WO2011058730A1 - Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device - Google Patents

Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device Download PDF

Info

Publication number
WO2011058730A1
WO2011058730A1 PCT/JP2010/006556 JP2010006556W WO2011058730A1 WO 2011058730 A1 WO2011058730 A1 WO 2011058730A1 JP 2010006556 W JP2010006556 W JP 2010006556W WO 2011058730 A1 WO2011058730 A1 WO 2011058730A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
synchronization signal
respiratory
signal generation
respiratory synchronization
Prior art date
Application number
PCT/JP2010/006556
Other languages
French (fr)
Japanese (ja)
Inventor
昭男 武藤
恵一 中川
敬 田村
康彦 白井
Original Assignee
株式会社 ホンダ・ハドロニクス
国立大学法人 東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 ホンダ・ハドロニクス, 国立大学法人 東京大学 filed Critical 株式会社 ホンダ・ハドロニクス
Publication of WO2011058730A1 publication Critical patent/WO2011058730A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0421Supports, e.g. tables or beds, for the body or parts of the body with immobilising means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • A61B6/527Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion using data from a motion artifact sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/541Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1064Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring

Definitions

  • the present invention relates to a respiratory synchronization signal generation device that outputs a signal synchronized with body movement due to respiration to a CT scan device, a PET device, a radiotherapy simulation device, or a radiotherapy device, and further synchronizes with respiration.
  • the present invention relates to a tomography apparatus that performs tomography and a radiotherapy apparatus that performs radiation therapy in synchronization with respiration.
  • a so-called tomography device is well known as a medical device that can take a tomographic image of a human body cut at an arbitrary part.
  • a CT scan device that takes an image by exposing X-rays, and a patient is given a radioactive tracer.
  • a PET apparatus that detects and captures gamma rays emitted from a radioactive tracer is known.
  • medical equipment in which a predetermined device is added to a tomographic apparatus is also known, and so-called radiation therapy simulation apparatuses, radiation therapy apparatuses, and the like are known.
  • the radiotherapy simulation apparatus is an apparatus that can take a tomographic image of a patient and perform a radiotherapy simulation based on the acquired tomographic image, thereby making a treatment plan.
  • the radiotherapy apparatus is an apparatus that irradiates an affected area with radiation by an operator operating the apparatus based on a radiotherapy plan.
  • the CT scanning apparatus is composed of a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data.
  • a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data.
  • an X-ray source that emits X-rays and a detector array composed of a large number of sensors that detect X-rays transmitted through the human body are arranged at positions facing each other across the opening.
  • the radiation source and the detector array can be rotated in the circumferential direction around the opening.
  • a patient who is supine on the bed is inserted into the opening together with the bed.
  • a tomographic image is obtained with such a CT scanning apparatus
  • a patient who is lying on the bed by driving the bed is inserted into the opening of the gantry, and a predetermined region to be imaged is placed in the X-ray exposure field. So that Then, while rotating the X-ray source and the detector array, X-rays are emitted from different directions, and the X-ray transmitted through the human body is detected by the detector array.
  • the data detected in this way is processed in an integrated manner by a computer, one tomographic image is obtained.
  • the bed is driven to move the region to be imaged little by little, and a plurality of tomographic images are captured. If it does so, the site
  • the patient is careful not to move on the bed, but the patient moves due to a breathing movement or a slight movement of the body, that is, a body movement. If the patient moves due to body movement, a shift occurs between a plurality of tomographic images to be photographed, so that a three-dimensional tomographic image cannot be obtained clearly. If it does so, a tumor cannot be overlooked in a diagnosis, or the position of a tumor cannot be pinpointed correctly.
  • a vacuum pillow is a body fixing device having a futon shape in which a predetermined amount of a filler made of fine granular polystyrene is put in a predetermined bag made of a resin material having flexibility and airtightness.
  • the body frame is provided in a body frame formed so as to have a U-shaped cross section.
  • the diaphragm compression device is provided at a bridge-shaped support base that is installed above the abdomen so as to straddle the abdomen of a supine patient, a drive shaft that is supported by the support base and can be driven in the vertical direction, and a distal end of the drive shaft. It consists of a compression plate.
  • a tomographic method of obtaining a clear tomographic image by controlling the tomographic apparatus in synchronism with the movement of the breath and the heartbeat to remove the influence of the body motion is configured to receive a signal for controlling the tomography apparatus from the outside, and detects a body movement of a human body to generate a synchronization signal. When is connected, tomography can be performed in synchronization with body movement.
  • Patent Document 1 describes a body motion synchronization signal generation device that generates a heart beat synchronization signal by means of an electrocardiogram detection sensor affixed to a patient's chest.
  • the body motion synchronization signal generation device described in Patent Document 1 Since the body motion synchronization signal generation device described in Patent Document 1 is connected to a CT scan device that captures a tomographic image of the heart, the CT scan device is controlled in synchronization with the heartbeat. Therefore, the CT scanning apparatus can take a tomographic image without being affected by the heartbeat, and a clear tomographic image of the heart can be obtained.
  • the breathing motion is not considered. Accordingly, when tomography is performed on a portion other than the heart, the tomographic image becomes blurred due to respiratory motion.
  • a respiratory synchronization signal generation device that detects respiratory motion, and can be connected to a tomography apparatus.
  • known methods for detecting respiration include, for example, a method for detecting vertical movement of the chest, a method for detecting expansion and contraction of the abdomen, and a method for detecting skin tension.
  • the method of detecting the vertical movement of the chest includes a method using a marker and a method using a measuring rod. The method using the marker detects the vertical movement of the chest by monitoring the marker attached to the chest of the patient with an external CCD camera.
  • the method for detecting the expansion and contraction of the abdomen is a method for detecting the expansion and contraction of the abdomen by detecting the change in the tension of the belt wound around the abdomen or the air pressure in the hollow belt. Is a method in which a strain sensor is affixed to the patient's body surface and the tension of the skin is detected to detect breathing motion.
  • Patent Document 2 describes a sheet-like piezoelectric sensor that is provided on a bed on which a patient lies, and that can detect body movements due to breathing motion by contacting the patient's back.
  • the piezoelectric sensor described in Patent Document 2 is a sensor having a so-called laminated structure in which a pressure detection element made of a PVDF film or an aluminum nitride thin film is sandwiched between thin resin sheets, and is a body movement caused by breathing motion. Can be detected as a change in voltage.
  • the method for detecting the movement of breathing as described above is performed or the piezoelectric sensor described in Patent Document 2 is used, body movement due to the movement of breathing can be detected. Therefore, if body movement due to respiration is detected and a synchronization signal is transmitted to the tomography apparatus, tomography can be performed in synchronization with the respiration operation. Then, it is possible to obtain a clear tomographic image that is not affected by body movements caused by breathing motion.
  • the above-described method for detecting a breathing motion is intended for detection of abdominal breathing that has a large body motion and is relatively easy to detect. Abdominal breathing has a long cycle. In tomography, it is necessary to repeatedly shoot from multiple directions and positions.
  • tomography device If the tomography device is driven in synchronism with the long-period abdominal breathing operation, it takes a considerable amount of time for tomography. End up. If it does so, a patient will get tired and the operation rate of a tomography apparatus will fall and it will become high-cost. Because of these problems, tomography in synchronization with respiration has hardly been performed.
  • the respiration is detected by detecting the vertical movement of the chest, but since the displacement of the chest is small, the respiration cannot be detected accurately, and the abdomen is inflated and contracted.
  • the detection method since the displacement is small even in the abdomen, respiration cannot be detected with high accuracy.
  • the detection accuracy is deteriorated, so that high-precision detection cannot be expected.
  • the present invention has been made in view of the above-described problems. Specifically, the patient is forced to take short breaths in a short cycle, and the short-lived breathing is performed by a highly durable body motion detection sensor.
  • a respiratory synchronization signal generation device and a respiratory synchronization signal generation device capable of detecting a signal with high accuracy, generating a respiratory synchronization signal synchronized with respiration, and transmitting the generated signal to a tomography apparatus, a radiation therapy apparatus, or the like
  • Another object of the present invention is to provide a tomographic apparatus, a radiotherapy simulator apparatus, and a radiotherapy apparatus.
  • the present invention provides a respiratory synchronization signal generator, a trunk fixture for fixing a patient's trunk, a diaphragm compression device for pressing the lower part of the patient's season and pressing the diaphragm, and a patient
  • a body motion detection sensor that detects body motion due to respiration as a change in pressure in contact with the body, and a controller that receives an output from the body motion detection sensor and generates a respiratory synchronization signal synchronized with respiration.
  • the body motion detection sensor includes a hollow pressure receiving container that is flexible and has a flat sheet shape, a hollow sensor storage container that communicates with the pressure receiving container via a predetermined conduit, and a sensor.
  • the trunk fixing tool is constituted by a body frame having a predetermined shape, a vacuum pillow provided in the body frame, and a suction pump connected to the vacuum pillow via a predetermined pipe line. Since the vacuum pillow is formed of a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filling material put in the bag, the patient is placed on the supine to lie on the inside of the bag. When air is aspirated, it can be solidified in close contact with the back and sides of the patient.
  • the invention according to claim 1 provides a CT scanning device, a PET device, a radiation treatment simulation device, or a radiation treatment device controlled in synchronization with an input synchronization signal to a patient's treatment.
  • a respiratory synchronization signal generation device that transmits a synchronization signal synchronized with respiration, wherein the respiratory synchronization signal generation device is provided on a bed on which a patient lies and fixes a trunk portion of the patient,
  • a diaphragm compression tool provided in the vicinity of the abdomen of the patient, a body motion detection sensor that detects body motion due to breathing in contact with the patient, and an output from the body motion detection sensor
  • a controller that generates a signal for respiratory synchronization that is synchronized with breathing, and the diaphragm compression device includes a support base that is installed above the abdomen of the patient, and an upper and lower part of the support base.
  • the body motion detection sensor communicates with the pressure receiving container via a predetermined pressure line and a hollow pressure receiving container that is flexible and has a flat sheet shape as a whole.
  • the pressure acting on the pressure receiving container is detected by acting on the thin film sensor element via the fluid, and the pressure receiving container includes the patient and the compression plate. During or configured so as to be interposed between the patient and the body trunk fixture.
  • the trunk fixing tool includes a body frame having a predetermined shape including a bottom plate and a pair of side plates having a predetermined shape, A vacuum pillow provided in a body frame and comprising a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filler contained in the bag; and a predetermined pipe line through the bag.
  • the vacuum pillow is in close contact with the back and sides of the patient and solidifies. Consists of.
  • the pressure receiving container and the sensor storage container are formed from the same container. Is done.
  • the invention according to claim 4 is the respiratory synchronization signal generation device according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil, or air or inert. It is configured to be a gas consisting of gas.
  • the invention according to claim 5 is the respiratory synchronization signal generation device according to any one of claims 1 to 4, wherein the controller is provided with an image output terminal to which a monitor is connected, It is configured so that a respiratory waveform and a respiratory synchronization signal can be graphed and output.
  • the invention described in claim 6 is configured as a tomographic apparatus including the respiratory synchronization signal generation device according to any one of claims 1 to 5, and the invention according to claim 7 is a claim.
  • the radiation therapy simulation apparatus includes the respiratory synchronization signal generation apparatus according to any one of Items 1 to 5, and the invention according to Claim 8 is described in any one of Claims 1 to 5. It is comprised as a radiotherapy apparatus provided with the signal generation apparatus for respiratory synchronization.
  • the respiratory synchronization signal generation device includes the trunk fixing device that fixes the patient's trunk, and the diaphragm compression device that presses the lower part of the patient's season to compress the diaphragm.
  • the patient's trunk can be substantially fixed, and the patient can be forced to breathe through the thorax, i.e., chest breathing. Since chest respiration has a short cycle, tomography and treatment can be completed in a short time even if the tomography apparatus, radiotherapy apparatus, etc. are controlled in synchronization with respiration. If it does so, a patient's fatigue can be suppressed to the minimum, the operation rate of a tomography apparatus, a radiotherapy apparatus, etc. will become high, and cost can be reduced.
  • a body motion detection sensor that detects body motion due to breathing as a change in pressure communicates with a hollow pressure receiving container that is flexible and has a generally flat sheet shape, and a pressure receiving container via a predetermined pipe line.
  • a hollow sensor storage container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the sensor storage container, and a pressure receiving container and the sensor storage container are hermetically or liquid-tightly sealed.
  • the pressure acting on the pressure receiving container is detected by acting on the thin film sensor element via the fluid, so that the pressure is reliably and accurately detected via the fluid. be able to.
  • the thin film sensor element is not subjected to direct force but pressure is applied via the fluid, so that the thin film sensor element does not deteriorate at an early stage, and the signal line connected to the thin film sensor element is not affected. Since no direct load is applied, the signal line is not disconnected and high durability is obtained.
  • the pressure receiving container of the body motion detection sensor is provided so as to be sandwiched between the compression plate of the patient and the diaphragm compression tool or between the patient and the trunk fixing tool, the sensor collides with the tomography apparatus. Neither does it interfere with radiation therapy. Since only the pressure receiving container is in direct contact with the patient, the sensor is not captured during tomography. Therefore, a clear tomographic image can be obtained.
  • the thin film sensor element is stored in a sensor storage container that is a container different from the pressure receiving container that directly receives pressure, the thin film sensor element does not bend or deteriorate. Furthermore, there is no possibility that the signal line connected to the thin film sensor element is disconnected from the thin film sensor element. That is, the durability is very high.
  • the trunk fixing tool includes a body frame having a predetermined shape, a vacuum pillow provided in the body frame, and a suction pump connected to the vacuum pillow via a predetermined pipeline.
  • the vacuum pillow is formed of a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filling material put in the bag, the patient is supine on this. When the air in the bag is sucked, the patient can easily adhere to the back and sides of the patient and solidify. That is, the patient's trunk can be easily fixed.
  • the pressure receiving container and the sensor storage container are formed from the same container, the body motion detection sensor can be obtained at a lower cost.
  • the controller is provided with a video output terminal so that a respiratory waveform and a respiratory synchronization signal can be graphed and output, so if a monitor is installed in the operator room, a tomography apparatus, An operator operating a device such as a radiotherapy device can check the patient's breathing.
  • FIG. 2A is a cross-sectional view showing a state where a thin film sensor element and a flat cable are connected by a flexible IC chip. It is a graph which shows the pressure fluctuation by the body motion of the respiration detected by a body motion detection sensor, and when the upper stage is doing abdominal breathing, the lower part is a chest type compulsorily by the diaphragm compression tool concerning this embodiment. It is a graph which shows each pressure fluctuation when breathing. It is a screen displayed on the monitor connected to the video output terminal of the controller of the signal generation apparatus for respiratory synchronization which concerns on embodiment of this invention. It is a perspective view which shows typically the body movement detection sensor which concerns on other embodiment of this invention.
  • the respiratory synchronization signal generation apparatus is connected to a tomography apparatus such as a CT scan apparatus or a PET apparatus, a radiation therapy simulator apparatus, or a radiation therapy apparatus.
  • a CT scanning apparatus including the respiratory synchronization signal generation apparatus according to the present embodiment will be described as an example.
  • the CT scan apparatus 1 is roughly composed of a gantry 2 that scans a human body, a bed 3 on which a patient lies, and the like, similarly to a conventionally known CT scan apparatus. .
  • the gantry 2 has a through hole having a predetermined inner diameter into which a human body is inserted at the center thereof. That is, the opening 5 is provided.
  • the gantry 2 includes an X-ray source that emits X-rays and a detector array that includes a number of sensors that detect X-rays transmitted through the human body. 5 are provided at positions facing each other.
  • Such an X-ray source and the detector array can be rotated in the circumferential direction around the opening 5 while adopting positions facing each other with the opening 5 interposed therebetween.
  • the gantry 2 is provided with a computer that controls the gantry 2 and the bed 3 and processes data.
  • the bed 3 includes a pedestal 7 installed on the floor and a table 8 having a substantially rectangular plate shape provided on the pedestal 7.
  • the table 8 can be slid in the longitudinal direction by a table driving mechanism provided inside the base 7.
  • a table driving mechanism provided inside the base 7.
  • Such a bed 3 is installed adjacent to the gantry 2, and when the table driving mechanism is driven, the table 8 is inserted into the opening 5 or retracted.
  • laser positioning devices 9 and 9 are provided to mark the patient K by irradiating the laser beam with the laser beam. Has become clear. As a result, a specific part of the patient K to be tomographed can be positioned near the isocenter, and desired tomography can be performed.
  • the respiratory synchronization signal generation device 10 includes a trunk fixing tool 11 fixed on a table 8, a diaphragm compression tool 12 fixed to the trunk fixing tool 11, and a patient K's It comprises a body motion detection sensor 14 that detects body motion due to respiration as a change in pressure, and a controller 16 that receives a signal detected by the body motion detection sensor 14.
  • the trunk fixing tool 11 includes a body frame 17 having a predetermined shape fixedly placed on the table 8, a vacuum pillow 18 provided in the body frame 17, and a vacuum pillow 18 through a tube 19. And a suction pump 21 connected to each other.
  • the body frame 17 has a cross-sectional shape from a bottom plate 17a that supports the back surface of the patient K and a pair of side plates 17b and 17b that are connected to both end surfaces of the bottom plate 17a and hold both sides of the patient K. It is formed so as to exhibit a U-shape.
  • the vacuum pillow 18 is put inside the body frame 17, and is composed of a predetermined bag having flexibility and airtightness, and a predetermined amount of fine polystyrene foam filler put in the bag, If there is sufficient air in the bag, the expanded polystyrene filler can flow in the bag.
  • the vacuum pillow 18 is deformed so as to be in close contact with the back and sides of the patient K.
  • the pillow 18 is solidified in a deformed state. That is, the trunk of patient K is substantially fixed.
  • the diaphragm compression device 12 includes a support base 23 having a bridge shape that is installed on the upper ends of a pair of side plates 17b and b of the body frame 17, and a drive shaft 24 that is supported by the support base 23 so as to be driven in the vertical direction. And a compression plate 25 provided at the tip of the drive shaft 24. More specifically, a through hole is formed in the central top portion of the support base 23, and a female screw is formed in the through hole. A male screw is formed on the drive shaft 24 and screwed into a female screw in the through hole. A handle 26 that rotates the drive shaft 24 is fixed to the rear end of the drive shaft 24.
  • the drive shaft 24 is driven in the vertical direction, and the compression plate 25 is moved up and down.
  • the support base 23 of the diaphragm compression tool 12 can be slid in the front-rear direction with respect to the body frame 17 and can be fixed at an arbitrary position. Therefore, the slide position of the support base 23 can be finely adjusted so that the compression plate 25 is positioned above the lower part of the season of the patient K who is supine.
  • the body motion detection sensor 14 has a sheet-like hollow container that directly contacts the patient K, that is, a pressure receiving container 28 and a sensor element.
  • a hollow container having a predetermined size that is, a sensor storage container 29, a thin film sensor element 31 stored in the sensor storage container 29, and the like are roughly configured.
  • the pressure receiving container 28 is a pressure receiving part that receives a pressure that fluctuates due to the body movement of the patient K. Therefore, the pressure receiving container 28 is formed of a flexible material such as polyvinyl chloride or polypropylene. Since it is a container which protects the element 31, it does not need to have flexibility in particular. Therefore, in this embodiment, it is formed from an acrylic resin.
  • the pressure receiving container 28 and the sensor storage container 29 are connected in a gas-tight or liquid-tight manner by a connecting pipe 32 made of a flexible material, and the respective hollow portions are communicated with each other.
  • the thin film sensor element 31 is a thin film piezoelectric element having a predetermined size made of PVDF (polyvinylidene fluorite), aluminum nitride, or zinc oxide, and is made of aluminum nitride in the present embodiment.
  • a flat cable 33 is connected to the thin film sensor element 31 via a predetermined connection chip, and a transmitter 35 is connected to the flat cable 33. Accordingly, the pressure is detected as a change in voltage by the thin film sensor element 31 and transmitted from the transmitter 35.
  • a gas fluid 37 made of air is sealed in the body motion detection sensor 14, that is, the pressure receiving container 28, the sensor storage container 29, and the connecting pipe 32. Therefore, the pressure received in the pressure receiving container 28 acts on the thin film sensor element 31 via the gas fluid 37.
  • the connection between the thin cable sensor element 31 made of an aluminum nitride piezoelectric element and the flat cable 33 will be described in detail.
  • the thin film sensor element 31 and the flat cable 33 are connected by a predetermined connecting chip, that is, a flexible IC chip 38.
  • the flexible IC chip 38 is a flat chip having a cut 39, and the first and second conductive wires 41, 42 made of a copper thin film are cut.
  • the first and second small pieces 43 and 44 of the chip divided by 39 are provided in parallel to each other.
  • the first conducting wire 41 is provided on the front surface of the chip, and the second conducting wire 42 is provided on the back surface of the chip.
  • the thin film sensor element 31 is inserted into the cut 39 by bending the flexible IC chip 38 with the first small piece 43 downward and the second small piece 44 upward. Then, as shown in FIG. 3A, the thin film sensor element 31 can be sandwiched between the first and second small pieces 43 and 44 of the flexible IC chip 38.
  • the thin film sensor element 31 has a structure in which a substrate 46 made of polyimide resin and an aluminum nitride crystal layer 47 deposited thereon are covered on the upper and lower surfaces by first and second metal films 48 and 49 made of aluminum or the like. Presents.
  • Anisotropic conductive adhesives 50 and 50 are applied to the first and second metal films 48 and 49 of such a thin film sensor element 31, and the first and second small pieces 43 and 44 of the flexible IC chip 38 are pressed. And glue. Then, the first metal film 48 and the first conducting wire 41, and the second metal film 49 and the second conducting wire 42 are brought into conduction.
  • a predetermined connector 52 is connected to the end of the flexible IC chip 38, and the flat cable 33 is connected via the connector 52.
  • the thin film sensor element 31 and the flat cable 33 are connected. The thin film sensor element 31 thus connected to the flat cable 33 is placed in the sensor storage container 29 as described above.
  • the body motion detection sensor 11 has its sensor storage container 29 and transmitter 35 fixed to a predetermined end on the side of the table 8. ing. That is, it is fixed at a position away from the patient K. Therefore, they do not interfere with tomography and do not come into direct contact with the patient K, so there is no damage or failure.
  • the pressure receiving container 28 of the body motion detection sensor 11 can be arranged at an arbitrary place within a range allowed by the connecting pipe 32. Therefore, as will be described in the description of the operation, the pressure receiving container 28 can be disposed so as to be sandwiched between the abdomen of the patient K and the compression plate 25 of the diaphragm compression tool 12.
  • the pressure receiving container 28 may be disposed so as to be sandwiched between the vacuum pillow 18 and the back surface of the patient K. Since the pressure receiving container 28 can be arranged by selecting an arbitrary position of the upper body of the patient, it is possible to detect a change in body movement pressure due to the patient's breathing without being obstructed during tomography. Note that the body motion detection sensor 11 according to the present embodiment can efficiently cause pressure fluctuations to be applied to the thin film sensor element 31 by the gas fluid 37, so that the sensitivity of the sensor is maintained even if the connecting pipe 32 is relatively long. It does not decline. Therefore, the connecting pipe 32 can be set to about 3 m, for example.
  • the respiratory synchronization signal generation apparatus can be modified and the sensor storage container 29 can be installed at a place away from the bed 3. .
  • the body motion detection sensor 11 and the controller 16 can be directly connected by a wired signal cable.
  • the controller 16 includes a receiver that receives a signal transmitted from the transmitter 35 connected to the body motion detection sensor 14. Since communication between the transmitter 35 and the receiver is performed by Bluetooth communication or near infrared communication, electromagnetic waves do not leak, and the CT scan apparatus 1 and medical devices installed in the vicinity may malfunction. Absent. From the received pressure change, the controller 16 generates a pulsed breathing synchronization signal synchronized with breathing by the processing of the controller 16. Since the controller 16 is connected to the synchronization signal input terminal 55 of the gantry 2 via the predetermined signal cable 54, the generated respiratory synchronization signal is input to the gantry 2.
  • the controller 16 Since the controller 16 includes an open collector terminal, a TTL level line driver output terminal, a START / STOP output terminal, and an RS422 connection terminal, the signal cable 54 has an arbitrary corresponding to the synchronization signal input terminal 55 of the gantry 2. Types of cables can be selected.
  • the controller 16 is also provided with a video output terminal that can output necessary information to an external monitor device. Although not shown in FIG. 1, the controller 16 is provided in an operator room for operating the CT scan device 1. Connected to a given monitor. The controller 16 also has a built-in microphone. In general, the CT scanning device 1 emits a predetermined warning sound that calls attention at the time of X-ray exposure, and this warning sound can be detected and taken into the controller 16 as exposure information.
  • the patient K is supine on the trunk fixing tool 11 on the table 8.
  • the support base 23 is fixed by adjusting the slide position of the support base 23 of the diaphragm compression tool 12 so that the compression plate 25 is disposed above the lower part of the patient K's season.
  • the suction pump 21 is driven to suck the air in the vacuum pillow 18.
  • the vacuum pillow 18 is brought into close contact with the back and sides of the patient K and is solidified.
  • the upper body of the patient K that is, the trunk, is fixed, but the chest is open, so that breathing is maintained.
  • the pressure receiving container 28 of the body motion detection sensor 14 is disposed between the patient K and the compression plate 25, and the handle 26 of the diaphragm compression tool 12 is rotated. Then, as shown in FIG. 1A, the drive shaft 24 is driven downward and the compression plate 25 is driven downward.
  • the pressure receiving container 28 is sandwiched between the compression plate 25 and the patient K, and the pressure receiving container 28 can detect a change in pressure due to the body movement of the patient K.
  • the lower part of the season of the patient K is compressed with a predetermined force by the compression plate 25.
  • the diaphragm of the patient K is compressed and the abdominal breathing by the diaphragm is suppressed, and the patient K starts to breathe through the chest only.
  • the thin film sensor element 31 detects the pressure via the gas fluid 37 and converts it into a voltage. Since the area of the pressure receiving container 28 is sufficiently large, it is possible to efficiently receive the changing pressure. And since a pressure acts uniformly on the whole surface of the thin film sensor element 31 by the gas fluid 37, the change of a pressure can be detected accurately. The detected change in voltage is transmitted to the controller 16 by the transmitter 35.
  • the controller 16 processes the waveform of the input voltage to generate a pulse signal synchronized with respiration, that is, a respiration synchronization signal.
  • the generated respiratory synchronization signal is input to the gantry 2.
  • the voltage waveform includes different frequency components due to breathing motion and heartbeat, and also includes noise. Therefore, a known analysis method such as Fourier transform or wavelet transform is applied to extract a frequency component corresponding to the breathing motion. Then, the timing of breathing can be obtained. Since the input power waveform contains many frequency components that change in a short time, an analysis method using wavelet transform is particularly effective. As an analysis method, for example, the Japan Society of Mechanical Engineers [No.
  • the table 8 is driven to insert the patient K into the opening 5 so that the site where the tomographic image is to be taken is positioned at the center of the opening 5.
  • X-rays are emitted and a tomographic image is taken.
  • the table 8 is driven to slightly insert the patient K, and a tomographic image is taken in synchronization with the respiratory synchronization signal.
  • a plurality of tomographic images are taken in the same manner.
  • the tomographic image is taken in synchronization with the short-term chest respiration, so that the tomographic imaging can be completed in a relatively short time.
  • the screen output from the controller 16 is displayed, for example, as shown in FIG.
  • the screen displays basic information such as the patient ID and patient name assigned to the patient K, and displays the respiratory waveform of the patient K along with the respiratory synchronization signal synchronized with the respiratory waveform.
  • information exposed by the CT scanning apparatus 1, that is, exposure information and a heartbeat signal are also displayed.
  • the operator can monitor the breathing state while observing the display on the monitor, and give an instruction to the patient K through a voice line provided in the operator room. Then, the patient K can perform an appropriate breathing motion and can appropriately capture a tomographic image.
  • a predetermined memory is also provided in the controller 16, and information displayed on the monitor is stored. Therefore, past data can also be displayed as necessary.
  • FIG. 5 shows a body motion detection sensor 14 ′ according to the second embodiment. Elements similar to those of the body motion detection sensor 14 according to the above-described embodiment are assigned the same reference numerals and will not be described in detail.
  • the body motion detection sensor 14 'according to the second embodiment is formed of a pressure receiving container 28' in which the pressure receiving container and the sensor storage container are the same container. Therefore, the thin film sensor element 31 is stored in a part of the pressure receiving container 28 '. In this way, the body motion detection sensor 14 ′ can be manufactured at a lower cost. Note that the thin film sensor element 31 can be appropriately protected by providing a predetermined reinforcing member for the portion of the pressure receiving container 28 ′ in which the thin film sensor element 31 is stored.
  • the tomographic image apparatus can be variously modified.
  • the respiratory synchronization signal generation device may be connected to a PET device, a radiotherapy simulator device, or a radiotherapy device instead of a CT scan device, and these devices are controlled in synchronization with the respiratory synchronization signal.
  • the body motion detection sensor 14 and the controller 16 are described as being wirelessly communicated by a transceiver, but may be directly connected by a wired signal cable as already described.
  • a gas fluid made of air is sealed in the pressure receiving container and the sensor storage container of the body motion detection sensor 14, the same can be applied to an inert gas or other gases.
  • the present invention can be similarly performed even when a liquid fluid such as silicon oil or mineral oil is used instead of the gas fluid.
  • a liquid fluid such as silicon oil or mineral oil
  • the thin film sensor element 31 is completely floated in the fluid in the sensor storage container 29, it is difficult for the thin film sensor element 31 to pick up noise and to detect pressure fluctuation with high accuracy.
  • the compressibility is small, there is an advantage that the responsiveness is improved.
  • the trunk fixture can also be modified. For example, resin beads can be applied to the vacuum pillow filler instead of polystyrene foam. It is also possible to fix the patient's trunk with a body frame and a plurality of belts.
  • the controller 16 may be provided with a liquid crystal screen, or another monitor may be connected to the video output terminal, so that the patient K who is lying down can check the respiratory waveform.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physiology (AREA)
  • Signal Processing (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Radiation-Therapy Devices (AREA)
  • Nuclear Medicine (AREA)

Abstract

Provided is a signal generator for respiratory gating which forces a patient to take short, quick breaths, and which is capable of detecting body movement caused by the precise breathing. The signal generator for respiratory gating (10) comprises: a trunk stabilizer (11) for stabilizing the trunk of a patient (K); a diaphragm compression device (12) for compressing the diaphragm by pressing the lower hypochondrium of the patient; a body movement detection sensor (14) which is in contact with the patient (K), and detects body movement caused by breathing as a change in pressure; and a controller (16) which receives output from the body movement detection sensor (14), and generates a signal for respiratory gating synchronized to the breathing. The body movement detection sensor (14) comprises: a pressure-receiving vessel (21) in contact with the patient (K); a thin-film sensor element (31); and a sensor receptacle (29) for housing the thin-film sensor element (31). The pressure-receiving vessel (21) and the sensor receptacle (29) are linked by means of a linking tube (25) and air is sealed therewithin.

Description

呼吸同期用信号生成装置、断層撮影装置、放射線シミュレーション装置、および放射線治療装置Respiratory synchronization signal generation apparatus, tomography apparatus, radiation simulation apparatus, and radiotherapy apparatus
 本発明は、CTスキャン装置、PET装置、放射線治療シミュレーション装置、または放射線治療装置に対して呼吸による体動に同期する信号を出力する呼吸同期用信号生成装置に関するものであり、さらに呼吸に同期して断層撮影する断層撮影装置、呼吸に同期して放射線治療する放射線治療装置に関するものである。 The present invention relates to a respiratory synchronization signal generation device that outputs a signal synchronized with body movement due to respiration to a CT scan device, a PET device, a radiotherapy simulation device, or a radiotherapy device, and further synchronizes with respiration. The present invention relates to a tomography apparatus that performs tomography and a radiotherapy apparatus that performs radiation therapy in synchronization with respiration.
 人体を任意の部分で輪切りにした断層画像を撮影することができる医療機器として、いわゆる断層撮影装置が周知であり、X線を曝射して撮影するCTスキャン装置、患者に放射性トレーサを投与して放射性トレーサから放出されるガンマ線を検出して撮影するPET装置等が知られている。また、断層撮影装置に所定の装置を付加した医療機器も周知であり、いわゆる放射線治療シミュレーション装置、放射線治療装置等が知られている。放射線治療シミュレーション装置は、患者の断層画像を撮影してそれを基に放射線治療のシミュレーションを実施できる装置であり、これにより治療計画を立案することができる。また、放射線治療装置は、放射線治療計画に基づいて操作者が装置を操作して、患部に放射線を照射する装置である。 A so-called tomography device is well known as a medical device that can take a tomographic image of a human body cut at an arbitrary part. A CT scan device that takes an image by exposing X-rays, and a patient is given a radioactive tracer. A PET apparatus that detects and captures gamma rays emitted from a radioactive tracer is known. In addition, medical equipment in which a predetermined device is added to a tomographic apparatus is also known, and so-called radiation therapy simulation apparatuses, radiation therapy apparatuses, and the like are known. The radiotherapy simulation apparatus is an apparatus that can take a tomographic image of a patient and perform a radiotherapy simulation based on the acquired tomographic image, thereby making a treatment plan. The radiotherapy apparatus is an apparatus that irradiates an affected area with radiation by an operator operating the apparatus based on a radiotherapy plan.
 CTスキャン装置は、従来周知のように、中央部を貫通する所定の内径の開口部を備えたガントリと、患者が仰臥する寝台と、データを処理するコンピュータとから構成されている。ガントリの内部には、X線を曝射するX線源と、人体を透過したX線を検出する多数のセンサからなる検出器アレイとが、開口部を挟んで対向する位置に配置され、X線源と検出器アレイは、開口部を中心として円周方向に回転できるようになっている。そして、開口部には、寝台上に仰臥した患者が寝台と共に挿入されるようになっている。このようなCTスキャン装置で断層画像を得る場合、寝台を駆動して寝台上に仰臥した患者をガントリの開口部に挿入して、撮影対象の所定の部位がX線の曝射野に配置されるようにする。そして、X線源と検出器アレイを回転させながら、異なる方向からX線を曝射して、人体を透過したX線を検出器アレイで検出する。このようにして検出されたデータをコンピュータにおいて統合的に処理すると1枚の断層画像が得られる。 As is well known in the art, the CT scanning apparatus is composed of a gantry having an opening with a predetermined inner diameter penetrating the center, a bed on which a patient lies, and a computer for processing data. Inside the gantry, an X-ray source that emits X-rays and a detector array composed of a large number of sensors that detect X-rays transmitted through the human body are arranged at positions facing each other across the opening. The radiation source and the detector array can be rotated in the circumferential direction around the opening. A patient who is supine on the bed is inserted into the opening together with the bed. When a tomographic image is obtained with such a CT scanning apparatus, a patient who is lying on the bed by driving the bed is inserted into the opening of the gantry, and a predetermined region to be imaged is placed in the X-ray exposure field. So that Then, while rotating the X-ray source and the detector array, X-rays are emitted from different directions, and the X-ray transmitted through the human body is detected by the detector array. When the data detected in this way is processed in an integrated manner by a computer, one tomographic image is obtained.
 断層撮影装置においては、寝台を駆動して撮影対象の部位を少しずつ移動させて、複数枚の断層画像を撮影する。そうすると、撮影対象の部位を立体的に画像化することができる。ところで、断層画像を撮影するとき、患者は寝台の上で動かないように注意しているが、患者は、呼吸の動作や体のわずかな動き、すなわち体動によって動いてしまう。患者が体動によって動いてしまうと、撮影される複数枚の断層画像間にずれが生じてしまうので、立体的な断層画像は鮮明なものが得られない。そうすると、診断において腫瘍を見落としたり、腫瘍の位置を正確に特定することができない。また、放射線治療シミュレーション装置において適切に治療計画を立案することもできないし、放射線治療装置においては、腫瘍以外の健全な組織に誤って放射線を照射して、これを損傷してしまうことがある。 In the tomography apparatus, the bed is driven to move the region to be imaged little by little, and a plurality of tomographic images are captured. If it does so, the site | part of imaging | photography object can be imaged in three dimensions. By the way, when taking a tomographic image, the patient is careful not to move on the bed, but the patient moves due to a breathing movement or a slight movement of the body, that is, a body movement. If the patient moves due to body movement, a shift occurs between a plurality of tomographic images to be photographed, so that a three-dimensional tomographic image cannot be obtained clearly. If it does so, a tumor cannot be overlooked in a diagnosis, or the position of a tumor cannot be pinpointed correctly. In addition, it is impossible to appropriately design a treatment plan in the radiotherapy simulation apparatus, and in the radiotherapy apparatus, a healthy tissue other than a tumor may be accidentally irradiated with radiation to be damaged.
 患者の上半身を実質的に固定できる、いわゆるバキュームピローや、患者の腹部を圧迫して横隔膜による腹式呼吸を規制して体動の小さい胸式呼吸をさせる横隔膜圧迫具が周知であり、断層撮影したり放射線治療を行う際にこれらを使用すればある程度体動を抑制することができる。バキュームピローは、可撓性と気密性を備えた樹脂材料からなる所定の袋に、細粒状の発泡スチロールからなる充填材が所定量入れられた、布団状を呈する身体固定具であり、底板と一対の側板とから断面形状がU字状を呈するように形成されたボディフレーム内に設けられている。バキュームピローの上に患者を仰臥させ、袋内の空気を吸引すると、バキュームピローが患者の背面部や側部の形状に合わせて密着して固化し、胸部が開口した状態で体幹部すなわち上半身を実質的に固定することができる。横隔膜圧迫具は、仰臥した患者の腹部をまたぐように腹部の上方に架設されているブリッジ状の支持台と、支持台に支持され上下方向に駆動できる駆動軸と、駆動軸の先端に設けられている圧迫板とから構成されている。従って、患者の腹部の所定の部分、具体的には季肋下部を横隔膜圧迫具の圧迫板で圧迫すると、横隔膜が圧迫されて横隔膜呼吸、すなわち腹式呼吸ができなくなり、患者は体動が比較的小さい胸式呼吸をすることになる。横隔膜の動作が抑制されると内臓の動きがある程度抑制される。従って、このようにバキュームピローと横隔膜圧迫具とを併用すると、断層撮影や放射線治療において体動の影響を比較的受けにくくなる。しかしながら、ある程度体動を抑制することはできるが、胸式呼吸による体動は抑制することができないので、断層撮影や放射線治療において誤差が生じてしまう。 Well-known vacuum pillows that can substantially fix the upper body of the patient, and diaphragm compression devices that compress the patient's abdomen and restrict the abdominal breathing through the diaphragm to allow chest breathing with small body movements are well known. If these are used when performing radiotherapy, body movement can be suppressed to some extent. A vacuum pillow is a body fixing device having a futon shape in which a predetermined amount of a filler made of fine granular polystyrene is put in a predetermined bag made of a resin material having flexibility and airtightness. The body frame is provided in a body frame formed so as to have a U-shaped cross section. When the patient is lying on the vacuum pillow and the air in the bag is sucked, the vacuum pillow adheres to the shape of the back and sides of the patient and solidifies, and the trunk, that is, the upper body, is opened with the chest open. It can be substantially fixed. The diaphragm compression device is provided at a bridge-shaped support base that is installed above the abdomen so as to straddle the abdomen of a supine patient, a drive shaft that is supported by the support base and can be driven in the vertical direction, and a distal end of the drive shaft. It consists of a compression plate. Therefore, when a predetermined part of the patient's abdomen, specifically the lower part of the season, is compressed with the compression plate of the diaphragm compression device, the diaphragm is compressed and diaphragm breathing, that is, abdominal breathing cannot be performed. You will have a small chest breath. When the movement of the diaphragm is suppressed, the movement of the internal organs is suppressed to some extent. Therefore, when the vacuum pillow and the diaphragm compression tool are used in combination, it is relatively difficult to be affected by body movement in tomography and radiotherapy. However, although the body movement can be suppressed to some extent, the body movement due to chest-type breathing cannot be suppressed, so that an error occurs in tomography and radiotherapy.
 呼吸の動作や心臓の鼓動に同期して断層撮影装置を制御して、体動による影響を除去して鮮明な断層画像を得る断層撮影方法も周知である。このような方法を実施できる断層撮影装置は、外部から断層撮影装置を制御する信号を受信できるようになっており、人体の体動を検出して同期信号を生成する体動同期用信号生成装置が接続されていると、体動に同期して断層撮影することができる。特許文献1には、患者の胸部に貼り付けられた心電図検出用のセンサによって心臓の鼓動の同期信号を生成する体動同期用信号生成装置が記載されている。特許文献1に記載の体動同期用信号生成装置は、心臓の断層画像を撮影するCTスキャン装置に接続されているので、CTスキャン装置は心臓の鼓動に同期して制御される。従って、CTスキャン装置は心臓の鼓動の影響を受けずに断層画像を撮影でき、心臓について鮮明な断層画像が得られる。しかしながら、特許文献1に記載の体動同期用信号生成装置において、呼吸の動作は考慮されていない。従って、心臓以外の部分を断層撮影すると呼吸の体動によって断層画像がぼやけてしまう。 Also known is a tomographic method of obtaining a clear tomographic image by controlling the tomographic apparatus in synchronism with the movement of the breath and the heartbeat to remove the influence of the body motion. A tomography apparatus capable of performing such a method is configured to receive a signal for controlling the tomography apparatus from the outside, and detects a body movement of a human body to generate a synchronization signal. When is connected, tomography can be performed in synchronization with body movement. Patent Document 1 describes a body motion synchronization signal generation device that generates a heart beat synchronization signal by means of an electrocardiogram detection sensor affixed to a patient's chest. Since the body motion synchronization signal generation device described in Patent Document 1 is connected to a CT scan device that captures a tomographic image of the heart, the CT scan device is controlled in synchronization with the heartbeat. Therefore, the CT scanning apparatus can take a tomographic image without being affected by the heartbeat, and a clear tomographic image of the heart can be obtained. However, in the body movement synchronization signal generation device described in Patent Document 1, the breathing motion is not considered. Accordingly, when tomography is performed on a portion other than the heart, the tomographic image becomes blurred due to respiratory motion.
特開2001-61835号公報JP 2001-61835 A 特開2001-187030号公報JP 2001-187030 A
 呼吸の動作を検出する呼吸同期用信号生成装置も知られており、断層撮影装置に接続することができる。このような呼吸同期用信号生成装置において、呼吸を検出する方法には、例えば胸部の上下動を検出する方法、腹部の膨張と収縮を検出する方法、皮膚の張力を検出する方法等が知られている。胸部の上下動を検出する方法には、マーカによる方法、計測竿による方法があり、マーカによる方法は、患者の胸部に貼られたマーカを外部のCCDカメラで監視して胸部の上下動を検出する方法であり、計測竿による方法は、計測竿の一方の端部を患者の胸部に接触させ、患者の近傍に計測竿の支点を設けて、他方の端部において胸部の上下動を増幅して検出する方法である。また、腹部の膨張と収縮を検出する方法は、腹部に巻かれたベルトの張力または中空のベルト内の空気圧の変化を検出して腹部の膨張と収縮を検出するする方法であり、皮膚の張力を検出する方法は、患者の体表に歪センサを貼り付け、皮膚の張力を検出して、呼吸の動作を検出する方法である。 Also known is a respiratory synchronization signal generation device that detects respiratory motion, and can be connected to a tomography apparatus. In such a respiratory synchronization signal generator, known methods for detecting respiration include, for example, a method for detecting vertical movement of the chest, a method for detecting expansion and contraction of the abdomen, and a method for detecting skin tension. ing. The method of detecting the vertical movement of the chest includes a method using a marker and a method using a measuring rod. The method using the marker detects the vertical movement of the chest by monitoring the marker attached to the chest of the patient with an external CCD camera. In the method using a measuring rod, one end of the measuring rod is brought into contact with the patient's chest, a fulcrum of the measuring rod is provided near the patient, and the vertical movement of the chest is amplified at the other end. It is a method to detect. The method for detecting the expansion and contraction of the abdomen is a method for detecting the expansion and contraction of the abdomen by detecting the change in the tension of the belt wound around the abdomen or the air pressure in the hollow belt. Is a method in which a strain sensor is affixed to the patient's body surface and the tension of the skin is detected to detect breathing motion.
 特許文献2には、患者が仰臥するベッドに設けられ、患者の背中に接触して呼吸の動作による体動を検出することができる、シート状の圧電センサが記載されている。特許文献2に記載の圧電センサは、PVDFフィルムまたは窒化アルミニウムの薄膜からなる圧力検出素子が、薄い樹脂製シートによって挟み込まれた、いわゆるラミネート加工された構造のセンサであり、呼吸の動作による体動を電圧の変化として検出することができる。 Patent Document 2 describes a sheet-like piezoelectric sensor that is provided on a bed on which a patient lies, and that can detect body movements due to breathing motion by contacting the patient's back. The piezoelectric sensor described in Patent Document 2 is a sensor having a so-called laminated structure in which a pressure detection element made of a PVDF film or an aluminum nitride thin film is sandwiched between thin resin sheets, and is a body movement caused by breathing motion. Can be detected as a change in voltage.
 前記したような呼吸の動作を検出する方法を実施したり、特許文献2に記載の圧電センサを使用すれば、呼吸の動作による体動を検出することができる。従って、呼吸による体動を検出して、断層撮影装置に同期信号を送信すれば、呼吸の動作に同期して断層撮影することができる。そうすると、呼吸の動作による体動の影響を受けない鮮明な断層画像を得ることができる。しかしながら、解決すべき問題点も見受けられる。まず、前記したような呼吸の動作を検出する方法は、体動が大きく比較的検出が容易な腹式呼吸を検出対象としており、腹式呼吸は周期が長い。断層撮影においては複数の方向と位置から繰り返し撮影をする必要があり、このように周期の長い腹式呼吸の呼吸動作に同期させて断層撮影装置を駆動すると、断層撮影に相当の時間がかかってしまう。そうすると、患者は疲労してしまうし、断層撮影装置の稼働率は低下してコスト高になってしまう。このような問題があるので、呼吸に同期して断層撮影することは、ほとんど実施されていない。 If the method for detecting the movement of breathing as described above is performed or the piezoelectric sensor described in Patent Document 2 is used, body movement due to the movement of breathing can be detected. Therefore, if body movement due to respiration is detected and a synchronization signal is transmitted to the tomography apparatus, tomography can be performed in synchronization with the respiration operation. Then, it is possible to obtain a clear tomographic image that is not affected by body movements caused by breathing motion. However, there are some problems to be solved. First, the above-described method for detecting a breathing motion is intended for detection of abdominal breathing that has a large body motion and is relatively easy to detect. Abdominal breathing has a long cycle. In tomography, it is necessary to repeatedly shoot from multiple directions and positions. If the tomography device is driven in synchronism with the long-period abdominal breathing operation, it takes a considerable amount of time for tomography. End up. If it does so, a patient will get tired and the operation rate of a tomography apparatus will fall and it will become high-cost. Because of these problems, tomography in synchronization with respiration has hardly been performed.
 ここでは具体的な手段および方法を示さないが、仮に患者に周期の短い小刻みな呼吸をさせることができれば、周期が長いという問題は解決する。すなわち、患者に小刻みな呼吸をさせてこれを検出して、呼吸に同期して撮影すれば比較的短時間で断層撮影することができるので、患者の疲労や稼働率の低下によるコスト高の問題は解消する。この場合、小刻みな呼吸をさせる手段と、このような小刻みな呼吸を検出できる手段が必要になる。後者について検討すると、前記したような呼吸の動作の検出方法では、小刻みな呼吸を正確に検出することができない。つまり、マーカによる方法や計測竿による方法では、胸部の上下動を検出して呼吸を検出するが、小刻みな呼吸は胸部の変位が小さいので精度良く呼吸を検出できないし、腹部の膨張と収縮を検出するする方法においては、腹部においても変位が小さいので呼吸を精度良く検出することができない。また、皮膚の張力を検出する方法においては、患者の皮膚に弛みがある場合には検出の精度が悪くなるので精度の高い検出が期待できない。 Although specific means and methods are not shown here, the problem that the cycle is long can be solved if the patient can breathe every minute with a short cycle. In other words, it is possible to perform tomography in a relatively short time if the patient is breathed in small steps, and this is detected and synchronized with the breathing, so there is a problem of high costs due to patient fatigue and reduced availability. Is resolved. In this case, it is necessary to have means for making a small breath and a means for detecting such a small breath. Examining the latter, it is impossible to accurately detect respiration even with the above-described method for detecting respiration. In other words, in the method using the marker and the method using the measuring rod, the respiration is detected by detecting the vertical movement of the chest, but since the displacement of the chest is small, the respiration cannot be detected accurately, and the abdomen is inflated and contracted. In the detection method, since the displacement is small even in the abdomen, respiration cannot be detected with high accuracy. In addition, in the method of detecting the skin tension, when the patient's skin is slack, the detection accuracy is deteriorated, so that high-precision detection cannot be expected.
 特許文献2に記載の圧電センサを利用する場合には、変位の小さな小刻みな呼吸であっても、ある程度検出は可能であると考えられる。特許文献2に記載の圧電センサは感度が高く、小刻みな呼吸によるわずかな体動でも検出できると考えられるからである。しかしながら、他の問題点が見受けられる。例えば、特許文献2に記載の圧電センサは仰臥する患者の背中に接触するようにして使用されるので、断層撮影の際に陰となって画像に映ってしまう可能性がある。PVDFフィルムまたは窒化アルミニウムの薄膜からなる圧力検出素子に固有の問題もあり、このような圧力検出素子は耐久性が高くない。たとえ、これらの圧力検出素子が保護用の薄い樹脂製シートによって挟み込まれていても、患者の背中によって繰り返し押されると、圧力検出素子が早期に劣化してしまう。圧力検出素子を挟み込む樹脂製シートを厚くすればある程度耐久性は向上するが、センサの感度が低下するという別の問題が生じてしまう。また、このような圧力検出素子には検出された電圧を外部に送信する信号線が設けられているが、圧力検出素子が薄膜状に形成されているので、圧力検出素子と信号線の接合部の強度は弱く問題である。特許文献2に記載の圧電センサの場合、直接患者の背中に圧力検出素子が敷かれて圧力の変動を検出するようになっているので、早期に接合部が破損して信号線が断線してしまう危険が高い。また、窒化アルミニウムは一般的に小面積のものしか製造することができないので、圧力の変化を検出できる背中の部分が小面積になってしまい、接触させる部分によっては呼吸の動作を確実に検出できない。さらには、患者の背中から受ける圧力は、圧電センサに均一に作用するとは限らないので、圧力検出素子で受ける圧力にはムラが生じてしまい、センサの検出精度が十分に得られない場合がある。すなわち、患者の背中と圧電センサが接触している位置、面積等の状態によっては、患者の体動に伴う圧力の変動を正確に検出できない場合がある。従って、特許文献2に記載の圧電センサを小刻みな呼吸の検出に使用するのは問題がある。 In the case of using the piezoelectric sensor described in Patent Document 2, it is considered that detection can be performed to some extent even for small respiration with small displacement. This is because the piezoelectric sensor described in Patent Document 2 has high sensitivity and is considered to be able to detect even a slight body movement due to respiration. However, there are other problems. For example, the piezoelectric sensor described in Patent Document 2 is used so as to be in contact with the back of a patient who is supine. There is also a problem inherent to pressure sensing elements made of PVDF films or aluminum nitride thin films, and such pressure sensing elements are not highly durable. Even if these pressure detection elements are sandwiched between protective thin resin sheets, if the pressure detection elements are repeatedly pressed by the patient's back, the pressure detection elements deteriorate early. If the thickness of the resin sheet sandwiching the pressure detection element is increased, the durability is improved to some extent, but another problem that the sensitivity of the sensor is lowered occurs. In addition, a signal line for transmitting the detected voltage to the outside is provided in such a pressure detection element, but since the pressure detection element is formed in a thin film shape, the junction between the pressure detection element and the signal line The strength of is weak and problematic. In the case of the piezoelectric sensor described in Patent Document 2, since the pressure detection element is directly placed on the patient's back to detect pressure fluctuation, the joint portion is damaged early and the signal line is disconnected. There is a high risk of losing. In addition, since aluminum nitride can generally be manufactured only in a small area, the back portion where the change in pressure can be detected becomes a small area, and depending on the portion to be contacted, the respiratory action cannot be detected reliably. . Furthermore, since the pressure received from the patient's back does not necessarily act uniformly on the piezoelectric sensor, the pressure received by the pressure detection element may be uneven, and the sensor detection accuracy may not be sufficient. . That is, depending on the position, area, etc. where the patient's back is in contact with the piezoelectric sensor, pressure fluctuations accompanying patient movement may not be detected accurately. Therefore, there is a problem in using the piezoelectric sensor described in Patent Document 2 for detecting respiration even in small increments.
 本発明は、上記したような問題点に鑑みてなされたもので、具体的には、患者に強制的に短い周期の小刻みな呼吸をさせると共に、耐久性の高い体動検出センサによって小刻みな呼吸を精度良く検出して、呼吸に同期する呼吸同期用信号を生成して、断層撮影装置、放射線治療装置等に送信することができる呼吸同期用信号生成装置、および呼吸同期用信号生成装置を備えた断層撮影装置、放射線治療シミュレータ装置、放射線治療装置を提供することを目的としている。 The present invention has been made in view of the above-described problems. Specifically, the patient is forced to take short breaths in a short cycle, and the short-lived breathing is performed by a highly durable body motion detection sensor. A respiratory synchronization signal generation device and a respiratory synchronization signal generation device capable of detecting a signal with high accuracy, generating a respiratory synchronization signal synchronized with respiration, and transmitting the generated signal to a tomography apparatus, a radiation therapy apparatus, or the like Another object of the present invention is to provide a tomographic apparatus, a radiotherapy simulator apparatus, and a radiotherapy apparatus.
 本発明は、上記目的を達成するために、呼吸同期用信号生成装置を、患者の体幹部を固定する体幹部固定具と、患者の季肋下部を押して横隔膜を圧迫する横隔膜圧迫具と、患者に接触して呼吸による体動を圧力の変化として検出する体動検出センサと、体動検出センサからの出力を受けて呼吸に同期する呼吸同期用信号を生成するコントローラとから構成する。そして、体動検出センサを、可撓性を有し全体が扁平なシート状を呈する中空の受圧容器と、所定の管路を介して受圧容器と連通している中空のセンサ格納容器と、センサ格納容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、これらの容器に気密的または液密的に封入されている空気、シリコンオイル等の流体とから構成する。また、体幹部固定具を、所定の形状のボディフレームと、ボディフレーム内に設けられているバキュームピローと、バキュームピローに所定の管路を介して接続されている吸引ポンプとから構成する。バキュームピローは、可撓性と気密性を有する所定の袋と該袋に入れられた所定量の細粒状の発泡スチロール充填材とから形成されているので、患者をこの上に仰臥させて袋内の空気を吸引すると、患者の背面部と側部に密着して固化することができる。 In order to achieve the above object, the present invention provides a respiratory synchronization signal generator, a trunk fixture for fixing a patient's trunk, a diaphragm compression device for pressing the lower part of the patient's season and pressing the diaphragm, and a patient A body motion detection sensor that detects body motion due to respiration as a change in pressure in contact with the body, and a controller that receives an output from the body motion detection sensor and generates a respiratory synchronization signal synchronized with respiration. The body motion detection sensor includes a hollow pressure receiving container that is flexible and has a flat sheet shape, a hollow sensor storage container that communicates with the pressure receiving container via a predetermined conduit, and a sensor. It is composed of a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in a storage container, and a fluid such as air or silicon oil that is hermetically or liquid-tightly sealed in these containers. The trunk fixing tool is constituted by a body frame having a predetermined shape, a vacuum pillow provided in the body frame, and a suction pump connected to the vacuum pillow via a predetermined pipe line. Since the vacuum pillow is formed of a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filling material put in the bag, the patient is placed on the supine to lie on the inside of the bag. When air is aspirated, it can be solidified in close contact with the back and sides of the patient.
 かくして、請求項1記載の発明は、上記目的を達成するために、入力される同期信号に同期して制御されるCTスキャン装置、PET装置、放射線治療シミュレーション装置、または放射線治療装置に、患者の呼吸に同期する同期信号を送信する呼吸同期用信号生成装置であって、前記呼吸同期用信号生成装置は、患者が仰臥する寝台上に設けられ該患者の体幹部を固定する体幹部固定具と、前記患者の腹部近傍に設けられている横隔膜圧迫具と、前記患者に接触して呼吸による体動を圧力の変化として検出する体動検出センサと、前記体動検出センサからの出力を受けて呼吸に同期する呼吸同期用信号を生成するコントローラとから構成され、前記横隔膜圧迫具は、前記患者の腹部の上方に架設されている支持台と、前記支持台に上下方向に駆動可能に支持されている駆動軸と、該駆動軸の先端に設けられている圧迫板とから構成され、前記駆動軸を下方に駆動すると前記圧迫板が前記患者の季肋下部を押して横隔膜を圧迫するようになっており、前記体動検出センサは、可撓性を有し全体が扁平なシート状を呈する中空の受圧容器と、所定の管路を介して前記受圧容器と連通している中空のセンサ格納容器と、前記センサ格納容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記受圧容器と前記センサ格納容器に気密的または液密的に封入されている流体とから構成され、前記受圧容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるようになっており、前記受圧容器は、前記患者と前記圧迫板の間、または前記患者と前記体幹部固定具の間に挟まれるように構成される。 Thus, in order to achieve the above-mentioned object, the invention according to claim 1 provides a CT scanning device, a PET device, a radiation treatment simulation device, or a radiation treatment device controlled in synchronization with an input synchronization signal to a patient's treatment. A respiratory synchronization signal generation device that transmits a synchronization signal synchronized with respiration, wherein the respiratory synchronization signal generation device is provided on a bed on which a patient lies and fixes a trunk portion of the patient, A diaphragm compression tool provided in the vicinity of the abdomen of the patient, a body motion detection sensor that detects body motion due to breathing in contact with the patient, and an output from the body motion detection sensor A controller that generates a signal for respiratory synchronization that is synchronized with breathing, and the diaphragm compression device includes a support base that is installed above the abdomen of the patient, and an upper and lower part of the support base. And a compression plate provided at the tip of the drive shaft, and when the drive shaft is driven downward, the compression plate pushes the lower part of the patient's seasoning to form a diaphragm The body motion detection sensor communicates with the pressure receiving container via a predetermined pressure line and a hollow pressure receiving container that is flexible and has a flat sheet shape as a whole. A hollow sensor storage container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the sensor storage container, and hermetically or liquid-tightly sealed in the pressure receiving container and the sensor storage container. The pressure acting on the pressure receiving container is detected by acting on the thin film sensor element via the fluid, and the pressure receiving container includes the patient and the compression plate. During or configured so as to be interposed between the patient and the body trunk fixture.
 請求項2に記載の発明は、請求項1に記載の呼吸同期用信号生成装置において、前記体幹部固定具は、底板と所定形状の一対の側板とからなる所定の形状のボディフレームと、前記ボディフレーム内に設けられ、可撓性と気密性を有する所定の袋と該袋に入れられた所定量の細粒状の発泡スチロール充填材とからなるバキュームピローと、前記袋に所定の管路を介して接続されている吸引ポンプとから構成され、前記バキュームピロー上に患者を仰臥させて前記吸引ポンプによって空気を吸引すると、前記バキュームピローが前記患者の背面部と側部に密着して固化するように構成される。
 そして、請求項3に記載の発明は、請求項1、または請求項2に記載の呼吸同期用信号生成装置において、前記受圧容器と前記センサ格納容器は、同一の容器から形成されるように構成される。
 また、請求項4に記載の発明は、請求項1~3のいずれかの項に記載の呼吸同期用信号生成装置において、前記流体は、シリコンオイルまたは鉱物油からなる液体、あるいは空気または不活性ガスからなる気体であるように構成される。
 さらには、請求項5に記載の発明は、請求項1~4のいずれかの項に記載の呼吸同期用信号生成装置において、前記コントローラには、モニタが接続される画像出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるように構成される。そして、請求項6に記載の発明は、請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた断層撮影装置として構成され、請求項7に記載の発明は、請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた放射線治療シミュレーション装置として構成され、請求項8に記載の発明は、請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた放射線治療装置として構成される。
According to a second aspect of the present invention, in the respiratory synchronization signal generation device according to the first aspect, the trunk fixing tool includes a body frame having a predetermined shape including a bottom plate and a pair of side plates having a predetermined shape, A vacuum pillow provided in a body frame and comprising a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filler contained in the bag; and a predetermined pipe line through the bag. When the patient is laid on the vacuum pillow and air is sucked by the suction pump, the vacuum pillow is in close contact with the back and sides of the patient and solidifies. Consists of.
According to a third aspect of the present invention, in the respiratory synchronization signal generating device according to the first or second aspect, the pressure receiving container and the sensor storage container are formed from the same container. Is done.
The invention according to claim 4 is the respiratory synchronization signal generation device according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil, or air or inert. It is configured to be a gas consisting of gas.
Further, the invention according to claim 5 is the respiratory synchronization signal generation device according to any one of claims 1 to 4, wherein the controller is provided with an image output terminal to which a monitor is connected, It is configured so that a respiratory waveform and a respiratory synchronization signal can be graphed and output. The invention described in claim 6 is configured as a tomographic apparatus including the respiratory synchronization signal generation device according to any one of claims 1 to 5, and the invention according to claim 7 is a claim. The radiation therapy simulation apparatus includes the respiratory synchronization signal generation apparatus according to any one of Items 1 to 5, and the invention according to Claim 8 is described in any one of Claims 1 to 5. It is comprised as a radiotherapy apparatus provided with the signal generation apparatus for respiratory synchronization.
 以上のように、本発明によると、呼吸同期用信号生成装置は、患者の体幹部を固定する体幹部固定具と、患者の季肋下部を押して横隔膜を圧迫する横隔膜圧迫具を備えているので、患者の体幹部を実質的に固定することができ、患者に強制的に胸郭による呼吸、すなわち胸式呼吸をさせることができる。胸式呼吸は周期が短いので、呼吸に同期して断層撮影装置、放射線治療装置等を制御するようにしても、短時間で断層撮影や治療が完了することになる。そうすると患者の疲労は最小限に抑制することができ、断層撮影装置、放射線治療装置等の稼働率が高くなりコストを低下させることができる。また、呼吸による体動を圧力の変化として検出する体動検出センサは、可撓性を有し全体が扁平なシート状を呈する中空の受圧容器と、所定の管路を介して受圧容器と連通している中空のセンサ格納容器と、センサ格納容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、受圧容器とセンサ格納容器に気密的または液密的に封入されている流体とから構成され、受圧容器に作用する圧力が、流体を介して薄膜センサ素子に作用して検出されるようになっているので、流体を介して確実に、かつ精度良く圧力を検出することができる。そして、薄膜センサ素子には、直接力が作用せずに流体を介して圧力が作用するので、薄膜センサ素子が早期に劣化してしまうことがないし、薄膜センサ素子に接続されている信号線にも直接負荷がかからないので、信号線が断線することがなく、高い耐久性が得られる。また、体動検出センサの受圧容器は、患者と横隔膜圧迫具の圧迫板の間、または患者と体幹部固定具の間に挟まれるように設けられるようになっているので、センサが断層撮影装置にぶつかるようなことも、放射線治療において妨げになることもない。そして、患者に直接触れているのは受圧容器だけになるので、断層撮影時にセンサが写ることはない。従って、鮮明な断層画像を得ることができる。また、薄膜センサ素子は、圧力を直接受ける受圧容器とは別の容器であるセンサ格納容器内に格納されているので、薄膜センサ素子が折れ曲がったり劣化することがない。さらには、薄膜センサ素子に接続されている信号線が薄膜センサ素子から外れる恐れもない。すなわち、非常に耐久性が高い。 As described above, according to the present invention, the respiratory synchronization signal generation device includes the trunk fixing device that fixes the patient's trunk, and the diaphragm compression device that presses the lower part of the patient's season to compress the diaphragm. The patient's trunk can be substantially fixed, and the patient can be forced to breathe through the thorax, i.e., chest breathing. Since chest respiration has a short cycle, tomography and treatment can be completed in a short time even if the tomography apparatus, radiotherapy apparatus, etc. are controlled in synchronization with respiration. If it does so, a patient's fatigue can be suppressed to the minimum, the operation rate of a tomography apparatus, a radiotherapy apparatus, etc. will become high, and cost can be reduced. In addition, a body motion detection sensor that detects body motion due to breathing as a change in pressure communicates with a hollow pressure receiving container that is flexible and has a generally flat sheet shape, and a pressure receiving container via a predetermined pipe line. A hollow sensor storage container, a thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in the sensor storage container, and a pressure receiving container and the sensor storage container are hermetically or liquid-tightly sealed. The pressure acting on the pressure receiving container is detected by acting on the thin film sensor element via the fluid, so that the pressure is reliably and accurately detected via the fluid. be able to. The thin film sensor element is not subjected to direct force but pressure is applied via the fluid, so that the thin film sensor element does not deteriorate at an early stage, and the signal line connected to the thin film sensor element is not affected. Since no direct load is applied, the signal line is not disconnected and high durability is obtained. In addition, since the pressure receiving container of the body motion detection sensor is provided so as to be sandwiched between the compression plate of the patient and the diaphragm compression tool or between the patient and the trunk fixing tool, the sensor collides with the tomography apparatus. Neither does it interfere with radiation therapy. Since only the pressure receiving container is in direct contact with the patient, the sensor is not captured during tomography. Therefore, a clear tomographic image can be obtained. Further, since the thin film sensor element is stored in a sensor storage container that is a container different from the pressure receiving container that directly receives pressure, the thin film sensor element does not bend or deteriorate. Furthermore, there is no possibility that the signal line connected to the thin film sensor element is disconnected from the thin film sensor element. That is, the durability is very high.
 他の発明によると、体幹部固定具は、所定の形状のボディフレームと、ボディフレーム内に設けられているバキュームピローと、バキュームピローに所定の管路を介して接続されている吸引ポンプとから構成されており、バキュームピローは、可撓性と気密性を有する所定の袋と該袋に入れられた所定量の細粒状の発泡スチロール充填材とから形成されているので、患者をこの上に仰臥させて袋内の空気を吸引すると、容易に患者の背面部と側部に密着して固化することができる。すなわち、患者の体幹部を容易に固定することができる。さらには、受圧容器とセンサ格納容器が同一の容器から形成されている他の発明によると、体動検出センサをさらに安価に得ることが可能になる。また、体動検出センサの容器に封入されている流体を、シリコンオイルまたは鉱物油からなる液体にすると、流体は圧縮性が小さいので応答性が高くなるし、空気または不活性ガスからなる気体にすると液漏れの恐れが無くなるという効果が得られる。また、他の発明によるとコントローラにはビデオ出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるようになっているので、オペレータ室にモニタを設置すれば、断層撮影装置、放射線治療装置等の装置を操作するオペレータが患者の呼吸を確認することができる。 According to another invention, the trunk fixing tool includes a body frame having a predetermined shape, a vacuum pillow provided in the body frame, and a suction pump connected to the vacuum pillow via a predetermined pipeline. Since the vacuum pillow is formed of a predetermined bag having flexibility and airtightness and a predetermined amount of fine polystyrene foam filling material put in the bag, the patient is supine on this. When the air in the bag is sucked, the patient can easily adhere to the back and sides of the patient and solidify. That is, the patient's trunk can be easily fixed. Furthermore, according to another invention in which the pressure receiving container and the sensor storage container are formed from the same container, the body motion detection sensor can be obtained at a lower cost. In addition, if the fluid sealed in the body motion detection sensor is a liquid made of silicon oil or mineral oil, the fluid is less compressible and therefore more responsive, and the fluid is made of air or an inert gas. Then, there is an effect that there is no risk of liquid leakage. Further, according to another invention, the controller is provided with a video output terminal so that a respiratory waveform and a respiratory synchronization signal can be graphed and output, so if a monitor is installed in the operator room, a tomography apparatus, An operator operating a device such as a radiotherapy device can check the patient's breathing.
本発明の実施の形態に係る呼吸同期用信号生成装置を備えたCTスキャン装置を模式的に示す図で、その(ア)は本発明の実施の形態に係る呼吸同期用信号生成装置備えたCTスキャン装置の斜視図、その(イ)は(ア)のX-Xにおいて切断した断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the CT scan apparatus provided with the signal generation apparatus for respiratory synchronization which concerns on embodiment of this invention, (a) is CT with the signal generation apparatus for respiratory synchronization which concerns on embodiment of this invention The perspective view of the scanning device, (a) is a cross-sectional view taken along the line XX of (a). 本発明の実施の形態に係る体動検出センサを模式的に示す斜視図である。It is a perspective view showing typically a body movement detection sensor concerning an embodiment of the invention. 本発明の実施の形態に係る体動検出センサの、薄膜センサ素子とフラットケーブルの接続部分を模式的に説明する図で、その(ア)は接続用のチップであるフレキシブルICチップを模式的に示す斜視図であり、その(イ)はフレキシブルICチップによって薄膜センサ素子とフラットケーブルが接続されている様子を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which illustrates typically the connection part of a thin film sensor element and a flat cable of the body movement detection sensor which concerns on embodiment of this invention, The (a) shows typically the flexible IC chip which is a chip | tip for a connection. FIG. 2A is a cross-sectional view showing a state where a thin film sensor element and a flat cable are connected by a flexible IC chip. 体動検出センサによって検出される呼吸の体動による圧力変動を示すグラフであり、上段は腹式呼吸をしているときの、下段は本実施の形態に係る横隔膜圧迫具によって強制的に胸式呼吸をさせているときの、それぞれの圧力変動を示すグラフである。It is a graph which shows the pressure fluctuation by the body motion of the respiration detected by a body motion detection sensor, and when the upper stage is doing abdominal breathing, the lower part is a chest type compulsorily by the diaphragm compression tool concerning this embodiment. It is a graph which shows each pressure fluctuation when breathing. 本発明の実施の形態に係る呼吸同期用信号生成装置のコントローラのビデオ出力端子に接続されたモニタに表示される画面である。It is a screen displayed on the monitor connected to the video output terminal of the controller of the signal generation apparatus for respiratory synchronization which concerns on embodiment of this invention. 本発明の他の実施の形態に係る体動検出センサを模式的に示す斜視図である。It is a perspective view which shows typically the body movement detection sensor which concerns on other embodiment of this invention.
 本実施の形態に係る呼吸同期用信号生成装置は、CTスキャン装置、PET装置等の断層撮影装置、放射線治療シミュレータ装置、または放射線治療装置に接続されるようになっている。以下、本実施の形態に係る呼吸同期用信号生成装置を備えたCTスキャン装置を例に説明する。 The respiratory synchronization signal generation apparatus according to the present embodiment is connected to a tomography apparatus such as a CT scan apparatus or a PET apparatus, a radiation therapy simulator apparatus, or a radiation therapy apparatus. Hereinafter, a CT scanning apparatus including the respiratory synchronization signal generation apparatus according to the present embodiment will be described as an example.
 CTスキャン装置1は、図1の(ア)に示されているように、従来周知のCTスキャン装置と同様に、人体を走査するガントリ2、患者が仰臥する寝台3等から概略構成されている。ガントリ2には、その中央部に、人体が挿入される所定の内径の貫通孔が明けられている。すなわち開口部5が設けられている。ガントリ2の内部には、図1には示されていないが、X線を曝射するX線源と、人体を透過したX線を検出する多数のセンサからなる検出器アレイとが、開口部5を挟んで対向する位置に設けられている。このようなX線源と検出器アレイは、お互いに開口部5を挟んで対向する位置を採りながら、開口部5を中心に円周方向に回転できるようになっている。ガントリ2には、ガントリ2と寝台3を制御したりデータを処理するコンピュータが設けられている。 As shown in FIG. 1A, the CT scan apparatus 1 is roughly composed of a gantry 2 that scans a human body, a bed 3 on which a patient lies, and the like, similarly to a conventionally known CT scan apparatus. . The gantry 2 has a through hole having a predetermined inner diameter into which a human body is inserted at the center thereof. That is, the opening 5 is provided. Although not shown in FIG. 1, the gantry 2 includes an X-ray source that emits X-rays and a detector array that includes a number of sensors that detect X-rays transmitted through the human body. 5 are provided at positions facing each other. Such an X-ray source and the detector array can be rotated in the circumferential direction around the opening 5 while adopting positions facing each other with the opening 5 interposed therebetween. The gantry 2 is provided with a computer that controls the gantry 2 and the bed 3 and processes data.
 寝台3は、床に設置される台座7と、台座7の上に設けられている略長方形の板状を呈するテーブル8とから構成されている。そしてテーブル8は、図1の(ア)には示されていないが、台座7の内部に設けられているテーブル駆動機構によって長手方向にスライドすることができるようになっている。このような寝台3は、ガントリ2に隣接して設置されており、テーブル駆動機構を駆動すると、テーブル8が開口部5に挿入されたり、後退するようになっている。 The bed 3 includes a pedestal 7 installed on the floor and a table 8 having a substantially rectangular plate shape provided on the pedestal 7. Although not shown in FIG. 1A, the table 8 can be slid in the longitudinal direction by a table driving mechanism provided inside the base 7. Such a bed 3 is installed adjacent to the gantry 2, and when the table driving mechanism is driven, the table 8 is inserted into the opening 5 or retracted.
 ガントリ2の開口部5の近傍には、レーザ位置決め装置9、9が設けられ、患者Kにレーザ光を照射してマーキングし、ガントリ2内のX線源が回転する回転中心、すなわちアイソセンタの位置が明らかになるようになっている。これによって、患者Kの断層撮影したい特定の部位をアイソセンタ近傍に位置させることができ、所望の断層撮影ができることになる。 In the vicinity of the opening 5 of the gantry 2, laser positioning devices 9 and 9 are provided to mark the patient K by irradiating the laser beam with the laser beam. Has become clear. As a result, a specific part of the patient K to be tomographed can be positioned near the isocenter, and desired tomography can be performed.
 本実施の形態に係る呼吸同期用信号生成装置10は、テーブル8の上に固定されている体幹部固定具11と、体幹部固定具11に固定されている横隔膜圧迫具12と、患者Kの呼吸による体動を圧力の変化として検出する体動検出センサ14と、体動検出センサ14において検出された信号を受信するコントローラ16とから構成されている。体幹部固定具11は、テーブル8上に固定的に載置されている所定の形状のボディフレーム17と、ボディフレーム17内に設けられているバキュームピロー18と、バキュームピロー18にチューブ19を介して接続されている吸引ポンプ21とから構成されている。ボディフレーム17は、患者Kの背面を支持する底板17aと、この底板17aの両端面に接続されており患者Kの両側部を押さえる一対の所定の形状の側板17b、17bとから、断面形状がU字状を呈するように形成されている。バキュームピロー18は、このボディフレーム17の内側に入れられており、可撓性と気密性を有する所定の袋と、該袋に入れられた所定量の細粒状の発泡スチロール充填材とから構成され、袋内に十分な空気が入っていると発泡スチロール充填材は袋内で流動することができる。このバキュームピロー18の上に患者Kを仰臥させると、患者Kの背面部と側部に密着するようにバキュームピロー18が変形することになり、吸引ポンプ21によって袋内の空気を吸引すると、バキュームピロー18が変形した状態で固化する。すまわち、患者Kの体幹部は実質的に固定される。 The respiratory synchronization signal generation device 10 according to the present embodiment includes a trunk fixing tool 11 fixed on a table 8, a diaphragm compression tool 12 fixed to the trunk fixing tool 11, and a patient K's It comprises a body motion detection sensor 14 that detects body motion due to respiration as a change in pressure, and a controller 16 that receives a signal detected by the body motion detection sensor 14. The trunk fixing tool 11 includes a body frame 17 having a predetermined shape fixedly placed on the table 8, a vacuum pillow 18 provided in the body frame 17, and a vacuum pillow 18 through a tube 19. And a suction pump 21 connected to each other. The body frame 17 has a cross-sectional shape from a bottom plate 17a that supports the back surface of the patient K and a pair of side plates 17b and 17b that are connected to both end surfaces of the bottom plate 17a and hold both sides of the patient K. It is formed so as to exhibit a U-shape. The vacuum pillow 18 is put inside the body frame 17, and is composed of a predetermined bag having flexibility and airtightness, and a predetermined amount of fine polystyrene foam filler put in the bag, If there is sufficient air in the bag, the expanded polystyrene filler can flow in the bag. When the patient K is laid on the vacuum pillow 18, the vacuum pillow 18 is deformed so as to be in close contact with the back and sides of the patient K. When the air in the bag is sucked by the suction pump 21, The pillow 18 is solidified in a deformed state. That is, the trunk of patient K is substantially fixed.
 横隔膜圧迫具12は、ボディフレーム17の一対の側板17b、bの上端部に架設されているブリッジ状を呈する支持台23と、支持台23に上下方向に駆動可能に支持されている駆動軸24と、駆動軸24の先端に設けられている圧迫板25とから構成されている。より詳しく説明すると、支持台23の中央の頂部には貫通孔が明けられており貫通孔には雌ネジが形成されている。そして駆動軸24には雄ネジが形成されて貫通孔の雌ネジに螺合しており、駆動軸24の後端部には、駆動軸24を回転するハンドル26が固定されている。従って、ハンドル26を回転すると駆動軸24が上下方向に駆動され圧迫板25が上下することになる。このような横隔膜圧迫具12の支持台23は、ボディフレーム17に対して前後方向にスライドさせることができ、任意の位置で固定することができる。従って、仰臥した患者Kの季肋下部の上方の位置に圧迫板25が位置するように支持台23のスライド位置を微調整することができる。 The diaphragm compression device 12 includes a support base 23 having a bridge shape that is installed on the upper ends of a pair of side plates 17b and b of the body frame 17, and a drive shaft 24 that is supported by the support base 23 so as to be driven in the vertical direction. And a compression plate 25 provided at the tip of the drive shaft 24. More specifically, a through hole is formed in the central top portion of the support base 23, and a female screw is formed in the through hole. A male screw is formed on the drive shaft 24 and screwed into a female screw in the through hole. A handle 26 that rotates the drive shaft 24 is fixed to the rear end of the drive shaft 24. Accordingly, when the handle 26 is rotated, the drive shaft 24 is driven in the vertical direction, and the compression plate 25 is moved up and down. The support base 23 of the diaphragm compression tool 12 can be slid in the front-rear direction with respect to the body frame 17 and can be fixed at an arbitrary position. Therefore, the slide position of the support base 23 can be finely adjusted so that the compression plate 25 is positioned above the lower part of the season of the patient K who is supine.
 本実施の形態に係る体動検出センサ14は、図2に示されているように、シート状を呈し患者Kに直接接する中空の容器、すなわち受圧容器28、センサ素子が入れられるようになっている所定大きさの中空の容器、すなわちセンサ格納容器29、センサ格納容器29に格納されている薄膜センサ素子31等から概略構成されている。受圧容器28は、患者Kの体動により変動する圧力を受ける受圧部になっているので、ポリ塩化ビニル、ポリプロピレン等の可撓性材料から形成されているが、センサ格納容器29は、薄膜センサ素子31を保護する容器であるので、特に可撓性を有する必要はない。従って、本実施の形態においてはアクリル樹脂から形成されている。受圧容器28とセンサ格納容器29は可撓性材料からなる連結管32によって、気密的または液密的に連結され、それぞれの中空部が連通している。薄膜センサ素子31は、PVDF(polyvinilidene fluorite)、窒化アルミニウム、または酸化亜鉛からなる所定の大きさの薄膜状の圧電素子であり、本実施の形態においては窒化アルミニウムからなる。薄膜センサ素子31には、以下に説明するように所定の接続用チップを介してフラットケーブル33が接続され、フラットケーブル33には、送信機35が接続されている。従って、圧力は薄膜センサ素子31によって電圧の変化として検出され、送信機35から送信されることになる。このような体動検出センサ14、すなわち受圧容器28とセンサ格納容器29と連結管32には、空気からなる気体流体37が密封されている。従って、受圧容器28において受圧された圧力は気体流体37を介して薄膜センサ素子31に作用することになる。 As shown in FIG. 2, the body motion detection sensor 14 according to the present embodiment has a sheet-like hollow container that directly contacts the patient K, that is, a pressure receiving container 28 and a sensor element. A hollow container having a predetermined size, that is, a sensor storage container 29, a thin film sensor element 31 stored in the sensor storage container 29, and the like are roughly configured. The pressure receiving container 28 is a pressure receiving part that receives a pressure that fluctuates due to the body movement of the patient K. Therefore, the pressure receiving container 28 is formed of a flexible material such as polyvinyl chloride or polypropylene. Since it is a container which protects the element 31, it does not need to have flexibility in particular. Therefore, in this embodiment, it is formed from an acrylic resin. The pressure receiving container 28 and the sensor storage container 29 are connected in a gas-tight or liquid-tight manner by a connecting pipe 32 made of a flexible material, and the respective hollow portions are communicated with each other. The thin film sensor element 31 is a thin film piezoelectric element having a predetermined size made of PVDF (polyvinylidene fluorite), aluminum nitride, or zinc oxide, and is made of aluminum nitride in the present embodiment. As will be described below, a flat cable 33 is connected to the thin film sensor element 31 via a predetermined connection chip, and a transmitter 35 is connected to the flat cable 33. Accordingly, the pressure is detected as a change in voltage by the thin film sensor element 31 and transmitted from the transmitter 35. A gas fluid 37 made of air is sealed in the body motion detection sensor 14, that is, the pressure receiving container 28, the sensor storage container 29, and the connecting pipe 32. Therefore, the pressure received in the pressure receiving container 28 acts on the thin film sensor element 31 via the gas fluid 37.
 窒化アルミニウムの圧電素子からなる薄膜センサ素子31と、フラットケーブル33の接続について詳しく説明する。薄膜センサ素子31とフラットケーブル33は、所定の接続用チップ、すなわちフレキシブルICチップ38によって接続される。フレキシブルICチップ38は、図3の(ア)に示されているように、切り込み39が入れられた平板状のチップであり、銅の薄膜からなる第1、2の導線41、42が、切り込み39で分けられたチップの第1の小片43と第2の小片44とに、平行になるように設けられている。なお、第1の導線41はチップの表面に、第2の導線42はチップの裏面に設けられている。このようなフレキシブルICチップ38によって、薄膜センサ素子31をフラットケーブル33に接続する方法について説明する。フレキシブルICチップ38を、第1の小片43を下方に、第2の小片44を上方に湾曲させて、切り込み39に薄膜センサ素子31を挿入する。そうすると、図3の(イ)に示されているように、薄膜センサ素子31をフレキシブルICチップ38の第1、2の小片43、44で挟み込むことができる。薄膜センサ素子31は、ポリイミド系樹脂からなる基板46とその上に蒸着された窒化アルミニウム結晶層47が、アルミニウム等からなる第1、2の金属膜48、49によって上面と下面が被覆された構造を呈している。このような薄膜センサ素子31の第1、2の金属膜48、49に異方性導電接着剤50、50を塗布して、フレキシブルICチップ38の第1、2の小片43、44を押圧して接着する。そうすると、第1の金属膜48と第1の導線41、第2の金属膜49と第2の導線42のそれぞれが導通する。フレキシブルICチップ38の端部に所定のコネクタ52を接続し、コネクタ52を介してフラットケーブル33を接続する。薄膜センサ素子31とフラットケーブル33が接続される。このようにしてフラットケーブル33に接続された薄膜センサ素子31が、既に説明したようにセンサ格納容器29に入れられている。 The connection between the thin cable sensor element 31 made of an aluminum nitride piezoelectric element and the flat cable 33 will be described in detail. The thin film sensor element 31 and the flat cable 33 are connected by a predetermined connecting chip, that is, a flexible IC chip 38. As shown in FIG. 3A, the flexible IC chip 38 is a flat chip having a cut 39, and the first and second conductive wires 41, 42 made of a copper thin film are cut. The first and second small pieces 43 and 44 of the chip divided by 39 are provided in parallel to each other. The first conducting wire 41 is provided on the front surface of the chip, and the second conducting wire 42 is provided on the back surface of the chip. A method of connecting the thin film sensor element 31 to the flat cable 33 using such a flexible IC chip 38 will be described. The thin film sensor element 31 is inserted into the cut 39 by bending the flexible IC chip 38 with the first small piece 43 downward and the second small piece 44 upward. Then, as shown in FIG. 3A, the thin film sensor element 31 can be sandwiched between the first and second small pieces 43 and 44 of the flexible IC chip 38. The thin film sensor element 31 has a structure in which a substrate 46 made of polyimide resin and an aluminum nitride crystal layer 47 deposited thereon are covered on the upper and lower surfaces by first and second metal films 48 and 49 made of aluminum or the like. Presents. Anisotropic conductive adhesives 50 and 50 are applied to the first and second metal films 48 and 49 of such a thin film sensor element 31, and the first and second small pieces 43 and 44 of the flexible IC chip 38 are pressed. And glue. Then, the first metal film 48 and the first conducting wire 41, and the second metal film 49 and the second conducting wire 42 are brought into conduction. A predetermined connector 52 is connected to the end of the flexible IC chip 38, and the flat cable 33 is connected via the connector 52. The thin film sensor element 31 and the flat cable 33 are connected. The thin film sensor element 31 thus connected to the flat cable 33 is placed in the sensor storage container 29 as described above.
 本実施の形態に係る体動検出センサ11は、図1の(ア)に示されているように、そのセンサ格納容器29と送信機35がテーブル8の側方の所定の端部に固定されている。つまり、患者Kから離れた位置に固定されている。従って、これらが断層撮影の邪魔になることはないし、患者Kと直接接触しないので破損したり故障することがない。一方、体動検出センサ11の受圧容器28は、連結管32が許容する範囲で任意の場所に配置することができるようになっている。従って、作用の説明のところで説明するように、受圧容器28を患者Kの腹部と横隔膜圧迫具12の圧迫板25の間で挟まれるように配置することができる。また、受圧容器28をバキュームピロー18と患者Kの背面部の間で挟まれるように配置しても良い。受圧容器28は、患者の上半身の任意の位置を選択して配置することができるので、断層撮影時に妨げになることなく患者の呼吸による体動の圧力変化を検出することができる。なお、本実施の形態に係る体動検出センサ11は、気体流体37によって効率よく圧力変動を薄膜センサ素子31に作用させることができるので、連結管32を比較的長くしてもセンサの感度は低下しない。従って、連結管32を例えば3m程度にすることもでき、そうすると本実施の形態に係る呼吸同期用信号生成装置を変形して、センサ格納容器29を寝台3から離れた場所に設置することもできる。この場合には、体動検出センサ11とコントローラ16を有線の信号ケーブルで直接接続することもできる。 As shown in FIG. 1A, the body motion detection sensor 11 according to the present embodiment has its sensor storage container 29 and transmitter 35 fixed to a predetermined end on the side of the table 8. ing. That is, it is fixed at a position away from the patient K. Therefore, they do not interfere with tomography and do not come into direct contact with the patient K, so there is no damage or failure. On the other hand, the pressure receiving container 28 of the body motion detection sensor 11 can be arranged at an arbitrary place within a range allowed by the connecting pipe 32. Therefore, as will be described in the description of the operation, the pressure receiving container 28 can be disposed so as to be sandwiched between the abdomen of the patient K and the compression plate 25 of the diaphragm compression tool 12. Further, the pressure receiving container 28 may be disposed so as to be sandwiched between the vacuum pillow 18 and the back surface of the patient K. Since the pressure receiving container 28 can be arranged by selecting an arbitrary position of the upper body of the patient, it is possible to detect a change in body movement pressure due to the patient's breathing without being obstructed during tomography. Note that the body motion detection sensor 11 according to the present embodiment can efficiently cause pressure fluctuations to be applied to the thin film sensor element 31 by the gas fluid 37, so that the sensitivity of the sensor is maintained even if the connecting pipe 32 is relatively long. It does not decline. Therefore, the connecting pipe 32 can be set to about 3 m, for example. Then, the respiratory synchronization signal generation apparatus according to the present embodiment can be modified and the sensor storage container 29 can be installed at a place away from the bed 3. . In this case, the body motion detection sensor 11 and the controller 16 can be directly connected by a wired signal cable.
 コントローラ16には、体動検出センサ14に接続されている送信機35から送信される信号を受信する受信機が備えられている。送信機35と受信機における通信は、Bluetooth通信、あるいは近赤外線通信によって実施されるので、電磁波が漏洩することがなく、CTスキャン装置1や周辺に設置されている医療機器は誤作動することがない。受信された圧力の変化から、コントローラ16の処理によって呼吸に同期したパルス状の呼吸同期用信号が生成される。コントローラ16は、所定の信号ケーブル54を介して、ガントリ2の同期信号入力端子55に接続されているので、生成された呼吸同期用信号はガントリ2に入力されることになる。なお、コントローラ16は、オープンコレクタ端子、TTLレベルラインドライバ出力端子、START/STOP出力端子、RS422接続端子を備えているので、信号ケーブル54には、ガントリ2の同期信号入力端子55に対応する任意のタイプのケーブルを選定することができる。コントローラ16には、外部のモニタ装置に必要な情報を出力することができるビデオ出力端子も設けられており、図1には示されていないが、CTスキャン装置1を操作するオペレータ室内に設けられている所定のモニタに接続されている。また、コントローラ16には、マイクも内蔵されている。一般的に、CTスキャン装置1はX線の曝射時に注意を促す所定の警告音を発するが、この警告音を検出して曝射情報としてコントローラ16に取り込むことができる。 The controller 16 includes a receiver that receives a signal transmitted from the transmitter 35 connected to the body motion detection sensor 14. Since communication between the transmitter 35 and the receiver is performed by Bluetooth communication or near infrared communication, electromagnetic waves do not leak, and the CT scan apparatus 1 and medical devices installed in the vicinity may malfunction. Absent. From the received pressure change, the controller 16 generates a pulsed breathing synchronization signal synchronized with breathing by the processing of the controller 16. Since the controller 16 is connected to the synchronization signal input terminal 55 of the gantry 2 via the predetermined signal cable 54, the generated respiratory synchronization signal is input to the gantry 2. Since the controller 16 includes an open collector terminal, a TTL level line driver output terminal, a START / STOP output terminal, and an RS422 connection terminal, the signal cable 54 has an arbitrary corresponding to the synchronization signal input terminal 55 of the gantry 2. Types of cables can be selected. The controller 16 is also provided with a video output terminal that can output necessary information to an external monitor device. Although not shown in FIG. 1, the controller 16 is provided in an operator room for operating the CT scan device 1. Connected to a given monitor. The controller 16 also has a built-in microphone. In general, the CT scanning device 1 emits a predetermined warning sound that calls attention at the time of X-ray exposure, and this warning sound can be detected and taken into the controller 16 as exposure information.
 本実施の形態に係る呼吸同期用信号生成装置10を備えたCTスキャン装置1の作用を説明する。図1の(ア)に示されているように、患者Kをテーブル8上の体幹部固定具11の上に仰臥させる。横隔膜圧迫具12の支持台23のスライド位置を調整して、圧迫板25が患者Kの季肋下部の上方に配置されるようにして、支持台23を固定する。吸引ポンプ21を駆動してバキュームピロー18内の空気を吸引する。そうすると、バキュームピロー18は患者Kの背面部と側部に密着して固化する。これによって患者Kは実質的に上半身、すなわち体幹部が固定されるが、胸部は開放されているので呼吸は可能な状態が維持される。体動検出センサ14の受圧容器28を、患者Kと圧迫板25の間に配置して、横隔膜圧迫具12のハンドル26を回転する。そうすると図1の(イ)に示されているように、駆動軸24が下方に駆動され圧迫板25が下方に駆動される。圧迫板25と患者Kの間に受圧容器28が挟まれ、受圧容器28によって患者Kの体動による圧力の変化を検出できるようになる。そして、圧迫板25によって患者Kの季肋下部が所定の力で圧迫される。そうすると、患者Kの横隔膜は圧迫されて横隔膜による腹式呼吸が抑制され、患者Kは胸郭のみで呼吸する胸式呼吸をするようになる。図4の上段には腹式呼吸による呼吸動作の、下段には胸式呼吸による呼吸動作の、それぞれの体動による圧力変動のグラフが示されているが、腹式呼吸が周期が長く呼吸が深いのに対して、胸式呼吸は周期が短く呼吸が浅くなっていることが分かる。受圧容器28においてこのように変化する圧力を受け、気体流体37を介して薄膜センサ素子31において圧力を検出し、電圧に変換する。受圧容器28の面積は十分に広いので、変化する圧力を効率よく受けることができる。そして、気体流体37によって薄膜センサ素子31の全表面に均一に圧力が作用するので、圧力の変化を精度良く検出することができる。検出された電圧の変化を送信機35によってコントローラ16に送信する。コントローラ16では、入力された電圧の波形を処理して呼吸に同期するパルス信号、すなわち呼吸同期用信号を生成する。生成した呼吸同期用信号をガントリ2に入力する。ところで、電圧の波形には、呼吸の動作と心臓の鼓動による異なる周波数成分が含まれ、さらにはノイズも含まれている。従って、フーリエ変換、ウェーブレット変換等の周知の分析方法を適用して呼吸の動作に対応する周波数成分を抽出する。そうすると、呼吸のタイミングを得ることができる。なお、入力される電力の波形には、短時間に変化する周波数成分が多く含まれているので、ウェーブレット変換による分析方法が特に有効である。分析方法として、例えば、日本機械学会[No.01-5]福祉工学シンポジウムCD-ROM論文集[2001.8.7,東京]の論文「W301 PVDFセンサを用いた睡眠時呼吸・心拍の無拘束侵襲計測に関する研究(第2報:ウェーブレット変換を用いた呼吸心拍の検出)」に記載されている方法を適用することができる。 The operation of the CT scan apparatus 1 including the respiratory synchronization signal generation apparatus 10 according to the present embodiment will be described. As shown in FIG. 1A, the patient K is supine on the trunk fixing tool 11 on the table 8. The support base 23 is fixed by adjusting the slide position of the support base 23 of the diaphragm compression tool 12 so that the compression plate 25 is disposed above the lower part of the patient K's season. The suction pump 21 is driven to suck the air in the vacuum pillow 18. Then, the vacuum pillow 18 is brought into close contact with the back and sides of the patient K and is solidified. As a result, the upper body of the patient K, that is, the trunk, is fixed, but the chest is open, so that breathing is maintained. The pressure receiving container 28 of the body motion detection sensor 14 is disposed between the patient K and the compression plate 25, and the handle 26 of the diaphragm compression tool 12 is rotated. Then, as shown in FIG. 1A, the drive shaft 24 is driven downward and the compression plate 25 is driven downward. The pressure receiving container 28 is sandwiched between the compression plate 25 and the patient K, and the pressure receiving container 28 can detect a change in pressure due to the body movement of the patient K. Then, the lower part of the season of the patient K is compressed with a predetermined force by the compression plate 25. Then, the diaphragm of the patient K is compressed and the abdominal breathing by the diaphragm is suppressed, and the patient K starts to breathe through the chest only. The upper part of FIG. 4 shows a graph of pressure fluctuations due to body movements of the breathing action by abdominal breathing and the lower part of the breathing action by chest breathing. On the other hand, it can be seen that chest breathing has a short cycle and shallow breathing. In response to the pressure changing in this manner in the pressure receiving container 28, the thin film sensor element 31 detects the pressure via the gas fluid 37 and converts it into a voltage. Since the area of the pressure receiving container 28 is sufficiently large, it is possible to efficiently receive the changing pressure. And since a pressure acts uniformly on the whole surface of the thin film sensor element 31 by the gas fluid 37, the change of a pressure can be detected accurately. The detected change in voltage is transmitted to the controller 16 by the transmitter 35. The controller 16 processes the waveform of the input voltage to generate a pulse signal synchronized with respiration, that is, a respiration synchronization signal. The generated respiratory synchronization signal is input to the gantry 2. By the way, the voltage waveform includes different frequency components due to breathing motion and heartbeat, and also includes noise. Therefore, a known analysis method such as Fourier transform or wavelet transform is applied to extract a frequency component corresponding to the breathing motion. Then, the timing of breathing can be obtained. Since the input power waveform contains many frequency components that change in a short time, an analysis method using wavelet transform is particularly effective. As an analysis method, for example, the Japan Society of Mechanical Engineers [No. 01-5] Dissertation of Symposium on Welfare Engineering CD-ROM [2001.8.7, Tokyo] “W301 Study on unrestrained invasive measurement of respiratory and heart rate using PVDF sensor (2nd report: Wavelet transform) The method described in “Detection of respiratory heartbeat used)” can be applied.
 テーブル8を駆動して患者Kを開口部5に挿入し、断層画像を撮影したい部位が開口部5の中心に位置するようにする。ガントリ2に入力される呼吸同期用信号に同期して、X線を曝射して断層画像を撮影する。このとき、体動検出センサ14の受圧容器28はX線を吸収しないので、断層画像に容器が映ることはない。引き続き、テーブル8を駆動して患者Kをわずかに挿入して、呼吸同期用信号に同期して断層画像を撮影する。以下同様にして複数枚の断層画像を撮影する。本実施の形態においては、周期の短い胸式呼吸に同期して断層画像を撮影するので、比較的短時間で断層撮影を完了することができる。 The table 8 is driven to insert the patient K into the opening 5 so that the site where the tomographic image is to be taken is positioned at the center of the opening 5. In synchronization with the respiratory synchronization signal input to the gantry 2, X-rays are emitted and a tomographic image is taken. At this time, since the pressure receiving container 28 of the body motion detection sensor 14 does not absorb X-rays, the container is not reflected in the tomographic image. Subsequently, the table 8 is driven to slightly insert the patient K, and a tomographic image is taken in synchronization with the respiratory synchronization signal. Thereafter, a plurality of tomographic images are taken in the same manner. In the present embodiment, the tomographic image is taken in synchronization with the short-term chest respiration, so that the tomographic imaging can be completed in a relatively short time.
 オペレータ室に設けられているモニタには、コントローラ16から出力された画面が表示され、例えば図5に示されているように表示される。画面には、患者Kに付与されている患者ID、患者の氏名等の基本情報が表示され、患者Kの呼吸波形の表示と共に、その呼吸波形に同期した呼吸同期用信号がパルス状に表示される。また、CTスキャン装置1が曝射した情報、すなわち曝射情報と心拍信号も表示される。オペレータは、モニタの表示を見ながら呼吸の状態を監視して、オペレータ室に備え付けられている音声回線によって患者Kに指示を出すことができる。そうすると、患者Kは適切な呼吸動作をすることができ、適切に断層画像を撮影できる。なお、コントローラ16内には、所定のメモリも設けられており、モニタに表示される情報は保存されている。従って、過去のデータも必要に応じて表示することができる。 On the monitor provided in the operator room, the screen output from the controller 16 is displayed, for example, as shown in FIG. The screen displays basic information such as the patient ID and patient name assigned to the patient K, and displays the respiratory waveform of the patient K along with the respiratory synchronization signal synchronized with the respiratory waveform. The Further, information exposed by the CT scanning apparatus 1, that is, exposure information and a heartbeat signal are also displayed. The operator can monitor the breathing state while observing the display on the monitor, and give an instruction to the patient K through a voice line provided in the operator room. Then, the patient K can perform an appropriate breathing motion and can appropriately capture a tomographic image. Note that a predetermined memory is also provided in the controller 16, and information displayed on the monitor is stored. Therefore, past data can also be displayed as necessary.
 図5には、第2の実施の形態に係る体動検出センサ14'が示されている。前記実施の形態に係る体動検出センサ14の構成要素と同様の要素には、同じ参照番号を付して詳しくは説明しない。第2の実施の形態に係る体動検出センサ14'は、受圧容器とセンサ格納容器が同一の容器である受圧容器28’から形成されている。従って、薄膜センサ素子31が、受圧容器28’の一部に格納されている。このようにすると、体動検出センサ14'をより安価に製造することが可能になる。なお、受圧容器28’の薄膜センサ素子31が格納されている部分について、所定の補強部材を設ければ、薄膜センサ素子31を適切に保護することができる。 FIG. 5 shows a body motion detection sensor 14 ′ according to the second embodiment. Elements similar to those of the body motion detection sensor 14 according to the above-described embodiment are assigned the same reference numerals and will not be described in detail. The body motion detection sensor 14 'according to the second embodiment is formed of a pressure receiving container 28' in which the pressure receiving container and the sensor storage container are the same container. Therefore, the thin film sensor element 31 is stored in a part of the pressure receiving container 28 '. In this way, the body motion detection sensor 14 ′ can be manufactured at a lower cost. Note that the thin film sensor element 31 can be appropriately protected by providing a predetermined reinforcing member for the portion of the pressure receiving container 28 ′ in which the thin film sensor element 31 is stored.
 本実施の形態に係る断層画像装置は、色々な変形が可能である。例えば、呼吸同期用信号生成装置は、CTスキャン装置の代わりにPET装置、放射線治療シミュレータ装置、放射線治療装置に接続されていてもよく、これらの装置を呼吸同期用信号に同期させて制御することができる。また、体動検出センサ14とコントローラ16は、送受信機によって無線通信されているように説明されているが、既に説明されているように、有線の信号ケーブルによって直接接続されていてもよい。また、体動検出センサ14の受圧容器とセンサ格納容器には空気からなる気体流体が封入されているように説明されているが、不活性ガスでも他の気体でも同様に実施できる。さらには、気体流体の代わりに、シリコンオイル、鉱物油等の液体流体であっても同様に実施することができる。液体流体の場合は、薄膜センサ素子31が完全にセンサ格納容器29内で流体内で浮くことになるので、薄膜センサ素子31がノイズを拾いにくく精度良く圧力変動を検出することが可能になるし、圧縮性が小さいので応答性が良くなる利点もある。体幹部固定具についても変形が可能である。例えば、バキュームピローの充填材は発泡スチロールの代わりに、樹脂製のビーズを適用することもできる。また、ボディフレームと複数本のベルト等によって患者の体幹部を固定することも可能である。また、コントローラ16に液晶画面が設けられていても良いし、ビデオ出力端子に他のモニタが接続されていても良く、そうすると、仰臥している患者Kも呼吸波形を確認することができる。 The tomographic image apparatus according to the present embodiment can be variously modified. For example, the respiratory synchronization signal generation device may be connected to a PET device, a radiotherapy simulator device, or a radiotherapy device instead of a CT scan device, and these devices are controlled in synchronization with the respiratory synchronization signal. Can do. The body motion detection sensor 14 and the controller 16 are described as being wirelessly communicated by a transceiver, but may be directly connected by a wired signal cable as already described. In addition, although it has been described that a gas fluid made of air is sealed in the pressure receiving container and the sensor storage container of the body motion detection sensor 14, the same can be applied to an inert gas or other gases. Further, the present invention can be similarly performed even when a liquid fluid such as silicon oil or mineral oil is used instead of the gas fluid. In the case of a liquid fluid, since the thin film sensor element 31 is completely floated in the fluid in the sensor storage container 29, it is difficult for the thin film sensor element 31 to pick up noise and to detect pressure fluctuation with high accuracy. Also, since the compressibility is small, there is an advantage that the responsiveness is improved. The trunk fixture can also be modified. For example, resin beads can be applied to the vacuum pillow filler instead of polystyrene foam. It is also possible to fix the patient's trunk with a body frame and a plurality of belts. In addition, the controller 16 may be provided with a liquid crystal screen, or another monitor may be connected to the video output terminal, so that the patient K who is lying down can check the respiratory waveform.
 1  CTスキャン装置       2  ガントリ
 3  寝台             5  開口部
 7  台座             8  テーブル
10  呼吸同期用信号生成装置   11  体幹部固定具
12  横隔膜圧迫具        14  体動検出センサ
16  コントローラ        17  ボディフレーム
18  バキュームピロー      21  吸引ポンプ
23  支持台           24  駆動軸
25  圧迫板           28  受圧容器
29  センサ格納容器       31  薄膜センサ素子
35  送信機           37  気体流体
DESCRIPTION OF SYMBOLS 1 CT scan apparatus 2 Gantry 3 Bed 5 Opening part 7 Base 8 Table 10 Signal generator for respiratory synchronization 11 Trunk fixing tool 12 Diaphragm compression tool 14 Body motion detection sensor 16 Controller 17 Body frame 18 Vacuum pillow 21 Suction pump 23 Support stand 24 Drive shaft 25 Compression plate 28 Pressure receiving container 29 Sensor storage container 31 Thin film sensor element 35 Transmitter 37 Gaseous fluid

Claims (8)

  1. 入力される同期信号に同期して制御されるCTスキャン装置、PET装置、放射線治療シミュレーション装置、または放射線治療装置に、患者の呼吸に同期する同期信号を送信する呼吸同期用信号生成装置であって、
     前記呼吸同期用信号生成装置は、患者が仰臥する寝台上に設けられ該患者の体幹部を固定する体幹部固定具と、前記患者の腹部近傍に設けられている横隔膜圧迫具と、前記患者に接触して呼吸による体動を圧力の変化として検出する体動検出センサと、前記体動検出センサからの出力を受けて呼吸に同期する呼吸同期用信号を生成するコントローラとから構成され、
     前記横隔膜圧迫具は、前記患者の腹部の上方に架設されている支持台と、前記支持台に上下方向に駆動可能に支持されている駆動軸と、該駆動軸の先端に設けられている圧迫板とから構成され、前記駆動軸を下方に駆動すると前記圧迫板が前記患者の季肋下部を押して横隔膜を圧迫するようになっており、
     前記体動検出センサは、可撓性を有し全体が扁平なシート状を呈する中空の受圧容器と、所定の管路を介して前記受圧容器と連通している中空のセンサ格納容器と、前記センサ格納容器に格納されているPVDF、窒化アルミニウム、または酸化亜鉛からなる薄膜センサ素子と、前記受圧容器と前記センサ格納容器に気密的または液密的に封入されている流体とから構成され、前記受圧容器に作用する圧力が、前記流体を介して前記薄膜センサ素子に作用して検出されるようになっており、
     前記受圧容器は、前記患者と前記圧迫板の間、または前記患者と前記体幹部固定具の間に挟まれるように設けられるようになっていることを特徴とする呼吸同期用信号生成装置。
    A respiratory synchronization signal generation device that transmits a synchronization signal synchronized with patient breathing to a CT scan device, a PET device, a radiation therapy simulation device, or a radiation therapy device controlled in synchronization with an input synchronization signal. ,
    The respiratory synchronization signal generating device is provided on a bed on which a patient lies and a trunk fixing device that fixes the trunk of the patient, a diaphragm compression device provided near the abdomen of the patient, and the patient A body motion detection sensor that detects body motion due to respiration as a change in pressure, and a controller that receives an output from the body motion detection sensor and generates a breath synchronization signal that is synchronized with respiration.
    The diaphragm compression tool includes a support base installed above the abdomen of the patient, a drive shaft supported by the support base so as to be vertically movable, and a compression provided at a distal end of the drive shaft. And when the drive shaft is driven downward, the compression plate presses the lower part of the patient's season and presses the diaphragm,
    The body motion detection sensor includes a hollow pressure receiving container that is flexible and has a flat sheet shape as a whole, a hollow sensor storage container that communicates with the pressure receiving container via a predetermined conduit, A thin film sensor element made of PVDF, aluminum nitride, or zinc oxide stored in a sensor storage container, and the pressure receiving container and a fluid hermetically or liquid-tightly sealed in the sensor storage container, A pressure acting on the pressure receiving container is detected by acting on the thin film sensor element via the fluid;
    The respiratory synchronization signal generation device, wherein the pressure receiving container is provided so as to be sandwiched between the patient and the compression plate or between the patient and the trunk fixing tool.
  2.  請求項1に記載の呼吸同期用信号生成装置において、前記体幹部固定具は、底板と所定形状の一対の側板とからなる所定の形状のボディフレームと、前記ボディフレーム内に設けられ、可撓性と気密性を有する所定の袋と該袋に入れられた所定量の細粒状の発泡スチロール充填材とからなるバキュームピローと、前記袋に所定の管路を介して接続されている吸引ポンプとから構成され、前記バキュームピロー上に患者を仰臥させて前記吸引ポンプによって空気を吸引すると、前記バキュームピローが前記患者の背面部と側部に密着して固化するようになっていることを特徴とする呼吸同期用信号生成装置。 2. The respiratory synchronization signal generation device according to claim 1, wherein the trunk fixture is provided in a body frame having a predetermined shape including a bottom plate and a pair of side plates having a predetermined shape, and is flexibly provided in the body frame. A vacuum pillow composed of a predetermined bag having heat resistance and airtightness and a predetermined amount of fine polystyrene foam filler contained in the bag, and a suction pump connected to the bag via a predetermined pipe line The vacuum pillow is configured such that when the patient is laid on the vacuum pillow and air is sucked by the suction pump, the vacuum pillow is in close contact with the back and sides of the patient and solidifies. Respiratory synchronization signal generator.
  3.  請求項1、または請求項2に記載の呼吸同期用信号生成装置において、前記受圧容器と前記センサ格納容器は、同一の容器から形成されていることを特徴とする呼吸同期用信号生成装置。 3. The respiratory synchronization signal generation apparatus according to claim 1, wherein the pressure receiving container and the sensor storage container are formed of the same container.
  4.  請求項1~3のいずれかの項に記載の呼吸同期用信号生成装置において、前記流体は、シリコンオイルまたは鉱物油からなる液体、あるいは空気または不活性ガスからなる気体であることを特徴とする呼吸同期用信号生成装置。 The respiratory synchronization signal generation device according to any one of claims 1 to 3, wherein the fluid is a liquid made of silicon oil or mineral oil, or a gas made of air or an inert gas. Respiratory synchronization signal generator.
  5.  請求項1~4のいずれかの項に記載の呼吸同期用信号生成装置において、前記コントローラには、モニタが接続される画像出力端子が設けられ、呼吸波形や呼吸同期用信号をグラフ化して出力できるようになっていることを特徴とする呼吸同期用信号生成装置。 5. The respiratory synchronization signal generation apparatus according to claim 1, wherein the controller is provided with an image output terminal to which a monitor is connected, and graphs and outputs a respiratory waveform and a respiratory synchronization signal. A respiratory synchronization signal generation device characterized by being configured to be able to perform this.
  6.  請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた断層撮影装置。 A tomography apparatus comprising the respiratory synchronization signal generation device according to any one of claims 1 to 5.
  7.  請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた放射線治療シミュレーション装置。 A radiation therapy simulation apparatus comprising the respiratory synchronization signal generation apparatus according to any one of claims 1 to 5.
  8.  請求項1~5のいずれかの項に記載の呼吸同期用信号生成装置を備えた放射線治療装置。
     
    A radiotherapy apparatus comprising the respiratory synchronization signal generation apparatus according to any one of claims 1 to 5.
PCT/JP2010/006556 2009-11-10 2010-11-09 Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device WO2011058730A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009257060A JP2013017491A (en) 2009-11-10 2009-11-10 Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device
JP2009-257060 2009-11-10

Publications (1)

Publication Number Publication Date
WO2011058730A1 true WO2011058730A1 (en) 2011-05-19

Family

ID=43991399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006556 WO2011058730A1 (en) 2009-11-10 2010-11-09 Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device

Country Status (2)

Country Link
JP (1) JP2013017491A (en)
WO (1) WO2011058730A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103845070A (en) * 2012-12-07 2014-06-11 上海联影医疗科技有限公司 PET-CT (positron emission tomography-computed tomography) scanning device and control method of PET-CT scanning device
ITUA20162689A1 (en) * 2016-04-18 2017-10-18 Leonardo Manetti DIAGNOSTIC SUPPORT
US10154824B2 (en) 2014-08-07 2018-12-18 Imaginalis S.R.L. Radiological imaging device with improved maneuverability
CN109157765A (en) * 2018-10-23 2019-01-08 上海联影医疗科技有限公司 Respiration gate control device
EP3668404A4 (en) * 2017-08-16 2021-05-05 Hologic, Inc. Techniques for breast imaging patient motion artifact compensation
US11064956B2 (en) 2017-08-11 2021-07-20 Hologic, Inc. Breast compression paddle having an inflatable jacket
US11617548B2 (en) 2004-11-26 2023-04-04 Hologic, Inc. Integrated multi-mode mammography/tomosynthesis x-ray system and method
US11622736B2 (en) 2020-01-24 2023-04-11 Hologic, Inc. Horizontally-displaceable foam breast compression paddle
US11633164B2 (en) 2016-11-08 2023-04-25 Hologic, Inc. Imaging with curved compression elements
US11672493B2 (en) 2017-08-11 2023-06-13 Hologic, Inc. Breast compression paddle with access corners
US11786191B2 (en) 2021-05-17 2023-10-17 Hologic, Inc. Contrast-enhanced tomosynthesis with a copper filter

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107405501B (en) * 2015-07-01 2020-08-25 株式会社东芝 Current generating device, moving body tracking irradiation system, and X-ray irradiation device
WO2018084232A1 (en) * 2016-11-04 2018-05-11 エンジニアリングシステム株式会社 Body movement suppression bag and method for adjusting pressing force using body movement suppression bag
WO2019198555A1 (en) * 2018-04-12 2019-10-17 エンジニアリングシステム株式会社 Motion suppression device, motion suppression method, and motion suppression bag
JP7421467B2 (en) * 2020-12-10 2024-01-24 公益財団法人がん研究会 Suction type patient fixture leak detector, detection system, and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143661A (en) * 2003-11-12 2005-06-09 Toshiba Corp Bed for image diagnostic device
JP2006136618A (en) * 2004-11-15 2006-06-01 Toshiba Corp Bed apparatus
JP2006263461A (en) * 2005-02-25 2006-10-05 Univ Of Yamanashi Multi-point detecting type respiration monitoring device
JP2009520532A (en) * 2005-12-22 2009-05-28 ゲーエスイー ヘルムホルツツェントルム フュア シュヴェアイオーネンフォルシュング ゲーエムベーハー Device for irradiation of tumor tissue in a patient using a particle beam
WO2010106597A1 (en) * 2009-03-19 2010-09-23 株式会社ホンダ・ハドロニクス Signal generating device for respiratory synchronization and body movement detection sensor unit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005143661A (en) * 2003-11-12 2005-06-09 Toshiba Corp Bed for image diagnostic device
JP2006136618A (en) * 2004-11-15 2006-06-01 Toshiba Corp Bed apparatus
JP2006263461A (en) * 2005-02-25 2006-10-05 Univ Of Yamanashi Multi-point detecting type respiration monitoring device
JP2009520532A (en) * 2005-12-22 2009-05-28 ゲーエスイー ヘルムホルツツェントルム フュア シュヴェアイオーネンフォルシュング ゲーエムベーハー Device for irradiation of tumor tissue in a patient using a particle beam
WO2010106597A1 (en) * 2009-03-19 2010-09-23 株式会社ホンダ・ハドロニクス Signal generating device for respiratory synchronization and body movement detection sensor unit

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11617548B2 (en) 2004-11-26 2023-04-04 Hologic, Inc. Integrated multi-mode mammography/tomosynthesis x-ray system and method
CN103845070A (en) * 2012-12-07 2014-06-11 上海联影医疗科技有限公司 PET-CT (positron emission tomography-computed tomography) scanning device and control method of PET-CT scanning device
US10154824B2 (en) 2014-08-07 2018-12-18 Imaginalis S.R.L. Radiological imaging device with improved maneuverability
US10751012B2 (en) 2014-08-07 2020-08-25 Imaginalis S.R.L. Radiological imaging device with improved maneuverability
ITUA20162689A1 (en) * 2016-04-18 2017-10-18 Leonardo Manetti DIAGNOSTIC SUPPORT
WO2017182926A1 (en) * 2016-04-18 2017-10-26 Imaginalis S.R.L. A diagnostic support
US11931192B2 (en) 2016-04-18 2024-03-19 Epica International, Inc. Diagnostic support
US11633164B2 (en) 2016-11-08 2023-04-25 Hologic, Inc. Imaging with curved compression elements
US11992352B2 (en) 2016-11-08 2024-05-28 Hologic, Inc. Imaging with curved compression elements
US11064956B2 (en) 2017-08-11 2021-07-20 Hologic, Inc. Breast compression paddle having an inflatable jacket
US11672493B2 (en) 2017-08-11 2023-06-13 Hologic, Inc. Breast compression paddle with access corners
US11672500B2 (en) 2017-08-16 2023-06-13 Hologic, Inc. Image quality compliance tool
US12011310B2 (en) 2017-08-16 2024-06-18 Hologic, Inc. Image quality compliance tool
US11419569B2 (en) 2017-08-16 2022-08-23 Hologic, Inc. Image quality compliance tool
US11707244B2 (en) 2017-08-16 2023-07-25 Hologic, Inc. Techniques for breast imaging patient motion artifact compensation
US12053319B2 (en) 2017-08-16 2024-08-06 Hologic, Inc. Image quality compliance tool
EP3668404A4 (en) * 2017-08-16 2021-05-05 Hologic, Inc. Techniques for breast imaging patient motion artifact compensation
CN109157765A (en) * 2018-10-23 2019-01-08 上海联影医疗科技有限公司 Respiration gate control device
US11622736B2 (en) 2020-01-24 2023-04-11 Hologic, Inc. Horizontally-displaceable foam breast compression paddle
US11786191B2 (en) 2021-05-17 2023-10-17 Hologic, Inc. Contrast-enhanced tomosynthesis with a copper filter

Also Published As

Publication number Publication date
JP2013017491A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
WO2011058730A1 (en) Signal generator for respiratory gating, tomography device, radiation simulator, and radiation therapy device
US20150265156A1 (en) Object information acquiring apparatus and breast examination apparatus
CN112367918B (en) System and method for elastography and viscoelastography
JP4997225B2 (en) Dual array transducer probe for real-time mechanical imaging of the prostate
JP2019025216A (en) Member, light shielding structure, and device
JP2018520746A (en) 3D ultrasound imaging and related methods, apparatus, and systems
JP2014504918A (en) System and method for superimposing three-dimensional image data from a plurality of different image processing systems for use in diagnostic imaging
JP5975676B2 (en) Device that supports operation of equipment or instrument
JP2005270677A (en) Somanography and method and apparatus for better roentgenography
EP2386248A1 (en) Ultrasonic diagnostic apparatus
JP2008307236A (en) Breast image forming apparatus and forming method
JP2010051337A (en) Tomographic breast imaging system
JP2020039526A (en) Body motion detection device and radiographic system
JP2003117010A (en) Radiotherapy device, program and computer-readable recording medium recording program
WO2010106597A1 (en) Signal generating device for respiratory synchronization and body movement detection sensor unit
JP2011206434A (en) Radiation image capturing apparatus
JP2005143661A (en) Bed for image diagnostic device
JP2008307234A (en) Breast image forming apparatus and forming method
US20200100734A1 (en) Medical mattress and method for real-time monitoring
JP2019187605A (en) X-ray diagnostic apparatus, medical image processing apparatus, and medical image diagnosis apparatus
JP3128904U (en) Breast shaper
JP6579978B2 (en) Medical imaging apparatus, tube voltage setting apparatus, imaging control method, and imaging control program
JP2007289326A (en) X-ray computed tomography apparatus and mamma fixing tool
JP2009095371A (en) Ultrasonic endoscope, ultrasonic diagnostic apparatus, and position sensor fixing method in ultrasonic endoscope
JP2020039525A (en) Radiographic system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10829694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP