5, 20)。 不言而喻, 这柱面是物理意义上的面, 通 过这个面的光束在竖方向 (X ) 将被处理: 准直、 或聚焦。 演变以后这个的 面既可以用作光的出入通光面, 也可用作光的处理通光面。
图 9所示为偏振光束分离器的衍生例之二。 偏振光束分离器的四个通光 面之一演变成了双柱面, 这个面在竖平面 (XZ ) 的曲率沿横方向 (Y ) 轴不 变, 在横平面 (YZ ) 的曲率沿竖方向 (X ) 也不变, 成了又一个新型的偏振 光束分离器 (5, 21 )。 这两个曲率可以相等 (球面), 也可以不相等。 通过 这个面的光束在横 (Y)、 竖 (X) 两个方向都将被处理: 准直、 或聚焦。 图 9 中的曲面在在横平面 (ΥΖ ) 的曲率半径大于该偏振光束分离器横向宽度的二 分之一, 所以在横平面内只有一根弧线, 它是双柱面和横平面的交线, 该柱 面的轴线在竖平面内是弧线。 应该指出一组很重要的双柱面, 当图 9中的双 柱面在横平面 (ΥΖ ) 的曲率半径小于该偏振光束分离器横向宽度的二分之一 时, 就会形成两个以上的一组柱面。 此时, 双柱面和横平面的交线是两个以 上的接近半圆的弧线, 彼此首尾相连, 但这些接近半圆的弧线不是沿横方向 直线排列, 而是成弧形排列。 该组柱面的轴线在竖平面上是弧线, 看起来在 竖方向上是一组弯曲的柱面, 在横平面内则是一组弧形排列的柱面, 形状和 图 9不一样, 但也叫做双柱面。 这种双柱面使用时每个横平面上的柱面对应 一个光束, 一组柱面对应一组光束。 还有一种变化, 当这个双柱面在竖平面 ( ΧΖ ) 的曲率半径无穷大时, 它就是立在竖方向 (X) 上的一组笔直的柱面, 这些柱面在横平面内仍是弧形排列。 本文在使用 "双柱面"一词时, 包含了 这里所述的所有情况。 当然, 这双柱面也是物理意义上的面, 它既可以用作 光的出入通光面, 也可用作光的处理通光面。
图 10所示为对图 6或图 8的衍生例之一。 在这里, 一个光的处理通光 面演变为原本是在屋脊反射器列阵上的光的处理面, 与之透射相关的光的出 入通光面演变成了柱面。 它的功能相当于一个光束处理器单元加一个柱面 镜。 如果用图 10所示的光学器件 (20, 17 ) 来取代图 1 中的偏振光束分离 器和屋脊反射器列阵 7, 并且入射光束组 1来自半导体激光器, 这个柱面形 成的柱面镜就是对入射光束组 1的快轴发散的准直柱面透镜。 同样, 如果用 图 10所示的光学器件 (20, 17 ) 来取代图 2 中的偏振光束分离器和屋脊反 射器列阵 12, 并且入射光束组 8来自半导体激光器, 这个柱面形成的柱面镜 就是对出射光束组 11的慢轴发散的准直或聚焦的柱面透镜
图 11所示为对图 6或图 8的衍生例之二。 在这里, 一个光的处理通光 面演变为原本是在屋脊反射器列阵上的光的处理面, 与之反射相关的光的出 入通光面演变成了柱面。 它的功能也相当于一个光束处理器单元加一个柱面 透镜, 但这个柱面镜的放置位置和图 10所示不一样。 如果用图 11所示的光 学器件 (5, 21 ) 来取代图 1中的偏振光束分离器和屋脊反射器列阵 7, 并且 入射光束组 1来自半导体激光器, 这个柱面形成的柱面透镜就是对出射光束 组 4的慢轴发散的准直或聚焦柱面透镜。 同样, 如果用图 11所示的光学器 件 (20, 17 ) 来取代图 2中的偏振光束分离器和屋脊反射器列阵 12, 并且入 射光束组 1来自半导体激光器, 这个柱面形成的柱面透镜就是对入射光束组 8的快轴发散的准直柱面透镜。
图 12所示为对图 10或图 11 的演变。 在这里, 一个光的处理通光面演 变为原本是在屋脊反射器列阵上的光的处理面, 与之透射相关和反射相关的 两个光的出入通光面都演变成了柱面。 如果用图 12 所示的光学器件 (20, 21 ) 来取代图 1和图 2中的光束处理器单元, 并且入射光束组 1来自半导体 激光器, 这两个柱面形成的柱面透镜分别是对入射光束组 1的快轴发散的准 直的柱面透镜和对出射光束组 4的慢轴发散的准直或聚焦的柱面透镜。
图 13所示为对图 12的演变。 在这里, 两个光的处理通光面都演变为原 本是在屋脊反射器列阵上的光的处理面, 同时两个光的出入通光面都演变成 了柱面。 也可以看成是集成在一起的光束处理器的基本组成部分加两个柱面 透镜。 它不仅具备图 3所示的光束处理器的基本组成的功能, 而且还具备对 入射光束组 1 的快轴发散和对出射光束组 4 的慢轴发散的准直或聚焦的功 能。
图 14所示为新设计的偏振光束分离器的一个演变了的小平面直角棱镜, 它的作为偏振光分离界面的结合面不再是一个完整的大平面, 而是由两组小 平面一对一相间组成, 每一组内的各小平面彼此平行。 一组小平面与通光面 的夹角是 45 ° , 这一组中的每一个小平面都是偏振光分离界面, 但是另一组 小平面与通光面的夹角不再是 45 ° , 它们没有任何光学功能, 可见两组小平 面的组内取向相同但组间取向不同。 换句话说, 一个大的, 完整的偏振光分 离界面被拆成了一组小的偏振光分离界面和另一组不具有偏振光分离界面 功能的小平面。 每一组内的各小平面的大小可以相等, 也可以不相等, 视入 射光束而定, 务使每一个小的偏振光分离界面反射或透射一个或几个光束。
图 15 所示为采用小平面棱镜组成的小平面偏振光束分离器的应用实施 例之一。 类似于图 3和图 7所示, 它是本发明所述的光束处理器的基本组成 的演变, 由一个小平面偏振光束分离器和两个周期不相同的屋脊反射器列阵 组成。每个屋脊反射器列阵中的屋脊反射器的排列周期等于 45 ° 小平面棱镜 在每个屋脊反射器列阵上投影的周期。所以从每个 45 ° 小平面上透射和反射 的光束都落在相应的屋脊反射器上; 而且每个屋脊反射器上反射的光束都回 落在相应的小平面上。
同样, 它可以处理任何偏振状态的入射光束组 1, 甚至非偏振光.入射光 束组 (1十 8, 1十 8, 1十 8 ) 的 P 偏振部分 (8, 8, 8 ) 透过小平面偏振光束 分离器 (22, 23 ) 到达屋脊反射器列阵 (7 ), 在那里被反射并且每个光束都 绕前进方向旋转了 90 ° ,然后沿原路逆向返回并第二次进入 45 ° 小平面偏振 光束分离器, 成了 S偏振光, 在结合面的 45 ° 小反射面上被反射, 由侧面射 出, 成为光束组 (11, 11, 11 )。 而入射光束组 1十 8的 S偏振部分 (1, 1, 1 ) 进入小平面偏振光束分离器 (22, 23 ) 以后, 在结合面的 45 ° 小反射面 上被反射, 到达屋脊反射器列阵 (12 ), 在那里被反射, 每个光束都绕前进 方向旋转了 90° ,再沿原路逆向返回并第二次进入 45 ° 小平面偏振光束分离 器, 成了 P 偏振光, 透过小平面偏振光束分离器 (22, 23 ), 由侧面射出, 成为光束组 (4, 4, 4 )。 注意, 出射光束组 (4十 11, 4十 11, 4十 11 ) 的宽 度 d小于入射光束组 (1十 8, 1十 8, 1十 8 ) 的宽度 L, 换句话说, 入射光束 组的宽度在输出时被压縮了。 这种压縮有利于对光束组的聚焦。
图 16和图 17所示为 45 ° 小平面偏振光束分离器的演变。四个通光面之 一做成了柱面, 类似图 8所示。 其功能也类似。 这个柱面既可以用作光的出 入通光面, 也可用作光的处理通光面。
图 18所示为采用小平面棱镜组成的 45 ° 小平面偏振光束分离器的应用 实施例之二, 其光路和图 13 完全一样, 只是偏振光束分离器的结合斜面不 再是一个完整的大平面, 而是由相间的两组小平面组成, 而且屋脊反射器列 阵和偏振光束分离器是两个分离的元件。 其光路类似于图 15, 但 45 ° 小平 面偏振光束分离器的两个相邻的光的出入通光面都做成了柱面。 如果入射光 束组来自半导体激光器, 一个柱面将入射光束组 (1十 8, 1十 8, 1十 8 ) 在快 轴方向准直, 另一个柱面将经过处理的出射光束组 (4十 1 1, 4十 11, 4十 11 ) 在慢轴方向准直或聚焦。 还可以进一步集成, 即把屋脊反射器列阵 (7) 和演变了的 45° 小平面 偏振光束分离器 (23A) 做成一体, 把另一屋脊反射器列阵 (12) 和演变了 的 45° 小平面偏振光束分离器 (22A) 也做成一体。 或者说, 把两个光的处 理面都和偏振光分离界面连成一体, 这样一来, 光束处理器的全部功能, 外加 对入射光束组的快轴和慢轴方向的发散的准直, 都可由一个器件来完成。
图 19所示为合并在一起的两个偏振光束分离器, 两个结合面互相平行。 如果用它来取代图 4 中的两个偏振光束分离器 (15, 16) 和 (5, 6), 可以 省去 (16) 和 (5) 这两个相对的通光面。 也可以用它来取代 5 中的两个偏 振光束分离器 (15, 16) 和 (5A, 6A), 可以省去 (15) 和 (6A) 这两个相 对的通光面。
图 20所示为合并在一起的两个偏振光束分离器, 两个结合面互相垂直。 如果用它来取代图 5 中的两个偏振光束分离器 (15, 16) 和 (5, 6), 可以 省去 (16) 和 (6) 这两个相对的通光面。
图 21 所示为合并在一起的三个偏振光束分离器。 集成以后的偏振光束 分离器有三个分光面, 其中一个分光面为公共分光面, 另外两个分光面一个 和公共分光面平行, 一个和公共分光面垂直。 如果用它来取代图 5中的三个 偏振光束分离器 (5A, 6A)、 (15, 16) 和 (5, 6), 可以省去 (6A) 和 (15) 这两个相对的通光面以及 (16) 和 (6) 这两个相对的通光面。
需要声明的是, 上述的特定实施例已经对本发明的内容做了详尽的说 明。 对本领域的一般技术人员而言, 在不背离本发明精神的前提下对它所做 的任何显而易见的改动, 特别是对若干部件的等同替换, 都构成对本发明专 利权的侵犯, 将承担相应的法律责任。

Claims

权 利 要 求
1. 一种光束处理器, 用于旋转半导体激光器的输出光束组中的每一个 光束, 从而改变光束组的横向 SDP和竖向 SDP, 其特征在于:
所述光束处理器具有一个供 P偏振光透射、 S偏振光反射的偏振光分离 界面;
所述光束处理器还包括四个通光面, 其中两个通光面是光的出入通光 面, 另两个通光面是光的处理通光面; 两个光的出入通光面中, 一个光的出 入通光面垂直于从光源入射到偏振光分离界面的光束, 另一个光的出入通光 面垂直于离开偏振光分离界面不再返回的光束; 两个光的处理通光面中, 一 个光的处理通光面垂直于透过偏振光分离界面的入射光束, 另一个光的处理 通光面垂直于被偏振光分离界面反射的入射光束;
所述光束处理器还包括两个光的处理面; 其中一个光的处理面正对着透 过偏振光分离界面的入射光束, 另一个光的处理面正对着被偏振光分离界面 反射的入射光束;
所述入射光束被光的处理面反射以后, 沿原路逆向返回到所述偏振光分 离界面。
2. 如权利要求 1所述的光束处理器, 其特征在于:
两个所述光的处理面都是屋脊反射器列阵的反射表面,所述屋脊反射器列阵 包括至少两个平行排列、具有同一开口方向的屋脊反射器, 每个屋脊反射器为两 面相互交叉的平面反射镜面,其交叉处为屋脊, 两个平面反射镜面之间的夹角为 九十度; 所述屋脊与所述屋脊反射器的平行排列方向成四十五度夹角;
当所述光的处理面正对来自偏振光分离界面的光束时,入射到每一个屋脊反 射器的光束都被反射; 反射以后的光束逆入射方向原路返回, 同时还绕传播方向 旋转九十度。
3. 如权利要求 2所述的光束处理器, 其特征在于:
两个所述光的处理面都在分离元件上, 和所述偏振光分离界面不在一体。
4. 如权利要求 2所述的光束处理器, 其特征在于:
两个所述光的处理面都和所述偏振光分离界面连成一体。
5. 如权利要求 2所述的光束处理器, 其特征在于:
两个所述光的处理面中的一个在分离元件上,和所述偏振光分离界面不在一 体, 另一个光的处理面和所述偏振光分离界面连成一体。
6. 如权利要求 1所述的光束处理器, 其特征在于:
两个所述光的处理面中的一个是屋脊反射器列阵的反射表面,和所述偏振光 分离界面连成一体,所述屋脊反射器列阵包括至少两个平行排列、具有同一开口 方向的屋脊反射器,每个屋脊反射器为两面相互交叉的平面反射镜面, 其交叉处 为屋脊, 两个平面反射镜面之间的夹角为九十度, 所述屋脊与所述屋脊反射器的 平行排列方向成四十五度夹角; 另一个所述光的处理面是虚拟的面。
7. 如权利要求 1所述的光束处理器, 其特征在于:
所述偏振光分离界面是一个完整的大平面。
8. 如权利要求 1所述的光束处理器, 其特征在于:
所述偏振光分离界面由一组小的偏振光分离界面和另一组小平面一对一相 间组成,各小的偏振光分离界面取向彼此相同, 另一组内的各小平面取向也彼此 相同, 但组间取向不同。
9. 如权利要求 1所述的光束处理器, 其特征在于:
至少有一个所述光的出入通光面是和所述偏振光分离界面连成一体的面。
10. 如权利要求 9所述的光束处理器, 其特征在于:
所述光的出入通光面是平面。
11. 如权利要求 9所述的光束处理器, 其特征在于:
所述光的出入通光面是柱面。
12. 如权利要求 9所述的光束处理器, 其特征在于:
所述光的出入通光面是双柱面。
13. 如权利要求 1所述的光束处理器, 其特征在于:
至少有一个独立存在的、 有光的处理面与之对应的所述光的处理通光面 是和所述偏振光分离界面连成一体的面。
14. 如权利要求 13所述的光束处理器, 其特征在于:
所述光的处理通光面是平面。
15. 如权利要求 13所述的光束处理器, 其特征在于:
所述光的处理通光面是柱面。
16. 如权利要求 13所述的光束处理器, 其特征在于:
所述光的处理通光面是双柱面。
17. 如权利要求 1所述的光束处理器, 其特征在于:
两个光的出入通光面都是虚拟的面。
18. 如权利要求 1所述的光束处理器, 其特征在于:
两个光的处理通光面都是虚拟的面。
PCT/CN2010/071321 2009-03-26 2010-03-25 用于聚焦半导体激光器输出光束的光束处理器 WO2010108446A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10755446A EP2413179A1 (en) 2009-03-26 2010-03-25 Light beam processing device for focusing light beam emitted by semiconductor laser
US13/260,567 US8767304B2 (en) 2009-03-26 2010-03-25 Beam shaping device for focusing light beams from semiconductor laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200920106858.0 2009-03-26
CN200920106858 2009-03-26

Publications (1)

Publication Number Publication Date
WO2010108446A1 true WO2010108446A1 (zh) 2010-09-30

Family

ID=42780168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071321 WO2010108446A1 (zh) 2009-03-26 2010-03-25 用于聚焦半导体激光器输出光束的光束处理器

Country Status (3)

Country Link
US (1) US8767304B2 (zh)
EP (1) EP2413179A1 (zh)
WO (1) WO2010108446A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013045440A1 (en) * 2011-09-26 2013-04-04 Projectiondesign As Beam combiner for a plurality of light sources

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101815839B1 (ko) * 2012-09-24 2018-01-08 리모 파텐트페어발퉁 게엠베하 운트 코. 카게 작업 평면에 레이저 빔의 선형 강도 분포를 발생시키기 위한 장치
DE102012111693A1 (de) 2012-11-30 2014-06-05 Gd Optical Competence Gmbh Strahlformungseinrichtung
JP5920254B2 (ja) * 2013-03-13 2016-05-18 ウシオ電機株式会社 半導体レーザ装置
CN108701955B (zh) * 2016-02-22 2020-06-12 三菱电机株式会社 激光光源装置及激光光源装置的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566292Y (zh) * 2002-09-03 2003-08-13 钱定榕 光束分配装置
JP2004212518A (ja) * 2002-12-27 2004-07-29 Fuji Photo Film Co Ltd レーザ光束合波装置
CN1587895A (zh) * 2004-07-16 2005-03-02 中国科学院上海光学精密机械研究所 双频激光干涉仪
JP2007328080A (ja) * 2006-06-07 2007-12-20 Victor Co Of Japan Ltd 投射表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06138413A (ja) * 1992-10-29 1994-05-20 Canon Inc プレート型偏光分離装置及び該偏光分離装置を用いた偏光照明装置
US5513201A (en) * 1993-04-30 1996-04-30 Nippon Steel Corporation Optical path rotating device used with linear array laser diode and laser apparatus applied therewith
US6028722A (en) * 1996-03-08 2000-02-22 Sdl, Inc. Optical beam reconfiguring device and optical handling system for device utilization
US6324190B1 (en) * 1996-08-16 2001-11-27 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung, E.V. Device with at least one beam source and an arrangement for geometric reshaping of the radiation field emitted by the beam source
US6240116B1 (en) * 1997-08-14 2001-05-29 Sdl, Inc. Laser diode array assemblies with optimized brightness conservation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2566292Y (zh) * 2002-09-03 2003-08-13 钱定榕 光束分配装置
JP2004212518A (ja) * 2002-12-27 2004-07-29 Fuji Photo Film Co Ltd レーザ光束合波装置
CN1587895A (zh) * 2004-07-16 2005-03-02 中国科学院上海光学精密机械研究所 双频激光干涉仪
JP2007328080A (ja) * 2006-06-07 2007-12-20 Victor Co Of Japan Ltd 投射表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013045440A1 (en) * 2011-09-26 2013-04-04 Projectiondesign As Beam combiner for a plurality of light sources
US8905578B2 (en) 2011-09-26 2014-12-09 Projectdesign AG Laser array illumination for bright projectors

Also Published As

Publication number Publication date
US20120019909A1 (en) 2012-01-26
EP2413179A1 (en) 2012-02-01
US8767304B2 (en) 2014-07-01

Similar Documents

Publication Publication Date Title
TWI579596B (zh) 用於lcos顯示器之空間交錯的偏振轉換器及用於將具有複數線性偏振狀態的輸入光束轉換到具有單一共同極化狀態的輸出光束之方法
US6104536A (en) High efficiency polarization converter including input and output lenslet arrays
US6028722A (en) Optical beam reconfiguring device and optical handling system for device utilization
US20180294623A1 (en) Light source system and laser light source
US6993059B2 (en) Apparatus for reducing spacing of beams delivered by stacked diode-laser bars
WO2017121000A1 (zh) 一种半导体激光器
TWM487442U (zh) 一種發光裝置
WO2010108446A1 (zh) 用于聚焦半导体激光器输出光束的光束处理器
TWI639795B (zh) 反射型複眼陣列照明器
CN1483154A (zh) 光学耦合系统
US20130258469A1 (en) Spatial beam combining for multiple diode laser elements
WO2015010418A1 (zh) 背光模组及显示装置
US9971159B2 (en) Reflective laser line-beam generator
WO2016187879A1 (zh) 一种激光阵列合束装置
US7085053B2 (en) Beam shaping device, system for launching a light beam into an optical fiber, and beam rotation unit for such a beam shaping device or such a system
JP2005099807A (ja) ビームスプリッタ
US20140211466A1 (en) Étendue shaping using faceted arrays
CN110426849A (zh) 一种投影系统及增强现实装置
CN1651972A (zh) 离轴型全内反射棱镜阵列实现半导体激光器光束整形方法
US7301701B2 (en) Compact polarization conversion system for optical displays
CN112103768B (zh) 一种半导体激光器
CN111029906A (zh) 一种激光器的矫正系统、光源系统及投影装置
JP2006317614A (ja) 光デバイスの光入出射部
CN201583732U (zh) 用于聚焦半导体激光器输出光束的光束处理器
CN110703450A (zh) 光束整形组件、模块及激光模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13260567

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010755446

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010755446

Country of ref document: EP