WO2010106702A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2010106702A1
WO2010106702A1 PCT/JP2009/067607 JP2009067607W WO2010106702A1 WO 2010106702 A1 WO2010106702 A1 WO 2010106702A1 JP 2009067607 W JP2009067607 W JP 2009067607W WO 2010106702 A1 WO2010106702 A1 WO 2010106702A1
Authority
WO
WIPO (PCT)
Prior art keywords
video signal
pixel
voltage
display device
liquid crystal
Prior art date
Application number
PCT/JP2009/067607
Other languages
English (en)
French (fr)
Inventor
崇晴 山田
康直 岩田
典子 松田
泰裕 三村
智朗 古川
秀樹 森井
徹也 藤川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2009801575681A priority Critical patent/CN102334153B/zh
Priority to US13/138,437 priority patent/US20110298774A1/en
Publication of WO2010106702A1 publication Critical patent/WO2010106702A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3614Control of polarity reversal in general
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0247Flicker reduction other than flicker reduction circuits used for single beam cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0252Improving the response speed
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2340/00Aspects of display data processing
    • G09G2340/16Determination of a pixel data signal depending on the signal applied in the previous frame

Definitions

  • the present invention relates to a display device, and more particularly to a display device that switches the polarity of a voltage applied to a pixel at a constant period.
  • a voltage having the same polarity is continuously applied to a pixel, a problem such as burn-in occurs. Therefore, AC driving is performed to switch the polarity of a voltage applied to the pixel (hereinafter referred to as a pixel applied voltage) at a certain period. Is called.
  • line inversion driving for switching the polarity of the pixel application voltage for one or a plurality of gate lines source line inversion driving for switching the polarity of the pixel application voltage for one or more data lines
  • a pixel application voltage for each pixel For example, dot inversion driving is performed to switch the polarity.
  • a thin film transistor hereinafter referred to as TFT
  • the pixel applied voltage decreases by a predetermined amount. ing.
  • the difference between the drain voltage of the TFT 4 and the common electrode voltage Vcom becomes the pixel applied voltage.
  • the gate voltage of the TFT 4 changes from the high level to the low level
  • the pixel applied voltage decreases by an amount corresponding to the capacitance value of the parasitic capacitance 7 existing between the gate and drain of the TFT 4.
  • the amount of decrease at this time is called a pull-in voltage or a feedthrough voltage.
  • the pixel applied voltage is applied when a positive voltage is applied (hereinafter referred to as positive polarity) and when a negative voltage is applied (hereinafter referred to as negative polarity).
  • positive polarity a positive voltage is applied
  • negative polarity a negative voltage is applied
  • Vcom the common electrode voltage
  • the common electrode voltage Vcom is adjusted so that the effective value of the pixel applied voltage is equal between the positive polarity and the negative polarity.
  • Patent Document 1 describes a liquid crystal display device including a frame memory 91 for storing gradation data of the previous frame and a correction circuit 92 as shown in FIG. 18 in order to make the response time of the liquid crystal substantially constant. ing.
  • the correction circuit 92 outputs to the liquid crystal driver 93 corrected grayscale data that provides a display grayscale corresponding to the input grayscale data after one frame time.
  • the gradation data is smaller than the stored gradation data
  • the input gradation data is output to the liquid crystal driver 93.
  • Patent Document 2 correction is performed to overshoot or undershoot the luminance so that the average luminance becomes the target luminance, and even if the luminance necessary for the correction is the same, the levels of the input gradation signals of the current frame and the previous frame are corrected.
  • a display device including a correction circuit that reduces or increases a correction signal in accordance with the level of a tone level is described.
  • Patent Document 3 describes a liquid crystal display device that performs overshoot driving using two tables.
  • Patent Document 4 describes a liquid crystal display device that performs line inversion driving by controlling the degree of overshoot according to the polarity of a voltage applied to a data line.
  • the liquid crystal display device has a problem that when a moving image is displayed, flickering, a striped pattern, a granular pattern, or the like is generated on the display screen, and the display quality is deteriorated.
  • One cause of this problem is that the response speed of the liquid crystal differs between positive polarity and negative polarity.
  • the response speed of the liquid crystal differs between positive polarity and negative polarity.
  • the pixel applied voltage changes in the pixel 3 shown in FIG. 3
  • the dielectric constant of the liquid crystal changes, and the capacitance value of the liquid crystal capacitor 5 also changes.
  • the pull-in voltage depends on the capacitance value of the liquid crystal capacitor 5 at the time when the TFT 4 changes to the off state, and thus is influenced by the pixel applied voltage in the previous frame time.
  • an object of the present invention is to provide a display device having a small response speed difference between positive polarity and negative polarity and high display quality.
  • a first aspect of the present invention is a display device,
  • a display panel including a plurality of pixels including a thin film transistor;
  • a correction unit that performs correction to compensate for a decrease in the pixel applied voltage caused by the parasitic capacitance existing between the gate and drain of the thin film transistor with respect to the input video signal;
  • a drive unit that applies a voltage corresponding to the video signal obtained by the correction unit while switching the polarity to each pixel in the display panel;
  • a storage unit for storing, as reference data, data obtained when correcting the video signal of the previous frame;
  • the correction unit performs, based on the input video signal and reference data read from the storage unit, different corrections according to the polarity of the pixel applied voltage for at least a part of the combination of both values. .
  • the correction unit performs correction on the input video signal using a correction value read from the table,
  • the table stores a correction value that differs according to the polarity of the pixel applied voltage for at least a part of the combination of the input video signal and the value of the reference data.
  • the storage unit stores a video signal of a previous frame as the reference data.
  • the storage unit stores the reached gradation after one frame time as the reference data.
  • the table is characterized in that the reached gradation after one frame time is fixedly stored in association with the combination of the input video signal and the value of the reference data.
  • the image processing apparatus further includes a frame rate conversion unit that performs a process of generating a plurality of subframes on the input video signal based on one image and outputs the obtained video signal to the correction unit.
  • the display panel further includes a plurality of gate lines used for pixel selection;
  • the driving unit applies a voltage having the same polarity to a plurality of pixels connected to the same gate line.
  • the display panel further includes a plurality of gate lines used for pixel selection;
  • the driving unit applies a mixture of positive voltage and negative voltage to a plurality of pixels connected to the same gate line.
  • the correction unit increases the pixel applied voltage when the absolute value of the pixel applied voltage is larger than the previous frame for at least a part of the combination of the input video signal and the reference data value, and the absolute value of the pixel applied voltage When the value becomes smaller than the previous frame, the pixel applied voltage is corrected to be lowered.
  • the correction unit changes the gradation value in the same direction as the change from the previous frame when applying a positive voltage for at least a part of the combination of the input video signal and the reference data value, When applied, correction is performed to change the gradation value in the direction opposite to the change from the previous frame.
  • the display panel is a liquid crystal panel including a plurality of pixels further including a liquid crystal capacitor and an auxiliary capacitor, and includes a plurality of types of pixels in which at least one of the capacitance values of the liquid crystal capacitor, the auxiliary capacitor, and the parasitic capacitor is different.
  • the correction unit may perform different corrections on the input video signal depending on the type of pixel.
  • a twelfth aspect of the present invention is the eleventh aspect of the present invention,
  • the display panel includes a plurality of types of pixels having different cell gaps.
  • a thirteenth aspect of the present invention is a method for driving a display device having a display panel including a plurality of pixels including a thin film transistor, Correcting an input video signal to compensate for a decrease in pixel applied voltage caused by parasitic capacitance existing between the gate and drain of the thin film transistor; Applying a voltage corresponding to the corrected video signal to each pixel in the display panel while switching the polarity; Storing the data obtained when correcting the video signal of the previous frame as reference data, The correcting step is characterized in that, based on the input video signal and stored reference data, at least a part of a combination of both values is corrected differently according to the polarity of the pixel applied voltage.
  • the input video signal is corrected in order to compensate for the decrease in the pixel applied voltage due to the parasitic capacitance existing between the gate and the drain of the thin film transistor.
  • the input video signal is changed by performing different corrections according to the polarity of the pixel applied voltage based on the reference data obtained when correcting the video signal of the previous frame when performing the correction for the pull-in voltage. Correction can be performed accurately. Therefore, the luminance of the pixels after one frame time can be made uniform between the time of applying the positive voltage and the time of applying the negative voltage, and the difference in response speed can be eliminated. Therefore, it is possible to prevent the display screen from flickering and improve the display quality.
  • correction values related to the input video signal are fixedly stored in association with the combination of the values of the input video signal and the reference data. Necessary correction values can be easily obtained.
  • the difference in response speed between the application of the positive voltage and the application of the negative voltage is eliminated with a relatively small circuit amount. , Display quality can be improved.
  • the fourth aspect of the present invention by using the reached gradation after one frame time as the reference data, the difference in response speed between the application of the positive voltage and the application of the negative voltage is eliminated with higher accuracy.
  • the display quality can be further improved.
  • the fifth aspect of the present invention by providing a table in which the correction value related to the input video signal and the reached gradation after one frame time are fixedly stored, one frame time after necessary for the correction of the pull-in voltage is provided. Can be easily obtained.
  • the difference in response speed between application of positive voltage and application of negative voltage is eliminated. , Display quality can be improved.
  • the seventh aspect of the present invention in a display device that applies a voltage having the same polarity to a plurality of pixels connected to the same gate line, such as line inversion driving, the positive polarity voltage is applied and the negative polarity is applied.
  • the difference in response speed between the time of voltage application can be eliminated and display quality can be improved.
  • a display in which a positive voltage and a negative voltage are mixedly applied to a plurality of pixels connected to the same gate line, such as dot inversion driving and source line inversion driving.
  • the difference in response speed between application of positive voltage and application of negative voltage can be eliminated, and display quality can be improved.
  • the pixel applied voltage when the absolute value of the pixel applied voltage becomes larger than that of the previous frame, the pixel applied voltage is corrected in consideration of the large pull-in voltage, and the absolute value of the pixel applied voltage is determined.
  • the correction can be performed accurately even when the input video signal changes by performing the correction to reduce the pixel applied voltage in consideration of the small pull-in voltage. Therefore, the difference in response speed between application of positive voltage and application of negative voltage can be eliminated, and display quality can be improved.
  • the gradation value when a positive voltage is applied, the gradation value is changed in the same direction as the change from the previous frame, and when a negative voltage is applied, in the opposite direction to the change from the previous frame.
  • the correction can be performed accurately even when the input video signal changes. Therefore, the difference in response speed between application of positive voltage and application of negative voltage can be eliminated, and display quality can be improved.
  • the eleventh aspect of the present invention even when a liquid crystal panel in which the capacitance value of the capacitance in the pixel is different depending on the type of pixel is used, different correction is performed depending on the type of pixel when performing correction for the pull-in voltage. As a result, the difference in response speed between the application of the positive voltage and the application of the negative voltage can be eliminated for all types of pixels, and the display quality can be improved.
  • the type of pixel is set when correction for the pull-in voltage is performed.
  • FIG. 1 is a block diagram illustrating a configuration of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 2 is a layout diagram of a liquid crystal panel of the liquid crystal display device shown in FIG. 1.
  • FIG. 2 is a circuit diagram of pixels included in the liquid crystal panel of the liquid crystal display device shown in FIG. 1. It is a figure which shows the relationship between the pixel applied voltage and liquid crystal dielectric constant in the pixel shown in FIG.
  • FIG. 4 is a diagram showing a relationship between a pixel applied voltage and a pull-in voltage in the pixel shown in FIG. 3. It is a figure which shows the change of the drain voltage of TFT in a pixel, and the change of pixel capacity
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the first embodiment of the present invention.
  • a liquid crystal display device 10 shown in FIG. 1 includes a display control unit 11, a frame memory 12, a lookup table (LUT) 13, a gate line driving circuit 14, a data line driving circuit 15, and a liquid crystal panel. 16 is provided.
  • the liquid crystal display device 10 corrects the input video signal Xa in the display controller 11 and displays an image on the liquid crystal panel 16 by performing AC driving based on the corrected video signal Xb.
  • FIG. 2 is a layout diagram of the liquid crystal panel 16. As shown in FIG. 2, a plurality of gate lines 1, a plurality of data lines 2, and a plurality of pixels 3 are formed on the liquid crystal panel 16.
  • the gate lines 1 are arranged in parallel to each other, and the data lines 2 are arranged in parallel to each other so as to be orthogonal to the gate lines 1.
  • the pixels 3 are two-dimensionally arranged corresponding to the intersections of the gate lines 1 and the data lines 2.
  • the gate line 1 is also called a scanning signal line
  • the data line 2 is also called a source line or a video signal line.
  • FIG. 3 is a circuit diagram of the pixel 3.
  • the pixel 3 includes a TFT 4, a liquid crystal capacitor 5, and an auxiliary capacitor 6.
  • the TFT 4 has a gate electrode connected to the gate line 1 and a source electrode connected to the data line 2.
  • the drain electrode of the TFT 4 is connected to one electrode of the liquid crystal capacitor 5 and one electrode of the auxiliary capacitor 6.
  • a common electrode voltage Vcom is applied to the other electrode of the liquid crystal capacitor 5, and an auxiliary capacitance voltage Vcs of the same level as the common electrode voltage Vcom is applied to the other electrode of the auxiliary capacitance 6.
  • the parasitic capacitance 7 exists between the gate electrode and the drain electrode of the TFT 4, and the difference between the drain voltage of the TFT 4 and the common electrode voltage Vcom becomes the pixel applied voltage.
  • the TFT 4 functions as a switching element that switches whether to write a voltage to the pixel 3 or not.
  • a voltage higher than the threshold voltage of the TFT 4 is applied to the gate line 1, and a voltage corresponding to the video signal is applied to the data line 2.
  • the drain voltage of the TFT 4 becomes equal to the voltage applied to the data line 2, and the liquid crystal capacitor 5 and the auxiliary capacitor 6 accumulate an amount of charge corresponding to the pixel applied voltage at this time. Is done.
  • Equation (1) Vg pp is the amount of change in the gate voltage of the TFT 4
  • Clc is the capacitance value of the liquid crystal capacitor 5
  • Ccs is the capacitance value of the auxiliary capacitor 6
  • Cgd is the capacitance value of the parasitic capacitor 7.
  • the pixel applied voltage is maintained at substantially the same level until the TFT 4 is turned on again.
  • the luminance of the pixel during this period is determined by the pixel applied voltage. Therefore, a desired image can be displayed on the liquid crystal panel 16 by writing a voltage corresponding to the input video signal Xa to all the pixels 3 in the liquid crystal panel 16.
  • the display control unit 11 is a control circuit that controls the entire liquid crystal display device 10.
  • the frame memory 12 is a memory that stores at least one frame of the input video signal Xa.
  • the LUT 13 is a table in which correction values of the input video signal Xa are fixedly stored in advance.
  • the gate line driving circuit 14 and the data line driving circuit 15 are driving circuits for the liquid crystal panel 16.
  • a video signal source 100 that outputs a synchronization signal SS and a video signal Xa is provided outside the liquid crystal display device 10.
  • the synchronization signal SS and the video signal Xa output from the video signal source 100 are input to the display control unit 11.
  • the display control unit 11 outputs a control signal C1 to the gate line driving circuit 14 and outputs a control signal C2 to the data line driving circuit 15 based on the synchronization signal SS.
  • the control signal C1 includes a gate start pulse and a gate clock
  • the control signal C2 includes a source start pulse and a source clock.
  • the display control unit 11 outputs a line polarity REV indicating the polarity of the pixel applied voltage for each line to the data line driving circuit 15.
  • the display control unit 11 performs correction for compensating for the pull-in voltage with respect to the input video signal Xa, and outputs the corrected video signal Xb to the data line driving circuit 15.
  • the frame memory 12 and the LUT 13 are provided for performing this correction.
  • the gate line driving circuit 14 drives the gate line 1 of the liquid crystal panel 16 based on the control signal C1. More specifically, the gate line driving circuit 14 sequentially selects one gate line from the plurality of gate lines 1 according to the control signal C1, and applies a voltage higher than the threshold voltage of the TFT 4 to the selected gate line. A voltage lower than the threshold voltage of the TFT 4 is applied to the other gate lines.
  • the data line driving circuit 15 drives the data line 2 of the liquid crystal panel 16 based on the control signal C2, the line polarity REV, and the corrected video signal Xb. More specifically, the data line driving circuit 15 generates a voltage corresponding to the corrected video signal Xb and applies the generated voltage to the data line 2. At this time, the data line driving circuit 15 switches the polarity of the generated voltage between positive polarity and negative polarity according to the line polarity REV.
  • the display control unit 11 writes the input video signal Xa into the frame memory 12, and reads out the written video signal after one frame time.
  • the video signal read from the frame memory 12 is referred to as “video signal Xp of the previous frame”.
  • the display control unit 11 reads the video signal Xp of the previous frame from the frame memory 12 while writing the input video signal Xa to the frame memory 12 as the video signal of the current frame at each frame time.
  • the display control unit 11 outputs to the LUT 13 an input video signal Xa, a video signal Xp of the previous frame, and a pixel polarity POL indicating the polarity of the pixel applied voltage for each pixel, and the correction value read from the LUT 13 Is output to the data line driving circuit 15 as the corrected video signal Xb.
  • the LUT 13 stores the correction value of the input video signal Xa in a fixed manner in advance in association with the combination of the gradation value of the input video signal Xa, the gradation value of the video signal Xp of the previous frame, and the value of the pixel polarity POL. is doing. For example, when the input video signal Xa is a video signal with 256 gradations, a maximum of (256 ⁇ 256 ⁇ 2) correction values are stored in the LUT 13.
  • the correction value corresponding to this combination of gradation values is determined by the following method, for example. First, based on the gradation values Ra and Rp and the pixel polarity POL, it is determined whether the pixel applied voltage should be increased or decreased in order to compensate for the pull-in voltage. When the pixel applied voltage is to be increased, the correction value is determined so that the pixel applied voltage is increased by an amount represented by the following equation (2). When the pixel applied voltage is to be lowered, the correction value is determined so that the pixel applied voltage is lowered by an amount represented by the following equation (2).
  • the correction value when white display is performed after black display is determined so that the pixel applied voltage is increased or decreased by the amount shown in Expression (3). Further, the correction value when performing black display after white display is determined so that the pixel applied voltage is increased or decreased by the amount shown in Expression (4).
  • ⁇ Vd Vg pp ⁇ Cgd / (Clc (B) + Ccs + Cgd) (3)
  • ⁇ Vd Vg pp ⁇ Cgd / (Clc (W) + Ccs + Cgd) (4)
  • Clc (B) included in Expression (3) is a pixel applied voltage at the time of black display
  • Clc (W) included in Expression (4) is a pixel applied voltage at the time of white display.
  • the correction value stored in the LUT 13 is determined such that the pixel applied voltage changes according to the video signal of the previous frame.
  • the display control unit 11 corrects the compensation for the pull-in voltage with respect to the input video signal Xa (that is, compensates for the decrease in the pixel applied voltage caused by the parasitic capacitance 7. It functions as a correction unit that performs correction.
  • the frame memory 12 functions as a storage unit that stores data (input video signal Xa in this embodiment) obtained at the time of correcting the video signal of the previous frame as reference data.
  • the LUT 13 functions as a table in which correction values related to the input video signal Xa are fixedly stored in association with combinations of values of the input video signal Xa and reference data.
  • the gate line driving circuit 14 and the data line driving circuit 15 apply a voltage corresponding to the video signal (corrected video signal Xb) obtained by the correction unit to each pixel 3 in the liquid crystal panel 16 while switching the polarity. Functions as a drive unit.
  • a liquid crystal display device that corrects the amount of drawn voltage by a data line driving circuit is conventionally known.
  • the data line driving circuit of the conventional liquid crystal display device changes the pixel applied voltage according to the video signal of the current frame.
  • the conventional data line driving circuit changes the pixel applied voltage by the amount shown in Expression (5).
  • ⁇ Vd Vg pp ⁇ Cgd / (Clc (A) + Ccs + Cgd) (5)
  • Clc (A) included in Equation (5) is a capacitance value of the liquid crystal capacitor 5 when the current frame is displayed.
  • FIG. 4 is a diagram showing the relationship between the pixel applied voltage and the liquid crystal dielectric constant in the pixel 3.
  • FIG. 5 is a diagram showing the relationship between the pixel applied voltage and the pull-in voltage in the pixel 3. As shown in FIGS. 4 and 5, the higher the pixel applied voltage, the higher the liquid crystal dielectric constant and the lower the pull-in voltage.
  • FIG. 6 is a diagram showing a change in the drain voltage of the TFT in the pixel and a change in the pixel capacitance in the normally white mode liquid crystal panel.
  • FIG. 7 is a diagram showing the same contents for a normally black mode liquid crystal panel.
  • the pixel is alternately written with a positive voltage higher than the common electrode voltage and a negative voltage lower than the common electrode voltage.
  • white display voltage hereinafter referred to as white voltage
  • black display voltage hereinafter referred to as black voltage
  • a black voltage is written in the first, fourth, and fifth frame times
  • a white voltage is written in the second and third frame times.
  • the absolute value of the pixel applied voltage is larger when displaying black than when displaying white. Since the pixel capacity increases as the absolute value of the pixel applied voltage increases (see FIG. 4), the pixel capacity increases in the second and third frame times during which black display is performed. However, even if the pixel applied voltage changes sharply, the alignment of the liquid crystal molecules changes slowly, so that the pixel capacitance also changes slowly. Therefore, as shown in the lower part of FIG. 6, the pixel capacity gradually increases in the second frame time and gradually decreases in the fourth frame time.
  • the capacitance value Clc included in Equation (1) is the capacitance value of the liquid crystal capacitance 5 at the time when the TFT 4 changes to the off state.
  • the capacitance value Clc is set to a capacitance value when the previous frame is displayed rather than a capacitance value when the current frame is displayed. close.
  • the pixel applied voltage greatly decreases (the pull-in voltage is large) due to the influence of white display in the previous frame time.
  • the pixel applied voltage decreases slightly (the pull-in voltage is small) due to the influence of performing black display in the previous frame time.
  • the pixel applied voltage decreases slightly during the fourth frame time, and the pixel applied voltage decreases significantly during the fifth frame time.
  • the conventional liquid crystal display device changes the pixel applied voltage according to the video signal of the current frame. For this reason, for example, in the second frame time during which black display is performed, the pull-in voltage is underestimated, and the pixel applied voltage is corrected to a small value, although it is preferable to correct the pixel voltage. In the fourth frame time during which white display is performed, the pull-in voltage is overestimated, and the pixel applied voltage is corrected largely although it is preferable to correct it small. The same applies to the normally black mode liquid crystal panel (FIG. 7).
  • the liquid crystal display device 10 changes the pixel applied voltage according to the video signal Xp of the previous frame. For this reason, for example, in the second frame time, since white display was performed in the previous frame time, it is evaluated that the pull-in voltage is large, and the pixel applied voltage is greatly corrected. In the fourth frame time, since black display was performed in the previous frame, it is evaluated that the pull-in voltage is small, and the pixel applied voltage is corrected to be small. The same applies to the normally black mode liquid crystal panel (FIG. 7).
  • the liquid crystal display device 10 even when the input video signal Xa changes between the previous frame and the current frame, it is possible to accurately perform the correction for the drawing voltage. For this reason, as shown in FIG. 9, it is possible to equalize the pixel brightness arrival level after one frame time between the positive polarity and the negative polarity, and eliminate the difference in response speed between the positive polarity and the negative polarity. it can. Therefore, it is possible to prevent the display screen from flickering and improve the display quality.
  • the input video signal Xa is corrected in order to compensate for the decrease in the pixel applied voltage due to the parasitic capacitance 7 existing between the gate and drain of the TFT 4. Done.
  • the video signal Xp of the previous frame is used as reference data when the correction for the pull-in voltage is performed, and different correction is performed according to the polarity of the pixel applied voltage based on the reference data. Correction can be performed accurately. Therefore, the brightness of the pixels after one frame time can be made uniform between the positive polarity and the negative polarity, and the difference in response speed between them can be eliminated. Therefore, it is possible to prevent the display screen from flickering and improve the display quality.
  • the LUT 13 in which the correction value of the input video signal Xa is fixedly stored in association with the combination of the values of the input video signal Xa and the video signal Xp of the previous frame, correction necessary for correction of the pull-in voltage is used.
  • the value can be easily determined.
  • the video signal Xp of the previous frame as the reference data stored in the frame memory 12, the above effect can be obtained with a relatively small circuit amount.
  • the LUT 13 may store different correction values depending on the polarity of the pixel applied voltage for all combinations of the gradation value of the input video signal Xa and the gradation value of the video signal Xp of the previous frame. Different correction values may be stored depending on the polarity of the pixel applied voltage for some of the combinations of the gradation values. In this way, the LUT 13 may store different correction values depending on the polarity of the pixel applied voltage for at least a part of the combination of the values of the input video signal Xa and the previous frame video signal Xp.
  • the display control unit 11 may perform different correction according to the polarity of the pixel applied voltage for at least part of the combination of the values of the input video signal Xa and the video signal Xp of the previous frame.
  • the correction value stored in the LUT 13 may be determined by a method other than the above.
  • the correction value stored in the LUT 13 may be determined by experiment. In this case, it is only necessary to actually measure the pull-in voltage and determine the correction value so that the difference in pull-in voltage between the positive polarity and the negative polarity is small. Further, depending on the combination of the gradation value of the input video signal Xa and the gradation value of the video signal Xp of the previous frame, even if there is a difference in the pull-in voltage between the positive polarity and the negative polarity, the effect appears on the display screen. There may be no. In such a case, the correction value may be freely determined within a range that does not affect the display screen.
  • the correction value stored in the LUT 13 may be the gradation value itself of the corrected video signal Xb or the difference between the gradation value of the corrected video signal Xb and the gradation value of the input video signal Xa. In the latter case, the display controller 11 may add the correction value read from the LUT 13 to the input video signal Xa.
  • a correction value stored in the LUT 13 any value that can be used when performing correction for the drawing voltage on the input video signal Xa can be used.
  • the correction value stored in the LUT 13 may be a gradation value of a video signal or a pixel applied voltage level.
  • the liquid crystal display device may include a data line driving circuit having a function of correcting the drawing voltage.
  • a data line driving circuit having a function of correcting the drawing voltage.
  • FIG. 10 is a block diagram showing a configuration of a liquid crystal display device according to the second embodiment of the present invention.
  • the display control unit 11 the frame memory 12 and the LUT 13 are replaced with the display control unit 21, the frame memory 22 and the LUT 23, respectively.
  • the same elements as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the frame memory 22 replaces the input video signal Xa with a gradation corresponding to a level at which the pixel luminance reaches after one frame time (hereinafter referred to as an arrival gradation). Is stored for one frame.
  • the display control unit 21 writes the reached gradation obtained for the input video signal Xa to the frame memory 22, and reads the written reached gradation after one frame time.
  • arrival gradation Xq of the previous frame is referred to as “arrival gradation Xq of the previous frame”.
  • the display control unit 21 outputs the input video signal Xa, the reached gradation Xq of the previous frame read from the frame memory 22 and the pixel polarity POL to the LUT 13. At this time, the correction value and the reached gradation of the input video signal Xa are read from the LUT 23.
  • the display control unit 21 outputs the correction value read from the LUT 23 to the data line driving circuit 15 as the corrected video signal Xb, and uses the arrival gradation read from the LUT 23 as the arrival gradation Xc of the current frame. Write to.
  • the LUT 23 stores the correction value and the arrival gradation of the input video signal Xa fixed in advance in association with the combination of the gradation value of the input video signal Xa and the value of the arrival gradation Xq of the previous frame.
  • the LUT 23 may store different correction values depending on the polarity of the pixel applied voltage for all combinations of the gradation value of the input video signal Xa and the value of the arrival gradation Xq of the previous frame. For some of these combinations, different correction values may be stored according to the polarity of the pixel applied voltage.
  • the LUT 23 stores different correction values according to the polarity of the pixel applied voltage for at least a part of the combination of the input video signal Xa and the value of the reached gradation Xq of the previous frame.
  • the display control unit 21 uses the frame memory 22 and the LUT 23 to perform different corrections according to the polarity of the pixel applied voltage for at least a part of the combination of the input video signal Xa and the value of the reached gradation Xq of the previous frame.
  • the correction for compensating the drawing voltage is performed on the input video signal Xa as in the first embodiment.
  • this correction is performed, using the arrival gradation Xq of the previous frame as reference data, different correction is performed according to the polarity of the pixel applied voltage based on the reference data, so that the correction is high even when the response of the liquid crystal panel 16 is slow Can be done with precision. Therefore, the difference in response speed between the positive polarity and the negative polarity can be eliminated with higher accuracy, and the display quality can be further improved.
  • the arrival gradation after one frame time necessary for correction of the pull-in voltage is easily obtained. be able to.
  • FIG. 11 is a block diagram showing a configuration of a liquid crystal display device according to the third embodiment of the present invention.
  • the liquid crystal display device shown in FIG. 11 is obtained by adding a frame rate conversion unit 37 to the liquid crystal display device 10 according to the first embodiment.
  • the frame rate conversion unit 37 performs frame rate conversion on the synchronization signal SS and the video signal Xa output from the video signal source 100, and outputs the converted synchronization signal SS * and the converted video signal Xa * .
  • the frame rate conversion unit 37 performs a process of generating a plurality of subframes on the input video signal Xa based on one image. For example, when two subframes are generated based on one image, as shown in FIG. 12, the first subframe video signal Xa1 and the second subframe video signal Xa2 are based on the input video signal Xa. Generated. By outputting the two types of generated video signals Xa1 and Xa2 in order, a converted video signal Xa * is obtained.
  • the display control unit 11 performs the same operation as that of the first embodiment based on the converted synchronization signal SS * and the converted video signal Xa * .
  • the frame rate conversion unit 37 may use an arbitrary method when generating a plurality of subframes based on one image. For example, the frame rate conversion unit 37 may copy the original image, or may perform interpolation processing based on the two images before and after, giving priority to one of the subframes, and the gradation value of the original image May be distributed to two subframes.
  • the liquid crystal display device when processing for generating a plurality of subframes based on a single image is performed, the difference in response speed between the positive polarity and the negative polarity is eliminated, and the display quality is improved. Can be increased.
  • the liquid crystal display device according to the fourth embodiment of the present invention has the same configuration (FIG. 1) as the liquid crystal display device 10 according to the first embodiment.
  • the liquid crystal display device according to this embodiment is characterized in that the data line driving circuit 15 applies the same polarity voltage to the plurality of pixels 3 connected to the same gate line 1.
  • the line polarity REV indicating the polarity of the pixel applied voltage for each line can be used as it is as the pixel polarity POL indicating the polarity of the pixel applied voltage for each pixel.
  • the liquid crystal display device when a voltage having the same polarity is applied to a plurality of pixels 3 connected to the same gate line 1 as in line inversion driving, the positive polarity and the negative polarity are applied.
  • the difference in response speed between times can be eliminated, and the display quality can be improved.
  • the liquid crystal display device according to the fifth embodiment of the present invention has the same configuration (FIG. 1) as the liquid crystal display device 10 according to the first embodiment.
  • the liquid crystal display device according to the present embodiment is characterized in that the data line driving circuit 15 applies a mixture of positive voltage and negative voltage to the plurality of pixels 3 connected to the same gate line 1.
  • the display control unit 11 according to the present embodiment includes a converter 38 shown in FIG. The converter 38 obtains a pixel polarity POL indicating the polarity of the pixel applied voltage for each pixel based on the line polarity REV indicating the polarity of the pixel applied voltage for each line and the data line number Ns.
  • a positive voltage and a negative voltage are mixed for a plurality of pixels 3 connected to the same gate line 1 as in the case of dot inversion driving or source line inversion driving.
  • the difference in response speed between the positive polarity and the negative polarity can be eliminated, and the display quality can be improved.
  • the liquid crystal display device according to the sixth embodiment of the present invention has the same configuration (FIG. 1) as the liquid crystal display device 10 according to the first embodiment.
  • the liquid crystal display device according to this embodiment is characterized in that the liquid crystal panel 16 is a normally white mode liquid crystal panel.
  • white display by applying a positive voltage is “positive white display”
  • black display by applying a positive voltage is “positive black display”
  • negative voltage Performing white display by applying a negative voltage is referred to as "negative white display”
  • applying a negative voltage to perform black display is referred to as "negative black display”.
  • FIGS. 14A to 14D are waveform diagrams showing changes in pixel applied voltage in the liquid crystal display device according to this embodiment.
  • black display is continuously performed (FIG. 14A)
  • white display is continuously performed (FIG. 14B)
  • positive white display and negative black display are alternately performed (FIG. 14C).
  • the change in pixel applied voltage is described for the case where positive black display and negative white display are alternately performed (FIG. 14D).
  • FIGS. 14A to 14D in the normally white mode liquid crystal panel, the pull-in voltage ⁇ Vd (W) in the frame time after white display is large, and the pull-in voltage ⁇ Vd (B) in the frame time after black display is small.
  • the display control unit 11 when the positive white display is performed after the negative black display (first case), since the actual pull-in voltage is small, the display control unit 11 has the pixel applied voltage higher than the current state. The input video signal Xa is corrected so as to decrease (the gradation value increases). Conversely, when negative black display is performed after positive white display (second case), since the actual pull-in voltage is large, the display control unit 11 causes the pixel applied voltage to be higher than the current level (floor level). The input video signal Xa is corrected so that the tone value becomes larger.
  • the display control unit 11 when the positive black display is performed after the negative white display (third case), since the actual pull-in voltage is large, the display control unit 11 causes the pixel applied voltage to be higher than the current state.
  • the input video signal Xa is corrected so as to increase (the gradation value decreases).
  • negative white display is performed after positive black display (fourth case)
  • the display control unit 11 causes the pixel applied voltage to be lower than the current level (floor level).
  • the input video signal Xa is corrected so that the tone value becomes smaller.
  • the display control unit 11 of the liquid crystal display device allows the pixel applied voltage to be higher than the current state when the absolute value of the pixel applied voltage is larger than the previous frame (in the second and third cases).
  • the input video signal Xa is corrected so that the pixel applied voltage is lower than the current value.
  • the display control unit 11 causes the gradation value to increase so that the gradation value increases when the gradation value increases (first case).
  • the tone value becomes negative so that the tone value becomes small (in the fourth case)
  • the tone value becomes small so that the tone value becomes small (in the second case)
  • Corrects the input video signal Xa so as to increase the gradation value for the input video signal Xa, the display control unit 11 changes the gradation value in the same direction as the change from the previous frame at the positive polarity, and the gradation in the opposite direction to the change from the previous frame at the negative polarity. Perform correction to change the value.
  • the liquid crystal display device when a normally white mode liquid crystal panel is used, if the absolute value of the pixel applied voltage is larger than that of the previous frame, the pixel is taken into consideration that the pull-in voltage is large.
  • the input video signal is changed by performing the correction to reduce the pixel applied voltage in consideration of the small pull-in voltage. Even when it is done, the correction can be performed accurately.
  • the liquid crystal display device according to the seventh embodiment of the present invention has the same configuration (FIG. 1) as the liquid crystal display device 10 according to the first embodiment.
  • the liquid crystal display device according to the present embodiment is characterized in that the liquid crystal panel 16 is a normally black mode liquid crystal panel.
  • FIGS. 15A to 15D are waveform diagrams showing changes in pixel applied voltage in the liquid crystal display device according to the present embodiment.
  • FIGS. 15A to 15D in the normally black mode liquid crystal panel, the pull-in voltage ⁇ Vd (B) in the frame time after black display is large, and the pull-in voltage ⁇ Vd (W) in the frame time after white display is small.
  • the display control unit 11 determines that the pixel applied voltage is higher than the current state.
  • the input video signal Xa is corrected so that it becomes lower (the gradation value becomes smaller).
  • negative white display is performed after positive black display (sixth case)
  • the display control unit 11 causes the pixel applied voltage to be higher than the current level (floor level).
  • the input video signal Xa is corrected so that the tone value becomes smaller.
  • the display control unit 11 causes the pixel applied voltage to be higher than the current state.
  • the input video signal Xa is corrected so as to increase (the gradation value increases).
  • negative black display is performed after positive white display (eighth case)
  • the display control unit 11 causes the pixel applied voltage to be lower than the current level (floor level).
  • the input video signal Xa is corrected so that the tone value becomes larger.
  • the display control unit 11 of the liquid crystal display device allows the pixel applied voltage to be higher than the current state when the absolute value of the pixel applied voltage is larger than that of the previous frame (in the sixth and seventh cases).
  • the input video signal Xa is corrected so that the pixel applied voltage is lower than the current value.
  • the display control unit 11 has a positive polarity when the gradation value is small (fifth case) so that the gradation value is large when the gradation value is large (seventh case).
  • liquid crystal display device for the same reason as in the sixth embodiment, when using a normally black mode liquid crystal panel, the difference in response speed between positive polarity and negative polarity is eliminated. In addition, display quality can be improved.
  • FIG. 16 is a block diagram showing a configuration of a liquid crystal display device according to the eighth embodiment of the present invention.
  • the liquid crystal display device 40 shown in FIG. 16 is the same as the liquid crystal display device according to the first embodiment except that the display control unit 11, the LUT 13, and the liquid crystal panel 16 are replaced with the display control unit 41, the LUT 43, and the liquid crystal panel 46, respectively. It is.
  • the pixels 3 in the liquid crystal panel 46 are classified into three types: R pixels for displaying red, G pixels for displaying green, and B pixels for displaying blue.
  • FIG. 17 is a cross-sectional view of the liquid crystal panel 46.
  • the liquid crystal panel 46 has a structure in which a liquid crystal layer 52 is sandwiched between two glass substrates 51a and 51b.
  • One glass substrate 51a is provided with three color filters 53r, 53g, 53b, a light shielding film 54, a counter electrode 55, and the like, and the other glass substrate 51b is provided with a pixel electrode 56, a data line 57, and the like.
  • An alignment film 58 is provided on the opposing surfaces of the glass substrates 51a and 51b, and a polarizing plate 59 is provided on the other surface.
  • the R pixel, the G pixel, and the B pixel are formed at positions where the color filters 53r, 53g, and 53b are provided, respectively.
  • Dr, Dg, and Db represent cell gaps (thicknesses of the liquid crystal layer 52) of R pixels, G pixels, and B pixels, respectively.
  • the thicknesses of the color filters 53r, 53g, and 53b are different, the cell gap is different among the three types of pixels, and thus the capacitance value of the liquid crystal capacitor 5 is also different among the three types of pixels.
  • the LUT 43 is associated with a combination of the gradation value of the input video signal Xa, the gradation value of the video signal Xp of the previous frame, and the value of the pixel polarity POL.
  • the correction value of the video signal Xa is fixedly stored in advance.
  • the LUT 43 stores different correction values according to the polarity of the pixel applied voltage for at least a part of the combination of the values of the input video signal Xa and the video signal Xp of the previous frame.
  • the LUT 43 stores a correction value for the R pixel, a correction value for the G pixel, and a correction value for the B pixel according to the type of the pixel 3.
  • the display control unit 41 When reading the correction value of the input video signal Xa from the LUT 43, the display control unit 41 outputs a pixel type TYP indicating the type of the pixel 3 in addition to the input video signal Xa, the previous frame video signal Xp, and the pixel polarity POL. . At this time, a correction value corresponding to the type of pixel is read from the LUT 43. The display control unit 41 outputs the correction value read from the LUT 43 to the data line driving circuit 15 as the corrected video signal Xb. Accordingly, the display control unit 41 performs different corrections on the input video signal Xa according to the type of the pixel 3.
  • the liquid crystal panel 46 includes a plurality of types of pixels 3 having different capacitance values of the liquid crystal capacitance 5 due to different cell gaps, and the display control unit 41 receives the input video signal. Different corrections are performed on Xa depending on the type of pixel 3. As described above, even when the liquid crystal panel 46 having a different capacitance value in the pixel 3 is used because the cell gap is different depending on the type of the pixel 3, correction for the pull-in voltage is performed using different correction values depending on the type of the pixel 3. By performing the above, it is possible to eliminate the difference in response speed between the positive polarity and the negative polarity in all types of pixels 3 and to improve the display quality.
  • a liquid crystal panel including a plurality of types of pixels having different cell gaps is used, but a liquid crystal panel including a plurality of types of pixels other than the above (for example, including a plurality of types of pixels having different layouts). Even if a liquid crystal panel is used, the difference in response speed between positive polarity and negative polarity can be eliminated by the same method, and the display quality can be improved.
  • a plurality of correction values may be stored in the LUT according to the temperature, the surface temperature of the liquid crystal panel may be detected, and the correction value output from the LUT may be switched according to the detected temperature. Further, a correction value for performing overshoot drive may be stored in the LUT.
  • a liquid crystal display device having the characteristics of a plurality of embodiments may be configured by arbitrarily combining the characteristics of the embodiments as long as they do not contradict their properties.
  • a display device other than the liquid crystal display device can be configured by the method described above.
  • the display device of the present invention includes an input video signal, reference data (such as a video signal of the previous frame and the arrival gradation of the previous frame) obtained at the time of correcting the video signal of the previous frame, and pixels Based on the polarity information of the applied voltage, different correction is performed on the input video signal depending on whether it is positive or negative. Thereby, the difference in response speed between the positive polarity and the negative polarity can be eliminated, and the display quality can be improved.
  • the display device of the present invention is characterized in that the difference in response speed between application of positive voltage and application of negative electrode is small and the display quality is high, so that the display device can be used for various display devices such as liquid crystal display devices. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

 LUT(13)は、液晶パネル(16)内の画素における引き込み電圧を補償するための補正値を固定的に記憶している。表示制御部(11)は、入力映像信号(Xa)、フレームメモリ(12)から読み出した前フレームの映像信号(Xp)、および、画素印加電圧の極性を画素ごとに示す画素極性(POL)を出力し、LUT(13)から読み出した補正値を補正後の映像信号(Xb)としてデータ線駆動回路(15)に出力する。データ線駆動回路(15)は、補正後の映像信(Xb)に基づき交流駆動を行う。LUT(13)は、入力映像信号(Xa)と前フレームの映像信号(Xp)の値の組合せの少なくとも一部について、正極性電圧を印加するときと負極性電圧を印加するときとで異なる補正値を記憶している。これにより、正極性電圧印加時と負極性電極印加時の間で応答速度の差を小さくして、表示品位を高めることができる。

Description

表示装置
 本発明は、表示装置に関し、特に、画素に印加する電圧の極性を一定の周期で切り替える表示装置に関する。
 液晶表示装置では、画素に同じ極性の電圧を印加し続けると焼き付きなどの不具合が発生するので、画素に印加する電圧(以下、画素印加電圧という)の極性を一定の周期で切り替える交流駆動が行われる。例えば、1または複数のゲート線ごとに画素印加電圧の極性を切り替えるライン反転駆動や、1または複数のデータ線ごとに画素印加電圧の極性を切り替えるソースライン反転駆動や、1画素ごとに画素印加電圧の極性を切り替えるドット反転駆動などが行われる。
 また、液晶表示装置の画素では、画素内の薄膜トランジスタ(Thin Film Transistor:以下、TFTと略称する)がオン状態からオフ状態に変化したときに、画素印加電圧が所定量だけ下降することが知られている。例えば図3(後述)に示す画素3では、TFT4のドレイン電圧と共通電極電圧Vcomとの差が画素印加電圧になる。この画素印加電圧は、TFT4のゲート電圧がハイレベルからローレベルに変化したときに、TFT4のゲート-ドレイン間に存在する寄生容量7の容量値などに応じた量だけ下降する。このときの下降量は、引き込み電圧あるいはフィードスルー電圧と呼ばれる。
 引き込み電圧の影響を考慮せずに交流駆動を行うと、正極性電圧を印加したとき(以下、正極性時という)と負極性電圧を印加したとき(以下、負極性時という)で画素印加電圧の実効値に差が生じ、画面にフリッカ(ちらつき)が発生する。このフリッカを防止する方法として、正極性時と負極性時で画素印加電圧の実効値が等しくなるように、共通電極電圧Vcomを調整する方法が知られている。また、データ線駆動回路で引き込み電圧分を補正した電圧を生成し、補正後の電圧をデータ線に印加する方法も知られている。
 なお、本願発明については、以下の先行技術文献が知られている。特許文献1には、液晶の応答時間をほぼ一定にするために、図18に示すように、前フレームの階調データを記憶するフレームメモリ91と補正回路92を備えた液晶表示装置が記載されている。補正回路92は、入力階調データが記憶階調データよりも大きい場合には、1フレーム時間後に入力階調データに相当する表示階調とする補正階調データを液晶ドライバ93へ出力し、入力階調データが記憶階調データよりも小さい場合には、入力階調データを液晶ドライバ93へ出力する。
 特許文献2には、輝度をオーバーシュートまたはアンダーシュートして平均輝度を目標輝度にする補正を行うと共に、補正に必要な輝度が同じ場合にも、現フレームと前フレームの入力階調信号の階調レベルの大小に応じて、補正信号を小さくまたは大きくする補正回路を備えた表示装置が記載されている。特許文献3には、2枚のテーブルを用いてオーバーシュート駆動を行う液晶表示装置が記載されている。特許文献4には、データ線に印加される電圧の極性に応じてオーバーシュートの程度を制御して、ライン反転駆動を行う液晶表示装置が記載されている。
日本国特許2708746号公報 日本国特許3769463号公報 日本国特許3958161号公報 国際公開第2007/91353号パンフレット
 液晶表示装置には、動画を表示したときに、表示画面にちらつきや縞模様や粒状模様などが発生し、表示品位が低下するという問題がある。この問題の原因の1つとして、正極性時と負極性時で液晶の応答速度が異なることが挙げられる。例えば図3に示す画素3において画素印加電圧が変化すると、液晶の誘電率が変化し、液晶容量5の容量値も変化する。また、引き込み電圧は、TFT4がオフ状態に変化した時点での液晶容量5の容量値に依存するので、前フレーム時間における画素印加電圧の影響を受ける。このため、前フレーム時間における画素印加電圧の影響を考慮せずに交流駆動を行うと、画素の輝度は1フレーム時間後に予想したレベルに到達せず、正極性時と負極性時の間で応答速度に差が生じることがある。このような応答速度の差があると、表示画面にちらつきなど発生し、表示品位が低下する。
 それ故に、本発明は、正極性時と負極性時の間で応答速度の差が小さく、表示品位が高い表示装置を提供することを目的とする。
 本発明の第1の局面は、表示装置であって、
 薄膜トランジスタを含む複数の画素を含んだ表示パネルと、
 入力映像信号に対して、前記薄膜トランジスタのゲート-ドレイン間に存在する寄生容量に起因する画素印加電圧の下降を補償するための補正を行う補正部と、
 前記表示パネル内の各画素に対して、前記補正部で求めた映像信号に応じた電圧を極性を切り替えながら印加する駆動部と、
 前フレームの映像信号に対する補正時に得られたデータを参照データとして記憶する記憶部とを備え、
 前記補正部は、前記入力映像信号と前記記憶部から読み出した参照データとに基づき、両者の値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行うことを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記入力映像信号と前記参照データの値の組合せに対応づけて、前記入力映像信号に関する補正値を固定的に記憶したテーブルをさらに備え、
 前記補正部は、前記テーブルから読み出した補正値を用いて前記入力映像信号に対する補正を行い、
 前記テーブルは、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正値を記憶していることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記記憶部は、前記参照データとして前フレームの映像信号を記憶することを特徴とする。
 本発明の第4の局面は、本発明の第2の局面において、
 前記記憶部は、前記参照データとして1フレーム時間後の到達階調を記憶することを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記テーブルは、前記入力映像信号と前記参照データの値の組合せに対応づけて、1フレーム時間後の到達階調を固定的に記憶していることを特徴とする。
 本発明の第6の局面は、本発明の第1の局面において、
 前記入力映像信号に対して1枚の画像に基づき複数のサブフレームを生成する処理を行い、得られた映像信号を前記補正部に対して出力するフレームレート変換部をさらに備える。
 本発明の第7の局面は、本発明の第1の局面において、
 前記表示パネルは、画素の選択に用いられる複数のゲート線をさらに含み、
 前記駆動部は、同じゲート線に接続された複数の画素に対して、同じ極性の電圧を印加することを特徴とする。
 本発明の第8の局面は、本発明の第1の局面において、
 前記表示パネルは、画素の選択に用いられる複数のゲート線をさらに含み、
 前記駆動部は、同じゲート線に接続された複数の画素に対して、正極性電圧と負極性電圧を混在させて印加することを特徴とする。
 本発明の第9の局面は、本発明の第1の局面において、
 前記補正部は、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、画素印加電圧の絶対値が前フレームよりも大きくなるときには画素印加電圧を高くし、画素印加電圧の絶対値が前フレームよりも小さくなるときには画素印加電圧を低くする補正を行うことを特徴とする。
 本発明の第10の局面は、本発明の第1の局面において、
 前記補正部は、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、正極性電圧を印加するときには前フレームからの変化と同方向に階調値を変化させ、負極性電圧を印加するときには前フレームからの変化と逆方向に階調値を変化させる補正を行うことを特徴とする。
 本発明の第11の局面は、本発明の第1の局面において、
 前記表示パネルは、液晶容量と補助容量をさらに含む複数の画素を含んだ液晶パネルであって、前記液晶容量、前記補助容量および前記寄生容量の容量値のうち少なくとも1つが異なる複数種類の画素を含み、
 前記補正部は、前記入力映像信号に対して、画素の種類に応じて異なる補正を行うことを特徴とする。
 本発明の第12の局面は、本発明の第11の局面において、
 前記表示パネルは、セルギャップが異なる複数種類の画素を含むことを特徴とする。
 本発明の第13の局面は、薄膜トランジスタを含む複数の画素を含んだ表示パネルを有する表示装置の駆動方法であって、
 入力映像信号に対して、前記薄膜トランジスタのゲート-ドレイン間に存在する寄生容量に起因する画素印加電圧の下降を補償するための補正を行うステップと、
 前記表示パネル内の各画素に対して、補正された映像信号に応じた電圧を極性を切り替えながら印加するステップと、
 前フレームの映像信号に対する補正時に得られたデータを参照データとして記憶するステップとを備え、
 前記補正を行うステップは、前記入力映像信号と記憶された参照データとに基づき、両者の値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行うことを特徴とする。
 本発明の第1または第13の局面によれば、薄膜トランジスタのゲート-ドレイン間に存在する寄生容量に起因する画素印加電圧の下降を補償するために、入力映像信号に対する補正が行われる。この引き込み電圧分の補正を行うときに、前フレームの映像信号に対する補正時に得られた参照データに基づき、画素印加電圧の極性に応じて異なる補正を行うことにより、入力映像信号が変化したときでも補正を正確に行うことができる。したがって、正極性電圧印加時と負極性電圧印加時の間で1フレーム時間後の画素の輝度を揃え、両者の間で応答速度の差を解消することができる。よって、表示画面にちらつきなどが発生することを防止し、表示品位を高めることができる。
 本発明の第2の局面によれば、入力映像信号と参照データの値の組合せに対応づけて、入力映像信号に関する補正値を固定的に記憶したテーブルを設けることにより、引き込み電圧分の補正に必要な補正値を容易に求めることができる。
 本発明の第3の局面によれば、参照データとして前フレームの映像信号を用いることにより、比較的少ない回路量で、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第4の局面によれば、参照データとして1フレーム時間後の到達階調を用いることにより、正極性電圧印加時と負極性電圧印加時の間で応答速度の差をより高い精度で解消し、表示品位をさらに高めることができる。
 本発明の第5の局面によれば、入力映像信号に関する補正値と1フレーム時間後の到達階調を固定的に記憶したテーブルを設けることにより、引き込み電圧分の補正に必要な1フレーム時間後の到達階調を容易に求めることができる。
 本発明の第6の局面によれば、1枚の画像に基づき複数のサブフレームを生成する処理を行う表示装置において、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第7の局面によれば、ライン反転駆動のように、同じゲート線に接続された複数の画素に対して同じ極性の電圧を印加する表示装置において、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第8の局面によれば、ドット反転駆動やソースライン反転駆動のように、同じゲート線に接続された複数の画素に対して正極性電圧と負極性電圧を混在させて印加する表示装置において、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第9の局面によれば、画素印加電圧の絶対値が前フレームよりも大きくなるときには、引き込み電圧が大きいことを考慮して画素印加電圧を高くする補正を行い、画素印加電圧の絶対値が前フレームよりも小さくなるときには、引き込み電圧が小さいことを考慮して画素印加電圧を低くする補正を行うことにより、入力映像信号が変化したときでも補正を正確に行うことができる。したがって、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第10の局面によれば、正極性電圧を印加するときには前フレームからの変化と同方向に階調値を変化させ、負極性電圧を印加するときには前フレームからの変化と逆方向に階調値を変化させることにより、入力映像信号が変化したときでも補正を正確に行うことができる。したがって、正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第11の局面によれば、画素の種類によって画素内の容量の容量値が異なる液晶パネルを用いる場合でも、引き込み電圧分の補正を行うときに画素の種類に応じて異なる補正を行うことにより、すべての種類の画素について正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の第12の局面によれば、画素の種類によってセルギャップが異なるために画素内の容量の容量値が異なる液晶パネルを用いる場合でも、引き込み電圧分の補正を行うときに画素の種類に応じて異なる補正を行うことにより、すべての種類の画素について正極性電圧印加時と負極性電圧印加時の間で応答速度の差を解消し、表示品位を高めることができる。
本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。 図1に示す液晶表示装置の液晶パネルのレイアウト図である。 図1に示す液晶表示装置の液晶パネルに含まれる画素の回路図である。 図3に示す画素における画素印加電圧と液晶誘電率の関係を示す図である。 図3に示す画素における画素印加電圧と引き込み電圧の関係を示す図である。 ノーマリーホワイトモードの液晶パネルについて、画素内のTFTのドレイン電圧の変化と画素容量の変化を示す図である。 ノーマリーブラックモードの液晶パネルについて、画素内のTFTのドレイン電圧の変化と画素容量の変化を示す図である。 従来の液晶表示装置における輝度レベルの変化を示す図である。 図1に示す液晶表示装置における輝度レベルの変化を示す図である。 本発明の第2の実施形態に係る液晶表示装置の構成を示すブロック図である。 本発明の第3の実施形態に係る液晶表示装置の構成を示すブロック図である。 図11に示す液晶表示装置におけるフレームレート変換処理を示す図である。 本発明の第5の実施形態に係る液晶表示装置に含まれる変換器を示す図である。 本発明の第6の実施形態に係る液晶表示装置における画素印加電圧の変化を黒表示を続けて行う場合について示す波形図である。 同じ電圧の変化を白表示を続けて行う場合について示す波形図である。 同じ電圧の変化を正極性の白表示と負極性の黒表示を交互に行う場合について示す波形図である。 同じ電圧の変化を正極性の黒表示と負極性の白表示を交互に行う場合について示す波形図である。 本発明の第7の実施形態に係る液晶表示装置における画素印加電圧の変化を白表示を続けて行う場合について示す波形図である。 同じ電圧の変化を黒表示を続けて行う場合について示す波形図である。 同じ電圧の変化を正極性の黒表示と負極性の白表示を交互に行う場合について示す波形図である。 同じ電圧の変化を正極性の白表示と負極性の黒表示を交互に行う場合について示す波形図である。 本発明の第8の実施形態に係る液晶表示装置の構成を示すブロック図である。 図16に示す液晶表示装置の液晶パネルの断面図である。 従来の液晶表示装置の構成を示すブロック図である。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る液晶表示装置の構成を示すブロック図である。図1に示す液晶表示装置10は、表示制御部11、フレームメモリ12、ルックアップテーブル(Look Up Table :以下、LUTという)13、ゲート線駆動回路14、データ線駆動回路15、および、液晶パネル16を備えている。液晶表示装置10は、表示制御部11において入力映像信号Xaに対する補正を行い、補正後の映像信号Xbに基づき交流駆動を行うことにより液晶パネル16に画像を表示する。
 図2は、液晶パネル16のレイアウト図である。図2に示すように、液晶パネル16には、複数のゲート線1、複数のデータ線2、および、複数の画素3が形成される。ゲート線1は互いに平行に配置され、データ線2はゲート線1と直交するように互いに平行に配置される。画素3は、ゲート線1とデータ線2の交点に対応して2次元状に配置される。なお、ゲート線1は走査信号線とも呼ばれ、データ線2はソース線あるいは映像信号線とも呼ばれる。
 図3は、画素3の回路図である。図3に示すように、画素3は、TFT4、液晶容量5、および、補助容量6を含んでいる。TFT4のゲート電極はゲート線1に接続され、ソース電極はデータ線2に接続される。TFT4のドレイン電極は、液晶容量5の一方の電極と補助容量6の一方の電極に接続される。液晶容量5の他方の電極には共通電極電圧Vcomが印加され、補助容量6の他方の電極には共通電極電圧Vcomと同レベルの補助容量電圧Vcsが印加される。画素3では、TFT4のゲート電極とドレイン電極の間に寄生容量7が存在し、TFT4のドレイン電圧と共通電極電圧Vcomとの差が画素印加電圧になる。
 TFT4は、画素3に電圧を書き込むか否かを切り替えるスイッチング素子として機能する。画素3に電圧を書き込むときには、TFT4の閾値電圧よりも高い電圧をゲート線1に印加し、映像信号に応じた電圧をデータ線2に印加する。このときTFT4はオン状態になるので、TFT4のドレイン電圧はデータ線2に印加した電圧に等しくなり、液晶容量5と補助容量6にはこの時点での画素印加電圧に応じた量の電荷が蓄積される。
 その後に、TFT4の閾値電圧よりも低い電圧をゲート線1に印加して、TFT4をオフ状態に切り替える。画素3には寄生容量7が存在するので、TFT4がオン状態からオフ状態に変化したときに、画素印加電圧は次式(1)に示す量だけ下降する。
  ΔVd=Vgp-p ×Cgd/(Clc+Ccs+Cgd) … (1)
 ただし、式(1)において、Vgp-p はTFT4のゲート電圧の変化量、Clcは液晶容量5の容量値、Ccsは補助容量6の容量値、Cgdは寄生容量7の容量値である。なお、寄生容量7以外の寄生容量を考慮する場合には、式(1)の括弧内にその容量値を加算すればよい。
 その後、TFT4が再びオン状態になるまでの間、画素印加電圧はほぼ同じレベルを保つ。この期間における画素の輝度は、画素印加電圧によって定まる。したがって、液晶パネル16内のすべての画素3に対して入力映像信号Xaに応じた電圧を書き込むことにより、液晶パネル16に所望の画像を表示することができる。
 以下、図1を参照して、液晶表示装置10の構成と動作を説明する。表示制御部11は、液晶表示装置10の全体を制御する制御回路である。フレームメモリ12は、入力映像信号Xaを少なくとも1フレーム分記憶するメモリである。LUT13は、入力映像信号Xaの補正値を予め固定的に記憶したテーブルである。ゲート線駆動回路14とデータ線駆動回路15は、液晶パネル16の駆動回路である。
 液晶表示装置10の外部には、同期信号SSと映像信号Xaを出力する映像信号源100が設けられる。映像信号源100から出力された同期信号SSと映像信号Xaは、表示制御部11に入力される。表示制御部11は、同期信号SSに基づき、ゲート線駆動回路14に対して制御信号C1を出力し、データ線駆動回路15に対して制御信号C2を出力する。制御信号C1にはゲートスタートパルスやゲートクロックなどが含まれ、制御信号C2にはソーススタートパスルやソースクロックなどが含まれる。また、表示制御部11は、画素印加電圧の極性をラインごとに示すライン極性REVをデータ線駆動回路15に対して出力する。さらに表示制御部11は、入力映像信号Xaに対して引き込み電圧分を補償するための補正を行い、補正後の映像信号Xbをデータ線駆動回路15に対して出力する。フレームメモリ12とLUT13は、この補正を行うために設けられている。
 ゲート線駆動回路14は、制御信号C1に基づき、液晶パネル16のゲート線1を駆動する。より詳細には、ゲート線駆動回路14は、制御信号C1に従い複数のゲート線1の中から1本のゲート線を順に選択し、選択したゲート線にTFT4の閾値電圧よりも高い電圧を印加し、それ以外のゲート線にTFT4の閾値電圧よりも低い電圧を印加する。データ線駆動回路15は、制御信号C2とライン極性REVと補正後の映像信号Xbに基づき、液晶パネル16のデータ線2を駆動する。より詳細には、データ線駆動回路15は、補正後の映像信号Xbに対応する電圧を生成し、生成した電圧をデータ線2に印加する。この際、データ線駆動回路15は、生成した電圧の極性をライン極性REVに従い正極性と負極性に切り替える。
 表示制御部11は、入力映像信号Xaをフレームメモリ12に書き込み、書き込んだ映像信号を1フレーム時間後に読み出す。以下、フレームメモリ12から読み出された映像信号を「前フレームの映像信号Xp」という。表示制御部11は、各フレーム時間において、入力映像信号Xaを現フレームの映像信号としてフレームメモリ12に書き込みながら、前フレームの映像信号Xpをフレームメモリ12から読み出す。また、表示制御部11は、LUT13に対して、入力映像信号Xa、前フレームの映像信号Xp、および、画素印加電圧の極性を画素ごとに示す画素極性POLを出力し、LUT13から読み出した補正値を補正後の映像信号Xbとしてデータ線駆動回路15に対して出力する。
 LUT13は、入力映像信号Xaの階調値、前フレームの映像信号Xpの階調値、および、画素極性POLの値の組合せに対応づけて、入力映像信号Xaの補正値を予め固定的に記憶している。例えば、入力映像信号Xaが256階調の映像信号である場合、LUT13には最大で(256×256×2)個の補正値が記憶される。
 入力映像信号Xaの階調値がRa、前フレームの映像信号Xpの階調値がRpである場合、この階調値の組合せに対応した補正値は、例えば以下の方法で決定される。まず、階調値Ra、Rpと画素極性POLの値に基づき、引き込み電圧分を補償するためには、画素印加電圧を高くすべきか、低くすべきかが判断される。画素印加電圧を高くすべき場合には、補正値は、画素印加電圧が次式(2)に示す量だけ高くなるように決定される。画素印加電圧を低くすべき場合には、補正値は、画素印加電圧が次式(2)に示す量だけ低くなるように決定される。
  ΔVd=Vgp-p ×Cgd/(Clc(P)+Ccs+Cgd) … (2)
 ただし、式(2)に含まれるClc(P)は、前フレームを表示しているときの液晶容量5の容量値である。
 例えば、黒表示の後に白表示を行うときの補正値は、画素印加電圧が式(3)に示す量だけ高く、あるいは、低くなるように決定される。また、白表示の後に黒表示を行うときの補正値は、画素印加電圧が式(4)に示す量だけ高く、あるいは、低くなるように決定される。
  ΔVd=Vgp-p ×Cgd/(Clc(B)+Ccs+Cgd) … (3)
  ΔVd=Vgp-p ×Cgd/(Clc(W)+Ccs+Cgd) … (4)
 ただし、式(3)に含まれるClc(B)は黒表示のときの画素印加電圧であり、式(4)に含まれるClc(W)は白表示のときの画素印加電圧である。このようにLUT13に記憶される補正値は、画素印加電圧が前フレームの映像信号に応じて変化するように決定される。
 このように液晶表示装置10では、表示制御部11は、入力映像信号Xaに対して引き込み電圧分を補償するための補正(すなわち、寄生容量7に起因する画素印加電圧の下降を補償するための補正)を行う補正部として機能する。フレームメモリ12は、前フレームの映像信号に対する補正時に得られたデータ(本実施形態では入力映像信号Xa)を参照データとして記憶する記憶部として機能する。LUT13は、入力映像信号Xaと参照データの値の組合せに対応づけて、入力映像信号Xaに関する補正値を固定的に記憶したテーブルとして機能する。ゲート線駆動回路14とデータ線駆動回路15は、液晶パネル16内の各画素3に対して、補正部で求めた映像信号(補正後の映像信号Xb)に応じた電圧を極性を切り替えながら印加する駆動部として機能する。
 なお、データ線駆動回路で引き込み電圧分を補正する液晶表示装置は、従来から知られている。従来の液晶表示装置のデータ線駆動回路は、画素印加電圧を現フレームの映像信号に応じて変化させる。例えば、従来のデータ線駆動回路は、画素印加電圧を式(5)に示す量だけ変化させる。
  ΔVd=Vgp-p ×Cgd/(Clc(A)+Ccs+Cgd) … (5)
 ただし、式(5)に含まれるClc(A)は、現フレームを表示しているときの液晶容量5の容量値である。
 以下、図4~図9を参照して、本実施形態に係る液晶表示装置10の効果を説明する。図4は、画素3における画素印加電圧と液晶誘電率の関係を示す図である。図5は、画素3における画素印加電圧と引き込み電圧の関係を示す図である。図4および図5に示すように、画素印加電圧が高いほど、液晶誘電率は大きくなり、引き込み電圧は小さくなる。
 図6は、ノーマリーホワイトモードの液晶パネルについて、画素内のTFTのドレイン電圧の変化と画素容量の変化を示す図である。図7は、ノーマリーブラックモードの液晶パネルについて、同じ内容を示す図である。画素容量は、画素3内の容量(液晶容量5、補助容量6および寄生容量7)の容量値の合計である。図6および図7において、時刻ti(i=1~6)から始まるフレーム時間を「第iフレーム時間」という。
 図6と図7の上段に示すように、画素には、共通電極電圧よりも高い正極性電圧と共通電極電圧よりも低い負極性電圧とが交互に書き込まれる。図6では、第1、第4および第5フレーム時間では白表示用の電圧(以下、白電圧という)が書き込まれ、第2および第3フレーム時間では黒表示用の電圧(以下、黒電圧という)が書き込まれる。図7では、第1、第4および第5フレーム時間では黒電圧が書き込まれ、第2および第3フレーム時間では白電圧が書き込まれる。
 ノーマリーホワイトモードの液晶パネル(図6)では、白表示のときよりも黒表示のときのほうが画素印加電圧の絶対値は大きい。画素印加電圧の絶対値が大きいほど画素容量は大きいので(図4を参照)、画素容量は黒表示を行う第2および第3フレーム時間では大きくなる。ただし、画素印加電圧が急峻に変化しても、液晶分子の配向は緩慢に変化するので、画素容量も緩慢に変化する。このため画素容量は、図6の下段に示すように、第2フレーム時間で徐々に増加し、第4フレーム時間で徐々に減少する。
 TFT4がオン状態からオフ状態に変化したときに、画素印加電圧は式(1)に示す引き込み電圧分だけ下降する。式(1)に含まれる容量値Clcは、TFT4がオフ状態に変化した時点での液晶容量5の容量値である。容量値Clcは、前フレームと現フレームの間で入力映像信号Xaが変化した場合には、現フレームを表示しているときの容量値よりも、前フレームを表示しているときの容量値に近い。
 このため、第2フレーム時間では、前フレーム時間で白表示を行った影響を受けて、画素印加電圧は大きく下降する(引き込み電圧は大きい)。第3フレーム時間では、前フレーム時間で黒表示を行った影響を受けて、画素印加電圧は小さく下降する(引き込み電圧は小さい)。同様に、第4フレーム時間では画素印加電圧は小さく下降し、第5フレーム時間では画素印加電圧は大きく下降する。
 上述したように、従来の液晶表示装置は、画素印加電圧を現フレームの映像信号に応じて変化させる。このため、例えば黒表示を行う第2フレーム時間では、引き込み電圧は過小に評価され、画素印加電圧は大きく補正することが好ましいにもかかわらず小さく補正される。また、白表示を行う第4フレーム時間では、引き込み電圧は過大に評価され、画素印加電圧は小さく補正することが好ましいにもかかわらず大きく補正される。ノーマリーブラックモードの液晶パネル(図7)についても、同様のことが言える。
 このように従来の液晶表示装置では、前フレームと現フレームの間で入力映像信号Xaが変化した場合には、引き込み電圧分の補正を正確に行うことができない。このため、図8に示すように、正極性時と負極性時の間で1フレーム時間後の画素の輝度の到達レベルに差が生じ、正極性時と負極性時の間で応答速度に差が生じる。このような応答速度の差があると、表示画面にちらつきなどが発生し、表示品位が低下する。
 これに対して、本実施形態に係る液晶表示装置10は、画素印加電圧を前フレームの映像信号Xpに応じて変化させる。このため、例えば第2フレーム時間では、前フレーム時間で白表示を行ったので引き込み電圧は大きいと評価され、画素印加電圧は大きく補正される。また、第4フレーム時間では、前フレームで黒表示を行ったので引き込み電圧は小さいと評価され、画素印加電圧は小さく補正される。ノーマリーブラックモードの液晶パネル(図7)についても、同様のことが言える。
 このように液晶表示装置10では、前フレームと現フレームの間で入力映像信号Xaが変化した場合でも、引き込み電圧分の補正を正確に行うことができる。このため、図9に示すように、正極性時と負極性時の間で1フレーム時間後の画素の輝度の到達レベルを等しくし、正極性時と負極性時の間で応答速度の差を解消することができる。したがって、表示画面にちらつきなどが発生することを防止し、表示品位を高めることができる。
 以上に示すように、本実施形態に係る液晶表示装置10では、TFT4のゲート-ドレイン間に存在する寄生容量7に起因する画素印加電圧の下降を補償するために、入力映像信号Xaに対する補正が行われる。この引き込み電圧分の補正を行うときに、前フレームの映像信号Xpを参照データとして、参照データに基づき画素印加電圧の極性に応じて異なる補正を行うことにより、入力映像信号Xaが変化したときでも補正を正確に行うことができる。したがって、正極性時と負極性時の間で1フレーム時間後の画素の輝度を揃え、両者の間で応答速度の差を解消することができる。よって、表示画面にちらつきなどが発生することを防止し、表示品位を高めることができる。
 また、入力映像信号Xaと前フレームの映像信号Xpの値の組合せに対応づけて、入力映像信号Xaの補正値を固定的に記憶したLUT13を用いることにより、引き込み電圧分の補正に必要な補正値を容易に求めることができる。また、フレームメモリ12に記憶される参照データとして前フレームの映像信号Xpを用いることにより、比較的少ない回路量で上記の効果を得ることができる。
 なお、本実施形態に係る液晶表示装置については、各種の変形例を構成することができる。例えば、LUT13は、入力映像信号Xaの階調値と前フレームの映像信号Xpの階調値の組合せのすべてについて、画素印加電圧の極性に応じて異なる補正値を記憶していてもよく、2個の階調値の組合せの一部について、画素印加電圧の極性に応じて異なる補正値を記憶していてもよい。このようにLUT13は、入力映像信号Xaと前フレームの映像信号Xpの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正値を記憶していればよい。表示制御部11は、入力映像信号Xaと前フレームの映像信号Xpの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行えばよい。
 また、LUT13に記憶される補正値を上記以外の方法で決定してもよい。例えば、LUT13に記憶される補正値を実験によって決定してもよい。この場合には、引き込み電圧を実測し、正極性時と負極性時で引き込み電圧の差が小さくなるように補正値を決定すればよい。また、入力映像信号Xaの階調値と前フレームの映像信号Xpの階調値の組合せによっては、正極性時と負極性時で引き込み電圧に差があっても、表示画面にその影響が現れない場合もある。このような場合には、表示画面に影響が現れない範囲内で補正値を自由に決定してもよい。
 また、LUT13に記憶される補正値は、補正後の映像信号Xbの階調値そのものでもよく、補正後の映像信号Xbの階調値と入力映像信号Xaの階調値との差でもよい。後者の場合には、表示制御部11が入力映像信号Xaに対してLUT13から読み出した補正値を加算すればよい。これ以外にも、LUT13に記憶される補正値として、入力映像信号Xaに対して引き込み電圧分の補正を行うときに使用できる任意の値を使用することができる。例えば、LUT13に記憶される補正値は、映像信号の階調値でもよく、画素印加電圧のレベルでもよい。
 また、液晶表示装置は、引き込み電圧分を補正する機能を有するデータ線駆動回路を備えていてもよい。この場合には、表示制御部11によるLUT13を用いた補正とデータ線駆動回路15による補正の両方を行ったときに、正極性時と負極性時の間で応答速度の差を解消できるように、LUT13に記憶される補正値を決定すればよい。
 (第2の実施形態)
 図10は、本発明の第2の実施形態に係る液晶表示装置の構成を示すブロック図である。図10に示す液晶表示装置20は、第1の実施形態に係る液晶表示装置10において、表示制御部11、フレームメモリ12およびLUT13を、それぞれ、表示制御部21、フレームメモリ22およびLUT23に置換したものである。以下に示す各実施形態の構成要素のうち、第1の実施形態と同一の要素については同一の参照符号を付して説明を省略する。
 第1の実施形態に係る液晶表示装置10では、液晶パネル16の応答が遅い場合には、画素3に対して映像信号に応じた電圧を印加しても、画素3の輝度が1フレーム時間後に所望のレベルに到達しないことがある。そこで、本実施形態に係る液晶表示装置20では、フレームメモリ22は、入力映像信号Xaに代えて、1フレーム時間後に画素の輝度が到達するレベルに対応した階調(以下、到達階調という)を1フレーム分記憶する。表示制御部21は、入力映像信号Xaについて求めた到達階調をフレームメモリ22に書き込み、書き込んだ到達階調を1フレーム時間後に読み出す。以下、フレームメモリ22から読み出された到達階調を「前フレームの到達階調Xq」という。
 表示制御部21は、LUT13に対して、入力映像信号Xa、フレームメモリ22から読み出した前フレームの到達階調Xq、および、画素極性POLを出力する。このとき、LUT23から入力映像信号Xaの補正値と到達階調が読み出される。表示制御部21は、LUT23から読み出した補正値を補正後の映像信号Xbとしてデータ線駆動回路15に対して出力し、LUT23から読み出した到達階調を現フレームの到達階調Xcとしてフレームメモリ22に書き込む。
 LUT23は、入力映像信号Xaの階調値と前フレームの到達階調Xqの値の組合せに対応づけて、入力映像信号Xaの補正値と到達階調を予め固定的に記憶している。LUT23は、入力映像信号Xaの階調値と前フレームの到達階調Xqの値の組合せのすべてについて、画素印加電圧の極性に応じて異なる補正値を記憶していてもよく、2個の値の組合せの一部について、画素印加電圧の極性に応じて異なる補正値を記憶していてもよい。このようにLUT23は、入力映像信号Xaと前フレームの到達階調Xqの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正値を記憶している。表示制御部21は、フレームメモリ22とLUT23を用いて、入力映像信号Xaと前フレームの到達階調Xqの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行う。
 以上に示すように、本実施形態に係る液晶表示装置20では、第1の実施形態と同様に、入力映像信号Xaに対して引き込み電圧分を補償するための補正が行われる。この補正を行うときに、前フレームの到達階調Xqを参照データとして、参照データに基づき画素印加電圧の極性に応じて異なる補正を行うことにより、液晶パネル16の応答が遅い場合でも補正を高い精度で行うことができる。したがって、正極性時と負極性時の間で応答速度の差をより高い精度で解消し、表示品位をさらに高めることができる。また、入力映像信号Xaに関する補正値と1フレーム時間後の到達階調を固定的に記憶したテーブルを用いることにより、引き込み電圧分の補正に必要な1フレーム時間後の到達階調を容易に求めることができる。
 (第3の実施形態)
 図11は、本発明の第3の実施形態に係る液晶表示装置の構成を示すブロック図である。図11に示す液晶表示装置は、第1の実施形態に係る液晶表示装置10にフレームレート変換部37を追加したものである。フレームレート変換部37は、映像信号源100から出力された同期信号SSと映像信号Xaに対してフレームレート変換を行い、変換後の同期信号SS* と変換後の映像信号Xa* を出力する。
 フレームレート変換部37は、入力映像信号Xaに対して、1枚の画像に基づき複数のサブフレームを生成する処理を行う。例えば、1枚の画像に基づき2枚のサブフレームを生成する場合には、図12に示すように、入力映像信号Xaに基づき、第1サブフレーム映像信号Xa1と第2サブフレーム映像信号Xa2が生成される。生成された2種類の映像信号Xa1、Xa2を順に出力することにより、変換後の映像信号Xa* が得られる。表示制御部11は、変換後の同期信号SS* と変換後の映像信号Xa* に基づき、第1の実施形態と同じ動作を行う。
 フレームレート変換部37は、1枚の画像に基づき複数のサブフレームを生成するときに、任意の方法を用いてもよい。例えば、フレームレート変換部37は、元の画像を複写してもよく、前後2枚の画像に基づき補間処理を行ってもよく、一方のサブフレームを優先して、元の画像の階調値を2枚のサブフレームに分配する処理を行ってもよい。
 本実施形態に係る液晶表示装置によれば、1枚の画像に基づき複数のサブフレームを生成する処理を行う場合において、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 (第4の実施形態)
 本発明の第4の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置10と同じ構成(図1)を有する。本実施形態に係る液晶表示装置は、データ線駆動回路15が、同じゲート線1に接続された複数の画素3に対して同じ極性の電圧を印加することを特徴とする。本実施形態では、画素印加電圧の極性をラインごとに示すライン極性REVをそのまま、画素印加電圧の極性を画素ごとに示す画素極性POLとして使用することができる。
 本実施形態に係る液晶表示装置によれば、ライン反転駆動のように、同じゲート線1に接続された複数の画素3に対して同じ極性の電圧を印加する場合において、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 (第5の実施形態)
 本発明の第5の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置10と同じ構成(図1)を有する。本実施形態に係る液晶表示装置は、データ線駆動回路15が、同じゲート線1に接続された複数の画素3に対して正極性電圧と負極性電圧を混在させて印加することを特徴とする。本実施形態に係る表示制御部11は、図13に示す変換器38を含んでいる。変換器38は、画素印加電圧の極性をラインごとに示すライン極性REVとデータ線番号Nsとに基づき、画素印加電圧の極性を画素ごとに示す画素極性POLを求める。
 本実施形態に係る液晶表示装置によれば、ドット反転駆動やソースライン反転駆動のように、同じゲート線1に接続された複数の画素3に対して正極性電圧と負極性電圧を混在させて印加する場合において、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 (第6の実施形態)
 本発明の第6の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置10と同じ構成(図1)を有する。本実施形態に係る液晶表示装置は、液晶パネル16がノーマリーホワイトモードの液晶パネルであることを特徴とする。以下の説明では、正極性電圧を印加して白表示を行うことを「正極性の白表示」、正極性電圧を印加して黒表示を行うことを「正極性の黒表示」、負極性電圧を印加して白表示を行うことを「負極性の白表示」、負極性電圧を印加して黒表示を行うことを「負極性の黒表示」という。
 図14A~Dは、本実施形態に係る液晶表示装置における画素印加電圧の変化を示す波形図である。これらの図面には、黒表示を続けて行う場合(図14A)、白表示を続けて行う場合(図14B)、正極性の白表示と負極性の黒表示を交互に行う場合(図14C)、および、正極性の黒表示と負極性の白表示を交互に行う場合(図14D)について、画素印加電圧の変化が記載されている。図14A~Dに示すように、ノーマリーホワイトモードの液晶パネルでは、白表示の後のフレーム時間における引き込み電圧ΔVd(W)は大きく、黒表示の後のフレーム時間における引き込み電圧ΔVd(B)は小さい。
 図14Cに示すように、負極性の黒表示の後に正極性の白表示を行う場合(第1の場合)には、実際の引き込み電圧は小さいので、表示制御部11は画素印加電圧が現状より低くなる(階調値が大きくなる)ように入力映像信号Xaを補正する。逆に、正極性の白表示の後に負極性の黒表示を行う場合(第2の場合)には、実際の引き込み電圧は大きいので、表示制御部11は画素印加電圧が現状より高くなる(階調値が大きくなる)ように入力映像信号Xaを補正する。
 図14Dに示すように、負極性の白表示の後に正極性の黒表示を行う場合(第3の場合)には、実際の引き込み電圧は大きいので、表示制御部11は画素印加電圧が現状より高くなる(階調値が小さくなる)ように入力映像信号Xaを補正する。逆に、正極性の黒表示の後に負極性の白表示を行う場合(第4の場合)には、実際の引き込み電圧は小さいので、表示制御部11は画素印加電圧が現状より低くなる(階調値が小さくなる)ように入力映像信号Xaを補正する。
 まとめると、本実施形態に係る液晶表示装置の表示制御部11は、画素印加電圧の絶対値が前フレームよりも大きくなる場合(第2および第3の場合)には画素印加電圧が現状よりも高くなるように、画素印加電圧の絶対値が前フレームよりも小さくなる場合(第1および第4の場合)には画素印加電圧が現状よりも低くなるように、入力映像信号Xaを補正する。あるいは、表示制御部11は、階調値が大きくなる正極性時(第1の場合)には階調値が大きくなるように、階調値が小さくなる正極性時(第3の場合)には階調値が小さくなるように、階調値が大きくなる負極性時(第4の場合)には階調値が小さくなるように、階調値が小さくなる負極性時(第2の場合)には階調値が大きくなるように入力映像信号Xaを補正する。言い換えると、表示制御部11は、入力映像信号Xaに対して、正極性時には前フレームからの変化と同方向に階調値を変化させ、負極性時には前フレームからの変化と逆方向に階調値を変化させる補正を行う。
 本実施形態に係る液晶表示装置によれば、ノーマリーホワイトモードの液晶パネルを使用する場合に、画素印加電圧の絶対値が前フレームよりも大きくなるときには、引き込み電圧が大きいことを考慮して画素印加電圧を高くする補正を行い、画素印加電圧の絶対値が前フレームよりも小さくなるときには、引き込み電圧が小さいことを考慮して画素印加電圧を低くする補正を行うことにより、入力映像信号が変化したときでも補正を正確に行うことができる。また、正極性電圧を印加するときには前フレームからの変化と同方向に階調値を変化させ、負極性電圧を印加するときには前フレームからの変化と逆方向に階調値を変化させることにより、入力映像信号が変化したときでも補正を正確に行うことができる。したがって、ーマリーホワイトモードの液晶パネルを使用する場合に、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 (第7の実施形態)
 本発明の第7の実施形態に係る液晶表示装置は、第1の実施形態に係る液晶表示装置10と同じ構成(図1)を有する。本実施形態に係る液晶表示装置は、液晶パネル16がノーマリーブラックモードの液晶パネルであることを特徴とする。
 図15A~Dは、本実施形態に係る液晶表示装置における画素印加電圧の変化を示す波形図である。これらの図面には、白表示を続けて行う場合(図15A)、黒表示を続けて行う場合(図15B)、正極性の黒表示と負極性の白表示を交互に行う場合(図15C)、および、正極性の白表示と負極性の黒表示を交互に行う場合(図15D)について、画素印加電圧の変化が記載されている。図15A~Dに示すように、ノーマリーブラックモードの液晶パネルでは、黒表示の後のフレーム時間における引き込み電圧ΔVd(B)は大きく、白表示の後のフレーム時間における引き込み電圧ΔVd(W)は小さい。
 図15Cに示すように、負極性の白表示の後に正極性の黒表示を行う場合(第5の場合)には、実際の引き込み電圧は小さいので、表示制御部11は画素印加電圧が現状より低くなる(階調値が小さくなる)ように入力映像信号Xaを補正する。逆に、正極性の黒表示の後に負極性の白表示を行う場合(第6の場合)には、実際の引き込み電圧は大きいので、表示制御部11は画素印加電圧が現状より高くなる(階調値が小さくなる)ように入力映像信号Xaを補正する。
 図15Dに示すように、負極性の黒表示の後に正極性の白表示を行う場合(第7の場合)には、実際の引き込み電圧は大きいので、表示制御部11は画素印加電圧が現状より高くなる(階調値が大きくなる)ように入力映像信号Xaを補正する。逆に、正極性の白表示の後に負極性の黒表示を行う場合(第8の場合)には、実際の引き込み電圧は小さいので、表示制御部11は画素印加電圧が現状より低くなる(階調値が大きくなる)ように入力映像信号Xaを補正する。
 まとめると、本実施形態に係る液晶表示装置の表示制御部11は、画素印加電圧の絶対値が前フレームよりも大きくなる場合(第6および第7の場合)には画素印加電圧が現状よりも高くなるように、画素印加電圧の絶対値が前フレームよりも小さくなる場合(第5および第8の場合)には画素印加電圧が現状よりも低くなるように、入力映像信号Xaを補正すれる。あるいは、表示制御部11は、階調値が大きくなる正極性時(第7の場合)には階調値が大きくなるように、階調値が小さくなる正極性時(第5の場合)には階調値が小さくなるように、階調値が大きくなる負極性時(第6の場合)には階調値を小さくなるように、階調値が小さくなる負極性時(第8の場合)には階調値を大きくなるように入力映像信号Xaを補正する。言い換えると、表示制御部11は、入力映像信号Xaに対して、正極性時には前フレームからの変化と同方向に階調値を変化させ、負極性時には前フレームからの変化と逆方向に階調値を変化させる補正を行う。
 本実施形態に係る液晶表示装置によれば、第6の実施形態と同様の理由により、ノーマリーブラックモードの液晶パネルを使用する場合に、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 (第8の実施形態)
 図16は、本発明の第8の実施形態に係る液晶表示装置の構成を示すブロック図である。図16に示す液晶表示装置40は、第1の実施形態に係る液晶表示装置において、表示制御部11、LUT13および液晶パネル16を、それぞれ、表示制御部41、LUT43および液晶パネル46に置換したものである。液晶パネル46内の画素3は、赤色を表示するためのR画素、緑色を表示するG画素、および、青色を表示するためのB画素の3種類に分類される。
 図17は、液晶パネル46の断面図である。液晶パネル46は、2枚のガラス基板51a、51bの間に液晶層52を挟み込んだ構造を有する。一方のガラス基板51aには3色のカラーフィルタ53r、53g、53b、遮光膜54、対向電極55などが設けられ、他方のガラス基板51bには画素電極56、データ線57などが設けられる。ガラス基板51a、51bの対向する面には配向膜58が設けられ、他方の面には偏光板59が設けられる。
 R画素、G画素およびB画素は、それぞれ、カラーフィルタ53r、53g、53bを設けた位置に形成される。図17において、Dr、DgおよびDbは、それぞれ、R画素、G画素およびB画素のセルギャップ(液晶層52の厚さ)を表す。カラーフィルタ53r、53g、53bの厚さが異なる場合、3種類の画素間でセルギャップが異なるために、3種類の画素間で液晶容量5の容量値も異なる。
 LUT43は、第1の実施形態に係るLUT13と同様に、入力映像信号Xaの階調値、前フレームの映像信号Xpの階調値、および、画素極性POLの値の組合せに対応づけて、入力映像信号Xaの補正値を予め固定的に記憶している。また、LUT43は、入力映像信号Xaと前フレームの映像信号Xpの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正値を記憶している。さらにLUT43は、画素3の種類に応じて、R画素用の補正値、G画素用の補正値、および、B画素用の補正値を記憶している。
 表示制御部41は、LUT43から入力映像信号Xaの補正値を読み出すときには、入力映像信号Xa、前フレームの映像信号Xp、画素極性POLに加えて、画素3の種類を示す画素タイプTYPを出力する。このとき、LUT43から画素の種類に応じた補正値が読み出される。表示制御部41は、LUT43から読み出した補正値を補正後の映像信号Xbとしてデータ線駆動回路15に対して出力する。これにより、表示制御部41は、入力映像信号Xaに対して画素3の種類に応じて異なる補正を行う。
 以上に示すように、本実施形態に係る液晶表示装置では、液晶パネル46はセルギャップが異なるために液晶容量5の容量値が異なる複数種類の画素3を含み、表示制御部41は入力映像信号Xaに対して画素3の種類に応じて異なる補正を行う。このように画素3の種類によってセルギャップが異なるために画素3内の容量の容量値が異なる液晶パネル46を用いる場合でも、画素3の種類に応じて異なる補正値を用いて引き込み電圧分の補正を行うことにより、すべての種類の画素3において正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 なお、ここでは例としてセルギャップが異なる複数種類の画素を含んだ液晶パネルを用いることとしたが、複数種類の画素を含んだ上記以外の液晶パネル(例えば、レイアウトが異なる複数種類の画素を含んだ液晶パネル)を用いても、同様の方法で正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の各実施形態に係る液晶表示装置については、以下の変形例を構成することができる。例えば、温度に応じて複数の補正値をLUTに記憶させ、液晶パネルの表面温度を検出し、検出した温度に応じてLUTから出力される補正値を切り替えてもよい。また、オーバーシュート駆動を行うための補正値をLUTに記憶させてもよい。また、各実施形態の特徴をその性質に反しない限り任意に組み合わせて、複数の実施形態の特徴を合わせ持つ液晶表示装置を構成してもよい。また、以上に述べた方法で液晶表示装置以外の表示装置を構成することもできる。
 以上に示すように、本発明の表示装置は、入力映像信号、前フレームの映像信号に対する補正時に得られた参照データ(前フレームの映像信号や、前フレームの到達階調など)、および、画素印加電圧の極性情報に基づき、入力映像信号に対して正極性時と負極性時で異なる補正を行う。これにより、正極性時と負極性時の間で応答速度の差を解消し、表示品位を高めることができる。
 本発明の表示装置は、正極性電圧印加時と負極性電極印加時の間で応答速度の差が小さく、表示品位が高いという特徴を有するので、液晶表示装置など、各種の表示装置に利用することができる。
 3…画素
 4…TFT
 7…寄生容量
 10、20、30、40…液晶表示装置
 11、21、41…表示制御部
 12、22…フレームメモリ
 13、23、43…LUT
 14…ゲート線駆動回路
 15…データ線駆動回路
 16、46…液晶パネル
 37…フレームレート変換部
 38…変換器
 Xa…入力映像信号
 Xa* …変換後の映像信号
 Xb…補正後の映像信号
 Xc…現フレームの到達階調
 Xp…前フレームの映像信号
 Xq…前フレームの到達階調
 POL…画素極性
 REV…ライン極性

Claims (13)

  1.  薄膜トランジスタを含む複数の画素を含んだ表示パネルと、
     入力映像信号に対して、前記薄膜トランジスタのゲート-ドレイン間に存在する寄生容量に起因する画素印加電圧の下降を補償するための補正を行う補正部と、
     前記表示パネル内の各画素に対して、前記補正部で求めた映像信号に応じた電圧を極性を切り替えながら印加する駆動部と、
     前フレームの映像信号に対する補正時に得られたデータを参照データとして記憶する記憶部とを備え、
     前記補正部は、前記入力映像信号と前記記憶部から読み出した参照データとに基づき、両者の値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行うことを特徴とする、表示装置。
  2.  前記入力映像信号と前記参照データの値の組合せに対応づけて、前記入力映像信号に関する補正値を固定的に記憶したテーブルをさらに備え、
     前記補正部は、前記テーブルから読み出した補正値を用いて前記入力映像信号に対する補正を行い、
     前記テーブルは、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正値を記憶していることを特徴とする、請求項1に記載の表示装置。
  3.  前記記憶部は、前記参照データとして前フレームの映像信号を記憶することを特徴とする、請求項2に記載の表示装置。
  4.  前記記憶部は、前記参照データとして1フレーム時間後の到達階調を記憶することを特徴とする、請求項2に記載の表示装置。
  5.  前記テーブルは、前記入力映像信号と前記参照データの値の組合せに対応づけて、1フレーム時間後の到達階調を固定的に記憶していることを特徴とする、請求項4に記載の表示装置。
  6.  前記入力映像信号に対して1枚の画像に基づき複数のサブフレームを生成する処理を行い、得られた映像信号を前記補正部に対して出力するフレームレート変換部をさらに備えた、請求項1に記載の表示装置。
  7.  前記表示パネルは、画素の選択に用いられる複数のゲート線をさらに含み、
     前記駆動部は、同じゲート線に接続された複数の画素に対して、同じ極性の電圧を印加することを特徴とする、請求項1に記載の表示装置。
  8.  前記表示パネルは、画素の選択に用いられる複数のゲート線をさらに含み、
     前記駆動部は、同じゲート線に接続された複数の画素に対して、正極性電圧と負極性電圧を混在させて印加することを特徴とする、請求項1に記載の表示装置。
  9.  前記補正部は、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、画素印加電圧の絶対値が前フレームよりも大きくなるときには画素印加電圧を高くし、画素印加電圧の絶対値が前フレームよりも小さくなるときには画素印加電圧を低くする補正を行うことを特徴とする、請求項1に記載の表示装置。
  10.  前記補正部は、前記入力映像信号と前記参照データの値の組合せの少なくとも一部について、正極性電圧を印加するときには前フレームからの変化と同方向に階調値を変化させ、負極性電圧を印加するときには前フレームからの変化と逆方向に階調値を変化させる補正を行うことを特徴とする、請求項1に記載の表示装置。
  11.  前記表示パネルは、液晶容量と補助容量をさらに含む複数の画素を含んだ液晶パネルであって、前記液晶容量、前記補助容量および前記寄生容量の容量値のうち少なくとも1つが異なる複数種類の画素を含み、
     前記補正部は、前記入力映像信号に対して、画素の種類に応じて異なる補正を行うことを特徴とする、請求項1に記載の表示装置。
  12.  前記表示パネルは、セルギャップが異なる複数種類の画素を含むことを特徴とする、請求項11に記載の表示装置。
  13.  薄膜トランジスタを含む複数の画素を含んだ表示パネルを有する表示装置の駆動方法であって、
     入力映像信号に対して、前記薄膜トランジスタのゲート-ドレイン間に存在する寄生容量に起因する画素印加電圧の下降を補償するための補正を行うステップと、
     前記表示パネル内の各画素に対して、補正された映像信号に応じた電圧を極性を切り替えながら印加するステップと、
     前フレームの映像信号に対する補正時に得られたデータを参照データとして記憶するステップとを備え、
     前記補正を行うステップは、前記入力映像信号と記憶された参照データとに基づき、両者の値の組合せの少なくとも一部について、画素印加電圧の極性に応じて異なる補正を行うことを特徴とする、表示装置の駆動方法。
PCT/JP2009/067607 2009-03-18 2009-10-09 表示装置 WO2010106702A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801575681A CN102334153B (zh) 2009-03-18 2009-10-09 显示装置
US13/138,437 US20110298774A1 (en) 2009-03-18 2009-10-09 Display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009066174 2009-03-18
JP2009-066174 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106702A1 true WO2010106702A1 (ja) 2010-09-23

Family

ID=42739368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067607 WO2010106702A1 (ja) 2009-03-18 2009-10-09 表示装置

Country Status (3)

Country Link
US (1) US20110298774A1 (ja)
CN (1) CN102334153B (ja)
WO (1) WO2010106702A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102831871A (zh) * 2012-08-31 2012-12-19 京东方科技集团股份有限公司 一种显示器及其显示图像帧的方法
JP2021006934A (ja) * 2012-07-11 2021-01-21 株式会社半導体エネルギー研究所 液晶表示装置、液晶表示装置の駆動方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102876A (ja) * 2009-11-10 2011-05-26 Hitachi Displays Ltd 液晶表示装置
US9271055B2 (en) * 2011-08-23 2016-02-23 Avaya Inc. System and method for variable video degradation counter-measures
TWI473066B (zh) * 2012-04-23 2015-02-11 Sitronix Technology Corp Display panel and its drive circuit
JP2014130336A (ja) * 2012-11-30 2014-07-10 Semiconductor Energy Lab Co Ltd 表示装置
US9959825B2 (en) * 2013-03-29 2018-05-01 Sharp Kabushiki Kaisha Liquid crystal display device and method of driving the same
KR102060801B1 (ko) * 2013-04-25 2019-12-31 삼성디스플레이 주식회사 표시 장치 및 영상 신호 보상 방법
CN103295550B (zh) * 2013-05-31 2015-03-11 京东方科技集团股份有限公司 一种驱动电压确定方法及装置
JP5771241B2 (ja) * 2013-06-28 2015-08-26 双葉電子工業株式会社 表示駆動装置、表示駆動方法、表示装置
KR102084714B1 (ko) * 2013-07-22 2020-03-05 삼성디스플레이 주식회사 표시 장치 및 그 구동 방법
JP2017044962A (ja) * 2015-08-28 2017-03-02 株式会社ジャパンディスプレイ 液晶表示装置、液晶表示装置の駆動方法及び駆動処理装置
CN106696798A (zh) * 2015-11-16 2017-05-24 戴昔晓 公交车内透明(非透明)显示屏交流电视频吊手拉环
CN105448255B (zh) * 2015-11-24 2018-11-30 昆山龙腾光电有限公司 液晶显示装置及其驱动方法
KR102541709B1 (ko) 2016-04-04 2023-06-13 삼성디스플레이 주식회사 표시 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
CN109147687B (zh) * 2018-08-06 2020-05-29 深圳市华星光电技术有限公司 显示驱动方法及显示装置
CN110827733B (zh) * 2018-08-07 2023-11-14 奇景光电股份有限公司 用于显示面板的显示方法与显示设备
KR102598385B1 (ko) * 2018-09-05 2023-11-06 엘지디스플레이 주식회사 타이밍컨트롤러, 유기발광표시장치 및 그의 구동방법
CN109308883B (zh) * 2018-11-28 2020-10-27 惠科股份有限公司 显示面板的电压补偿方法
CN109584769A (zh) * 2018-12-12 2019-04-05 惠科股份有限公司 显示面板的控制方法、显示面板及存储介质
CN115497428B (zh) * 2022-08-17 2023-10-17 Tcl华星光电技术有限公司 亮度补偿方法、可读存储介质以及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091454A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 表示装置
JP2005148521A (ja) * 2003-11-18 2005-06-09 Victor Co Of Japan Ltd 画像表示装置
WO2007091353A1 (ja) * 2006-02-07 2007-08-16 Sharp Kabushiki Kaisha 液晶表示装置およびその駆動方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933203A (en) * 1997-01-08 1999-08-03 Advanced Display Systems, Inc. Apparatus for and method of driving a cholesteric liquid crystal flat panel display
KR100840316B1 (ko) * 2001-11-26 2008-06-20 삼성전자주식회사 액정 표시 장치 및 그의 구동 방법
KR101318043B1 (ko) * 2006-06-02 2013-10-14 엘지디스플레이 주식회사 액정표시장치 및 그 구동방법
JP4400605B2 (ja) * 2006-09-25 2010-01-20 カシオ計算機株式会社 表示駆動装置及び表示装置
JP2008250118A (ja) * 2007-03-30 2008-10-16 Seiko Epson Corp 液晶装置、液晶装置の駆動回路、液晶装置の駆動方法および電子機器
JP4525946B2 (ja) * 2007-10-19 2010-08-18 ソニー株式会社 画像処理装置、画像表示装置および画像処理方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091454A (ja) * 2003-09-12 2005-04-07 Matsushita Electric Ind Co Ltd 表示装置
JP2005148521A (ja) * 2003-11-18 2005-06-09 Victor Co Of Japan Ltd 画像表示装置
WO2007091353A1 (ja) * 2006-02-07 2007-08-16 Sharp Kabushiki Kaisha 液晶表示装置およびその駆動方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021006934A (ja) * 2012-07-11 2021-01-21 株式会社半導体エネルギー研究所 液晶表示装置、液晶表示装置の駆動方法
CN102831871A (zh) * 2012-08-31 2012-12-19 京东方科技集团股份有限公司 一种显示器及其显示图像帧的方法

Also Published As

Publication number Publication date
US20110298774A1 (en) 2011-12-08
CN102334153A (zh) 2012-01-25
CN102334153B (zh) 2013-12-04

Similar Documents

Publication Publication Date Title
WO2010106702A1 (ja) 表示装置
JP6104266B2 (ja) 液晶表示装置およびその駆動方法
KR101344834B1 (ko) 타이밍 컨트롤러, 이를 포함하는 액정표시장치 및 이의구동방법
CN102667907B (zh) 液晶显示装置和液晶显示装置的驱动方法
WO2014162794A1 (ja) 液晶表示装置およびその駆動方法
KR100433064B1 (ko) 액정표시장치 및 그 구동제어방법
JP5897136B2 (ja) 液晶表示装置およびその駆動方法
WO2010087051A1 (ja) 表示装置および表示装置の駆動方法
KR20080044104A (ko) 표시장치 및 이의 구동방법
JP2006039538A (ja) 液晶表示装置の駆動回路及びその駆動方法
JP4671715B2 (ja) 表示装置およびその駆動方法
KR101230302B1 (ko) 액정 표시 장치 및 영상 신호 보정 방법
JP2007178561A (ja) 表示装置およびその駆動方法
US8884860B2 (en) Liquid crystal display having increased response speed, and device and method for modifying image signal to provide increased response speed
WO2011074285A1 (ja) 液晶表示装置および液晶表示装置の駆動方法
KR101139525B1 (ko) 액정 표시 장치 및 그의 차동 구동 방법
KR20090007165A (ko) 액정표시장치의 응답속도 개선 장치 및 방법
EP1914710B1 (en) Display device
WO2007052421A1 (ja) 表示装置、データ信号線駆動回路、および表示装置の駆動方法
WO2006109516A1 (ja) 液晶表示装置
KR101528927B1 (ko) 액정표시장치와 그 구동방법
JP4301309B2 (ja) デバイス制御装置及び画像表示装置
JP2008242440A (ja) 表示駆動装置及び表示装置
JP5292839B2 (ja) アクティブマトリクス型液晶表示装置。
KR20170050674A (ko) 액정표시장치 및 이의 동작방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157568.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13138437

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP