JPS63215923A - Auxiliary apparatus for spectrophotometer - Google Patents

Auxiliary apparatus for spectrophotometer

Info

Publication number
JPS63215923A
JPS63215923A JP4915487A JP4915487A JPS63215923A JP S63215923 A JPS63215923 A JP S63215923A JP 4915487 A JP4915487 A JP 4915487A JP 4915487 A JP4915487 A JP 4915487A JP S63215923 A JPS63215923 A JP S63215923A
Authority
JP
Japan
Prior art keywords
reflecting mirror
optical axis
reflected
light
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4915487A
Other languages
Japanese (ja)
Other versions
JPH0789081B2 (en
Inventor
Masaaki Takagi
正明 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Corp
Original Assignee
Nidec Copal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Copal Corp filed Critical Nidec Copal Corp
Priority to JP4915487A priority Critical patent/JPH0789081B2/en
Publication of JPS63215923A publication Critical patent/JPS63215923A/en
Publication of JPH0789081B2 publication Critical patent/JPH0789081B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable measurement at a desired angle of incidence without effect of a reflection mirror, by adjusting a measuring light so that after reflected with first and second reflection mirrors, it travels with the optical axis thereof passing through the center point of the surface of a sample on a sample base and further reflected with third and fourth reflection mirrors to move along the original optical axis. CONSTITUTION:When first and fourth reflection mirrors M1 and M4 inserted into a measuring optical path are positioned on an optical axis O1, a measuring light is changed in the optical path with the reflection mirror M1 and reflected with the second fourth reflection mirrors M2-M4 to return to the original optical axis O1 again. With such an arrangement, spectral reflection characteristic by reflection with all the reflection mirrors is determined. Then, a sample S is so arranged that the surface thereof reaches a position O of intersection between the optical axes O3 and O1 and the reflection mirrors M3 and M4 are replaced with reflection mirrors M3' and M4'. Consequently, the measuring light is made incident into the sample S at an angle theta of incidence to be reflected and further reflected with the reflection mirrors M3' and M4' to return to the original optical axis O1. Thus, comprehensive spectral reflection characteristic is measured from spectral reflection characteristic when light is incident into the sample S at an angle theta of incidence and that obtained by reflection from all the reflection mirrors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、分光測光装置における斜入射での分光測定に
対する補助装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an auxiliary device for spectroscopic measurements at oblique incidence in a spectrophotometric device.

〔従来の技術〕[Conventional technology]

近年のオプトエレクトロニクスの発展に伴い各種の光学
部品が生産されているが、その中の一つに多層膜蒸着に
よる干渉フィルタがある。この干渉フィルタの分光特性
は、分光光度計等により測定できる。又分光反射率の測
定は、入射角が0°でない場合は一応測定可能であるが
、測定光路が変化するために正確な測定は困難である。
With the recent development of optoelectronics, various optical components have been produced, one of which is an interference filter made by depositing a multilayer film. The spectral characteristics of this interference filter can be measured using a spectrophotometer or the like. Furthermore, although it is possible to measure the spectral reflectance when the angle of incidence is not 0°, accurate measurement is difficult because the measurement optical path changes.

その理由は、反射鏡等によって光路を元に戻すと、反射
鏡による反射率への影響が出て、純粋に資料の反射率を
測定していないためである。
The reason for this is that if the optical path is returned to its original state using a reflector or the like, the reflectance of the reflector is affected, and the reflectance of the material is not purely measured.

第7図に示すように分光測光装置の測定光の光軸OI上
に反射鏡M+を配置して光路を曲げ更に反射鏡Mz 、
 Mlを配置してこれにて反射させて再び測定光の光軸
上に戻すように構成し、資料の分光反射率を測定する場
合には、第8図に示すように反射鏡MIにて反射された
光路中に資料Sを置くことによってこれに測定光を一定
の入射角にて入射させると共に反射鏡島を掩′の位置に
おきかえ更に反射鏡ルを回動させて狐′のようにして資
料Sからの反射光を測定光の光軸上に戻すようにする。
As shown in FIG. 7, a reflector M+ is placed on the optical axis OI of the measurement light of the spectrophotometer to bend the optical path, and further reflectors Mz,
When measuring the spectral reflectance of a material by arranging Ml and reflecting the light back onto the optical axis of the measurement light, as shown in Figure 8, the light is reflected by the reflecting mirror MI. By placing the material S in the optical path, the measurement light is made incident on it at a constant angle of incidence, and the reflector island is moved to the position of the cover. The reflected light from S is returned onto the optical axis of the measurement light.

これによって反射鏡Ml、 M2. Mlの反射率によ
る影響を除去しての測光が行なえる。
This causes the reflecting mirrors Ml, M2. Photometry can be performed while removing the influence of reflectance of Ml.

各反射鏡の反射率を夫々R1−& −R4とし、入射光
の光量を工0とすると第7図各反射鏡Mt 、 M21
M4で反射された後に受光器に入射する光の光量IDは
次の式で与えられる。
Assuming that the reflectance of each reflecting mirror is R1-&-R4, and the amount of incident light is 0, each reflecting mirror Mt, M21 in Fig. 7
The amount of light ID that enters the light receiver after being reflected by M4 is given by the following equation.

ID = Io・Rs ” &・R2 又分光測光装置は一般にダブルバス方式であるので上記
の受光光量の他に■。に比例する光量をモニタする。し
たがってモニタ光量IM = R・工。とするとベース
ライン補正をした値は下記の通りである。
ID = Io・Rs ” &・R2 Also, since the spectrophotometer is generally a double bus type, in addition to the amount of received light mentioned above, it monitors the amount of light proportional to ■. Therefore, if the monitored light amount IM = R・E. The line-corrected values are as follows.

一方第7図の場合は資料の反射率をRsとすると次の通
シである。
On the other hand, in the case of FIG. 7, if the reflectance of the material is Rs, the following formula is obtained.

I’D = Io・R1・R8’ R2” R4I I
dMと1′−の比をとればI=Rsで純粋に資料の反射
率が求められる。
I'D = Io・R1・R8'R2" R4I I
By taking the ratio of dM and 1'-, the reflectance of the material can be determined purely by I=Rs.

しかし資料Sへの入射角が反射鏡Ms 、 Mlの位置
によって固定され、任意の入射角での測定が出来々い。
However, the angle of incidence on the material S is fixed depending on the positions of the reflecting mirrors Ms and Ml, making it impossible to measure at any arbitrary angle of incidence.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明が解決しようとする問題点は、分光測光装置を用
いての資料の分光反射特性の測定が可能であってしかも
任意の入射角での測定が反射鏡の反射率の影iなしに可
能にした補助装置を提供するものである。
The problem to be solved by the present invention is that it is possible to measure the spectral reflection characteristics of a material using a spectrophotometer, and it is also possible to measure at any angle of incidence without the influence of the reflectance of a reflecting mirror. This provides an auxiliary device that can

〔問題点を解決するための手段〕[Means for solving problems]

本発明の分光測光装置における補助装置は、前記の問題
点を解決するために、測定光の光軸上に配置され光路を
曲げるための第1の反射鏡と、第1の反射鏡により反射
された測定光の光軸上に配置され光軸に沿って移動可能
であると共に回動し得る第2の反射鏡と、第2の反射鏡
よりの反射光を反射する第3の反射鏡と、測定光の光軸
上に配置され第3の反射鏡よりの光を元の測定光の光軸
に戻す方向に反射させる第4の反射鏡とを備え、第2の
反射鏡よりの反射光の光軸上に資料を、配置することに
よって測定光を資料に入射させると共に第3の反射鏡を
他の位置におきかえ又第4の反射鏡を転換することによ
って資料にて反射された測定光を第3の反射鏡および第
4の反射鏡にて順次反射させて元の測定光の光軸に戻す
ようにしたものである。又第2の反射鏡を第1の反射鏡
にて反射された光の光軸に沿って移動させると共に回動
させることにより第2の反射鏡にて反射された光が資料
に対して異なる他人射角にて入射するようにし得ると共
に第3の反射鏡をこの反射光にて反射される光の光軸に
沿って移動させると同時に回動させてこれにより反射さ
れた光が第4の反射鏡により反射されて分光測光装置の
測定光の光軸に向かうようにしたものである。したがっ
て各反射鏡で反射された光の分光測光と資料への斜め入
射による反射光で前記の各反射鏡にて反射された反射光
の分光測光とによって各反射鏡の反射率による影響を除
去した資料の分光測光が出来る。しかも前述の第2の反
射鏡と第3の反射鏡の移動。
In order to solve the above-mentioned problems, the auxiliary device in the spectrophotometric device of the present invention includes a first reflecting mirror arranged on the optical axis of the measurement light and for bending the optical path, and a light beam reflected by the first reflecting mirror. a second reflecting mirror disposed on the optical axis of the measurement light and movable along the optical axis and rotatable; a third reflecting mirror that reflects the reflected light from the second reflecting mirror; a fourth reflecting mirror disposed on the optical axis of the measuring light and reflecting the light from the third reflecting mirror in a direction returning to the original optical axis of the measuring light; By arranging the material on the optical axis, the measurement light is made incident on the material, and by changing the third reflecting mirror to another position and changing the fourth reflecting mirror, the measurement light reflected by the material can be reflected. The measurement light is sequentially reflected by a third reflecting mirror and a fourth reflecting mirror to return it to the original optical axis of the measurement light. In addition, by moving and rotating the second reflecting mirror along the optical axis of the light reflected by the first reflecting mirror, the light reflected by the second reflecting mirror can be moved to a different location with respect to the material. The third reflecting mirror is moved along the optical axis of the light reflected by this reflected light and rotated at the same time, so that the reflected light is reflected at a fourth reflected angle. The light is reflected by a mirror and directed toward the optical axis of the measurement light of the spectrophotometer. Therefore, the influence of the reflectance of each reflector was removed by spectrophotometry of the light reflected by each reflector and by spectrophotometry of the light reflected by each reflector using the reflected light obliquely incident on the material. Capable of spectrophotometry of materials. Moreover, the above-mentioned movement of the second reflecting mirror and the third reflecting mirror.

回動により任意の入射角での測光が可能になる。Rotation allows photometry at any angle of incidence.

第1図は本発明の分光測光装置における補助装置の原理
を゛示す図で、Mlは分光測光装置の測定光の光軸01
上に傾けて配置された第1の反射鏡、M2は第1の反射
鏡Mlにて反射され光軸OIに対し例えば120°の方
向へ向かう光の光軸0□上に配置されこの光軸0□に沿
って移動可能で更に回動可能である第2の反射鏡、島は
第2の反射鏡M2にて反射された光の光軸03上に配置
された第3の反射鏡で、この反射鏡にて反射された光の
光軸04に沿って移動可能で又回動可能である。更にN
′L4は第3の反射鏡族にて反射された光を元の光軸0
!方向へ向けるための第4の反射鏡である。
FIG. 1 is a diagram showing the principle of the auxiliary device in the spectrophotometer of the present invention, where Ml is the optical axis 01 of the measurement light of the spectrophotometer.
The first reflecting mirror M2, which is arranged to be tilted upward, is arranged on the optical axis 0□ of the light that is reflected by the first reflecting mirror Ml and goes in a direction of, for example, 120° with respect to the optical axis OI. The second reflecting mirror, which is movable and further rotatable along 0□, is a third reflecting mirror located on the optical axis 03 of the light reflected by the second reflecting mirror M2, It is movable and rotatable along the optical axis 04 of the light reflected by this reflecting mirror. Further N
'L4 directs the light reflected by the third reflecting mirror group to the original optical axis 0.
! This is the fourth reflecting mirror for directing the direction.

又Sは資料で光軸O7に反射面を一致させ更に光軸OI
と光軸03の交点に中心が位置するようにおかれている
。この位置に資料Sがおかれた時、第3の反射鏡M3は
M3’の位置におきかえられ又第4の反。
Also, for S, align the reflective surface with the optical axis O7 in the document and further align the optical axis OI.
The center is located at the intersection of the optical axis 03 and the optical axis 03. When the material S is placed at this position, the third reflecting mirror M3 is changed to the position M3' and the fourth reflecting mirror M3 is moved to the position M3'.

射鏡狐はWの位置に転換される。つまシ第3の反射鏡と
第4の反射鏡を光軸O1に関してM3とMs’ 、M4
とル′が夫々対称になるように変換する。したがって測
定光は第1の反射鏡Mlにて反射され光軸02方向へ向
けられ第2の反射鏡族にて反射され光軸03へ向けられ
、資料Sへ入射角θにて入射され反射される。その後筒
3の反射鏡族′と第4の反射鏡族′にて反射されて光軸
0+方向に向けられる。
Shooting Mirror Fox is switched to the W position. The third reflecting mirror and the fourth reflecting mirror are M3, Ms', M4 with respect to the optical axis O1.
Transform so that and le are symmetrical. Therefore, the measurement light is reflected by the first reflecting mirror Ml and directed toward the optical axis 02, reflected by the second reflecting mirror group, directed toward the optical axis 03, and incident on the material S at an incident angle θ and reflected. Ru. Thereafter, it is reflected by the reflecting mirror group' of the tube 3 and the fourth reflecting mirror group', and is directed toward the optical axis 0+ direction.

このように第1の反射鏡M1.第2の反射鏡M2゜第3
の反射鏡ぬ、第4の反射鏡M4より構成される補助装置
を分光測光装置の測定光の光路中に挿入し第1の反射鏡
M+と第4の反射鏡族が光軸01上に位置するようにす
れば、測定光は第1の反射鏡M。
In this way, the first reflecting mirror M1. Second reflecting mirror M2゜3rd
An auxiliary device consisting of a fourth reflecting mirror M4 is inserted into the optical path of the measurement light of the spectrophotometer, and the first reflecting mirror M+ and the fourth reflecting mirror group are positioned on the optical axis 01. If so, the measurement light will be transmitted to the first reflecting mirror M.

にて光路を変更され第2の反射鏡M2.第3の反射鐘M
s、第4の反射鏡族にて反射されて再び元の測定光の光
路01へ戻る。これによってすべての反射鏡での反射に
よる分光反射特性が求められる。
The optical path is changed at the second reflecting mirror M2. Third reflective bell M
s, it is reflected by the fourth reflecting mirror group and returns to the original optical path 01 of the measurement light. As a result, the spectral reflection characteristics resulting from reflections from all the reflecting mirrors are determined.

次にこの補助装置の光軸03と測定光の光軸OIとの交
点位置に光軸O7に資料面がくるように資料Sを配置し
第3の反射鏡族と第4の反射鏡族を夫々M3’ 、 M
、’のようにおきかえることによって、測定光は資料面
Sに入射角θにて入射し反射されて、更に第3の反射鏡
M3′、第4の反射鏡族′にて反射されて元の光軸O9
に戻る。これによって資料Sへの入射角θにて入射させ
た時の分光反射特性とすべての反射鏡での反射による分
光反射特性との総合の分光反射特性が測定される。
Next, place the material S so that the material surface is on the optical axis O7 at the intersection of the optical axis 03 of this auxiliary device and the optical axis OI of the measurement light, and place the third reflecting mirror group and the fourth reflecting mirror group. M3', M respectively
, ', the measurement light is incident on the material surface S at an incident angle θ, is reflected, and is further reflected by the third reflecting mirror M3' and the fourth reflecting mirror group', and is returned to its original state. Optical axis O9
Return to As a result, the total spectral reflection characteristics of the spectral reflection characteristics when the light is incident on the material S at the incident angle θ and the spectral reflection characteristics due to reflections from all the reflecting mirrors are measured.

ここで第1〜第4の反射鏡MH、M2 、 M3’ 、
 M4’は資料Sをおかない時の第1〜第4の反射鏡M
l l M21Mユ2M4と全く同じもので反射の条件
も同じであるので両側定値から反射鏡による影響を除去
した資料の分光反射率特性を求めることが出来る。
Here, the first to fourth reflecting mirrors MH, M2, M3',
M4' is the first to fourth reflecting mirrors M when the material S is not placed
Since it is exactly the same as M21MY2M4 and the reflection conditions are the same, it is possible to determine the spectral reflectance characteristics of the material with the influence of the reflecting mirror removed from the constant values on both sides.

即ち、前述の従来例と同じように反射鏡Mt = M2
、M、l、Atの反射率を夫々R+ 、R2、Rs 、
R4、測定光の光量を工0、資料の反射率をRsとする
と資料が々い時の測定光量IBと資料をおいた時の測定
光量IRは夫々下記の通りである。
That is, as in the conventional example described above, the reflecting mirror Mt = M2
, M, l, and At are R+, R2, Rs, respectively.
R4, the light intensity of the measurement light is 0, and the reflectance of the material is Rs, then the measurement light amount IB when the material is large and the measurement light amount IR when the material is placed are as follows.

IB = I。−R2・R2・R5・R4IR= Io
 ” R+ ” R2” R3@R3’ R4■ したがって ”/H8= Rsで資料の純粋の反射率が
求められる。
IB = I. −R2・R2・R5・R4IR= Io
"R+"R2"R3@R3' R4■ Therefore, the pure reflectance of the material is determined by "/H8= Rs.

同様に資料をおいた状態で第3の反射鏡と第4の反射鏡
を夫々M3.M4の位置においての測定値ITは資料の
透過率をTsとすると次の通シである。
Similarly, with the material placed there, move the third and fourth reflecting mirrors to M3. The measured value IT at the position M4 is as follows, where Ts is the transmittance of the material.

IT= Io ” R+ΦR2”rs ” R3#R4
したがってIq、=Tsから資料の透過率も求められる
IT=Io"R+ΦR2"rs"R3#R4
Therefore, the transmittance of the material can also be determined from Iq,=Ts.

次に第2の反射鏡族を光軸02に沿って移動させてA2
点からA2点へ移動させると共に光軸0□上の点を中心
に回動させることによってとのA2点におかれた第2の
反射鏡M2にて反射された光の光軸03’がサンプルS
の配置位置の中心点0を通るようにする。更に第3の反
射鏡族も光軸0.に沿ってB1点からB2点へ移動させ
ると同時に光軸04上の点を中心に回動させて光軸0.
′に沿って進む光を反射させて第4の反射鏡■へ向ける
ようにする。更に第4の反射鏡族で反射した光は光軸0
1へ戻される。
Next, move the second reflecting mirror group along the optical axis 02 to
The optical axis 03' of the light reflected by the second reflecting mirror M2 placed at the A2 point is the sample by moving from the point to the A2 point and rotating around the point on the optical axis 0□. S
so that it passes through the center point 0 of the arrangement position. Furthermore, the third reflecting mirror group also has an optical axis of 0. along the optical axis 04 by moving it from point B1 to point B2 and simultaneously rotating it around the point on optical axis 04.
The light traveling along ' is reflected and directed to the fourth reflecting mirror ■. Furthermore, the light reflected by the fourth reflecting mirror group has an optical axis of 0.
Returned to 1.

一方資料Sを挿入し第3の反射鏡族を点B3の位置へ移
動させ第4の反射鏡ぬを転換してル′にすることによっ
て点A2におかれた第2の反射鏡M2にて反射された光
を資料Sに入射角θ2にて入射させ、これにて反射され
た光を更に点B3におかれた第3の反射鏡M、′、第4
の反射鏡層にて反射させて元の測定光路0+に沿って向
かうようにする。
On the other hand, by inserting the material S, moving the third reflecting mirror group to the position of point B3, and converting the fourth reflecting mirror to 'L', the second reflecting mirror M2 placed at point A2 The reflected light is incident on the material S at an incident angle θ2, and the reflected light is further transmitted to the third reflecting mirror M,', and the fourth mirror placed at the point B3.
The light is reflected by the reflective mirror layer of 2 and directed along the original measurement optical path 0+.

このようKして、資料Sへの入射角の異なった入射角θ
2での資料Sの分光反射率の測定が出来る。
In this way, the angle of incidence θ on the material S is different.
The spectral reflectance of material S in 2 can be measured.

この場合も資料Sの挿入前と、資料Sを挿入した時とで
同一の反射鏡による同一の状態での反射であるので、反
射鏡による影響を完全に除去した資料の正しい分光反射
率が求められる。又分光透過率も同様にして求められる
In this case as well, since the reflection is in the same state from the same reflector before inserting material S and when material S is inserted, the correct spectral reflectance of the material can be determined by completely removing the influence of the reflecting mirror. It will be done. In addition, the spectral transmittance can also be determined in the same manner.

以上のように第2の反射鏡M2を光軸02に沿って移動
させると共にこの第2の反射鏡M2をその反射光が資料
Sの中心点Oに向かうように回動させ、それに応じて第
3の反射鏡M3を光軸04に沿っての移動と回動を行な
うことにより測定光が第4の反射鏡狐にて反射した後に
光軸O8の方向へ進むようにすることによって、任意の
入射角での資料の分光反射率等の測定が可能である。
As described above, the second reflecting mirror M2 is moved along the optical axis 02, and this second reflecting mirror M2 is also rotated so that the reflected light is directed toward the center point O of the material S, and the By moving and rotating the third reflecting mirror M3 along the optical axis 04, the measurement light is reflected by the fourth reflecting mirror and then proceeds in the direction of the optical axis O8. It is possible to measure the spectral reflectance of the material at the incident angle.

第2図は、一般に用いられている分光光度計の一例であ
って、光源Wよりの広帯域波長分布光は、凹面反射鏡M
R,によりコリメートされ、チョッパーCM、スリット
St、l’ロイダル鏡MR2,凹面鏡MR3を通りプリ
ズムPに入射し、低分解能に分光子G、又はG2に入射
する。回折格子G+又はG2にて回折して高分解能に分
光された光は、再び凹面鏡MR6にて反射され、スリッ
トS3.シリンドリカル鏡MR7を通シ回転鏡M Rg
にて参照光と測定光に時分割される。参照光は平面鏡M
RQ 9MR+o 、 MR+□。
FIG. 2 shows an example of a commonly used spectrophotometer, in which broadband wavelength distribution light from a light source W is transmitted through a concave reflecting mirror M.
R, and enters the prism P through the chopper CM, slit St, l'roidal mirror MR2, and concave mirror MR3, and enters the spectrometer G or G2 with low resolution. The light diffracted by the diffraction grating G+ or G2 and separated into high-resolution spectra is reflected again by the concave mirror MR6, and is reflected by the slit S3. Cylindrical mirror MR7 through rotating mirror M Rg
The beam is time-divided into reference light and measurement light. Reference light is plane mirror M
RQ 9MR+o, MR+□.

トロイダル鏡MR+4を通り検知器PMTにより検知さ
れる。一方測定光は、平面鏡MR++ 、 MR13、
)ロイダル鏡MR+5を通り検知器PMTにより検知さ
れる。参照光と測定光は時分割で処理され、更にチョッ
パーCHの周期に同期したサンプリング処理により高い
S/N比で、しかも参照光との比較によって光源Wの光
量変化に影響されることなく処理される。
It passes through the toroidal mirror MR+4 and is detected by the detector PMT. On the other hand, the measurement light is a plane mirror MR++, MR13,
) It passes through the loidal mirror MR+5 and is detected by the detector PMT. The reference light and measurement light are processed in a time-sharing manner, and furthermore, by sampling processing synchronized with the cycle of the chopper CH, processing is performed with a high S/N ratio, and without being affected by changes in the light intensity of the light source W by comparison with the reference light. Ru.

第1図に示す原理にもとづく本発明の補助装置41は資
料室42内に組込まれ、第1図のように第1の反射鏡M
、が測定光の光軸01上にくるようにおかれる。
The auxiliary device 41 of the present invention based on the principle shown in FIG.
, is placed on the optical axis 01 of the measurement light.

次に本発明の装置において資料への入射角を変化させる
ために第2の反射鏡Mを光軸02に沿って移動させた時
の第2の反射鏡島の回転について述べる。
Next, the rotation of the second reflecting mirror island when the second reflecting mirror M is moved along the optical axis 02 in order to change the angle of incidence on the specimen in the apparatus of the present invention will be described.

第3図において、光軸OIに沿っての光が第1の反射鏡
M、にて反射されて光軸02に進む時の光軸o1と光軸
02のなす角をγとする。又第2の反射鏡M2にて反射
された光が資料Sの中心点0を通るようにした時の第2
の反射鏡M2の光軸01と平行な方向からの傾きをφ、
資料への入射角をθとすると次の式(1)の関係が成立
つ。
In FIG. 3, when the light along the optical axis OI is reflected by the first reflecting mirror M and travels to the optical axis 02, the angle formed by the optical axis o1 and the optical axis 02 is γ. Also, when the light reflected by the second reflecting mirror M2 passes through the center point 0 of the material S, the second
The inclination of the reflecting mirror M2 from the direction parallel to the optical axis 01 is φ,
When the angle of incidence on the material is θ, the following equation (1) holds true.

φ=7(γ十〇−90°)(1) 第1図においてはγ=60°であるので、その場合は式
(2)のようになる。
φ=7(γ10−90°) (1) In FIG. 1, γ=60°, so in that case, equation (2) is obtained.

φ=7(θ−30°)(2) しだがって第2の反射鏡M2を光軸O7に沿っての移動
によって変化した入射角θの変化量の7だけ第2の反射
鏡■を回動させればよい。この時第3の反射鏡M3は、
資料Sの中心点Oを対称点として第2の反射鏡M2に点
対称に変位させればよい。
φ=7(θ-30°) (2) Therefore, the second reflecting mirror ■ is changed by 7 of the amount of change in the incident angle θ by moving the second reflecting mirror M2 along the optical axis O7. Just rotate it. At this time, the third reflecting mirror M3 is
The second reflecting mirror M2 may be displaced symmetrically with respect to the center point O of the material S as a point of symmetry.

〔実施例〕〔Example〕

次に本発明の実施例として、本発明補助装置の具体的な
構造を説明する。第4図は、本発明の実施例の平面図、
第5図は同実施例の断面図である。
Next, as an example of the present invention, a specific structure of the auxiliary device of the present invention will be explained. FIG. 4 is a plan view of an embodiment of the present invention;
FIG. 5 is a sectional view of the same embodiment.

これら図において、1は装置の各部分を配置するペース
、2はベース1上に固定されていて第1の反射鏡MIを
分光光度計の測定光を120°傾いた方向(γ=60°
の方向)へ向けるように保持している第1の保持枠、3
は第1の反射鏡M+にて反射される光の光軸02に一致
させて配置された第1のガイドレール、4は第2の反射
鏡ぬを保持する第2の保持枠、5は保持枠4の下面に固
定された回転軸5aを有する回転台、6は資料Sの中心
点Oに位置する回転軸6aを軸として回動可能にベース
1に取付けられた対称レバー、7は一方の端部を回転台
5の回転軸5aのまわりに回動可能に取付けられ他端を
ビン7aKよって対称レバー6に形成された摺動溝6b
に対して摺動可能に連結された角度保持レバー、8は回
転台50回転軸5aに固定されているギヤー、9はギヤ
ー8と噛み合う他のギヤー、10はギヤー9と一体に回
転するように取付けられているギヤーで角度保持レバー
7の先端に形成された歯と噛み合っている。又11は資
料保持台、12は対称レバー60回転軸6aに固定され
ているギヤー、13はギヤー12と噛み合うギヤー、1
4はギヤー13と噛み合うギヤー、15は対称レバー6
の回転軸6aのまわりに回動可能に保持されている他の
対称レバー、16は対称レバー15と一体に回動するギ
ヤーでギヤー14と噛み合っている。
In these figures, 1 is a pace for arranging each part of the device, and 2 is a plate fixed on a base 1, which directs the first reflecting mirror MI in a direction tilted by 120° (γ = 60°).
a first holding frame held so as to face the direction of
1 is a first guide rail arranged to match the optical axis 02 of the light reflected by the first reflecting mirror M+, 4 is a second holding frame that holds the second reflecting mirror, and 5 is a holding frame. A rotating table having a rotating shaft 5a fixed to the lower surface of the frame 4; 6 a symmetrical lever mounted on the base 1 so as to be rotatable about the rotating shaft 6a located at the center point O of the material S; 7 a symmetrical lever on one side; A sliding groove 6b is formed in the symmetrical lever 6 by having an end rotatably attached around the rotating shaft 5a of the rotary table 5 and a pin 7aK at the other end.
8 is a gear fixed to the rotating shaft 5a of the rotary table 50; 9 is another gear that meshes with the gear 8; 10 is configured to rotate together with the gear 9; The attached gear meshes with teeth formed at the tip of the angle holding lever 7. Further, 11 is a document holding table, 12 is a gear fixed to the rotating shaft 6a of the symmetrical lever 60, 13 is a gear that meshes with the gear 12, 1
4 is a gear that meshes with gear 13, 15 is a symmetrical lever 6
Another symmetrical lever 16, which is rotatably held around the rotation axis 6a of the symmetrical lever 15, is a gear that rotates together with the symmetrical lever 15 and meshes with the gear 14.

17は資料Sの中心点Oに関して第1のガイドレールと
点対称の位置に配置された第2のガイドレール、18は
第3の反射鏡島を保持する保持台、19は回転台、20
は角度保持レバー、21 、22.23はギヤーで、こ
れらは第2の反射鏡M2に対するものと実質上同一の構
成になっている。
17 is a second guide rail arranged in a position symmetrical to the first guide rail with respect to the center point O of the material S; 18 is a holding table for holding the third reflective island; 19 is a rotating table; 20
is an angle holding lever, and 21, 22, and 23 are gears, which have substantially the same configuration as that for the second reflecting mirror M2.

24は第1のガイドレール3および第2のガイドレール
17のいずれに対しても面対称におかれている第3のガ
イドレール、25は第3の反射鏡M3(第1図のM3′
)を保持する保持枠、26は回転台、27は角度保持レ
バー、28.29.30はギヤーで、これらは対称レバ
ー15により移動させられる点を除いて第2の反射鏡M
におけるものと実質上同じ構成である。
24 is a third guide rail that is placed in plane symmetry with respect to both the first guide rail 3 and the second guide rail 17, and 25 is a third reflecting mirror M3 (M3' in FIG. 1).
), 26 is a rotary table, 27 is an angle holding lever, and 28, 29, 30 are gears, which are moved by the symmetrical lever 15.
The configuration is substantially the same as that in .

尚31は第4の反射鏡へtを保持する保持台であって、
第4の反射鏡を盾の位置とM4’の位置に転換可能な構
造になっている。
Note that 31 is a holding stand for holding t to the fourth reflecting mirror,
The structure allows the fourth reflecting mirror to be switched between the shield position and the M4' position.

以上の構造の実施例において、例えば図示するように第
2の反射鏡M2および第3の反射鏡hhをいずれも光軸
01に平行にセットすれば前述のようにして入射角θ(
θ=30°)での資料の分光反射率の測定が出来る。
In the embodiment with the above structure, for example, if the second reflecting mirror M2 and the third reflecting mirror hh are both set parallel to the optical axis 01 as shown in the figure, the incident angle θ(
It is possible to measure the spectral reflectance of the material at θ=30°).

ここで対称レバー6を回転軸6aのまわシに回転させれ
ば第2の反射鏡M2を保持する第1の保持台4はガイド
レール3に沿って移動する。この時角度保持レバー7も
移動しこれによってギヤー10が回動しギヤー8,9を
介して回転台5が回転され保持枠4と共に第2の反射鏡
ぬは回動される。
If the symmetrical lever 6 is rotated around the rotating shaft 6a, the first holding table 4 holding the second reflecting mirror M2 moves along the guide rail 3. At this time, the angle holding lever 7 also moves, thereby rotating the gear 10, rotating the rotary table 5 via the gears 8 and 9, and rotating the second reflecting mirror together with the holding frame 4.

この時ギヤー8.9.10によって入射角の変化量のT
だけ回転台5が回転するようにすれば第2の反射鏡M2
で反射した測定光は常に資料Sの中心点0を通るように
なる。
At this time, the amount of change in the angle of incidence T by gear 8.9.10
If the rotary table 5 is rotated by the amount, the second reflecting mirror M2
The measurement light reflected by the object always passes through the center point 0 of the material S.

第3の反射鏡島に対しても実質的に同一構成であるので
、対称レバー6の回動によって第一3の反射鏡島は全く
同じ作用によって資料Sの中心点に関して第2の反射鏡
M2と対称に移動および回動する。
Since the third reflector island also has substantially the same configuration, the rotation of the symmetry lever 6 causes the first third reflector island to become symmetrical to the second reflector M2 with respect to the center point of the material S by the same action. move and rotate.

この対称レバー6の回動によりギヤー12が回動し、こ
れによりギャ−13,14を介して対称レバー15は逆
方向に動き光軸O1に関して対称レバー6に対し常に面
対称であるように移動する。
This rotation of the symmetrical lever 6 causes the gear 12 to rotate, which causes the symmetrical lever 15 to move in the opposite direction via the gears 13 and 14 so that it always moves in plane symmetry with respect to the symmetrical lever 6 with respect to the optical axis O1. do.

この対称レバー15の移動によって第3の反射鏡M3を
保持する第3の保持枠25は、第1の保持枠4等と同様
の作用によって第2の反射鏡M2と面対称になるように
移動する。
By the movement of this symmetry lever 15, the third holding frame 25 that holds the third reflecting mirror M3 is moved to be plane symmetrical with the second reflecting mirror M2 by the same action as the first holding frame 4, etc. do.

以上のように対称レバー6の回動によって資料Sへの入
射角をθからθ′へ変化させても第1図にもとづく原理
と全く同じ動きを各反射鏡がするので任意の入射角での
測定が可能になる。
As described above, even if the angle of incidence on the material S is changed from θ to θ' by rotating the symmetrical lever 6, each reflector moves exactly the same as the principle based on Fig. Measurement becomes possible.

この実施例は、以上述べた構造であるので、まず各反射
鏡保持枠に設けられている取付位置調整機構によって測
定光が夫々第1の反射鏡M+ r第2の反射鏡部にて反
射された後にその光軸が資料台に資料をおいた時の資料
面の中心になる点を通り更に第3の反射鏡孔、第4の反
射鏡M4にて反射された後に元の光軸02に沿って進む
ように調整すれば、前述の原理で述べたようにしてその
時の資料への入射角θでの資料の分光透過率2分光反射
率を測定出来る。
Since this embodiment has the structure described above, the measurement light is first reflected by the first reflecting mirror M+ r second reflecting mirror section by the mounting position adjustment mechanism provided on each reflecting mirror holding frame. After that, the optical axis passes through the center point of the material surface when the material is placed on the material stand, and is further reflected by the third reflecting mirror hole and the fourth reflecting mirror M4, and then returns to the original optical axis 02. If the beam is adjusted so as to move along the same direction, the spectral transmittance and spectral reflectance of the specimen at the incident angle θ to the specimen at that time can be measured as described in the above-mentioned principle.

更に対称レバー6の回動によって資料への入射角を変化
させ得ると共にその場合も夫々第1の反射鏡M+ r第
2の反射鐘Mt、第3の反射鏡M3 、第4の反射鏡ル
又は第1の反射鏡M+ +第2の反射鏡M2、資料S、
第3の反射鏡M3′、第4の反射鏡ぬ′にて順次反射さ
れて常に元の光軸0+に戻すことが出来、原理にて説明
した測定が出来る。
Furthermore, by rotating the symmetrical lever 6, the angle of incidence on the material can be changed, and in that case, the angle of incidence on the material can be changed by rotating the first reflecting mirror M+r, the second reflecting mirror Mt, the third reflecting mirror M3, or the fourth reflecting mirror M+r, respectively. First reflecting mirror M+ + second reflecting mirror M2, material S,
The light is sequentially reflected by the third reflecting mirror M3' and the fourth reflecting mirror M3' and can always be returned to the original optical axis 0+, making it possible to perform the measurement described in the principle.

第6図は、本発明の補助装置の各反射鏡等の他の配置例
を示すものである。この図に示す例のように対称でない
配置も可能であり、夫々第2の反射鏡と第3の反射鏡の
移動並びに回動等によって全く同様の測定が可能である
FIG. 6 shows another example of the arrangement of the reflecting mirrors, etc. of the auxiliary device of the present invention. A non-symmetrical arrangement as in the example shown in this figure is also possible, and completely similar measurements can be made by moving and rotating the second and third reflecting mirrors, respectively.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のような構成であるので反射鏡による影
響を受けることなしに斜め入射による分光測定が可能で
あってしかも任意入射角での測定が可能である。
Since the present invention has the above-described configuration, it is possible to perform spectroscopic measurements by oblique incidence without being influenced by a reflecting mirror, and also to perform measurements at any angle of incidence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の補助装置の原理を示す図、第2図は本
発明の補助装置を使用する分光光度計の一例を示す図、
第3図は本発明の補助装置で用いる第2の反射鏡の移動
と回動の関係を示す図、第4図は本発明の一実施例の平
面図、第5図は同実施例の断面図、第6図は他の実施例
の断面図、第7図、第8図は従来の斜め入射による分光
反射特性測定の場合の補助光学系を示す図である。 Ml・・・第1の反射鏡、M2・・・第2の反射鏡、腸
FIG. 1 is a diagram showing the principle of the auxiliary device of the present invention, and FIG. 2 is a diagram showing an example of a spectrophotometer using the auxiliary device of the present invention.
Fig. 3 is a diagram showing the relationship between movement and rotation of the second reflecting mirror used in the auxiliary device of the present invention, Fig. 4 is a plan view of an embodiment of the invention, and Fig. 5 is a cross section of the embodiment. 6 are cross-sectional views of other embodiments, and FIGS. 7 and 8 are diagrams showing an auxiliary optical system in the case of conventional spectral reflection characteristic measurement using oblique incidence. Ml...first reflector, M2...second reflector, intestine.

Claims (1)

【特許請求の範囲】[Claims] 分光測光装置の測定光路中に挿入することによつて資料
への斜入射角での測定を行なうための補助装置であつて
、前記補助装置を挿入した時に測定光路上に位置し測定
光を異なる方向へ向ける第1の反射鏡と、前記第1の反
射鏡にて反射された測定光を順次反射させる第2の反射
鏡および第3の反射鏡と、前記第3の反射鏡にて反射さ
れた測定光を反射して分光測光装置の測定光路へ戻す第
4の反射鏡と、前記第2の反射鏡と第3の反射鏡の間に
おかれ資料の設置を可能にした資料台とを備え、前記第
2の反射鏡が前記第1の反射鏡にて反射された測定光の
光軸上を移動可能でこの移動と同時に前記資料台におか
れるべき資料面の中心を該第2の反射鏡にて反射された
測定光の光軸が通るように回動され、前記第3の反射鏡
が常に第2の反射鏡より光を第4の反射鏡に向けるべく
前記第2の反射鏡の移動に応じて該第3の反射鏡にて反
射される測定光の光軸上を移動すると共に回動され、前
記資料台に資料を設置して反射特性を測定する際は、前
記資料よりの反射光を反射して第4の反射鏡に向けるべ
く第3の反射鏡を他の位置に配置すると共に該第3の反
射鏡にて反射される光の光軸上を移動させると同時に回
動させるようにした分光測光装置における補助装置。
An auxiliary device that is inserted into the measurement optical path of a spectrophotometer to perform measurements at an oblique angle of incidence on a material, and when the auxiliary device is inserted, it is located on the measurement optical path and emits a different measurement light. a first reflecting mirror that directs the measuring light toward the direction; a second reflecting mirror and a third reflecting mirror that sequentially reflect the measurement light reflected by the first reflecting mirror; a fourth reflecting mirror that reflects the measured measurement light and returns it to the measurement optical path of the spectrophotometric device; and a document table that is placed between the second reflecting mirror and the third reflecting mirror and enables the installation of materials. The second reflecting mirror is movable on the optical axis of the measurement light reflected by the first reflecting mirror, and simultaneously moves the center of the material surface to be placed on the material table to the second reflecting mirror. The second reflecting mirror is rotated so that the optical axis of the measurement light reflected by the reflecting mirror passes through, and the third reflecting mirror always directs the light from the second reflecting mirror to the fourth reflecting mirror. When the material is placed on the material table and the reflection characteristics are measured, the material is moved on the optical axis of the measurement light reflected by the third reflecting mirror and rotated. A third reflecting mirror is placed at another position in order to reflect the reflected light and direct it to a fourth reflecting mirror, and at the same time, the third reflecting mirror is moved on the optical axis of the light reflected by the third reflecting mirror and rotated. An auxiliary device in a spectrophotometer that can be moved.
JP4915487A 1987-03-04 1987-03-04 Auxiliary device in spectrophotometer Expired - Lifetime JPH0789081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4915487A JPH0789081B2 (en) 1987-03-04 1987-03-04 Auxiliary device in spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4915487A JPH0789081B2 (en) 1987-03-04 1987-03-04 Auxiliary device in spectrophotometer

Publications (2)

Publication Number Publication Date
JPS63215923A true JPS63215923A (en) 1988-09-08
JPH0789081B2 JPH0789081B2 (en) 1995-09-27

Family

ID=12823180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4915487A Expired - Lifetime JPH0789081B2 (en) 1987-03-04 1987-03-04 Auxiliary device in spectrophotometer

Country Status (1)

Country Link
JP (1) JPH0789081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307155A (en) * 1991-01-31 1994-04-26 Shimadzu Corp. Sample chamber for a spectro photometer
WO2010106589A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Optical measuring instrument and optical measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5307155A (en) * 1991-01-31 1994-04-26 Shimadzu Corp. Sample chamber for a spectro photometer
WO2010106589A1 (en) * 2009-03-18 2010-09-23 株式会社村田製作所 Optical measuring instrument and optical measurement method

Also Published As

Publication number Publication date
JPH0789081B2 (en) 1995-09-27

Similar Documents

Publication Publication Date Title
US4684255A (en) Interferometric optical path difference scanners and FT spectrophotometers incorporating them
US5106196A (en) Single adjustment specular reflection accessory for spectroscopy
US6128093A (en) Unit for measuring optical properties
US20100201981A1 (en) Calibration method for optical metrology
FR2605100A1 (en) OPTICAL DEVICE FOR ILLUMINATING A SAMPLE FOR A SPECTROSCOPIC ELLIPSOMETER WITH HIGH SIDE RESOLUTION
JPS5979841A (en) Apparatus for measuring absolute reflectivity
US4834539A (en) Spectroscopic ellipsometer
US4740082A (en) Spectrophotometer
US8107073B2 (en) Diffraction order sorting filter for optical metrology
US7304737B1 (en) Rotating or rotatable compensator system providing aberation corrected electromagnetic raadiation to a spot on a sample at multiple angles of a incidence
US5262845A (en) Optical accessory for variable angle reflection spectroscopy
JPS62266439A (en) Spectral temporary optical analyzer
JPS63215923A (en) Auxiliary apparatus for spectrophotometer
US3285124A (en) High precision pointing interferometer with modified kosters prism
CN106017682A (en) Quarter-wave-plate-included depolarization spectrograph
JPS58727A (en) Fourier transform spectrum device
JPS5821527A (en) Fourier converting type infrared spectrophotometer
JPS63215924A (en) Auxiliary apparatus for spectrophotometer
JPH0417367B2 (en)
JPH0783828A (en) Variable-angle absolute reflectance measuring instrument
JPH0518686Y2 (en)
JP3119622U (en) Spectrophotometer
KR20040030066A (en) Spectrometric method and device for carrying out said method (variants)
SU845018A1 (en) Meter of distributing of mechanism bearings
JPS6244215B2 (en)