WO2010106597A1 - Signal generating device for respiratory synchronization and body movement detection sensor unit - Google Patents

Signal generating device for respiratory synchronization and body movement detection sensor unit Download PDF

Info

Publication number
WO2010106597A1
WO2010106597A1 PCT/JP2009/006301 JP2009006301W WO2010106597A1 WO 2010106597 A1 WO2010106597 A1 WO 2010106597A1 JP 2009006301 W JP2009006301 W JP 2009006301W WO 2010106597 A1 WO2010106597 A1 WO 2010106597A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor unit
container
patient
thin film
pressure
Prior art date
Application number
PCT/JP2009/006301
Other languages
French (fr)
Japanese (ja)
Inventor
武藤昭男
秋山守人
福田修
Original Assignee
株式会社ホンダ・ハドロニクス
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ホンダ・ハドロニクス, 独立行政法人産業技術総合研究所 filed Critical 株式会社ホンダ・ハドロニクス
Publication of WO2010106597A1 publication Critical patent/WO2010106597A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring

Definitions

  • the present invention is controlled based on a respiratory synchronization signal input from the outside, and is capable of suppressing the influence of body movement due to respiration, a CT scanning device, a PET device, a radiation therapy simulation device, a radiation
  • the present invention relates to a respiratory synchronization signal generation device capable of generating and outputting the respiratory synchronization signal to a medical device such as a treatment device, and a body motion detection sensor unit that detects a respiratory motion.
  • a so-called tomography device is well known as a medical device that can take a tomographic image of a human body cut at an arbitrary part.
  • a CT scan device that takes an image by exposing X-rays, and a patient is given a radioactive tracer.
  • a PET apparatus that detects and captures gamma rays emitted from a radioactive tracer is known.
  • medical equipment in which a predetermined device is added to a tomographic apparatus is also known, and so-called radiation therapy simulation apparatuses, radiation therapy apparatuses, and the like are known.
  • the radiotherapy simulation apparatus is an apparatus that can take a tomographic image of a patient and perform a radiotherapy simulation based on the acquired tomographic image, thereby making a treatment plan.
  • the radiotherapy apparatus is an apparatus that irradiates an affected area with radiation by an operator operating the apparatus based on a radiotherapy plan.
  • the CT scanning apparatus is composed of a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data.
  • a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data.
  • an X-ray source that emits X-rays and a detector array composed of a large number of sensors that detect X-rays transmitted through the human body are arranged at positions facing each other across the opening.
  • the radiation source and the detector array can be rotated in the circumferential direction around the opening.
  • the opening is configured so that a patient who is supine on the bed is inserted together with the bed.
  • a tomographic image is obtained with such a CT scanning apparatus
  • a patient who is lying on the bed by driving the bed is inserted into the opening of the gantry, and a predetermined region to be imaged is located in the X-ray exposure field. Like that. Then, while rotating the X-ray source and the detector array, X-rays are emitted from different directions, and the X-ray transmitted through the human body is detected by the detector array.
  • the data detected in this way is processed in an integrated manner by a computer, one tomographic image is obtained.
  • the bed is driven to move the region to be imaged little by little, and a plurality of tomographic images are captured. If it does so, the site
  • the patient is careful not to move on the bed, but the patient moves due to a slight movement, that is, a body movement due to a breathing movement or heartbeat. If the patient moves due to body movement, a shift occurs between a plurality of tomographic images to be photographed, so that a three-dimensional tomographic image cannot be obtained clearly. If it does so, a tumor cannot be overlooked in a diagnosis, or the position of a tumor cannot be pinpointed correctly.
  • Patent Document 1 describes a CT scan device that obtains a heart beat synchronization signal by an electrocardiogram detection sensor affixed to a patient's chest and images a tomographic image of the heart.
  • the CT scanning device described in Patent Document 1 since the CT scanning device is controlled in synchronization with the heartbeat, a tomographic image can be taken without being affected by the heartbeat, and a clear tomographic image of the heart can be obtained. can get.
  • the breathing operation is not taken into consideration, if a tomographic image of a part other than the heart is captured, the tomographic image becomes blurred due to the breathing motion. It is necessary to detect a respiratory action and transmit a synchronization signal to the tomography apparatus.
  • Known methods for detecting the movement of breathing include, for example, a method for detecting vertical movement of the chest, a method for detecting expansion and contraction of the abdomen, and a method for detecting skin tension.
  • the method of detecting the vertical movement of the chest includes a method using a marker and a method using a measuring rod.
  • the method using the marker detects the vertical movement of the chest by monitoring the marker attached to the chest of the patient with an external CCD camera.
  • one end of the measuring rod is brought into contact with the patient's chest, a fulcrum of the measuring rod is provided near the patient, and the vertical movement of the chest is amplified at the other end. It is a method to detect.
  • the method for detecting the expansion and contraction of the abdomen is a method for detecting the expansion and contraction of the abdomen by detecting the change in the tension of the belt wound around the abdomen or the air pressure in the hollow belt. Is a method in which a strain sensor is affixed to the patient's body surface and the tension of the skin is detected to detect breathing motion.
  • Patent Document 2 describes a sheet-like piezoelectric sensor that is provided on a bed on which a patient lies, and that can detect body movements due to breathing motion by contacting the patient's back.
  • the piezoelectric sensor described in Patent Document 2 is a sensor having a so-called laminated structure in which a pressure detection element made of a PVDF film or an aluminum nitride thin film, that is, a sensor element is sandwiched between thin resin sheets, Body movement due to movement can be detected as a change in voltage.
  • the marker when the marker is affixed to the patient's chest, it is necessary to affix the marker at a position that does not hinder the X-ray exposure and can ensure the stability of the marker. Furthermore, other problems arise because the marker is applied to the chest. That is, during tomographic imaging, the patient cannot wear a cold blanket, and when performing radiotherapy, the marker interferes with radiation irradiation. There is also a problem with the measurement method. In the measuring rod, the fixing tool for fixing the fulcrum hinders X-ray exposure, and the entire measuring rod may be reflected in the image. Furthermore, since the measuring rod protrudes to the outside, there is also a problem that it hits the gantry of the CT scanning device.
  • a piezoelectric sensor is provided on a bed on which the patient lies, and touches the patient's back to detect the movement of breathing. There is no such thing as hitting a photographic device.
  • the piezoelectric sensor is made of a PVDF film or an aluminum nitride thin film, it is relatively difficult to appear in a tomographic image.
  • the piezoelectric sensor described in Patent Document 2 will not appear in the image at all depending on the configuration.
  • such a pressure detection element that is, a sensor element has a problem that durability is not high.
  • the pressure detection element is sandwiched and protected by a thin resin sheet, and the durability is improved to some extent.
  • the pressure detection element Will deteriorate early. If the thickness of the resin sheet sandwiching the pressure detection element is increased, the durability is improved, but another problem that the sensitivity of the sensor is lowered arises.
  • a signal line for transmitting the detected voltage to the outside is provided in such a pressure detection element.
  • the pressure detection element is formed in a thin film shape, the junction between the pressure detection element and the signal line The strength of is weak and problematic.
  • the piezoelectric sensor described in Patent Document 2 since the pressure detection element is directly placed on the patient's back to detect pressure fluctuation, the joint portion is damaged early and the signal line is disconnected. There is a high risk of losing.
  • aluminum nitride can generally be manufactured only in a small area, the back portion where the change in pressure can be detected becomes a small area, and depending on the portion to be contacted, the respiratory action cannot be detected reliably.
  • the piezoelectric sensor described in Patent Document 2 is a sensor unit including a pressure detection element and a resin sheet covering the pressure detection element, this resin sheet is only for the purpose of protection. The structure is such that the pressure received by the resin sheet is transmitted to the entire pressure detecting element.
  • the pressure received from the patient's back does not necessarily act uniformly on the pressure detection element, so that the pressure received by the pressure detection element may be uneven, and the sensor detection accuracy may not be sufficiently obtained. That is, depending on the position, area, and the like where the patient's back is in contact with the piezoelectric sensor, fluctuations in pressure due to patient movement may not be detected accurately.
  • the present invention has been made in view of the above-described problems. Specifically, the present invention does not appear in an image in tomography or interfere with radiotherapy, and does not collide with a tomography apparatus.
  • An inexpensive and durable body motion detection sensor unit that has a configuration that can reliably detect body motion due to patient breathing and that can reliably detect body motion due to patient breathing without requiring skill, and this sensor unit To provide a respiratory synchronization signal generation device capable of generating a respiratory synchronization signal synchronized with the respiratory motion detected in step S1 and outputting the respiratory synchronization signal to a medical device such as a tomography apparatus or a radiotherapy apparatus It is an object.
  • the present invention provides a body motion detection sensor unit comprising: a hollow container that is flexible and has a generally flat sheet shape; and a PVDF stored in the container or another container
  • the thin film sensor element is made of aluminum nitride or zinc oxide, and the fluid is hermetically or liquid-tightly sealed in these containers. And it is comprised so that the pressure which acts on a container may act on a thin film sensor element via a fluid, and may be detected. Further, such a container is inserted into the contact portion between the back surface of the patient and the table so that the area of the pressure receiving portion is larger than the area of the thin film sensor element.
  • the body motion detection sensor unit includes a hollow first container that is flexible and has a flat sheet shape, a hollow second container, and a hollow portion.
  • a conduit connecting them so as to communicate with each other, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the second container, and hermetically or liquid tightly inside the container It is comprised from the enclosed fluid, and it comprises so that the pressure which acts on a 1st container may act on a thin film sensor element via a fluid.
  • the apparatus is configured as a respiratory synchronization signal generation device that receives a change in pressure detected by such a body motion detection sensor unit and generates a respiratory synchronization signal synchronized with respiration.
  • the invention according to claim 1 is provided on a bed on which a patient lies in a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, and a radiation treatment device,
  • a sensor unit that is inserted into a contact portion between a patient's back surface and a table to detect a change in pressure accompanying a breathing operation, and the sensor unit is stored in the hollow container having flexibility and the container.
  • the acting pressure is configured to be detected by acting on the thin film sensor element via the fluid.
  • the area of the pressure receiving portion inserted into the contact portion between the back surface of the patient and the table is larger than the area of the thin film sensor element. It is comprised so that it may become.
  • the device in a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, or a radiation treatment device, the device is provided on a bed on which the patient lies, and the back surface of the patient is in contact with the table.
  • a sensor unit that is inserted into a part to detect a change in pressure associated with a breathing operation, the sensor unit having a hollow first container that is flexible and has a flat sheet shape, and a hollow The second container, the pipes connecting the first and second containers and communicating the hollow portions thereof, and PVDF, aluminum nitride, or zinc oxide stored in the second container.
  • a thin film sensor element, and fluids hermetically or liquid-tightly sealed in the first and second containers and the conduit, and pressure acting on the first container is mediated by the fluid.
  • the invention according to claim 4 is the sensor unit according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil.
  • the fluid is configured to be a gas composed of air or an inert gas.
  • a change in pressure detected by the body motion detection sensor unit according to any one of the first to fifth aspects is received, and a respiratory synchronization signal synchronized with respiration is generated.
  • the body motion detection sensor unit is provided with a transmitter for the respiratory synchronization signal.
  • the signal generating device is provided with a receiver corresponding to the transmitter, and is configured to transmit and receive the pressure change signal by Bluetooth communication or near infrared communication.
  • a video output terminal to which a monitor is connected is provided, and the respiratory waveform and the respiratory synchronization signal are graphed. Can be output.
  • the body motion detection sensor unit includes a flexible hollow container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the container, and a container. It is formed so as to form a flat sheet from the fluid hermetically or liquid tightly sealed, and the pressure acting on the container is detected by acting on the thin film sensor element via the fluid. Therefore, the pressure can be reliably detected via the fluid, and the breathing motion can be detected without requiring skill.
  • the thin film sensor element is not subjected to direct force but pressure is applied via the fluid, so that the thin film sensor element does not deteriorate at an early stage, and the signal line connected to the thin film sensor element is not affected.
  • the body motion detection sensor unit is provided on a bed on which the patient lies, and is configured as a sensor unit that is inserted into a contact portion between the back surface of the patient and the table and detects a change in pressure accompanying a breathing operation. Therefore, the sensor unit does not collide with the tomography apparatus and does not hinder radiotherapy. Furthermore, since a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide hardly absorbs X-rays, there is almost no risk of being reflected in a tomographic image.
  • the container of the body motion detection sensor unit is configured to be inserted into the contact portion of the back surface of the patient and the table so that the area of the pressure receiving portion is larger than the area of the thin film sensor element. It becomes possible to reliably detect a change in pressure. And according to the other structure of this invention, since a body movement detection sensor unit is comprised from the fluid enclosed with the hollow 1st container, the hollow 2nd container, the thin film sensor element, and the container. If the first container is laid on the patient's back, the first container does not absorb X-rays, so the sensor does not appear in the tomographic image and a clear tomographic image can be obtained. .
  • the thin film sensor element since the thin film sensor element is stored in a second container that is a container different from the first container that directly receives pressure, the thin film sensor element does not bend or deteriorate. Furthermore, there is no possibility that the signal line connected to the thin film sensor element is disconnected from the thin film sensor element. That is, the durability is very high. Furthermore, according to the present invention, since the fluid sealed in such a container is also configured to be a gas composed of air or an inert gas, even if the container is broken, liquid leakage, etc. Thus, the safety of expensive medical equipment can be ensured.
  • the respiratory synchronization signal generation device that receives the signal from the body motion detection sensor unit by Bluetooth communication or near infrared communication and generates a respiratory synchronization signal, the sensor and the respiratory synchronization signal Since the generation device does not cause a malfunction of the medical device and the signal line does not get in the way, it is possible to safely install the signal generation device for respiratory synchronization.
  • the respiratory synchronization signal generation device is provided with a video output terminal so that the respiratory waveform and the respiratory synchronization signal can be graphed and output, so if a monitor is installed in the operator room, An operator who operates a device such as a tomography apparatus or a radiotherapy apparatus can confirm the breathing of the patient.
  • FIG. 1 is a perspective view schematically showing a respiratory synchronization signal generation device and a CT scanning device according to an embodiment of the present invention. It is a perspective view showing typically a body movement detection sensor unit concerning an embodiment of the invention. It is a perspective view which shows typically the flexible IC chip which is a chip
  • the respiratory synchronization signal generation apparatus will be described using a CT scan apparatus provided with the respiratory synchronization signal generation apparatus as an example.
  • the CT scanning apparatus 1 is generally configured by a gantry 2 that scans a human body, a bed 3 on which a patient lies, and the like, in the same manner as a conventionally known CT scanning apparatus.
  • the gantry 2 has a through hole having a predetermined inner diameter into which a human body is inserted at the center thereof. That is, the opening 5 is provided.
  • the gantry 2 includes an X-ray source that emits X-rays and a detector array that includes a number of sensors that detect X-rays transmitted through the human body.
  • the gantry 2 is provided with a computer that controls the gantry 2 and the bed 3 and processes data.
  • the bed 3 includes a pedestal 7 installed on the floor and a table 8 having a substantially rectangular plate shape provided on the pedestal 7. Although not shown in FIG. 1, the table 8 can be slid in the longitudinal direction by a table driving mechanism provided inside the pedestal 7. Such a bed 3 is installed adjacent to the gantry 2, and when the table driving mechanism is driven, the table 8 is inserted into the opening 5 or retracted.
  • the body motion detection sensor unit 11 is provided on the upper surface of the table 8.
  • the body movement detection sensor unit 11 is a sensor in which a pressure receiving portion that receives pressure is formed in a sheet shape, and when the patient lies on the upper surface of the table 8, , The body movement due to the movement of breathing can be detected as a change in voltage.
  • a flat cable 12 is connected to the body motion detection sensor unit 11, and a transmitter 14 is connected to the tip of the flat cable 12.
  • the transmitter 14 is fixed to the end surface of the long side of the table 8, and the flat cable 12 is sufficiently short. Therefore, the flat cable 12 and the transmitter 14 may interfere with tomographic image capturing or disturb the patient. There is no.
  • a respiratory synchronization signal generation device 16 In the vicinity of the gantry 2, a respiratory synchronization signal generation device 16 is installed, and the respiratory synchronization signal generation device 16 and the gantry 2 are connected by a predetermined signal cable 18.
  • the respiratory synchronization signal generation device 16 includes an open collector terminal, a TTL level line driver output terminal, a START / STOP output terminal, and an RS422 connection terminal, so that the signal cable 18 corresponds to the input terminal 19 of the gantry 2. Any type of cable can be selected.
  • the respiratory synchronization signal generation device 16 is provided with a receiver or a receiver so that a signal transmitted from the transmitter 14 can be received. Note that the communication between the transmitter 14 and the receiver is performed by Bluetooth communication or near-infrared communication that does not cause malfunction of the device due to electromagnetic wave leakage.
  • Such a respiratory class signal generation device 16 is also provided with a video output terminal that can output necessary information to an external monitor device. Although not shown in FIG. Is connected to a predetermined monitor provided in the operator room.
  • the breathing class signal generator 16 also includes a microphone.
  • the CT scanning device 1 emits a predetermined warning sound to call attention at the time of X-ray exposure. This warning sound can be detected and taken into the respiratory class signal generation device 16 as exposure information.
  • the body motion detection sensor unit 11 includes a hollow first container 21 having a sheet shape with a large upper surface area, and a hollow second container having a predetermined size. And the thin film sensor element 23 stored in the second container 22. Since the first container 21 is a pressure receiving portion that is inserted between the patient's back surface and the table and receives the pressure on the patient's back surface, the first container 21 is formed of a flexible material such as polyvinyl chloride or polypropylene.
  • the second container 22 is a container that protects the thin film sensor element 23, and therefore does not have to be particularly flexible. In the present embodiment, the second container 22 is formed from an acrylic resin.
  • the first and second containers 21 and 22 are connected in a gas-tight or liquid-tight manner by a connecting pipe 25 made of a flexible material, and the respective hollow portions communicate with each other.
  • the thin film sensor element 23 is a thin film piezoelectric element having a predetermined size made of PVDF (polyvinylidene fluorite), aluminum nitride, or zinc oxide. In the present embodiment, the thin film sensor element 23 is made of aluminum nitride.
  • the flat cable 12 is connected to the thin film sensor element 23 via a predetermined connection chip as described below, and the transmitter 14 is connected to the flat cable 12 as described above.
  • the body motion detection sensor unit 11, that is, the first and second containers 21 and 22 and the connecting pipe 25 are filled with silicon oil 27 and the thin film sensor element 23 is entirely immersed in the silicon oil 27. It has become.
  • the thin film sensor element 23 made of an aluminum nitride piezoelectric element and the flat cable 12 are connected by a predetermined connecting chip, that is, a flexible IC chip 30.
  • the flexible IC chip 30 is a flat chip with a cut 31, and first and second conductive wires 33 and 34 made of a copper thin film are divided by the cut 31.
  • the first small piece 35 and the second small piece 36 of the chip are provided so as to be parallel to each other.
  • the first conducting wire 33 is provided on the front surface of the chip, and the second conducting wire 34 is provided on the back surface of the chip.
  • the thin film sensor element 23 is inserted into the cut 31 by bending the flexible IC chip 30 with the first small piece 35 downward and the second small piece 36 upward. Then, as shown in FIG. 4, the thin film sensor element 23 can be sandwiched between the first and second small pieces 35 and 36 of the flexible IC chip 30.
  • the thin film sensor element 23 has a structure in which a substrate 38 made of polyimide resin and an aluminum nitride crystal layer 39 deposited thereon are covered on the upper and lower surfaces by first and second metal films 41 and 42 made of aluminum or the like. Presents.
  • the anisotropic conductive adhesives 44 and 44 are applied to the first and second metal films 41 and 42 of the thin film sensor element 23 to press the first and second small pieces 35 and 36 of the flexible IC chip 30. And glue.
  • first metal film 41 and the first conductive wire 33, and the second metal film 42 and the second conductive wire 34 are electrically connected.
  • a predetermined connector 47 is connected to the end 46 of the flexible IC chip 30, and the flat cable 12 is connected via the connector 47.
  • the thin film sensor element 23 and the flat cable 12 are connected.
  • the CT scan apparatus 1 including the respiratory synchronization signal generation apparatus will be described.
  • the patient K is supine on the table 8 of the bed 3.
  • the pressure receiving portion of the body motion detection sensor unit 11, that is, the position of the first container 21 is adjusted, and the pressure receiving portion hits a portion where the back surface of the patient and the table 8 are in contact, for example, near the shoulder rib or the hip. Insert like so.
  • Patient K moves slightly due to breathing and heart movement.
  • the pressure receiving portion of the body motion detection sensor unit 11 receives a change in pressure due to body motion.
  • the change in pressure applied via the silicon oil 27 is detected as a change in voltage in the thin film sensor element 23.
  • the respiratory synchronization signal generator 16 processes a waveform of the input voltage to generate a pulse signal synchronized with respiration, that is, a synchronization signal.
  • the generated synchronization signal is input to the gantry 2.
  • the voltage waveform includes different frequency components due to breathing motion and heartbeat, and further includes noise. Accordingly, a known analysis method such as Fourier transform or wavelet transform is applied to extract a frequency component corresponding to the breathing motion.
  • the timing of breathing can be obtained. Since the input power waveform contains many frequency components that change in a short time, an analysis method using wavelet transform is particularly effective.
  • an analysis method for example, the Japan Society of Mechanical Engineers [No. 01-5] Dissertation Symposium CD-ROM [2001.8.7, Tokyo] paper "W301 Study on unrestrained invasive measurement of respiratory and heart rate during sleep using PVDF sensor (2nd report: Wavelet transform The method described in “Detection of respiratory heartbeat used)” can be applied.
  • the table 8 is driven to insert the patient K into the opening 5 so that the site where the tomographic image is to be taken is positioned at the center of the opening 5.
  • the X-rays are exposed to take a tomographic image.
  • the pressure receiving part inserted in the contact part between the back surface of the patient K and the table, that is, the first container 21 of the body motion detection sensor unit 11 and the silicon oil 27 do not absorb X-rays. These are not reflected in.
  • the table 8 is driven to slightly insert the patient K, and a tomographic image is taken in synchronization with the synchronization signal. Thereafter, a plurality of tomographic images are taken in the same manner.
  • the screen output from the respiratory synchronization signal generator 16 is displayed, for example, as shown in FIG.
  • the screen 51 displays basic information such as the date and time 52, the patient ID 53 given to the patient K, the patient's name 54, and the like, along with the display of the respiratory waveform 56 of the patient K and the respiration synchronized with the respiratory waveform 56
  • the synchronizing signal 57 is displayed in a pulse shape. Further, the timing at which the CT scanning device 1 is exposed, that is, the exposure information 59 and the heartbeat signal 60 are also displayed.
  • the operator can monitor the breathing state while observing the display on the monitor, and give an instruction to the patient K through a voice line provided in the operator room. Then, the patient K can perform an appropriate breathing motion and can appropriately capture a tomographic image.
  • a predetermined memory is also provided in the respiratory synchronization signal generation device 16, and information displayed on the monitor is stored. Therefore, past data can also be displayed as necessary.
  • FIG. 6 shows a body motion detection sensor unit 11 ′ according to the second embodiment. Elements similar to those of the body motion detection sensor unit 11 according to the above-described embodiment are assigned the same reference numerals and will not be described in detail.
  • the body motion detection sensor unit 11 ′ according to the second embodiment includes a thin film sensor element 23 stored in a first container 21 ′, and the second container Not provided. That is, the thin film sensor element 23 is stored in a predetermined portion of the first container 21 ′ that is a pressure receiving portion. If it does in this way, it will become possible to manufacture body motion detection sensor unit 11 'more cheaply.
  • the predetermined reinforcement member is provided about the part in which the thin film sensor element 23 of the first container 21 ′ is stored, the thin film sensor element 23 can be appropriately protected.
  • the tomographic image apparatus can be variously modified.
  • the body motion detection sensor unit 11 and the respiratory synchronization signal generation device 16 are described as being wirelessly communicated by a transceiver, but may be directly connected by a predetermined signal cable.
  • a signal cable needs to be wired on the backside or edge of the table of the bed so as not to interfere with tomographic image capturing.
  • the first and second containers 21 and 22 of the body motion detection sensor unit 11 are described as being filled with silicon oil, but the same applies to other liquids such as mineral oil. be able to.
  • an inert gas such as carbon dioxide or nitrogen gas, or a gas such as air may be enclosed. Then, even if the first and second containers 21 and 22 are damaged, a liquid leakage accident does not occur.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Dentistry (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

Provided is a body movement detection sensor unit capable of accurately detecting the body movement due to the respiration of a patient, which has high durability, does not obstruct photographing, and requires no skill. A body movement detection sensor unit (11) is configured from a first case (21) serving as a pressure part, a thin film sensor element (23), and a second case (22) containing the thin film sensor (23). The first and second cases (21, 22) are communicated with each other by a breathing tube (25), and silicon oil (27) is sealed therein. The body movement detection sensor unit (11) is provided to a bed (3), and the pressure part (21) is inserted between the back side of the patient and a table (8) so as to detect the body movement.

Description

呼吸同期用信号生成装置および体動検出センサユニットRespiratory synchronization signal generation device and body motion detection sensor unit
 本発明は、外部から入力される呼吸同期用信号に基づいて制御され、呼吸による体動の影響を抑制することができるようになっている、CTスキャン装置、PET装置、放射線治療シミュレーション装置、放射線治療装置等の医療機器に対して、前記呼吸同期用信号を生成して出力することができる呼吸同期用信号生成装置と、呼吸の動作を検出する体動検出センサユニットに関するものである。 The present invention is controlled based on a respiratory synchronization signal input from the outside, and is capable of suppressing the influence of body movement due to respiration, a CT scanning device, a PET device, a radiation therapy simulation device, a radiation The present invention relates to a respiratory synchronization signal generation device capable of generating and outputting the respiratory synchronization signal to a medical device such as a treatment device, and a body motion detection sensor unit that detects a respiratory motion.
 人体を任意の部分で輪切りにした断層画像を撮影することができる医療機器として、いわゆる断層撮影装置が周知であり、X線を曝射して撮影するCTスキャン装置、患者に放射性トレーサを投与して放射性トレーサから放出されるガンマ線を検出して撮影するPET装置等が知られている。また、断層撮影装置に所定の装置を付加した医療機器も周知であり、いわゆる放射線治療シミュレーション装置、放射線治療装置等が知られている。放射線治療シミュレーション装置は、患者の断層画像を撮影してそれを基に放射線治療のシミュレーションを実施できる装置であり、これにより治療計画を立案することができる。また、放射線治療装置は、放射線治療計画に基づいて操作者が装置を操作して、患部に放射線を照射する装置である。 A so-called tomography device is well known as a medical device that can take a tomographic image of a human body cut at an arbitrary part. A CT scan device that takes an image by exposing X-rays, and a patient is given a radioactive tracer. A PET apparatus that detects and captures gamma rays emitted from a radioactive tracer is known. In addition, medical equipment in which a predetermined device is added to a tomographic apparatus is also known, and so-called radiation therapy simulation apparatuses, radiation therapy apparatuses, and the like are known. The radiotherapy simulation apparatus is an apparatus that can take a tomographic image of a patient and perform a radiotherapy simulation based on the acquired tomographic image, thereby making a treatment plan. The radiotherapy apparatus is an apparatus that irradiates an affected area with radiation by an operator operating the apparatus based on a radiotherapy plan.
 CTスキャン装置は、従来周知のように、中央部を貫通する所定の内径の開口部を備えたガントリと、患者が仰臥する寝台と、データを処理するコンピュータとから構成されている。ガントリの内部には、X線を曝射するX線源と、人体を透過したX線を検出する多数のセンサからなる検出器アレイとが、開口部を挟んで対向する位置に配置され、X線源と検出器アレイは、開口部を中心として円周方向に回転できるようになっている。そして、開口部は、寝台上に仰臥した患者が寝台と共に挿入されるようになっている。このようなCTスキャン装置で断層画像を得る場合、寝台を駆動して寝台上に仰臥した患者をガントリの開口部に挿入して、撮影対象の所定の部位がX線の曝射野に位置するようにする。そして、X線源と検出器アレイを回転させながら、異なる方向からX線を曝射して、人体を透過したX線を検出器アレイで検出する。このようにして検出されたデータをコンピュータにおいて統合的に処理すると1枚の断層画像が得られる。 As is well known in the art, the CT scanning apparatus is composed of a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data. Inside the gantry, an X-ray source that emits X-rays and a detector array composed of a large number of sensors that detect X-rays transmitted through the human body are arranged at positions facing each other across the opening. The radiation source and the detector array can be rotated in the circumferential direction around the opening. Then, the opening is configured so that a patient who is supine on the bed is inserted together with the bed. When a tomographic image is obtained with such a CT scanning apparatus, a patient who is lying on the bed by driving the bed is inserted into the opening of the gantry, and a predetermined region to be imaged is located in the X-ray exposure field. Like that. Then, while rotating the X-ray source and the detector array, X-rays are emitted from different directions, and the X-ray transmitted through the human body is detected by the detector array. When the data detected in this way is processed in an integrated manner by a computer, one tomographic image is obtained.
 断層撮影装置においては、寝台を駆動して撮影対象の部位を少しずつ移動させて、複数枚の断層画像を撮影する。そうすると、撮影対象の部位を立体的に画像化することができる。ところで、断層画像を撮影するとき、患者は寝台の上で動かないように注意しているが、患者は、呼吸の動作や心臓の鼓動によるわずかな動き、すなわち体動によって動いてしまう。患者が体動によって動いてしまうと、撮影される複数枚の断層画像間にずれが生じてしまうので、立体的な断層画像は鮮明なものが得られない。そうすると、診断において腫瘍を見落としたり、腫瘍の位置を正確に特定することができない。また、放射線治療シミュレーション装置において適切に治療計画を立案することもできないし、放射線治療装置においては、腫瘍以外の健全な組織に誤って放射線を照射して、これを損傷してしまうことがある。 In the tomography apparatus, the bed is driven to move the region to be imaged little by little, and a plurality of tomographic images are captured. If it does so, the site | part of imaging | photography object can be imaged in three dimensions. By the way, when taking a tomographic image, the patient is careful not to move on the bed, but the patient moves due to a slight movement, that is, a body movement due to a breathing movement or heartbeat. If the patient moves due to body movement, a shift occurs between a plurality of tomographic images to be photographed, so that a three-dimensional tomographic image cannot be obtained clearly. If it does so, a tumor cannot be overlooked in a diagnosis, or the position of a tumor cannot be pinpointed correctly. In addition, it is impossible to appropriately design a treatment plan in the radiotherapy simulation apparatus, and in the radiotherapy apparatus, a healthy tissue other than a tumor may be accidentally irradiated with radiation to be damaged.
 呼吸の動作や心臓の鼓動に同期して断層撮影装置を制御して、体動による影響を最小限にしてずれの少ないデータを収集し、鮮明な断層画像を得る断層撮影方法は周知である。このような断層撮影方法を実施する場合、人体の体動を検出して断層撮影装置に送信する必要がある。特許文献1には、患者の胸部に貼り付けられた心電図検出用のセンサによって心臓の鼓動の同期信号を得て、心臓の断層画像を撮影するCTスキャン装置が記載されている。特許文献1に記載のCTスキャン装置によると、CTスキャン装置は心臓の鼓動に同期して制御されるので、心臓の鼓動の影響を受けずに断層画像を撮影でき、心臓について鮮明な断層画像が得られる。しかしながら、呼吸の動作については考慮されていないので、心臓以外の他の部位の断層画像を撮影すると、呼吸の動作によって断層画像がぼやけてしまう。呼吸の動作を検出して断層撮影装置に同期用信号を送信する必要がある。呼吸の動作を検出する方法として、例えば、胸部の上下動を検出する方法、腹部の膨張と収縮を検出する方法、皮膚の張力を検出する方法等が知られている。胸部の上下動を検出する方法には、マーカによる方法、計測竿による方法があり、マーカによる方法は、患者の胸部に貼られたマーカを外部のCCDカメラで監視して胸部の上下動を検出する方法であり、計測竿による方法は、計測竿の一方の端部を患者の胸部に接触させ、患者の近傍に計測竿の支点を設けて、他方の端部において胸部の上下動を増幅して検出する方法である。また、腹部の膨張と収縮を検出する方法は、腹部に巻かれたベルトの張力または中空のベルト内の空気圧の変化を検出して腹部の膨張と収縮を検出するする方法であり、皮膚の張力を検出する方法は、患者の体表に歪センサを貼り付け、皮膚の張力を検出して、呼吸の動作を検出する方法である。 A tomographic method for obtaining a clear tomographic image by collecting data with little deviation by controlling the tomographic apparatus in synchronism with the movement of the breath and the heartbeat and minimizing the influence of body movement. When performing such a tomography method, it is necessary to detect the body movement of the human body and transmit it to the tomography apparatus. Patent Document 1 describes a CT scan device that obtains a heart beat synchronization signal by an electrocardiogram detection sensor affixed to a patient's chest and images a tomographic image of the heart. According to the CT scanning device described in Patent Document 1, since the CT scanning device is controlled in synchronization with the heartbeat, a tomographic image can be taken without being affected by the heartbeat, and a clear tomographic image of the heart can be obtained. can get. However, since the breathing operation is not taken into consideration, if a tomographic image of a part other than the heart is captured, the tomographic image becomes blurred due to the breathing motion. It is necessary to detect a respiratory action and transmit a synchronization signal to the tomography apparatus. Known methods for detecting the movement of breathing include, for example, a method for detecting vertical movement of the chest, a method for detecting expansion and contraction of the abdomen, and a method for detecting skin tension. The method of detecting the vertical movement of the chest includes a method using a marker and a method using a measuring rod. The method using the marker detects the vertical movement of the chest by monitoring the marker attached to the chest of the patient with an external CCD camera. In the method using a measuring rod, one end of the measuring rod is brought into contact with the patient's chest, a fulcrum of the measuring rod is provided near the patient, and the vertical movement of the chest is amplified at the other end. It is a method to detect. The method for detecting the expansion and contraction of the abdomen is a method for detecting the expansion and contraction of the abdomen by detecting the change in the tension of the belt wound around the abdomen or the air pressure in the hollow belt. Is a method in which a strain sensor is affixed to the patient's body surface and the tension of the skin is detected to detect breathing motion.
特開2001-61835号公報JP 2001-61835 A 特開2001-187030号公報JP 2001-187030 A
 特許文献2には、患者が仰臥するベッドに設けられ、患者の背中に接触して呼吸の動作による体動を検出することができる、シート状の圧電センサが記載されている。特許文献2に記載の圧電センサは、PVDFフィルムまたは窒化アルミニウムの薄膜からなる圧力検出素子、すなわちセンサ素子が、薄い樹脂製シートによって挟み込まれた、いわゆるラミネート加工された構造のセンサであり、呼吸の動作による体動を電圧の変化として検出することができる。 Patent Document 2 describes a sheet-like piezoelectric sensor that is provided on a bed on which a patient lies, and that can detect body movements due to breathing motion by contacting the patient's back. The piezoelectric sensor described in Patent Document 2 is a sensor having a so-called laminated structure in which a pressure detection element made of a PVDF film or an aluminum nitride thin film, that is, a sensor element is sandwiched between thin resin sheets, Body movement due to movement can be detected as a change in voltage.
 上記したような呼吸の動作を検出する方法を実施したり、特許文献2に記載の圧電センサを使用すれば、呼吸の動作による体動を検出することができる。そして、検出された体動の信号を断層撮影装置に信号を送信して、断層撮影装置が当該信号に基づいて同期させてスキャンすれば、呼吸の動作による体動の影響を受けない鮮明な断層画像を得ることができる。しかしながら、解決すべき問題点も見受けられる。例えば、マーカによる方法の場合、マーカを貼り付ける位置の選定の問題がある。すなわち、マーカは患者の胸部に貼り付けるとき、X線の曝射の妨げにならないようにすると共にマーカの安定性を確保できる位置に貼り付ける必要があり、位置の選定に熟練を要する。さらには、マーカは胸部に貼り付けるために他の問題が生じる。つまり、断層画像の撮影の間、患者は防寒用の毛布をまとうことができないし、放射線治療を実施する場合には、マーカが放射線照射の妨げになってしまう。計測竿による方法にも問題が認められる。計測竿は支点を固定する固定具がX線の曝射の妨げになるし、計測竿全体が画像に映ってしまうこともある。さらには、計測竿は外部に突き出ているので、CTスキャン装置のガントリにぶつかってしまうという問題もある。腹部の膨張と収縮を検出する方法についても問題がある。すなわち、健常者においては呼吸時に横隔膜と肋間筋が共に活発に動くが、体力の弱った患者の場合は、横隔膜の働きが十分でなく肋間筋の細かい動作による浅い呼吸が多くなってしまう。そうすると、ベルト等によって腹部の膨張と収縮を検出しても、呼吸を正確に検出できない場合がある。また、ベルトによって患者を圧迫すると、患者のストレスになってしまう。皮膚の張力を検出する方法についても問題が認められ、患者の皮膚に弛みがある場合には検出の精度が悪くなるし、歪センサに接続されている通信用の信号線が邪魔になってしまう。 If the above-described method for detecting a breathing motion is performed, or if the piezoelectric sensor described in Patent Document 2 is used, body movement due to the breathing motion can be detected. If the detected body movement signal is transmitted to the tomography apparatus, and the tomography apparatus scans synchronously based on the signal, a clear tomography that is not affected by the body movement due to breathing motion An image can be obtained. However, there are some problems to be solved. For example, in the case of a method using a marker, there is a problem of selecting a position where the marker is pasted. That is, when the marker is affixed to the patient's chest, it is necessary to affix the marker at a position that does not hinder the X-ray exposure and can ensure the stability of the marker. Furthermore, other problems arise because the marker is applied to the chest. That is, during tomographic imaging, the patient cannot wear a cold blanket, and when performing radiotherapy, the marker interferes with radiation irradiation. There is also a problem with the measurement method. In the measuring rod, the fixing tool for fixing the fulcrum hinders X-ray exposure, and the entire measuring rod may be reflected in the image. Furthermore, since the measuring rod protrudes to the outside, there is also a problem that it hits the gantry of the CT scanning device. There are also problems with the method of detecting abdominal expansion and contraction. That is, in a healthy person, both the diaphragm and intercostal muscles move actively during respiration, but in the case of a patient with weak physical strength, the diaphragm functions insufficiently and shallow breathing due to fine movement of the intercostal muscles increases. Then, even if the abdomen is inflated and contracted by a belt or the like, respiration may not be detected accurately. Moreover, if a patient is pressed with a belt, it will become a patient's stress. There is also a problem with the method of detecting the skin tension, and if the patient's skin is slack, the accuracy of detection becomes worse, and the communication signal line connected to the strain sensor gets in the way. .
 特許文献2に記載の圧電センサを利用する場合には、上記した問題点の多くは解決する。例えば、圧電センサは、患者が仰臥するベッドに設けられて患者の背中に接触して呼吸の動作を検出するようになっているので、患者の邪魔にならないし、放射線治療において妨げになったり断層撮影装置にぶつかるようなこともない。また、圧電センサは、PVDFフィルムまたは窒化アルミニウムの薄膜からなるので、比較的断層撮影の画像に映り難い。しかしながら、特許文献2に記載の圧電センサは構成によっては、全く画像に映らないという保証はない。また、PVDFフィルムまたは窒化アルミニウムの薄膜からなる圧力検出素子に固有の問題も認められる。すなわち、このような圧力検出素子、すなわちセンサ素子は耐久性が高くないという問題がある。特許文献2に記載の圧電センサは、この圧力検出素子が薄い樹脂製シートによって挟み込まれて保護されており、ある程度耐久性が向上しているが、患者の背中によって繰り返し押されると、圧力検出素子が早期に劣化してしまう。圧力検出素子を挟み込む樹脂製シートを厚くすれば耐久性は向上するが、センサの感度が低下するという別の問題が生じてしまう。また、このような圧力検出素子には検出された電圧を外部に送信する信号線が設けられているが、圧力検出素子が薄膜状に形成されているので、圧力検出素子と信号線の接合部の強度は弱く問題である。特許文献2に記載の圧電センサの場合、直接患者の背中に圧力検出素子が敷かれて圧力の変動を検出するようになっているので、早期に接合部が破損して信号線が断線してしまう危険が高い。また、窒化アルミニウムは一般的に小面積のものしか製造することができないので、圧力の変化を検出できる背中の部分が小面積になってしまい、接触させる部分によっては呼吸の動作を確実に検出できない。さらには、特許文献2に記載の圧電センサは、圧力検出素子とこれを覆っている樹脂製シートとからなるセンサユニットになってはいるが、この樹脂製シートは保護を目的とするだけであり、樹脂製シートが受けた圧力を圧力検出素子全体に伝達するような構造ではない。つまり、圧力検出の点から見ると、単体の圧力検出素子からなるセンサと実質的な相違はない。そうすると、患者の背中から受ける圧力が圧力検出素子に均一に作用するとは限らないので、圧力検出素子で受ける圧力にはムラが生じてしまい、センサの検出精度が十分に得られない場合がある。すなわち、患者の背中と圧電センサが接触している位置、面積等の状態によっては、患者の体動に伴う圧力の変動を正確に検出できない場合がある。 When using the piezoelectric sensor described in Patent Document 2, many of the above problems are solved. For example, a piezoelectric sensor is provided on a bed on which the patient lies, and touches the patient's back to detect the movement of breathing. There is no such thing as hitting a photographic device. In addition, since the piezoelectric sensor is made of a PVDF film or an aluminum nitride thin film, it is relatively difficult to appear in a tomographic image. However, there is no guarantee that the piezoelectric sensor described in Patent Document 2 will not appear in the image at all depending on the configuration. There are also problems inherent to pressure sensing elements made of PVDF films or aluminum nitride thin films. That is, such a pressure detection element, that is, a sensor element has a problem that durability is not high. In the piezoelectric sensor described in Patent Document 2, the pressure detection element is sandwiched and protected by a thin resin sheet, and the durability is improved to some extent. However, when the pressure detection element is repeatedly pressed by the patient's back, the pressure detection element Will deteriorate early. If the thickness of the resin sheet sandwiching the pressure detection element is increased, the durability is improved, but another problem that the sensitivity of the sensor is lowered arises. In addition, a signal line for transmitting the detected voltage to the outside is provided in such a pressure detection element. However, since the pressure detection element is formed in a thin film shape, the junction between the pressure detection element and the signal line The strength of is weak and problematic. In the case of the piezoelectric sensor described in Patent Document 2, since the pressure detection element is directly placed on the patient's back to detect pressure fluctuation, the joint portion is damaged early and the signal line is disconnected. There is a high risk of losing. In addition, since aluminum nitride can generally be manufactured only in a small area, the back portion where the change in pressure can be detected becomes a small area, and depending on the portion to be contacted, the respiratory action cannot be detected reliably. . Furthermore, although the piezoelectric sensor described in Patent Document 2 is a sensor unit including a pressure detection element and a resin sheet covering the pressure detection element, this resin sheet is only for the purpose of protection. The structure is such that the pressure received by the resin sheet is transmitted to the entire pressure detecting element. That is, when viewed from the point of pressure detection, there is no substantial difference from a sensor composed of a single pressure detection element. In this case, the pressure received from the patient's back does not necessarily act uniformly on the pressure detection element, so that the pressure received by the pressure detection element may be uneven, and the sensor detection accuracy may not be sufficiently obtained. That is, depending on the position, area, and the like where the patient's back is in contact with the piezoelectric sensor, fluctuations in pressure due to patient movement may not be detected accurately.
 本発明は、上記したような問題点に鑑みてなされたもので、具体的には、断層撮影において画像に映ったり放射線治療において妨げになることがなく、断層撮影装置にぶつかるようなこともなく、患者の呼吸による体動を確実に検出できる構成を有し、熟練を要することなく患者の呼吸による体動を確実に検出できる、安価で耐久性の高い体動検出センサユニットと、このセンサユニットで検出された呼吸動作に同期した呼吸同期用信号を生成して、断層撮影装置、放射線治療装置等の医療機器に呼吸同期用信号を出力することができる呼吸同期用信号生成装置を提供することを目的としている。 The present invention has been made in view of the above-described problems. Specifically, the present invention does not appear in an image in tomography or interfere with radiotherapy, and does not collide with a tomography apparatus. An inexpensive and durable body motion detection sensor unit that has a configuration that can reliably detect body motion due to patient breathing and that can reliably detect body motion due to patient breathing without requiring skill, and this sensor unit To provide a respiratory synchronization signal generation device capable of generating a respiratory synchronization signal synchronized with the respiratory motion detected in step S1 and outputting the respiratory synchronization signal to a medical device such as a tomography apparatus or a radiotherapy apparatus It is an object.
 本発明は、上記目的を達成するために、体動検出センサユニットを、可撓性を有し全体が扁平なシート状を呈する中空の容器と、当該容器または別の容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、これ等の容器に気密的または液密的に封入されている流体とから構成する。そして、容器に作用する圧力が、流体を介して薄膜センサ素子に作用して検出されるように構成する。また、このような容器を、患者の背面とテーブルの接触部に挿入し受圧部の面積が、前記薄膜センサ素子の面積よりも広くなるようにする。また、本発明の他の構成においては、体動検出センサユニットを、可撓性を有し全体が扁平なシート状を呈する中空の第1の容器と、中空の第2の容器と、中空部を連通するようにこれらを連結している管路と、第2の容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、容器の内部に気密的または液密的に封入されている流体とから構成し、第1の容器に作用する圧力が、流体を介して薄膜センサ素子に作用するように構成する。そして、このような体動検出センサユニットによって検出される圧力の変化を受信して、呼吸に同期する呼吸同期用信号を生成する呼吸同期用信号生成装置として構成する。 In order to achieve the above object, the present invention provides a body motion detection sensor unit comprising: a hollow container that is flexible and has a generally flat sheet shape; and a PVDF stored in the container or another container The thin film sensor element is made of aluminum nitride or zinc oxide, and the fluid is hermetically or liquid-tightly sealed in these containers. And it is comprised so that the pressure which acts on a container may act on a thin film sensor element via a fluid, and may be detected. Further, such a container is inserted into the contact portion between the back surface of the patient and the table so that the area of the pressure receiving portion is larger than the area of the thin film sensor element. In another configuration of the present invention, the body motion detection sensor unit includes a hollow first container that is flexible and has a flat sheet shape, a hollow second container, and a hollow portion. A conduit connecting them so as to communicate with each other, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the second container, and hermetically or liquid tightly inside the container It is comprised from the enclosed fluid, and it comprises so that the pressure which acts on a 1st container may act on a thin film sensor element via a fluid. Then, the apparatus is configured as a respiratory synchronization signal generation device that receives a change in pressure detected by such a body motion detection sensor unit and generates a respiratory synchronization signal synchronized with respiration.
 かくして、請求項1記載の発明は、上記目的を達成するために、CTスキャン装置、PET装置、放射線治療シミュレーション装置、放射線治療装置等の医療機器において、患者が仰臥する寝台の上に設けられ、患者の背面とテーブルの接触部に挿入して呼吸の動作に伴う圧力の変化を検出するセンサユニットであって、前記センサユニットは、可撓性を有する中空の容器と、前記容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記容器に気密的または液密的に封入されている流体とから、全体が扁平なシート状を呈するように形成され、前記容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるように構成される。
 請求項2に記載の発明は、請求項1に記載のセンサユニットにおいて、前記容器は、前記患者の背面とテーブルの接触部に挿入した受圧部の面積が、前記薄膜センサ素子の面積よりも広くなるように構成される。
 そして、請求項3に記載の発明は、CTスキャン装置、PET装置、放射線治療シミュレーション装置、放射線治療装置等の医療機器において、患者が仰臥する寝台の上に設けられ、患者の背面とテーブルの接触部に挿入して呼吸の動作に伴う圧力の変化を検出するセンサユニットであって、前記センサユニットは、可撓性を有し全体が扁平なシート状を呈する中空の第1の容器と、中空の第2の容器と、前記第1、2の容器を連結していると共にそれぞれの中空部を連通する管路と、前記第2の容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記第1、2の容器および前記管路に気密的または液密的に封入されている流体とから構成され、前記第1の容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるように構成される。
 また、請求項4に記載の発明は、請求項1~3のいずれかの項に記載のセンサユニットにおいて、前記流体は、シリコンオイルまたは鉱物油からなる液体であるように構成され、請求項5に記載の発明は、請求項1~3のいずれかの項に記載のセンサユニットにおいて、前記流体は、空気または不活性ガスからなる気体であるように構成される。
 請求項6に記載の発明は、請求項1~5のいずれかの項に記載の前記体動検出センサユニットで検出される圧力の変化を受信して、呼吸に同期する呼吸同期用信号を生成することを特徴とする呼吸同期用信号生成装置として構成され、請求項7に記載の発明は、請求項6に記載の装置において、前記体動検出センサユニットには送信機が、前記呼吸同期用信号生成装置には前記送信機に対応する受信機がそれぞれ設けられ、前記圧力の変化の信号が、Bluetooth通信、または近赤外線通信で送受信されるように構成される。
 そして、請求項8に記載の発明は、請求項6または7に記載の呼吸同期用信号生成装置には、モニタが接続されるビデオ出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるように構成される。
Thus, in order to achieve the above object, the invention according to claim 1 is provided on a bed on which a patient lies in a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, and a radiation treatment device, A sensor unit that is inserted into a contact portion between a patient's back surface and a table to detect a change in pressure accompanying a breathing operation, and the sensor unit is stored in the hollow container having flexibility and the container. Formed from a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide, and a fluid hermetically or liquid-tightly sealed in the container, and formed into a flat sheet shape as a whole. The acting pressure is configured to be detected by acting on the thin film sensor element via the fluid.
According to a second aspect of the present invention, in the sensor unit according to the first aspect, in the container, the area of the pressure receiving portion inserted into the contact portion between the back surface of the patient and the table is larger than the area of the thin film sensor element. It is comprised so that it may become.
According to a third aspect of the present invention, in a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, or a radiation treatment device, the device is provided on a bed on which the patient lies, and the back surface of the patient is in contact with the table. A sensor unit that is inserted into a part to detect a change in pressure associated with a breathing operation, the sensor unit having a hollow first container that is flexible and has a flat sheet shape, and a hollow The second container, the pipes connecting the first and second containers and communicating the hollow portions thereof, and PVDF, aluminum nitride, or zinc oxide stored in the second container. A thin film sensor element, and fluids hermetically or liquid-tightly sealed in the first and second containers and the conduit, and pressure acting on the first container is mediated by the fluid. Configured to be detected acting on the thin film sensor element Te.
The invention according to claim 4 is the sensor unit according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil. According to the present invention, in the sensor unit according to any one of claims 1 to 3, the fluid is configured to be a gas composed of air or an inert gas.
According to a sixth aspect of the present invention, a change in pressure detected by the body motion detection sensor unit according to any one of the first to fifth aspects is received, and a respiratory synchronization signal synchronized with respiration is generated. In the apparatus according to claim 7, the body motion detection sensor unit is provided with a transmitter for the respiratory synchronization signal. The signal generating device is provided with a receiver corresponding to the transmitter, and is configured to transmit and receive the pressure change signal by Bluetooth communication or near infrared communication.
According to an eighth aspect of the present invention, in the respiratory synchronization signal generation device according to the sixth or seventh aspect, a video output terminal to which a monitor is connected is provided, and the respiratory waveform and the respiratory synchronization signal are graphed. Can be output.
 以上のように、本発明によると、体動検出センサユニットは、可撓性を有する中空の容器と、容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、容器に気密的または液密的に封入されている流体とから、全体が扁平なシート状を呈するように形成され、容器に作用する圧力が、流体を介して薄膜センサ素子に作用して検出されるように構成されているので、流体を介して確実に圧力を検出することができ、熟練を要さずに呼吸動作を検出することができる。そして、薄膜センサ素子には、直接力が作用せずに流体を介して圧力が作用するので、薄膜センサ素子が早期に劣化してしまうことがないし、薄膜センサ素子に接続されている信号線にも直接負荷がかからないので、信号線が断線することがなく、高い耐久性が得られる。また、体動検出センサユニットは、患者が仰臥する寝台の上に設けられ、患者の背面とテーブルの接触部に挿入して呼吸の動作に伴う圧力の変化を検出するセンサユニットとして構成されているので、センサユニットが断層撮影装置にぶつかるようなことも、放射線治療において妨げになることもない。さらには、PVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子は、X線を吸収し難いので、断層画像に映る恐れはほとんどない。本発明によると、体動検出センサユニットの容器は、患者の背面とテーブルの接触部に挿入され受圧部の面積が、薄膜センサ素子の面積よりも広くなるように構成されているので、背中の圧力の変化を確実に検出することが可能になる。そして、本発明の他の構成によると、体動検出センサユニットは、中空の第1の容器と中空の第2の容器と薄膜センサ素子と容器に封入されている流体とから構成されているので、第1の容器を患者の背中に敷くようにすれば、第1の容器はX線を吸収することがないので、センサが断層画像に映ることがなく、鮮明な断層画像を得ることができる。また、薄膜センサ素子は、圧力を直接受ける第1の容器とは別の容器である第2の容器内に格納されているので、薄膜センサ素子が折れ曲がったり劣化することがない。さらには、薄膜センサ素子に接続されている信号線が薄膜センサ素子から外れる恐れもない。すなわち、非常に耐久性が高い。さらには、本発明によると、このような容器に封入されている流体は、空気または不活性ガスからなる気体であるようにも構成されているので、万一容器が破損しても液漏れ等の事故が発生することがなく、高価な医療機器の安全を確保することができる。また、このような体動検出センサユニットからの信号をBluetooth通信、または近赤外線通信によって受信して、呼吸同期用信号を生成する呼吸同期用信号生成装置に関する発明によると、センサと呼吸同期用信号生成装置は、医療機器が誤動作を引き起こす恐れがなく、信号線が邪魔にならないので、呼吸同期用信号生成装置を安全に設置することが可能になる。さらに他の発明によると、呼吸同期用信号生成装置にはビデオ出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるようになっているので、オペレータ室にモニタを設置すれば、断層撮影装置、放射線治療装置等の装置を操作するオペレータが患者の呼吸を確認することができる。 As described above, according to the present invention, the body motion detection sensor unit includes a flexible hollow container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the container, and a container. It is formed so as to form a flat sheet from the fluid hermetically or liquid tightly sealed, and the pressure acting on the container is detected by acting on the thin film sensor element via the fluid. Therefore, the pressure can be reliably detected via the fluid, and the breathing motion can be detected without requiring skill. The thin film sensor element is not subjected to direct force but pressure is applied via the fluid, so that the thin film sensor element does not deteriorate at an early stage, and the signal line connected to the thin film sensor element is not affected. Since no direct load is applied, the signal line is not disconnected and high durability is obtained. The body motion detection sensor unit is provided on a bed on which the patient lies, and is configured as a sensor unit that is inserted into a contact portion between the back surface of the patient and the table and detects a change in pressure accompanying a breathing operation. Therefore, the sensor unit does not collide with the tomography apparatus and does not hinder radiotherapy. Furthermore, since a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide hardly absorbs X-rays, there is almost no risk of being reflected in a tomographic image. According to the present invention, the container of the body motion detection sensor unit is configured to be inserted into the contact portion of the back surface of the patient and the table so that the area of the pressure receiving portion is larger than the area of the thin film sensor element. It becomes possible to reliably detect a change in pressure. And according to the other structure of this invention, since a body movement detection sensor unit is comprised from the fluid enclosed with the hollow 1st container, the hollow 2nd container, the thin film sensor element, and the container. If the first container is laid on the patient's back, the first container does not absorb X-rays, so the sensor does not appear in the tomographic image and a clear tomographic image can be obtained. . Further, since the thin film sensor element is stored in a second container that is a container different from the first container that directly receives pressure, the thin film sensor element does not bend or deteriorate. Furthermore, there is no possibility that the signal line connected to the thin film sensor element is disconnected from the thin film sensor element. That is, the durability is very high. Furthermore, according to the present invention, since the fluid sealed in such a container is also configured to be a gas composed of air or an inert gas, even if the container is broken, liquid leakage, etc. Thus, the safety of expensive medical equipment can be ensured. In addition, according to the invention relating to the respiratory synchronization signal generation device that receives the signal from the body motion detection sensor unit by Bluetooth communication or near infrared communication and generates a respiratory synchronization signal, the sensor and the respiratory synchronization signal Since the generation device does not cause a malfunction of the medical device and the signal line does not get in the way, it is possible to safely install the signal generation device for respiratory synchronization. According to still another invention, the respiratory synchronization signal generation device is provided with a video output terminal so that the respiratory waveform and the respiratory synchronization signal can be graphed and output, so if a monitor is installed in the operator room, An operator who operates a device such as a tomography apparatus or a radiotherapy apparatus can confirm the breathing of the patient.
本発明の実施の形態に係る呼吸同期用信号生成装置とCTスキャン装置を模式的に示す斜視図である。1 is a perspective view schematically showing a respiratory synchronization signal generation device and a CT scanning device according to an embodiment of the present invention. 本発明の実施の形態に係る体動検出センサユニットを模式的に示す斜視図である。It is a perspective view showing typically a body movement detection sensor unit concerning an embodiment of the invention. 薄膜センサ素子とフラットケーブルを接続する接続用のチップであるフレキシブルICチップを模式的に示す斜視図である。It is a perspective view which shows typically the flexible IC chip which is a chip | tip for a connection which connects a thin film sensor element and a flat cable. フレキシブルICチップによって薄膜センサ素子とフラットケーブルが接続されている様子を示す断面図である。It is sectional drawing which shows a mode that the thin film sensor element and the flat cable are connected by the flexible IC chip. 本発明の実施の形態に係る呼吸同期用信号生成装置のビデオ出力端子に接続されたモニタに表示される画面である。It is a screen displayed on the monitor connected to the video output terminal of the signal generation apparatus for respiratory synchronization which concerns on embodiment of this invention. 本発明の他の実施の形態に係る体動検出センサユニットを模式的に示す斜視図である。It is a perspective view which shows typically the body movement detection sensor unit which concerns on other embodiment of this invention.
 本実施の形態に係る呼吸同期用信号生成装置について、呼吸同期用信号生成装置を備えたCTスキャン装置を例に説明する。
 CTスキャン装置1は、図1に示されているように、従来周知のCTスキャン装置と同様に、人体を走査するガントリ2、患者が仰臥する寝台3、等から概略構成されている。ガントリ2には、その中央部に、人体が挿入される所定の内径の貫通孔が明けられている。すなわち開口部5が設けられている。ガントリ2の内部には、図1には示されていないが、X線を曝射するX線源と、人体を透過したX線を検出する多数のセンサからなる検出器アレイとが、開口部5を挟んで対向する位置に設けられている。このようなX線源と検出器アレイは、お互いに開口部5を挟んで対向する位置を採りながら、開口部5を中心に円周方向に回転できるようになっている。ガントリ2には、ガントリ2と寝台3を制御したりデータを処理するコンピュータが設けられている。
The respiratory synchronization signal generation apparatus according to the present embodiment will be described using a CT scan apparatus provided with the respiratory synchronization signal generation apparatus as an example.
As shown in FIG. 1, the CT scanning apparatus 1 is generally configured by a gantry 2 that scans a human body, a bed 3 on which a patient lies, and the like, in the same manner as a conventionally known CT scanning apparatus. The gantry 2 has a through hole having a predetermined inner diameter into which a human body is inserted at the center thereof. That is, the opening 5 is provided. Although not shown in FIG. 1, the gantry 2 includes an X-ray source that emits X-rays and a detector array that includes a number of sensors that detect X-rays transmitted through the human body. 5 are provided at positions facing each other. Such an X-ray source and the detector array can be rotated in the circumferential direction around the opening 5 while adopting positions facing each other with the opening 5 interposed therebetween. The gantry 2 is provided with a computer that controls the gantry 2 and the bed 3 and processes data.
 寝台3は、床に設置される台座7と、台座7の上に設けられている略長方形の板状を呈するテーブル8とから構成されている。そしてテーブル8は、図1には示されていないが、台座7の内部に設けられているテーブル駆動機構によって長手方向にスライドすることができるようになっている。このような寝台3は、ガントリ2に隣接して設置され、テーブル駆動機構を駆動すると、テーブル8が開口部5に挿入されたり、後退するようになっている。 The bed 3 includes a pedestal 7 installed on the floor and a table 8 having a substantially rectangular plate shape provided on the pedestal 7. Although not shown in FIG. 1, the table 8 can be slid in the longitudinal direction by a table driving mechanism provided inside the pedestal 7. Such a bed 3 is installed adjacent to the gantry 2, and when the table driving mechanism is driven, the table 8 is inserted into the opening 5 or retracted.
 テーブル8の上面には、本実施の形態に係る体動検出センサユニット11が設けられている。体動検出センサユニット11は、後でその構造を詳しく説明するように、圧力を受ける受圧部がシート状に形成されたセンサであり、テーブル8の上面に患者が仰臥したときに、患者の背面が受圧部が当たるようにして、呼吸の動きによる体動を電圧の変化として検出することができる。体動検出センサユニット11には、フラットケーブル12が接続され、フラットケーブル12の先端には送信機14が接続されている。送信機14は、テーブル8の長辺の端面に固定されており、フラットケーブル12は十分に短いので、フラットケーブル12と送信機14が断層画像の撮影の妨げになったり患者の邪魔になることはない。 The body motion detection sensor unit 11 according to the present embodiment is provided on the upper surface of the table 8. As will be described in detail later, the body movement detection sensor unit 11 is a sensor in which a pressure receiving portion that receives pressure is formed in a sheet shape, and when the patient lies on the upper surface of the table 8, , The body movement due to the movement of breathing can be detected as a change in voltage. A flat cable 12 is connected to the body motion detection sensor unit 11, and a transmitter 14 is connected to the tip of the flat cable 12. The transmitter 14 is fixed to the end surface of the long side of the table 8, and the flat cable 12 is sufficiently short. Therefore, the flat cable 12 and the transmitter 14 may interfere with tomographic image capturing or disturb the patient. There is no.
 ガントリ2の近傍には、呼吸同期用信号生成装置16が設置され、呼吸同期用信号生成装置16とガントリ2は所定の信号ケーブル18によって接続されている。呼吸同期用信号生成装置16は、オープンコレクタ端子、TTLレベルラインドライバ出力端子、START/STOP出力端子、RS422接続端子を備えているので、信号ケーブル18には、ガントリ2の入力端子19に対応する任意のタイプのケーブルを選定することができる。呼吸同期用信号生成装置16には、受信部あるいは受信機が設けられ、送信機14から送信される信号を受信することができるようになっている。なお、送信機14と受信機における通信は、電磁波漏洩による機器の誤動作を引き起こす恐れの無い、Bluetooth通信、あるいは近赤外線通信によって実施される。従って、断層画像装置1や周辺に設置されている医療機器は誤動作の恐れがない。このような呼吸同級用信号生成装置16には、外部のモニタ装置に必要な情報を出力することができるビデオ出力端子も設けられており、図1には示されていないが、CTスキャン装置1を操作するオペレータ室内に設けられている所定のモニタに接続されている。また、呼吸同級用信号生成装置16には、マイクも内蔵されている。一般的に、CTスキャン装置1はX線の曝射時に注意を促す所定の警告音を発するが、この警告音を検出して曝射情報として呼吸同級用信号生成装置16に取り込むことができる。 In the vicinity of the gantry 2, a respiratory synchronization signal generation device 16 is installed, and the respiratory synchronization signal generation device 16 and the gantry 2 are connected by a predetermined signal cable 18. The respiratory synchronization signal generation device 16 includes an open collector terminal, a TTL level line driver output terminal, a START / STOP output terminal, and an RS422 connection terminal, so that the signal cable 18 corresponds to the input terminal 19 of the gantry 2. Any type of cable can be selected. The respiratory synchronization signal generation device 16 is provided with a receiver or a receiver so that a signal transmitted from the transmitter 14 can be received. Note that the communication between the transmitter 14 and the receiver is performed by Bluetooth communication or near-infrared communication that does not cause malfunction of the device due to electromagnetic wave leakage. Therefore, the tomographic image apparatus 1 and medical devices installed in the vicinity are free from malfunction. Such a respiratory class signal generation device 16 is also provided with a video output terminal that can output necessary information to an external monitor device. Although not shown in FIG. Is connected to a predetermined monitor provided in the operator room. The breathing class signal generator 16 also includes a microphone. In general, the CT scanning device 1 emits a predetermined warning sound to call attention at the time of X-ray exposure. This warning sound can be detected and taken into the respiratory class signal generation device 16 as exposure information.
 本実施の形態に係る体動検出センサユニット11は、図2に示されているように、上面の面積が大きいシート状を呈する中空の第1の容器21、所定の大きさの中空の第2の容器22、第2の容器22に格納されている薄膜センサ素子23等から概略構成されている。第1の容器21は、患者の背面とテーブルの間に挿入されて患者の背面の圧力を受ける受圧部になっているので、ポリ塩化ビニル、ポリプロピレン等の可撓性材料から形成されているが、第2の容器22は、薄膜センサ素子23を保護する容器であるので、特に可撓性を有する必要はなく、本実施の形態においてはアクリル樹脂から形成されている。第1、2の容器21、22は可撓性材料からなる連結管25によって、気密的または液密的に連結され、それぞれの中空部が連通している。薄膜センサ素子23は、PVDF(polyvinilidene fluorite)、窒化アルミニウム、または酸化亜鉛からなる所定の大きさの薄膜状の圧電素子であり、本実施の形態においては窒化アルミニウムからなる。薄膜センサ素子23には、以下に説明するように所定の接続用チップを介してフラットケーブル12が接続され、フラットケーブル12には、既に説明したように、送信機14が接続されている。このような体動検出センサユニット11、すなわち第1、2の容器21、22と連結管25には、シリコンオイル27が封入され、薄膜センサ素子23は全体がシリコンオイル27中に浸された状態になっている。 As shown in FIG. 2, the body motion detection sensor unit 11 according to the present embodiment includes a hollow first container 21 having a sheet shape with a large upper surface area, and a hollow second container having a predetermined size. And the thin film sensor element 23 stored in the second container 22. Since the first container 21 is a pressure receiving portion that is inserted between the patient's back surface and the table and receives the pressure on the patient's back surface, the first container 21 is formed of a flexible material such as polyvinyl chloride or polypropylene. The second container 22 is a container that protects the thin film sensor element 23, and therefore does not have to be particularly flexible. In the present embodiment, the second container 22 is formed from an acrylic resin. The first and second containers 21 and 22 are connected in a gas-tight or liquid-tight manner by a connecting pipe 25 made of a flexible material, and the respective hollow portions communicate with each other. The thin film sensor element 23 is a thin film piezoelectric element having a predetermined size made of PVDF (polyvinylidene fluorite), aluminum nitride, or zinc oxide. In the present embodiment, the thin film sensor element 23 is made of aluminum nitride. The flat cable 12 is connected to the thin film sensor element 23 via a predetermined connection chip as described below, and the transmitter 14 is connected to the flat cable 12 as described above. The body motion detection sensor unit 11, that is, the first and second containers 21 and 22 and the connecting pipe 25 are filled with silicon oil 27 and the thin film sensor element 23 is entirely immersed in the silicon oil 27. It has become.
 窒化アルミニウムの圧電素子からなる薄膜センサ素子23と、フラットケーブル12は、所定の接続用チップ、すなわちフレキシブルICチップ30によって接続される。フレキシブルICチップ30は、図3に示されているように、切り込み31が入れられた平板状のチップであり、銅の薄膜からなる第1、2の導線33、34が、切り込み31で分けられたチップの第1の小片35と第2の小片36とに、平行になるように設けられている。なお、第1の導線33はチップの表面に、第2の導線34はチップの裏面に設けられている。このようなフレキシブルICチップ30によって、薄膜センサ素子23をフラットケーブル12に接続する方法について説明する。フレキシブルICチップ30を、第1の小片35を下方に、第2の小片36を上方に湾曲させて、切り込み31に薄膜センサ素子23を挿入する。そうすると、図4に示されているように、薄膜センサ素子23をフレキシブルICチップ30の第1、2の小片35、36で挟み込むことができる。薄膜センサ素子23は、ポリイミド系樹脂からなる基板38とその上に蒸着された窒化アルミニウム結晶層39が、アルミニウム等からなる第1、2の金属膜41、42によって上面と下面が被覆された構造を呈している。このような薄膜センサ素子23の第1、2の金属膜41、42に異方性導電接着剤44、44を塗布して、フレキシブルICチップ30の第1、2の小片35、36を押圧して接着する。そうすると、第1の金属膜41と第1の導線33、第2の金属膜42と第2の導線34のそれぞれが導通する。フレキシブルICチップ30の端部46に所定のコネクタ47を接続し、コネクタ47を介してフラットケーブル12を接続する。薄膜センサ素子23とフラットケーブル12が接続される。 The thin film sensor element 23 made of an aluminum nitride piezoelectric element and the flat cable 12 are connected by a predetermined connecting chip, that is, a flexible IC chip 30. As shown in FIG. 3, the flexible IC chip 30 is a flat chip with a cut 31, and first and second conductive wires 33 and 34 made of a copper thin film are divided by the cut 31. The first small piece 35 and the second small piece 36 of the chip are provided so as to be parallel to each other. The first conducting wire 33 is provided on the front surface of the chip, and the second conducting wire 34 is provided on the back surface of the chip. A method of connecting the thin film sensor element 23 to the flat cable 12 using such a flexible IC chip 30 will be described. The thin film sensor element 23 is inserted into the cut 31 by bending the flexible IC chip 30 with the first small piece 35 downward and the second small piece 36 upward. Then, as shown in FIG. 4, the thin film sensor element 23 can be sandwiched between the first and second small pieces 35 and 36 of the flexible IC chip 30. The thin film sensor element 23 has a structure in which a substrate 38 made of polyimide resin and an aluminum nitride crystal layer 39 deposited thereon are covered on the upper and lower surfaces by first and second metal films 41 and 42 made of aluminum or the like. Presents. The anisotropic conductive adhesives 44 and 44 are applied to the first and second metal films 41 and 42 of the thin film sensor element 23 to press the first and second small pieces 35 and 36 of the flexible IC chip 30. And glue. Then, the first metal film 41 and the first conductive wire 33, and the second metal film 42 and the second conductive wire 34 are electrically connected. A predetermined connector 47 is connected to the end 46 of the flexible IC chip 30, and the flat cable 12 is connected via the connector 47. The thin film sensor element 23 and the flat cable 12 are connected.
 本実施の形態に係る呼吸同期用信号生成装置を備えたCTスキャン装置1の作用を説明する。図1に示されているように、患者Kを寝台3のテーブル8の上に仰臥させる。このとき、体動検出センサユニット11の受圧部、すなわち第1の容器21の位置を調整して、例えば、肩胛骨近傍、臀部等の、患者の背面とテーブル8が接触する部分に受圧部が当たるように挿入する。患者Kは呼吸の動作と心臓の鼓動による体動によってわずかに動く。体動検出センサユニット11の受圧部は体動による圧力の変化を受ける。そして、シリコンオイル27を介して作用した圧力の変化を、薄膜センサ素子23において電圧の変化として検出する。受圧部の面積は十分に広いので効率よく背中の圧力を受けることができ、シリコンオイル27によって薄膜センサ素子23の全表面に均一に圧力が作用するので、圧力の変化を精度良く検出することができる。検出された電圧の変化を送信機14によって呼吸同期用信号生成装置16に送信する。呼吸同期用信号生成装置16では、入力された電圧の波形を処理して呼吸に同期するパルス信号、すなわち同期用信号を生成する。生成した同期用信号をガントリ2に入力する。ところで、電圧の波形には、呼吸の動作と心臓の鼓動による異なる周波数成分が含まれ、さらにはノイズも含まれている。従って、フーリエ変換、ウェーブレット変換等の周知の分析方法を適用して呼吸の動作に対応する周波数成分を抽出する。そうすると、呼吸のタイミングを得ることができる。なお、入力される電力の波形には、短時間に変化する周波数成分が多く含まれているので、ウェーブレット変換による分析方法が特に有効である。分析方法として、例えば、日本機械学会[No.01-5]福祉工学シンポジウムCD-ROM論文集[2001.8.7,東京]の論文「W301 PVDFセンサを用いた睡眠時呼吸・心拍の無拘束侵襲計測に関する研究(第2報:ウェーブレット変換を用いた呼吸心拍の検出)」に記載されている方法を適用することができる。 The operation of the CT scan apparatus 1 including the respiratory synchronization signal generation apparatus according to the present embodiment will be described. As shown in FIG. 1, the patient K is supine on the table 8 of the bed 3. At this time, the pressure receiving portion of the body motion detection sensor unit 11, that is, the position of the first container 21 is adjusted, and the pressure receiving portion hits a portion where the back surface of the patient and the table 8 are in contact, for example, near the shoulder rib or the hip. Insert like so. Patient K moves slightly due to breathing and heart movement. The pressure receiving portion of the body motion detection sensor unit 11 receives a change in pressure due to body motion. Then, the change in pressure applied via the silicon oil 27 is detected as a change in voltage in the thin film sensor element 23. Since the area of the pressure receiving portion is sufficiently large, it can receive the pressure of the back efficiently, and the pressure is uniformly applied to the entire surface of the thin film sensor element 23 by the silicon oil 27, so that the change in pressure can be detected with high accuracy. it can. The detected voltage change is transmitted to the respiratory synchronization signal generation device 16 by the transmitter 14. The respiratory synchronization signal generator 16 processes a waveform of the input voltage to generate a pulse signal synchronized with respiration, that is, a synchronization signal. The generated synchronization signal is input to the gantry 2. By the way, the voltage waveform includes different frequency components due to breathing motion and heartbeat, and further includes noise. Accordingly, a known analysis method such as Fourier transform or wavelet transform is applied to extract a frequency component corresponding to the breathing motion. Then, the timing of breathing can be obtained. Since the input power waveform contains many frequency components that change in a short time, an analysis method using wavelet transform is particularly effective. As an analysis method, for example, the Japan Society of Mechanical Engineers [No. 01-5] Dissertation Symposium CD-ROM [2001.8.7, Tokyo] paper "W301 Study on unrestrained invasive measurement of respiratory and heart rate during sleep using PVDF sensor (2nd report: Wavelet transform The method described in “Detection of respiratory heartbeat used)” can be applied.
 テーブル8を駆動して患者Kを開口部5に挿入し、断層画像を撮影したい部位が開口部5の中心に位置するようにする。ガントリ2に入力される同期用信号に同期して、X線を曝射して断層画像を撮影する。このとき、患者Kの患者の背面とテーブルの接触部に挿入されている受圧部、すなわち、体動検出センサユニット11の第1の容器21とシリコンオイル27はX線を吸収しないので、断層画像にこれらが映ることはない。引き続き、テーブル8を駆動して患者Kをわずかに挿入して、同期用信号に同期して断層画像を撮影する。以下同様にして複数枚の断層画像を撮影する。 The table 8 is driven to insert the patient K into the opening 5 so that the site where the tomographic image is to be taken is positioned at the center of the opening 5. In synchronism with the synchronizing signal input to the gantry 2, the X-rays are exposed to take a tomographic image. At this time, the pressure receiving part inserted in the contact part between the back surface of the patient K and the table, that is, the first container 21 of the body motion detection sensor unit 11 and the silicon oil 27 do not absorb X-rays. These are not reflected in. Subsequently, the table 8 is driven to slightly insert the patient K, and a tomographic image is taken in synchronization with the synchronization signal. Thereafter, a plurality of tomographic images are taken in the same manner.
 オペレータ室に設けられているモニタには、呼吸同期用信号生成装置16から出力された画面が表示され、例えば図5に示されているように表示される。画面51には、日付と時刻52、患者Kに付与されている患者ID53、患者の氏名54等の基本情報が表示され、患者Kの呼吸波形56の表示と共に、その呼吸波形56に同期した呼吸同期用信号57がパルス状に表示される。また、CTスキャン装置1が曝射したタイミング、すなわち曝射情報59と心拍信号60も表示される。オペレータは、モニタの表示を見ながら呼吸の状態を監視して、オペレータ室に備え付けられている音声回線によって患者Kに指示を出すことができる。そうすると、患者Kは適切な呼吸動作をすることができ、適切に断層画像を撮影できる。なお、呼吸同期用信号生成装置16内には、所定のメモリも設けられており、モニタに表示される情報は保存されている。従って、過去のデータも必要に応じて表示することができる。 On the monitor provided in the operator room, the screen output from the respiratory synchronization signal generator 16 is displayed, for example, as shown in FIG. The screen 51 displays basic information such as the date and time 52, the patient ID 53 given to the patient K, the patient's name 54, and the like, along with the display of the respiratory waveform 56 of the patient K and the respiration synchronized with the respiratory waveform 56 The synchronizing signal 57 is displayed in a pulse shape. Further, the timing at which the CT scanning device 1 is exposed, that is, the exposure information 59 and the heartbeat signal 60 are also displayed. The operator can monitor the breathing state while observing the display on the monitor, and give an instruction to the patient K through a voice line provided in the operator room. Then, the patient K can perform an appropriate breathing motion and can appropriately capture a tomographic image. Note that a predetermined memory is also provided in the respiratory synchronization signal generation device 16, and information displayed on the monitor is stored. Therefore, past data can also be displayed as necessary.
 図6には、第2の実施の形態に係る体動検出センサユニット11'が示されている。前記実施の形態に係る体動検出センサユニット11の構成要素と同様の要素には、同じ参照番号を付して詳しくは説明しない。第2の実施の形態に係る体動検出センサユニット11'は、図5に示されているように、薄膜センサ素子23が、第1の容器21'に格納されており、第2の容器は設けられていない。すなわち、薄膜センサ素子23は、受圧部である第1の容器21'の所定の部分に格納されている。このようにすると、体動検出センサユニット11'をより安価に製造することが可能になる。なお、第1の容器21'の薄膜センサ素子23が格納されている部分について、所定の補強部材を設ければ、薄膜センサ素子23を適切に保護することができる。 FIG. 6 shows a body motion detection sensor unit 11 ′ according to the second embodiment. Elements similar to those of the body motion detection sensor unit 11 according to the above-described embodiment are assigned the same reference numerals and will not be described in detail. As shown in FIG. 5, the body motion detection sensor unit 11 ′ according to the second embodiment includes a thin film sensor element 23 stored in a first container 21 ′, and the second container Not provided. That is, the thin film sensor element 23 is stored in a predetermined portion of the first container 21 ′ that is a pressure receiving portion. If it does in this way, it will become possible to manufacture body motion detection sensor unit 11 'more cheaply. In addition, if the predetermined reinforcement member is provided about the part in which the thin film sensor element 23 of the first container 21 ′ is stored, the thin film sensor element 23 can be appropriately protected.
 本実施の形態に係る断層画像装置は、色々な変形が可能である。例えば、体動検出センサユニット11と呼吸同期用信号生成装置16は、送受信機によって無線通信されているように説明されているが、所定の信号ケーブルによって直接接続されていてもよい。ただし、このような信号ケーブルは、寝台のテーブルの裏側や縁部に配線して、断層画像の撮影の妨げにならないようにする必要がある。また、体動検出センサユニット11の第1、2の容器21、22にはシリコンオイルが封入されているように説明されているが、鉱物油等の他の液体であっても同様に実施することができる。さらには、このようなシリコンオイル等の液体の代わりに、二酸化炭素、窒素ガス等の不活性ガス、空気等の気体が封入されていてもよい。そうすると、万一、第1、2の容器21、22が破損しても、液漏れ事故が発生しない。 The tomographic image apparatus according to the present embodiment can be variously modified. For example, the body motion detection sensor unit 11 and the respiratory synchronization signal generation device 16 are described as being wirelessly communicated by a transceiver, but may be directly connected by a predetermined signal cable. However, such a signal cable needs to be wired on the backside or edge of the table of the bed so as not to interfere with tomographic image capturing. Further, the first and second containers 21 and 22 of the body motion detection sensor unit 11 are described as being filled with silicon oil, but the same applies to other liquids such as mineral oil. be able to. Furthermore, instead of such a liquid such as silicon oil, an inert gas such as carbon dioxide or nitrogen gas, or a gas such as air may be enclosed. Then, even if the first and second containers 21 and 22 are damaged, a liquid leakage accident does not occur.
 1  CTスキャン装置       2  ガントリ
 3  寝台             5  開口部
 7  台座             8  テーブル
11  体動検出センサユニット   12  フラットケーブル
14  送信機
16  呼吸同期用信号生成装置
21  第1の容器         22  第2の容器
23  薄膜センサ素子       25  連結管
27  シリコンオイル
51  画面
DESCRIPTION OF SYMBOLS 1 CT scan apparatus 2 Gantry 3 Bed 5 Opening part 7 Base 8 Table 11 Body motion detection sensor unit 12 Flat cable 14 Transmitter 16 Breathing synchronization signal generation apparatus 21 First container 22 Second container 23 Thin film sensor element 25 Connection Tube 27 Silicon oil 51 Screen

Claims (8)

  1.  CTスキャン装置、PET装置、放射線治療シミュレーション装置、放射線治療装置等の医療機器において、患者が仰臥する寝台の上に設けられ、患者の背面とテーブルの接触部に挿入して呼吸の動作に伴う圧力の変化を検出するセンサユニットであって、
     前記センサユニットは、可撓性を有する中空の容器と、前記容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記容器に気密的または液密的に封入されている流体とから、全体が扁平なシート状を呈するように形成され、
     前記容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるようになっていることを特徴とする体動検出センサユニット。
    In a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, a radiation treatment device, etc., a pressure that is provided on a bed on which the patient lies and is inserted into a contact portion between the patient's back and the table and is associated with a breathing operation. A sensor unit for detecting a change in
    The sensor unit includes a flexible hollow container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the container, and hermetically or liquid-tightly sealed in the container. Formed from a fluid to form a flat sheet,
    A body motion detection sensor unit, wherein pressure acting on the container is detected by acting on the thin film sensor element via the fluid.
  2.  請求項1に記載のセンサユニットにおいて、前記容器は、前記患者の背面とテーブルの接触部に挿入した受圧部の面積が、前記薄膜センサ素子の面積よりも広くなっていることを特徴とする体動検出センサユニット。 The sensor unit according to claim 1, wherein the container has an area of a pressure receiving portion inserted into a contact portion between the back surface of the patient and the table, which is larger than an area of the thin film sensor element. Motion detection sensor unit.
  3.  CTスキャン装置、PET装置、放射線治療シミュレーション装置、放射線治療装置等の医療機器において、患者が仰臥する寝台の上に設けられ、患者の背面とテーブルの接触部に挿入して呼吸の動作に伴う圧力の変化を検出するセンサユニットであって、
     前記センサユニットは、可撓性を有し全体が扁平なシート状を呈する中空の第1の容器と、中空の第2の容器と、前記第1、2の容器を連結していると共にそれぞれの中空部を連通する管路と、前記第2の容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記第1、2の容器および前記管路に気密的または液密的に封入されている流体とから構成され、
     前記第1の容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるようになっていることを特徴とする体動検出センサユニット。
    In a medical device such as a CT scan device, a PET device, a radiation treatment simulation device, a radiation treatment device, etc., a pressure that is provided on a bed on which the patient lies and is inserted into a contact portion between the patient's back and the table and is associated with a breathing operation. A sensor unit for detecting a change in
    The sensor unit is connected to the hollow first container, the hollow second container, and the first and second containers, which are flexible and have a flat sheet shape as a whole. A conduit communicating with the hollow portion; a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the second container; and the first and second containers and the conduit are airtight or liquid Consisting of a tightly sealed fluid,
    A body motion detection sensor unit, wherein a pressure acting on the first container acts on the thin film sensor element via the fluid and is detected.
  4.  請求項1~3のいずれかの項に記載のセンサユニットにおいて、前記流体は、シリコンオイルまたは鉱物油からなる液体であることを特徴とする体動検出センサユニット。 The sensor unit according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil.
  5.  請求項1~3のいずれかの項に記載のセンサユニットにおいて、前記流体は、空気または不活性ガスからなる気体であることを特徴とする体動検出センサユニット。 The sensor unit according to any one of claims 1 to 3, wherein the fluid is a gas composed of air or an inert gas.
  6.  請求項1~5のいずれかの項に記載の前記体動検出センサユニットで検出される圧力の変化を受信して、呼吸に同期する呼吸同期用信号を生成することを特徴とする呼吸同期用信号生成装置。 A respiratory synchronization signal that receives a change in pressure detected by the body motion detection sensor unit according to any one of claims 1 to 5 and generates a respiratory synchronization signal synchronized with respiration. Signal generator.
  7.  請求項6に記載の装置において、前記体動検出センサユニットには送信機が、前記呼吸同期用信号生成装置には前記送信機に対応する受信機がそれぞれ設けられ、前記圧力の変化の信号が、Bluetooth通信、または近赤外線通信で送受信されることを特徴とする呼吸同期用信号生成装置。 The apparatus according to claim 6, wherein the body motion detection sensor unit is provided with a transmitter, and the respiratory synchronization signal generation apparatus is provided with a receiver corresponding to the transmitter, and the pressure change signal is received by the transmitter. , Bluetooth communication, or near-infrared communication is used for transmission / reception.
  8.  請求項6または7に記載の呼吸同期用信号生成装置には、モニタが接続されるビデオ出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるようになっていることを特徴とする呼吸同期用信号生成装置。 The respiratory synchronization signal generation device according to claim 6 or 7 is provided with a video output terminal to which a monitor is connected, and can output a respiratory waveform and a respiratory synchronization signal in a graph. A signal generator for respiratory synchronization.
PCT/JP2009/006301 2009-03-19 2009-11-24 Signal generating device for respiratory synchronization and body movement detection sensor unit WO2010106597A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009068484A JP2012110355A (en) 2009-03-19 2009-03-19 Signal generating device for respiratory synchronization and body movement detection sensor unit
JP2009-068484 2009-03-19

Publications (1)

Publication Number Publication Date
WO2010106597A1 true WO2010106597A1 (en) 2010-09-23

Family

ID=42739271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006301 WO2010106597A1 (en) 2009-03-19 2009-11-24 Signal generating device for respiratory synchronization and body movement detection sensor unit

Country Status (2)

Country Link
JP (1) JP2012110355A (en)
WO (1) WO2010106597A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058730A1 (en) * 2009-11-10 2011-05-19 株式会社 ホンダ・ハドロニクス Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device
WO2014046054A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Biological movement measurement device and biological movement measurement method
CN111387967A (en) * 2020-04-15 2020-07-10 上海贝氪若宝健康科技有限公司 Separately excited vibration type physical sign sensor
CN115192006A (en) * 2022-09-06 2022-10-18 休美(北京)微系统科技有限公司 Film type local attaching device for monitoring chest and abdomen movement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6888815B2 (en) * 2017-05-10 2021-06-16 株式会社吉田製作所 X-ray imaging device, X-ray imaging auxiliary device and X-ray imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096045A1 (en) * 2003-05-02 2004-11-11 Seijiro Tomita Method and apparatus for discriminating individual
JP2005143661A (en) * 2003-11-12 2005-06-09 Toshiba Corp Bed for image diagnostic device
JP2006158656A (en) * 2004-12-07 2006-06-22 Sumitomo Rubber Ind Ltd Method and device for judging sleep feeling based on body motion time
JP2008284164A (en) * 2007-05-17 2008-11-27 Panasonic Electric Works Co Ltd Biosignal detector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096045A1 (en) * 2003-05-02 2004-11-11 Seijiro Tomita Method and apparatus for discriminating individual
JP2005143661A (en) * 2003-11-12 2005-06-09 Toshiba Corp Bed for image diagnostic device
JP2006158656A (en) * 2004-12-07 2006-06-22 Sumitomo Rubber Ind Ltd Method and device for judging sleep feeling based on body motion time
JP2008284164A (en) * 2007-05-17 2008-11-27 Panasonic Electric Works Co Ltd Biosignal detector

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011058730A1 (en) * 2009-11-10 2011-05-19 株式会社 ホンダ・ハドロニクス Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device
WO2014046054A1 (en) * 2012-09-18 2014-03-27 住友電気工業株式会社 Biological movement measurement device and biological movement measurement method
JP2014057719A (en) * 2012-09-18 2014-04-03 Sumitomo Electric Ind Ltd Organism action measuring apparatus and organism action measuring method
CN111387967A (en) * 2020-04-15 2020-07-10 上海贝氪若宝健康科技有限公司 Separately excited vibration type physical sign sensor
CN115192006A (en) * 2022-09-06 2022-10-18 休美(北京)微系统科技有限公司 Film type local attaching device for monitoring chest and abdomen movement
CN115192006B (en) * 2022-09-06 2022-12-06 休美(北京)微系统科技有限公司 Film type local attaching device for monitoring chest and abdomen movement

Also Published As

Publication number Publication date
JP2012110355A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
WO2011058730A1 (en) Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device
JP6594245B2 (en) Hardness deriving device, medical imaging system, hardness deriving method, and hardness deriving program
US20150265156A1 (en) Object information acquiring apparatus and breast examination apparatus
US10363013B2 (en) Ultrasound diagnosis apparatus and medical image diagnosis apparatus
EP2386248B1 (en) Ultrasonic diagnostic apparatus
WO2010106597A1 (en) Signal generating device for respiratory synchronization and body movement detection sensor unit
JP2014504918A (en) System and method for superimposing three-dimensional image data from a plurality of different image processing systems for use in diagnostic imaging
JP2009082402A (en) Medical image diagnostic system, medical imaging apparatus, medical image storage apparatus, and medical image display apparatus
CN107809957B (en) Method, apparatus and system for coupling a flexible transducer to a surface
JP2016202252A (en) Radiographic system, control method of radiographic system, and program
KR102530174B1 (en) Ultrasound imaging apparatus and control method for the same
JP2010051337A (en) Tomographic breast imaging system
CN102266236A (en) Ultrasound diagnosis apparatus and image-information management apparatus
JP2020039526A (en) Body motion detection device and radiographic system
JP2015085170A (en) Complex diagnostic apparatus, complex diagnostic system, ultrasound diagnostic apparatus, x-ray diagnostic apparatus and complex diagnostic image-generating method
JP7124108B2 (en) A small antenna device of a radar system for detecting movement of internal organs
JP6579978B2 (en) Medical imaging apparatus, tube voltage setting apparatus, imaging control method, and imaging control program
JP2008307234A (en) Breast image forming apparatus and forming method
JP3128904U (en) Breast shaper
US9642580B2 (en) Monitoring device including compliant variable capacitor for respiration and cardiac sensing applications
JP2011240129A (en) Ultrasonic diagnostic apparatus
CN113662567B (en) X-ray bone mineral density measuring system and method combining surface geometric acquisition
KR101065617B1 (en) Portable X-ray image apparatus and acquiring method using the same
US10251623B2 (en) Support apparatus of ultrasound probe, handsfree ultrasound probe including the support apparatus, and method of operating the support apparatus
JP6567124B2 (en) Subject information acquisition device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP