WO2010106589A1 - Optical measuring instrument and optical measurement method - Google Patents

Optical measuring instrument and optical measurement method Download PDF

Info

Publication number
WO2010106589A1
WO2010106589A1 PCT/JP2009/005142 JP2009005142W WO2010106589A1 WO 2010106589 A1 WO2010106589 A1 WO 2010106589A1 JP 2009005142 W JP2009005142 W JP 2009005142W WO 2010106589 A1 WO2010106589 A1 WO 2010106589A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sample
terahertz
angle
reflected
Prior art date
Application number
PCT/JP2009/005142
Other languages
French (fr)
Japanese (ja)
Inventor
松本直樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010106589A1 publication Critical patent/WO2010106589A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3581Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using far infrared light; using Terahertz radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present invention relates to a light measurement apparatus and a light measurement method for measuring physical properties such as dielectric constant, absorption coefficient, electrical conductivity, etc. of dielectric materials, semiconductors, magnetic materials, etc. in a non-contact manner using pulsed light in the terahertz frequency region. .
  • Patent Document 1 discloses a measuring device in which a device that detects the intensity and phase difference of transmitted light and a device that detects the intensity and phase difference of reflected light are configured as independent devices.
  • Patent Document 3 discloses an ellipsometer capable of deriving a complex optical constant spectrum of a sample in the terahertz region without performing a reference measurement.
  • Patent Document 3 employs an ellipsometry method that uses the property that the reflectance and phase of s-polarized light and p-polarized light differ depending on the complex dielectric constant of the sample, and calculates the physical property value based on the polarization change of the reflected light with respect to the incident light. is doing.
  • JP 2002-277393 A Japanese Patent Laying-Open No. 2005-227021 JP 2003-014620 A
  • the terahertz light measurement device disclosed in Patent Document 2 needs to include a transmitted light detection unit and a reflected light detection unit separately. Since all of these light detection units are expensive, there is a problem that it is difficult to reduce the cost of the entire measuring apparatus.
  • the incident angle of the terahertz light incident on the sample is originally based on the principle of the ellipsometry method, and the ratio of the amplitude reflection coefficient between the s-polarized light and the p-polarized light is the maximum. It is necessary to set near the Brewster angle. Since the Brewster angle changes depending on the complex dielectric constant of the sample, it is desirable to make the incident angle to the sample variable when employing the ellipsometry method.
  • the present invention has been made in view of such circumstances, and can switch between transmitted light detection and reflected light detection with a simple configuration, and changes the incident angle of the terahertz light incident according to the type of measurement sample.
  • An object of the present invention is to provide a light measuring device and a light measuring method capable of measuring a physical property value with high accuracy.
  • an optical measurement apparatus measures a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects the pulsed light, and pulsed light emitted from the terahertz light source.
  • a symmetric position across the sample which is composed of at least two or more mirrors for guiding the transmitted light transmitted through the sample or the reflected light reflected by the sample to the photodetector.
  • the operation is controlled so as to change the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirrors arranged in the mirror and the two pairs of mirrors.
  • a control mechanism is controlled so as to change the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirrors arranged in the mirror and the two pairs of mirrors.
  • control mechanism is configured to change the position and angle of the two pairs of mirrors by a support arm having a center portion of the sample as a rotation center. It is characterized by being.
  • the control mechanism changes the position and angle of the two pairs of mirror groups so that the light detector transmits the transmitted light. It is characterized by switching between detection and detection of reflected light.
  • the optical measurement device is the optical measurement device according to any one of the first to third aspects, wherein the mirror group includes at least one curved mirror, and the pulsed light emitted from the terahertz light source in the vicinity of the sample. It is characterized by being collimated.
  • the light measurement device is characterized in that, in the third or fourth invention, a polarizer is provided on an optical path through which the pulsed light emitted from the terahertz light source propagates.
  • the light measurement device is based on the amplitude reflection coefficient ratio and phase difference of the s-polarized light and the p-polarized light of the sample when the control mechanism is switched to detect the reflected light in the fifth invention. And calculating a physical property value.
  • control mechanism is configured such that the incident angle of the pulsed light emitted from the terahertz light source to the sample substantially coincides with the Brewster angle of the sample. The operation is controlled.
  • the pulse light emitted from the terahertz light source incident on the sample has the same light intensity of s-polarized light and p-polarized light.
  • the amplitude detection coefficient ratio and the phase difference between the s-polarized light and the p-polarized light reflected by the sample are linearly polarized light, and the signal detected when the angle of the polarizer is set to 0 degree or 90 degrees. It is characterized by acquiring based on.
  • the terahertz light source is a photoconductive antenna that generates pulsed light in the terahertz frequency region using an optical rectification method.
  • the photoconductive antenna is arranged so that the polarization of the generated pulsed light is inclined by 45 degrees.
  • an optical measurement method includes a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects the pulsed light, and pulses emitted from the terahertz light source.
  • the light is guided to the sample to be measured, and the transmitted light transmitted through the sample or the reflected light reflected by the sample is guided to the photodetector.
  • the sample is composed of at least two or more mirrors. Two pairs of mirror groups arranged at symmetrical positions, and changing the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirror groups The operation is controlled so that
  • the light measurement method according to the eleventh invention is characterized in that, in the tenth invention, the positions and angles of the two pairs of mirror groups are changed by a support arm having a central portion of the sample as a rotation center.
  • the light measurement method according to a twelfth aspect of the present invention is the light measurement method according to the tenth or eleventh aspect, wherein the light detector detects transmitted light or reflects light by changing the position and angle of the two pairs of mirror groups. It is characterized by switching whether to detect light.
  • a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects pulsed light, and the pulsed light emitted from the terahertz light source is guided to the sample to be measured, and the sample And two pairs of mirrors arranged at symmetrical positions with the sample interposed therebetween, which guides the transmitted light that has passed through or reflected light reflected by the sample to the photodetector.
  • the incident angle of the pulsed light emitted from the terahertz light source to the sample can be changed by changing the position and angle of the two pairs of mirror groups.
  • the position and angle of the two pairs of mirrors are changed by the support arm having the center portion of the sample as the center of rotation, so the relative positions of the terahertz light source and the photodetector are changed according to the sample. Therefore, it is possible to detect transmitted light and reflected light with a single photodetector. Further, each time the incident angle to the sample is changed, it is not necessary to perform complicated operations such as optical axis alignment, and pulse light can be reliably guided to the photodetector.
  • the photodetector switches between detecting transmitted light and reflected light.
  • the transmitted light and the reflected light can be detected by the instrument, so that the structure of the entire optical measuring device can be simplified and the cost can be reduced.
  • the mirror group includes at least one curved mirror, and collimates the pulsed light emitted from the terahertz light source in the vicinity of the sample, so that the physical property value is reliably measured even when the light receiving area of the sample is small. It becomes possible.
  • a polarization measurement function can be provided, and polarization measurement using the ellipsometry method can be performed. . It is also possible to measure an anisotropic sample.
  • a reference measurement when switching to detect reflected light, a reference measurement is performed by using a so-called ellipsometry method that calculates a physical property value based on the amplitude reflection coefficient ratio and phase difference of s-polarized light and p-polarized light of a sample. Therefore, it is not necessary to execute the measurement every measurement, and the measurement accuracy can be maintained high.
  • the pulsed light is applied to the sample near the Brewster angle of the sample.
  • the incident angle can be adjusted. Therefore, measurement can be performed at an incident angle at which the ratio of the s-polarized light and p-polarized light to the amplitude reflection coefficient is maximized, and the physical property value can be measured with high accuracy.
  • the pulsed light emitted from the terahertz light source incident on the sample is 45-degree linearly polarized light having the same light intensity of s-polarized light and p-polarized light, and the s-polarized light and p of reflected light reflected by the sample.
  • the amplitude reflection coefficient ratio and the phase difference of the polarized light are acquired based on a signal detected when the angle of the polarizer is set to 0 degree or 90 degrees.
  • a slight change in polarization due to the complex dielectric constant of the sample can be detected, and the physical property value can be measured with high accuracy.
  • the rotation angle of the polarizer is fixed at the set angle during the measurement, it is possible to reduce the mechanical error as compared with the conventional measurement method in which the polarizer is continuously rotated.
  • the terahertz light source includes a photoconductive antenna that generates pulsed light in the terahertz frequency region using an optical rectification method. Since the photoconductive antenna is arranged so that the polarization of the generated pulsed light is inclined by 45 degrees, it is possible to increase the utilization efficiency of the pulsed light emitted from the terahertz light source.
  • the incident angle of the pulsed light emitted from the terahertz light source to the sample can be changed by changing the position and angle of the two pairs of mirror groups, so the terahertz light source and the photodetector are fixed.
  • the terahertz light source and the photodetector are fixed.
  • FIG. 2 It is a schematic diagram which shows the mode of the polarization change of the pulsed light in the optical measurement apparatus which concerns on this Embodiment 2.
  • FIG. It is a graph which shows the result of having measured the amplitude reflection coefficient ratio of the p-type Si substrate with the optical measurement apparatus which concerns on this Embodiment 2.
  • FIG. It is a graph which shows the result of having measured the phase difference of the p-type Si substrate with the optical measurement apparatus which concerns on this Embodiment 2.
  • FIG. It is the graph which compared the result of having calculated the complex dielectric constant with the result of theoretical calculation based on the amplitude reflection coefficient ratio and phase difference of the p-type Si substrate which were measured with the optical measurement apparatus which concerns on this Embodiment 2.
  • FIG. It is a graph which shows the example which computed complex electrical conductivity in the optical measurement apparatus which concerns on Embodiment 2 of this invention.
  • the sample is irradiated with pulsed light having a frequency component of 0.1 ⁇ 10 12 to 100 ⁇ 10 12 Hertz and transmitted through the sample, or the sample surface
  • pulsed light having a frequency component of 0.1 ⁇ 10 12 to 100 ⁇ 10 12 Hertz
  • An example of a so-called terahertz light measuring device that calculates a physical property value of a sample and obtains it as a measured value by detecting the intensity and phase difference of the reflected light reflected by the light source will be specifically described based on the drawings. .
  • FIG. 1 and 2 are schematic views showing the configuration of the light measurement apparatus according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic diagram showing the configuration of the light measurement device when measuring transmitted light
  • FIG. 2 is a schematic diagram showing the configuration of the light measurement device when measuring reflected light.
  • the light measurement apparatus splits the pulsed light L1 emitted from the pulsed laser 1 with the beam splitter 2, and supplies the one pulsed light L2 to the condenser lens 3a. Induce.
  • the pulsed light L2 condensed on the terahertz light source element (terahertz light source) 4 by the condenser lens 3a is converted into pulsed light in the terahertz frequency region, and the converted terahertz light L4 is mirrored by the non-axial parabolic mirror 5 Guided to group 10a.
  • the pulse laser 1 for example, a mode-locked femtosecond (fs) unit ultrashort pulse laser is used, and the pulse width is preferably 10 to 150 femtoseconds.
  • the terahertz light source element 4 includes a photoconductive antenna formed on, for example, a low-temperature grown GaAs thin film.
  • FIG. 3 is an exemplary diagram showing a configuration of an antenna module when the terahertz light source element 4 includes a photoconductive antenna.
  • FIG. 3A is a schematic perspective view of the antenna module
  • FIG. 3B is an enlarged view of the vicinity of the antenna gap.
  • An antenna pattern 43 having an antenna gap 42 is formed on the photoconductive antenna substrate 41, and a bias voltage is applied to both ends of the electrodes forming the antenna gap 42 by a bias power supply 44.
  • a transient current flows instantaneously, and 0.1 ⁇ 10 12 to 100 ⁇ due to electric dipole radiation. 10 12 Hz, i.e.
  • terahertz light L4 pulsed light in the terahertz frequency range (terahertz light) L4 is generated.
  • the generated terahertz light L4 is radiated into free space by the silicon hemisphere lens 45 that is in close contact with the back surface of the photoconductive antenna substrate 41.
  • the mirror group 10a includes a plane mirror 11a and a non-axis parabolic mirror (curved mirror) 12a.
  • the plane mirror 11a is mounted on a rotation stage 13a that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13a can linearly move in a direction parallel to the terahertz light L4.
  • a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
  • the non-axial parabolic mirror 12a is connected to a support arm 14a whose center of rotation is the central portion of the sample 6 to be measured.
  • the support arm 14a is attached to the rotation center of the rotation stage 13b that rotates on the same rotation center axis as the rotation stage 13c on which the sample 6 is mounted and the rotation stage 13d to which the support arm 14b described later is attached.
  • the axial parabolic mirror 12a can be rotated and moved with the effective focal length EFL as the rotation radius. That is, the rotary stages 13b, 13c, and 13d are provided on the same rotation center axis in the direction perpendicular to the paper surface of FIGS. 1 and 2, and can rotate independently.
  • the terahertz light L4 is collimated at the center portion of the sample 6, that is, at the rotation center of the non-axial parabolic mirror 12a.
  • the position and tilt angle of the plane mirror 11a are controlled so that the angle formed between the incident light and the reflected light in the non-axis parabolic mirror 12a is always 90 degrees.
  • the rotation stage 13c on which the sample 6 is mounted is rotated so that the terahertz light L4 enters the sample 6 at an incident angle of 0 degree, and the inclination angle of the plane mirror 11a is 45 degrees.
  • the distance between the center portion of the sample 6 and the plane mirror 11a is equal to the effective focal length EFL of the non-axial parabolic mirror 12a.
  • the support arm 14a is controlled so as to be parallel to the direction orthogonal to the sample 6, that is, the terahertz light L4 incident on the plane mirror 11a.
  • the rotation angle of the support arm 14a, the horizontal axis position and tilt angle of the plane mirror 11a, and the rotation angle of the sample 6 are controlled by an actuator (not shown), such as a servo motor or a stepping motor, for controlling the respective operations. (Control mechanism).
  • the rotation stage 13c on which the sample 6 is mounted is rotated 90 degrees from the position at the time of transmitted light measurement so that the terahertz light L4 is incident on the sample 6 with an incident angle. is there.
  • the tilt angle of the plane mirror 11a, the position of the plane mirror 11a in the horizontal axis direction when the central portion of the sample 6 is the rotation center, the tilt angle, and the rotation position of the support arm 14a are determined by the incident light and the reflection at the non-axis parabolic mirror 12a.
  • the angle formed with the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12a is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12a.
  • the FIG. 4 is an explanatory diagram for calculating the relationship between the position in the horizontal axis direction of the plane mirror 11a, the tilt angle, and the rotational position of the support arm 14a.
  • the distance in the horizontal axis direction from the reflection position of the terahertz light L4 on the plane mirror 11a to the center point of the sample 6 is x, and the distance in the vertical axis direction is h.
  • the incident angle of the terahertz light L4 to the sample 6 (inclination angle from the direction orthogonal to the surface of the sample 6) is ⁇ i
  • the inclination angle ⁇ m of the plane mirror 11a is equal to the angle A and the angle A ′ shown in FIG. Diagonal relationship). Since the angle A is (180 ⁇ i) / 2, the inclination angle ⁇ m of the plane mirror 11a can be expressed as (180 ⁇ i) / 2.
  • the distance x in the horizontal axis direction from the reflection position of the terahertz light L4 at the plane mirror 11a to the center point of the sample 6 is the extension direction of the sample 6 from the center point of the sample 6 (the incident direction of the terahertz light L4 to the plane mirror 11a).
  • y can be calculated as EFL / cos (90 ⁇ i) from a right triangle including EFL, and therefore x can be calculated by (Expression 1).
  • the transmitted light that has passed through the sample 6 or the reflected light that has been reflected by the sample 6 is guided to the photodetector 8 by the mirror group 10b that is arranged symmetrically with the sample 6 in between.
  • the mirror group 10b includes a plane mirror 11b and a non-axis parabolic mirror 12b.
  • the plane mirror 11b is mounted on a rotation stage 13e that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13e can linearly move in a direction parallel to the terahertz light L4.
  • a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
  • the non-axial parabolic mirror 12b is connected to a support arm 14b whose center of rotation is the central portion of the sample 6 to be measured.
  • the support arm 14b is attached to the rotary stage 13d, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12b as the rotation radius.
  • the terahertz light L4 collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12b, is transmitted through the sample 6 and guided to the non-axial parabolic mirror 12b.
  • the inclination angle of the plane mirror 11b is 135 (45) degrees symmetrical to the plane mirror 11a, and the distance between the central portion of the sample 6 and the plane mirror 11b is the non-axial parabolic mirror 12b. Is equal to the effective focal length EFL.
  • the support arm 14b is controlled to be parallel to the direction orthogonal to the sample 6, that is, the terahertz light L4 emitted from the plane mirror 11b.
  • the rotation angle of the support arm 14b, the horizontal axis position and the inclination angle of the plane mirror 11b are controlled by an actuator (not shown), such as a servo motor or a stepping motor, which controls the respective operations (control mechanism).
  • the inclination angle of the plane mirror 11b, the position in the horizontal axis direction of the plane mirror 11b when the central portion of the sample 6 is the rotation center, the inclination angle, and the rotation position of the support arm 14b are non-axial.
  • the angle formed by the incident light and the reflected light at the parabolic mirror 12b is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12b is the same as that of the non-axial parabolic mirror 12b. It is controlled to be equal to the effective focal length EFL.
  • the inclination angle of the plane mirror 11b can be expressed by 180 ⁇ (180 ⁇ i) / 2, and the terahertz light L4 from the plane mirror 11b can be expressed.
  • the distance x to the reflection position can also be calculated by (Equation 1) described above with the central portion of the sample 6 as the rotation center.
  • the position and inclination angle of the plane mirror 11b in the horizontal axis direction, and the rotation position of the support arm 14b are symmetric with respect to the plane mirror 11a and the sample 6 by the actuator (not shown) that controls the respective operations. Further, the plane mirror 11b is controlled so that the tilt angle of the plane mirror 11b is symmetric with the plane mirror 11a, and the rotational position of the support arm 14b is symmetric with the support arm 14a.
  • the terahertz light L4 parallel to the terahertz light L4 can be reflected by the plane mirror 11b.
  • the incident angle to the sample 6 is changed, it is not necessary to perform complicated adjustment work such as optical axis alignment of reflected light each time by automatically controlling the operation of the actuator according to the method described above.
  • the reflected light can be easily guided to the photodetector 8.
  • the reflected light reflected by the sample 6 is reflected and guided to the plane mirror 11b so that the angle formed by the incident light and the reflected light in the non-axial parabolic mirror 12b of the mirror group 10b is 90 degrees.
  • the terahertz light L4 guided by the plane mirror 11b to the non-axial parabolic mirror 7 disposed at a position substantially symmetrical to the non-axial parabolic mirror 5 and at least parallel to the terahertz light L4 is detected by the photodetector 8. Is incident on.
  • the pulsed light L3 dispersed by the beam splitter 2 is condensed by the condenser lens 3b via the optical delay line 9, and enters the photodetector 8.
  • the signal according to the electric field strength at the time of the terahertz light L4 reaching the photodetector 8 can be detected.
  • the pulse waveform of the terahertz light L4 can be acquired by delay sweeping the arrival time of the pulsed light L3 reaching the photodetector 8 to the photodetector 8 by the optical delay line 9.
  • the positions and angles of the two pairs of mirror groups 10a and 10b arranged at symmetrical positions with the sample 6 in between are changed in cooperation, thereby providing a terahertz light source element. Since the incident angle of the pulsed light (terahertz light) L4 emitted from 4 to the sample 6 can be changed, either transmitted light or reflected light is detected with the terahertz light source element 4 and the photodetector 8 fixed. It is possible to adjust the incident angle of the pulsed light (terahertz light) L4 to the sample 6 when the reflected light is detected.
  • FIG. 5 is a schematic diagram showing a configuration of a light measurement apparatus according to Embodiment 2 of the present invention.
  • FIG. 5 shows the configuration of the light measurement device at the time of reflected light measurement.
  • the same reference numerals are given to the same configurations as those in the first embodiment, and detailed description thereof is omitted.
  • the light measurement device splits the pulsed light L1 emitted from the pulsed laser 1 with the beam splitter 2, and guides one pulsed light L2 to the condenser lens 3a.
  • the pulsed light L2 collected by the condensing lens 3a is converted into pulsed light of 0.1 ⁇ 10 12 to 100 ⁇ 10 12 hertz, that is, a terahertz frequency region through a terahertz light source element (terahertz light source) 4;
  • the converted terahertz light L4 is guided to the mirror group 10a by the non-axis parabolic mirror 5.
  • the terahertz light L4 is incident on the polarizer 21, and only linearly polarized light L5 that oscillates in a direction inclined by 45 degrees from a plane perpendicular to the incident surface is extracted.
  • the “polarizer” is, for example, a wire grid in which fine metal wires are periodically arranged.
  • the 45-degree linearly polarized light L5 is a vector sum of s-polarized light and p-polarized light having the same electric field amplitude intensity.
  • FIG. 6 is a schematic diagram showing a change in polarization of pulsed light in the light measurement device according to the second embodiment.
  • FIG. 6A is a schematic diagram showing 45-degree linearly polarized light L5 extracted by the polarizer 21.
  • the mirror group 10a is composed of a plane mirror 11a and a non-axis parabolic mirror 12a.
  • the plane mirror 11a is mounted on a rotation stage 13a that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13a can linearly move in a direction parallel to the terahertz light L4.
  • a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
  • the non-axial parabolic mirror 12a is connected to a support arm 14a whose center of rotation is the central portion of the sample 6 to be measured.
  • the support arm 14a is attached to the rotary stage 13b, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12a as the rotation radius.
  • the terahertz light L4 is collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12a.
  • the position and tilt angle of the plane mirror 11a are controlled so that the angle formed between the incident light and the reflected light in the non-axial parabolic mirror 12a is always 90 degrees.
  • the terahertz light L4 since the terahertz light L4 is collimated in the vicinity of the sample 6, it is possible to reliably measure the physical property value even when the light receiving area of the sample 6 is small.
  • the rotation position of the rotation stage 13c on which the sample 6 is mounted is the position at the time of reflected light measurement, that is, the rotation stage on which the sample 6 is mounted so that the 45-degree linearly polarized light L5 is incident on the sample 6 with an incident angle. 13c is rotated 90 degrees from the position at the time of transmitted light measurement.
  • the tilt angle of the plane mirror 11a, the position of the plane mirror 11a in the horizontal axis direction when the central portion of the sample 6 is the rotation center, the tilt angle, and the rotation position of the support arm 14a are determined by the incident light and the reflection at the non-axis parabolic mirror 12a.
  • the angle formed by the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12a is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12a.
  • the inclination angle of the plane mirror 11a can be expressed by (180 ⁇ i) / 2, and the sample is measured from the reflection position of the 45-degree linearly polarized light L5 on the plane mirror 11a.
  • the distance x to the center point 6 can also be calculated by the above-described (Expression 1).
  • FIG. 6B is a schematic diagram showing elliptically polarized light L6.
  • the elliptically polarized light L6 is guided to the mirror group 10b arranged symmetrically with the sample 6 in between.
  • the mirror group 10b includes a plane mirror 11b and a non-axis parabolic mirror 12b.
  • the plane mirror 11b is mounted on a rotation stage 13e that can rotate around a position irradiated with terahertz light, and the rotation stage 13e can linearly move in a direction parallel to the terahertz light L4.
  • a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be linearly moved.
  • the non-axial parabolic mirror 12b is connected to a support arm 14b whose center of rotation is the central portion of the sample 6 to be measured.
  • the support arm 14b is attached to the rotary stage 13d, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12b as the rotation radius.
  • the 45-degree linearly polarized light L5 collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12b, is reflected by the surface of the sample 6 and guided to the non-axial parabolic mirror 12b.
  • the tilt angle of the plane mirror 11b, the position of the plane mirror 11b in the horizontal axis direction when the center portion of the sample 6 is the center of rotation, the tilt angle, and the rotation position of the support arm 14b are determined by incident light and reflection at the non-axis parabolic mirror 12b.
  • the angle formed by the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12b is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12b.
  • the inclination angle of the plane mirror 11b can be expressed by 180 ⁇ (180 ⁇ i) / 2, and the elliptically polarized light L6 at the plane mirror 11b
  • the distance x to the reflection position can also be calculated by (Equation 1) described above with the central portion of the sample 6 as the rotation center.
  • the position and inclination angle of the plane mirror 11b in the horizontal axis direction, and the rotation position of the support arm 14b are symmetric with respect to the plane mirror 11a and the sample 6 by the actuator (not shown) that controls the respective operations. Further, the plane mirror 11b is controlled so that the tilt angle of the plane mirror 11b is symmetric with the plane mirror 11a, and the rotational position of the support arm 14b is symmetric with the support arm 14a.
  • the terahertz light L4 parallel to the terahertz light L4 can be reflected by the plane mirror 11b.
  • the incident angle to the sample 6 is changed, it is not necessary to perform complicated adjustment work such as optical axis alignment of reflected light each time by automatically controlling the operation of the actuator according to the method described above.
  • the reflected light can be easily guided to the photodetector 8.
  • the reflected light reflected by the sample 6 is reflected and guided to the plane mirror 11b so that the angle formed by the incident light and the reflected light in the non-axial parabolic mirror 12b of the mirror group 10b is 90 degrees.
  • the elliptically polarized light L6 reflected by the plane mirror 11b is guided to the non-axial parabolic mirror 7 disposed at a position symmetrical to the non-axial parabolic mirror 5 via the polarizer 22 and the polarizer 23. .
  • the elliptically polarized light L6 is extracted as linearly polarized light L7 separated by the polarizer 22 into an s-polarized component and a p-polarized component. That is, by setting the angle of the polarizer 22 to 0 degree or 90 degrees, only s-polarized light or p-polarized light is extracted.
  • FIG. 6C is a schematic diagram showing s-polarized light or p-polarized linearly polarized light L7. In FIG.6 (c), the arrow has shown the oscillating direction of the electric field vector, and has shown s polarized light or p polarized light.
  • the linearly polarized light L7 is incident on the photodetector 8 through the polarizer 23.
  • the polarizer 23 is set at an angle of ⁇ 45 degrees with respect to a plane perpendicular to the incident plane, whereby both the s-polarized component and the p-polarized component can be detected by the photodetector 8.
  • the linearly polarized light L7 is reflected by the non-axial parabolic mirror 7 and enters the photodetector 8.
  • the pulsed light L3 dispersed by the beam splitter 2 is also condensed by the condenser lens 3b via the optical delay line 9 and is incident on the photodetector 8.
  • the pulse waveform of the terahertz light L4 can be acquired by delay sweeping the arrival time of the pulsed light L3 to the photodetector 8 by the optical delay line 9.
  • the time waveforms of s-polarized light and p-polarized light are acquired by attaching the polarizer 22 to the rotary stage and switching the rotation angle to 0 degree or 90 degrees. That is, when the acquisition of the time waveform of s-polarized light or p-polarized light is completed, the rotation angle of the polarizer 22 is switched to acquire the time waveform of s-polarized light or p-polarized light.
  • the complex reflection coefficients r s and r p of s-polarized light and p-polarized light can be obtained by performing Fourier transform on the acquired time waveform, the order of s-polarized light and p-polarized light that can be measured by the ellipsometry method.
  • the ratio ⁇ of the complex reflection coefficients r s and r p in the complex plane can be defined as shown in (Equation 2).
  • Equation 2 the absolute value of the phase [delta] p and the amplitude reflection coefficient of the s-polarized light of the phase [delta] s, p-polarized light
  • the complex permittivity ⁇ cn of the sample 6 is obtained.
  • FIG. 7 is a graph showing the result of measuring the amplitude reflection coefficient ratio tan ⁇ of a p-type Si substrate having a resistivity of 1.1 to 1.4 ⁇ ⁇ cm as the sample 6 in the optical measurement device according to the second embodiment.
  • FIG. 8 shows the result of measuring the phase difference ⁇ of a p-type Si substrate having a resistivity of 1.1 to 1.4 ⁇ ⁇ cm as the sample 6 by the light measurement apparatus according to the second embodiment. It is a graph.
  • the complex permittivity ⁇ cn of Si is (12 ⁇ i ⁇ 0.5)
  • the Brewster angle is approximately 73 degrees. Therefore, when the measurement in FIGS. 7 and 8 is performed, the terahertz light L4 is incident on the sample 6.
  • the positions and rotation angles of the mirror groups 10a and 10b were adjusted so that the angle was 70 degrees.
  • the incident angle of the terahertz light L4 on the sample 6 is adjusted in the vicinity of the Brewster angle of the sample 6 because the complex reflection coefficients r s and r p of the s-polarized light and the p-polarized light of the sample 6 are adjusted in the vicinity of the Brewster angle. Because the ratio ⁇ is maximized, the complex permittivity ⁇ cn of the sample 6 can be obtained with high accuracy based on (Equation 5).
  • the incident angle to the sample 6 can be adjusted by changing the position and the rotation angle of the mirror groups 10a and 10b, so that the terahertz light source element 4 and The photodetector 8 can be fixed, and complicated adjustment work such as optical axis alignment becomes unnecessary when changing the incident angle. Therefore, even when the sample 6 is frequently replaced, a troublesome operation does not occur for the measurer, and the measurement result can be acquired in a relatively short time.
  • the amplitude reflection coefficient ratio tan ⁇ and the phase difference ⁇ of the p-type Si substrate are changed according to the frequency in the terahertz band. It can be seen that the changing state is clearly measured.
  • FIG. 9 shows the result of calculating the complex permittivity ⁇ cn based on the amplitude reflection coefficient ratio tan ⁇ and the phase difference ⁇ of the p-type Si substrate measured by the optical measurement apparatus according to the second embodiment and the theoretical calculation described later. It is the graph which compared the result.
  • the real part ⁇ ′ and the imaginary part ⁇ ′′ when the complex dielectric constant ⁇ cn is expressed as ⁇ cn ⁇ ′ ⁇ i ⁇ ′′ are calculated as a function of frequency.
  • the real part 91 calculated based on (Expression 5) indicated by ⁇ is substantially coincident with the real part 92 (solid line) obtained as a result of theoretical calculation based on the Drude model described later.
  • the imaginary part 93 obtained by calculation based on (Equation 5) indicated by a circle is substantially coincident with the imaginary part 94 (solid line) obtained by theoretical calculation based on the Drude model described later. It is clear that the tendency that the value of the imaginary part ⁇ ′′ increases in the region can be measured with high accuracy.
  • ⁇ cn ( ⁇ ) represents the complex electrical conductivity, and can be represented by the sum of the real part ⁇ ′ ( ⁇ ) and the imaginary part ⁇ ′′ ( ⁇ ).
  • Complex dielectric obtained by (Expression 5)
  • the following equation (7) is obtained.
  • the complex permittivity in vacuum is ⁇ 0
  • the complex permittivity in the high frequency limit is ⁇ ( ⁇ ).
  • the resistivity ⁇ can be obtained as the reciprocal of the real part ⁇ ′ ( ⁇ ) of the complex electrical conductivity ⁇ cn ( ⁇ ).
  • FIG. 10 is a graph showing an example in which the complex electrical conductivity ⁇ cn ( ⁇ ) is calculated by the optical measurement device according to the second embodiment of the present invention. As the sample 6, the p-type Si substrate described above is used.
  • mark real sigma 'the (omega) of the complex electrical conductivity ⁇ cn ( ⁇ ), ⁇ mark imaginary part of the complex electrical conductivity ⁇ cn ( ⁇ ) ⁇ "the (omega), respectively
  • the complex electric conductivity ⁇ cn ( ⁇ ) since the carrier cannot follow the speed of the electric field change as the frequency becomes higher, the complex electric conductivity ⁇ cn ( ⁇ )
  • the resistivity ⁇ calculated as the reciprocal of the real part ⁇ ′ ( ⁇ ) of the complex electrical conductivity ⁇ cn ( ⁇ ) is low-frequency side (near ⁇ is 0). 1.0 to 1.1 ⁇ ⁇ cm, which is substantially equal to the resistivity ⁇ of the p-type Si substrate used.
  • the carrier concentration N, the carrier scattering time ⁇ , and the mobility ⁇ can be calculated based on the complex dielectric constant ⁇ cn calculated by (Equation 5).
  • the complex permittivity ⁇ cn is expressed as (Equation 8).
  • the complex permittivity in vacuum is ⁇ 0
  • the complex permittivity in the high frequency limit is ⁇ ( ⁇ ).
  • the plasma frequency ⁇ p can be expressed by (Equation 9) where N is the carrier concentration, m * is the effective mass, and e is the charge amount of electrons.
  • the carrier concentration N can be obtained.
  • the real part 92 and the imaginary part 94 (solid line) of the complex permittivity ⁇ cn in FIG. 9 indicate the real part ⁇ ′ and the imaginary part ⁇ ′′ derived by the fitting process using the above-described method.
  • the carrier concentration N is 1.3 ⁇ 10 16 cm ⁇ 3 and the carrier scattering time ⁇ is 1 ⁇ 10 ⁇ 13 sec.
  • the mobility ⁇ can be calculated from (Equation 14) based on the carrier scattering time ⁇ .
  • the mobility ⁇ can be a value of 436 cm 2 V ⁇ 1 sec ⁇ 1 . It was confirmed that the physical property values of the above-described p-type Si substrate were generally consistent with general values obtained by a conventional semiconductor physical property measurement method such as hole measurement.
  • the incident angle of the pulsed light emitted from the terahertz light source element 4 to the sample 6 is changed by changing the positions and angles of the two pairs of mirror groups 10a and 10b. Therefore, the incident angle when detecting reflected light can be freely adjusted. Therefore, it is not necessary to change the relative positions of the terahertz light source element 4 and the light detector 8 according to the sample 6, the reflected light can be detected by the single light detector 8, and the incident angle to the sample 6 is changed. Each time, it is not necessary to perform complicated adjustment work such as optical axis alignment.
  • the pulsed light emitted from the terahertz light source element 4 incident on the sample 6 is 45-degree linearly polarized light having the same intensity of s-polarized light and p-polarized light, and the s-polarized light and p of the reflected light reflected by the sample.
  • the amplitude reflection coefficient ratio tan ⁇ and the phase difference ⁇ of the polarized light are obtained based on a signal detected when the angle of the polarizer is set to 0 degree or 90 degrees.
  • a slight change in polarization that changes depending on the complex dielectric constant of the sample 6 can be detected, and measurement can be performed with high accuracy.
  • the rotation angle of the polarizer is fixed at the set angle during the measurement, it is possible to reduce the mechanical error as compared with the conventional measurement method in which the polarizer is continuously rotated.
  • Embodiments 1 and 2 described above can be modified without departing from the spirit of the present invention.
  • the configuration of the mirror groups 10a and 10b is particularly limited as long as the mirror groups 10a and 10b are arranged at symmetrical positions with the sample 6 interposed therebetween, have at least one curved mirror, and can be accommodated in a housing. Is not to be done.
  • SYMBOLS 1 Pulse laser 2 Beam splitter 3a Condensing lens 4 Terahertz light source element (terahertz light source) 6 Sample 5, 7 Non-axis parabolic mirror 8 Optical detector 9 Optical delay line 10a, 10b Mirror group 11a, 11b Plane mirror 12a, 12b Non-axis parabolic mirror (curved mirror) 13a, 13b, 13c, 13d, 13e Rotating stage 14a, 14b Support arm

Abstract

Provided is an optical measuring instrument capable of switching between transmitted light detection and reflected light detection, with a simple configuration, and capable of accurately measuring a physical property by changing the incident angle of terahertz light made incident according to the type of a sample, and also provided is an optical measurement method. The optical measuring instrument comprises: a terahertz light source (4) that emits a pulse light in the terahertz frequency region; a light detector (8) for detecting the pulse light; and two pairs of mirror groups (10a, 10b) used for guiding the pulse light emitted from the terahertz light source (4) to a sample (6) to be measured and for guiding transmitted light transmitted through the sample (6) or reflected light reflected on the sample (6) to the light detector (8), including at least two mirrors or more, and disposed at positions symmetrical about the sample (6). The incident angle of the pulse light emitted from terahertz light source (4) with respect to the sample (6) is changed by changing the positions and angles of the two pairs of mirror groups (10a, 10b).

Description

光測定装置及び光測定方法Optical measuring device and optical measuring method
 本発明は、テラヘルツ周波数領域のパルス光を用いて、誘電体、半導体、磁性体等の誘電率、吸収係数、電気伝導度等の物性値を非接触で測定する光測定装置及び光測定方法に関する。 The present invention relates to a light measurement apparatus and a light measurement method for measuring physical properties such as dielectric constant, absorption coefficient, electrical conductivity, etc. of dielectric materials, semiconductors, magnetic materials, etc. in a non-contact manner using pulsed light in the terahertz frequency region. .
 従来の光測定装置、特にテラヘルツ周波数領域のパルス光を用いた光測定装置では、0.1×1012~100×1012ヘルツの周波数成分を有するパルス光を試料に照射し、試料を透過した透過光、又は試料表面で反射した反射光の強度及び位相差を検出することにより、試料の物性値を算出する。例えば特許文献1には、透過光の強度及び位相差を検出する装置と反射光の強度及び位相差を検出する装置とを、それぞれ独立した装置として構成してある測定装置が開示されている。 In a conventional optical measurement device, particularly an optical measurement device using pulsed light in the terahertz frequency region, the sample is irradiated with pulsed light having a frequency component of 0.1 × 10 12 to 100 × 10 12 hertz and transmitted through the sample. The physical property value of the sample is calculated by detecting the intensity and phase difference of the transmitted light or the reflected light reflected from the sample surface. For example, Patent Document 1 discloses a measuring device in which a device that detects the intensity and phase difference of transmitted light and a device that detects the intensity and phase difference of reflected light are configured as independent devices.
 テラヘルツ光を透過する試料であっても、吸収係数が大きい試料の場合には十分な強度を有する透過光を得ることができない。また、導電性膜上に形成された薄膜が試料である場合等にはテラヘルツ光が透過しないことから、反射光の強度及び位相差を検出する装置へ切り替える必要がある。そこで、特許文献2では、透過光検出部と反射光検出部とを備え、試料に応じてワイヤーグリッドを切り替えることにより、1台の測定装置で透過光及び反射光の両方を検出することができるテラヘルツ光測定装置が開示されている。 Even in the case of a sample that transmits terahertz light, transmitted light having sufficient intensity cannot be obtained in the case of a sample having a large absorption coefficient. In addition, when the thin film formed on the conductive film is a sample or the like, the terahertz light does not pass through, so it is necessary to switch to an apparatus that detects the intensity and phase difference of the reflected light. Therefore, in Patent Document 2, it is possible to detect both transmitted light and reflected light with a single measuring device by providing a transmitted light detection unit and a reflected light detection unit and switching the wire grid according to the sample. A terahertz light measuring device is disclosed.
 反射測定の場合は、リファレンスの反射面と試料との相対反射率比及び位相差を正確に測定する必要がある。しかし、リファレンスの反射面と試料との位置を切り替える場合に生じる機械的誤差等により、特に位相差を正確に測定することが困難であるという問題点があった。斯かる問題点を解決するべく、例えば特許文献3には、テラヘルツ領域における試料の複素光学定数スペクトルをリファレンス測定することなく導出することが可能な偏光解析装置が開示されている。特許文献3では、試料の複素誘電率によってs偏光及びp偏光の反射率及び位相が異なるという性質を利用し、入射光に対する反射光の偏光変化に基づいて物性値を算出するエリプソメトリ法を採用している。 In the case of reflection measurement, it is necessary to accurately measure the relative reflectance ratio and phase difference between the reference reflecting surface and the sample. However, there is a problem that it is particularly difficult to accurately measure the phase difference due to a mechanical error or the like that occurs when the position of the reference reflecting surface and the sample is switched. In order to solve such a problem, for example, Patent Document 3 discloses an ellipsometer capable of deriving a complex optical constant spectrum of a sample in the terahertz region without performing a reference measurement. Patent Document 3 employs an ellipsometry method that uses the property that the reflectance and phase of s-polarized light and p-polarized light differ depending on the complex dielectric constant of the sample, and calculates the physical property value based on the polarization change of the reflected light with respect to the incident light. is doing.
特開2002-277393号公報JP 2002-277393 A 特開2005-227021号公報Japanese Patent Laying-Open No. 2005-227021 特開2003-014620号公報JP 2003-014620 A
 測定試料に応じて透過測定と反射測定との切り替えを行う場合、特許文献2に開示されているテラヘルツ光測定装置では、透過光検出部と反射光検出部とを別個に備える必要がある。これらの光検出部はいずれも高価であることから、測定装置全体としてコストダウンが困難であるという問題点があった。 When switching between transmission measurement and reflection measurement according to a measurement sample, the terahertz light measurement device disclosed in Patent Document 2 needs to include a transmitted light detection unit and a reflected light detection unit separately. Since all of these light detection units are expensive, there is a problem that it is difficult to reduce the cost of the entire measuring apparatus.
 また、特許文献3に開示されている偏光解析装置において、本来はエリプソメトリ法の原理に基づき、試料へ入射させるテラヘルツ光の入射角は、s偏光とp偏光との振幅反射係数比が最大となるブリュースター角近傍に設定する必要がある。ブリュースター角は試料の複素誘電率に依存して変化するため、エリプソメトリ法を採用する場合には、試料への入射角を可変とすることが望ましい。しかし、特許文献3の光学系配置では、テラヘルツ光源と光検出部との物理的配置によって入射角が固定されてしまうことから、試料によっては試料へ入射させるテラヘルツ光の入射角がブリュースター角とかけ離れ、測定した物性値の信頼性が低くなるという問題点があった。 In addition, in the ellipsometer disclosed in Patent Document 3, the incident angle of the terahertz light incident on the sample is originally based on the principle of the ellipsometry method, and the ratio of the amplitude reflection coefficient between the s-polarized light and the p-polarized light is the maximum. It is necessary to set near the Brewster angle. Since the Brewster angle changes depending on the complex dielectric constant of the sample, it is desirable to make the incident angle to the sample variable when employing the ellipsometry method. However, in the optical system arrangement of Patent Document 3, since the incident angle is fixed by the physical arrangement of the terahertz light source and the light detection unit, depending on the sample, the incident angle of the terahertz light incident on the sample is the Brewster angle. There is a problem that the reliability of the measured physical property value is low.
 本発明は斯かる事情に鑑みてなされたものであり、簡便な構成で透過光検出と反射光検出とを切り替えることができ、測定試料の種類に応じて入射させるテラヘルツ光の入射角を変更することで精度良く物性値を測定することができる光測定装置及び光測定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and can switch between transmitted light detection and reflected light detection with a simple configuration, and changes the incident angle of the terahertz light incident according to the type of measurement sample. An object of the present invention is to provide a light measuring device and a light measuring method capable of measuring a physical property value with high accuracy.
 上記目的を達成するために第1発明に係る光測定装置は、テラヘルツ周波数領域のパルス光を発するテラヘルツ光源と、該パルス光を検出する光検出器と、前記テラヘルツ光源から発したパルス光を測定対象である試料へ誘導し、該試料を透過した透過光又は前記試料で反射した反射光を前記光検出器へ誘導する、少なくとも二以上のミラーで構成された、前記試料を挟んで対称な位置に配置してある二対のミラー群と、二対の該ミラー群の位置及び角度を変更することにより、前記テラヘルツ光源から発したパルス光の前記試料への入射角を変更するよう動作を制御する制御機構とを備えることを特徴とする。 In order to achieve the above object, an optical measurement apparatus according to a first invention measures a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects the pulsed light, and pulsed light emitted from the terahertz light source. A symmetric position across the sample, which is composed of at least two or more mirrors for guiding the transmitted light transmitted through the sample or the reflected light reflected by the sample to the photodetector. The operation is controlled so as to change the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirrors arranged in the mirror and the two pairs of mirrors. And a control mechanism.
 また、第2発明に係る光測定装置は、第1発明において、前記制御機構は、前記試料の中央部分を回転中心とした支持アームにより二対の前記ミラー群の位置及び角度を変更するようにしてあることを特徴とする。 In the light measurement device according to a second aspect of the present invention, in the first aspect, the control mechanism is configured to change the position and angle of the two pairs of mirrors by a support arm having a center portion of the sample as a rotation center. It is characterized by being.
 また、第3発明に係る光測定装置は、第1又は第2発明において、前記制御機構は、二対の前記ミラー群の位置及び角度を変更することにより、前記光検出器が、透過光を検出するか、反射光を検出するかを切り替えるようにしてあることを特徴とする。 In the light measurement device according to a third aspect of the present invention, in the first or second aspect of the invention, the control mechanism changes the position and angle of the two pairs of mirror groups so that the light detector transmits the transmitted light. It is characterized by switching between detection and detection of reflected light.
 また、第4発明に係る光測定装置は、第1乃至第3発明のいずれか1つにおいて、前記ミラー群は曲面鏡を少なくとも一含み、前記試料近傍にて前記テラヘルツ光源から発したパルス光をコリメートするようにしてあることを特徴とする。 The optical measurement device according to a fourth aspect of the present invention is the optical measurement device according to any one of the first to third aspects, wherein the mirror group includes at least one curved mirror, and the pulsed light emitted from the terahertz light source in the vicinity of the sample. It is characterized by being collimated.
 また、第5発明に係る光測定装置は、第3又は第4発明において、前記テラヘルツ光源から発したパルス光が伝播する光路上に偏光子を備えることを特徴とする。 Further, the light measurement device according to the fifth invention is characterized in that, in the third or fourth invention, a polarizer is provided on an optical path through which the pulsed light emitted from the terahertz light source propagates.
 また、第6発明に係る光測定装置は、第5発明において、前記制御機構により前記反射光を検出するよう切り替えた場合、前記試料のs偏光及びp偏光の振幅反射係数比及び位相差に基づいて物性値を算出することを特徴とする。 The light measurement device according to the sixth invention is based on the amplitude reflection coefficient ratio and phase difference of the s-polarized light and the p-polarized light of the sample when the control mechanism is switched to detect the reflected light in the fifth invention. And calculating a physical property value.
 また、第7発明に係る光測定装置は、第6発明において、前記制御機構は、前記テラヘルツ光源から発したパルス光の前記試料への入射角が、前記試料のブリュースター角と略一致するよう動作を制御することを特徴とする。 In the optical measurement device according to a seventh aspect based on the sixth aspect, the control mechanism is configured such that the incident angle of the pulsed light emitted from the terahertz light source to the sample substantially coincides with the Brewster angle of the sample. The operation is controlled.
 また、第8発明に係る光測定装置は、第6又は第7発明において、前記試料に入射される、前記テラヘルツ光源から発したパルス光は、s偏光及びp偏光の光強度が同等である45度直線偏光であり、前記試料で反射した反射光のs偏光及びp偏光の振幅反射係数比及び位相差を、前記偏光子の角度を0度又は90度に設定した場合に検出される信号に基づいて取得するようにしてあることを特徴とする。 In the light measurement apparatus according to the eighth invention, in the sixth or seventh invention, the pulse light emitted from the terahertz light source incident on the sample has the same light intensity of s-polarized light and p-polarized light. The amplitude detection coefficient ratio and the phase difference between the s-polarized light and the p-polarized light reflected by the sample are linearly polarized light, and the signal detected when the angle of the polarizer is set to 0 degree or 90 degrees. It is characterized by acquiring based on.
 また、第9発明に係る光測定装置は、第6乃至第8発明のいずれか1つにおいて、前記テラヘルツ光源は、光整流法を用いてテラヘルツ周波数領域のパルス光を発生する光導電性アンテナを備え、該光導電性アンテナは、発生するパルス光の偏光が45度傾斜するように配置されていることを特徴とする。 According to a ninth aspect of the present invention, in any one of the sixth to eighth aspects, the terahertz light source is a photoconductive antenna that generates pulsed light in the terahertz frequency region using an optical rectification method. The photoconductive antenna is arranged so that the polarization of the generated pulsed light is inclined by 45 degrees.
 次に、上記目的を達成するために第10発明に係る光測定方法は、テラヘルツ周波数領域のパルス光を発するテラヘルツ光源と、該パルス光を検出する光検出器と、前記テラヘルツ光源から発したパルス光を測定対象である試料へ誘導し、該試料を透過した透過光又は前記試料で反射した反射光を前記光検出器へ誘導する、少なくとも二以上のミラーで構成された、前記試料を挟んで対称な位置に配置してある二対のミラー群とを備え、二対の該ミラー群の位置及び角度を変更することにより、前記テラヘルツ光源から発したパルス光の前記試料への入射角を変更するよう動作を制御することを特徴とする。 Next, in order to achieve the above object, an optical measurement method according to a tenth aspect of the present invention includes a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects the pulsed light, and pulses emitted from the terahertz light source. The light is guided to the sample to be measured, and the transmitted light transmitted through the sample or the reflected light reflected by the sample is guided to the photodetector. The sample is composed of at least two or more mirrors. Two pairs of mirror groups arranged at symmetrical positions, and changing the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirror groups The operation is controlled so that
 また、第11発明に係る光測定方法は、第10発明において、前記試料の中央部分を回転中心とした支持アームにより二対の前記ミラー群の位置及び角度を変更することを特徴とする。 Further, the light measurement method according to the eleventh invention is characterized in that, in the tenth invention, the positions and angles of the two pairs of mirror groups are changed by a support arm having a central portion of the sample as a rotation center.
 また、第12発明に係る光測定方法は、第10又は第11発明において、二対の前記ミラー群の位置及び角度を変更することにより、前記光検出器が、透過光を検出するか、反射光を検出するかを切り替えることを特徴とする。 The light measurement method according to a twelfth aspect of the present invention is the light measurement method according to the tenth or eleventh aspect, wherein the light detector detects transmitted light or reflects light by changing the position and angle of the two pairs of mirror groups. It is characterized by switching whether to detect light.
 第1発明及び第10発明では、テラヘルツ周波数領域のパルス光を発するテラヘルツ光源と、パルス光を検出する光検出器と、該テラヘルツ光源から発したパルス光を測定対象である試料へ誘導し、試料を透過した透過光又は試料で反射した反射光を光検出器へ誘導する、少なくとも二以上のミラーで構成された、試料を挟んで対称な位置に配置してある二対のミラー群とを備えている。二対のミラー群の位置及び角度を変更することにより、テラヘルツ光源から発したパルス光の試料への入射角を変更することができるので、テラヘルツ光源及び光検出器を固定した状態で透過光/反射光のいずれを検出するかを切り替えること、及び反射光検出時の入射角を調整することができる。したがって、試料に応じてテラヘルツ光源及び光検出器の相対位置を変更する必要がなく、一の光検出器で透過光及び反射光を検出することが可能となる。また、試料への入射角を変更する都度、光軸合わせ等の煩雑な作業を行う必要がない。 In the first invention and the tenth invention, a terahertz light source that emits pulsed light in the terahertz frequency region, a photodetector that detects pulsed light, and the pulsed light emitted from the terahertz light source is guided to the sample to be measured, and the sample And two pairs of mirrors arranged at symmetrical positions with the sample interposed therebetween, which guides the transmitted light that has passed through or reflected light reflected by the sample to the photodetector. ing. The incident angle of the pulsed light emitted from the terahertz light source to the sample can be changed by changing the position and angle of the two pairs of mirror groups. It is possible to switch which of the reflected light is detected and to adjust the incident angle when the reflected light is detected. Therefore, it is not necessary to change the relative positions of the terahertz light source and the photodetector according to the sample, and it is possible to detect transmitted light and reflected light with one photodetector. Further, it is not necessary to perform complicated operations such as optical axis alignment every time the incident angle to the sample is changed.
 第2発明及び第11発明では、試料の中央部分を回転中心とした支持アームにより二対のミラー群の位置及び角度を変更するので、試料に応じてテラヘルツ光源及び光検出器の相対位置を変更する必要がなく、一の光検出器で透過光及び反射光を検出することが可能となる。また、試料への入射角を変更する都度、光軸合わせ等の煩雑な作業を行う必要がなく、光検出器へパルス光を確実に誘導することができる。 In the second invention and the eleventh invention, the position and angle of the two pairs of mirrors are changed by the support arm having the center portion of the sample as the center of rotation, so the relative positions of the terahertz light source and the photodetector are changed according to the sample. Therefore, it is possible to detect transmitted light and reflected light with a single photodetector. Further, each time the incident angle to the sample is changed, it is not necessary to perform complicated operations such as optical axis alignment, and pulse light can be reliably guided to the photodetector.
 第3発明及び第12発明では、二対のミラー群の位置及び角度を変更することにより、光検出器が、透過光を検出するか、反射光を検出するかを切り替えるので、一の光検出器で透過光及び反射光を検出することができ、光測定装置全体の構造の簡素化、コストダウンを図ることが可能となる。 In the third and twelfth inventions, by changing the position and angle of the two pairs of mirror groups, the photodetector switches between detecting transmitted light and reflected light. The transmitted light and the reflected light can be detected by the instrument, so that the structure of the entire optical measuring device can be simplified and the cost can be reduced.
 第4発明では、ミラー群は曲面鏡を少なくとも一含み、試料近傍にてテラヘルツ光源から発したパルス光をコリメートするので、試料の受光可能面積が小さい場合であっても確実に物性値を測定することが可能となる。 In the fourth invention, the mirror group includes at least one curved mirror, and collimates the pulsed light emitted from the terahertz light source in the vicinity of the sample, so that the physical property value is reliably measured even when the light receiving area of the sample is small. It becomes possible.
 第5発明では、テラヘルツ光源から発したパルス光が伝播する光路上に偏光子を備えることにより、偏光測定機能を付与することができ、エリプソメトリ法を用いた偏光測定を行うことが可能となる。また、異方性を有する試料についても測定することが可能となる。 In the fifth invention, by providing a polarizer on the optical path through which the pulsed light emitted from the terahertz light source propagates, a polarization measurement function can be provided, and polarization measurement using the ellipsometry method can be performed. . It is also possible to measure an anisotropic sample.
 第6発明では、反射光を検出するよう切り替えた場合、試料のs偏光及びp偏光の振幅反射係数比及び位相差に基づいて物性値を算出する、いわゆるエリプソメトリ法を用いることにより、リファレンス測定を測定の都度実行する必要がなく、測定精度を高く維持することが可能となる。 In the sixth invention, when switching to detect reflected light, a reference measurement is performed by using a so-called ellipsometry method that calculates a physical property value based on the amplitude reflection coefficient ratio and phase difference of s-polarized light and p-polarized light of a sample. Therefore, it is not necessary to execute the measurement every measurement, and the measurement accuracy can be maintained high.
 第7発明では、テラヘルツ光源から発したパルス光の試料への入射角が、試料のブリュースター角と略一致するよう動作を制御することにより、試料のブリュースター角近傍にパルス光の試料への入射角を調整することができる。したがって、試料のs偏光及びp偏光の振幅反射係数比が最大となる入射角で測定することができ、高い精度で物性値を測定することが可能となる。 In the seventh invention, by controlling the operation so that the incident angle of the pulsed light emitted from the terahertz light source substantially coincides with the Brewster angle of the sample, the pulsed light is applied to the sample near the Brewster angle of the sample. The incident angle can be adjusted. Therefore, measurement can be performed at an incident angle at which the ratio of the s-polarized light and p-polarized light to the amplitude reflection coefficient is maximized, and the physical property value can be measured with high accuracy.
 第8発明では、試料に入射される、テラヘルツ光源から発したパルス光は、s偏光及びp偏光の光強度が同等である45度直線偏光であり、試料で反射した反射光のs偏光及びp偏光の振幅反射係数比及び位相差を、偏光子の角度を0度又は90度に設定した場合に検出される信号に基づいて取得する。これにより、試料の複素誘電率によるわずかな偏光変化を検出することができ、高い精度で物性値を測定することが可能となる。また、測定中は偏光子の回転角は設定角度で固定されているので、偏光子を連続的に回転させる従来の測定方法と比較して機械的誤差の低減を図ることも可能となる。 In the eighth invention, the pulsed light emitted from the terahertz light source incident on the sample is 45-degree linearly polarized light having the same light intensity of s-polarized light and p-polarized light, and the s-polarized light and p of reflected light reflected by the sample. The amplitude reflection coefficient ratio and the phase difference of the polarized light are acquired based on a signal detected when the angle of the polarizer is set to 0 degree or 90 degrees. As a result, a slight change in polarization due to the complex dielectric constant of the sample can be detected, and the physical property value can be measured with high accuracy. Further, since the rotation angle of the polarizer is fixed at the set angle during the measurement, it is possible to reduce the mechanical error as compared with the conventional measurement method in which the polarizer is continuously rotated.
 第9発明では、テラヘルツ光源は、光整流法を用いてテラヘルツ周波数領域のパルス光を発生する光導電性アンテナを備えている。光導電性アンテナは、発生するパルス光の偏光が45度傾斜するように配置されていることから、テラヘルツ光源から発したパルス光の利用効率を高めることが可能となる。 In the ninth invention, the terahertz light source includes a photoconductive antenna that generates pulsed light in the terahertz frequency region using an optical rectification method. Since the photoconductive antenna is arranged so that the polarization of the generated pulsed light is inclined by 45 degrees, it is possible to increase the utilization efficiency of the pulsed light emitted from the terahertz light source.
 上記構成によれば、二対のミラー群の位置及び角度を変更することにより、テラヘルツ光源から発したパルス光の試料への入射角を変更することができるので、テラヘルツ光源及び光検出器を固定した状態で透過光/反射光のいずれを検出するかを切り替えること、及び反射光検出時の入射角を調整することができる。したがって、試料に応じてテラヘルツ光源及び光検出器の相対位置を変更する必要がなく、一の光検出器で透過光及び反射光を検出することが可能となる。また、試料への入射角を変更する都度、光軸合わせ等の煩雑な作業を行う必要がない。 According to the above configuration, the incident angle of the pulsed light emitted from the terahertz light source to the sample can be changed by changing the position and angle of the two pairs of mirror groups, so the terahertz light source and the photodetector are fixed. In this state, it is possible to switch between detection of transmitted light / reflected light and to adjust the incident angle when detecting reflected light. Therefore, it is not necessary to change the relative positions of the terahertz light source and the photodetector according to the sample, and it is possible to detect transmitted light and reflected light with one photodetector. Further, it is not necessary to perform complicated operations such as optical axis alignment every time the incident angle to the sample is changed.
本発明の実施の形態1に係る光測定装置の透過光測定時の構成を示す模式図である。It is a schematic diagram which shows the structure at the time of the transmitted light measurement of the optical measurement apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る光測定装置の反射光測定時の構成を示す模式図である。It is a schematic diagram which shows the structure at the time of the reflected light measurement of the optical measurement apparatus which concerns on Embodiment 1 of this invention. テラヘルツ光源素子4が光導電性アンテナを備える場合のアンテナモジュールの構成を示す例示図である。It is an illustration figure which shows the structure of an antenna module in case the terahertz light source element 4 is provided with a photoconductive antenna. 平面鏡の横軸方向の位置、傾斜角度及び支持アームの回転位置の関係を算出するための説明図である。It is explanatory drawing for calculating the relationship of the position of the horizontal axis direction of a plane mirror, an inclination angle, and the rotation position of a support arm. 本発明の実施の形態2に係る光測定装置の反射光測定時の構成を示す模式図である。It is a schematic diagram which shows the structure at the time of the reflected light measurement of the optical measurement apparatus which concerns on Embodiment 2 of this invention. 本実施の形態2に係る光測定装置でのパルス光の偏光変化の様子を示す模式図である。It is a schematic diagram which shows the mode of the polarization change of the pulsed light in the optical measurement apparatus which concerns on this Embodiment 2. FIG. 本実施の形態2に係る光測定装置にてp型Si基板の振幅反射係数比を測定した結果を示すグラフである。It is a graph which shows the result of having measured the amplitude reflection coefficient ratio of the p-type Si substrate with the optical measurement apparatus which concerns on this Embodiment 2. FIG. 本実施の形態2に係る光測定装置にてp型Si基板の位相差を測定した結果を示すグラフである。It is a graph which shows the result of having measured the phase difference of the p-type Si substrate with the optical measurement apparatus which concerns on this Embodiment 2. FIG. 本実施の形態2に係る光測定装置で測定したp型Si基板の振幅反射係数比及び位相差に基づいて、複素誘電率を算出した結果と理論計算の結果とを比較したグラフである。It is the graph which compared the result of having calculated the complex dielectric constant with the result of theoretical calculation based on the amplitude reflection coefficient ratio and phase difference of the p-type Si substrate which were measured with the optical measurement apparatus which concerns on this Embodiment 2. FIG. 本発明の実施の形態2に係る光測定装置にて複素電気伝導率を算出した例を示すグラフである。It is a graph which shows the example which computed complex electrical conductivity in the optical measurement apparatus which concerns on Embodiment 2 of this invention.
 以下、本発明の実施の形態に係る光測定装置について、0.1×1012~100×1012ヘルツの周波数成分を有するパルス光を試料に照射し、試料を透過した透過光、又は試料表面で反射した反射光の強度及び位相差を検出することにより、試料の物性値を算出して測定値として取得する、いわゆるテラヘルツ光測定装置を例に挙げて、図面に基づいて具体的に説明する。 Hereinafter, with respect to the optical measurement apparatus according to the embodiment of the present invention, the sample is irradiated with pulsed light having a frequency component of 0.1 × 10 12 to 100 × 10 12 Hertz and transmitted through the sample, or the sample surface An example of a so-called terahertz light measuring device that calculates a physical property value of a sample and obtains it as a measured value by detecting the intensity and phase difference of the reflected light reflected by the light source will be specifically described based on the drawings. .
 (実施の形態1)
 図1及び図2は、本発明の実施の形態1に係る光測定装置の構成を示す模式図である。図1は光測定装置の透過光測定時の構成を示す模式図を、図2は光測定装置の反射光測定時の構成を示す模式図である。
(Embodiment 1)
1 and 2 are schematic views showing the configuration of the light measurement apparatus according to Embodiment 1 of the present invention. FIG. 1 is a schematic diagram showing the configuration of the light measurement device when measuring transmitted light, and FIG. 2 is a schematic diagram showing the configuration of the light measurement device when measuring reflected light.
 図1及び図2に示すように、本実施の形態1に係る光測定装置は、パルスレーザ1で発光したパルス光L1をビームスプリッタ2で分光し、一方のパルス光L2を集光レンズ3aに誘導する。集光レンズ3aにてテラヘルツ光源素子(テラヘルツ光源)4に集光されたパルス光L2は、テラヘルツ周波数領域のパルス光に変換され、変換されたテラヘルツ光L4は非軸放物面鏡5によりミラー群10aに誘導される。 As shown in FIGS. 1 and 2, the light measurement apparatus according to the first embodiment splits the pulsed light L1 emitted from the pulsed laser 1 with the beam splitter 2, and supplies the one pulsed light L2 to the condenser lens 3a. Induce. The pulsed light L2 condensed on the terahertz light source element (terahertz light source) 4 by the condenser lens 3a is converted into pulsed light in the terahertz frequency region, and the converted terahertz light L4 is mirrored by the non-axial parabolic mirror 5 Guided to group 10a.
 パルスレーザ1としては、例えばモードロックされたフェムト秒(fs)単位の超短パルスレーザを用い、パルス幅は10~150フェムト秒が好ましい。また、テラヘルツ光源素子4は、例えば低温成長GaAs薄膜上に形成された光導電性アンテナを備えている。 As the pulse laser 1, for example, a mode-locked femtosecond (fs) unit ultrashort pulse laser is used, and the pulse width is preferably 10 to 150 femtoseconds. The terahertz light source element 4 includes a photoconductive antenna formed on, for example, a low-temperature grown GaAs thin film.
 図3は、テラヘルツ光源素子4が光導電性アンテナを備える場合のアンテナモジュールの構成を示す例示図である。図3(a)はアンテナモジュールの模式的な斜視図であり、図3(b)はアンテナギャップ近傍の拡大図である。光導電性アンテナ基板41には、アンテナギャップ42を有するアンテナパターン43が形成されており、アンテナギャップ42を形成する電極の両端にはバイアス電源44によりバイアス電圧が印加されている。バイアス電圧が印加されている状態でフェムト秒単位のパルス光L2が光導電性アンテナ基板41に入射した場合、瞬間的に過渡電流が流れ、電気双極子放射により0.1×1012~100×1012ヘルツ、すなわちテラヘルツ周波数領域のパルス光(テラヘルツ光)L4が発生する。発生したテラヘルツ光L4は、光導電性アンテナ基板41の裏面に密着させてあるシリコン半球レンズ45により自由空間に放射される。 FIG. 3 is an exemplary diagram showing a configuration of an antenna module when the terahertz light source element 4 includes a photoconductive antenna. FIG. 3A is a schematic perspective view of the antenna module, and FIG. 3B is an enlarged view of the vicinity of the antenna gap. An antenna pattern 43 having an antenna gap 42 is formed on the photoconductive antenna substrate 41, and a bias voltage is applied to both ends of the electrodes forming the antenna gap 42 by a bias power supply 44. When the pulsed light L2 in femtosecond units is incident on the photoconductive antenna substrate 41 with a bias voltage applied, a transient current flows instantaneously, and 0.1 × 10 12 to 100 × due to electric dipole radiation. 10 12 Hz, i.e. pulsed light in the terahertz frequency range (terahertz light) L4 is generated. The generated terahertz light L4 is radiated into free space by the silicon hemisphere lens 45 that is in close contact with the back surface of the photoconductive antenna substrate 41.
 図1及び図2に戻って、ミラー群10aは、平面鏡11a、非軸放物面鏡(曲面鏡)12aで構成されている。平面鏡11aは、テラヘルツ光L4が照射される位置を回転中心として回転することが可能な回転ステージ13aに搭載されており、回転ステージ13aは、テラヘルツ光L4と平行な方向に直線移動することが可能な構成、例えばテラヘルツ光L4と平行な方向に図示しない移動レールを設け、移動レール上を直線移動することが可能になっている。 Referring back to FIGS. 1 and 2, the mirror group 10a includes a plane mirror 11a and a non-axis parabolic mirror (curved mirror) 12a. The plane mirror 11a is mounted on a rotation stage 13a that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13a can linearly move in a direction parallel to the terahertz light L4. For example, a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
 非軸放物面鏡12aは、測定対象となる試料6の中央部分を回転中心とする支持アーム14aと連結されている。支持アーム14aは、試料6が搭載されている回転ステージ13c及び後述する支持アーム14bが取り付けてある回転ステージ13dと同一回転中心軸にて回転する回転ステージ13bの回転中心に取り付けられており、非軸放物面鏡12aの有効焦点距離EFLを回転半径として回転移動することが可能となっている。すなわち、回転ステージ13b、13c、13dは、図1及び図2の紙面に鉛直な方向の同一の回転中心軸上に備えてあり、別個独立して回転することが可能となっている。 The non-axial parabolic mirror 12a is connected to a support arm 14a whose center of rotation is the central portion of the sample 6 to be measured. The support arm 14a is attached to the rotation center of the rotation stage 13b that rotates on the same rotation center axis as the rotation stage 13c on which the sample 6 is mounted and the rotation stage 13d to which the support arm 14b described later is attached. The axial parabolic mirror 12a can be rotated and moved with the effective focal length EFL as the rotation radius. That is, the rotary stages 13b, 13c, and 13d are provided on the same rotation center axis in the direction perpendicular to the paper surface of FIGS. 1 and 2, and can rotate independently.
 テラヘルツ光L4は、試料6の中央部分、すなわち非軸放物面鏡12aの回転中心にてコリメートされる。このようにするために、非軸放物面鏡12aにおける入射光と反射光とがなす角度が常に90度となるように平面鏡11aの位置及び傾斜角度が制御される。 The terahertz light L4 is collimated at the center portion of the sample 6, that is, at the rotation center of the non-axial parabolic mirror 12a. For this purpose, the position and tilt angle of the plane mirror 11a are controlled so that the angle formed between the incident light and the reflected light in the non-axis parabolic mirror 12a is always 90 degrees.
 図1に示す透過光測定時では、試料6はテラヘルツ光L4が入射角0度で入射するよう、試料6が搭載されている回転ステージ13cを回転させ、平面鏡11aの傾斜角度は45度としてある。この場合、試料6の中央部分と、平面鏡11aとの距離は、非軸放物面鏡12aの有効焦点距離EFLと等しくなる。そして、支持アーム14aは、試料6に直交する方向、すなわち平面鏡11aへ入射するテラヘルツ光L4と平行になるよう制御される。なお、支持アーム14aの回転角度、平面鏡11aの横軸方向の位置及び傾斜角度、及び試料6の回転角度は、それぞれの動作を制御する図示しないアクチュエータ、例えばサーボモータ、ステッピングモータ等により制御される(制御機構)。 At the time of transmitted light measurement shown in FIG. 1, the rotation stage 13c on which the sample 6 is mounted is rotated so that the terahertz light L4 enters the sample 6 at an incident angle of 0 degree, and the inclination angle of the plane mirror 11a is 45 degrees. . In this case, the distance between the center portion of the sample 6 and the plane mirror 11a is equal to the effective focal length EFL of the non-axial parabolic mirror 12a. The support arm 14a is controlled so as to be parallel to the direction orthogonal to the sample 6, that is, the terahertz light L4 incident on the plane mirror 11a. The rotation angle of the support arm 14a, the horizontal axis position and tilt angle of the plane mirror 11a, and the rotation angle of the sample 6 are controlled by an actuator (not shown), such as a servo motor or a stepping motor, for controlling the respective operations. (Control mechanism).
 図2に示す反射光測定時では、試料6にテラヘルツ光L4が入射角を有して入射するよう、試料6が搭載されている回転ステージ13cを透過光測定時の位置から90度回転させてある。平面鏡11aの傾斜角度、試料6の中央部分を回転中心とした場合の平面鏡11aの横軸方向の位置、傾斜角度及び支持アーム14aの回転位置は、非軸放物面鏡12aにおける入射光と反射光とのなす角度が90度となり、試料6の中心点と非軸放物面鏡12aでの反射位置との距離が、非軸放物面鏡12aの有効焦点距離EFLと等しくなるよう制御される。図4は、平面鏡11aの横軸方向の位置、傾斜角度及び支持アーム14aの回転位置の関係を算出するための説明図である。 At the time of reflected light measurement shown in FIG. 2, the rotation stage 13c on which the sample 6 is mounted is rotated 90 degrees from the position at the time of transmitted light measurement so that the terahertz light L4 is incident on the sample 6 with an incident angle. is there. The tilt angle of the plane mirror 11a, the position of the plane mirror 11a in the horizontal axis direction when the central portion of the sample 6 is the rotation center, the tilt angle, and the rotation position of the support arm 14a are determined by the incident light and the reflection at the non-axis parabolic mirror 12a. The angle formed with the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12a is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12a. The FIG. 4 is an explanatory diagram for calculating the relationship between the position in the horizontal axis direction of the plane mirror 11a, the tilt angle, and the rotational position of the support arm 14a.
 図4では、平面鏡11aでのテラヘルツ光L4の反射位置から試料6の中心点までの横軸方向の距離をx、縦軸方向の距離をhとしている。テラヘルツ光L4の試料6への入射角(試料6表面に直交する方向からの傾斜角度)をθiとした場合、平面鏡11aの傾斜角度θmは、図4に示す角度A及び角度A’と等しい(対角の関係)。角度Aは(180-θi)/2であるので、平面鏡11aの傾斜角度θmは(180-θi)/2で表すことができる。 In FIG. 4, the distance in the horizontal axis direction from the reflection position of the terahertz light L4 on the plane mirror 11a to the center point of the sample 6 is x, and the distance in the vertical axis direction is h. When the incident angle of the terahertz light L4 to the sample 6 (inclination angle from the direction orthogonal to the surface of the sample 6) is θi, the inclination angle θm of the plane mirror 11a is equal to the angle A and the angle A ′ shown in FIG. Diagonal relationship). Since the angle A is (180−θi) / 2, the inclination angle θm of the plane mirror 11a can be expressed as (180−θi) / 2.
 また、平面鏡11aでのテラヘルツ光L4の反射位置から試料6の中心点までの横軸方向の距離xは、試料6の中心点から試料6の延長方向(平面鏡11aへのテラヘルツ光L4の入射方向と平行な方向)と平面鏡11aでの反射光の方向との交点までの距離をyとすると、(y-h/tanθi)で表すことができる。ここで、yは、EFLを含む直角三角形から、EFL/cos(90-θi)と算出することができるので、xは(式1)にて算出することができる。 The distance x in the horizontal axis direction from the reflection position of the terahertz light L4 at the plane mirror 11a to the center point of the sample 6 is the extension direction of the sample 6 from the center point of the sample 6 (the incident direction of the terahertz light L4 to the plane mirror 11a). Can be expressed by (y−h / tan θi), where y is the distance to the intersection of the direction of the light reflected by the plane mirror 11a. Here, y can be calculated as EFL / cos (90−θi) from a right triangle including EFL, and therefore x can be calculated by (Expression 1).
 x=EFL/cos(90-θi)-h/tanθi ・・・ (式1) X = EFL / cos (90−θi) −h / tanθi (Equation 1)
 図1及び図2に戻って、試料6を透過した透過光又は試料6で反射した反射光は、試料6を挟んで対称に配置されているミラー群10bによって光検出器8へ誘導される。ミラー群10bは、平面鏡11b、非軸放物面鏡12bで構成されている。 1 and 2, the transmitted light that has passed through the sample 6 or the reflected light that has been reflected by the sample 6 is guided to the photodetector 8 by the mirror group 10b that is arranged symmetrically with the sample 6 in between. The mirror group 10b includes a plane mirror 11b and a non-axis parabolic mirror 12b.
 平面鏡11bは、テラヘルツ光L4が照射される位置を回転中心として回転することが可能な回転ステージ13eに搭載されており、回転ステージ13eは、テラヘルツ光L4と平行な方向に直線移動することが可能な構成、例えばテラヘルツ光L4と平行な方向に図示しない移動レールを設け、移動レール上を直線移動することが可能になっている。 The plane mirror 11b is mounted on a rotation stage 13e that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13e can linearly move in a direction parallel to the terahertz light L4. For example, a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
 非軸放物面鏡12bは、測定対象となる試料6の中央部分を回転中心とする支持アーム14bと連結されている。支持アーム14bは、回転ステージ13dに取り付けられており、非軸放物面鏡12bの有効焦点距離EFLを回転半径として回転移動することが可能となっている。試料6の中央部分、すなわち非軸放物面鏡12bの回転中心にてコリメートされたテラヘルツ光L4は、試料6を透過して非軸放物面鏡12bへ誘導される。 The non-axial parabolic mirror 12b is connected to a support arm 14b whose center of rotation is the central portion of the sample 6 to be measured. The support arm 14b is attached to the rotary stage 13d, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12b as the rotation radius. The terahertz light L4 collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12b, is transmitted through the sample 6 and guided to the non-axial parabolic mirror 12b.
 図1に示す透過光測定時では、平面鏡11bの傾斜角度は平面鏡11aと対称な135(45)度であり、試料6の中央部分と、平面鏡11bとの距離は、非軸放物面鏡12bの有効焦点距離EFLと等しくなる。そして、支持アーム14bは、試料6に直交する方向、すなわち平面鏡11bから出射するテラヘルツ光L4と平行になるよう制御される。なお、支持アーム14bの回転角度、平面鏡11bの横軸方向の位置及び傾斜角度は、それぞれの動作を制御する図示しないアクチュエータ、例えばサーボモータ、ステッピングモータ等により制御される(制御機構)。 At the time of transmitted light measurement shown in FIG. 1, the inclination angle of the plane mirror 11b is 135 (45) degrees symmetrical to the plane mirror 11a, and the distance between the central portion of the sample 6 and the plane mirror 11b is the non-axial parabolic mirror 12b. Is equal to the effective focal length EFL. The support arm 14b is controlled to be parallel to the direction orthogonal to the sample 6, that is, the terahertz light L4 emitted from the plane mirror 11b. The rotation angle of the support arm 14b, the horizontal axis position and the inclination angle of the plane mirror 11b are controlled by an actuator (not shown), such as a servo motor or a stepping motor, which controls the respective operations (control mechanism).
 図2に示す反射光測定時では、平面鏡11bの傾斜角度、試料6の中央部分を回転中心とした場合の平面鏡11bの横軸方向の位置、傾斜角度及び支持アーム14bの回転位置は、非軸放物面鏡12bにおける入射光と反射光とがなす角度が90度となり、試料6の中心点と非軸放物面鏡12bでの反射位置との距離が、非軸放物面鏡12bの有効焦点距離EFLと等しくなるよう制御される。ミラー群10bはミラー群10aと試料6を挟んで対称に配置されているので、平面鏡11bの傾斜角度は180-(180-θi)/2で表すことができ、平面鏡11bでのテラヘルツ光L4の反射位置までの距離xも、試料6の中央部分を回転中心として、上述した(式1)にて算出することができる。 At the time of the reflected light measurement shown in FIG. 2, the inclination angle of the plane mirror 11b, the position in the horizontal axis direction of the plane mirror 11b when the central portion of the sample 6 is the rotation center, the inclination angle, and the rotation position of the support arm 14b are non-axial. The angle formed by the incident light and the reflected light at the parabolic mirror 12b is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12b is the same as that of the non-axial parabolic mirror 12b. It is controlled to be equal to the effective focal length EFL. Since the mirror group 10b is arranged symmetrically with the mirror group 10a and the sample 6 in between, the inclination angle of the plane mirror 11b can be expressed by 180− (180−θi) / 2, and the terahertz light L4 from the plane mirror 11b can be expressed. The distance x to the reflection position can also be calculated by (Equation 1) described above with the central portion of the sample 6 as the rotation center.
 すなわち、平面鏡11bの横軸方向の位置及び傾斜角度、支持アーム14bの回転位置を、それぞれの動作を制御する図示しないアクチュエータにより、平面鏡11bの位置は平面鏡11aと試料6を挟んで対称となる位置に、平面鏡11bの傾斜角度は平面鏡11aと対称となる傾斜角度に、支持アーム14bの回転位置は支持アーム14aと対称となる回転位置に、それぞれなるように制御することで、平面鏡11aに入射するテラヘルツ光L4と平行なテラヘルツ光L4を平面鏡11bで反射させることができる。したがって、試料6への入射角を変更する場合であっても、上述した方法に従ってアクチュエータの動作を自動制御することにより、反射光の光軸合わせ等の煩雑な調整作業を都度実行する必要がなく、容易に反射光を光検出器8まで誘導することができる。 That is, the position and inclination angle of the plane mirror 11b in the horizontal axis direction, and the rotation position of the support arm 14b are symmetric with respect to the plane mirror 11a and the sample 6 by the actuator (not shown) that controls the respective operations. Further, the plane mirror 11b is controlled so that the tilt angle of the plane mirror 11b is symmetric with the plane mirror 11a, and the rotational position of the support arm 14b is symmetric with the support arm 14a. The terahertz light L4 parallel to the terahertz light L4 can be reflected by the plane mirror 11b. Therefore, even when the incident angle to the sample 6 is changed, it is not necessary to perform complicated adjustment work such as optical axis alignment of reflected light each time by automatically controlling the operation of the actuator according to the method described above. The reflected light can be easily guided to the photodetector 8.
 すなわち、試料6で反射した反射光は、ミラー群10bの非軸放物面鏡12bにおける入射光と反射光とがなす角度が90度となるように反射して平面鏡11bに誘導される。平面鏡11bにて非軸放物面鏡5と略対称な位置、少なくともテラヘルツ光L4と平行な位置に配置してある非軸放物面鏡7へ誘導されたテラヘルツ光L4は、光検出器8へ入射される。 That is, the reflected light reflected by the sample 6 is reflected and guided to the plane mirror 11b so that the angle formed by the incident light and the reflected light in the non-axial parabolic mirror 12b of the mirror group 10b is 90 degrees. The terahertz light L4 guided by the plane mirror 11b to the non-axial parabolic mirror 7 disposed at a position substantially symmetrical to the non-axial parabolic mirror 5 and at least parallel to the terahertz light L4 is detected by the photodetector 8. Is incident on.
 一方、ビームスプリッタ2にて分光されたパルス光L3は、光学遅延ライン9を経由して集光レンズ3bで集光され、光検出器8へ入射する。このようにすることで、テラヘルツ光L4が光検出器8に到達した時点での電場強度に応じた信号を検出することができる。また、光検出器8に到達するパルス光L3の光検出器8への到達時間を光学遅延ライン9により遅延掃引することにより、テラヘルツ光L4のパルス波形を取得することができる。 On the other hand, the pulsed light L3 dispersed by the beam splitter 2 is condensed by the condenser lens 3b via the optical delay line 9, and enters the photodetector 8. By doing in this way, the signal according to the electric field strength at the time of the terahertz light L4 reaching the photodetector 8 can be detected. Further, the pulse waveform of the terahertz light L4 can be acquired by delay sweeping the arrival time of the pulsed light L3 reaching the photodetector 8 to the photodetector 8 by the optical delay line 9.
 以上のように本実施の形態1によれば、試料6を挟んで対称な位置に配置されている二対のミラー群10a、10bの位置及び角度を連携させて変更することにより、テラヘルツ光源素子4から発したパルス光(テラヘルツ光)L4の試料6への入射角を変更することができるので、テラヘルツ光源素子4及び光検出器8を固定した状態で透過光/反射光のいずれを検出するかを切り替えること、及び反射光検出時の試料6へのパルス光(テラヘルツ光)L4の入射角を調整することができる。したがって、試料6に応じてテラヘルツ光源素子4及び光検出器8の相対位置を変更する必要がなく、一の光検出器8で透過光及び反射光を検出することが可能となる。また、試料6への入射角を変更する都度、光軸合わせ等の煩雑な調整作業を実行する必要がなく、測定者が容易に試料6の物性値を測定することが可能となる。 As described above, according to the first embodiment, the positions and angles of the two pairs of mirror groups 10a and 10b arranged at symmetrical positions with the sample 6 in between are changed in cooperation, thereby providing a terahertz light source element. Since the incident angle of the pulsed light (terahertz light) L4 emitted from 4 to the sample 6 can be changed, either transmitted light or reflected light is detected with the terahertz light source element 4 and the photodetector 8 fixed. It is possible to adjust the incident angle of the pulsed light (terahertz light) L4 to the sample 6 when the reflected light is detected. Therefore, it is not necessary to change the relative positions of the terahertz light source element 4 and the light detector 8 according to the sample 6, and the transmitted light and the reflected light can be detected by the single light detector 8. Further, it is not necessary to perform complicated adjustment work such as optical axis alignment every time the incident angle to the sample 6 is changed, and the measurer can easily measure the physical property value of the sample 6.
 (実施の形態2)
 図5は、本発明の実施の形態2に係る光測定装置の構成を示す模式図である。図5は反射光測定時の光測定装置の構成を示しており、実施の形態1と同様の構成については、同一の符号を付することで詳細な説明は省略する。
(Embodiment 2)
FIG. 5 is a schematic diagram showing a configuration of a light measurement apparatus according to Embodiment 2 of the present invention. FIG. 5 shows the configuration of the light measurement device at the time of reflected light measurement. The same reference numerals are given to the same configurations as those in the first embodiment, and detailed description thereof is omitted.
 図5に示すように、本実施の形態2に係る光測定装置は、パルスレーザ1で発光したパルス光L1をビームスプリッタ2で分光し、一方のパルス光L2を集光レンズ3aに誘導する。集光レンズ3aにて集光されたパルス光L2は、テラヘルツ光源素子(テラヘルツ光源)4を介して0.1×1012~100×1012ヘルツ、すなわちテラヘルツ周波数領域のパルス光に変換され、変換されたテラヘルツ光L4は非軸放物面鏡5によりミラー群10aに誘導される。 As shown in FIG. 5, the light measurement device according to the second embodiment splits the pulsed light L1 emitted from the pulsed laser 1 with the beam splitter 2, and guides one pulsed light L2 to the condenser lens 3a. The pulsed light L2 collected by the condensing lens 3a is converted into pulsed light of 0.1 × 10 12 to 100 × 10 12 hertz, that is, a terahertz frequency region through a terahertz light source element (terahertz light source) 4; The converted terahertz light L4 is guided to the mirror group 10a by the non-axis parabolic mirror 5.
 テラヘルツ光L4は、偏光子21に入射され、入射面に対して垂直な面から45度傾いた方向にて振動する直線偏光L5のみが取り出される。なお、ここで「偏光子」とは、例えば金属細線を周期的に配列したワイヤーグリッドである。45度直線偏光L5は、電場振幅強度が同一であるs偏光とp偏光とのベクトル和である。テラヘルツ光源素子4が光導電性アンテナを備える場合、アンテナギャップに電圧が印加される方向に振動する直線偏光のテラヘルツ光が発生するので、図3に示すように光導電性アンテナ基板41を45度傾けることで45度直線偏光を得ることができる。ただし、このとき発生するテラヘルツ光L4はわずかに楕円偏光成分を含むため、角度を45°に設定した偏光子21を挿入することで完全な直線偏光成分のみを取り出すことができる。 The terahertz light L4 is incident on the polarizer 21, and only linearly polarized light L5 that oscillates in a direction inclined by 45 degrees from a plane perpendicular to the incident surface is extracted. Here, the “polarizer” is, for example, a wire grid in which fine metal wires are periodically arranged. The 45-degree linearly polarized light L5 is a vector sum of s-polarized light and p-polarized light having the same electric field amplitude intensity. When the terahertz light source element 4 includes a photoconductive antenna, linearly polarized terahertz light that vibrates in the direction in which a voltage is applied to the antenna gap is generated. Therefore, as shown in FIG. By tilting, 45-degree linearly polarized light can be obtained. However, since the terahertz light L4 generated at this time contains a slightly elliptically polarized component, only a completely linearly polarized component can be extracted by inserting the polarizer 21 whose angle is set to 45 °.
 図6は、本実施の形態2に係る光測定装置でのパルス光の偏光変化の様子を示す模式図である。図6(a)は、偏光子21によって取り出された45度直線偏光L5を示す模式図である。図6(a)では、矢印は電場ベクトルの振動方向を示している。 FIG. 6 is a schematic diagram showing a change in polarization of pulsed light in the light measurement device according to the second embodiment. FIG. 6A is a schematic diagram showing 45-degree linearly polarized light L5 extracted by the polarizer 21. FIG. In FIG. 6A, the arrow indicates the vibration direction of the electric field vector.
 図5に戻って、ミラー群10aは、平面鏡11a、非軸放物面鏡12aで構成されている。平面鏡11aは、テラヘルツ光L4が照射される位置を回転中心として回転することが可能な回転ステージ13aに搭載されており、回転ステージ13aは、テラヘルツ光L4と平行な方向に直線移動することが可能な構成、例えばテラヘルツ光L4と平行な方向に図示しない移動レールを設け、移動レール上を直線移動することが可能になっている。 Referring back to FIG. 5, the mirror group 10a is composed of a plane mirror 11a and a non-axis parabolic mirror 12a. The plane mirror 11a is mounted on a rotation stage 13a that can rotate around the position irradiated with the terahertz light L4, and the rotation stage 13a can linearly move in a direction parallel to the terahertz light L4. For example, a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be moved linearly.
 非軸放物面鏡12aは、測定対象となる試料6の中央部分を回転中心とする支持アーム14aと連結されている。支持アーム14aは、回転ステージ13bに取り付けられており、非軸放物面鏡12aの有効焦点距離EFLを回転半径として回転移動することが可能となっている。テラヘルツ光L4は、試料6の中央部分、すなわち非軸放物面鏡12aの回転中心にてコリメートされる。このようにするために、非軸放物面鏡12aにおける入射光と反射光とがなす角度が常に90度となるように平面鏡11aの位置及び傾斜角度が制御される。なお、試料6近傍にてテラヘルツ光L4をコリメートするので、試料6の受光可能面積が小さい場合であっても確実に物性値を測定することが可能となる。 The non-axial parabolic mirror 12a is connected to a support arm 14a whose center of rotation is the central portion of the sample 6 to be measured. The support arm 14a is attached to the rotary stage 13b, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12a as the rotation radius. The terahertz light L4 is collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12a. For this purpose, the position and tilt angle of the plane mirror 11a are controlled so that the angle formed between the incident light and the reflected light in the non-axial parabolic mirror 12a is always 90 degrees. In addition, since the terahertz light L4 is collimated in the vicinity of the sample 6, it is possible to reliably measure the physical property value even when the light receiving area of the sample 6 is small.
 試料6が搭載されている回転ステージ13cの回転位置は反射光測定時の位置、すなわち試料6に45度直線偏光L5が入射角を有して入射するよう、試料6が搭載されている回転ステージ13cを透過光測定時の位置から90度回転させてある。平面鏡11aの傾斜角度、試料6の中央部分を回転中心とした場合の平面鏡11aの横軸方向の位置、傾斜角度及び支持アーム14aの回転位置は、非軸放物面鏡12aにおける入射光と反射光とがなす角度が90度となり、試料6の中心点と非軸放物面鏡12aでの反射位置との距離が、非軸放物面鏡12aの有効焦点距離EFLと等しくなるよう制御される。具体的には、実施の形態1で開示した方法と同様に、平面鏡11aの傾斜角度は(180-θi)/2で表すことができ、平面鏡11aでの45度直線偏光L5の反射位置から試料6の中心点までの距離xも、上述した(式1)にて算出することができる。 The rotation position of the rotation stage 13c on which the sample 6 is mounted is the position at the time of reflected light measurement, that is, the rotation stage on which the sample 6 is mounted so that the 45-degree linearly polarized light L5 is incident on the sample 6 with an incident angle. 13c is rotated 90 degrees from the position at the time of transmitted light measurement. The tilt angle of the plane mirror 11a, the position of the plane mirror 11a in the horizontal axis direction when the central portion of the sample 6 is the rotation center, the tilt angle, and the rotation position of the support arm 14a are determined by the incident light and the reflection at the non-axis parabolic mirror 12a. The angle formed by the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12a is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12a. The Specifically, similarly to the method disclosed in the first embodiment, the inclination angle of the plane mirror 11a can be expressed by (180−θi) / 2, and the sample is measured from the reflection position of the 45-degree linearly polarized light L5 on the plane mirror 11a. The distance x to the center point 6 can also be calculated by the above-described (Expression 1).
 試料6で反射した反射光は、試料6で反射することにより楕円偏光L6となる。試料6の複素誘電率に応じてs偏光及びp偏光の振幅反射係数比及び位相が変化するからである。したがって、楕円偏光L6を解析することにより、試料6の複素誘電率を導出することができる。図6(b)は、楕円偏光L6を示す模式図である。 Reflected light reflected by the sample 6 is reflected by the sample 6 to become elliptically polarized light L6. This is because the amplitude reflection coefficient ratio and phase of s-polarized light and p-polarized light change according to the complex dielectric constant of the sample 6. Therefore, the complex dielectric constant of the sample 6 can be derived by analyzing the elliptically polarized light L6. FIG. 6B is a schematic diagram showing elliptically polarized light L6.
 図5に戻って、楕円偏光L6は、試料6を挟んで対称に配置されているミラー群10bへ誘導される。ミラー群10bは、平面鏡11b、非軸放物面鏡12bで構成されている。 Referring back to FIG. 5, the elliptically polarized light L6 is guided to the mirror group 10b arranged symmetrically with the sample 6 in between. The mirror group 10b includes a plane mirror 11b and a non-axis parabolic mirror 12b.
 平面鏡11bは、テラヘルツ光が照射される位置を回転中心として回転することが可能な回転ステージ13eに搭載されており、回転ステージ13eは、テラヘルツ光L4と平行な方向に直線移動することが可能な構成、例えばテラヘルツ光L4と平行な方向に図示しない移動レールを設け、移動レール上を直線移動することが可能になっている。 The plane mirror 11b is mounted on a rotation stage 13e that can rotate around a position irradiated with terahertz light, and the rotation stage 13e can linearly move in a direction parallel to the terahertz light L4. For example, a moving rail (not shown) is provided in a direction parallel to the terahertz light L4, and the moving rail can be linearly moved.
 非軸放物面鏡12bは、測定対象となる試料6の中央部分を回転中心とする支持アーム14bと連結されている。支持アーム14bは、回転ステージ13dに取り付けられており、非軸放物面鏡12bの有効焦点距離EFLを回転半径として回転移動することが可能となっている。試料6の中央部分、すなわち非軸放物面鏡12bの回転中心にてコリメートされた45度直線偏光L5は、試料6表面で反射して非軸放物面鏡12bへ誘導される。 The non-axial parabolic mirror 12b is connected to a support arm 14b whose center of rotation is the central portion of the sample 6 to be measured. The support arm 14b is attached to the rotary stage 13d, and can rotate and move with the effective focal length EFL of the non-axial parabolic mirror 12b as the rotation radius. The 45-degree linearly polarized light L5 collimated at the center portion of the sample 6, that is, the rotation center of the non-axial parabolic mirror 12b, is reflected by the surface of the sample 6 and guided to the non-axial parabolic mirror 12b.
 平面鏡11bの傾斜角度、試料6の中央部分を回転中心とした場合の平面鏡11bの横軸方向の位置、傾斜角度及び支持アーム14bの回転位置は、非軸放物面鏡12bにおける入射光と反射光とがなす角度が90度となり、試料6の中心点と非軸放物面鏡12bでの反射位置との距離が、非軸放物面鏡12bの有効焦点距離EFLと等しくなるよう制御される。ミラー群10bはミラー群10aと試料6を挟んで対称に配置されているので、平面鏡11bの傾斜角度は180-(180-θi)/2で表すことができ、平面鏡11bでの楕円偏光L6の反射位置までの距離xも、試料6の中央部分を回転中心として、上述した(式1)にて算出することができる。 The tilt angle of the plane mirror 11b, the position of the plane mirror 11b in the horizontal axis direction when the center portion of the sample 6 is the center of rotation, the tilt angle, and the rotation position of the support arm 14b are determined by incident light and reflection at the non-axis parabolic mirror 12b. The angle formed by the light is 90 degrees, and the distance between the center point of the sample 6 and the reflection position at the non-axial parabolic mirror 12b is controlled to be equal to the effective focal length EFL of the non-axial parabolic mirror 12b. The Since the mirror group 10b is arranged symmetrically across the mirror group 10a and the sample 6, the inclination angle of the plane mirror 11b can be expressed by 180− (180−θi) / 2, and the elliptically polarized light L6 at the plane mirror 11b The distance x to the reflection position can also be calculated by (Equation 1) described above with the central portion of the sample 6 as the rotation center.
 すなわち、平面鏡11bの横軸方向の位置及び傾斜角度、支持アーム14bの回転位置を、それぞれの動作を制御する図示しないアクチュエータにより、平面鏡11bの位置は平面鏡11aと試料6を挟んで対称となる位置に、平面鏡11bの傾斜角度は平面鏡11aと対称となる傾斜角度に、支持アーム14bの回転位置は支持アーム14aと対称となる回転位置に、それぞれなるように制御することで、平面鏡11aに入射するテラヘルツ光L4と平行なテラヘルツ光L4を平面鏡11bで反射させることができる。したがって、試料6への入射角を変更する場合であっても、上述した方法に従ってアクチュエータの動作を自動制御することにより、反射光の光軸合わせ等の煩雑な調整作業を都度実行する必要がなく、容易に反射光を光検出器8まで誘導することができる。 That is, the position and inclination angle of the plane mirror 11b in the horizontal axis direction, and the rotation position of the support arm 14b are symmetric with respect to the plane mirror 11a and the sample 6 by the actuator (not shown) that controls the respective operations. Further, the plane mirror 11b is controlled so that the tilt angle of the plane mirror 11b is symmetric with the plane mirror 11a, and the rotational position of the support arm 14b is symmetric with the support arm 14a. The terahertz light L4 parallel to the terahertz light L4 can be reflected by the plane mirror 11b. Therefore, even when the incident angle to the sample 6 is changed, it is not necessary to perform complicated adjustment work such as optical axis alignment of reflected light each time by automatically controlling the operation of the actuator according to the method described above. The reflected light can be easily guided to the photodetector 8.
 すなわち、試料6で反射した反射光は、ミラー群10bの非軸放物面鏡12bにおける入射光と反射光とがなす角度が90度となるように反射して平面鏡11bに誘導される。平面鏡11bで反射された楕円偏光L6は、偏光子22及び偏光子23を経由して、非軸放物面鏡5と対称な位置に配置してある非軸放物面鏡7へ誘導される。 That is, the reflected light reflected by the sample 6 is reflected and guided to the plane mirror 11b so that the angle formed by the incident light and the reflected light in the non-axial parabolic mirror 12b of the mirror group 10b is 90 degrees. The elliptically polarized light L6 reflected by the plane mirror 11b is guided to the non-axial parabolic mirror 7 disposed at a position symmetrical to the non-axial parabolic mirror 5 via the polarizer 22 and the polarizer 23. .
 楕円偏光L6は、偏光子22によってs偏光成分とp偏光成分とに分離された直線偏光L7として取り出される。すなわち偏光子22の角度を0度又は90度に設定することで、s偏光又はp偏光のみを取り出す。図6(c)は、s偏光又はp偏光の直線偏光L7を示す模式図である。図6(c)では、矢印は電場ベクトルの振動方向を示しており、s偏光又はp偏光を示している。 The elliptically polarized light L6 is extracted as linearly polarized light L7 separated by the polarizer 22 into an s-polarized component and a p-polarized component. That is, by setting the angle of the polarizer 22 to 0 degree or 90 degrees, only s-polarized light or p-polarized light is extracted. FIG. 6C is a schematic diagram showing s-polarized light or p-polarized linearly polarized light L7. In FIG.6 (c), the arrow has shown the oscillating direction of the electric field vector, and has shown s polarized light or p polarized light.
 直線偏光L7は、偏光子23を介して光検出器8へ入射される。偏光子23は入射面に対して垂直な面から-45度傾いた角度に設定されており、これによりs偏光成分とp偏光成分との両方を光検出器8で検出することができる。 The linearly polarized light L7 is incident on the photodetector 8 through the polarizer 23. The polarizer 23 is set at an angle of −45 degrees with respect to a plane perpendicular to the incident plane, whereby both the s-polarized component and the p-polarized component can be detected by the photodetector 8.
 直線偏光L7は、非軸放物面鏡7で反射されて光検出器8へ入射される。一方で、ビームスプリッタ2にて分光されたパルス光L3も、光学遅延ライン9を経由して集光レンズ3bで集光され、光検出器8へ入射される。このようにすることで、直線偏光L7が光検出器8に到達した時点での電場強度に応じた信号を検出することができる。また、パルス光L3の光検出器8への到達時間を光学遅延ライン9により遅延掃引することにより、テラヘルツ光L4のパルス波形を取得することができる。 The linearly polarized light L7 is reflected by the non-axial parabolic mirror 7 and enters the photodetector 8. On the other hand, the pulsed light L3 dispersed by the beam splitter 2 is also condensed by the condenser lens 3b via the optical delay line 9 and is incident on the photodetector 8. By doing in this way, the signal according to the electric field strength when the linearly polarized light L7 reaches the photodetector 8 can be detected. Further, the pulse waveform of the terahertz light L4 can be acquired by delay sweeping the arrival time of the pulsed light L3 to the photodetector 8 by the optical delay line 9.
 s偏光及びp偏光の時間波形は、偏光子22を回転ステージに取り付け、回転角を0度又は90度になるよう切り替えることにより取得する。すなわち、s偏光又はp偏光の時間波形の取得を完了した時点で偏光子22の回転角を切り替え、s偏光又はp偏光の時間波形を取得する。 The time waveforms of s-polarized light and p-polarized light are acquired by attaching the polarizer 22 to the rotary stage and switching the rotation angle to 0 degree or 90 degrees. That is, when the acquisition of the time waveform of s-polarized light or p-polarized light is completed, the rotation angle of the polarizer 22 is switched to acquire the time waveform of s-polarized light or p-polarized light.
 取得した時間波形をフーリエ変換することにより、s偏光及びp偏光の複素反射係数r、rを求めることができるので、エリプソメトリ法で測定することが可能なs偏光とp偏光との位相差Δ及びs偏光とp偏光との振幅反射係数比tanΨとを用いて、(式2)に示すように複素平面における複素反射係数r、rの比ρを定義することができる。 Since the complex reflection coefficients r s and r p of s-polarized light and p-polarized light can be obtained by performing Fourier transform on the acquired time waveform, the order of s-polarized light and p-polarized light that can be measured by the ellipsometry method. Using the phase difference Δ and the amplitude reflection coefficient ratio tan Ψ of s-polarized light and p-polarized light, the ratio ρ of the complex reflection coefficients r s and r p in the complex plane can be defined as shown in (Equation 2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (式2)において、s偏光の位相δ、p偏光の位相δ及び振幅反射係数の絶対値|r|、|r|を用いると、複素反射係数r、rは(式3)のように表すことができ、s偏光とp偏光との位相差Δ及びs偏光とp偏光との振幅反射係数比tanΨは(式4)のように表すことができる。 In (Equation 2), the absolute value of the phase [delta] p and the amplitude reflection coefficient of the s-polarized light of the phase [delta] s, p-polarized light | r s |, | r p | when the use, the complex reflection coefficient r s, r p is (formula 3), and the phase difference Δ between the s-polarized light and the p-polarized light and the amplitude reflection coefficient ratio tan Ψ between the s-polarized light and the p-polarized light can be expressed as (Equation 4).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、複素平面における複素反射係数r、rの比ρについて、空気と試料6との界面における反射のみを考慮して、いわゆるフレネルの方程式を適用すると、試料6の複素誘電率εcnは(式5)で表すことができ、実測値であるs偏光とp偏光との位相差Δ及びs偏光とp偏光との振幅反射係数比tanΨから(式2)にて算出した、複素平面における複素反射係数r、rの比ρに基づいて、試料6の複素誘電率εcn(=ε’-iε”)を算出することができる。 Here, when the so-called Fresnel equation is applied to the ratio ρ of the complex reflection coefficients r s and r p in the complex plane in consideration of only reflection at the interface between air and the sample 6, the complex permittivity ε cn of the sample 6 is obtained. Can be expressed by (Equation 5), and is a complex plane calculated by (Equation 2) from the measured phase difference Δ between s-polarized light and p-polarized light and the amplitude reflection coefficient ratio tan Ψ between s-polarized light and p-polarized light. The complex permittivity ε cn (= ε′−iε ″) of the sample 6 can be calculated based on the ratio ρ of the complex reflection coefficients r s and r p at.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 図7は、本実施の形態2に係る光測定装置で、試料6として抵抗率が1.1~1.4Ω・cmであるp型Si基板の振幅反射係数比tanΨを測定した結果を示すグラフであり、図8は、本実施の形態2に係る光測定装置で、試料6として抵抗率が1.1~1.4Ω・cmであるp型Si基板の位相差Δを測定した結果を示すグラフである。Siの複素誘電率εcnを(12-i・0.5)とした場合、ブリュースター角は略73度となるので、図7及び図8の測定時には、テラヘルツ光L4の試料6への入射角が70度となるようにミラー群10a、10bの位置及び回転角度を調整した。 FIG. 7 is a graph showing the result of measuring the amplitude reflection coefficient ratio tan Ψ of a p-type Si substrate having a resistivity of 1.1 to 1.4 Ω · cm as the sample 6 in the optical measurement device according to the second embodiment. FIG. 8 shows the result of measuring the phase difference Δ of a p-type Si substrate having a resistivity of 1.1 to 1.4 Ω · cm as the sample 6 by the light measurement apparatus according to the second embodiment. It is a graph. When the complex permittivity ε cn of Si is (12−i · 0.5), the Brewster angle is approximately 73 degrees. Therefore, when the measurement in FIGS. 7 and 8 is performed, the terahertz light L4 is incident on the sample 6. The positions and rotation angles of the mirror groups 10a and 10b were adjusted so that the angle was 70 degrees.
 なお、テラヘルツ光L4の試料6への入射角を、試料6のブリュースター角近傍に調整するのは、ブリュースター角近傍では試料6のs偏光及びp偏光の複素反射係数r、rの比ρが最大となるので、(式5)に基づいて高い精度で試料6の複素誘電率εcnを求めることができるからである。 Note that the incident angle of the terahertz light L4 on the sample 6 is adjusted in the vicinity of the Brewster angle of the sample 6 because the complex reflection coefficients r s and r p of the s-polarized light and the p-polarized light of the sample 6 are adjusted in the vicinity of the Brewster angle. Because the ratio ρ is maximized, the complex permittivity ε cn of the sample 6 can be obtained with high accuracy based on (Equation 5).
 また、本実施の形態2では、実施の形態1と同様、試料6への入射角をミラー群10a、10bの位置及び回転角度を変更することにより調整することができるので、テラヘルツ光源素子4及び光検出器8を固定しておくことができ、入射角を変更する場合等に光軸合わせ等の煩雑な調整作業が不要となる。したがって、試料6を頻繁に交換する場合であっても、測定者に煩雑な作業が発生することがなく、測定結果を比較的短時間で取得することが可能となる。 In the second embodiment, as in the first embodiment, the incident angle to the sample 6 can be adjusted by changing the position and the rotation angle of the mirror groups 10a and 10b, so that the terahertz light source element 4 and The photodetector 8 can be fixed, and complicated adjustment work such as optical axis alignment becomes unnecessary when changing the incident angle. Therefore, even when the sample 6 is frequently replaced, a troublesome operation does not occur for the measurer, and the measurement result can be acquired in a relatively short time.
 図7及び図8からも明らかなように、本実施の形態2に係る光測定装置を用いることにより、テラヘルツ帯の周波数に応じて、p型Si基板の振幅反射係数比tanΨ及び位相差Δが変化する様子が、明確に測定されていることがわかる。 As is apparent from FIGS. 7 and 8, by using the optical measurement apparatus according to the second embodiment, the amplitude reflection coefficient ratio tan Ψ and the phase difference Δ of the p-type Si substrate are changed according to the frequency in the terahertz band. It can be seen that the changing state is clearly measured.
 図9は、本実施の形態2に係る光測定装置で測定したp型Si基板の振幅反射係数比tanΨ及び位相差Δに基づいて、複素誘電率εcnを算出した結果と後述する理論計算の結果とを比較したグラフである。図9では、複素誘電率εcnをεcn=ε’-iε”として表した場合の実部ε’と虚部ε”とを周波数の関数として算出している。 FIG. 9 shows the result of calculating the complex permittivity ε cn based on the amplitude reflection coefficient ratio tan Ψ and the phase difference Δ of the p-type Si substrate measured by the optical measurement apparatus according to the second embodiment and the theoretical calculation described later. It is the graph which compared the result. In FIG. 9, the real part ε ′ and the imaginary part ε ″ when the complex dielectric constant ε cn is expressed as ε cn = ε′−iε ″ are calculated as a function of frequency.
 図9において、■印で示す、(式5)に基づいて算出した結果の実部91は、後述するドルーデモデルに基づき理論計算した結果の実部92(実線)と略一致している。また、○印で示す、(式5)に基づいて算出した結果の虚部93は、同じく後述するドルーデモデルに基づき理論計算した結果の虚部94(実線)と略一致しており、低周波領域で虚部ε”の値が増大する傾向が精度良く測定できていることが明らかである。 9, the real part 91 calculated based on (Expression 5) indicated by ■ is substantially coincident with the real part 92 (solid line) obtained as a result of theoretical calculation based on the Drude model described later. Further, the imaginary part 93 obtained by calculation based on (Equation 5) indicated by a circle is substantially coincident with the imaginary part 94 (solid line) obtained by theoretical calculation based on the Drude model described later. It is clear that the tendency that the value of the imaginary part ε ″ increases in the region can be measured with high accuracy.
 また、Siのようにテラヘルツ周波数領域においてフォノン散乱による吸収を無視することができる試料である場合、フリーキャリア散乱が加わったときの誘電関数は、ドルーデ(Drude)モデルにより(式6)のように表すことができる。なお、ωは周波数を示している。 Further, in the case of a sample that can ignore the absorption due to phonon scattering in the terahertz frequency region, such as Si, the dielectric function when free carrier scattering is added is expressed by (Drude) model as shown in (Expression 6). Can be represented. Note that ω represents a frequency.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ここでσcn(ω)は複素電気伝導率を示しており、実部σ’(ω)と虚部σ”(ω)との和で表すことができる。(式5)で求めた複素誘電率εcn(=ε’-iε”)を用いて実部σ’(ω)及び虚部σ”(ω)をそれぞれ複素誘電率で表すと、(式7)のようになる。なお、(式7)において、真空での複素誘電率をε、高周波極限での複素誘電率をε(∞)とする。 Here, σ cn (ω) represents the complex electrical conductivity, and can be represented by the sum of the real part σ ′ (ω) and the imaginary part σ ″ (ω). Complex dielectric obtained by (Expression 5) When the real part σ ′ (ω) and the imaginary part σ ″ (ω) are respectively expressed by complex permittivity using the rate ε cn (= ε′−iε ″), the following equation (7) is obtained. In Equation 7), the complex permittivity in vacuum is ε 0 , and the complex permittivity in the high frequency limit is ε (∞).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 抵抗率Ρは複素電気伝導率σcn(ω)の実部σ’(ω)の逆数として求めることができる。図10は、本発明の実施の形態2に係る光測定装置にて複素電気伝導率σcn(ω)を算出した例を示すグラフである。試料6として、上述したp型Si基板を用いている。 The resistivity Ρ can be obtained as the reciprocal of the real part σ ′ (ω) of the complex electrical conductivity σ cn (ω). FIG. 10 is a graph showing an example in which the complex electrical conductivity σ cn (ω) is calculated by the optical measurement device according to the second embodiment of the present invention. As the sample 6, the p-type Si substrate described above is used.
 図10において、◆印は複素電気伝導率σcn(ω)の実部σ’(ω)を、●印は複素電気伝導率σcn(ω)の虚部σ”(ω)を、それぞれ示しており、テラヘルツ帯の周波数に応じてプロットしている。図10に示すように、高周波になるほど電場変化の速度に対してキャリアが追従しきれなくなることから、複素電気伝導率σcn(ω)が低下していることがわかる。一方、複素電気伝導率σcn(ω)の実部σ’(ω)の逆数として算出した抵抗率Ρは、低周波側(ωが0の近傍)にて1.0~1.1Ω・cmとなり、用いたp型Si基板の抵抗率Ρと略一致している。 In FIG. 10, ◆ mark real sigma 'the (omega) of the complex electrical conductivity σ cn (ω), ● mark imaginary part of the complex electrical conductivity σ cn (ω) σ "the (omega), respectively As shown in Fig. 10, since the carrier cannot follow the speed of the electric field change as the frequency becomes higher, the complex electric conductivity σ cn (ω) On the other hand, the resistivity 算出 calculated as the reciprocal of the real part σ ′ (ω) of the complex electrical conductivity σ cn (ω) is low-frequency side (near ω is 0). 1.0 to 1.1 Ω · cm, which is substantially equal to the resistivity Ρ of the p-type Si substrate used.
 また、(式5)で算出した複素誘電率εcnに基づいて、キャリア濃度N、キャリアの散乱時間τ、移動度μを算出することもできる。複素誘電率εcn(=ε’-iε”)にドルーデ(Drude)の式を適用して、プラズマ周波数ω、キャリアの散乱時間τを用いて複素誘電率εcnを(式8)のように表すことができる。なお、(式8)においても、真空での複素誘電率をε、高周波極限での複素誘電率をε(∞)とする。 Further, the carrier concentration N, the carrier scattering time τ, and the mobility μ can be calculated based on the complex dielectric constant ε cn calculated by (Equation 5). By applying the Drude equation to the complex permittivity ε cn (= ε′−iε ″) and using the plasma frequency ω p and the carrier scattering time τ, the complex permittivity ε cn is expressed as (Equation 8). In (Equation 8), the complex permittivity in vacuum is ε 0 , and the complex permittivity in the high frequency limit is ε (∞).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 プラズマ周波数ωは、キャリア濃度をN,有効質量をm、電子の電荷量をeとした場合、(式9)で表すことができる。 The plasma frequency ω p can be expressed by (Equation 9) where N is the carrier concentration, m * is the effective mass, and e is the charge amount of electrons.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 一方、ドルーデ・ロレンツの方程式により、プラズマ周波数ω、キャリアの散乱時間τ、複素電気伝導率σcn(ω)は、(式10)の関係にある。 On the other hand, according to the Drude-Lorenz equation, the plasma frequency ω p , the carrier scattering time τ, and the complex electrical conductivity σ cn (ω) are in the relationship of (Equation 10).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 周波数ωが限りなく0に近づく、すなわち直流では、複素電気伝導率σcn(ω)の実部σ’(0)は(式10)の分母が1になることから(式11)のように表すことができる。 Since the frequency ω approaches 0 as much as possible, that is, in direct current, the real part σ ′ (0) of the complex electrical conductivity σ cn (ω) has a denominator of (Equation 10) as 1, as shown in (Equation 11). Can be represented.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 抵抗率Ρは、複素電気伝導率σcn(ω)の実部σ’(ω)の逆数であるから、(式11)にσ’(0)=1/Ρを代入してキャリアの散乱時間τを算出すると、(式12)のようになる。 Since the resistivity で is the reciprocal of the real part σ ′ (ω) of the complex electrical conductivity σ cn (ω), σ ′ (0) = 1 / Ρ is substituted into (Equation 11) and the carrier scattering time. When τ is calculated, (Equation 12) is obtained.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 このように求めた(式12)を(式8)に代入して、複素誘電率εcnをプラズマ周波数ωの関数として表すと(式13)のようになる。 By substituting (Equation 12) obtained in this way into (Equation 8) and expressing the complex dielectric constant ε cn as a function of the plasma frequency ω p , (Equation 13) is obtained.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 (式13)で算出した複素誘電率εcnと、測定して求めた複素誘電率εcnとが一致する場合のプラズマ周波数ωの値をフィッティング処理等を用いて求めることにより、キャリア濃度N,キャリアの散乱時間τを求めることが可能となる。例えば図9における複素誘電率εcnの実部92及び虚部94(実線)は、上述した方法を用いてフィッティング処理して導出した実部ε’及び虚部ε”を示している。図9のフィッティング結果を用いた場合、キャリア濃度Nは1.3×1016cm-3と、キャリアの散乱時間τは1×10-13 secとして算出される。 By obtaining the value of the plasma frequency ω p when the complex permittivity ε cn calculated by (Equation 13) and the measured complex permittivity ε cn match using a fitting process or the like, the carrier concentration N , Carrier scattering time τ can be obtained. For example, the real part 92 and the imaginary part 94 (solid line) of the complex permittivity ε cn in FIG. 9 indicate the real part ε ′ and the imaginary part ε ″ derived by the fitting process using the above-described method. Is used, the carrier concentration N is 1.3 × 10 16 cm −3 and the carrier scattering time τ is 1 × 10 −13 sec.
 また、キャリアの散乱時間τに基づいて移動度μは、(式14)から算出することができる。 The mobility μ can be calculated from (Equation 14) based on the carrier scattering time τ.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 本実施の形態2で用いたp型Si基板では、移動度μは436cm-1sec-1という値を得ることができた。上述したp型Si基板の物性値は、ホール測定等による従来の半導体物性値の測定法で求められる一般的な値と概ね整合していることを確認した。 In the p-type Si substrate used in the second embodiment, the mobility μ can be a value of 436 cm 2 V −1 sec −1 . It was confirmed that the physical property values of the above-described p-type Si substrate were generally consistent with general values obtained by a conventional semiconductor physical property measurement method such as hole measurement.
 以上のように本実施の形態2によれば、二対のミラー群10a、10bの位置及び角度を変更することにより、テラヘルツ光源素子4から発したパルス光の試料6への入射角を変更することができるので、反射光検出時の入射角を自在に調整することができる。したがって、試料6に応じてテラヘルツ光源素子4及び光検出器8の相対位置を変更する必要がなく、一の光検出器8で反射光を検出することができ、試料6への入射角を変更する都度、光軸合わせ等の煩雑な調整作業を実行する必要がない。 As described above, according to the second embodiment, the incident angle of the pulsed light emitted from the terahertz light source element 4 to the sample 6 is changed by changing the positions and angles of the two pairs of mirror groups 10a and 10b. Therefore, the incident angle when detecting reflected light can be freely adjusted. Therefore, it is not necessary to change the relative positions of the terahertz light source element 4 and the light detector 8 according to the sample 6, the reflected light can be detected by the single light detector 8, and the incident angle to the sample 6 is changed. Each time, it is not necessary to perform complicated adjustment work such as optical axis alignment.
 また、試料6のs偏光及びp偏光の振幅反射係数比tanΨ及び位相差Δに基づいて物性値を算出する、いわゆるエリプソメトリ法を用いることにより、リファレンス測定を測定の都度実行する必要がなく、測定精度を高く維持することが可能となる。特に、試料6のブリュースター角近傍に入射角を調整することにより、試料6のs偏光及びp偏光の振幅反射係数比が最大となる入射角で測定することができ、高い精度で物性値の測定を行うことが可能となる。 Further, by using a so-called ellipsometry method that calculates a physical property value based on the amplitude reflection coefficient ratio tan Ψ and the phase difference Δ of the s-polarized light and the p-polarized light of the sample 6, it is not necessary to perform a reference measurement each time measurement is performed. It becomes possible to maintain high measurement accuracy. In particular, by adjusting the incident angle in the vicinity of the Brewster angle of the sample 6, it is possible to measure at an incident angle at which the ratio of the amplitude reflection coefficient of the s-polarized light and the p-polarized light of the sample 6 is maximized. Measurement can be performed.
 さらに、試料6に入射される、テラヘルツ光源素子4から発したパルス光は、s偏光及びp偏光の光強度が同等である45度直線偏光であり、試料で反射した反射光のs偏光及びp偏光の振幅反射係数比tanΨ及び位相差Δは、偏光子の角度を0度又は90度に設定した場合に検出される信号に基づいて取得する。これにより、試料6の複素誘電率によって変化するわずかな偏光変化を検出することができ、高い精度で測定することが可能となる。また、測定中は偏光子の回転角が設定角度で固定されていることから、偏光子を連続的に回転させる従来の測定方法と比較して機械的誤差の低減を図ることも可能となる。 Further, the pulsed light emitted from the terahertz light source element 4 incident on the sample 6 is 45-degree linearly polarized light having the same intensity of s-polarized light and p-polarized light, and the s-polarized light and p of the reflected light reflected by the sample. The amplitude reflection coefficient ratio tan Ψ and the phase difference Δ of the polarized light are obtained based on a signal detected when the angle of the polarizer is set to 0 degree or 90 degrees. As a result, a slight change in polarization that changes depending on the complex dielectric constant of the sample 6 can be detected, and measurement can be performed with high accuracy. Further, since the rotation angle of the polarizer is fixed at the set angle during the measurement, it is possible to reduce the mechanical error as compared with the conventional measurement method in which the polarizer is continuously rotated.
 なお、上述した実施の形態1及び2は、本発明の趣旨を逸脱しない範囲で変更することができることは言うまでもない。例えばミラー群10a、10bの構成は試料6を挟んで対称な位置に配置されていること、少なくとも一の曲面鏡を備えていること、筐体に収容できること等の条件を具備すれば、特に限定されるものではない。 Needless to say, Embodiments 1 and 2 described above can be modified without departing from the spirit of the present invention. For example, the configuration of the mirror groups 10a and 10b is particularly limited as long as the mirror groups 10a and 10b are arranged at symmetrical positions with the sample 6 interposed therebetween, have at least one curved mirror, and can be accommodated in a housing. Is not to be done.
 1 パルスレーザ
 2 ビームスプリッタ
 3a 集光レンズ
 4 テラヘルツ光源素子(テラヘルツ光源)
 6 試料
 5、7 非軸放物面鏡
 8 光検出器
 9 光学遅延ライン
 10a、10b ミラー群
 11a、11b 平面鏡
 12a、12b 非軸放物面鏡(曲面鏡)
 13a、13b、13c、13d、13e 回転ステージ
 14a、14b 支持アーム
DESCRIPTION OF SYMBOLS 1 Pulse laser 2 Beam splitter 3a Condensing lens 4 Terahertz light source element (terahertz light source)
6 Sample 5, 7 Non-axis parabolic mirror 8 Optical detector 9 Optical delay line 10a, 10b Mirror group 11a, 11b Plane mirror 12a, 12b Non-axis parabolic mirror (curved mirror)
13a, 13b, 13c, 13d, 13e Rotating stage 14a, 14b Support arm

Claims (12)

  1.  テラヘルツ周波数領域のパルス光を発するテラヘルツ光源と、
     該パルス光を検出する光検出器と、
     前記テラヘルツ光源から発したパルス光を測定対象である試料へ誘導し、該試料を透過した透過光又は前記試料で反射した反射光を前記光検出器へ誘導する、少なくとも二以上のミラーで構成された、前記試料を挟んで対称な位置に配置してある二対のミラー群と、
     二対の該ミラー群の位置及び角度を変更することにより、前記テラヘルツ光源から発したパルス光の前記試料への入射角を変更するよう動作を制御する制御機構と
     を備えることを特徴とする光測定装置。
    A terahertz light source that emits pulsed light in the terahertz frequency range;
    A photodetector for detecting the pulsed light;
    Consists of at least two or more mirrors that guide pulsed light emitted from the terahertz light source to a sample to be measured and guide transmitted light transmitted through the sample or reflected light reflected by the sample to the photodetector. In addition, two pairs of mirror groups arranged at symmetrical positions across the sample,
    A control mechanism for controlling the operation of changing the incident angle of the pulsed light emitted from the terahertz light source to the sample by changing the position and angle of the two pairs of mirrors. measuring device.
  2.  前記制御機構は、前記試料の中央部分を回転中心とした支持アームにより二対の前記ミラー群の位置及び角度を変更するようにしてあることを特徴とする請求項1記載の光測定装置。 2. The optical measurement apparatus according to claim 1, wherein the control mechanism is configured to change the position and angle of the two pairs of mirror groups by a support arm having a central portion of the sample as a rotation center.
  3.  前記制御機構は、二対の前記ミラー群の位置及び角度を変更することにより、前記光検出器が、透過光を検出するか、反射光を検出するかを切り替えるようにしてあることを特徴とする請求項1又は2記載の光測定装置。 The control mechanism is configured to change the position and angle of two pairs of mirror groups so that the photodetector detects transmitted light or reflected light. The light measuring device according to claim 1 or 2.
  4.  前記ミラー群は曲面鏡を少なくとも一含み、前記試料近傍にて前記テラヘルツ光源から発したパルス光をコリメートするようにしてあることを特徴とする請求項1乃至3のいずれか一項に記載の光測定装置。 4. The light according to claim 1, wherein the mirror group includes at least one curved mirror, and collimates pulsed light emitted from the terahertz light source in the vicinity of the sample. measuring device.
  5.  前記テラヘルツ光源から発したパルス光が伝播する光路上に偏光子を備えることを特徴とする請求項3又は4記載の光測定装置。 The optical measurement apparatus according to claim 3 or 4, further comprising a polarizer on an optical path through which pulsed light emitted from the terahertz light source propagates.
  6.  前記制御機構により前記反射光を検出するよう切り替えた場合、前記試料のs偏光及びp偏光の振幅反射係数比及び位相差に基づいて物性値を算出することを特徴とする請求項5記載の光測定装置。 6. The light according to claim 5, wherein when the reflected light is switched to be detected by the control mechanism, the physical property value is calculated based on an amplitude reflection coefficient ratio and a phase difference between the s-polarized light and the p-polarized light of the sample. measuring device.
  7.  前記制御機構は、前記テラヘルツ光源から発したパルス光の前記試料への入射角が、前記試料のブリュースター角と略一致するよう動作を制御することを特徴とする請求項6記載の光測定装置。 The optical measurement apparatus according to claim 6, wherein the control mechanism controls an operation so that an incident angle of the pulsed light emitted from the terahertz light source to the sample substantially coincides with a Brewster angle of the sample. .
  8.  前記試料に入射される、前記テラヘルツ光源から発したパルス光は、s偏光及びp偏光の光強度が同等である45度直線偏光であり、
     前記試料で反射した反射光のs偏光及びp偏光の振幅反射係数比及び位相差を、前記偏光子の角度を0度又は90度に設定した場合に検出される信号に基づいて取得するようにしてあることを特徴とする請求項6又は7記載の光測定装置。
    The pulsed light emitted from the terahertz light source that is incident on the sample is 45-degree linearly polarized light having the same light intensity of s-polarized light and p-polarized light,
    The amplitude reflection coefficient ratio and the phase difference between the s-polarized light and the p-polarized light reflected by the sample are acquired based on a signal detected when the angle of the polarizer is set to 0 degree or 90 degrees. The light measuring device according to claim 6 or 7, wherein the light measuring device is provided.
  9.  前記テラヘルツ光源は、光整流法を用いてテラヘルツ周波数領域のパルス光を発生する光導電性アンテナを備え、
     該光導電性アンテナは、発生するパルス光の偏光が45度傾斜するように配置されていることを特徴とする請求項6乃至8のいずれか一項に記載の光測定装置。
    The terahertz light source includes a photoconductive antenna that generates pulsed light in a terahertz frequency region using an optical rectification method,
    9. The optical measurement apparatus according to claim 6, wherein the photoconductive antenna is arranged so that the polarization of the generated pulsed light is inclined by 45 degrees.
  10.  テラヘルツ周波数領域のパルス光を発するテラヘルツ光源と、
     該パルス光を検出する光検出器と、
     前記テラヘルツ光源から発したパルス光を測定対象である試料へ誘導し、該試料を透過した透過光又は前記試料で反射した反射光を前記光検出器へ誘導する、少なくとも二以上のミラーで構成された、前記試料を挟んで対称な位置に配置してある二対のミラー群と
     を備え、
     二対の該ミラー群の位置及び角度を変更することにより、前記テラヘルツ光源から発したパルス光の前記試料への入射角を変更するよう動作を制御することを特徴とする光測定方法。
    A terahertz light source that emits pulsed light in the terahertz frequency range;
    A photodetector for detecting the pulsed light;
    Consists of at least two or more mirrors that guide pulsed light emitted from the terahertz light source to a sample to be measured and guide transmitted light transmitted through the sample or reflected light reflected by the sample to the photodetector. And two pairs of mirror groups arranged at symmetrical positions with the sample in between,
    An optical measurement method comprising: controlling an operation so as to change an incident angle of the pulsed light emitted from the terahertz light source to the sample by changing a position and an angle of the two pairs of mirror groups.
  11.  前記試料の中央部分を回転中心とした支持アームにより二対の前記ミラー群の位置及び角度を変更することを特徴とする請求項10記載の光測定方法。 11. The optical measurement method according to claim 10, wherein the position and angle of the two pairs of mirror groups are changed by a support arm having a central portion of the sample as a rotation center.
  12.  二対の前記ミラー群の位置及び角度を変更することにより、前記光検出器が、透過光を検出するか、反射光を検出するかを切り替えることを特徴とする請求項10又は11記載の光測定方法。 12. The light according to claim 10, wherein the light detector switches between detecting transmitted light and reflected light by changing the position and angle of the two pairs of mirror groups. Measuring method.
PCT/JP2009/005142 2009-03-18 2009-10-05 Optical measuring instrument and optical measurement method WO2010106589A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-066355 2009-03-18
JP2009066355 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010106589A1 true WO2010106589A1 (en) 2010-09-23

Family

ID=42739263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005142 WO2010106589A1 (en) 2009-03-18 2009-10-05 Optical measuring instrument and optical measurement method

Country Status (1)

Country Link
WO (1) WO2010106589A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108117A (en) * 2010-10-25 2012-06-07 Olympus Corp Imaging device
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
JP2015503750A (en) * 2011-12-31 2015-02-02 ジェイ・エイ・ウーラム・カンパニー・インコーポレイテッドJ.A.Woollam Co.,Inc. Terahertz ellipsometer system and method of use thereof
WO2017085863A1 (en) * 2015-11-20 2017-05-26 パイオニア株式会社 Measurement device, measurement method, and computer program
WO2017138061A1 (en) * 2016-02-08 2017-08-17 パイオニア株式会社 Measurement device
JP2017142152A (en) * 2016-02-10 2017-08-17 セイコーエプソン株式会社 Measurement device
JP2017207446A (en) * 2016-05-20 2017-11-24 浜松ホトニクス株式会社 Total reflection spectroscopic measurement apparatus and total reflection spectroscopic measurement method
WO2021122716A1 (en) * 2019-12-20 2021-06-24 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Apparatus for transmitting and/or receiving terahertz radiation, and use thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220834A (en) * 1986-03-24 1987-09-29 Toshiba Corp Photochemical analyzer
JPS63215923A (en) * 1987-03-04 1988-09-08 Copal Co Ltd Auxiliary apparatus for spectrophotometer
JPH0815130A (en) * 1994-06-29 1996-01-19 Jeol Ltd Fourier transform phase modulation spectroellipsometry
JP2003014620A (en) * 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd Polarization analysis apparatus and method
JP2004279352A (en) * 2003-03-18 2004-10-07 Tochigi Nikon Corp Measuring instrument using terahertz light
JP2008151618A (en) * 2006-12-18 2008-07-03 Canon Inc Data acquiring device of object using terahertz wave and data acquiring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62220834A (en) * 1986-03-24 1987-09-29 Toshiba Corp Photochemical analyzer
JPS63215923A (en) * 1987-03-04 1988-09-08 Copal Co Ltd Auxiliary apparatus for spectrophotometer
JPH0815130A (en) * 1994-06-29 1996-01-19 Jeol Ltd Fourier transform phase modulation spectroellipsometry
JP2003014620A (en) * 2001-06-27 2003-01-15 Matsushita Electric Ind Co Ltd Polarization analysis apparatus and method
JP2004279352A (en) * 2003-03-18 2004-10-07 Tochigi Nikon Corp Measuring instrument using terahertz light
JP2008151618A (en) * 2006-12-18 2008-07-03 Canon Inc Data acquiring device of object using terahertz wave and data acquiring method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKESHI NAGASHIMA ET AL.: "Terahertz Ellipsometry ni Okeru Sokutei Seido no Nyushakaku Izonsei", 2002 NEN SHUNKI DAI 49 KAI EXTENDED ABSTRACTS, JAPAN SOCIETY OF APPLIED PHYSICS AND RELATED SOCIETIES, vol. 3, 27 March 2002 (2002-03-27), pages 1099 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012108117A (en) * 2010-10-25 2012-06-07 Olympus Corp Imaging device
JP2015503750A (en) * 2011-12-31 2015-02-02 ジェイ・エイ・ウーラム・カンパニー・インコーポレイテッドJ.A.Woollam Co.,Inc. Terahertz ellipsometer system and method of use thereof
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
US9568422B2 (en) 2012-12-17 2017-02-14 Advantest Corporation Light beam incident device and reflected light measurement device
WO2017085863A1 (en) * 2015-11-20 2017-05-26 パイオニア株式会社 Measurement device, measurement method, and computer program
WO2017138061A1 (en) * 2016-02-08 2017-08-17 パイオニア株式会社 Measurement device
JP2017142152A (en) * 2016-02-10 2017-08-17 セイコーエプソン株式会社 Measurement device
JP2017207446A (en) * 2016-05-20 2017-11-24 浜松ホトニクス株式会社 Total reflection spectroscopic measurement apparatus and total reflection spectroscopic measurement method
WO2021122716A1 (en) * 2019-12-20 2021-06-24 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Apparatus for transmitting and/or receiving terahertz radiation, and use thereof

Similar Documents

Publication Publication Date Title
WO2010106589A1 (en) Optical measuring instrument and optical measurement method
US6847448B2 (en) Polarization analyzing apparatus and method for polarization analysis
TWI536014B (en) Method and apparatus for analyzing x-ray diffraction from tilted layers
US9404855B2 (en) Method to obtain absorption spectra from near-field infrared scattering using homo-dyne detection
WO2006064653A1 (en) Terahertz photodetector, method for detecting terahertz light, and terahertz imaging system
WO2002079760A3 (en) Polarimetric scatterometer for critical dimension measurements of periodic structures
US9134182B2 (en) Measurement apparatus and method, tomography apparatus and method
JPH02263105A (en) Film thickness measuring apparatus
JP2006300708A (en) Near field polarization measuring instrument
JP2005129732A (en) Tera-hertz light generation device and tera-hertz light measuring instrument
TW200525271A (en) Differential evaluation of adjacent regions for change in reflectivity
CN116952380A (en) Elliptical polarization measuring device and measuring method thereof
JP4091214B2 (en) Terahertz wave spectrometer
JP2004125712A (en) Spectrometric apparatus
RU2466381C2 (en) System and method of detecting local mechanical stress in integrated devices
WO2011122281A1 (en) Terahertz radiation analysis device and method of analyzing terahertz radiation
US6982791B2 (en) Scatterometry to simultaneously measure critical dimensions and film properties
Kovalev et al. LED broadband spectral ellipsometer with switching of orthogonal polarization states
WO2011052295A1 (en) Optical measurement device and optical measurement method
WO2003036362A1 (en) Terahertz light supplying optical system, terahertz light detecting optical system, and terahertz optical device using this
JP2005227021A (en) Terahertz light measuring instrument
RU2384835C1 (en) Ellipsometre
KR20100067753A (en) System of measuring angle of galvano meter
CN109238466A (en) The characterizing method and time resolution focal plane imaging system of terahertz polarization state
US20050239224A1 (en) Method and apparatus for measuring relative dielectric constant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP