JPH0815130A - Fourier transform phase modulation spectroellipsometry - Google Patents

Fourier transform phase modulation spectroellipsometry

Info

Publication number
JPH0815130A
JPH0815130A JP14741194A JP14741194A JPH0815130A JP H0815130 A JPH0815130 A JP H0815130A JP 14741194 A JP14741194 A JP 14741194A JP 14741194 A JP14741194 A JP 14741194A JP H0815130 A JPH0815130 A JP H0815130A
Authority
JP
Japan
Prior art keywords
light
component
phase modulation
analyzer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14741194A
Other languages
Japanese (ja)
Other versions
JP3311497B2 (en
Inventor
Kunihide Tachibana
邦英 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP14741194A priority Critical patent/JP3311497B2/en
Publication of JPH0815130A publication Critical patent/JPH0815130A/en
Application granted granted Critical
Publication of JP3311497B2 publication Critical patent/JP3311497B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high speed high sensitivity infrared ellipsometry by combining Fourier transform infrared spectrophotometry with phase modulation spectroellipsometry. CONSTITUTION:A polarizer 3 and a phase modulation element 4 are arranged on the incident side of a sample 7 while an analyzer 5 and a light receiving unit 6 are arranged on the reflection side. A phase difference delta is introduced between Ppolarized light and S-polarized light from the polarizer 3 through modulation with frequency omega and the reflected light is detected through the analyzer 5. When two ellipsometric parameters at the time of reflection, i.e., the variation DELTA of phase difference between the P-polarized and S-polarized lights and the amplitude reflectance ratio angle PSI, are determined based on the DC component, and the components of frequencies omega, 2omega, an interferometer 2 for Fourier spectroscopy is arranged in the optical path between a light source 1 and time light receiving unit 6. The light receiving unit 6 detects the DC component and the components of frequency omega and 2omega from the light subjected to phase modulation and interference modulation. DELTA and PSI are determined based on the values obtained through Fourier transform of these three components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、偏光解析法に関し、特
に、プロセス装置に組み込んで、薄膜形成過程、エッチ
ング過程、表面清浄過程等において、試料の偏光解析パ
ラメータを高速に計測するのに使用可能なフーリエ変換
分光位相変調偏光解析法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ellipsometry, and in particular, it is used for measuring ellipsometry parameters of a sample at high speed in a thin film forming process, etching process, surface cleaning process, etc. It relates to a possible Fourier transform spectroscopy phase modulation ellipsometry.

【0002】[0002]

【従来の技術】光を物質に照射した場合、入射光の偏光
状態と反射光の偏光状態とは、図8に模式的に示すよう
に、一般に異なる。これは、P偏光(入射面に平行な偏
光成分)とS偏光(入射面に垂直な偏光成分)との間
に、反射率と反射の際の位相ずれに差があるためで、こ
のような偏光状態の変化は、P偏光とS偏光の位相差の
変化分Δと振幅反射率比角Ψとの2つのパラメータで表
す。ここで、P偏光、S偏光各々の複素反射係数rP
S の比rP /rS (複素反射率比)は、この2つのパ
ラメータΔ、Ψを用いて次のように表される。
2. Description of the Related Art When a substance is irradiated with light, the polarization state of incident light and the polarization state of reflected light are generally different as shown in FIG. This is because there is a difference between the reflectance and the phase shift at the time of reflection between P-polarized light (a polarized light component parallel to the incident surface) and S-polarized light (a polarized light component perpendicular to the incident surface). The change in the polarization state is represented by two parameters, that is, the change Δ in the phase difference between the P-polarized light and the S-polarized light and the amplitude reflectance ratio angle Ψ. Here, the complex reflection coefficient r P of each of P-polarized light and S-polarized light,
The ratio of r S r P / r S (complex reflectivity ratio), the two parameters delta, with Ψ is expressed as follows.

【0003】rP /rS =tan Ψexp (iΔ) このΔ、Ψは、光の波長、入射角、物質の複素屈折率、
さらに膜がある場合には膜厚等の値によって決まる。し
たがって、Δ、Ψを測定すれば、物質の複素屈折率や膜
厚が求まる。
R P / r S = tan Ψ exp (iΔ) where Δ and Ψ are the wavelength of light, the angle of incidence, the complex refractive index of the substance,
Further, when there is a film, it is determined by the value of the film thickness or the like. Therefore, by measuring Δ and Ψ, the complex refractive index and the film thickness of the substance can be obtained.

【0004】上記の2つのパラメータΔ、Ψを求める方
法が偏光解析法であり、パラメータΔ、Ψは偏光解析パ
ラメータと呼ばれる。従来知られた偏光解析法には、消
光位置検出法、回転検光子法、位相変調法等があり、こ
の中、消光位置検出法は、入射側で偏光子の回転と1/
4波長板を用いて試料からの反射光が直線偏光になる入
射楕円偏光を作り、検出器の出力が極小になるように反
射側の検光子を回転させてΔ、Ψを測定する方法であ
る。回転検光子法は、試料に入射面に対して45°方位
の直線偏光を入射させ、反射して楕円偏光になった反射
光を光軸中心に回転する検光子を通して検出すると、反
射光の楕円偏光状態を反映した周期的な信号が得られる
ので、これによりΔ、Ψを測定する方法である。位相変
調法は、図6に模式的に示すように、入射側に光弾性変
調素子(Photo Elastic Modulat
or:PEM)を導入し、偏光子で直線偏光にされた光
のP偏光成分とS偏光成分の間に周波数ωで変調された
位相差δを導入し、反射光を検光子を通して検出し、そ
の直流成分と周波数ωの成分と周波数2ωの成分から
Δ、Ψを測定する方法である。
The method for obtaining the above two parameters Δ and Ψ is ellipsometry, and the parameters Δ and Ψ are called ellipsometry parameters. Conventionally known polarization analysis methods include an extinction position detection method, a rotation analyzer method, and a phase modulation method. Among these, the extinction position detection method includes rotation of the polarizer and 1 /
This is a method of making incident elliptical polarized light in which the reflected light from the sample becomes linearly polarized light using a four-wave plate and rotating the analyzer on the reflection side so that the output of the detector becomes minimum and measuring Δ and Ψ. . In the rotating analyzer method, when linearly polarized light of 45 ° azimuth with respect to the incident surface is incident on the sample and the reflected light that is reflected and becomes elliptical polarized light is detected through an analyzer that rotates about the optical axis, the ellipse of the reflected light is obtained. Since a periodic signal reflecting the polarization state is obtained, this is a method of measuring Δ and Ψ. As shown schematically in FIG. 6, the phase modulation method uses a photoelastic modulator (Photo Elastic Modulator) on the incident side.
Or: PEM) is introduced, a phase difference δ modulated with a frequency ω is introduced between the P-polarized component and the S-polarized component of the light linearly polarized by the polarizer, and the reflected light is detected through an analyzer, This is a method of measuring Δ and Ψ from the DC component, the frequency ω component, and the frequency 2ω component.

【0005】ところで、赤外域での偏光解析法は、薄膜
の膜厚と誘電関数(n−ik;nは屈折率、kは消衰係
数)を同時に決定できると同時に、薄膜中の赤外活性な
化学結合が誘電関数の共鳴分散として検出できる。この
分析法は、薄膜形成中の構成化学結合種の変化等をその
場で計測可能であり、基板と薄膜の界面や、基板や薄膜
の表面状態を原子レベルで制御することが要求されてき
ている最近の半導体プロセスにおいて、有効な役割を果
たしつつある。このような赤外域の偏光解析法の例とし
ては、仏国特許第86−11021号をあげることがで
きる。
In the infrared ellipsometry, the film thickness and the dielectric function (n-ik; n is the refractive index and k is the extinction coefficient) of the thin film can be determined at the same time, and at the same time, the infrared activity in the thin film is reduced. Various chemical bonds can be detected as resonance dispersion of the dielectric function. This analysis method can measure in situ changes in constituent chemical bonds during thin film formation, and it has been required to control the interface between the substrate and thin film and the surface state of the substrate and thin film at the atomic level. In recent semiconductor processes, it is playing an effective role. As an example of such an infrared ellipsometry, French Patent No. 86-11021 can be mentioned.

【0006】[0006]

【発明が解決しようとする課題】従来の赤外域偏光解析
法は、フーリエ変換赤外分光器と回転検光子型偏光解析
装置、又は、分散型赤外分光器と位相変調偏光解析装置
を組み合わせて行われていた。前者は、フーリエ変換分
光法を用いるため、広範囲の波数域を短時間かつ高い感
度で分光可能であるという特徴を有するが、回転検光子
による位相変調を行っており、その回転周波数が数十H
z程度であることが律速して、表面状態の速い変化には
追従できないというい問題点を有している。
The conventional infrared ellipsometry method is a combination of a Fourier transform infrared spectrometer and a rotating analyzer ellipsometer, or a dispersive infrared spectrometer and a phase modulation ellipsometer. It was done. The former is characterized by being able to disperse a wide range of wave numbers in a short time and with high sensitivity because it uses Fourier transform spectroscopy, but it performs phase modulation by a rotating analyzer and its rotation frequency is several tens of H.
There is a problem in that it is rate-determined to be about z and cannot follow a rapid change in the surface state.

【0007】後者は、変調周波数が約50kHzという
高速変調が可能であるという特徴を有する位相変調素子
による位相変調を行うため、速い現象に追従可能であ
る。しかし、位相変調偏光解析装置は、紫外−可視域の
分散型分光器を用いた偏光解析法の対象波数域を赤外域
に変更した方式であるため、感度が低く、また、速い現
象に追従するためには、分光器の波数掃引幅を狭くしな
ければならないという問題点を有している。
The latter is capable of following a fast phenomenon because it performs phase modulation by a phase modulation element having a characteristic that a modulation frequency of about 50 kHz is possible. However, the phase-modulation ellipsometer is a method in which the target wave number range of the ellipsometry method using a dispersive spectrometer in the UV-visible region is changed to the infrared region, so it has low sensitivity and follows fast phenomena. Therefore, there is a problem that the wave number sweep width of the spectroscope must be narrowed.

【0008】フーリエ変換分光器と高速位相変調素子を
組み合わせた場合には、両者の特徴が活かされ、高速か
つ高感度の計測が可能になり得る。しかし、この場合、
マイケルソン干渉計の移動鏡が移動している最中の光が
位相変調を受けることになるため、位相変調を受けたイ
ンターフェログラム信号から偏光解析パラメータを求め
なければならない。このような信号処理は、従来のフー
リエ変換赤外分光法、回転検光子型偏光解析法及び位相
変調偏光解析法の信号処理法を用いて実現することがで
きなかった。
When the Fourier transform spectroscope and the high speed phase modulation element are combined, the characteristics of both are utilized, and high speed and high sensitivity measurement can be realized. But in this case
Since the light during the movement of the movable mirror of the Michelson interferometer will be phase-modulated, the polarization analysis parameter must be obtained from the interferogram signal that has been phase-modulated. Such signal processing cannot be realized by using conventional signal processing methods such as Fourier transform infrared spectroscopy, rotary analyzer ellipsometry, and phase modulation ellipsometry.

【0009】本発明このような従来技術の問題点に鑑み
てなされたものであり、その目的は、フーリエ変換赤外
分光法と位相変調偏光解析法を結び付けて、高速かつ高
感度の赤外偏光解析が可能となるフーリエ変換分光位相
変調偏光解析法を提供することであり、特に、位相変調
を受けたインターフェログラムから偏光解析パラメータ
を求める信号処理方法を提供することである。
The present invention has been made in view of the above problems of the prior art, and its object is to combine a Fourier transform infrared spectroscopy and a phase modulation ellipsometry to obtain a high-speed and high-sensitivity infrared polarization. It is an object of the present invention to provide a Fourier transform spectral phase modulation ellipsometry method that enables analysis, and in particular to provide a signal processing method for obtaining an ellipsometry parameter from an interferogram subjected to phase modulation.

【0010】[0010]

【課題を解決するための手段】本発明のフーリエ変換分
光位相変調偏光解析法では、光源から出た光はマイケル
ソン干渉計を経てあらゆる波数の光が干渉した光とな
り、偏光子、位相変調素子を経て試料表面で反射し、そ
の反射光が検光子を通して検出器に入射される。偏光
子、検光子の方位角は、それぞれ±45°、±45°に
設定する。位相変調素子は方位角0°又は90に設定
し、方位角方向の偏光とそれに垂直な偏光の位相差を周
波数ωで変調する。本方法では、従来のフーリエ変換分
光法と異なり、検出器から出力される光強度信号の中、
直流成分、ω成分、2ω成分が同期検波により検出さ
れ、これら3つの信号の干渉計移動鏡位置依存性(イン
ターフェログラム)が記録される。これらのインターフ
ェログラムは高速フーリエ変換され、直流成分、ω成
分、2ω成分の波数依存性(スペクトル)に変換され
る。これら3つのスペクトルは、予め校正された変調角
の値のベッセル関数値を用い、四則演算により偏光パラ
メータのスペクトルに変換することが可能である。
In the Fourier transform spectroscopic phase modulation ellipsometry of the present invention, the light emitted from the light source passes through a Michelson interferometer to become light in which all the wave numbers interfere, and a polarizer and a phase modulator After passing through, the light is reflected by the sample surface, and the reflected light is incident on the detector through the analyzer. The azimuth angles of the polarizer and the analyzer are set to ± 45 ° and ± 45 °, respectively. The azimuth angle of the phase modulation element is set to 0 ° or 90, and the phase difference between the polarized light in the azimuth direction and the polarized light perpendicular thereto is modulated at the frequency ω. In this method, unlike the conventional Fourier transform spectroscopy, among the light intensity signals output from the detector,
The DC component, the ω component, and the 2ω component are detected by the synchronous detection, and the interferometer movable mirror position dependency (interferogram) of these three signals is recorded. These interferograms are fast-Fourier-transformed and converted into the wave number dependence (spectrum) of DC component, ω component, and 2ω component. These three spectra can be converted into polarization parameter spectra by four arithmetic operations using the Bessel function value of the value of the modulation angle calibrated in advance.

【0011】変調角の校正時には、光源から出た光は、
マイケルソン干渉計、偏光子、位相変調素子を経て、直
接検光子を通して検出器に入射されるような光学系を構
成する。偏光子、検光子の方位角は、試料測定時と同じ
それぞれ±45°、±45°に設定し、位相変調素子は
0°又は90に設定し、方位角方向の偏光とそれに垂直
な偏光の位相差を周波数ωで変調する。検出器から出力
される光強度信号の中、直流成分、周波数2ω成分が同
期検波により検出され、これら2つの信号のインターフ
ェログラムが記録される。これらのインターフェログラ
ムは高速フーリエ変換され、直流成分、周波数2ω成分
のスペクトルに変換される。直流成分と周波数2ω成分
のスペクトル強度の比は、変調角の関数になっており、
その関数を変調角について解くことにより、変調角のス
ペクトルが得られ、偏光パラメータの波長依存性の校正
が可能となる。
When calibrating the modulation angle, the light emitted from the light source is
An optical system is constructed so that it is directly incident on the detector through the analyzer through the Michelson interferometer, the polarizer, and the phase modulation element. The azimuth angles of the polarizer and analyzer are set to ± 45 ° and ± 45 °, respectively, which are the same as those at the time of sample measurement, the phase modulator is set to 0 ° or 90, and the azimuth polarization and the polarization perpendicular thereto are set. The phase difference is modulated with the frequency ω. In the light intensity signal output from the detector, the DC component and the frequency 2ω component are detected by synchronous detection, and the interferogram of these two signals is recorded. These interferograms are fast-Fourier-transformed and converted into a DC component spectrum and a frequency 2ω component spectrum. The ratio of the spectral intensity of the DC component to the frequency 2ω component is a function of the modulation angle,
By solving the function for the modulation angle, the spectrum of the modulation angle is obtained, and the wavelength dependence of the polarization parameter can be calibrated.

【0012】すなわち、前記の目的を達成する本発明の
フーリエ変換分光位相変調偏光解析法は、試料入射側に
偏光子と位相変調素子を順に配置し、試料反射側に検光
子と受光器を順に配置して、偏光子で直線偏光にされた
光のP偏光成分とS偏光成分の間に周波数ωで変調され
た位相差δを導入し、反射光を検光子を通して検出し、
その直流成分と周波数ωの成分と周波数2ωの成分か
ら、反射の際のP偏光とS偏光の位相差の変化分Δと振
幅反射率比角Ψとの2つの偏光解析パラメータを求める
位相変調偏光解析法において、光源から受光器に到る光
路中にフーリエ分光のための干渉計を配置し、さらに、
前記偏光子の方位角(P)が±45°、前記位相変調素
子の方位角(M)が0°又は90°、前記検光子の方位
角が(A)±45°(これらの方位角P、M、Aは相互
に独立)となるように配置した状態で、位相変調及び干
渉変調を受けた光を前記受光器で測定し、得られた干渉
光信号の直流成分idc(x)、周波数ωの成分i
1 (x)、周波数2ωの成分i2 (x)の3成分を検出
し、これら3成分をフーリエ変換して得られるI
dc(k),I1 (k),I2 (k)から次式(33)及
び(34)に基づいて前記Δ、Ψを求めることを特徴と
する方法である。 ±sin 2Ψ(k)sin Δ(k)=[I1 (k)/2J1 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(33) ±sin 2Ψ(k)cos Δ(k)=[I2 (k)/2J2 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(34) ただし、δ0 (k)は、前記位相変調素子の変調振幅で
あり、式(33)及び(34)における±の符号は次の
表2による。
That is, in the Fourier transform spectral phase modulation ellipsometry method of the present invention which achieves the above-mentioned object, a polarizer and a phase modulation element are sequentially arranged on the sample incident side, and an analyzer and a light receiver are sequentially arranged on the sample reflecting side. The phase difference δ modulated by the frequency ω is introduced between the P-polarized component and the S-polarized component of the light linearly polarized by the polarizer, and the reflected light is detected through the analyzer.
From the DC component, the frequency ω component, and the frequency 2ω component, two polarization analysis parameters for obtaining the two polarization analysis parameters of the change Δ in the phase difference between the P-polarized light and the S-polarized light at the time of reflection and the amplitude reflectance ratio angle Ψ are obtained. In the analysis method, an interferometer for Fourier spectroscopy is arranged in the optical path from the light source to the light receiver, and further,
The azimuth angle (P) of the polarizer is ± 45 °, the azimuth angle (M) of the phase modulation element is 0 ° or 90 °, and the azimuth angle of the analyzer is (A) ± 45 ° (these azimuth angles P , M, and A are arranged independently of each other), the light subjected to the phase modulation and the interferometric modulation is measured by the photodetector, and the direct-current component i dc (x) of the obtained interfering optical signal, Frequency i component i
I (3) obtained by detecting the three components of 1 (x) and the component i 2 (x) of frequency 2ω and performing Fourier transform of these three components
This is a method characterized in that Δ and Ψ are obtained from dc (k), I 1 (k) and I 2 (k) based on the following equations (33) and (34). ± sin 2Ψ (k) sin Δ (k) = [I 1 (k) / 2J 10 (k))] / [I dc (k) −I 2 (k) J 00 (k)) ) / 2J 20 (k))] (33) ± sin 2Ψ (k) cos Δ (k) = [I 2 (k) / 2J 20 (k))] / [I dc (k) -I 2 (k) J 00 (k)) / 2J 20 (k))] (34) where δ 0 (k) is the phase modulation element It is the modulation amplitude, and the sign of ± in equations (33) and (34) is according to Table 2 below.

【0013】また、試料を取り除いた状態で、検光子と
受光器を位相変調素子を透過した光を直接入射させる透
過型の配置にし、偏光子、位相変調素子、及び、検光子
の方位角を同じままで、位相変調及び干渉変調を受けた
光を受光器で測定し、得られた干渉光信号の直流成分、
周波数2ωの成分の2成分を検出し、これら2成分をフ
ーリエ変換して得られる値から位相変調素子の変調振幅
の波数依存性を求め、それを用いて前記Δ、Ψを求める
ことができる。
Further, with the sample removed, the analyzer and the light receiver are arranged in a transmission type in which the light transmitted through the phase modulator is directly incident, and the azimuth angles of the polarizer, the phase modulator and the analyzer are set. With the same condition, the light that has undergone phase modulation and interferometric modulation is measured by the photodetector, and the direct current component of the obtained interfering optical signal,
It is possible to detect the two components of the frequency 2ω, obtain the wave number dependence of the modulation amplitude of the phase modulation element from the values obtained by Fourier transforming these two components, and use it to obtain Δ and Ψ.

【0014】[0014]

【作用】本発明においては、位相変調偏光解析法におい
て、光源から受光器に到る光路中にフーリエ分光のため
の干渉計を配置し、位相変調及び干渉変調を受けた光を
受光器で測定し、得られた干渉光信号の直流成分、周波
数ωの成分、周波数2ωの成分の3成分を検出し、これ
ら3成分をフーリエ変換して得られる値から反射の際の
P偏光とS偏光の位相差の変化分Δと振幅反射率比角Ψ
との2つの偏光解析パラメータを求めるので、広範囲の
波数域の偏光解析パラメータを高速かつ高感度で計測す
ることが可能となる。
In the present invention, in the phase modulation ellipsometry, an interferometer for Fourier spectroscopy is arranged in the optical path from the light source to the light receiver, and the light subjected to the phase modulation and the interference modulation is measured by the light receiver. Then, three components of the obtained interference light signal, that is, the DC component, the frequency ω component, and the frequency 2ω component are detected, and the P polarization and S polarization at the time of reflection are calculated from the values obtained by Fourier transforming these three components. Phase difference change Δ and amplitude reflectance ratio angle Ψ
Since the two polarization analysis parameters are obtained, it is possible to measure the polarization analysis parameters in a wide range of wave numbers at high speed and with high sensitivity.

【0015】また、試料の測定時から位相変調素子の変
調振幅の波数依存性のための測定に移行する際、又はそ
の逆に移行する際に、偏光子、位相変調素子、検光子そ
れぞれの方位角を何ら変更しなくてもよいため、配置に
変動箇所が少なく、正確で短時間の測定が可能になる。
In addition, when the measurement of the sample shifts to the measurement for the wave number dependence of the modulation amplitude of the phase modulation element, or vice versa, the azimuths of the polarizer, the phase modulation element, and the analyzer are respectively changed. Since the angle does not have to be changed at all, there are few fluctuations in the arrangement, and accurate and short-time measurement is possible.

【0016】[0016]

【実施例】まず、図6に示したような従来の分散型の位
相変調法について説明する。ある波数kに対する反射光
は次式で与えられる(Rev.Sci.Instru
m.53(7),Jul.1982,pp.969−9
77)。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, a conventional dispersion type phase modulation method as shown in FIG. 6 will be described. Reflected light for a certain wave number k is given by (Rev. Sci. Instru
m. 53 (7), Jul. 1982, pp. 969-9
77).

【0017】 I(k,t)=I0 (k)+IS (k)sin [δ(k,t)] +IC (k)cos [δ(k,t)]・・・(1) ここで、PEMでの変調角(位相差)δ(k,t)と各
係数は、 δ(k,t)=δ0 (k)sin ωt ・・・(2) I0 (k)=K(k)[1+cos 2Acos 2Mcos 2(M−P)− (cos 2A+cos 2Mcos 2(M−P))cos 2Ψ− sin 2Asin 2Mcos 2(M−P)sin 2sin 2Ψcos Δ] ・・・(3) IS (k)=K(k)[−sin 2(M−P)sin 2Asin 2Ψsin Δ] ・・・(4) IC (k)=K(k)[−sin 2(M−P){sin 2M(cos 2Ψ− cos 2A)+cos 2Msin 2Asin 2Ψsin Δ}] ・・・(5) K(k)=|rP (k)2 +rS (k)2 |/4 ・・・(6) で与えられる。ここで、偏光子の通過軸の方位角P、P
EMの圧力軸の方位角M、検光子の通過軸の方位角A
は、図7に示されるように、x−z面を入射面にとった
とき、入射面から測定される。
I (k, t) = I 0 (k) + I S (k) sin [δ (k, t)] + I C (k) cos [δ (k, t)] (1) where Then, the modulation angle (phase difference) δ (k, t) and each coefficient in the PEM are as follows: δ (k, t) = δ 0 (k) sin ωt (2) I 0 (k) = K ( k) [1 + cos 2Acos 2Mcos 2 (M-P) - (cos 2A + cos 2Mcos 2 (M-P)) cos 2Ψ- sin 2Asin 2Mcos 2 (M-P) sin 2sin 2Ψcos Δ] ··· (3) I S ( k) = K (k) [ - sin 2 (M-P) sin 2Asin 2Ψsin Δ] ··· (4) I C (k) = K (k) [- sin 2 (M-P) {sin 2M ( cos 2Ψ− cos 2A) + cos 2Msin 2Asin 2Ψsin Δ}] (5) K (k) = | r P (k) 2 + r S (k) 2 | / 4 (6) Here, azimuth angles P, P of the pass axis of the polarizer
Azimuth M of pressure axis of EM, azimuth A of pass axis of analyzer
Is measured from the incident surface when the xz plane is taken as the incident surface as shown in FIG.

【0018】特別な場合として、P=±45°,M=0
°又は90°,A=±45°(P,M,Aは相互に独
立)の場合、 I0 (k)=K(k) ・・・(7) IS (k)=±K(k)[sin 2Ψsin Δ] ・・・(8) IC (k)=±K(k)[sin 2Ψcos Δ] ・・・(9) となる。ただし、式(8)及び(9)における±の符号
は次の表1による。
As a special case, P = ± 45 °, M = 0
Or 90 °, A = ± 45 ° (P, M, and A are mutually independent), I 0 (k) = K (k) (7) I S (k) = ± K (k ) [Sin 2Ψsin Δ] (8) I C (k) = ± K (k) [sin 2Ψcos Δ] (9) However, the signs of ± in formulas (8) and (9) are as shown in Table 1 below.

【0019】 したがって、I0 (k),IS (k),IC (k)を決
定することにより、Ψ(k),Δ(k)を決定すること
ができる。反射光を2ωの周波数成分までに帶域制限す
ると、次のようになる。
[0019] Therefore, by determining I 0 (k), I S (k), and I C (k), Ψ (k) and Δ (k) can be determined. When the reflected light is limited to the frequency range of 2ω in the general range, the following is obtained.

【0020】 I(k,t)=Idc(k)+I1 (k)sin ωt+I2 (k)cos 2ωt ・・・(10) ここで、各係数は、 Idc(k)=I0 (k)+IC (k)J0 (δ0 (k)) ・・・(11) I1 (k)=2IS (k)J1 (δ0 (k)) ・・・(12) I2 (k)=2IC (k)J2 (δ0 (k)) ・・・(13) で与えられる。ただし、J0 ,J1 ,J2 はそれぞれ0
次、1次、2次のベッセル関数である。
I (k, t) = I dc (k) + I 1 (k) sin ωt + I 2 (k) cos 2ωt (10) Here, each coefficient is I dc (k) = I 0 ( k) + I C (k) J 00 (k)) ・ ・ ・ (11) I 1 (k) = 2I S (k) J 10 (k)) ・ ・ ・ (12) I 2 (K) = 2I C (k) J 20 (k)) (13) However, J 0 , J 1 , and J 2 are each 0
It is a Bessel function of the first order, second order, and second order.

【0021】したがって、直流成分Idc(k)、ω成分
1 (k)、2ω成分I2 (k)を計測によって決定す
ることにより、I0 (k),IS (k),IC (k)が
次のように得られる。
Therefore, by determining the DC component I dc (k), ω component I 1 (k), and 2ω component I 2 (k) by measurement, I 0 (k), I S (k), and I C (K) is obtained as follows.

【0022】 I0 (k)=Idc(k) −I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))・・・(14) IS (k)=I1 (k)/2J1 (δ0 (k)) ・・・(15) IC (k)=I2 (k)/2J2 (δ0 (k)) ・・・(16) これらの式(14)〜(16)の値と式(7)〜(9)
の関係から、Ψ(k)、Δ(k)を求めることができ
る。もちろん、式(7)〜(9)は特別の場合の関係で
あるが、それに限定されず、一般的な式(3)〜(5)
に基づいてΨ(k),Δ(k)を求めることができる。
上記したRev.Sci.Instrum.53
(7),Jul.1982,pp.969−977にお
いては、J0 (δ0 (k))=0になるようにδ
0 (k)を2.405radに設定して、上記の式(1
4)〜(16)を簡単にしている。
I 0 (k) = I dc (k) −I 2 (k) J 00 (k)) / 2J 20 (k)) (14) I S (k) = I 1 (k) / 2J 10 (k)) ・ ・ ・ (15) I C (k) = I 2 (k) / 2J 20 (k)) ・ ・ ・ (16) Values of equations (14) to (16) and equations (7) to (9)
From the relationship of, Ψ (k) and Δ (k) can be obtained. Of course, the formulas (7) to (9) are in a special case, but not limited thereto, and general formulas (3) to (5).
Based on the above, Ψ (k) and Δ (k) can be obtained.
Rev. described above. Sci. Instrum. 53
(7), Jul. 1982, pp. In 969-977, δ so that J 00 (k)) = 0.
Setting 0 (k) to 2.405 rad, the above equation (1
4) to (16) are simplified.

【0023】以上の方法は、全ての波数の光を一度に取
り込むフーリエ変換分光の場合には、そのまま用いるこ
とはできない。その一つの案として、次のような手法が
考えられる。フーリエ変換前の反射光強度は、式(1
0)を逆フーリエ変換して次のようになる。
The above method cannot be used as it is in the case of Fourier transform spectroscopy which takes in light of all wave numbers at once. As one of the proposals, the following method can be considered. The reflected light intensity before the Fourier transform is expressed by the formula (1
Inverse Fourier transform of 0) is as follows.

【0024】 i(x,t)=idc(x)+i1 (x)sin ωt+i2 (x)cos 2ωt ・・・(17) ここで、各係数は式(10)の各係数をそのまま逆フー
リエ変換したもので、 i(x,t)=F-1[I(k,t)] ・・・(18) idc(x)=F-1[Idc(k)] ・・・(19) i1 (x)=F-1[I1 (k)] ・・・(20) i2 (x)=F-1[I2 (k)] ・・・(21) で与えられる。
I (x, t) = i dc (x) + i 1 (x) sin ωt + i 2 (x) cos 2ωt (17) Here, each coefficient is the inverse of each coefficient of the equation (10). Fourier transformed, i (x, t) = F −1 [I (k, t)] (18) i dc (x) = F −1 [I dc (k)] ( 19) i 1 (x) = F −1 [I 1 (k)] (20) i 2 (x) = F −1 [I 2 (k)] (21)

【0025】したがって、フーリエ変換分光の場合にI
dc(k),I1 (k),I2 (k)を求めるには、フー
リエ変換前のインターフェログラム信号の直流成分、ω
成分、2ω成分を計測し、それぞれを別個にフーリエ変
換すればよいことになる。Ψ(k)、Δ(k)の値を計
算するためには、Idc(k),I1 (k),I2 (k)
から式(14)〜(16)によりI0 (k),I
S (k),IC (k)を計算する必要がある。その際、
δ0 (k)すなわちPEMの変調振幅を用いる必要があ
る。しかしながら、PEMの変調角に波数依存性がある
のが一般的であり、上記の先行技術のように、δ
0 (k)=2.405radに固定することは、フーリ
エ変換分光の場合、原理的に不可能であるので、δ
0 (k)は各波数によって異なることを前提にしなけれ
ばならない。
Therefore, in the case of Fourier transform spectroscopy, I
To obtain dc (k), I 1 (k), and I 2 (k), the DC component of the interferogram signal before Fourier transform, ω
It suffices to measure the component and the 2ω component and perform Fourier transform on each separately. In order to calculate the values of Ψ (k) and Δ (k), I dc (k), I 1 (k), and I 2 (k)
From equations (14) to (16), I 0 (k), I
It is necessary to calculate S (k) and I C (k). that time,
It is necessary to use δ 0 (k), that is, the PEM modulation amplitude. However, it is general that the modulation angle of the PEM has wave number dependence, and as in the above-mentioned prior art, δ
Since it is impossible in principle to fix 0 (k) = 2.405 rad in the case of Fourier transform spectroscopy, δ
It must be assumed that 0 (k) is different for each wave number.

【0026】しかし、δ0 (k)が各波数において既知
であれば、図4のフローチャートに示すように、ステッ
プST1で、検出器から得られるインターフェログラム
信号の帯域を2ωに制限して式(17)の信号を得て、
次いで、ステップST2で、このようにして得られた信
号の直流成分idc(x)、ω成分i1 (x)、2ω成分
2 (x)を分離し、ステップST3で、それぞれの成
分を別個にフーリエ変換してIdc(k),I1 (k),
2 (k)を得て、次に、ステップST4で、既知のδ
0 (k)のテーブルを参照にして、式(14)〜(1
6)によりI0 (k),IS (k),IC (k)を計算
し、そして、ステップST5で、式(7)〜(9)を用
いて偏光解析パラメータΨ(k),Δ(k)を求めるこ
とができる(図4では、P=−45°,M=0°,A=
−45°を想定している。)。なお、一般的な配置にお
いては、式(7)〜(9)の代わりに、一般式(3)〜
(5)を用いてΨ(k),Δ(k)を求めることができ
る。
However, if δ 0 (k) is known for each wave number, as shown in the flowchart of FIG. 4, in step ST1, the band of the interferogram signal obtained from the detector is limited to 2ω, Obtain the signal of (17),
Next, in step ST2, the DC component i dc (x), ω component i 1 (x), and 2ω component i 2 (x) of the signal thus obtained are separated, and in step ST3, the respective components are separated. Fourier transform is performed separately to obtain I dc (k), I 1 (k),
I 2 (k) is obtained, and then at step ST4, a known δ
With reference to the table of 0 (k), equations (14) to (1
6) is used to calculate I 0 (k), I S (k), and I C (k), and in step ST5, the polarization analysis parameters Ψ (k), Δ are calculated using the equations (7) to (9). (K) can be obtained (in FIG. 4, P = −45 °, M = 0 °, A =
We assume -45 °. ). Note that in a general arrangement, instead of formulas (7) to (9), general formulas (3) to
Using (5), Ψ (k) and Δ (k) can be obtained.

【0027】以上から、PEMの変調振幅δ0 (k)を
予め知っていれば、フーリエ変換分光位相変調偏光解析
法が実現可能であるということが言える。そこで、本発
明においては、試料の配置を除いて、入射光が検出器に
直接到達するように配置して、以下のようにしてこのδ
0 (k)を求め、これを用いて、図4のような順序で偏
光解析パラメータΨ(k),Δ(k)を求める。
From the above, it can be said that the Fourier transform spectral phase modulation ellipsometry can be realized if the modulation amplitude δ 0 (k) of the PEM is known in advance. Therefore, in the present invention, the sample is arranged so that the incident light directly reaches the detector, and this δ is set as follows.
0 (k) is obtained, and using this, the polarization analysis parameters Ψ (k) and Δ (k) are obtained in the order shown in FIG.

【0028】以上の式(1)〜(16)は反射方式の偏
光解析についての式であったが、入射光が検出器に到達
するまでに受けた偏光状態の変化がΨとΔで表されれ
ば、透過方式の場合についても成り立つ。透過方式にお
いて、試料が置かれるべき位置に何も置かないと、そこ
での偏光状態の変化はないので、 rP (k)=1 ・・・(22) rS (k)=1 ・・・(23) となる。tan Ψexp (iΔ)=rP (k)/rS (k)
であるので、 tan Ψ=1 即ち Ψ=45° ・・・(24) Δ=0° ・・・(25) となる。このとき、光学系として、試料を配置した反射
方式の測定と同じP=±45°,M=0°又は90°,
A=±45°(P,M,Aは相互に独立)の配置とする
と、 I0 (k)=K(k) ・・・(26) IS (k)=±K(k)[sin 2Ψsin Δ]=0 ・・・(27) IC (k)=±K(k)[sin 2Ψcos Δ]=±K(k) ・・・(28) となる。ただし、式(28)における±の符号は表1の
式(9)と同様な関係で定まる。したがって、式(1
0)で表される検出器の出力信号の直流、ω、2ω成分
は、式(11)〜(13)より、 Idc(k)=K(k)(1±J0 (δ0 (k))) ・・・(29) I1 (k)=0 ・・・(30) I2 (k)=±2K(k)J2 (δ0 (k)) ・・・(31) となる。
The above equations (1) to (16) are equations for the polarization analysis of the reflection method. The change in the polarization state received by the incident light before reaching the detector is represented by Ψ and Δ. Then, the case of the transmissive method also holds. In the transmission method, if nothing is placed at the position where the sample should be placed, there is no change in the polarization state, so r P (k) = 1 ... (22) r S (k) = 1 ... (23) tan Ψexp (iΔ) = r P (k) / r S (k)
Therefore, tan Ψ = 1, that is, Ψ = 45 ° (24) Δ = 0 ° (25). At this time, as the optical system, P = ± 45 °, M = 0 ° or 90 °, which is the same as the measurement by the reflection method in which the sample is arranged,
Assuming that the arrangement is A = ± 45 ° (P, M, and A are mutually independent), I 0 (k) = K (k) (26) I S (k) = ± K (k) [sin 2Ψsin Δ] = 0 (27) I C (k) = ± K (k) [sin 2Ψcos Δ] = ± K (k) (28) However, the sign of ± in Expression (28) is determined by the same relationship as Expression (9) in Table 1. Therefore, the formula (1
0), the DC, ω, and 2ω components of the output signal of the detector are expressed as follows: I dc (k) = K (k) (1 ± J 00 (k ))) (29) I 1 (k) = 0 (30) I 2 (k) = ± 2K (k) J 20 (k)) (31) .

【0029】したがって、式(29)と(31)から、 I2 (k)/Idc(k) =±2J2 (δ0 (k))/(1±J0 (δ0 (k)))・・(32) となる。この式(32)をδ0 (k)について解けば、
検出器からの信号の直流成分と2ω成分とからδ
0 (k)が得られる。
Therefore, from the equations (29) and (31), I 2 (k) / I dc (k) = ± 2J 20 (k)) / (1 ± J 00 (k)) ) ... (32) If this equation (32) is solved for δ 0 (k),
Δ from the DC component and 2ω component of the signal from the detector
0 (k) is obtained.

【0030】フーリエ変換分光を行った場合にも、イン
ターフェログラムのidc(x),i2 (x)のフーリエ
変換値からIdc(k),I2 (k)が求められるので、
式(32)を用いることによりδ0 (k)を求めること
ができる。
Even when Fourier transform spectroscopy is performed, I dc (k) and I 2 (k) can be obtained from the Fourier transform values of i dc (x) and i 2 (x) of the interferogram.
Δ 0 (k) can be obtained by using the equation (32).

【0031】もちろん、式(26)〜(28)は特別な
配置の場合で、一般的には、式(3)〜(5)に式(2
4)、(25)に基づいてΨ=45°、Δ=0°を代入す
ることによりI0 (k),IS (k),IC (k)を求
め、その値と式(11)〜(13)によりIdc(k),
1 (k),I2 (k)をδ0 (k)の関数として求
め、それらを連立してδ0 (k)が得られる。
Of course, equations (26) to (28) are for special arrangements, and in general, equations (3) to (5) are replaced by equation (2).
4) and (25), by substituting Ψ = 45 ° and Δ = 0 °, I 0 (k), I S (k), and I C (k) are obtained, and their values and the equation (11) are obtained. ~ (13) gives I dc (k),
I 1 (k) and I 2 (k) are obtained as a function of δ 0 (k), and they are simultaneous to obtain δ 0 (k).

【0032】以上のことから、偏光子と検光子が向かい
合った光学系において計測を行えば、検出器からの信号
の直流成分と2ω成分とから、δ0 (k)を求めること
ができる。また、途中に窓があっても、光軸に対して窓
が垂直になっていれば、窓がP偏光とS偏光に与える影
響は同じであるので、偏光状態は変化しない。
From the above, δ 0 (k) can be obtained from the DC component and 2ω component of the signal from the detector by performing measurement in the optical system in which the polarizer and the analyzer face each other. Even if there is a window in the middle, if the window is perpendicular to the optical axis, the effect of the window on P-polarized light and S-polarized light is the same, so the polarization state does not change.

【0033】上記の特別な配置の中、P=−45°,M
=0°,A=−45°の配置の場合の位相変調素子(P
EM)の変調振幅δ0 (k)に対するI2 (k)/Idc
(k)の変化を図5に示す。この図から、I2 /Idc
一つ定まれば、対応するδ0一意的に決まることが分か
る。
Among the above special arrangements, P = -45 °, M
= 0 ° and A = −45 °.
I 2 (k) / I dc with respect to the modulation amplitude δ 0 (k) of EM)
The change in (k) is shown in FIG. From this figure, it can be seen that if one I 2 / I dc is determined, the corresponding δ 0 is uniquely determined.

【0034】以上のようにして、試料の配置を除いて、
入射光が検出器に直接到達するように配置してδ
0 (k)を求め、これを用いて、図4のフローチャート
に従って偏光解析パラメータΨ(k),Δ(k)を求め
ることができる。
As described above, except for the sample arrangement,
Arrange the incident light so that it reaches the detector directly.
0 (k) is obtained, and using this, the polarization analysis parameters Ψ (k) and Δ (k) can be obtained according to the flowchart of FIG.

【0035】以下、図1及び図2を参照して、上記の本
発明のフーリエ変換分光位相変調偏光解析法の実施例に
ついて説明する。図1は本発明の1実施例の偏光解析法
を実施する装置の構成を示す。図示の装置は、位相変調
素子4をフーリエ変換赤外分光器に挿入したフーリエ変
換赤外分光位相変調偏光解析装置を構成しており、光源
1と、移動鏡を含み光源1からの赤外光を受けてインタ
ーフェログラムを作るマイケルソン干渉計2と、マイケ
ルソン干渉計2から出た変調光が入射する位置に設けら
れた方位角(P)±45°を持つ偏光子3と、方位角
(M)0°又は90°を持ち周波数ωで位相差を変調す
る位相変調素子(PEM)4と、位相変調素子4で位相
変調を受けた光が入射する位置に配置された試料7表面
から反射した光路中に方位角(A)±45°を持つ検光
子5と、検光子5を通過した光を光電変換する受光器6
とを有しており、8、8’は試料7表面に光を集光し、
また、試料7表面の照射点から発散する光を平行光に変
える凹面鏡、9、9’は光路を曲げる平面鏡である。
An embodiment of the Fourier transform spectral phase modulation ellipsometry method of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 shows the configuration of an apparatus for carrying out ellipsometry according to an embodiment of the present invention. The illustrated apparatus constitutes a Fourier transform infrared spectroscopic phase modulation polarization analyzer in which the phase modulation element 4 is inserted in a Fourier transform infrared spectroscope, and includes a light source 1 and infrared light from the light source 1 including a movable mirror. Michelson interferometer 2 for receiving an interferogram and a polarizer 3 having an azimuth angle (P) of ± 45 ° provided at a position where the modulated light emitted from the Michelson interferometer 2 is incident, (M) From the surface of the sample 7 arranged at the position where the phase modulation element (PEM) 4 having 0 ° or 90 ° and modulating the phase difference at the frequency ω, and the light phase-modulated by the phase modulation element 4 are incident. An analyzer 5 having an azimuth angle (A) of ± 45 ° in the reflected optical path, and a light receiver 6 for photoelectrically converting the light passing through the analyzer 5.
And 8 and 8 ′ collect light on the surface of the sample 7,
Further, concave mirrors that convert the light diverging from the irradiation point on the surface of the sample 7 into parallel light, and 9 and 9 ′ are plane mirrors that bend the optical path.

【0036】図1の装置において、ある移動鏡位置xに
おいて計測される光強度信号iの時間t依存性は次式で
与えられる。 i(x,t)=idc(x)+i1 (x)sin ωt+i2 (x)cos 2ωt ・・・(17) ここで、idc(x),i1 (x),i2 (x)はそれぞ
れ受光器6で得られる信号の直流成分、ω成分、2ω成
分である。これら3つの成分を同期検波し、独立にフー
リエ変換を施すと、3つの成分の波数k依存性I
dc(k),I1 (k),I2 (k)に変換される。これ
らの値と、偏光解析パラメータΨ(k)、Δ(k)との
間には、式(14)〜(16)と式(7)〜(9)か
ら、次のような関係がある。
In the apparatus of FIG. 1, the time t dependence of the light intensity signal i measured at a certain moving mirror position x is given by the following equation. i (x, t) = i dc (x) + i 1 (x) sin ωt + i 2 (x) cos 2ωt (17) where i dc (x), i 1 (x), i 2 (x ) Are the DC component, the ω component, and the 2ω component of the signal obtained by the light receiver 6, respectively. When these three components are synchronously detected and independently Fourier-transformed, the wave number k dependence I of the three components I
It is converted into dc (k), I 1 (k), and I 2 (k). From these equations (14) to (16) and equations (7) to (9), the following relationships exist between these values and the polarization analysis parameters Ψ (k) and Δ (k).

【0037】 ±sin 2Ψ(k)sin Δ(k)=[I1 (k)/2J1 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(33) ±sin 2Ψ(k)cos Δ(k)=[I2 (k)/2J2 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(34) ただし、式(33)及び(34)における±の符号は次
の表2による。
± sin 2Ψ (k) sin Δ (k) = [I 1 (k) / 2J 10 (k))] / [I dc (k) −I 2 (k) J 00 (K)) / 2J 20 (k))] (33) ± sin 2Ψ (k) cos Δ (k) = [I 2 (k) / 2J 20 (k))] / [I dc (k) -I 2 (k) J 00 (k)) / 2J 20 (k))] (34) However, in equations (33) and (34) The sign of ± is as shown in Table 2 below.

【0038】 したがって、上式(33)、(34)よりΨ(k)、Δ
(k)のスペクトルが得られるが、ここで、δ0 (k)
は位相変調素子4での変調角の変調振幅の波数依存性で
ある。J0 (δ0 (k)),J1 (δ0 (k)),J2
(δ0 (k))はそれぞれ0次、1次、2次のベッセル
関数である。
[0038] Therefore, from the above equations (33) and (34), Ψ (k), Δ
The spectrum of (k) is obtained, where δ 0 (k)
Is the wave number dependence of the modulation amplitude of the modulation angle in the phase modulation element 4. J 00 (k)), J 10 (k)), J 2
0 (k)) are Bessel functions of 0th order, 1st order, and 2nd order, respectively.

【0039】Ψ(k)、Δ(k)のスペクトルを式(3
3)、(34)により得る際に必要となるδ0 (k)
は、次のようにして決定する。図2はその1実施例を行
うための装置である。この装置は、図1の位相変調素子
4をフーリエ変換赤外分光器に挿入したフーリエ変換赤
外分光位相変調偏光解析装置を構成しており、光源1
と、移動鏡を含み光源1からの赤外光を受けてインター
フェログラムを作るマイケルソン干渉計2と、マイケル
ソン干渉計2から出た変調光が入射する位置に設けられ
た方位角(P)±45°を持つ偏光子3と、方位角
(M)0°又は90°を持ち周波数ωで位相差を変調す
る位相変調素子(PEM)4と、位相変調素子4で位相
変調を受けた光が入射する位置に配置された試料7表面
から反射した光路中に方位角(A)±45°を持つ検光
子5と、検光子5を通過した光を光電変換する受光器6
とを有している。この装置は、光源1、マイケルソン干
渉計2、偏光子3、検光子5、受光器6も図1のものを
同じものを用い、図1の反射方式のものの試料7を除い
て、偏光子3、位相変調素子4、検光子5の方位角を同
じまま変更せずに、透過方式に配置変更したものであ
る。
The spectrum of Ψ (k) and Δ (k) is calculated by the equation (3)
3), δ 0 (k) required to obtain by (34)
Is determined as follows. FIG. 2 shows an apparatus for carrying out the first embodiment. This device constitutes a Fourier transform infrared spectroscopic phase modulation polarization analyzer in which the phase modulation element 4 of FIG.
, A Michelson interferometer 2 including a movable mirror for receiving infrared light from the light source 1 to form an interferogram, and an azimuth angle (P) provided at a position where the modulated light emitted from the Michelson interferometer 2 is incident. ) A polarizer 3 having ± 45 °, a phase modulation element (PEM) 4 having an azimuth angle (M) of 0 ° or 90 ° and modulating a phase difference with a frequency ω, and a phase modulation element 4 subjected to phase modulation A sample 5 arranged at a position where light is incident, an analyzer 5 having an azimuth angle (A) of ± 45 ° in an optical path reflected from the surface of the sample, and a photodetector 6 for photoelectrically converting light passing through the analyzer 5.
And have. This apparatus uses the same light source 1, Michelson interferometer 2, polarizer 3, analyzer 5, and light receiver 6 shown in FIG. 1, except for the sample 7 of the reflection type shown in FIG. 3, the azimuth angles of the phase modulation element 4 and the analyzer 5 are not changed and the arrangement is changed to the transmission method.

【0040】図2に示した装置においても、ある移動鏡
位置xにおいて計測される光強度信号iの時間t依存性
は式(17)で与えられる。図1の場合と同様にして同
期検波し、フーリエ変換を施した3つの成分の波数k依
存性の中、Idc(k)とI2(k)に関しては、その比
率が次式で与えられる。
Also in the apparatus shown in FIG. 2, the time t dependency of the light intensity signal i measured at a certain moving mirror position x is given by the equation (17). In the same manner as in the case of FIG. 1, among the three components subjected to the synchronous detection and the Fourier transform and having the wave number k, the ratio of I dc (k) and I 2 (k) is given by the following equation. .

【0041】 I2 (k)/Idc(k) =±2J2 (δ0 (k))/(1±J0 (δ0 (k)))・・(32) したがって、上式よりδ0 (k)が得られる。また、こ
の得られたδ0 (k)から、J0 (δ0 (k),J
1 (δ0 (k)),J2 (δ0 (k))を予め計算して
おくことができるため、式(33)及び(34)を用い
たΨ(k)、Δ(k)の計算時に、δ0 (k)からベッ
セル関数の計算をする必要はない。
I 2 (k) / I dc (k) = ± 2J 20 (k)) / (1 ± J 00 (k))) (32) Therefore, from the above equation, δ 0 (k) is obtained. Further, from the obtained δ 0 (k), J 00 (k), J
Since 10 (k)) and J 20 (k)) can be calculated in advance, Ψ (k) and Δ (k) can be calculated using equations (33) and (34). At the time of calculation, it is not necessary to calculate the Bessel function from δ 0 (k).

【0042】以上は、特定の方位角に偏光子3、検光子
5及び位相変調素子4を設定すものとしたが、前記した
ように、試料7を入れた反射方式の配置及び位相変調素
子4の変調振幅の波数依存性δ0 (k)を求める透過方
式の配置において、これらの方位角をそれ以外の方位角
に設定しても、式(3)〜(5)と式(11)〜(1
3)によりΨ(k),Δ(k)を求めることができ、ま
た、式(3)〜(5)にΨ=45°、Δ=0°を代入す
ることによりI0 (k),IS (k),IC (k)を求
め、その値と式(11)〜(13)によりIdc(k),
1 (k),I2(k)をδ0 (k)の関数として求
め、それらを連立してδ0 (k)を求めることもできる
が、これらの場合は、偏光子3、位相変調素子4、検光
子5それぞれの方位角を、反射方式の配置から透過方式
の配置へ変える際に、変更する必要があり、再調整に時
間がかかり繁雑であり、また、測定が長時間中断するこ
とになり、好ましくない。これに対して、両測定時にこ
れらの方位角を何ら変更しない本発明の方式において
は、変動箇所が少なく正確な測定が可能で、短時間でδ
(k)を求めることができ、好ましい方式である。
In the above, the polarizer 3, the analyzer 5 and the phase modulation element 4 are set at a specific azimuth angle. However, as described above, the reflection type arrangement including the sample 7 and the phase modulation element 4 are set. In the transmission type arrangement for obtaining the wave number dependence δ 0 (k) of the modulation amplitude of, even if these azimuth angles are set to other azimuth angles, equations (3) to (5) and equation (11) to (1
Ψ (k) and Δ (k) can be obtained from 3), and I 0 (k) and I can be obtained by substituting Ψ = 45 ° and Δ = 0 ° into equations (3) to (5). S (k), I C (k) is obtained, and I dc (k),
Although I 1 (k) and I 2 (k) can be obtained as a function of δ 0 (k) and they can be simultaneously obtained to obtain δ 0 (k), in these cases, the polarizer 3, the phase modulation It is necessary to change the azimuth angle of each of the element 4 and the analyzer 5 when changing from the reflection type arrangement to the transmission type arrangement, the readjustment takes time and is complicated, and the measurement is interrupted for a long time. This is not preferable. On the other hand, in the method of the present invention in which these azimuth angles are not changed at the time of both measurements, there are few fluctuation points and accurate measurement is possible.
0 (k) can be obtained, which is a preferable method.

【0043】なお、マイケルソン干渉計2の配置位置に
関しては、光源1と偏光子3の間に限定されず、光源1
から受光器6に到る光路の任意の位置に設けてもよい。
The arrangement position of the Michelson interferometer 2 is not limited to between the light source 1 and the polarizer 3, and the light source 1
It may be provided at any position in the optical path from the light receiver 6 to the light receiver 6.

【0044】この測定装置では、測定光路中に反射鏡
9、8、8’、9’を挿入するため、位相変調素子4と
検光子5との間に挟まれた部分全体の複素反射率比ta
n Ψeffexp (iΔeff )が計測される。試料7の複
素反射率比をtan Ψexp (iΔ)、全ての反射鏡による
総合の複素反射率比をtan ΨM exp (iΔM )とする
と、tan Ψeff exp (iΔeff )=tan ΨM exp (iΔ
M )tan Ψexp (iΔ)で与えられる。したがって、試
料7のみの複素反射率比は、複素反射率比が既知の試料
7を用いて計測することにより、 tan ΨM exp (iΔM )={tan Ψeff exp (iΔeff )} /{tan Ψexp (iΔ)}・・・(35) により校正される。また、赤外偏光解析法で通常計測対
象となる光学密度は、基板の上に薄膜がない場合とある
場合の比を用いて計算されるため、薄膜の有無によらな
い反射鏡の複素反射率の影響は、比をとることにより消
去され、校正の必要はない。
In this measuring device, since the reflecting mirrors 9, 8, 8 ', 9'are inserted in the measuring optical path, the complex reflectance ratio of the entire portion sandwiched between the phase modulation element 4 and the analyzer 5 is ta
n ψ eff exp (iΔ eff ) is measured. If the complex reflectance ratio of the sample 7 is tan Ψ exp (iΔ) and the total complex reflectance ratio of all reflecting mirrors is tan Ψ M exp (iΔ M ), tan Ψ eff exp (iΔ eff ) = tan Ψ M exp (IΔ
M ) tan Ψ exp (iΔ). Therefore, the complex reflectance ratio of only the sample 7 is measured by using the sample 7 of which the complex reflectance ratio is known, and tan Ψ M exp (iΔ M ) = {tan Ψ eff exp (iΔ eff )} / { tan Ψ exp (iΔ)} (35) In addition, since the optical density that is usually measured by infrared ellipsometry is calculated using the ratio of the case where there is no thin film on the substrate and the case where there is a thin film on the substrate, the complex reflectance of the reflecting mirror regardless of the presence or absence of a thin film. The effect of is eliminated by taking the ratio and does not require calibration.

【0045】上記の第1の実施例においては、δ
0 (k)を求める際、試料測定に用いたのと同じ光源
1、マイケルソン干渉計2、偏光子3、位相変調素子
4、検光子5及び受光器6を用いたが、試料7の前の光
源1、マイケルソン干渉計2、偏光子3、位相変調素子
4のみを試料測定に用いたのと同じものを用い、検光子
及び受光器として別の検光子5’及び受光器6’を用い
てもよい。また、試料7への測定光の入射角を調整可能
に構成することも重要である。図3の実施例は、この両
者を兼ね備えた実施例であり、図1と同じ構成要素は同
じ符号で示してある。この実施例においては、実施例1
と同様、光源1と、移動鏡を含み光源1からの赤外光を
受けてインターフェログラムを作るマイケルソン干渉計
2と、マイケルソン干渉計2から出た変調光が入射する
位置に設けられた方位角(P)±45°を持つ偏光子3
と、方位角(M)0°又は90°を持ち周波数ωで位相
差を変調する位相変調素子(PEM)4と、位相変調素
子4で位相変調を受けた光の光路を曲げる平面鏡9と、
平面鏡9から反射光を試料7表面に集光する凹面鏡8
と、集光位置に配置された試料7と、試料7表面から反
射された光を平行光に変える凹面鏡8’と、凹面鏡8’
からの平行光の光路を曲げる平面鏡9’と、平面鏡9’
から反射した光路中に配置された方位角(A)±45°
を持つ検光子5と、検光子5を通過した光を光電変換す
る受光器6とからなる。
In the above first embodiment, δ
When 0 (k) was determined, the same light source 1, Michelson interferometer 2, polarizer 3, phase modulation element 4, analyzer 5 and light receiver 6 as those used for the sample measurement were used. The same light source 1, Michelson interferometer 2, polarizer 3, and phase modulation element 4 are used for sample measurement, and another analyzer 5'and a light receiver 6'are used as an analyzer and a light receiver. You may use. It is also important to be able to adjust the incident angle of the measurement light on the sample 7. The embodiment of FIG. 3 is an embodiment having both of them, and the same components as those of FIG. 1 are denoted by the same reference numerals. In this example, Example 1
Similarly to, the light source 1, the Michelson interferometer 2 that includes the moving mirror and receives the infrared light from the light source 1 to form an interferogram, and the modulated light emitted from the Michelson interferometer 2 are provided at positions to be incident. Polarizer with azimuth angle (P) ± 45 ° 3
A phase modulator (PEM) 4 having an azimuth angle (M) of 0 ° or 90 ° and modulating a phase difference with a frequency ω; and a plane mirror 9 for bending an optical path of light phase-modulated by the phase modulator 4.
Concave mirror 8 that collects reflected light from plane mirror 9 on the surface of sample 7
A sample 7 arranged at a condensing position, a concave mirror 8'for converting the light reflected from the surface of the sample 7 into parallel light, and a concave mirror 8 '.
Plane mirror 9'for bending the optical path of parallel light from
Azimuth angle (A) ± 45 ° arranged in the optical path reflected from
And an optical receiver 6 that photoelectrically converts light that has passed through the analyzer 5.

【0046】この実施例においては、試料7の入射側の
平面鏡9は、実線のの位置と破線のの位置の間を切
り換え可能になっており、実線位置に配置される場合
には、実施例1と同様にして式(17)の強度信号iが
得られ、その直流成分、ω成分、2ω成分をフーリエ変
換してIdc(k),I1 (k),I2 (k)を求め、式
(33)、(34)より、Ψ(k)、Δ(k)のスペク
トルを求める。また、平面鏡9を破線位置に切り換え
ると、位相変調素子4で位相変調を受けた光は、別の組
の検光子5’及び受光器6’に入射するように、検光子
5’及び受光器6’が配置されている。この場合の検光
子5’の方位角(A)は±45°であり固定されてい
る。この検光子5’及び受光器6’を用いて、図2の場
合と同様にして、式(32)によりδ0 (k)が得られ
る。この場合、両測定時に、偏光子3、位相変調素子
4、検光子5、検光子5’の方位角は何れも固定されて
おり、変動箇所は平面鏡9のみであり、正確で短時間の
測定が可能になる。
In this embodiment, the plane mirror 9 on the incident side of the sample 7 is switchable between the position indicated by the solid line and the position indicated by the broken line. The intensity signal i of equation (17) is obtained in the same manner as in 1, and the DC component, ω component, and 2ω component thereof are Fourier transformed to obtain I dc (k), I 1 (k), and I 2 (k). , (33) and (34), the spectra of Ψ (k) and Δ (k) are obtained. Further, when the plane mirror 9 is switched to the position of the broken line, the light that has been phase-modulated by the phase modulation element 4 enters the analyzer 5 ′ and the light receiver 6 ′ of another set so that the analyzer 5 ′ and the light receiver 6 ′. 6'is arranged. The azimuth angle (A) of the analyzer 5 ′ in this case is ± 45 ° and is fixed. Using this analyzer 5 ′ and the light receiver 6 ′, δ 0 (k) can be obtained from the equation (32) in the same manner as in the case of FIG. In this case, the azimuth angles of the polarizer 3, the phase modulation element 4, the analyzer 5 and the analyzer 5 ′ are all fixed at the time of both measurements, and only the plane mirror 9 changes the azimuth angle. Will be possible.

【0047】また、図3の場合は、偏光解析パラメータ
Δ、Ψの入射角φ依存性等を測定できるようにするた
め、凹面鏡8、8’は、図示の一点鎖線のように、それ
ぞれ平面鏡9から反射光路、平面鏡9’への入射光路に
そって同じ距離だけ移動可能になっており、それに伴っ
て試料7も図の上方に移動するようになっている。そし
て、凹面鏡8からの反射光路と凹面鏡8’への入射光路
が試料7表面で交差するように、両凹面鏡8、8’は相
互に反対に回転可能になっており、試料7への入射角φ
が連続的に変更できる。凹面鏡8、8’及び試料7の上
記のような移動と回転は、例えば特公昭47−3991
1号公報に基づいて、リンク機構を用いて簡単に実現で
きる。なお、上記のように、試料7への入射角φを連続
的に変更できる機構としては、特公昭47−39911
号公報のものに限定されず、特公平2−48848号公
報のもの等、公知の種々の機構を用いることができる。
In the case of FIG. 3, in order to measure the incident angle φ dependence of the polarization analysis parameters Δ and Ψ, the concave mirrors 8 and 8 ′ are respectively plane mirrors 9 as shown by the one-dot chain line in the figure. Can be moved by the same distance along the reflected light path and the incident light path to the plane mirror 9 ', and accordingly, the sample 7 also moves upward in the figure. The concave mirrors 8 and 8'are rotatable in opposite directions so that the reflected light path from the concave mirror 8 and the incident light path to the concave mirror 8'cross each other on the surface of the sample 7. φ
Can be changed continuously. The movement and rotation of the concave mirrors 8 and 8'and the sample 7 as described above are performed, for example, in Japanese Patent Publication No. 47-3991.
It can be easily realized by using a link mechanism based on the publication No. 1. As a mechanism for continuously changing the incident angle φ on the sample 7 as described above, Japanese Patent Publication No. 47-39911 is available.
The present invention is not limited to that disclosed in Japanese Patent Publication No. 2-48848, and various known mechanisms can be used.

【0048】以上、本発明のフーリエ変換分光位相変調
偏光解析法をその原理と実施例に基づいて説明してきた
が、本発明はこれら実施例に限定されず種々の変形が可
能である。
The Fourier transform spectral phase modulation ellipsometry method of the present invention has been described above based on its principle and embodiments, but the present invention is not limited to these embodiments and various modifications can be made.

【0049】[0049]

【発明の効果】以上の説明から明らかなように、本発明
のフーリエ変換分光位相変調偏光解析法によると、位相
変調偏光解析法において、光源から受光器に到る光路中
にフーリエ分光のための干渉計を配置し、位相変調及び
干渉変調を受けた光を受光器で測定し、得られた干渉光
信号の直流成分、周波数ωの成分、周波数2ωの成分の
3成分を検出し、これら3成分をフーリエ変換して得ら
れる値から反射光のP偏光とS偏光の位相差Δと反射振
幅比角Ψとの2つの偏光解析パラメータを求めるので、
広範囲の波数域の偏光解析パラメータを高速かつ高感度
で計測することが可能となる。
As is apparent from the above description, according to the Fourier transform spectroscopy phase modulation ellipsometry of the present invention, in the phase modulation ellipsometry, the Fourier transform spectroscopy for Fourier spectroscopy is performed in the optical path from the light source to the light receiver. An interferometer is arranged, and the light subjected to the phase modulation and the interference modulation is measured by the photodetector, and the three components of the obtained interference light signal, that is, the DC component, the frequency ω component, and the frequency 2ω component are detected, and these 3 components are detected. Since two polarization analysis parameters of the phase difference Δ between the P-polarized light and the S-polarized light of the reflected light and the reflection amplitude ratio angle Ψ are obtained from the value obtained by Fourier transforming the component,
It becomes possible to measure ellipsometry parameters in a wide range of wave numbers at high speed and with high sensitivity.

【0050】また、試料の測定時から位相変調素子の変
調振幅の波数依存性のための測定に移行する際、又はそ
の逆に移行する際に、偏光子、位相変調素子、検光子そ
れぞれの方位角を何ら変更しなくてもよいため、配置に
変動箇所が少なく、正確で短時間の測定が可能になる。
In addition, when the measurement of the sample shifts to the measurement for the wave number dependence of the modulation amplitude of the phase modulation element, or vice versa, the azimuths of the polarizer, the phase modulation element, and the analyzer are respectively changed. Since the angle does not have to be changed at all, there are few fluctuations in the arrangement, and accurate and short-time measurement is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の偏光解析法を実施する装置
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an apparatus for carrying out ellipsometry according to an embodiment of the present invention.

【図2】変調角の変調振幅の波数依存性を求める配置を
示す図である。
FIG. 2 is a diagram showing an arrangement for obtaining a wave number dependence of a modulation amplitude of a modulation angle.

【図3】本発明の別の実施例の偏光解析法を実施する装
置の構成を示す図である。
FIG. 3 is a diagram showing a configuration of an apparatus for performing ellipsometry according to another embodiment of the present invention.

【図4】本発明の偏光解析法により偏光解析パラメータ
を求める演算のフローチャートである。
FIG. 4 is a flowchart of a calculation for obtaining a polarization analysis parameter by the polarization analysis method of the present invention.

【図5】変調角の変調振幅を求めるためのグラフであ
る。
FIG. 5 is a graph for obtaining a modulation amplitude of a modulation angle.

【図6】従来の分散型の位相変調法のための配置を示す
図である。
FIG. 6 is a diagram showing an arrangement for a conventional distributed phase modulation method.

【図7】偏光子、位相変調素子、検光子の方位角を定義
するための図である。
FIG. 7 is a diagram for defining azimuth angles of a polarizer, a phase modulation element, and an analyzer.

【図8】光を物質に照射した場合の入射光の偏光状態と
反射光の偏光状態を模式的に示す図である。
FIG. 8 is a diagram schematically showing a polarization state of incident light and a polarization state of reflected light when a substance is irradiated with light.

【符号の説明】[Explanation of symbols]

1…光源 2…マイケルソン干渉計 3…偏光子 4…位相変調素子(PEM) 5、5’…検光子 6、6’…受光器 7…試料 8、8’…凹面鏡 9、9’…平面鏡 DESCRIPTION OF SYMBOLS 1 ... Light source 2 ... Michelson interferometer 3 ... Polarizer 4 ... Phase modulation element (PEM) 5, 5 '... Analyzer 6, 6' ... Photoreceiver 7 ... Sample 8, 8 '... Concave mirror 9, 9' ... Plane mirror

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料入射側に偏光子と位相変調素子を順
に配置し、試料反射側に検光子と受光器を順に配置し
て、偏光子で直線偏光にされた光のP偏光成分とS偏光
成分の間に周波数ωで変調された位相差δを導入し、反
射光を検光子を通して検出し、その直流成分と周波数ω
の成分と周波数2ωの成分から、反射の際のP偏光とS
偏光の位相差の変化分Δと振幅反射率比角Ψとの2つの
偏光解析パラメータを求める位相変調偏光解析法におい
て、光源から受光器に到る光路中にフーリエ分光のため
の干渉計を配置し、さらに、前記偏光子の方位角(P)
が±45°、前記位相変調素子の方位角(M)が0°又
は90°、前記検光子の方位角が(A)±45°(これ
らの方位角P、M、Aは相互に独立)となるように配置
した状態で、位相変調及び干渉変調を受けた光を前記受
光器で測定し、得られた干渉光信号の直流成分i
dc(x)、周波数ωの成分i1 (x)、周波数2ωの成
分i2 (x)の3成分を検出し、これら3成分をフーリ
エ変換して得られるIdc(k),I1 (k),I
2 (k)から次式(33)及び(34)に基づいて前記
Δ、Ψを求めることを特徴とするフーリエ変換分光位相
変調偏光解析法。 ±sin 2Ψ(k)sin Δ(k)=[I1 (k)/2J1 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(33) ±sin 2Ψ(k)cos Δ(k)=[I2 (k)/2J2 (δ0 (k))]/ [Idc(k)−I2 (k)J0 (δ0 (k))/2J2 (δ0 (k))] ・・・(34) ただし、δ0 (k)は、前記位相変調素子の変調振幅で
あり、式(33)及び(34)における±の符号は次の
表2による。
1. A polarizer and a phase modulator are sequentially arranged on the sample entrance side, and an analyzer and a photodetector are sequentially arranged on the sample reflection side, and a P-polarized component of light linearly polarized by the polarizer and S A phase difference δ modulated with frequency ω is introduced between polarization components, reflected light is detected through an analyzer, and its DC component and frequency ω
P component and S component at the frequency of 2ω
In a phase-modulation ellipsometry method for obtaining two polarization analysis parameters of a change Δ in the phase difference of polarization and an amplitude reflectance ratio angle Ψ, an interferometer for Fourier spectroscopy is arranged in the optical path from the light source to the light receiver. And further, the azimuth angle (P) of the polarizer
Is ± 45 °, the azimuth angle (M) of the phase modulator is 0 ° or 90 °, and the azimuth angle of the analyzer is (A) ± 45 ° (these azimuth angles P, M, and A are mutually independent). The light having undergone the phase modulation and the interferometric modulation is measured by the photodetector in the state of being arranged so that the DC component i of the obtained interfering optical signal is
dc (x), component i 1 frequency ω (x), to detect the three components of component i 2 (x) of the frequency 2 [omega, obtained by these three components by Fourier transform I dc (k), I 1 ( k), I
2 Fourier transform spectroscopic phase modulation ellipsometry characterized by obtaining Δ and Ψ from (k) based on the following equations (33) and (34). ± sin 2Ψ (k) sin Δ (k) = [I 1 (k) / 2J 10 (k))] / [I dc (k) −I 2 (k) J 00 (k)) ) / 2J 20 (k))] (33) ± sin 2Ψ (k) cos Δ (k) = [I 2 (k) / 2J 20 (k))] / [I dc (k) -I 2 (k) J 00 (k)) / 2J 20 (k))] (34) where δ 0 (k) is the phase modulation element It is the modulation amplitude, and the sign of ± in equations (33) and (34) is according to Table 2 below.
【請求項2】 請求項1において、試料を取り除いた状
態で、前記検光子と受光器を前記位相変調素子を透過し
た光を直接入射させる透過型の配置にし、前記偏光子、
前記位相変調素子、及び、前記検光子の方位角を同じま
まで、位相変調及び干渉変調を受けた光を前記受光器で
測定し、得られた干渉光信号の直流成分、周波数2ωの
成分の2成分を検出し、これら2成分をフーリエ変換し
て得られる値から前記位相変調素子の変調振幅の波数依
存性を求め、それを用いて前記Δ、Ψを求めることを特
徴とするフーリエ変換分光位相変調偏光解析法。
2. The polarizer according to claim 1, wherein the analyzer and the light receiver are arranged in a transmission type in which light transmitted through the phase modulation element is directly incident with the sample removed.
With the azimuth angles of the phase modulation element and the analyzer kept the same, the light subjected to the phase modulation and the interferometric modulation is measured by the photodetector, and the direct current component and the frequency 2ω component of the obtained interference optical signal are measured. Fourier transform spectroscopy characterized by detecting two components, obtaining the wave number dependence of the modulation amplitude of the phase modulation element from the values obtained by Fourier transforming these two components, and using this to obtain Δ and Ψ. Phase modulation ellipsometry.
JP14741194A 1994-06-29 1994-06-29 Fourier transform spectral phase modulation ellipsometry Expired - Lifetime JP3311497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14741194A JP3311497B2 (en) 1994-06-29 1994-06-29 Fourier transform spectral phase modulation ellipsometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14741194A JP3311497B2 (en) 1994-06-29 1994-06-29 Fourier transform spectral phase modulation ellipsometry

Publications (2)

Publication Number Publication Date
JPH0815130A true JPH0815130A (en) 1996-01-19
JP3311497B2 JP3311497B2 (en) 2002-08-05

Family

ID=15429698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14741194A Expired - Lifetime JP3311497B2 (en) 1994-06-29 1994-06-29 Fourier transform spectral phase modulation ellipsometry

Country Status (1)

Country Link
JP (1) JP3311497B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504590A (en) * 2000-07-17 2004-02-12 ソシエテ・ドゥ・プロデュクシオン・エ・ドゥ・ルシェルシェ・アプリケ Compact spectroscopic ellipsometer
JP2005530152A (en) * 2002-06-17 2005-10-06 オリバ ジョビン イボン エス. アー. エス. Achromatic spectroscopic ellipsometer with high spatial resolution
JP2007139751A (en) * 2005-10-18 2007-06-07 National Institute Of Advanced Industrial & Technology Polarization modulation type imaging ellipsometer
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter
WO2010106589A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Optical measuring instrument and optical measurement method
JP4653311B2 (en) * 1998-10-14 2011-03-16 ジョビン イボン ソシエテ アノニム Equipment for optical measurement of thin film materials
CN102033048A (en) * 2010-12-31 2011-04-27 天津大学 Measuring method of absorption spectrum for eliminating ambient stray light interference
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
KR101431186B1 (en) * 2013-09-16 2014-08-18 가천대학교 산학협력단 Biosensing system and method using optical modulation and phase difference
US10429244B2 (en) 2015-03-25 2019-10-01 Nec Corporation Light measurement device
JP2020165833A (en) * 2019-03-29 2020-10-08 Tianma Japan株式会社 Gas detector
WO2023197124A1 (en) * 2022-04-12 2023-10-19 华为技术有限公司 Apparatus for testing surface state of sample to be tested

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4653311B2 (en) * 1998-10-14 2011-03-16 ジョビン イボン ソシエテ アノニム Equipment for optical measurement of thin film materials
JP2004504590A (en) * 2000-07-17 2004-02-12 ソシエテ・ドゥ・プロデュクシオン・エ・ドゥ・ルシェルシェ・アプリケ Compact spectroscopic ellipsometer
JP2005530152A (en) * 2002-06-17 2005-10-06 オリバ ジョビン イボン エス. アー. エス. Achromatic spectroscopic ellipsometer with high spatial resolution
JP2007139751A (en) * 2005-10-18 2007-06-07 National Institute Of Advanced Industrial & Technology Polarization modulation type imaging ellipsometer
JP2010060352A (en) * 2008-09-02 2010-03-18 Moritex Corp Method and device for measuring optical anisotropy parameter
WO2010106589A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Optical measuring instrument and optical measurement method
CN102033048A (en) * 2010-12-31 2011-04-27 天津大学 Measuring method of absorption spectrum for eliminating ambient stray light interference
JP2014119448A (en) * 2012-12-17 2014-06-30 Advantest Corp Light beam incident device and reflected light measuring apparatus
KR101431186B1 (en) * 2013-09-16 2014-08-18 가천대학교 산학협력단 Biosensing system and method using optical modulation and phase difference
US10429244B2 (en) 2015-03-25 2019-10-01 Nec Corporation Light measurement device
JP2020165833A (en) * 2019-03-29 2020-10-08 Tianma Japan株式会社 Gas detector
US11624698B2 (en) 2019-03-29 2023-04-11 Tianma Japan, Ltd. Gas sensing apparatus
WO2023197124A1 (en) * 2022-04-12 2023-10-19 华为技术有限公司 Apparatus for testing surface state of sample to be tested

Also Published As

Publication number Publication date
JP3311497B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
US4647207A (en) Ellipsometric method and apparatus
US8125641B2 (en) Method and apparatus for phase-compensated sensitivity-enhanced spectroscopy (PCSES)
US5255075A (en) Optical sensor
US10890487B2 (en) Integrated polarization interferometer and snapshot specro-polarimeter applying same
JP3803550B2 (en) Spectroscopic ellipsometer
CN100573036C (en) The measuring method of a kind of film thickness and refractive index
US6320657B1 (en) Broadband spectroscopic rotating compensator ellipsometer
US4332476A (en) Method and apparatus for studying surface properties
JP3909363B2 (en) Spectral polarization measurement method
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
US20190063999A1 (en) Optical critical dimension metrology
US6856384B1 (en) Optical metrology system with combined interferometer and ellipsometer
Röseler IR spectroscopic ellipsometry: instrumentation and results
US6583875B1 (en) Monitoring temperature and sample characteristics using a rotating compensator ellipsometer
JP3311497B2 (en) Fourier transform spectral phase modulation ellipsometry
US6057928A (en) Free-space time-domain method for measuring thin film dielectric properties
JP3562768B2 (en) Circularly polarized dichroism, method for measuring optical rotation and absorption spectrum and dichrograph for measurement
US20180275047A1 (en) Interferometric Ellipsometry and Method using Conical Refraction
US5757488A (en) Optical frequency stability controller
US7342661B2 (en) Method for noise improvement in ellipsometers
Naciri et al. Fixed polarizer, rotating-polarizer and fixed analyzer spectroscopic ellipsometer: accurate calibration method, effect of errors and testing
US11868054B2 (en) Optical metrology system and method
RU2805776C1 (en) Method for measuring anisotropic reflection spectrum of semiconductor materials and device for its implementation
US11740176B2 (en) Fast and accurate mueller matrix infrared spectroscopic ellipsometer
US11821833B2 (en) Fast and accurate Mueller matrix infrared ellipsometer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020508

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070627

EXPY Cancellation because of completion of term