JPS6244215B2 - - Google Patents

Info

Publication number
JPS6244215B2
JPS6244215B2 JP3985281A JP3985281A JPS6244215B2 JP S6244215 B2 JPS6244215 B2 JP S6244215B2 JP 3985281 A JP3985281 A JP 3985281A JP 3985281 A JP3985281 A JP 3985281A JP S6244215 B2 JPS6244215 B2 JP S6244215B2
Authority
JP
Japan
Prior art keywords
light
sample
diffusing plate
integrating sphere
spectrometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3985281A
Other languages
Japanese (ja)
Other versions
JPS57153250A (en
Inventor
Osamu Akyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP3985281A priority Critical patent/JPS57153250A/en
Publication of JPS57153250A publication Critical patent/JPS57153250A/en
Publication of JPS6244215B2 publication Critical patent/JPS6244215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 本発明は偏光子とか斜入射で用いる干渉薄膜体
等の偏光特性を有する物の自然光に対する分光透
過率・分光反射率を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for measuring the spectral transmittance and spectral reflectance of natural light of an object having polarization characteristics, such as a polarizer or an interference thin film used for oblique incidence.

回折格子分光器から出射する光はかなり偏光化
しており、従つて偏光子とか斜入射で用いる干渉
フイルタのような物或は偏光性を有する固体等の
試料の分光透過率を測定する場合試料の置き方で
測定される分光透過率が異つて来る。従つてこの
ような試料の自然光に対する分光透過率の精密測
定は試料を回転させて透過率最大と最小の両方を
測定して平均すると云つた大変面倒な操作を行う
か、偏光性の少いプリズム分光器を用いる必要が
ある。しかしプリズム分光器は分光光度計の分光
器として通常よく使われる回折格子分光器に比し
大へん高価である上わずかではあるが偏光性が現
れる。
The light emitted from a diffraction grating spectrometer is highly polarized, so when measuring the spectral transmittance of a sample such as a polarizer, an interference filter used at oblique incidence, or a solid that has polarization, the sample's The measured spectral transmittance differs depending on how it is placed. Therefore, precise measurement of the spectral transmittance of a sample against natural light requires a very troublesome operation such as rotating the sample, measuring both the maximum and minimum transmittance, and averaging them, or using a prism with little polarization. It is necessary to use a spectrometer. However, prism spectrometers are much more expensive than diffraction grating spectrometers, which are commonly used as spectrometers in spectrophotometers, and they exhibit polarization, albeit slightly.

本発明は単色自然光を試料に入射させて分光透
過率を測定することにより一回の測定操作で分光
透過率が得られるような装置を提供することを目
的としてなされた。
The present invention has been made with the object of providing an apparatus that can obtain spectral transmittance in a single measurement operation by making monochromatic natural light incident on a sample and measuring the spectral transmittance.

本発明分光透過率測定装置は分光器から出射し
た光を光拡散板或は積分球内面等の白色乱反射面
に入射させ、その反射光を試料に入射させるよう
にした所に特徴を有する。以下実施例によつて本
発明を説明する。
The spectral transmittance measuring device of the present invention is characterized in that the light emitted from the spectrometer is made incident on a white diffusely reflecting surface such as a light diffusing plate or the inner surface of an integrating sphere, and the reflected light is made incident on a sample. The present invention will be explained below with reference to Examples.

第1図は本発明の一実施例を示す。Mは分光
器、Lは光源、MRは反射鏡でDは硫酸バリウム
等を塗布した光拡散板で分光器Mの出射光は反射
鏡MRで反射されて光拡散板Dに入射せしめられ
る。Sは試料で光拡散板Dで乱反射された光の一
部が入射せしめられる。試料Sの前面にはスリツ
ト状コリメータCが配置され、光拡散板Dで乱反
射された光束のうち拡散板Dに垂直な方向の光束
だけが試料Sに入射されるようになつている。
STは試料ステージで試料Sが載置され、試料の
向きを図の紙面に垂直な方向の軸回りに変えられ
るようになつていて、試料への光の入射角が変え
られるようになつている。ステージSTには角度
目盛Agが設けてある。Iは積分球で試料Sを透
過した光が入射せしめられる。DTは光検出器
で、積分球Iの試料透過光入射窓とは異る窓から
の出射光が入射せしめられる。MSは遮光マスク
で試料への入射光束の幅を規定すると共に光拡散
板Dから四方に乱反射される光を遮光し装置内の
迷光レベルが高まるのを防ぐ。
FIG. 1 shows an embodiment of the invention. M is a spectroscope, L is a light source, MR is a reflecting mirror, and D is a light diffusing plate coated with barium sulfate, etc. The light emitted from the spectroscope M is reflected by the reflecting mirror MR and enters the light diffusing plate D. S denotes a sample, into which a portion of the light diffusely reflected by the light diffusing plate D is incident. A slit-shaped collimator C is arranged in front of the sample S, so that only the light beam in the direction perpendicular to the diffuser plate D among the light beams diffusely reflected by the light diffuser plate D is incident on the sample S.
In ST, a sample S is placed on a sample stage, and the orientation of the sample can be changed around an axis perpendicular to the plane of the figure, allowing the angle of incidence of light on the sample to be changed. . An angle scale Ag is provided on the stage ST. I is an integrating sphere on which the light that has passed through the sample S is made to enter. DT is a photodetector, into which light emitted from a window different from the sample transmitted light entrance window of the integrating sphere I is made incident. The MS uses a light-shielding mask to define the width of the light beam incident on the sample, and also blocks light that is diffusely reflected in all directions from the light diffusing plate D, thereby preventing an increase in the level of stray light within the apparatus.

分光器Mから出射した光はかなり偏光化してい
るが光拡散板で反射させることにより略々自然光
になる。スリツト状コリメータCは薄板をわづか
な間隔を距てゝ平行に重ねたもので、斜方向の光
を遮ぎり薄板と平行な方向の光だけを通過させる
ことによつて散乱光から平行成分だけを取出すも
のである。この実施例では板の長さlは10mm、板
の間隔は1mm、このコリメータを出た光束の開き
角は±5.7゜(tan-11/10)である。
Although the light emitted from the spectrometer M is considerably polarized, it becomes almost natural light by being reflected by the light diffusing plate. The slit-shaped collimator C is made by stacking thin plates parallel to each other with a slight distance between them.By blocking oblique light and allowing only light in a direction parallel to the thin plates to pass, only the parallel component is removed from the scattered light. It is for extracting. In this embodiment, the length l of the plates is 10 mm, the interval between the plates is 1 mm, and the aperture angle of the light beam exiting this collimator is ±5.7° (tan -1 1/10).

試料Sを透過した光を直ちに光検出器DTに入
射させず積分球Iを介在させるのは次の理由によ
る。
The reason why the light transmitted through the sample S is not made to enter the photodetector DT immediately, but the integrating sphere I is used is as follows.

試料Sの光の透過方向に対する傾きを変えると
試料透過光束は全体的に(図で上下方向に)平行
移動する。他方光検出器として用いられる光電子
増倍管等は感光面に場所的な感度むらがあり、従
つて感光面への光入射領域が動くと同じ光束が入
射していても光検出出力は変動する。入射光束が
太く、その太さに比し入射領域(光束の断面)の
移動量が小さいときは出力変化は小さくなるが、
それでも高精度の測定の場合は無視できない。試
料Sの傾きを変えると上述したように透過光束が
平行移動するから試料透過光を直接光検出器に入
射させると出力の変動が現れる。これを防ぐため
積分球Iを介在させるのである。従つて偏光フイ
ルタのように光入射方向に対して垂直な方向で使
用する素子の透過特性を測定するような場合には
必要なものではない。他方薄膜干渉フイルタのよ
うなものは光の入射角を色々に変えて使用するの
で高精度の特性を測定する場合には積分球Iが必
要となる。
When the inclination of the sample S with respect to the light transmission direction is changed, the entire sample-transmitted light beam moves in parallel (up and down in the figure). On the other hand, photomultiplier tubes and the like used as photodetectors have local sensitivity unevenness on the photosensitive surface, so if the light incident area on the photosensitive surface moves, the photodetection output will fluctuate even if the same light flux is incident. . When the incident luminous flux is thick and the amount of movement of the incident area (cross section of the luminous flux) is small compared to the thickness, the output change will be small, but
Still, it cannot be ignored for high-precision measurements. When the inclination of the sample S is changed, the transmitted light flux is translated in parallel as described above, so if the sample S is directly incident on the light detector, output fluctuations will occur. In order to prevent this, the integrating sphere I is interposed. Therefore, it is not necessary when measuring the transmission characteristics of an element used in a direction perpendicular to the direction of light incidence, such as a polarizing filter. On the other hand, since something like a thin film interference filter is used with various angles of incidence of light, an integrating sphere I is required to measure characteristics with high precision.

積分球Iの図示Aの位置に試料を置けば分光反
射率の測定ができる。
Spectral reflectance can be measured by placing a sample at position A on integrating sphere I.

第2図は本発明の他の実施例を示す。この実施
例では反射鏡MRによつて光拡散板DF上に分光
器出射光を収束させているので、光拡散板の光照
射点が小面積の光源のようになつて光が四方に反
射されるから、その反射光を集光レンズLCを用
い試料S上に集光させ或は平行光束として試料に
入射させるようにして前述実施例のスリツトコリ
メータCをなくしたものである。図では積分球は
省いてあるが、勿論必要に応じて光検出器DTの
前に設置する。
FIG. 2 shows another embodiment of the invention. In this embodiment, the spectrometer output light is focused onto the light diffusing plate DF by the reflecting mirror MR, so the light irradiation point on the light diffusing plate becomes like a small-area light source, and the light is reflected in all directions. Therefore, the reflected light is focused onto the sample S using a condenser lens LC, or is made incident on the sample as a parallel beam of light, thereby eliminating the slit collimator C of the previous embodiment. Although the integrating sphere is omitted in the figure, it can of course be installed in front of the photodetector DT if necessary.

第3図は本発明に2光束方式を導入した実施例
である。分光器Mから出射した光はセクターミラ
ーBSで時分割的に2光束に分割され、試料光S
は第1図の実施例と同じく反射鏡MR、光拡散板
D、スリツトコリメータCを経て試料Sに入射せ
しめられ、試料透過光が積分球Iに入射せしめら
れる。セクターミラーで分割された参照光rは反
射鏡MR′、光拡散D′スリツトコリメータC′を経て
積分球Iに入射せしめられる。積分球Iには図上
で向う側に光取出窓を穿ちその向うに光検出器
DTを設置してある。光検出器DTの出力はセクタ
ーミラーBSの回転と同期して信号分離を行い信
号処理を行う。
FIG. 3 shows an embodiment in which a two-beam system is introduced into the present invention. The light emitted from the spectrometer M is time-divisionally split into two beams by the sector mirror BS, and the sample beam S
The light is made incident on the sample S through the reflecting mirror MR, the light diffusing plate D, and the slit collimator C, as in the embodiment shown in FIG. 1, and the sample transmitted light is made incident on the integrating sphere I. The reference light r divided by the sector mirror is made incident on the integrating sphere I through a reflecting mirror MR', a light diffusion D' and a slit collimator C'. Integrating sphere I has a light extraction window on the opposite side in the diagram, and a photodetector is installed on the other side.
DT is installed. The output of the photodetector DT is subjected to signal separation and signal processing in synchronization with the rotation of the sector mirror BS.

第4図の実施例は第1図の実施例において反射
鏡MRと光拡散板Dの場所を入れ換えたものであ
る。この構成では光拡散板Dで反射されて自然光
化した光が反射鏡MRで反射されることにより再
びわづかではあるが偏光化するので高精度の測定
には適さないが、コリメータスリツトのようなも
のが不要で構成が簡単である。
The embodiment shown in FIG. 4 differs from the embodiment shown in FIG. 1 in that the locations of the reflecting mirror MR and the light diffusing plate D are swapped. In this configuration, the light that is reflected by the light diffusing plate D and turned into natural light is reflected by the reflector MR and becomes polarized again, albeit slightly, so it is not suitable for high-precision measurement, but it is similar to the collimator slit. It is easy to configure and does not require anything.

なお装置の占めるスペースに対する制約がなけ
れば第1図の実施例で反射鏡MRをなくし光拡散
板に直接分光器Mの出射光を入射させるようにし
てもよいことは云うまでもない。また光拡散板D
の所を積分球にしてもよい。積分球の内面も光拡
散板と同質の白色乱反射面であるから光拡散板と
同じ働きをする。
It goes without saying that if there is no restriction on the space occupied by the apparatus, the reflecting mirror MR may be omitted in the embodiment shown in FIG. 1, and the light emitted from the spectrometer M may be made to directly enter the light diffusing plate. Also, light diffuser plate D
You can also use an integrating sphere instead. The inner surface of the integrating sphere is also a white diffusely reflecting surface of the same quality as the light diffusing plate, so it functions in the same way as the light diffusing plate.

第5図は回折格子分光器のみを用いた場合のダ
イクロムフイルタ(市販偏光フイルタ)の分光透
過特性で実線Tvに対し鎖線Tpは偏光フイルタの
偏光面を直角に回わした場合のデータである。
400〜760nmの波長域で平均的に1%程度の差が
あるが、回折格子分光器で出射光の偏光化が特に
著るしくなる範囲(アノーマリ特性の現れる範
囲:この例では500nm前後と700nm付近)では2
つの方向における透過率の差が大きくなりかつ波
長に対し不規則に変動している。第6図は本発明
装置を用いて同じ試料を測定したデータで実線、
鎖線は第5図と同じ意味のカーブであり、分光器
のアノーマリ特性の現れる波長域でも偏光子の偏
光面の向きによる差は最大1.5%程度である。
Figure 5 shows the spectral transmission characteristics of a dichrome filter (commercially available polarizing filter) when only a diffraction grating spectrometer is used.The solid line Tv is the dashed line Tp, which is the data when the plane of polarization of the polarizing filter is rotated at right angles. .
There is an average difference of about 1% in the wavelength range of 400 to 760 nm, but the range where the polarization of the emitted light becomes particularly significant with a diffraction grating spectrometer (range where anomaly characteristics appear: in this example, around 500 nm and 700 nm) nearby) is 2
The difference in transmittance in the two directions becomes large and varies irregularly with respect to wavelength. Figure 6 shows data obtained by measuring the same sample using the device of the present invention, with solid lines and
The dashed line is a curve with the same meaning as in Fig. 5, and even in the wavelength range where anomaly characteristics of the spectrometer appear, the difference depending on the direction of the polarization plane of the polarizer is about 1.5% at most.

本発明装置は上述したような構成で光拡散板を
用いて偏光を自然光化することにより、プリズム
分光器のような高価な装置を用いないでプリズム
分光器を用いるよりも一層自然光に近い光によつ
て試料の分光特性が測定でき、かつ測定操作にお
いても試料の2つの位置での分光透過率の平均を
採ると云つた面倒な操作が必要でなく単純に分光
透過率を測定するのと同じ操作で偏光性を有する
試料の自然光に対する分光透過率を測定できると
云う特長を有する。
The device of the present invention has the above-mentioned configuration and uses a light diffusing plate to convert polarized light into natural light, thereby producing light that is much closer to natural light than using a prism spectrometer without using an expensive device such as a prism spectrometer. Therefore, the spectral characteristics of the sample can be measured, and the measurement operation does not require the troublesome operation of taking the average of the spectral transmittance at two positions on the sample, and is the same as simply measuring the spectral transmittance. It has the advantage of being able to measure the spectral transmittance of a polarized sample to natural light.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の平面図、第2
図は本発明の他の一実施例装置の平面図、第3図
は更に他の実施例の平面図、第4図は更に他の実
施例の平面図、第5図は通常の回折格子分光器を
用いた偏光フイルタの分光透過率測定結果のグラ
フ、第6図は本発明装置を用いた偏光フイルタの
分光透過率測定結果のグラフである。 M…分光器、D…光拡散板、S…試料、I…積
分球、DT…光検出器。
FIG. 1 is a plan view of an apparatus according to an embodiment of the present invention, and FIG.
The figure is a plan view of another embodiment of the present invention, FIG. 3 is a plan view of still another embodiment, FIG. 4 is a plan view of still another embodiment, and FIG. 5 is a typical diffraction grating spectrometer. FIG. 6 is a graph of the spectral transmittance measurement results of a polarizing filter using the apparatus of the present invention. M...Spectroscope, D...Light diffusion plate, S...Sample, I...Integrating sphere, DT...Photodetector.

Claims (1)

【特許請求の範囲】[Claims] 1 分光器の出射光を光拡散板或は積分球内面等
の白色乱反射面に入射させ、この白色乱反射面か
らの反射光を試料に入射させ、試料からの透過光
或は反射光を測定するようにした偏光性試料の分
光透過率・分光反射率測定装置。
1. Inject the emitted light from the spectrometer onto a white diffusely reflecting surface such as a light diffusing plate or the inner surface of an integrating sphere, make the reflected light from this white diffusely reflective surface enter the sample, and measure the transmitted light or reflected light from the sample. A device for measuring spectral transmittance and spectral reflectance of polarized samples.
JP3985281A 1981-03-18 1981-03-18 Measuring apparatus of spectral transmissivity of polarizable sample Granted JPS57153250A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3985281A JPS57153250A (en) 1981-03-18 1981-03-18 Measuring apparatus of spectral transmissivity of polarizable sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3985281A JPS57153250A (en) 1981-03-18 1981-03-18 Measuring apparatus of spectral transmissivity of polarizable sample

Publications (2)

Publication Number Publication Date
JPS57153250A JPS57153250A (en) 1982-09-21
JPS6244215B2 true JPS6244215B2 (en) 1987-09-18

Family

ID=12564490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3985281A Granted JPS57153250A (en) 1981-03-18 1981-03-18 Measuring apparatus of spectral transmissivity of polarizable sample

Country Status (1)

Country Link
JP (1) JPS57153250A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2610865B2 (en) * 1987-03-25 1997-05-14 株式会社島津製作所 Atomic absorption spectrometer
CN103512864B (en) * 2012-06-25 2016-07-06 中国科学院微电子研究所 Optical measuring system for measuring reflectivity and transmissivity of substrate by utilizing parallel light
EP3683571B1 (en) * 2017-10-19 2023-06-28 Otsuka Pharmaceutical Co., Ltd. Diffracted light removal slit and optical sample detection system using same

Also Published As

Publication number Publication date
JPS57153250A (en) 1982-09-21

Similar Documents

Publication Publication Date Title
US5581350A (en) Method and system for calibrating an ellipsometer
US5596411A (en) Integrated spectroscopic ellipsometer
KR100356108B1 (en) Double pass etalon spectrometer
JPH073344B2 (en) Encoder
JP2005515465A (en) Spectrometer with reduced polarization and multi-element depolarizer therefor
US4320967A (en) Apparatus for measuring a radiation affecting parameter of a film or coating
CA2025204C (en) Spectrum measuring equipment
US3069967A (en) Apparatus employing stationary optical means and diffraction grating
JPS5483854A (en) Measuring device
JPS6355020B2 (en)
JPH0554902B2 (en)
US20050018189A1 (en) Photopolarimeters and spectrophotopolarimaters with multiple diffraction gratings
JPS62266439A (en) Spectral temporary optical analyzer
JP3095167B2 (en) Multi-channel Fourier transform spectrometer
JPS6244215B2 (en)
US4105335A (en) Interferometric optical phase discrimination apparatus
JP2001281056A (en) Interferometer and spectroscope
SU1695145A1 (en) Ellipsometer
US3472596A (en) Double monochromator
JPH11101739A (en) Ellipsometry apparatus
US5044754A (en) Apparatus and method for use in determining the optical transmission factor or density of a translucent element
JPH0518893A (en) Refractive index measuring device
JP3326645B2 (en) Detecting head flying height measuring device and measuring method
US3645630A (en) Monochromator
SU1268948A1 (en) Device for checking angular parameters of plane-parallel plates