WO2010103787A1 - Power supply system, and movable body and fixed body for same - Google Patents

Power supply system, and movable body and fixed body for same Download PDF

Info

Publication number
WO2010103787A1
WO2010103787A1 PCT/JP2010/001614 JP2010001614W WO2010103787A1 WO 2010103787 A1 WO2010103787 A1 WO 2010103787A1 JP 2010001614 W JP2010001614 W JP 2010001614W WO 2010103787 A1 WO2010103787 A1 WO 2010103787A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrode
power supply
power transmission
capacitor
Prior art date
Application number
PCT/JP2010/001614
Other languages
French (fr)
Japanese (ja)
Inventor
原川健一
忍裕司
Original Assignee
株式会社竹中工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店 filed Critical 株式会社竹中工務店
Publication of WO2010103787A1 publication Critical patent/WO2010103787A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/006Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for auto-scooters or the like, the power being supplied over a broad surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present invention relates to a power supply system for supplying power to various loads, and a movable body and a fixed body therefor.
  • This application is based on Japanese Patent Application No. 2009-060001 filed in Japan on March 12, 2009 and incorporates the contents thereof.
  • a power supply system that supplies power to various loads arranged on the floor surface is a contact type that supplies power by bringing an electrode that is exposed on the floor surface into contact with an electrode provided on the bottom surface of the load.
  • the power supply system can be broadly divided into a non-contact type power supply system that supplies power without contacting an electrode provided in a non-exposed state inside the floor with a load electrode.
  • Patent Document 1 a conventional non-contact type power supply system is disclosed in Patent Document 1, for example.
  • This system supplies power to a load (a ground movable body) that moves along a traveling path.
  • An induction wire is disposed along the traveling path, and an iron core in which a coil is wound around the ground movable body. Is provided. Then, a high-frequency current is passed through the induction wire, and electromagnetic induction is performed with the induction wire as the primary side and the coil as the secondary side, thereby supplying power to the ground movable body.
  • Non-Patent Document 1 discloses a wireless power transmission sheet.
  • This wireless power transmission sheet includes a power transmission coil, a power control MEMS (Micro Electro Mechanical Systems) switch, a position detection coil of a power receiving device, and an organic transistor that performs position detection using the position detection coil. It is configured by forming on a plastic film using a printing technique.
  • the approach position of the electronic device is specified by detecting the change in the inductance of the position detection coil with the approach of the electronic device to the sheet by the organic transistor. And the power transmission coil corresponding to this specified position is selected with a MEMS switch, and electric power is transmitted from the selected power transmission coil.
  • FIG. 20 is a longitudinal sectional view of a main part of such a conventional power supply system.
  • This power supply system is a power supply system for supplying power to a load 204 from a fixed body 201 disposed in a power supply area 200 via a movable body 203 disposed in a power supplied area 202.
  • the fixed body 201 includes a first power transmission electrode 205 and a second power transmission electrode 206 that are disposed in the vicinity of the boundary surface between the power supply region 200 and the power supplied region 202.
  • the movable body 203 is disposed in the vicinity of the boundary surface, and the first power receiving electrode 207 is disposed so as to face the first power transmitting electrode 205 or the second power transmitting electrode 206 in a non-contact manner.
  • the first capacitor electrode 205 and the second power transmitter electrode 206 are combined with the first power receiver electrode 207 and the second power receiver electrode 208 to form a coupling capacitor 209.
  • the coupling capacitor 209 and the coil 210 are connected in series.
  • an AC power source 215 whose frequency can be controlled by switching is provided in the fixed body 201, and the AC power source 215 supplies AC power of a desired frequency to the first power transmission electrode 205 and the second power transmission.
  • the electrode 206 is supplied.
  • this power supply system is provided with a function that enables communication between the fixed body 201 and the movable body 203 in order to perform power supply control.
  • each fixed body 201 is provided with a communication unit 212
  • the movable body 203 is provided with a communication unit 213. Then, a power supply request signal is transmitted from the communication unit 213 of the movable body 203.
  • Each fixed body 201 performs power supply control assuming that the movable body 203 is positioned above itself when a power supply request signal is received by its own communication unit 212.
  • the movable body 203 is disposed to face the first power transmission electrode 205.
  • the electrode is the first power receiving electrode 207 or the second power receiving electrode 208, or the electrode disposed opposite to the second power transmitting electrode 206 is the first power receiving electrode 207 or the second power receiving electrode 208.
  • rectification is performed using the connection portion 214 having a plurality of diodes, and power supply can be continued so as to match the polarity of the load 204 regardless of the opposing arrangement state of the electrodes.
  • the diode when the diode is arranged in the movable body 203 in this way and the coil 210 is provided between the diode and the load 204, the diode 210 is rectified and the series resonance with the coupling capacitor 209 is not established. Therefore, the coil 210 is arranged on the fixed body 201 side.
  • this power supply system since it is not necessary to expose the first power transmission electrode 205 and the second power transmission electrode 206 to the power supplied region 202, introduction into a place where a person is present is facilitated.
  • power can be supplied by arranging the electrodes facing each other at such a distance that a desired capacitor capacity is generated, it is not necessary to perform precise alignment as in the electromagnetic induction method. In contrast, power can be supplied.
  • an object of the present invention is to provide a power supply system capable of supplying power at a frequency exceeding the operating frequency limit of a power transistor used in an AC power supply in the power supply system. Moreover, an object of this invention is to provide the movable body and fixed body for comprising such an electric power supply system.
  • the power supply system is configured so that a predetermined body is provided from a fixed body disposed in the power supply area through a movable body disposed in the power supply area.
  • the first power transmission electrode and the second power transmission electrode to which alternating current power is supplied, and the first power transmission electrode and the second power transmission electrode include a fundamental wave and harmonics of a frequency multiplied by the fundamental wave.
  • the movable body includes a first power receiving electrode and a second power receiving electrode which are arranged in a non-contact manner and in a non-contact manner with respect to the first power transmitting electrode or the second power transmitting electrode with the boundary surface interposed therebetween.
  • the first coupling capacitor is configured by disposing one of the first power receiving electrode and the second power receiving electrode so as to face the first power transmitting electrode
  • the first A second coupling capacitor is configured by arranging the other one of the first power receiving electrode and the second power receiving electrode so as to face the two power transmitting electrodes, and the AC power supply Power is transmitted to the load through a capacitor and the second coupling capacitor.
  • the power supply system according to claim 2 is the power supply system according to claim 1, wherein the first capacitor includes a first conductive plate connected to the first power transmission electrode, and the first capacitor. And a second conductive plate connected to the two power transmission electrodes with a space between each other, and the first coil includes the first conductive plate and the second conductive plate. Are connected to each other.
  • the power supply system according to claim 3 is the power supply system according to claim 2, wherein the first power transmission electrode and the second power transmission electrode are alternately arranged along the boundary surface. A plurality of juxtaposed, the plurality of first power transmission electrodes connected to the common first conductive plate, and the plurality of second power transmission electrodes connected to the common second conductive plate Features.
  • the boundary surface, the first conductive plate, and the second conductive plate are spaced apart from each other.
  • the plurality of first power transmission electrodes are connected to a surface of the first conductive plate that is not opposed to the second conductive plate through first connection means.
  • the second conductive electrode is inserted into a connection hole formed in the first conductive plate on the surface of the second conductive plate that faces the first conductive plate. It is characterized by having connected through the connection means.
  • the power supply system according to claim 5 is the power supply system according to any one of claims 1 to 4, wherein the fixed body is mutually connected to the first capacitor and the first coil.
  • a resonance circuit is provided.
  • the power supply system according to claim 6 is the power supply system according to any one of claims 1 to 5, wherein the movable body includes the first power receiving electrode and the second power receiving electrode. And a second capacitor that generates parallel resonance at the predetermined multiplication frequency and a second coil.
  • the power supply system according to claim 7 is the power supply system according to any one of claims 1 to 6, wherein the fixed body is between the plurality of conductive plates and the plurality of conductive plates.
  • a plurality of supply layers for supplying electric power or communication signals which are integrally formed by arranging the provided insulating layers so as to overlap each other, and a plurality of the insulation layers are arranged in parallel above the supply panel.
  • a first function module having a function of configuring the floor surface, or a second function having a function of inputting or outputting power or a communication signal connected to the supply panel in addition to the function of configuring the floor surface And a module.
  • the power supply system according to claim 8 is the power supply system according to claim 7, wherein a DC power supply is connected to the supply panel so as to supply DC power via the plurality of conductive plates,
  • the AC power source that converts DC power supplied to the second functional module through the plurality of conductive plates into AC power, the first power transmission electrode and the second power transmission electrode, and the first The capacitor and the first coil are arranged.
  • the movable body according to claim 9 is a movable body that is disposed in a power supply region and that supplies electric power supplied from a fixed body disposed in the power supply region to a predetermined load.
  • the first power transmission electrode or the second power transmission electrode to which alternating current power is supplied and opposed to each other across the boundary surface between the power supply region and the power supplied region In addition, the first power receiving electrode and the second power receiving electrode arranged in a non-contact manner, and the first power receiving electrode and the second power receiving electrode are connected in parallel to each other, and the multiplication is performed
  • a second capacitor that generates parallel resonance at a frequency and a second coil are provided, and one of the first power receiving electrode and the second power receiving electrode is disposed to face the first power transmitting electrode.
  • Second coupling capacitor by the so as to face the second power transmission electrodes and the other of the first power receiving electrode or the second receiving electrodes are arranged, characterized in that it is configured.
  • the fixed body according to claim 10 is a fixed body that is disposed in a power supply area and supplies power to a predetermined load via a movable body that is disposed in a power supply area, and is movable.
  • the power receiving region and the power supplied region are arranged in an opposing and non-contact manner across the boundary surface between the power supplying region and the power supplied region.
  • a first power transmission electrode and a second power transmission electrode constituting a capacitor between the first power transmission electrode and the second power transmission electrode, and an alternating current including harmonics of the fundamental wave and a frequency multiplied by the fundamental wave.
  • An AC power source that supplies electric power at the output, and the first power transmission electrode and the second power transmission electrode are connected in parallel to each other, and a first that generates parallel resonance at the multiplied frequency A capacitor and a first coil, One of the first power receiving electrode and the second power receiving electrode is disposed so as to face the first power transmitting electrode, thereby forming a first coupling capacitor, and the second power transmitting electrode.
  • the second coupling capacitor is configured by arranging the other one of the first power receiving electrode and the second power receiving electrode so as to face the first power receiving electrode, and the AC power source includes the first coupling capacitor and the second power receiving electrode. Power transmission to the load is performed through two coupling capacitors.
  • the power transmission electrode touches the human body.
  • the risk of electric shock due to accidents can be eliminated, and psychological anxiety can be eliminated, so that it can be easily introduced to places where people are present, such as office spaces.
  • the first capacitor and the first coil which are connected in parallel between the first power transmission electrode and the second power transmission electrode, and generate parallel resonance at a predetermined multiplication frequency of the fundamental wave. Therefore, it is possible to selectively extract arbitrary harmonics from the higher harmonics generated by the AC power supply and use them as outputs, and high frequency AC power that exceeds the operating frequency limit of the power transistor. Can be used to supply power.
  • the first capacitor includes the first conductive plate connected to the first power transmission electrode and the second conductive plate connected to the second power transmission electrode. Are spaced apart from each other, and the first coil is connected between the first conductive plate and the second conductive plate, so that the first capacitor is a flat plate. And can be embedded along the surface of a desk or floor. In addition, by expanding the area of the flat first capacitor and setting the capacitance to a sufficiently large value, unnecessary harmonics output from the AC power supply can be short-circuited.
  • a plurality of first power transmission electrodes and second power transmission electrodes are alternately arranged in parallel along the floor board, and the plurality of first power transmission electrodes are arranged. Since the plurality of second power transmission electrodes are connected to the common first conductive plate and the plurality of second power transmission electrodes are connected to the common second conductive plate, the first capacitor can be shared by the plurality of power transmission electrodes.
  • the configuration of can be simplified.
  • the floor plate, the first conductive plate, and the second conductive plate are sequentially polymerized at an interval from each other, and both surfaces of the first conductive plate are formed.
  • a plurality of first power transmission electrodes are connected to a surface of the second conductive plate that is not opposed to the second conductive plate via a first conductive rod, and the first conductive plate of both surfaces of the second conductive plate Since the plurality of second power transmission electrodes are connected to the opposing surfaces via the second conductive rods inserted through the connection holes formed in the first conductive plate, the plurality of second power transmission electrodes are substantially parallel to the first capacitor.
  • the power transmission electrode can be disposed, and the entire fixed body can be made into one unit. Thereby, it becomes possible to install a fixed body easily on a desk, a floor surface, etc.
  • the series resonance circuit is provided with the series resonance. By generating it, it is possible to short-circuit the AC power of the frequency, and to suppress spurious emission.
  • the parallel resonance circuit can be increased.
  • a voltage drop in the coupling capacitor can be reduced, and a stable power supply to the load can be performed regardless of variations in the capacitance of the coupling capacitor.
  • the fixed body can be configured by arranging the functional modules on the supply panel, and the power supply and communication layout can be freely combined by combining the functional modules having various functions. It is possible to simplify the construction by increasing the degree and arranging modularized functional modules.
  • the power supply system of the eighth aspect it is possible to supply AC power to the movable body by converting DC power having high power supply efficiency into AC power as necessary.
  • FIG. 1 is a perspective view of a living room to which a power supply system according to Embodiment 1 of the present invention is applied. It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body of FIG. It is a perspective view which simplifies and shows the fixing body of FIG. It is the figure which illustrated the waveform of the square wave output from AC power supply. It is a figure which shows the spectrum of the square wave of 50% of the duty ratio illustrated in FIG. It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body which concern on Embodiment 2.
  • FIG. It is a perspective view of the living room to which the power supply system which concerns on Embodiment 3 is applied. It is a principal part longitudinal cross-sectional view of FIG.
  • FIG. 14 It is a principal part longitudinal cross-sectional view which simplifies and shows a fixed body. It is a perspective view which simplifies and shows a fixed body. It is a longitudinal cross-sectional view which shows the example of a connection of a supply panel and a functional module. It is a principal part enlarged view of FIG. It is a figure which shows the specific circuit structure of a power supply module in case the power supply module which is a 2nd functional module which performs only supply of electric power is arranged in multiple numbers by the supply panel. It is the figure which added the communication function to the circuit of FIG. It is the figure which expressed the power supply module of FIG. 14 with the flat plate structure similarly to FIG. It is the figure which showed the power supply module of FIG. 15 with the supply panel.
  • FIG. 14 It is a figure which shows the modification of the power supply module of FIG. It is a figure which shows the state which arranged two power supply modules of FIG. 14 side by side. It is a perspective view which shows notionally the arrangement configuration of a power transmission electrode, (a) is a figure which shows the structure arrange
  • the power supply system according to each embodiment is a power supply system for supplying power from a fixed body arranged in a power supply area to a movable body arranged in a power supply area.
  • the specific configuration of the power supply area and the power supply area is arbitrary, and includes, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or an outdoor space.
  • a surface that partitions the power supply region and the power supplied region from each other is referred to as a boundary surface.
  • the power supply area is a living room of a building and the power supply area is a floor board part
  • the upper surface (floor board surface) of the floor board part is a boundary surface.
  • the fixed body includes one having a power source inside the fixed body and one that supplies power supplied from a power source outside the fixed body to the movable body.
  • This fixed body is arranged in the power supply area, but is not limited to one that is permanently immovable and can be removed from the power supply area when not in use, Including those that can move to any position inside.
  • the entire fixed body is not limited to a fixed one at all times. For example, by adjusting the positions of some components of the fixed body as necessary, the relative relationship between the component and the movable body is increased. Including those that can change the positional relationship.
  • the movable body includes a thing (stationary body) that is used by being fixedly arranged in the power supply area and a thing that moves as needed inside the power supply area (moving body).
  • the function and specific configuration of the movable body are arbitrary except for special points.
  • the stationary body can include a device such as a computer or a mobile phone, and the mobile body can be a robot or an electric vehicle. Can be mentioned.
  • the power supply system configured in this way supplies power from the fixed body to the movable body in a non-contact manner.
  • This non-contact power supply is generally performed using a capacitor disposed via a boundary surface. That is, a power transmission electrode provided on a fixed body and a power reception electrode provided on a movable body are arranged so as to face each other in a non-contact manner with a boundary surface interposed therebetween, whereby a capacitor (hereinafter referred to as a “coupling capacitor”).
  • a capacitor hereinafter referred to as a “coupling capacitor”.
  • At least two such coupling capacitors are provided and arranged in the power transmission path, and electric field type power transmission is performed through the two coupling capacitors.
  • some of the features of the power supply system according to each embodiment include a capacitor and a coil that are connected in parallel to the power transmission electrode, and these capacitor and coil include a fundamental wave and a harmonic.
  • parallel resonance is generated at a predetermined frequency multiplied by the fundamental wave.
  • Embodiment 1 is a form provided with the 1st capacitor
  • FIG. 1 is a perspective view of a living room to which the power supply system according to Embodiment 1 is applied.
  • a movable body here, a robot
  • a power supplied area here, a living room
  • the power supply area here, below the floor board 3
  • An example of supplying power to 30 is shown, and the power supply system of this embodiment is configured by including the fixed body 10 and the movable body 30.
  • the floor board 3 laid above the power supply area 1 corresponds to a boundary surface between the power supply area 1 and the power supplied area 2, and coupling capacitors 40 and 41 described later via the floor board 3. (Not shown in FIG. 1) is configured.
  • FIG. 2 is a longitudinal sectional view schematically showing the fixed body 10 and the movable body 30 in FIG. 1
  • FIG. 3 is a perspective view showing the fixed body 10 in FIG. 1 in a simplified manner.
  • the fixed body 10 includes an AC power supply 11, a first power transmission electrode 12, a second power transmission electrode 13, a first capacitor 14, a first coil 15, and a second coil 16.
  • 3 shows only one set of the first power transmission electrode 12 and the second power transmission electrode 13 for simplification, but actually, as shown in FIG. 2, a plurality of first power transmission electrodes 12 are shown.
  • the second power transmission electrode 13 are juxtaposed along the floor plate 3 in the power supplied region 2.
  • the first power transmission electrode 12 and the second power transmission electrode 13 are each a flat conductor, and are arranged so as to be substantially parallel to the floor plate 3 at a position near the lower side of the floor plate 3.
  • the first power transmission electrode 12 and the second power transmission electrode 13 may be brought into contact with the floor board 3 or may be arranged at a minute distance from the floor board 3.
  • the surfaces of the first power transmission electrode 12 and the second power transmission electrode 13 on the power supply region 2 side (here, the upper surface) are completely covered by the floor plate 3, and the first The power transmission electrode 12 and the second power transmission electrode 13 are not exposed to the power supplied region 2.
  • power transmission electrodes 12 and 13 are simply collectively referred to as “power transmission electrodes 12 and 13”.
  • the AC power supply 11 is a supply source of AC power, and supplies power to the first power transmission electrode 12 and the second power transmission electrode 13 with an AC output including fundamental waves and harmonics.
  • the output from the AC power supply 11 is supplied to the first power transmission electrode 12 and the second power transmission via a transformer 17 including a first coil 15 and a second coil 16 connected to the AC power supply 11.
  • the output voltage of the AC power supply 11 can be transformed to a desired voltage and supplied. That is, the first coil 15 and the second coil 16 are arranged in parallel with each other at a predetermined interval, and power can be transmitted between the first coil 15 and the second coil 16 by mutual induction. It is arranged to become. Further, in order to boost the output voltage of the AC power supply 11 at a desired transformation ratio and supply the boosted voltage to the power transmission electrodes 12 and 13, the turn ratio between the first coil 15 and the second coil 16 is set.
  • the first capacitor 14 includes a first conductive plate 18 connected to the first power transmission electrode 12 and a second conductive plate 19 connected to the second power transmission electrode 13. Specifically, as shown in FIG. 3, the first conductive plate 18, the second conductive plate 19, the power transmission electrodes 12, 13 and the floor plate 3 are spaced apart from each other as shown in FIGS.
  • the first capacitor 14 has a capacitance C 1 between the first conductive plate 18 and the second conductive plate 19 (or the capacitance C 1 and the power transmission electrode 13). It is configured as a combined capacitance) of the capacitance C 2 between the first conductive plate 18.
  • the first conductive plate 18 includes a plurality of first conductive rods 20 on the surface of the first conductive plate 18 that is not opposed to the second conductive plate 19 via the first conductive rod 20.
  • the power transmission electrode 12 is connected.
  • the second conductive plate 19 is inserted into a connection hole 18 a formed in the first conductive plate 18 on the surface of the second conductive plate 19 that faces the first conductive plate 18.
  • a plurality of second power transmission electrodes 13 are connected via the second conductive rod 21.
  • the first conductive rod 20 is a conductor standing from the first conductive plate 18 to each first power transmission electrode 12, and corresponds to the first connecting means in the claims.
  • the second conductive rod 21 is a conductor that is erected from the second conductive plate 19 to each second power transmission electrode 13 and corresponds to the second connection means in the claims. To do.
  • the first coil 15 is connected between the first conductive plate 18 and the second conductive plate 19.
  • condenser 14 and the 1st coil 15 are mutually connected in parallel, and comprise the parallel resonance circuit.
  • the capacitance of the first capacitor 14 and the first frequency are generated so that parallel resonance is generated at a predetermined frequency f n of the fundamental wave, which is a harmonic frequency included in the AC output from the AC power supply 11.
  • the inductance of one coil 15 is determined.
  • the movable body 30 includes a first power receiving electrode 31, a second power receiving electrode 32, and a load 33, as shown in a simplified manner in FIG.
  • Each of the first power receiving electrode 31 and the second power receiving electrode 32 receives power supplied from the fixed body 10, and is configured as a flat conductor.
  • power receiving electrodes 31 and 32 are arranged substantially parallel to the floor plate 3 at a position where the power receiving electrodes 31 and 32 are in direct contact with the upper surface of the floor plate 3 or at a position spaced apart from each other.
  • first power receiving electrode 31 or the second power receiving electrode 32 sandwiches the floor plate 3 and the first power transmitting electrode 12 or the second power transmitting electrode.
  • the first coupling capacitor 40 is configured so as to face either one of the electrodes 13 (second power transmission electrode 13 in FIG. 2). Further, the other one of the first power receiving electrode 31 and the second power receiving electrode 32 (the second power receiving electrode 32 in FIG. 2) is the first power transmitting electrode 12 or the second power transmitting electrode with the floor plate 3 interposed therebetween.
  • the second coupling capacitor 41 is configured so as to face one of the other 13 (the first power transmission electrode 12 in FIG. 2).
  • the first coupling capacitor 40 and the second coupling capacitor 41 are simply collectively referred to as “coupling capacitors 40 and 41”.
  • the power transmission electrodes 12 and 13 are not exposed in the power supply region 2, the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32 are arranged in a non-contact state.
  • the load 33 is driven by AC power supplied via the coupling capacitors 40 and 41, and exhibits a predetermined function.
  • the load 33 corresponds to a battery, a power supply circuit, or the like built in the robot.
  • the specific configuration of the load 33 is arbitrary, for example, a communication device that transmits / receives a communication signal to / from a device outside the movable body 30 wirelessly or by wire, and information that performs information processing on various information A processing device, a sensor that detects a predetermined detection target in the power supply region 2 and outputs a signal related to the detection result to the predetermined device, or a power source that transmits and receives power to a device outside the movable body 30 (for example, two Secondary battery).
  • the load 33 is not necessarily provided inside the movable body 30, and the load 33 is provided outside the movable body 30 and power is supplied to the load 33 via the movable body 30.
  • Good. 2 shows only one load 33, power may be supplied to a plurality of loads 33 connected in series or in parallel to each other.
  • the floor plate 3 interposed between the power transmitting electrodes 12 and 13 and the power receiving electrodes 31 and 32 is made of a dielectric material that can form the coupling capacitors 40 and 41.
  • a dielectric material for example, a fluororesin can be employed.
  • the power receiving electrodes 31, 32 side of the power transmission electrodes 12, 13 or the surface of the first conductive plate 18 side or the power transmission electrodes 12, 13 side of the power receiving electrodes 31, 32 are used. It can also be coated on the surface.
  • the material used for the floor plate 3 and the material used for the coating of the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32 include a required amount between the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32. It is preferable to provide insulation performance for maintaining insulation.
  • FIG. 4 is a diagram illustrating a waveform of a square wave output from the AC power supply 11
  • FIG. 5 is a diagram illustrating a spectrum of a square wave having a duty ratio of 50% illustrated in FIG.
  • AC power supply 11 outputs a square wave as shown in FIG. 4 by ON / OFF control using a switching element such as a power transistor.
  • each square harmonic wave has each harmonic of the multiplied frequency of the fundamental wave ("3f", "5f”, etc. in FIG. 5).
  • the duty ratio of the square wave is 50%, only odd-order harmonics are generated as shown in FIG.
  • the AC power output from the AC power supply 11 has a high frequency AC that exceeds the operating frequency limit of the power transistor. Electric power can be supplied by electric power.
  • the capacitance of the first capacitor 14 and the inductance of the first coil 15 are the harmonic frequencies included in the AC output from the AC power supply 11 and are parallel at the predetermined multiplication frequency f n of the fundamental wave. Resonance is determined to occur. For example, by setting the capacitance of the first capacitor 14 and the inductance of the first coil 15 so that parallel resonance occurs at the triple frequency of the fundamental wave (“3f” in FIG. 5), the output from the AC power supply 11 is performed. Among the AC power to be generated, parallel resonance is generated in the first capacitor 14 and the first coil 15 with respect to the third harmonic, and the power is transmitted to the power transmission electrode via the first capacitor 14 and the first coil 15. Third harmonic AC power can be supplied. That is, it is possible to supply power using AC power having a triple frequency of the fundamental wave.
  • each first conductive rod 20 and each second conductive rod 21 since currents in opposite directions flow through the first conductive rod 20 and the second conductive rod 21 adjacent to each other, each first conductive rod 20 and each second conductive rod 21. Is set to a value (for example, 5 cm) sufficiently smaller than an unnecessary harmonic wavelength (for example, the wavelength of an electromagnetic wave having a frequency of 15 MHz is 20 m), so that the first conductive rod 20 and the second conductive rod 20 Electromagnetic waves radiated as spurious from the conductive rods 21 cancel each other in the far field. Further, since the displacement current between the ends of the adjacent first power transmission electrode 12 and the second conductive plate 19 flows in the opposite direction on the outer periphery of each power transmission electrode, the electromagnetic waves generated from this displacement current are also mutually in the far field. Cancel each other. Therefore, the electric field intensity radiated as spurious becomes extremely small.
  • the first capacitor 14 is connected in parallel between the first power transmission electrode 12 and the second power transmission electrode 13 and generates parallel resonance at a predetermined multiplication frequency f n of the fundamental wave.
  • the first coil 15 it is possible to selectively extract arbitrary harmonics from the respective harmonics generated by the AC power supply 11 and use them as outputs, thereby limiting the operating frequency limit of the power transistor. It is possible to perform power supply using AC power having a frequency that exceeds the maximum.
  • the first capacitor 14 has a first conductive plate 18 connected to the first power transmission electrode 12 and a second conductive plate 19 connected to the second power transmission electrode 13 spaced apart from each other. Since the first coil 15 is connected between the first conductive plate 18 and the second conductive plate 19, the first capacitor 14 is formed in a flat plate shape, and the floor plate 3. It is possible to embed along the line. Moreover, the unnecessary harmonics output from the AC power supply 11 can be short-circuited by enlarging the area of the flat first capacitor 14 and setting the capacitance to a sufficiently large value.
  • a plurality of first power transmission electrodes 12 and a plurality of second power transmission electrodes 13 are alternately arranged in parallel along the floor plate 3, and the plurality of first power transmission electrodes 12 are arranged on a common first conductive plate 18. Since the plurality of second power transmission electrodes 13 are connected to the common second conductive plate 19, the first capacitor 14 can be shared by the plurality of power transmission electrodes 12, 13. Can be simplified.
  • the floor plate 3, the first conductive plate 18, and the second conductive plate 19 are sequentially polymerized at an interval from each other, and the second conductive plate 19 of both surfaces of the first conductive plate 18
  • a plurality of first power transmission electrodes 12 are connected to the non-opposing surface via the first conductive rod 20, and the surface of the second conductive plate 19 facing the first conductive plate 18 is connected to the surface of the second conductive plate 19. Since the plurality of second power transmission electrodes 13 are connected through the second conductive rods 21 inserted through the connection holes 18 a formed in the first conductive plate 18, a plurality of second power transmission electrodes 13 are arranged substantially in parallel with the first capacitor 14.
  • the power transmission electrodes 12 and 13 can be arranged, and the entire fixed body 10 can be made into one unit. Thereby, the fixed body 10 can be easily installed on the floor board 3 or the like.
  • a second embodiment in addition to the configuration of the first embodiment, a fixed body is provided with a series resonance circuit connected in parallel with the first capacitor and the first coil.
  • the configuration of the second embodiment is substantially the same as the configuration of the first embodiment unless otherwise specified, and the same configuration as that of the first embodiment is the same as that used in the first embodiment.
  • the reference numerals and / or names are attached as necessary, and the description thereof is omitted (the same applies to the third and later embodiments described later).
  • FIG. 6 is a longitudinal sectional view schematically showing the fixed body 50 and the movable body 60 according to the second embodiment.
  • the fixed body 50 includes a third capacitor 51 and a third coil 52 in addition to the configuration of the fixed body 10 in the first embodiment.
  • the third capacitor 51 and the third coil 52 constitute a series resonance circuit.
  • the first capacitor 14 and the first coil 52 are connected between the first conductive plate 18 and the second conductive plate 19.
  • coil 15 are mutually connected in parallel and, by the fundamental wave of a frequency f at the AC output from the AC power supply 11, or unwanted in harmonic having a frequency f n multiplied with respect to the fundamental wave frequency f
  • a series resonance is generated by the harmonic frequency f u . That is, to generate a series resonance at these frequencies f or frequency f u, and the inductance of the third capacitor and a third coil 52 of the capacitor 51 is determined.
  • the movable body 60 includes a second capacitor 61, a fourth coil 62, and a fifth coil 63 in addition to the configuration of the movable body 30 in the first embodiment.
  • the second capacitor 61 and the fourth coil 62 are connected in parallel between the first power receiving electrode 31 and the second power receiving electrode 32 to form a parallel resonance circuit.
  • This parallel resonant circuit has the capacitance of the second capacitor 61 and the second resonant frequency such that the parallel resonant frequency of the parallel resonant circuit formed by the first capacitor 14 and the first coil 15 of the fixed body 50 is equal to each other.
  • the inductance of the four coils 62 is determined.
  • the second capacitor 61 and the fourth coil 62 a frequency of the harmonics of the AC output from the AC power supply 11 to generate a parallel resonance at a predetermined multiplication frequency f n of the fundamental wave.
  • the fourth coil 62 and the fifth coil 63 are arranged in parallel with each other at a predetermined interval, and constitute a transformer 64.
  • the fourth coil 62 and the fifth coil 63 transmit power by mutual inductive action, and by appropriately setting the mutual turns ratio, the input voltage to the power receiving electrodes 31 and 32 can be set at a desired transformation ratio. The voltage can be transformed and supplied to the load 33.
  • the first AC power of a frequency f n is supplied to the power transmission electrodes 12 and 13 via the capacitor 14 and the first coil 15.
  • the electric power supplied to the power transmission electrodes 12 and 13 is supplied to the movable body 60 via the coupling capacitors 40 and 41.
  • the AC power having the frequency f n supplied to the movable body 60 causes parallel resonance in the parallel resonance circuit including the second capacitor 61 and the fourth coil 62 of the movable body 60, and the parallel resonance circuit and the fifth coil. It is supplied to the load 33 via 63.
  • the impedance of the parallel resonance circuit becomes extremely large at the parallel resonance frequency. Therefore, when parallel resonance is generated in the parallel resonance circuit including the second capacitor 61 and the fourth coil 62 of the movable body 60, the impedance of the parallel resonance circuit is extremely compared with the impedance of the coupling capacitors 40 and 41. It can be a large value. Therefore, to reduce the voltage drop across the coupling capacitor 40 and 41, the output voltage V out from the AC power supply 11 and the input voltage V in to the load, can be made substantially equal.
  • the parallel resonance condition is not satisfied, and power is not supplied. Is always in the operation mode, and even when a person touches the floor plate 3, a situation in which an electric current flows through the human body can be prevented, and safety can be maintained.
  • the fixed body 50 is provided with the series resonance circuit that generates the series resonance at the fundamental frequency or the unnecessary harmonic frequency fu, so that the series resonance is generated in the series resonance circuit. is to be able to short-circuit the AC power of a frequency f u by, it is possible to suppress the radiation of spurious.
  • the movable member 60 so with a parallel resonant circuit for generating a parallel resonance at a predetermined multiplication frequency f n, it is possible to increase the impedance of the parallel resonant circuit. Thereby, the voltage drop in the coupling capacitors 40 and 41 can be reduced, and stable power supply to the load 33 can be performed regardless of the variation in the capacitance of the coupling capacitors 40 and 41.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • This form is a form regarding the electric power supply system (electric power supply communication system) which enabled communication in addition to electric power feeding because a fixed body is provided with a supply panel and a functional module.
  • the fixed body 70 includes a plurality of supply panels 80 arranged in parallel on the upper surface of the floor plate 3 in the power supplied region 2 and a plurality of functional modules arranged in parallel on the upper surface of the supply panel 80.
  • 90 is arranged side by side. That is, by arranging a plurality of supply panels 80 in parallel, a flat floor surface that is continuous on the upper surface is formed, and the functional module 90 can be arranged on this floor surface.
  • the supply panel 80 and the functional module 90 can be configured basically in the same manner as those disclosed in, for example, Japanese Patent Application No. 2007-126983 (but not disclosed at the time of filing this application) by the present inventor. Only the main part of the configuration will be described below.
  • FIG. 9 is a longitudinal sectional view of a main part showing the fixed body 70 in a simplified manner
  • FIG. 10 is a perspective view showing the fixed body 70 in a simplified manner.
  • Each supply panel 80 is laid on the upper surface of the floor plate 3, and is connected to other adjacent supply panels 80.
  • the supply panel 80 is formed in a planar rectangular shape, and includes a plurality (here, two) of conductive plates 81 and 82 and an insulating layer 83 provided between the plurality of conductive plates 81 and 82. They are arranged so as to overlap each other.
  • the conductive plates 81 and 82 and the insulating layer 83 are fixed to each other by an arbitrary fixing method such as bonding, and a single supply panel 80 is configured as a whole.
  • Each of the conductive plates 81 and 82 is a plate-like body formed from a conductor such as metal.
  • the insulating layer 83 insulates the conductive plates 81 and 82 from each other, thereby preventing a short circuit between them and functioning as a waveguide for propagating communication signals.
  • the insulating layer 83 is formed in substantially the same planar shape as the conductive plates 81 and 82, and is provided in almost the entire area between the conductive plates 81 and 82.
  • a resin such as polyethylene or vinyl chloride, mica It is formed of inorganic materials such as glass fiber or porcelain.
  • a DC power source 84 is connected to the supply panel 80 as shown in FIGS.
  • the plurality of conductive plates 81 and 82 are connected to the DC power supply 84 so that at least one of the plurality of conductive plates 81 and 82 of the supply panel 80 serves as a ground electrode.
  • the conductive plate 81 closest to the power supply region 1 as a ground electrode, even when a human contacts the conductive plate 81 directly or indirectly through another conductor, Therefore, it is possible to ensure human safety.
  • connection structure of the functional module 90 to the supply panel 80 configured in this way is arbitrary, but for example, the structure shown in FIGS.
  • FIG. 11 is a longitudinal sectional view showing a connection example of the supply panel 80 and the functional module 90
  • FIG. 12 is an enlarged view of a main part of FIG.
  • the functional module 90 includes a connection terminal 91.
  • the connection terminal 91 is configured by concentrically combining a cylindrical external electrode 92, a rod-shaped internal electrode 93, and a cylindrical insulating layer 94 that insulates the external electrode 92 and the internal electrode 93 from each other. ing.
  • the internal electrode 93 is an electrode on the anode side, passes through the conductive plate 81 on the ground electrode side and the insulating layer 83 and is connected to the conductive plate 82 on the anode side.
  • the external electrode 92 is an electrode on the ground electrode side, is formed shorter than the internal electrode 93, penetrates the conductive plate 81 together with the internal electrode 93, and is connected to the conductive plate 81. Then, as shown in FIGS. 9 and 10, power is supplied to the functional module 90 via lines 95 drawn from the external electrode 92 and the internal electrode 93, respectively.
  • a communication signal is supplied via the supply panel 80 as necessary.
  • This communication mode includes 1) communication by electric field change using the insulating layer 83 (hereinafter referred to as “electric field communication”), 2) communication by magnetic field change using the insulating layer 83 (hereinafter referred to as “magnetic field communication”), and 3) conductivity.
  • electrical field communication electric field change using the insulating layer 83
  • magnetic field communication magnetic field change using the insulating layer 83
  • 3) conductivity Broadly divided into three forms of PLC communication using plates 81 and 82 (hereinafter referred to as “PLC communication”).
  • PLC communication for example, in the case of electric field communication, a plurality of electric field probes (not shown) configured in the same manner as the connection terminals 91 are inserted into the supply panel 80, and analog communication output from an arbitrary signal supply source through one of the electric field probes.
  • a signal is supplied to the insulating layer 83 as a change in electric field, and a communication signal is acquired as a change in voltage via another electric field probe and input to a predetermined communication device (for example, a personal computer).
  • a predetermined communication device for example, a personal computer.
  • the distal end portions of a plurality of magnetic field probes (not shown) configured as annular so-called loop antennas are inserted into the insulating layer 83, and an arbitrary signal supply source is passed through one of the magnetic field probes.
  • the analog communication signal output from is supplied to the insulating layer 83 as a magnetic field change, and the communication signal is acquired as a voltage change via another magnetic field probe and input to a predetermined communication device.
  • an analog communication signal superimposed on a direct current is supplied to the conductive plates 81 and 82 via the connection terminal 91, and a signal separation filter is used from the direct current obtained via the other connection terminal 91.
  • the signal component is separated and input to a predetermined communication device.
  • the functional module 90 is roughly divided into two types based on the function.
  • the first is a first functional module having only the function of configuring the floor, and the second is a function of inputting or outputting power or a communication signal connected to the supply panel 80 in addition to the function of configuring the floor. It is the 2nd functional module which has.
  • the second functional module includes a power module that transmits and receives power, a communication module that transmits and receives communication signals, a sensor module that detects a detection target and outputs a signal related to the detection result, and receives a control signal input Actuator module that performs an operation according to the control signal to the inside or the outside of the second functional module, receives a communication signal and performs information processing based on the communication signal, or a communication signal related to the result of the information processing Are classified into information processing modules.
  • the power module is divided into a power supply module that only supplies power and a power distribution module that only acquires power and supplies power to a load.
  • the communication module is divided into a wired communication module that inputs and outputs a communication signal by wire and a wireless communication module that inputs and outputs a communication signal by wireless.
  • the various modules are “functional modules”
  • the power supply modules and the power distribution modules are “power modules”
  • the wired communication modules and the wireless communication modules are “communication modules”.
  • the same reference numeral 90 is assigned to each module as necessary, or the reference numerals are omitted.
  • the various second functional modules described above are arranged in any combination, and a plurality of various functions such as a power supply function and a communication function can be achieved.
  • various movable bodies 30 a robot in FIG. 8 and an appearance different from that in FIG. 7 are arranged on the upper surface of the second functional module, and power supply and communication can be performed for this apparatus.
  • the first functional module is configured in the same manner as, for example, a known OA floor, has a floor surface configuration plate and a plurality of support legs, and is configured in a substantially rectangular parallelepiped shape as a whole.
  • the second functional module is basically configured by including a floor surface configuration plate and support legs in the same manner as the first functional module, but a configuration necessary for performing various functions is further added. Examples of the necessary configuration include the connection terminal 91 shown in FIGS. 11 and 12 and the above-described electric field probe and magnetic field probe. Furthermore, a function for converting direct current to alternating current and a parallel resonance function can be added to the second functional module. Hereinafter, an example in which these functions are added will be described (however, the description and illustration of the connection terminal 91, the electric field probe, and the magnetic field probe are omitted).
  • FIG. 13 shows a specific circuit configuration of the power supply module 90 when a plurality (two in this case) of power supply modules 90 that are second functional modules that only supply power are arranged on the supply panel 80.
  • the power supply module 90 includes a first power transmission electrode 12, a second power transmission electrode 13, a first capacitor 14, a first coil 15, and a second coil 16, as in the circuit of FIG. .
  • the circuit configuration from the first power transmission electrode 12 and the second power transmission electrode 13 to the second coil 16 is substantially the same as the circuit of FIG. 2 (in FIG.
  • the conductive plate 12 and the second conductive plate 13 are shown as lines).
  • first power receiving electrode 31 or the second power receiving electrode 32 is disposed opposite to the first power transmitting electrode 12 with the floor plate 3 interposed therebetween.
  • the coupling capacitor 40 is configured, and the other one of the first power receiving electrode 31 and the second power receiving electrode 32 is disposed opposite to the second power transmitting electrode 13 with the floor plate 3 interposed therebetween to form the second coupling capacitor 41.
  • electric power is supplied to the movable body 30.
  • an AC converter 96, a fourth capacitor 97, and a breaker 98 are provided between the second coil 16 and the supply panel 80.
  • the anode-side conductive plate 82 is connected to the AC converter 96 through the breaker 98, and the ground electrode-side conductive plate 81 is directly connected to the AC converter 96.
  • the AC conversion unit 96 converts the DC power supplied from the supply panel 80 into AC power, and corresponds to the AC power supply 11 of FIG.
  • the AC conversion unit 96 includes a switching unit 96c that performs switching using a power transistor 96a and a diode 96b, and a controller 96d that controls the switching unit 96c, and a control signal from the controller 96d.
  • the desired high frequency AC power supply 11 is generated by controlling the switching frequency of the switching unit 96c.
  • the fourth capacitor 97 causes parallel resonance with the second coil 16, thereby further improving power transmission efficiency.
  • the breaker 98 cuts off the current when an overcurrent occurs. For example, the breaker 98 cuts off the current when a short circuit occurs in a specific AC converter 96, thereby preventing the influence from spreading to the entire system. it can. From the same safety viewpoint, it is preferable to use a normally-off power transistor 96a to prevent a short circuit during non-operation.
  • FIG. 14 is a diagram in which a communication function is added to the circuit of FIG. Although only one power supply module 90 is shown in FIG. 14, a plurality of power supply modules 90 can be arranged in parallel as in FIG.
  • the communication unit 100 is directly connected to the second conductive plate 19 and is coupled to the first conductive plate 18 via the capacitor 101.
  • the communication unit 102 is connected to a line from the conductive plate 82 on the anode side of the supply panel 80 to the AC conversion unit 96 and a line from the conductive plate 81 on the ground electrode side to the AC conversion unit 96. Further, the rear stage of the breaker 98 and the communication unit 100 are connected via a line 103, and the communication unit 100 receives electric power via this line 103.
  • the communication unit 100 communicates with the communication unit 102 via the line 103, and the communication unit 102 controls the controller 96d based on the contents of the communication.
  • the power supply request signal is output from the movable body 30, and the communication unit 102 controls the controller 96d based on the power supply request signal to generate AC power, thereby stopping the power supply when there is no power supply request signal.
  • the power supply request signal includes a frequency desired by the movable body 30, so that the communication unit 102 controls the controller 96 d so that AC power can be supplied at this frequency.
  • FIG. 15 represents the power supply module 90 of FIG. 14 with a flat plate structure as in FIG.
  • the power supply module 90 is configured by further arranging a third conductive plate 104 in parallel with the fixed body 70 of FIG.
  • a region between the first conductive plate 18 and the second conductive plate 19 is a first resonance region
  • the first capacitor 14 is constituted by the first conductive plate 18 and the second conductive plate 19, and the first Parallel resonance is performed by connecting the first coil 15 to the capacitor 14 in parallel.
  • a space between the second conductive plate 19 and the third conductive plate 104 is a second resonance region.
  • the second conductive plate 19 and the third conductive plate 104 constitute a fifth capacitor 105, and this Parallel resonance is performed by connecting the second coil 16 to the fifth capacitor 105 in parallel.
  • first coil 15 and the second coil 16 are magnetically coupled to form a transformer 17. It is preferable to provide an opening or a slit in the second conductive plate 19 where the magnetic fields intersect to reduce eddy current loss.
  • the first conductive plate 18, the second conductive plate 19, or the third conductive plate 104 is filled with an insulating material, and has load resistance, heat resistance, etc. depending on the installation location. It is Further, from the viewpoint of workability and resource saving, it is preferable that the insulating material is reduced in weight by the foamable material and that the used material is saved. Furthermore, from an electrical point of view, the insulating material preferably satisfies non-flammability, low dielectric constant, insulating properties, and water tightness.
  • FIG. 16 is a diagram showing the power supply module 90 of FIG. 15 together with the supply panel 80.
  • the supply panel 80 is laid, and the power supply module 90 is laid on the upper surface and fixed with an adhesive or a bolt (not shown).
  • a waterproof material may be sandwiched or a waterproof adhesive may be applied in order to improve waterproofness, or an insulating sheet may be used to improve insulation. May be inserted.
  • the supply panel 80 and the power supply module 90 are connected by connection terminals 91 as shown in FIGS. FIG.
  • FIG. 16 shows an example in which an access point 106 for communication is provided between adjacent power supply modules 90, and this access point 106 is connected via the electric field probe, magnetic field probe, or connection terminal 91 described above. Thus, input / output of communication signals to / from the supply panel 80 is performed. Further, FIG. 16 shows an example in which the second conductive plates 19 of the adjacent power supply modules 90 are connected to each other by the coupling capacitor 107.
  • the junction region provided with the access point 106 and the coupling capacitor 107 is filled with an insulating cap, caulking material, foaming material, or the like, and a surface layer that forms the floor board 3 is also formed on the upper surface of the junction region after the filling. Be placed.
  • FIG. 17 is a view showing a modification of the power supply module 90 of FIG.
  • the AC conversion unit 96 in the power supply module 90 is configured such that a plurality of switching units 96c can be controlled by a single controller 96d.
  • a power supply request signal including information specifying the power consumption of the movable body 30 is transmitted from a communication unit provided in the movable body 30 (not shown), and the controller 96d transmits based on the power supply request signal.
  • the power is determined, and the switching unit 96c is controlled so that the determined transmission power is transmitted. For example, when the transmission power is low, only one switching unit 96c is operated, and when the transmission power is high, all the switching units 96c are operated at the same phase and the same frequency.
  • the current flowing through the movable body 30 may be monitored by the Hall element 108, and the switching unit 96c may be controlled by the controller 96d based on the monitored current value. Further, when a plurality of switching units 96c are provided in this way, even when any one of the switching units 96c fails, it is possible to operate another switching unit 96c as a spare.
  • FIG. 18 shows a state where two power supply modules 90 of FIG. 14 are arranged side by side.
  • the power supply module 90 basically activates only the communication units 100 and 102 and rests the other parts.
  • a power supply request signal can be transmitted from the movable body 30 to the power supply module 90 to activate other parts of the power supply module 90.
  • one movable body 30 is arranged so as to straddle a plurality of power supply modules 90 simultaneously, power is supplied as shown in FIG.
  • the second power receiving electrode 32 of the movable body 30 is opposed to the first power transmission electrode 12 of the power supply module 90, and the movable body 30 of the second power transmission electrode 13 of the other power supply module is opposed.
  • the first power receiving electrode 31 is arranged so as to be opposed.
  • a signal flows through a path indicated by a broken line.
  • the communication unit 100 of the power supply module 90 (the right power supply module 90 in the example of FIG.
  • the power supply module 90 can be activated to perform power transmission.
  • f 1 is a communication frequency (GHz band or its vicinity)
  • f 2 is an oscillation frequency (MHz band or its vicinity) of the power supply module 90
  • Cm is a capacitance of the coupling capacitor 110 under these conditions. That is, the communication signal passes through the coupling capacitor 110 but the power from the power supply module 90 does not pass.
  • one movable body 30 is disposed so as to straddle three or more power supply modules 90 simultaneously, and the power module on the side where the first power transmission electrode 12 is opposed to the movable body 30. Only 90 can be activated to supply power.
  • the fixed body 70 can be configured by disposing the functional module 90 on the supply panel 80, and by combining the functional modules 90 having various functions, power supply and communication layout can be freely performed. It is possible to simplify the construction by increasing the degree and arranging the functional modules 90 that are modularized.
  • the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment of the invention and the details of the configuration, and only a part of the problems described above. May be solved, or only some of the effects described above may be achieved. Furthermore, according to the present invention, problems not described above may be solved or effects not described above may be achieved.
  • the plurality of first power transmission electrodes 12 are connected to the first conductive plate via the first conductive rod.
  • One power transmission electrode 12 may be formed integrally with each other.
  • the second conductive plate and the plurality of second power transmission electrodes 13 may be integrally formed with each other.
  • a specific manufacturing method is arbitrary, for example, a photolithography technique or an etching technique can be used.
  • FIG. 19A conceptually shows an arrangement configuration of only the power transmission electrodes 12 and 13 shown in FIGS. 1 to 3 as a perspective view (in FIGS. 19A and 19B, for convenience of illustration).
  • the power transmission electrodes 12 and 13 are arranged in close contact with each other, but are actually insulated from each other).
  • the power transmission electrodes 12 and 13 are alternately arranged in both the X direction and the Y direction shown in the figure, and the arrangement configuration is a so-called checkered pattern.
  • FIG. 19A conceptually shows an arrangement configuration of only the power transmission electrodes 12 and 13 shown in FIGS. 1 to 3 as a perspective view (in FIGS. 19A and 19B, for convenience of illustration).
  • the power transmission electrodes 12 and 13 are arranged in close contact with each other, but are actually insulated from each other).
  • the power transmission electrodes 12 and 13 are alternately arranged in both the X direction and the Y direction shown in the figure, and the arrangement configuration is a so-called checkered pattern.
  • the power transmission electrodes 12 and 13 are each configured continuously along the X direction shown in the drawing, and are alternately disposed only in the Y direction, and the overall configuration is a so-called striped configuration.
  • a striped arrangement can be obtained by forming the power transmission electrodes 12 and 13 in a strip shape and supporting them with one conductive rod 20 and 21.
  • the number of conductive rods 20 and 21 can be reduced as compared with the checkerboard arrangement.
  • the movable body 30 is moved along the X direction, the polarity of the power transmitting electrodes 12 and 13 with respect to the power receiving electrodes 31 and 32 does not change. Therefore, a switching mechanism such as the conventional connecting portion 214 shown in FIG. (Switching mechanism) becomes unnecessary, and the configuration of the movable body 30 can be simplified.
  • switching mechanism such as the conventional connecting portion 214 shown in FIG. (Switching mechanism) becomes unnecessary, and the configuration of the movable body 30 can be simplified.
  • a set of series resonance circuits that generate series resonance at the frequency f u of the fundamental wave or unnecessary harmonics in the AC output from the AC power supply 11 is provided on the fixed body.
  • a plurality of sets of series resonance circuits that generate series resonance at each frequency of unnecessary harmonics may be connected in parallel to the first capacitor 14 and the first coil 15. Thereby, it becomes possible to further reduce spurious regarding unnecessary frequency components in the AC power output from the AC power supply 11.
  • the present invention supplies power to various types of loads.
  • the power is supplied at a frequency exceeding the operating frequency limit of the power transistor used in the AC power supply. Useful to do.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a power supply system which is capable of supplying power at a frequency exceeding the limit of the operation frequency of a power transistor used for an AC power source. The power supply system is for supplying the power from a fixed body (10) disposed in a power-supplying area to a predetermined load via the movable body (30) disposed in an area to be supplied with the power. The fixed body (10) is provided with: a first power-transmission electrode (12) and a second power-transmission electrode (13); the AC power source (11) which supplies power by an AC output containing a fundamental wave and a higher harmonic wave at a multiplied frequency of the fundamental wave; and a first capacitor (14) and a first coil (15) which generate parallel resonance at the multiplied frequency. The movable body (30) is provided with a first power-receiving electrode (31) and a second power-receiving electrode (32). The AC power source (11) supplies power to the load via a first coupling capacitor (40) and a second coupling capacitor (41).

Description

電力供給システム、及びそのための可動体と固定体Power supply system, and movable body and fixed body therefor
 この発明は、各種の負荷に対して電力供給を行うための電力供給システム、及びそのための可動体と固定体に関する。
 この出願は、2009年3月12日付けで日本国で出願された特願2009-060001を基礎とし、その内容を取り込むものである。
The present invention relates to a power supply system for supplying power to various loads, and a movable body and a fixed body therefor.
This application is based on Japanese Patent Application No. 2009-060001 filed in Japan on March 12, 2009 and incorporates the contents thereof.
 床面上に配置された各種の負荷に対して給電を行う電力供給システムは、一般に、床面に露出するように設けた電極を負荷の底面に設けた電極に接触させて給電する接触式の電力供給システムと、床の内部に非露出状に設けた電極を負荷の電極に接触させることなく給電する非接触式の電力供給システムとに大別できる。 In general, a power supply system that supplies power to various loads arranged on the floor surface is a contact type that supplies power by bringing an electrode that is exposed on the floor surface into contact with an electrode provided on the bottom surface of the load. The power supply system can be broadly divided into a non-contact type power supply system that supplies power without contacting an electrode provided in a non-exposed state inside the floor with a load electrode.
 このうち、従来の非接触式の電力供給システムは、例えば特許文献1に開示されている。このシステムは、走行路に沿って移動する負荷(地上可動体)に対して電力供給を行うもので、走行路に沿って誘導線を配置すると共に、地上可動体にはコイルが巻き付けられた鉄心を設けて構成されている。そして、誘導線に高周波電流を流し、この誘導線を一次側とすると共にコイルを二次側とする電磁誘導を行うことで、地上可動体に給電を行なう。 Among these, a conventional non-contact type power supply system is disclosed in Patent Document 1, for example. This system supplies power to a load (a ground movable body) that moves along a traveling path. An induction wire is disposed along the traveling path, and an iron core in which a coil is wound around the ground movable body. Is provided. Then, a high-frequency current is passed through the induction wire, and electromagnetic induction is performed with the induction wire as the primary side and the coil as the secondary side, thereby supplying power to the ground movable body.
 また、他の非接触式の電力供給システムとして、ワイヤレス電力伝送シートが非特許文献1に開示されている。このワイヤレス電力伝送シートは、送電用のコイル、電力制御用のMEMS(Micro Electro Mechanical Systems)スイッチ、受電機器の位置検出用のコイル、及び位置検出用コイルを用いた位置検出を行う有機トランジスタを、印刷技術を用いてプラスチックフィルム上に形成することで構成されている。このワイヤレス電力伝送シートでは、当該シートに対する電子機器の接近に伴う位置検出用コイルのインダクタンスの変化を有機トランジスタによって検出することにより、電子機器の接近位置を特定する。そして、この特定された位置に対応する送電用コイルをMEMSスイッチで選択し、当該選択された送電用コイルから電力を伝送する。 Further, as another non-contact type power supply system, Non-Patent Document 1 discloses a wireless power transmission sheet. This wireless power transmission sheet includes a power transmission coil, a power control MEMS (Micro Electro Mechanical Systems) switch, a position detection coil of a power receiving device, and an organic transistor that performs position detection using the position detection coil. It is configured by forming on a plastic film using a printing technique. In this wireless power transmission sheet, the approach position of the electronic device is specified by detecting the change in the inductance of the position detection coil with the approach of the electronic device to the sheet by the organic transistor. And the power transmission coil corresponding to this specified position is selected with a MEMS switch, and electric power is transmitted from the selected power transmission coil.
 しかしながら、このような従来の非接触式の電力供給システムでは、電力伝送効率を高めるためには、誘導線とコイルを相互に近接させたり、誘導線への通電によって生じる磁束をコイルの中心軸に通過させるようにこれら誘導線とコイルの位置合せを行う必要がある等、位置上の制約が多かった。従って、走行路の如き固定的な経路でしか給電を行うことができず、床面上を自由に移動する必要があるロボットの如き可動体に対して給電を行うことができないという問題があった。また、磁路を形成するために鉄心の如き磁性体を用いる必要があり、重量が大きくなると共に、磁性体を交流励磁したときに磁歪が生じることで騒音を発生させるという問題があった。また、従来のワイヤレス電力伝送シートでも、電力伝送効率を高めるためには、送電コイルの位置と電子機器の受電コイルの位置とを合わせる必要があり、やはり位置上の制約が多かった。さらに、スイッチを多用しているため、信頼性が低下する可能性があった。この他、非接触式の電力供給システムとしては、電磁波による給電を行うことも考えられるが、人体への悪影響や電子機器の誤作動を回避する観点から厳しい規制があり、オフィス空間のように人がいる場所への導入が困難であった。 However, in such a conventional non-contact power supply system, in order to increase the power transmission efficiency, the induction wire and the coil are brought close to each other, or the magnetic flux generated by energizing the induction wire is applied to the central axis of the coil. There were many restrictions on the position, such as the need to align the guide wire and the coil so that they could pass through. Accordingly, there is a problem that power can be supplied only through a fixed route such as a traveling path, and power cannot be supplied to a movable body such as a robot that needs to move freely on the floor surface. . In addition, it is necessary to use a magnetic material such as an iron core to form a magnetic path, which increases the weight and causes noise due to magnetostriction when the magnetic material is subjected to AC excitation. Further, even in the conventional wireless power transmission sheet, in order to increase the power transmission efficiency, it is necessary to match the position of the power transmission coil with the position of the power reception coil of the electronic device, and there are still many restrictions on the position. In addition, since many switches are used, there is a possibility that reliability may be lowered. In addition, as a non-contact power supply system, it is conceivable to supply power using electromagnetic waves, but there are strict regulations from the viewpoint of avoiding adverse effects on the human body and malfunctions of electronic devices, and people like office spaces It was difficult to install in the place where there is.
 このような点に鑑みて、本願発明者等は、磁界結合を用いた電磁誘導や電磁波ではなく、電界結合を用いた直列共振を利用して非接触給電を行うことができる電力供給システムを提案した(特許文献2参照。ただし、本願出願時において、当該特許文献2は非公開であり、当該電力供給システムは非公知である)。以下、この電力供給システムの概要を説明する。 In view of these points, the inventors of the present application propose a power supply system that can perform non-contact power feeding using series resonance using electric field coupling instead of electromagnetic induction and electromagnetic waves using magnetic field coupling. (See Patent Document 2. However, at the time of filing this application, Patent Document 2 is not disclosed and the power supply system is not known). Hereinafter, an outline of the power supply system will be described.
 図20は、このような従来の電力供給システムの要部縦断面図である。この電力供給システムは、電力供給領域200に配置された固定体201から、電力被供給領域202に配置された可動体203を介して、負荷204に対して電力を供給するための電力供給システムである。固定体201は、電力供給領域200と電力被供給領域202との相互の境界面に対する近傍位置に配置される第1の送電電極205及び第2の送電電極206を備える。可動体203は、境界面に対する近傍位置に配置されるものであって、第1の送電電極205又は第2の送電電極206に対して対向状かつ非接触に配置される第1の受電電極207と第2の受電電極208を備える。そして、これら第1の送電電極205及び第2の送電電極206と第1の受電電極207及び第2の受電電極208とを組み合わせて結合コンデンサ209を構成し、この結合コンデンサ209とコイル210による直列共振回路を形成して、固定体201から可動体103へ高効率で電力供給を行うことが可能となる。具体的には、このような固定体201を床板211の下方に多数並設しておき、この床板211上に可動体203を走行等させつつ、非接触にて電力供給を継続することが可能となる。 FIG. 20 is a longitudinal sectional view of a main part of such a conventional power supply system. This power supply system is a power supply system for supplying power to a load 204 from a fixed body 201 disposed in a power supply area 200 via a movable body 203 disposed in a power supplied area 202. is there. The fixed body 201 includes a first power transmission electrode 205 and a second power transmission electrode 206 that are disposed in the vicinity of the boundary surface between the power supply region 200 and the power supplied region 202. The movable body 203 is disposed in the vicinity of the boundary surface, and the first power receiving electrode 207 is disposed so as to face the first power transmitting electrode 205 or the second power transmitting electrode 206 in a non-contact manner. And a second power receiving electrode 208. The first capacitor electrode 205 and the second power transmitter electrode 206 are combined with the first power receiver electrode 207 and the second power receiver electrode 208 to form a coupling capacitor 209. The coupling capacitor 209 and the coil 210 are connected in series. By forming a resonance circuit, it is possible to supply power from the fixed body 201 to the movable body 103 with high efficiency. Specifically, a large number of such fixed bodies 201 are arranged below the floor plate 211, and power supply can be continued in a non-contact manner while the movable body 203 is running on the floor plate 211. It becomes.
 この電力供給システムでは、固定体201に、スイッチングによって周波数を制御可能な交流電源215を設けており、この交流電源215によって、所望の周波数の交流電力を第1の送電電極205と第2の送電電極206に供給している。 In this power supply system, an AC power source 215 whose frequency can be controlled by switching is provided in the fixed body 201, and the AC power source 215 supplies AC power of a desired frequency to the first power transmission electrode 205 and the second power transmission. The electrode 206 is supplied.
 また、この電力供給システムでは、電力供給制御を行うため、固定体201と可動体203の相互間の通信を可能とする機能を設けている。具体的には、各固定体201には通信部212を設けると共に、可動体203には通信部213を設けている。そして、可動体203の通信部213から給電要求信号を送信する。各固定体201は、自己の通信部212によって給電要求信号が受信された場合に、自己の上方に可動体203が位置しているものとして、電力供給制御を行う。 In addition, this power supply system is provided with a function that enables communication between the fixed body 201 and the movable body 203 in order to perform power supply control. Specifically, each fixed body 201 is provided with a communication unit 212, and the movable body 203 is provided with a communication unit 213. Then, a power supply request signal is transmitted from the communication unit 213 of the movable body 203. Each fixed body 201 performs power supply control assuming that the movable body 203 is positioned above itself when a power supply request signal is received by its own communication unit 212.
 また、このように自己の上方に可動体203が位置していることを判別可能しても、可動体203がランダムな方向で移動する場合には、第1の送電電極205に対向配置された電極が第1の受電電極207と第2の受電電極208とのいずれであるのか、あるいは、第2の送電電極206に対向配置された電極が第1の受電電極207と第2の受電電極208とのいずれであるのかを特定できない。そこで、複数のダイオードを有する接続部214を用いて整流を行い、各電極の対向配置状態に関わらず、負荷204の極性に適合するように電力供給を継続可能としている。また、このようにダイオードを可動体203に配置しており、ダイオードと負荷204の相互間にコイル210を設けた場合には、ダイオードにより整流されてしまい、結合コンデンサ209との直列共振が成り立たなくなるため、コイル210を固定体201側に配置している。 Further, even when it can be determined that the movable body 203 is located above itself, when the movable body 203 moves in a random direction, the movable body 203 is disposed to face the first power transmission electrode 205. Whether the electrode is the first power receiving electrode 207 or the second power receiving electrode 208, or the electrode disposed opposite to the second power transmitting electrode 206 is the first power receiving electrode 207 or the second power receiving electrode 208. Cannot be specified. Therefore, rectification is performed using the connection portion 214 having a plurality of diodes, and power supply can be continued so as to match the polarity of the load 204 regardless of the opposing arrangement state of the electrodes. Further, when the diode is arranged in the movable body 203 in this way and the coil 210 is provided between the diode and the load 204, the diode 210 is rectified and the series resonance with the coupling capacitor 209 is not established. Therefore, the coil 210 is arranged on the fixed body 201 side.
 この電力供給システムによれば、第1の送電電極205及び第2の送電電極206を電力被供給領域202に露出させる必要がないため、人がいる場所への導入が容易になる。また、各電極を所望のキャパシタ容量が生じる程度の距離で対向配置させれば電力供給ができるため、電磁誘導方式のように厳密な位置合わせを行う必要がないので、ロボットの如き可動体203に対しても給電を行うことができる。 According to this power supply system, since it is not necessary to expose the first power transmission electrode 205 and the second power transmission electrode 206 to the power supplied region 202, introduction into a place where a person is present is facilitated. In addition, since power can be supplied by arranging the electrodes facing each other at such a distance that a desired capacitor capacity is generated, it is not necessary to perform precise alignment as in the electromagnetic induction method. In contrast, power can be supplied.
特開平9-93704号公報JP-A-9-93704 特願2007-256369号Japanese Patent Application No. 2007-256369
 ところで、交流電源の周波数制御のために用いられるパワートランジスタの動作周波数には限界があり、Siを用いた絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor)では500kHz程度、SiCを用いたトランジスタでも1MHz程度が動作周波数限界となっている。従って、従来の電力供給システムにおいては、この動作周波数限界以上の周波数で交流電力を供給することは困難であった。 By the way, there is a limit to the operating frequency of a power transistor used for frequency control of an AC power supply, and an insulated gate bipolar transistor (Insulated Gate Bipolar Transistor) using Si is about 500 kHz, and a transistor using SiC is about 1 MHz. Operating frequency limit. Therefore, in the conventional power supply system, it is difficult to supply AC power at a frequency that is higher than the operating frequency limit.
 そこで本発明は、電力供給システムにおいて、交流電源に用いられているパワートランジスタの動作周波数限界を超えた周波数で電力供給を行うことができる、電力供給システムを提供することを目的とする。また、本発明は、このような電力供給システムを構成するための可動体と固定体を提供することを目的とする。 Therefore, an object of the present invention is to provide a power supply system capable of supplying power at a frequency exceeding the operating frequency limit of a power transistor used in an AC power supply in the power supply system. Moreover, an object of this invention is to provide the movable body and fixed body for comprising such an electric power supply system.
 上述した課題を解決し、目的を達成するため、請求項1に記載の電力供給システムは、電力供給領域に配置された固定体から、電力被供給領域に配置された可動体を介して、所定の負荷に対して電力を供給するための電力供給システムであって、前記固定体は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、交流電力が供給される第1の送電電極及び第2の送電電極と、前記第1の送電電極及び第2の送電電極に対して基本波及び当該基本波の逓倍周波数の高調波を含む交流出力にて電力を供給する交流電源と、前記第1の送電電極と前記第2の送電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第1のコンデンサと第1のコイルと、を備え、前記可動体は、前記第1の送電電極又は前記第2の送電電極に対して前記境界面を挟んで対向状かつ非接触に配置される第1の受電電極と第2の受電電極と、を備え、前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成され、前記交流電源は、前記第1の結合コンデンサ及び前記第2の結合コンデンサを介して前記負荷への送電を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, the power supply system according to claim 1 is configured so that a predetermined body is provided from a fixed body disposed in the power supply area through a movable body disposed in the power supply area. A power supply system for supplying power to a load of the power supply, wherein the fixed body is disposed in a vicinity of a boundary surface between the power supply area and the power supplied area. The first power transmission electrode and the second power transmission electrode to which alternating current power is supplied, and the first power transmission electrode and the second power transmission electrode include a fundamental wave and harmonics of a frequency multiplied by the fundamental wave. An AC power source that supplies electric power at the output, and the first power transmission electrode and the second power transmission electrode are connected in parallel to each other, and a first that generates parallel resonance at the multiplied frequency The capacitor and the first coil The movable body includes a first power receiving electrode and a second power receiving electrode which are arranged in a non-contact manner and in a non-contact manner with respect to the first power transmitting electrode or the second power transmitting electrode with the boundary surface interposed therebetween. The first coupling capacitor is configured by disposing one of the first power receiving electrode and the second power receiving electrode so as to face the first power transmitting electrode, and the first A second coupling capacitor is configured by arranging the other one of the first power receiving electrode and the second power receiving electrode so as to face the two power transmitting electrodes, and the AC power supply Power is transmitted to the load through a capacitor and the second coupling capacitor.
 また、請求項2に記載の電力供給システムは、請求項1に記載の電力供給システムにおいて、前記第1のコンデンサは、前記第1の送電電極に接続された第1の導電板と、前記第2の送電電極に接続された第2の導電板とを、相互に間隔を隔てて配置することにより構成され、前記第1のコイルは、前記第1の導電板と前記第2の導電板との相互間に接続されたことを特徴とする。 The power supply system according to claim 2 is the power supply system according to claim 1, wherein the first capacitor includes a first conductive plate connected to the first power transmission electrode, and the first capacitor. And a second conductive plate connected to the two power transmission electrodes with a space between each other, and the first coil includes the first conductive plate and the second conductive plate. Are connected to each other.
 また、請求項3に記載の電力供給システムは、請求項2に記載の電力供給システムにおいて、前記境界面に沿って、前記第1の送電電極と前記第2の送電電極とを、交互にそれぞれ複数並設し、前記複数の第1の送電電極を、共通の前記第1の導電板に接続し、前記複数の第2の送電電極を、共通の前記第2の導電板に接続したことを特徴とする。 Further, the power supply system according to claim 3 is the power supply system according to claim 2, wherein the first power transmission electrode and the second power transmission electrode are alternately arranged along the boundary surface. A plurality of juxtaposed, the plurality of first power transmission electrodes connected to the common first conductive plate, and the plurality of second power transmission electrodes connected to the common second conductive plate Features.
 また、請求項4に記載の電力供給システムは、請求項3に記載の電力供給システムにおいて、前記境界面と、前記第1の導電板と、前記第2の導電板とを、相互に間隔を隔てて順次重合させ、前記第1の導電板の両面のうち前記第2の導電板と対向していない面に、前記複数の第1の送電電極を、第1の接続手段を介して接続し、前記第2の導電板の両面のうち前記第1の導電板と対向する面に、前記複数の第2の送電電極を、前記第1の導電板に形成した接続孔に挿通された第2の接続手段を介して接続したことを特徴とする。 According to a fourth aspect of the present invention, in the power supply system of the third aspect, the boundary surface, the first conductive plate, and the second conductive plate are spaced apart from each other. The plurality of first power transmission electrodes are connected to a surface of the first conductive plate that is not opposed to the second conductive plate through first connection means. The second conductive electrode is inserted into a connection hole formed in the first conductive plate on the surface of the second conductive plate that faces the first conductive plate. It is characterized by having connected through the connection means.
 また、請求項5に記載の電力供給システムは、請求項1から4のいずれか一項に記載の電力供給システムにおいて、前記固定体は、前記第1のコンデンサ及び前記第1のコイルと相互に並列接続されるものであって、前記基本波の周波数により、又は当該基本波の周波数に対して逓倍の周波数を有する高調波の中で不要である高調波の周波数により、直列共振を発生させる直列共振回路を備えることを特徴とする。 The power supply system according to claim 5 is the power supply system according to any one of claims 1 to 4, wherein the fixed body is mutually connected to the first capacitor and the first coil. A series connected in parallel and generating a series resonance by the frequency of the fundamental wave or by a harmonic frequency that is unnecessary among the harmonics having a frequency multiplied by the frequency of the fundamental wave. A resonance circuit is provided.
 また、請求項6に記載の電力供給システムは、請求項1から5のいずれか一項に記載の電力供給システムにおいて、前記可動体は、前記第1の受電電極と前記第2の受電電極との間に相互に並列接続されるものであって、前記所定の逓倍周波数で並列共振を発生させる第2のコンデンサと第2のコイルとを備えることを特徴とする。 The power supply system according to claim 6 is the power supply system according to any one of claims 1 to 5, wherein the movable body includes the first power receiving electrode and the second power receiving electrode. And a second capacitor that generates parallel resonance at the predetermined multiplication frequency and a second coil.
 また、請求項7に記載の電力供給システムは、請求項1から6のいずれか一項に記載の電力供給システムにおいて、前記固定体は、複数の導電板と、複数の導電板の相互間に設けられた絶縁層とを、相互に重畳状に配置して一体に構成された、電力又は通信信号を供給するための供給パネルと、前記供給パネルの上方に複数並設されるものであって、床面を構成する機能を有する第1の機能モジュール、又は、床面を構成する機能に加えて前記供給パネルに接続されて電力若しくは通信信号の入力若しくは出力を行う機能を有する第2の機能モジュールと、を備えることを特徴とする。 The power supply system according to claim 7 is the power supply system according to any one of claims 1 to 6, wherein the fixed body is between the plurality of conductive plates and the plurality of conductive plates. A plurality of supply layers for supplying electric power or communication signals, which are integrally formed by arranging the provided insulating layers so as to overlap each other, and a plurality of the insulation layers are arranged in parallel above the supply panel. A first function module having a function of configuring the floor surface, or a second function having a function of inputting or outputting power or a communication signal connected to the supply panel in addition to the function of configuring the floor surface And a module.
 また、請求項8に記載の電力供給システムは、請求項7に記載の電力供給システムにおいて、前記供給パネルに、前記複数の導電板を介して直流電力を供給するように直流電源を接続し、前記第2の機能モジュールに、前記複数の導電板を介して供給された直流電力を交流電力に変換する前記交流電源と、前記第1の送電電極及び前記第2の送電電極と、前記第1のコンデンサ及び前記第1のコイルを配置したことを特徴とする。 Further, the power supply system according to claim 8 is the power supply system according to claim 7, wherein a DC power supply is connected to the supply panel so as to supply DC power via the plurality of conductive plates, The AC power source that converts DC power supplied to the second functional module through the plurality of conductive plates into AC power, the first power transmission electrode and the second power transmission electrode, and the first The capacitor and the first coil are arranged.
 また、請求項9に記載の可動体は、電力被供給領域に配置され、電力供給領域に配置された固定体から供給された電力を所定の負荷に供給する可動体であって、前記固定体に配置されたものであって交流電力が供給される第1の送電電極又は第2の送電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置される第1の受電電極と第2の受電電極と、前記第1の受電電極と前記第2の受電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第2のコンデンサと第2のコイルとを備え、前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成されることを特徴とする。 The movable body according to claim 9 is a movable body that is disposed in a power supply region and that supplies electric power supplied from a fixed body disposed in the power supply region to a predetermined load. The first power transmission electrode or the second power transmission electrode to which alternating current power is supplied and opposed to each other across the boundary surface between the power supply region and the power supplied region In addition, the first power receiving electrode and the second power receiving electrode arranged in a non-contact manner, and the first power receiving electrode and the second power receiving electrode are connected in parallel to each other, and the multiplication is performed A second capacitor that generates parallel resonance at a frequency and a second coil are provided, and one of the first power receiving electrode and the second power receiving electrode is disposed to face the first power transmitting electrode. To form a first coupling capacitor, and Second coupling capacitor by the so as to face the second power transmission electrodes and the other of the first power receiving electrode or the second receiving electrodes are arranged, characterized in that it is configured.
 また、請求項10に記載の固定体は、電力供給領域に配置され、電力被供給領域に配置された可動体を介して所定の負荷に対して電力を供給する固定体であって、前記可動体に配置された少なくとも一組の受電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら受電電極との間にコンデンサを構成する第1の送電電極及び第2の送電電極と、前記第1の送電電極及び第2の送電電極に対して基本波及び当該基本波の逓倍周波数の高調波を含む交流出力にて電力を供給する交流電源と、前記第1の送電電極と前記第2の送電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第1のコンデンサと第1のコイルとを備え、前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成され、前記交流電源は、前記第1の結合コンデンサ及び前記第2の結合コンデンサを介して前記負荷への送電を行うことを特徴とする。 The fixed body according to claim 10 is a fixed body that is disposed in a power supply area and supplies power to a predetermined load via a movable body that is disposed in a power supply area, and is movable. With respect to at least one set of power receiving electrodes disposed on the body, the power receiving region and the power supplied region are arranged in an opposing and non-contact manner across the boundary surface between the power supplying region and the power supplied region. A first power transmission electrode and a second power transmission electrode constituting a capacitor between the first power transmission electrode and the second power transmission electrode, and an alternating current including harmonics of the fundamental wave and a frequency multiplied by the fundamental wave. An AC power source that supplies electric power at the output, and the first power transmission electrode and the second power transmission electrode are connected in parallel to each other, and a first that generates parallel resonance at the multiplied frequency A capacitor and a first coil, One of the first power receiving electrode and the second power receiving electrode is disposed so as to face the first power transmitting electrode, thereby forming a first coupling capacitor, and the second power transmitting electrode. The second coupling capacitor is configured by arranging the other one of the first power receiving electrode and the second power receiving electrode so as to face the first power receiving electrode, and the AC power source includes the first coupling capacitor and the second power receiving electrode. Power transmission to the load is performed through two coupling capacitors.
 請求項1に記載の電力供給システム、請求項9に記載の可動体、あるいは請求項10に記載の固定体によれば、送電電極が電力被供給領域に露出しないため、送電電極が人体に触れることによる感電の危険性をなくすことができ、心理的な不安も解消することができるので、オフィス空間のように人がいる場所への導入が容易になる。特に、第1の送電電極と第2の送電電極との間に相互に並列接続されるものであって、基本波の所定の逓倍周波数で並列共振を発生させる第1のコンデンサと第1のコイルとを備えたので、交流電源が発生させる各次高調波の中から任意の高調波を選択的に取り出し、出力として利用することができ、パワートランジスタの動作周波数限界を超えた高い周波数の交流電力による電力供給を行うことができる。 According to the power supply system according to claim 1, the movable body according to claim 9, or the fixed body according to claim 10, since the power transmission electrode is not exposed to the power supply region, the power transmission electrode touches the human body. The risk of electric shock due to accidents can be eliminated, and psychological anxiety can be eliminated, so that it can be easily introduced to places where people are present, such as office spaces. In particular, the first capacitor and the first coil, which are connected in parallel between the first power transmission electrode and the second power transmission electrode, and generate parallel resonance at a predetermined multiplication frequency of the fundamental wave. Therefore, it is possible to selectively extract arbitrary harmonics from the higher harmonics generated by the AC power supply and use them as outputs, and high frequency AC power that exceeds the operating frequency limit of the power transistor. Can be used to supply power.
 また、請求項2に記載の電力供給システムによれば、第1のコンデンサは、第1の送電電極に接続された第1の導電板と第2の送電電極に接続された第2の導電板とを、相互に間隔を隔てて配置することにより構成され、第1のコイルは第1の導電板と前記第2の導電板との相互間に接続されているので、第1のコンデンサを平板状とし、机や床面等の表面に沿って埋設することが可能となる。また、平板状とした第1のコンデンサの面積を拡大し、キャパシタンスを十分に大きい値とすることで、交流電源から出力される不要な高調波を短絡することができる。 According to the power supply system of claim 2, the first capacitor includes the first conductive plate connected to the first power transmission electrode and the second conductive plate connected to the second power transmission electrode. Are spaced apart from each other, and the first coil is connected between the first conductive plate and the second conductive plate, so that the first capacitor is a flat plate. And can be embedded along the surface of a desk or floor. In addition, by expanding the area of the flat first capacitor and setting the capacitance to a sufficiently large value, unnecessary harmonics output from the AC power supply can be short-circuited.
 また、請求項3に記載の電力供給システムによれば、床板に沿って、第1の送電電極と第2の送電電極とを、交互にそれぞれ複数並設し、複数の第1の送電電極を共通の第1の導電板に接続し、複数の第2の送電電極を共通の前記第2の導電板に接続したので、複数の送電電極によって第1のコンデンサを共有させることができ、固定体の構成を単純化することができる。 According to the power supply system of claim 3, a plurality of first power transmission electrodes and second power transmission electrodes are alternately arranged in parallel along the floor board, and the plurality of first power transmission electrodes are arranged. Since the plurality of second power transmission electrodes are connected to the common first conductive plate and the plurality of second power transmission electrodes are connected to the common second conductive plate, the first capacitor can be shared by the plurality of power transmission electrodes. The configuration of can be simplified.
 また、請求項4に記載の電力供給システムによれば、床板と、第1の導電板と、第2の導電板とを、相互に間隔を隔てて順次重合させ、第1の導電板の両面のうち第2の導電板と対向していない面に、複数の第1の送電電極を第1の導電性ロッドを介して接続し、第2の導電板の両面のうち第1の導電板と対向する面に、複数の第2の送電電極を第1の導電板に形成した接続孔に挿通された第2の導電性ロッドを介して接続したので、第1のコンデンサと略平行に複数の送電電極を配設することができ、固定体全体を一つのユニットとすることができる。これにより、机や床面等に容易に固定体を設置することが可能となる。 According to the power supply system of claim 4, the floor plate, the first conductive plate, and the second conductive plate are sequentially polymerized at an interval from each other, and both surfaces of the first conductive plate are formed. A plurality of first power transmission electrodes are connected to a surface of the second conductive plate that is not opposed to the second conductive plate via a first conductive rod, and the first conductive plate of both surfaces of the second conductive plate Since the plurality of second power transmission electrodes are connected to the opposing surfaces via the second conductive rods inserted through the connection holes formed in the first conductive plate, the plurality of second power transmission electrodes are substantially parallel to the first capacitor. The power transmission electrode can be disposed, and the entire fixed body can be made into one unit. Thereby, it becomes possible to install a fixed body easily on a desk, a floor surface, etc.
 また、請求項5に記載の電力供給システムによれば、固定体に、基本波又は不要な高調波の周波数で直列共振を発生させる直列共振回路を備えたので、当該直列共振回路に直列共振を発生させることで周波数の交流電力を短絡することができ、スプリアスの放射を抑制することができる。 According to the power supply system of the fifth aspect, since the fixed body is provided with the series resonance circuit that generates the series resonance at the fundamental or unnecessary harmonic frequency, the series resonance circuit is provided with the series resonance. By generating it, it is possible to short-circuit the AC power of the frequency, and to suppress spurious emission.
 また、請求項6に記載の電力供給システムあるいは請求項9に記載の可動体によれば、可動体に、所定の逓倍周波数で並列共振を発生させる並列共振回路を備えたので、当該並列共振回路のインピーダンスを増大させることができる。これにより、結合コンデンサにおける電圧降下を低減し、結合コンデンサのキャパシタンスの変動に関わらず負荷に安定した電力供給を行うことができる。 Further, according to the power supply system according to claim 6 or the movable body according to claim 9, since the movable body is provided with a parallel resonance circuit that generates parallel resonance at a predetermined multiplication frequency, the parallel resonance circuit Can be increased. As a result, a voltage drop in the coupling capacitor can be reduced, and a stable power supply to the load can be performed regardless of variations in the capacitance of the coupling capacitor.
 また、請求項7に記載の電力供給システムによれば、供給パネルに機能モジュールを配置することで固定体を構成でき、様々な機能を有する機能モジュールを組み合わせることで、給電や通信のレイアウトの自由度を高めることや、モジュール化された機能モジュールを配置することによる工事の簡易化を図ることができる。 In addition, according to the power supply system of the seventh aspect, the fixed body can be configured by arranging the functional modules on the supply panel, and the power supply and communication layout can be freely combined by combining the functional modules having various functions. It is possible to simplify the construction by increasing the degree and arranging modularized functional modules.
 また、請求項8に記載の電力供給システムによれば、給電効率の高い直流電力を、必要に応じて交流電力に変換することで、可動体に交流電力を供給することが可能となる。 Further, according to the power supply system of the eighth aspect, it is possible to supply AC power to the movable body by converting DC power having high power supply efficiency into AC power as necessary.
本発明の実施の形態1に係る電力供給システムを適用した居室の斜視図である。1 is a perspective view of a living room to which a power supply system according to Embodiment 1 of the present invention is applied. 図1の固定体及び可動体を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body of FIG. 図1の固定体を簡略化して示す斜視図である。It is a perspective view which simplifies and shows the fixing body of FIG. 交流電源から出力される方形波の波形を例示した図である。It is the figure which illustrated the waveform of the square wave output from AC power supply. 図4に例示したデューティー比50%の方形波のスペクトルを示す図である。It is a figure which shows the spectrum of the square wave of 50% of the duty ratio illustrated in FIG. 実施の形態2に係る固定体及び可動体を簡略化して示す縦断面図である。It is a longitudinal cross-sectional view which simplifies and shows the fixed body and movable body which concern on Embodiment 2. FIG. 実施の形態3に係る電力供給システムを適用した居室の斜視図である。It is a perspective view of the living room to which the power supply system which concerns on Embodiment 3 is applied. 図7の要部縦断面図である。It is a principal part longitudinal cross-sectional view of FIG. 固定体を簡略化して示す要部縦断面図である。It is a principal part longitudinal cross-sectional view which simplifies and shows a fixed body. 固定体を簡略化して示す斜視図である。It is a perspective view which simplifies and shows a fixed body. 供給パネルと機能モジュールの接続例を示す縦断面図である。It is a longitudinal cross-sectional view which shows the example of a connection of a supply panel and a functional module. 図11の要部拡大図である。It is a principal part enlarged view of FIG. 電力の供給のみを行う第2の機能モジュールである電源モジュールを、供給パネルに複数並設した場合における、電源モジュールの具体的な回路構成を示す図である。It is a figure which shows the specific circuit structure of a power supply module in case the power supply module which is a 2nd functional module which performs only supply of electric power is arranged in multiple numbers by the supply panel. 図13の回路に通信機能を付加した図である。It is the figure which added the communication function to the circuit of FIG. 図14の電源モジュールを図2と同様に平板構造で表現した図である。It is the figure which expressed the power supply module of FIG. 14 with the flat plate structure similarly to FIG. 図15の電源モジュールを供給パネルと共に示した図である。It is the figure which showed the power supply module of FIG. 15 with the supply panel. 図14の電源モジュールの変形例を示す図である。It is a figure which shows the modification of the power supply module of FIG. 図14の電源モジュールを2つ並設した状態を示す図である。It is a figure which shows the state which arranged two power supply modules of FIG. 14 side by side. 送電電極の配置構成を概念的に示す斜視図であり、(a)は市松模様状に配置した構成を示す図、(b)はストライプ状に配置した構成を示す図である。It is a perspective view which shows notionally the arrangement configuration of a power transmission electrode, (a) is a figure which shows the structure arrange | positioned in checkered pattern, (b) is a figure which shows the structure arrange | positioned in stripe form. 従来の電力供給システムの要部縦断面図である。It is a principal part longitudinal cross-sectional view of the conventional electric power supply system.
 以下に添付図面を参照して、本発明に係る電力供給システム、可動体、及び固定体の各実施の形態について図面を参照しつつ詳細に説明する。まず、〔I〕各実施の形態に共通の基本的概念を説明した後、〔II〕各実施の形態の具体的内容について説明し、〔III〕最後に、各実施の形態に対する変形例について説明する。ただし、これら各実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of a power supply system, a movable body, and a fixed body according to the present invention will be described in detail with reference to the accompanying drawings. First, [I] the basic concept common to each embodiment was explained, then [II] the specific contents of each embodiment were explained, and [III] finally, a modification to each embodiment was explained. To do. However, the present invention is not limited by these embodiments.
〔I〕各実施の形態に共通の基本的概念
 まず、各実施の形態に共通の基本的概念について説明する。各実施の形態に係る電力供給システムは、電力供給領域に配置された固定体から、電力被供給領域に配置された可動体に対して、電力を供給するための電力供給システムである。電力供給領域や電力被供給領域の具体的構成は任意であり、例えば、一般住宅やオフィスビルの如き建屋の内部空間や、電車や飛行機の如き乗り物の内部空間、あるいは、屋外空間を含む。以下では、電力供給領域と電力被供給領域とを相互に区画する面を境界面と称する。例えば、電力被供給領域を建屋の居室とすると共に、電力供給領域を床板部とした場合、床板部の上面(床板面)が境界面になる。
[I] Basic concept common to the embodiments First, the basic concept common to the embodiments will be described. The power supply system according to each embodiment is a power supply system for supplying power from a fixed body arranged in a power supply area to a movable body arranged in a power supply area. The specific configuration of the power supply area and the power supply area is arbitrary, and includes, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or an outdoor space. Hereinafter, a surface that partitions the power supply region and the power supplied region from each other is referred to as a boundary surface. For example, when the power supply area is a living room of a building and the power supply area is a floor board part, the upper surface (floor board surface) of the floor board part is a boundary surface.
 固定体は、当該固定体の内部に電源を備えたものと、当該固定体の外部の電源から供給された電力を可動体に供給するものを含む。この固定体は、電力供給領域に配置されるものであるが、恒久的に移動不能に固定されるものに限定されず、不使用時には電力供給領域から取り外すことができたり、当該電力供給領域の内部の任意位置に移動可能なものを含む。特に、固定体の全体が常時固定的であるものに限定されず、例えば、固定体の一部の構成要素の位置を必要に応じて調整することで、当該構成要素と可動体との相対的な位置関係を変更可能なものを含む。 The fixed body includes one having a power source inside the fixed body and one that supplies power supplied from a power source outside the fixed body to the movable body. This fixed body is arranged in the power supply area, but is not limited to one that is permanently immovable and can be removed from the power supply area when not in use, Including those that can move to any position inside. In particular, the entire fixed body is not limited to a fixed one at all times. For example, by adjusting the positions of some components of the fixed body as necessary, the relative relationship between the component and the movable body is increased. Including those that can change the positional relationship.
 可動体は、電力被供給領域に固定的に配置して使用されるもの(静止体)と、電力被供給領域の内部において必要に応じて移動するもの(移動体)とを含む。この可動体の機能や具体的構成は特記する点を除いて任意であるが、例えば、静止体としては、コンピュータや携帯電話の如き機器を挙げることができ、移動体としては、ロボットや電気自動車を挙げることができる。 The movable body includes a thing (stationary body) that is used by being fixedly arranged in the power supply area and a thing that moves as needed inside the power supply area (moving body). The function and specific configuration of the movable body are arbitrary except for special points. For example, the stationary body can include a device such as a computer or a mobile phone, and the mobile body can be a robot or an electric vehicle. Can be mentioned.
 このように構成される電力供給システムは、固定体から可動体に対して電力を非接触で供給する。この非接触電力供給は、概略的には、境界面を介して配置されたコンデンサを用いて行われる。すなわち、固定体に設けた送電電極と、可動体に設けた受電電極とを、境界面を挟んで相互に非接触状に対向配置することで、コンデンサ(以下、「結合コンデンサ」と表記する)を構成する。このような結合コンデンサを少なくとも2つ設けて送電路に配置し、この2つの結合コンデンサを介して電界型の送電を行う。この構成によれば、固定体の送電電極を電力被供給領域に露出させる必要がないため、電力供給システムの安全性や耐久性を高めることができる。また、送電電極を複数配置することで、可動体が移動した場合においても当該可動体に対して継続的に電力供給を行うことができ、可動体の移動の自由度を確保することができる。 The power supply system configured in this way supplies power from the fixed body to the movable body in a non-contact manner. This non-contact power supply is generally performed using a capacitor disposed via a boundary surface. That is, a power transmission electrode provided on a fixed body and a power reception electrode provided on a movable body are arranged so as to face each other in a non-contact manner with a boundary surface interposed therebetween, whereby a capacitor (hereinafter referred to as a “coupling capacitor”). Configure. At least two such coupling capacitors are provided and arranged in the power transmission path, and electric field type power transmission is performed through the two coupling capacitors. According to this configuration, since it is not necessary to expose the power transmission electrode of the fixed body to the power supply region, it is possible to improve the safety and durability of the power supply system. In addition, by arranging a plurality of power transmission electrodes, even when the movable body moves, power can be continuously supplied to the movable body, and the degree of freedom of movement of the movable body can be ensured.
 特に、各実施の形態に係る電力供給システムの特徴の一部は、送電電極に相互に並列接続されるコンデンサとコイルとを備え、これらのコンデンサとコイルとが、基本波及び高調波を含んで交流電源から出力される交流電力のうち、基本波の所定の逓倍周波数で、並列共振を発生させる点にある。この構成により、交流電源から出力される交流電力のうち、パワートランジスタの動作周波数限界を超えた高い周波数の交流電力を用いて電力供給を行うことが可能となる。 In particular, some of the features of the power supply system according to each embodiment include a capacitor and a coil that are connected in parallel to the power transmission electrode, and these capacitor and coil include a fundamental wave and a harmonic. Of the AC power output from the AC power supply, parallel resonance is generated at a predetermined frequency multiplied by the fundamental wave. With this configuration, it is possible to supply power using AC power having a high frequency that exceeds the operating frequency limit of the power transistor among AC power output from the AC power supply.
〔II〕各実施の形態の具体的内容
 次に、電力供給システム、可動体、及び固定体の各実施の形態の具体的内容について説明する。
[II] Specific Contents of Each Embodiment Next, specific contents of each embodiment of the power supply system, the movable body, and the fixed body will be described.
〔実施の形態1〕
 最初に、実施の形態1について説明する。この実施の形態1は、交流電源からの交流出力に含まれる基本波の所定の逓倍周波数で並列共振を発生させる、第1のコンデンサと第1のコイルとを備えた形態である。
[Embodiment 1]
First, the first embodiment will be described. This Embodiment 1 is a form provided with the 1st capacitor | condenser and 1st coil which generate | occur | produce a parallel resonance with the predetermined multiplication frequency of the fundamental wave contained in the alternating current output from alternating current power supply.
(構成)
 図1は本実施の形態1に係る電力供給システムを適用した居室の斜視図である。本実施の形態では、電力供給領域(ここでは床板3の下方空間)1に配置された固定体10から、電力被供給領域(ここでは居室)2の内部を移動する可動体(ここではロボット)30に対して電力を供給する例を示すもので、これら固定体10及び可動体30を備えて本形態の電力供給システムが構成されている。ここでは、電力供給領域1の上方に敷設された床板3が電力供給領域1と電力被供給領域2との相互間の境界面に相当し、この床板3を介して後述する結合コンデンサ40、41(図1には図示せず)が構成される。
(Constitution)
FIG. 1 is a perspective view of a living room to which the power supply system according to Embodiment 1 is applied. In the present embodiment, a movable body (here, a robot) that moves inside a power supplied area (here, a living room) 2 from a fixed body 10 arranged in the power supply area (here, below the floor board 3) 1. An example of supplying power to 30 is shown, and the power supply system of this embodiment is configured by including the fixed body 10 and the movable body 30. Here, the floor board 3 laid above the power supply area 1 corresponds to a boundary surface between the power supply area 1 and the power supplied area 2, and coupling capacitors 40 and 41 described later via the floor board 3. (Not shown in FIG. 1) is configured.
(構成-固定体)
 次に、固定体10の構成について説明する。図2は図1の固定体10及び可動体30を簡略化して示す縦断面図、図3は図1の固定体10を簡略化して示す斜視図である。この固定体10は、交流電源11、第1の送電電極12、第2の送電電極13、第1のコンデンサ14、第1のコイル15、及び第2のコイル16を備えている。なお、図3には簡略化のため第1の送電電極12と第2の送電電極13との一組のみを示すが、実際には図2に示すように、複数の第1の送電電極12と第2の送電電極13とが電力被供給領域2において床板3に沿って並設される。
(Configuration-stationary body)
Next, the configuration of the fixed body 10 will be described. FIG. 2 is a longitudinal sectional view schematically showing the fixed body 10 and the movable body 30 in FIG. 1, and FIG. 3 is a perspective view showing the fixed body 10 in FIG. 1 in a simplified manner. The fixed body 10 includes an AC power supply 11, a first power transmission electrode 12, a second power transmission electrode 13, a first capacitor 14, a first coil 15, and a second coil 16. 3 shows only one set of the first power transmission electrode 12 and the second power transmission electrode 13 for simplification, but actually, as shown in FIG. 2, a plurality of first power transmission electrodes 12 are shown. And the second power transmission electrode 13 are juxtaposed along the floor plate 3 in the power supplied region 2.
 第1の送電電極12及び第2の送電電極13は、それぞれ平板状の導電体であり、床板3の下方近傍位置において、当該床板3に対して略平行になるように配置されている。これら第1の送電電極12及び第2の送電電極13は、床板3に対して接触させてもよく、あるいは、床板3に対して微小距離を隔てて配置してもよい。いずれの場合においても、これら第1の送電電極12及び第2の送電電極13の電力被供給領域2側の面(ここでは上面)は、床板3によって完全に覆われており、これら第1の送電電極12及び第2の送電電極13が電力被供給領域2に対して非露出状となっている。なお、以下では、これら第1の送電電極12と第2の送電電極13とを相互に区別する必要がない場合には、これらを単に「送電電極12、13」と総称する。 The first power transmission electrode 12 and the second power transmission electrode 13 are each a flat conductor, and are arranged so as to be substantially parallel to the floor plate 3 at a position near the lower side of the floor plate 3. The first power transmission electrode 12 and the second power transmission electrode 13 may be brought into contact with the floor board 3 or may be arranged at a minute distance from the floor board 3. In any case, the surfaces of the first power transmission electrode 12 and the second power transmission electrode 13 on the power supply region 2 side (here, the upper surface) are completely covered by the floor plate 3, and the first The power transmission electrode 12 and the second power transmission electrode 13 are not exposed to the power supplied region 2. Hereinafter, when it is not necessary to distinguish the first power transmission electrode 12 and the second power transmission electrode 13 from each other, these are simply collectively referred to as “ power transmission electrodes 12 and 13”.
 交流電源11は、交流電力の供給源であり、第1の送電電極12及び第2の送電電極13に対して基本波及び高調波を含む交流出力にて電力を供給する。また、交流電源11からの出力を、第1のコイル15と当該交流電源11に接続された第2のコイル16とで構成されるトランス17を介して第1の送電電極12及び第2の送電電極13に供給することにより、交流電源11の出力電圧を所望の電圧に変圧して電力供給することができる。すなわち、第1のコイル15と第2のコイル16は、相互に平行かつ所定間隔を隔てて配置され、当該第1のコイル15と第2のコイル16の間で相互誘導作用により電力伝送が可能となるように配置されている。さらに、交流電源11の出力電圧を所望の変成比で昇圧して送電電極12、13に供給するため、第1のコイル15と第2のコイル16の間の巻数比が設定されている。 The AC power supply 11 is a supply source of AC power, and supplies power to the first power transmission electrode 12 and the second power transmission electrode 13 with an AC output including fundamental waves and harmonics. The output from the AC power supply 11 is supplied to the first power transmission electrode 12 and the second power transmission via a transformer 17 including a first coil 15 and a second coil 16 connected to the AC power supply 11. By supplying to the electrode 13, the output voltage of the AC power supply 11 can be transformed to a desired voltage and supplied. That is, the first coil 15 and the second coil 16 are arranged in parallel with each other at a predetermined interval, and power can be transmitted between the first coil 15 and the second coil 16 by mutual induction. It is arranged to become. Further, in order to boost the output voltage of the AC power supply 11 at a desired transformation ratio and supply the boosted voltage to the power transmission electrodes 12 and 13, the turn ratio between the first coil 15 and the second coil 16 is set.
 第1のコンデンサ14は、第1の送電電極12に接続された第1の導電板18と、第2の送電電極13に接続された第2の導電板19によって構成されている。具体的には、図3に示すように、第1の導電板18、第2の導電板19、送電電極12、13、及び床板3は、図2、3に示すように相互に間隔を隔てて順次重ね合わせて配置されており、第1のコンデンサ14は、第1の導電板18と第2の導電板19との間のキャパシタンスC(あるいは、このキャパシタンスCと、送電電極13と第1の導電板18との間のキャパシタンスCとの合成キャパシタンス)として構成されている。 The first capacitor 14 includes a first conductive plate 18 connected to the first power transmission electrode 12 and a second conductive plate 19 connected to the second power transmission electrode 13. Specifically, as shown in FIG. 3, the first conductive plate 18, the second conductive plate 19, the power transmission electrodes 12, 13 and the floor plate 3 are spaced apart from each other as shown in FIGS. The first capacitor 14 has a capacitance C 1 between the first conductive plate 18 and the second conductive plate 19 (or the capacitance C 1 and the power transmission electrode 13). It is configured as a combined capacitance) of the capacitance C 2 between the first conductive plate 18.
 これら第1の導電板18、第2の導電板19、及び送電電極12、13の構造についてさらに詳細に説明する。まず、第1の導電板18には、当該第1の導電板18の両面のうち第2の導電板19と対向していない面に、第1の導電性ロッド20を介して複数の第1の送電電極12が接続されている。また、第2の導電板19には、当該第2の導電板19の両面のうち第1の導電板18と対向する面に、第1の導電板18に形成した接続孔18aに挿通された第2の導電性ロッド21を介して複数の第2の送電電極13が接続されている。ここで、第1の導電性ロッド20は、第1の導電板18から各第1の送電電極12に対して立設された導電体であり、特許請求の範囲における第1の接続手段に対応する。同様に、第2の導電性ロッド21は、第2の導電板19から各第2の送電電極13に対して立設された導電体であり、特許請求の範囲における第2の接続手段に対応する。 The structures of the first conductive plate 18, the second conductive plate 19, and the power transmission electrodes 12 and 13 will be described in more detail. First, the first conductive plate 18 includes a plurality of first conductive rods 20 on the surface of the first conductive plate 18 that is not opposed to the second conductive plate 19 via the first conductive rod 20. The power transmission electrode 12 is connected. Further, the second conductive plate 19 is inserted into a connection hole 18 a formed in the first conductive plate 18 on the surface of the second conductive plate 19 that faces the first conductive plate 18. A plurality of second power transmission electrodes 13 are connected via the second conductive rod 21. Here, the first conductive rod 20 is a conductor standing from the first conductive plate 18 to each first power transmission electrode 12, and corresponds to the first connecting means in the claims. To do. Similarly, the second conductive rod 21 is a conductor that is erected from the second conductive plate 19 to each second power transmission electrode 13 and corresponds to the second connection means in the claims. To do.
 第1のコイル15は、第1の導電板18と第2の導電板19との相互間に接続されている。ここで、第1のコンデンサ14と第1のコイル15とは、相互に並列接続されており、並列共振回路を構成している。この並列共振回路において、交流電源11からの交流出力に含まれる高調波の周波数であって基本波の所定の逓倍周波数fで並列共振を発生させるように、第1のコンデンサ14のキャパシタンス及び第1のコイル15のインダクタンスが決定されている。 The first coil 15 is connected between the first conductive plate 18 and the second conductive plate 19. Here, the 1st capacitor | condenser 14 and the 1st coil 15 are mutually connected in parallel, and comprise the parallel resonance circuit. In this parallel resonant circuit, the capacitance of the first capacitor 14 and the first frequency are generated so that parallel resonance is generated at a predetermined frequency f n of the fundamental wave, which is a harmonic frequency included in the AC output from the AC power supply 11. The inductance of one coil 15 is determined.
(構成-可動体)
 次に、可動体30の構成について説明する。この可動体30は、図20の可動体203と同様に構成することができるため、以下ではその要部のみを説明する。この可動体30は、図2に簡略化して示すように、第1の受電電極31、第2の受電電極32、及び負荷33を備えている。
(Configuration-movable body)
Next, the configuration of the movable body 30 will be described. Since the movable body 30 can be configured in the same manner as the movable body 203 in FIG. 20, only the main part thereof will be described below. The movable body 30 includes a first power receiving electrode 31, a second power receiving electrode 32, and a load 33, as shown in a simplified manner in FIG.
 第1の受電電極31及び第2の受電電極32の各々は、固定体10から供給された電力を受電するものであり、それぞれ平板状の導電体として構成されている。以下では、これら第1の受電電極31と第2の受電電極32とを相互に区別する必要がない場合には、これらを単に「受電電極31、32」と総称する。これら受電電極31、32は、床板3の上面に直接的に接触する位置又は微小間隔を隔てた位置で、当該床板3に対して略平行に配置される。 Each of the first power receiving electrode 31 and the second power receiving electrode 32 receives power supplied from the fixed body 10, and is configured as a flat conductor. Hereinafter, when it is not necessary to distinguish the first power receiving electrode 31 and the second power receiving electrode 32 from each other, they are simply referred to as “ power receiving electrodes 31 and 32”. The power receiving electrodes 31 and 32 are arranged substantially parallel to the floor plate 3 at a position where the power receiving electrodes 31 and 32 are in direct contact with the upper surface of the floor plate 3 or at a position spaced apart from each other.
 この状態において第1の受電電極31又は第2の受電電極32のいずれか一方(図2では第1の受電電極31)は、床板3を挟んで、第1の送電電極12又は第2の送電電極13のいずれか一方(図2では第2の送電電極13)に対向配置されて、第1の結合コンデンサ40を構成する。また、第1の受電電極31又は第2の受電電極32のいずれか他方(図2では第2の受電電極32)は、床板3を挟んで、第1の送電電極12又は第2の送電電極13のいずれか他方(図2では第1の送電電極12)に対向配置されて、第2の結合コンデンサ41を構成する。以下では、これら第1の結合コンデンサ40と第2の結合コンデンサ41とを相互に区別する必要がない場合には、これらを単に「結合コンデンサ40、41」と総称する。ここで、電力被供給領域2には送電電極12、13は露出していないため、これら送電電極12、13と受電電極31、32とは相互に非接触状態で配置されることになる。 In this state, either the first power receiving electrode 31 or the second power receiving electrode 32 (the first power receiving electrode 31 in FIG. 2) sandwiches the floor plate 3 and the first power transmitting electrode 12 or the second power transmitting electrode. The first coupling capacitor 40 is configured so as to face either one of the electrodes 13 (second power transmission electrode 13 in FIG. 2). Further, the other one of the first power receiving electrode 31 and the second power receiving electrode 32 (the second power receiving electrode 32 in FIG. 2) is the first power transmitting electrode 12 or the second power transmitting electrode with the floor plate 3 interposed therebetween. The second coupling capacitor 41 is configured so as to face one of the other 13 (the first power transmission electrode 12 in FIG. 2). Hereinafter, when it is not necessary to distinguish the first coupling capacitor 40 and the second coupling capacitor 41 from each other, they are simply collectively referred to as “ coupling capacitors 40 and 41”. Here, since the power transmission electrodes 12 and 13 are not exposed in the power supply region 2, the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32 are arranged in a non-contact state.
 負荷33は、結合コンデンサ40、41を介して供給された交流電力にて駆動され、所定機能を発揮するものである。例えば、可動体30が図1に示すが如きロボットとして構成された場合、負荷33としては、当該ロボットに内蔵されたバッテリや電源回路等が該当する。この他、負荷33の具体的構成は任意であり、例えば、可動体30の外部の機器との相互間で通信信号の送受を無線又は有線にて行う通信機器、各種情報に関する情報処理を行なう情報処理機器、電力被供給領域2における所定の検知対象の検知を行なって当該検知結果に関する信号を所定機器に出力するセンサ、あるいは、可動体30の外部の機器に対する電力の送受を行う電源(例えば二次電池)として構成することができる。なお、負荷33は、必ずしも可動体30の内部に設ける必要はなく、可動体30の外部に負荷33を設けると共に、当該負荷33に対して可動体30を介して電力供給を行うようにしてもよい。また、図2においては負荷33を1つのみ示しているが、相互に直列又は並列に接続された複数の負荷33に対して電力供給を行ってもよい。 The load 33 is driven by AC power supplied via the coupling capacitors 40 and 41, and exhibits a predetermined function. For example, when the movable body 30 is configured as a robot as shown in FIG. 1, the load 33 corresponds to a battery, a power supply circuit, or the like built in the robot. In addition, the specific configuration of the load 33 is arbitrary, for example, a communication device that transmits / receives a communication signal to / from a device outside the movable body 30 wirelessly or by wire, and information that performs information processing on various information A processing device, a sensor that detects a predetermined detection target in the power supply region 2 and outputs a signal related to the detection result to the predetermined device, or a power source that transmits and receives power to a device outside the movable body 30 (for example, two Secondary battery). The load 33 is not necessarily provided inside the movable body 30, and the load 33 is provided outside the movable body 30 and power is supplied to the load 33 via the movable body 30. Good. 2 shows only one load 33, power may be supplied to a plurality of loads 33 connected in series or in parallel to each other.
(構成-床板)
 送電電極12、13と受電電極31、32との相互間に介在する床板3については、結合コンデンサ40、41を構成し得る誘電材料にて構成される。このような誘電材料としては、例えばフッ素樹脂を採用することができる。この誘電材料は、床板3に用いる場合以外にも、送電電極12、13における受電電極31、32側又は第1の導電板18側の面や、受電電極31、32における送電電極12、13側の面にコーティングすることもできる。また、このように床板3に使用する材料や、送電電極12、13や受電電極31、32のコーティングに使用する材料には、送電電極12、13と受電電極31、32の相互間の所要の絶縁性を保持するための絶縁性能を持たせることが好ましい。
(Configuration-floorboard)
The floor plate 3 interposed between the power transmitting electrodes 12 and 13 and the power receiving electrodes 31 and 32 is made of a dielectric material that can form the coupling capacitors 40 and 41. As such a dielectric material, for example, a fluororesin can be employed. In addition to the case where the dielectric material is used for the floor plate 3, the power receiving electrodes 31, 32 side of the power transmission electrodes 12, 13 or the surface of the first conductive plate 18 side or the power transmission electrodes 12, 13 side of the power receiving electrodes 31, 32 are used. It can also be coated on the surface. In addition, the material used for the floor plate 3 and the material used for the coating of the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32 include a required amount between the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32. It is preferable to provide insulation performance for maintaining insulation.
(電力供給システムの作用)
 次に、上述したように構成される電力供給システムの作用について説明する。図4は交流電源11から出力される方形波の波形を例示した図、図5は図4に例示したデューティー比50%の方形波のスペクトルを示す図である。
(Operation of power supply system)
Next, the operation of the power supply system configured as described above will be described. FIG. 4 is a diagram illustrating a waveform of a square wave output from the AC power supply 11, and FIG. 5 is a diagram illustrating a spectrum of a square wave having a duty ratio of 50% illustrated in FIG.
 交流電源11は、パワートランジスタ等のスイッチング素子を用いたON/OFF制御により、図4に示すような方形波を出力する。この方形波には、周波数がパルス周期(図5では「f」)と一致する基本波の他、基本波の逓倍周波数(図5では「3f」、「5f」等)の各次高調波が含まれている。例えば、方形波のデューティー比を50%とした場合は、図5に示すように奇数次の高調波のみが発生する。この各次高調波の中から任意の高調波を選択的に取り出し、出力として利用することで、交流電源11から出力される交流電力のうち、パワートランジスタの動作周波数限界を超えた高い周波数の交流電力による電力供給が可能となる。 AC power supply 11 outputs a square wave as shown in FIG. 4 by ON / OFF control using a switching element such as a power transistor. In addition to the fundamental wave whose frequency matches the pulse period ("f" in FIG. 5), each square harmonic wave has each harmonic of the multiplied frequency of the fundamental wave ("3f", "5f", etc. in FIG. 5). include. For example, when the duty ratio of the square wave is 50%, only odd-order harmonics are generated as shown in FIG. By selectively extracting an arbitrary harmonic from each of the higher harmonics and using it as an output, the AC power output from the AC power supply 11 has a high frequency AC that exceeds the operating frequency limit of the power transistor. Electric power can be supplied by electric power.
 上述したように、第1のコンデンサ14のキャパシタンス及び第1のコイル15のインダクタンスは、交流電源11からの交流出力に含まれる高調波の周波数であって基本波の所定の逓倍周波数fで並列共振が発生するように決定されている。例えば、基本波の3逓倍周波数(図5では「3f」)で並列共振が発生するように第1のコンデンサ14のキャパシタンス及び第1のコイル15のインダクタンスを設定することで、交流電源11から出力される交流電力のうち、第3高調波について第1のコンデンサ14と第1のコイル15とに並列共振を発生させ、当該第1のコンデンサ14と第1のコイル15とを介して送電電極に第3高調波の交流電力を供給することができる。すなわち、基本波の3逓倍周波数の交流電力による電力供給ができる。 As described above, the capacitance of the first capacitor 14 and the inductance of the first coil 15 are the harmonic frequencies included in the AC output from the AC power supply 11 and are parallel at the predetermined multiplication frequency f n of the fundamental wave. Resonance is determined to occur. For example, by setting the capacitance of the first capacitor 14 and the inductance of the first coil 15 so that parallel resonance occurs at the triple frequency of the fundamental wave (“3f” in FIG. 5), the output from the AC power supply 11 is performed. Among the AC power to be generated, parallel resonance is generated in the first capacitor 14 and the first coil 15 with respect to the third harmonic, and the power is transmitted to the power transmission electrode via the first capacitor 14 and the first coil 15. Third harmonic AC power can be supplied. That is, it is possible to supply power using AC power having a triple frequency of the fundamental wave.
 なお、利用する高調波を除く他の高調波はスプリアスとして他の通信機器等に悪影響を与える可能性もあるため、除去することが望ましい。このためには、第1のコンデンサ14のキャパシタンスを十分に大きい値とすることで、不要な高調波を第1のコンデンサ14により短絡することができる。この場合、不要な高調波については無効電流として固定体10の回路内を流れるため、電力損失は生じない。 Note that it is desirable to remove other harmonics other than the harmonics to be used because they may spuriously affect other communication devices. For this purpose, by setting the capacitance of the first capacitor 14 to a sufficiently large value, unnecessary harmonics can be short-circuited by the first capacitor 14. In this case, since unnecessary harmonics flow as a reactive current in the circuit of the fixed body 10, no power loss occurs.
 また、相互に隣接する第1の導電性ロッド20と第2の導電性ロッド21には相互に逆方向の電流が流れるため、各第1の導電性ロッド20と各第2の導電性ロッド21との間隔を、不要な高調波の波長(例えば周波数が15MHzの電磁波の波長は20m)よりも十分に小さい値(例えば5cm)とすることにより、これらの第1の導電性ロッド20と第2の導電性ロッド21とからスプリアスとして放射される電磁波は遠方界で相互に打ち消し合うことになる。また、隣接する第1の送電電極12と第2の導電板19との端部間の変位電流は各送電電極の外周において逆方向に流れるため、この変位電流から発生する電磁波も遠方界で相互に打ち消し合う。従って、スプリアスとして放射される電界強度は極めて小さいものとなる。 Further, since currents in opposite directions flow through the first conductive rod 20 and the second conductive rod 21 adjacent to each other, each first conductive rod 20 and each second conductive rod 21. Is set to a value (for example, 5 cm) sufficiently smaller than an unnecessary harmonic wavelength (for example, the wavelength of an electromagnetic wave having a frequency of 15 MHz is 20 m), so that the first conductive rod 20 and the second conductive rod 20 Electromagnetic waves radiated as spurious from the conductive rods 21 cancel each other in the far field. Further, since the displacement current between the ends of the adjacent first power transmission electrode 12 and the second conductive plate 19 flows in the opposite direction on the outer periphery of each power transmission electrode, the electromagnetic waves generated from this displacement current are also mutually in the far field. Cancel each other. Therefore, the electric field intensity radiated as spurious becomes extremely small.
(実施の形態1の効果)
 このように実施の形態1によれば、送電電極12、13が電力被供給領域2に露出しないため、送電電極12、13が人体に触れることによる感電の危険性をなくすことができ、心理的な不安も解消することができるので、オフィス空間のように人がいる場所への導入が容易になる。
(Effect of Embodiment 1)
As described above, according to the first embodiment, since the power transmission electrodes 12 and 13 are not exposed to the power supply region 2, the risk of electric shock due to the power transmission electrodes 12 and 13 touching the human body can be eliminated, and psychologically. This makes it easy to install in places where people are present, such as office spaces.
 特に、第1の送電電極12と第2の送電電極13との間に相互に並列接続されるものであって、基本波の所定の逓倍周波数fで並列共振を発生させる第1のコンデンサ14と第1のコイル15とを備えたので、交流電源11が発生させる各次高調波の中から任意の高調波を選択的に取り出し、出力として利用することができ、パワートランジスタの動作周波数限界を超えた高い周波数の交流電力による電力供給を行うことができる。 In particular, the first capacitor 14 is connected in parallel between the first power transmission electrode 12 and the second power transmission electrode 13 and generates parallel resonance at a predetermined multiplication frequency f n of the fundamental wave. And the first coil 15, it is possible to selectively extract arbitrary harmonics from the respective harmonics generated by the AC power supply 11 and use them as outputs, thereby limiting the operating frequency limit of the power transistor. It is possible to perform power supply using AC power having a frequency that exceeds the maximum.
 また、第1のコンデンサ14は、第1の送電電極12に接続された第1の導電板18と第2の送電電極13に接続された第2の導電板19とを、相互に間隔を隔てて配置することにより構成され、第1のコイル15は第1の導電板18と第2の導電板19との相互間に接続されているので、第1のコンデンサ14を平板状とし、床板3等に沿って埋設することが可能となる。また、平板状とした第1のコンデンサ14の面積を拡大し、キャパシタンスを十分に大きい値とすることで、交流電源11から出力される不要な高調波を短絡することができる。 The first capacitor 14 has a first conductive plate 18 connected to the first power transmission electrode 12 and a second conductive plate 19 connected to the second power transmission electrode 13 spaced apart from each other. Since the first coil 15 is connected between the first conductive plate 18 and the second conductive plate 19, the first capacitor 14 is formed in a flat plate shape, and the floor plate 3. It is possible to embed along the line. Moreover, the unnecessary harmonics output from the AC power supply 11 can be short-circuited by enlarging the area of the flat first capacitor 14 and setting the capacitance to a sufficiently large value.
 また、床板3に沿って、第1の送電電極12と第2の送電電極13とを、交互にそれぞれ複数並設し、複数の第1の送電電極12を共通の第1の導電板18に接続し、複数の第2の送電電極13を共通の第2の導電板19に接続したので、複数の送電電極12、13によって第1のコンデンサ14を共有させることができ、固定体10の構成を単純化することができる。 In addition, a plurality of first power transmission electrodes 12 and a plurality of second power transmission electrodes 13 are alternately arranged in parallel along the floor plate 3, and the plurality of first power transmission electrodes 12 are arranged on a common first conductive plate 18. Since the plurality of second power transmission electrodes 13 are connected to the common second conductive plate 19, the first capacitor 14 can be shared by the plurality of power transmission electrodes 12, 13. Can be simplified.
 また、床板3と、第1の導電板18と、第2の導電板19とを、相互に間隔を隔てて順次重合させ、第1の導電板18の両面のうち第2の導電板19と対向していない面に、複数の第1の送電電極12を第1の導電性ロッド20を介して接続し、第2の導電板19の両面のうち第1の導電板18と対向する面に、複数の第2の送電電極13を第1の導電板18に形成した接続孔18aに挿通された第2の導電性ロッド21を介して接続したので、第1のコンデンサ14と略平行に複数の送電電極12、13を配設することができ、固定体10全体を一つのユニットとすることができる。これにより、床板3等に容易に固定体10を設置することが可能となる。 In addition, the floor plate 3, the first conductive plate 18, and the second conductive plate 19 are sequentially polymerized at an interval from each other, and the second conductive plate 19 of both surfaces of the first conductive plate 18 A plurality of first power transmission electrodes 12 are connected to the non-opposing surface via the first conductive rod 20, and the surface of the second conductive plate 19 facing the first conductive plate 18 is connected to the surface of the second conductive plate 19. Since the plurality of second power transmission electrodes 13 are connected through the second conductive rods 21 inserted through the connection holes 18 a formed in the first conductive plate 18, a plurality of second power transmission electrodes 13 are arranged substantially in parallel with the first capacitor 14. The power transmission electrodes 12 and 13 can be arranged, and the entire fixed body 10 can be made into one unit. Thereby, the fixed body 10 can be easily installed on the floor board 3 or the like.
〔実施の形態2〕
 次に、実施の形態2について説明する。この形態は、実施の形態1の構成に加えて、固定体に第1のコンデンサ及び第1のコイルと相互に並列接続される、直列共振回路を備えた形態である。なお、実施の形態2の構成は、特記する場合を除いて実施の形態1の構成と略同一であり、実施の形態1と略同一の構成についてはこの実施の形態1で用いたものと同一の符号及び/又は名称を必要に応じて付して、その説明を省略する(後述する実施の形態3以降も同様)。
[Embodiment 2]
Next, a second embodiment will be described. In this embodiment, in addition to the configuration of the first embodiment, a fixed body is provided with a series resonance circuit connected in parallel with the first capacitor and the first coil. The configuration of the second embodiment is substantially the same as the configuration of the first embodiment unless otherwise specified, and the same configuration as that of the first embodiment is the same as that used in the first embodiment. The reference numerals and / or names are attached as necessary, and the description thereof is omitted (the same applies to the third and later embodiments described later).
(構成-固定体)
 図6は実施の形態2に係る固定体50及び可動体60を簡略化して示す縦断面図である。固定体50は、実施の形態1における固定体10の構成に加えて、第3のコンデンサ51と第3のコイル52を備えている。
(Configuration-stationary body)
FIG. 6 is a longitudinal sectional view schematically showing the fixed body 50 and the movable body 60 according to the second embodiment. The fixed body 50 includes a third capacitor 51 and a third coil 52 in addition to the configuration of the fixed body 10 in the first embodiment.
 これら第3のコンデンサ51と第3のコイル52は、直列共振回路を構成するもので、第1の導電板18と第2の導電板19との相互間において、第1のコンデンサ14及び第1のコイル15と相互に並列接続されており、交流電源11からの交流出力における基本波の周波数fにより、又は当該基本波の周波数fに対して逓倍の周波数fを有する高調波の中で不要である高調波の周波数fにより、直列共振を発生させる。すなわち、これら周波数f又は周波数fで直列共振を発生させるように、第3のコンデンサ51のキャパシタンスと第3のコイル52のインダクタンスとが決定されている。 The third capacitor 51 and the third coil 52 constitute a series resonance circuit. The first capacitor 14 and the first coil 52 are connected between the first conductive plate 18 and the second conductive plate 19. coil 15 are mutually connected in parallel and, by the fundamental wave of a frequency f at the AC output from the AC power supply 11, or unwanted in harmonic having a frequency f n multiplied with respect to the fundamental wave frequency f A series resonance is generated by the harmonic frequency f u . That is, to generate a series resonance at these frequencies f or frequency f u, and the inductance of the third capacitor and a third coil 52 of the capacitor 51 is determined.
(構成-可動体)
 次に、可動体60の構成について説明する。可動体60は、実施の形態1における可動体30の構成に加えて、第2のコンデンサ61、第4のコイル62、及び第5のコイル63を備えている。
(Configuration-movable body)
Next, the configuration of the movable body 60 will be described. The movable body 60 includes a second capacitor 61, a fourth coil 62, and a fifth coil 63 in addition to the configuration of the movable body 30 in the first embodiment.
 これら第2のコンデンサ61と第4のコイル62とは、第1の受電電極31と第2の受電電極32との間に相互に並列接続され、並列共振回路を構成している。この並列共振回路は、固定体50の第1のコンデンサ14と第1のコイル15とで構成される並列共振回路と並列共振周波数が相互に等しくなるように、第2のコンデンサ61のキャパシタンスと第4のコイル62のインダクタンスとが決定されている。従って、この第2のコンデンサ61と第4のコイル62とは、交流電源11からの交流出力に含まれる高調波の周波数であって基本波の所定の逓倍周波数fで並列共振を発生させる。 The second capacitor 61 and the fourth coil 62 are connected in parallel between the first power receiving electrode 31 and the second power receiving electrode 32 to form a parallel resonance circuit. This parallel resonant circuit has the capacitance of the second capacitor 61 and the second resonant frequency such that the parallel resonant frequency of the parallel resonant circuit formed by the first capacitor 14 and the first coil 15 of the fixed body 50 is equal to each other. The inductance of the four coils 62 is determined. Thus, the second capacitor 61 and the fourth coil 62, a frequency of the harmonics of the AC output from the AC power supply 11 to generate a parallel resonance at a predetermined multiplication frequency f n of the fundamental wave.
 また、第4のコイル62と第5のコイル63は、相互に平行かつ所定間隔を隔てて配置されており、トランス64を構成する。これら第4のコイル62と第5のコイル63は、相互誘導作用により電力伝送を行い、相互の巻数比を適切に設定することにより、受電電極31、32への入力電圧を所望の変成比で変圧して負荷33に供給することができる。 In addition, the fourth coil 62 and the fifth coil 63 are arranged in parallel with each other at a predetermined interval, and constitute a transformer 64. The fourth coil 62 and the fifth coil 63 transmit power by mutual inductive action, and by appropriately setting the mutual turns ratio, the input voltage to the power receiving electrodes 31 and 32 can be set at a desired transformation ratio. The voltage can be transformed and supplied to the load 33.
(電力供給システムの作用)
 次に、上述したように構成される電力供給システムの作用について説明する。交流電源11から出力された交流電力のうち、上述の周波数fの成分については、第3のコンデンサ51と第3のコイル52による直列共振回路に直列共振を発生させることで当該直列共振回路を介して第1の導電板18と第2の導電板19との間で短絡され、交流電源11に還流する。従って、周波数fの交流電力は送電電極12、13に供給されず、スプリアスの放射を抑制することができる。この場合、直列共振回路に直列共振を発生させる周波数fを、最もパワーの大きい基本波の周波数とすることで、効果的にスプリアスを低減することができる。なお、短絡された周波数f成分は無効電流として固定体50の回路内を流れるため、電力損失は生じない。
(Operation of power supply system)
Next, the operation of the power supply system configured as described above will be described. Of the AC power output from the AC power source 11, for the above components of the frequency f u, the series resonant circuit by generating a series resonance in series resonant circuit and the third capacitor 51 by the third coil 52 The first conductive plate 18 and the second conductive plate 19 are short-circuited through and then returned to the AC power supply 11. Therefore, AC power of a frequency f u is not supplied to the power transmission electrodes 12 and 13, it is possible to suppress the radiation of spurious. In this case, the frequency f u to generate a series resonance in series resonant circuit, by a large fundamental frequency of the most power, it is possible to effectively reduce the spurious. Since the shorted frequency fu component flows as a reactive current in the circuit of the fixed body 50, no power loss occurs.
 また、交流電源11から出力された交流電力のうち基本波の所定の逓倍周波数fの成分については、第1のコンデンサ14と第1のコイル15とに並列共振を発生させ、当該第1のコンデンサ14と第1のコイル15とを介して送電電極12、13に周波数fの交流電力が供給される。 As for the components of the specific multiplication frequency f n of the fundamental wave of the AC power output from the AC power source 11, to generate a parallel resonance in the first capacitor 14 and the first coil 15, the first AC power of a frequency f n is supplied to the power transmission electrodes 12 and 13 via the capacitor 14 and the first coil 15.
 送電電極12、13に供給された電力は、結合コンデンサ40、41を介して可動体60に供給される。可動体60に供給された周波数fの交流電力は、可動体60の第2のコンデンサ61と第4のコイル62による並列共振回路に並列共振を発生させ、当該並列共振回路及び第5のコイル63を介して負荷33に供給される。 The electric power supplied to the power transmission electrodes 12 and 13 is supplied to the movable body 60 via the coupling capacitors 40 and 41. The AC power having the frequency f n supplied to the movable body 60 causes parallel resonance in the parallel resonance circuit including the second capacitor 61 and the fourth coil 62 of the movable body 60, and the parallel resonance circuit and the fifth coil. It is supplied to the load 33 via 63.
 ところで、並列共振回路のインピーダンスは並列共振周波数において極めて大きくなることが知られている。従って、可動体60の第2のコンデンサ61と第4のコイル62による並列共振回路に並列共振を発生させた場合、当該並列共振回路のインピーダンスを、結合コンデンサ40、41のインピーダンスと比較して極めて大きい値とすることができる。従って、結合コンデンサ40、41における電圧降下を低減し、交流電源11からの出力電圧Voutと負荷への入力電圧Vinとを、ほぼ等しくすることができる。これにより、送電電極12、13と受電電極31、32との相対位置の変動等によって結合コンデンサ40、41のキャパシタンスが変動した場合であっても、交流電源11から負荷33への電力供給に対する影響を低減することが可能である。 By the way, it is known that the impedance of the parallel resonance circuit becomes extremely large at the parallel resonance frequency. Therefore, when parallel resonance is generated in the parallel resonance circuit including the second capacitor 61 and the fourth coil 62 of the movable body 60, the impedance of the parallel resonance circuit is extremely compared with the impedance of the coupling capacitors 40 and 41. It can be a large value. Therefore, to reduce the voltage drop across the coupling capacitor 40 and 41, the output voltage V out from the AC power supply 11 and the input voltage V in to the load, can be made substantially equal. As a result, even if the capacitance of the coupling capacitors 40 and 41 changes due to the change in the relative position between the power transmission electrodes 12 and 13 and the power reception electrodes 31 and 32, the influence on the power supply from the AC power supply 11 to the load 33 Can be reduced.
 この実施の形態2に係る電力供給システムでは、固定体50の上方に可動体60が配置されていない場合には、並列共振条件が成り立たず、電力供給が行われないため、例えば、固定体50を常に運転モードにしておき、床板3の上に人が手を触れたような場合であっても、人体に電流が流れるような事態を防止でき、安全性を維持できる。 In the power supply system according to the second embodiment, when the movable body 60 is not disposed above the fixed body 50, the parallel resonance condition is not satisfied, and power is not supplied. Is always in the operation mode, and even when a person touches the floor plate 3, a situation in which an electric current flows through the human body can be prevented, and safety can be maintained.
(実施の形態2の効果) 
 このように実施の形態2によれば、固定体50に、基本波又は不要な高調波の周波数fで直列共振を発生させる直列共振回路を備えたので、当該直列共振回路に直列共振を発生させることで周波数fの交流電力を短絡することができ、スプリアスの放射を抑制することができる。
(Effect of Embodiment 2)
As described above, according to the second embodiment, the fixed body 50 is provided with the series resonance circuit that generates the series resonance at the fundamental frequency or the unnecessary harmonic frequency fu, so that the series resonance is generated in the series resonance circuit. is to be able to short-circuit the AC power of a frequency f u by, it is possible to suppress the radiation of spurious.
 また、可動体60に、所定の逓倍周波数fで並列共振を発生させる並列共振回路を備えたので、当該並列共振回路のインピーダンスを増大させることができる。これにより、結合コンデンサ40、41における電圧降下を低減し、結合コンデンサ40、41のキャパシタンスの変動に関わらず負荷33に安定した電力供給を行うことができる。 Further, the movable member 60, so with a parallel resonant circuit for generating a parallel resonance at a predetermined multiplication frequency f n, it is possible to increase the impedance of the parallel resonant circuit. Thereby, the voltage drop in the coupling capacitors 40 and 41 can be reduced, and stable power supply to the load 33 can be performed regardless of the variation in the capacitance of the coupling capacitors 40 and 41.
〔実施の形態3〕
 次に、実施の形態3について説明する。この形態は、固定体が供給パネルと機能モジュールを備えることで、給電に加えて通信等を可能とした電力供給システム(給電通信システム)に関する形態である。
[Embodiment 3]
Next, Embodiment 3 will be described. This form is a form regarding the electric power supply system (electric power supply communication system) which enabled communication in addition to electric power feeding because a fixed body is provided with a supply panel and a functional module.
(構成-固定体)
 図7は本実施の形態3に係る電力供給システムを適用した居室の斜視図、図8は図7の要部縦断面図(機能モジュールは非断面として示す。以下各縦断面図において同じ)である。これら各図に示すように、固定体70は、電力被供給領域2における床板3の上面に並設された複数の供給パネル80と、この供給パネル80の上面に並設された複数の機能モジュール90を並設して構成されている。すなわち、複数の供給パネル80を並設することでその上面に連続する平坦な床面が形成されており、この床面に機能モジュール90を配置することができる。これら供給パネル80及び機能モジュール90は、例えば、本願発明者による特願2007-126983(ただし、本願出願時において非公開)に開示されているものと基本的に同様に構成することができるため、以下ではその構成の要部のみを説明する。
(Configuration-stationary body)
7 is a perspective view of a living room to which the power supply system according to the third embodiment is applied, and FIG. 8 is a longitudinal sectional view of the main part of FIG. 7 (functional modules are shown as non-cross sections. The same applies to the respective longitudinal sectional views). is there. As shown in these drawings, the fixed body 70 includes a plurality of supply panels 80 arranged in parallel on the upper surface of the floor plate 3 in the power supplied region 2 and a plurality of functional modules arranged in parallel on the upper surface of the supply panel 80. 90 is arranged side by side. That is, by arranging a plurality of supply panels 80 in parallel, a flat floor surface that is continuous on the upper surface is formed, and the functional module 90 can be arranged on this floor surface. The supply panel 80 and the functional module 90 can be configured basically in the same manner as those disclosed in, for example, Japanese Patent Application No. 2007-126983 (but not disclosed at the time of filing this application) by the present inventor. Only the main part of the configuration will be described below.
(構成-固定体-供給パネル)
 図9は固定体70を簡略化して示す要部縦断面図、図10は固定体70を簡略化して示す斜視図である。各供給パネル80は、床板3の上面に敷設されており、隣接する他の供給パネル80と相互に接続されている。供給パネル80は、平面方形状に形成されており、複数(ここでは2枚)の導電板81、82と、これら複数の導電板81、82の相互間に設けられた絶縁層83とを、相互に重畳状に配置して構成されている。これら導電板81、82と絶縁層83とは、例えば接着の如き任意の固定方法によって相互に固定されており、全体として1枚の供給パネル80が構成されている。各導電板81、82は、金属等の導電体から形成された板状体である。絶縁層83は、導電板81、82を相互に絶縁することによってこれら相互間における短絡を防止すると共に、通信信号を伝播させる導波管として機能する。この絶縁層83は、導電板81、82と略同一の平面形状に形成され、これら導電板81、82の相互間のほぼ全域に設けられており、例えば、ポリエチレンや塩化ビニル等の樹脂、マイカやガラス繊維などの無機材料、あるいは、磁器にて形成される。
(Configuration-Fixed body-Supply panel)
FIG. 9 is a longitudinal sectional view of a main part showing the fixed body 70 in a simplified manner, and FIG. 10 is a perspective view showing the fixed body 70 in a simplified manner. Each supply panel 80 is laid on the upper surface of the floor plate 3, and is connected to other adjacent supply panels 80. The supply panel 80 is formed in a planar rectangular shape, and includes a plurality (here, two) of conductive plates 81 and 82 and an insulating layer 83 provided between the plurality of conductive plates 81 and 82. They are arranged so as to overlap each other. The conductive plates 81 and 82 and the insulating layer 83 are fixed to each other by an arbitrary fixing method such as bonding, and a single supply panel 80 is configured as a whole. Each of the conductive plates 81 and 82 is a plate-like body formed from a conductor such as metal. The insulating layer 83 insulates the conductive plates 81 and 82 from each other, thereby preventing a short circuit between them and functioning as a waveguide for propagating communication signals. The insulating layer 83 is formed in substantially the same planar shape as the conductive plates 81 and 82, and is provided in almost the entire area between the conductive plates 81 and 82. For example, a resin such as polyethylene or vinyl chloride, mica It is formed of inorganic materials such as glass fiber or porcelain.
 ここで、供給パネル80には、図9、10に示すように、直流電源84が接続されている。具体的には、供給パネル80の複数の導電板81、82のうち、少なくとも一方の導電板81、82を接地極とするように、複数の導電板81、82が直流電源84に接続されている。例えば、電力供給領域1に最も近い導電板81を接地極とすることで、人間がこの導電板81に直接的に又は他の導体を介して間接的に接触した場合においても、人への通電を防止することができるので、人の安全性を確保することが可能になる。 Here, a DC power source 84 is connected to the supply panel 80 as shown in FIGS. Specifically, the plurality of conductive plates 81 and 82 are connected to the DC power supply 84 so that at least one of the plurality of conductive plates 81 and 82 of the supply panel 80 serves as a ground electrode. Yes. For example, by using the conductive plate 81 closest to the power supply region 1 as a ground electrode, even when a human contacts the conductive plate 81 directly or indirectly through another conductor, Therefore, it is possible to ensure human safety.
 このように構成される供給パネル80に対する機能モジュール90の接続構造は任意であるが、例えば図11、12に示す構造を採用できる。図11は供給パネル80と機能モジュール90の接続例を示す縦断面図、図12は図11の要部拡大図である。例えば、機能モジュール90は接続端子91を備える。この接続端子91は、円筒状の外部電極92と、棒状の内部電極93と、これら外部電極92と内部電極93を絶縁する円筒状の絶縁層94とを、相互に同心状に組み合わせて構成されている。内部電極93は、陽極側の電極であり、接地極側の導電板81及び絶縁層83を貫通して陽極側の導電板82に接続される。外部電極92は、接地極側の電極であり、内部電極93よりも短く形成され、内部電極93と共に導電板81を貫通して当該導電板81に接続される。そして、図9、10に示すように、外部電極92と内部電極93からそれぞれ引き出された線路95を介して、機能モジュール90に電力が供給される。 The connection structure of the functional module 90 to the supply panel 80 configured in this way is arbitrary, but for example, the structure shown in FIGS. FIG. 11 is a longitudinal sectional view showing a connection example of the supply panel 80 and the functional module 90, and FIG. 12 is an enlarged view of a main part of FIG. For example, the functional module 90 includes a connection terminal 91. The connection terminal 91 is configured by concentrically combining a cylindrical external electrode 92, a rod-shaped internal electrode 93, and a cylindrical insulating layer 94 that insulates the external electrode 92 and the internal electrode 93 from each other. ing. The internal electrode 93 is an electrode on the anode side, passes through the conductive plate 81 on the ground electrode side and the insulating layer 83 and is connected to the conductive plate 82 on the anode side. The external electrode 92 is an electrode on the ground electrode side, is formed shorter than the internal electrode 93, penetrates the conductive plate 81 together with the internal electrode 93, and is connected to the conductive plate 81. Then, as shown in FIGS. 9 and 10, power is supplied to the functional module 90 via lines 95 drawn from the external electrode 92 and the internal electrode 93, respectively.
 また、供給パネル80を介して、必要に応じて、電力に加えて通信信号が供給される。この通信形態は、1)絶縁層83を用いた電界変化による通信(以下、「電界通信」)、2)絶縁層83を用いた磁界変化による通信(以下、「磁界通信」)、3)導電板81、82を用いたPLCによる通信(以下、「PLC通信」)の3形態に大別される。例えば、電界通信の場合、接続端子91と同様に構成した図示しない複数の電界プローブを供給パネル80に差し込み、その中の一つの電界プローブを介して、任意の信号供給源から出力されたアナログ通信信号を電界変化として絶縁層83に供給し、他の電界プローブを介して、通信信号を電圧変化として取得して、所定の通信機器(例えば、パーソナルコンピュータ)に入力する。あるいは、磁界通信の場合には、円環状のいわゆるループアンテナとして構成した図示しない複数の磁界プローブの先端部を絶縁層83に差し込み、その中の一つの磁界プローブを介して、任意の信号供給源から出力されたアナログ通信信号を磁界変化として絶縁層83に供給し、他の磁界プローブを介して、通信信号を電圧変化として取得して、所定の通信機器に入力する。あるいは、PLC通信の場合、直流電流に重畳したアナログ通信信号を接続端子91を介して導電板81、82に供給し、他の接続端子91を介して取得した直流電流から信号分離フィルタを用いて信号成分を分離して、所定の通信機器に入力する。 In addition to the power, a communication signal is supplied via the supply panel 80 as necessary. This communication mode includes 1) communication by electric field change using the insulating layer 83 (hereinafter referred to as “electric field communication”), 2) communication by magnetic field change using the insulating layer 83 (hereinafter referred to as “magnetic field communication”), and 3) conductivity. Broadly divided into three forms of PLC communication using plates 81 and 82 (hereinafter referred to as “PLC communication”). For example, in the case of electric field communication, a plurality of electric field probes (not shown) configured in the same manner as the connection terminals 91 are inserted into the supply panel 80, and analog communication output from an arbitrary signal supply source through one of the electric field probes. A signal is supplied to the insulating layer 83 as a change in electric field, and a communication signal is acquired as a change in voltage via another electric field probe and input to a predetermined communication device (for example, a personal computer). Alternatively, in the case of magnetic field communication, the distal end portions of a plurality of magnetic field probes (not shown) configured as annular so-called loop antennas are inserted into the insulating layer 83, and an arbitrary signal supply source is passed through one of the magnetic field probes. The analog communication signal output from is supplied to the insulating layer 83 as a magnetic field change, and the communication signal is acquired as a voltage change via another magnetic field probe and input to a predetermined communication device. Alternatively, in the case of PLC communication, an analog communication signal superimposed on a direct current is supplied to the conductive plates 81 and 82 via the connection terminal 91, and a signal separation filter is used from the direct current obtained via the other connection terminal 91. The signal component is separated and input to a predetermined communication device.
(構成-固定体-機能モジュール)
 図8に戻り、機能モジュール90は、その機能に基づいて2種類に大別される。第1は、床面を構成する機能のみを有する第1の機能モジュール、第2は、床面を構成する機能に加えて供給パネル80に接続されて電力若しくは通信信号の入力若しくは出力を行う機能を有する第2の機能モジュールである。さらに第2の機能モジュールは、電力の送受を行う電力モジュール、通信信号の送受を行う通信モジュール、検知対象の検知を行なって当該検知結果に関する信号を出力するセンサーモジュール、制御信号の入力を受けて当該制御信号に応じた動作を第2の機能モジュールの内部又は外部に対して行なうアクチュエータモジュール、通信信号の入力を受けて当該通信信号に基づいた情報処理を行なったり、情報処理の結果に関する通信信号の出力を行うための情報処理モジュールに区分される。さらに、電力モジュールは、電力の供給のみを行う電源モジュールと、電力の取得及び負荷への供給のみを行う配電モジュールとに分けられる。また通信モジュールは、有線による通信信号の入力及び出力を行う有線通信モジュールと、無線による通信信号の入力及び出力を行う無線通信モジュールとに分けられる。ただし、特にこれらを相互に区別する必要がない場合には、各種のモジュールを「機能モジュール」、電源モジュールと配電モジュールとを「電力モジュール」、有線通信モジュールと無線通信モジュールとを「通信モジュール」とそれぞれ総称し、いずれのモジュールについても必要に応じて同一の符号90を付し、あるいは符号を省略する。このようなモジュールを単独で又は任意に組み合わせて供給パネル80の上面に配置することで、各モジュールの持つ多様な機能と供給パネル80の電力の送受機能や通信信号の送受機能とを相互に連携させることができる。
(Configuration-Fixed body-Function module)
Returning to FIG. 8, the functional module 90 is roughly divided into two types based on the function. The first is a first functional module having only the function of configuring the floor, and the second is a function of inputting or outputting power or a communication signal connected to the supply panel 80 in addition to the function of configuring the floor. It is the 2nd functional module which has. Further, the second functional module includes a power module that transmits and receives power, a communication module that transmits and receives communication signals, a sensor module that detects a detection target and outputs a signal related to the detection result, and receives a control signal input Actuator module that performs an operation according to the control signal to the inside or the outside of the second functional module, receives a communication signal and performs information processing based on the communication signal, or a communication signal related to the result of the information processing Are classified into information processing modules. Furthermore, the power module is divided into a power supply module that only supplies power and a power distribution module that only acquires power and supplies power to a load. The communication module is divided into a wired communication module that inputs and outputs a communication signal by wire and a wireless communication module that inputs and outputs a communication signal by wireless. However, when it is not necessary to distinguish between them, the various modules are “functional modules”, the power supply modules and the power distribution modules are “power modules”, and the wired communication modules and the wireless communication modules are “communication modules”. And the same reference numeral 90 is assigned to each module as necessary, or the reference numerals are omitted. By arranging such modules individually or arbitrarily in combination on the upper surface of the supply panel 80, the various functions of each module and the power transmission / reception function and communication signal transmission / reception function of the supply panel 80 are mutually linked. Can be made.
 例えば、図8に示すように、電力被供給領域2のうち、電力や通信の必要がない領域においては、第1の機能モジュールのみが並設されて略平坦な床面を構成している。一方、電力や通信の必要がある領域においては、複数の供給パネル80の上面に複数の第2の機能モジュールが並設されている。特に、上述した各種の第2の機能モジュールが任意の組み合わせで配置されており、電力供給機能や通信機能の如き複数種類の様々な機能を奏することができる。例えば、第2の機能モジュールの上面には各種の可動体30(図8ではロボットであり、図7とは異なる外観で示す)を配置し、この装置に対する電力供給や通信を行うことができる。 For example, as shown in FIG. 8, in the power supplied region 2, in a region where no power or communication is required, only the first functional modules are arranged in parallel to constitute a substantially flat floor surface. On the other hand, in a region where power or communication is necessary, a plurality of second functional modules are arranged in parallel on the top surfaces of the plurality of supply panels 80. In particular, the various second functional modules described above are arranged in any combination, and a plurality of various functions such as a power supply function and a communication function can be achieved. For example, various movable bodies 30 (a robot in FIG. 8 and an appearance different from that in FIG. 7) are arranged on the upper surface of the second functional module, and power supply and communication can be performed for this apparatus.
 第1の機能モジュールは、例えば公知のOAフロアと同様に構成されるもので、床面構成板と複数の支持脚を有し、全体として略直方体状に構成されている。第2の機能モジュールは、基本的に第1の機能モジュールと同様に床面構成板及び支持脚を備えて構成されるが、諸機能を奏するために必要な構成がさらに付加される。この必要な構成としては、図11、12に示した接続端子91や、上述した電界プローブや磁界プローブを挙げることができる。さらに第2の機能モジュールには、直流を交流に変換する機能や、並列共振機能を付加することができる。以下には、これらの機能を付加した例を説明する(ただし、接続端子91、電界プローブ、あるいは磁界プローブについては、これ以降の説明や図示を省略する)。 The first functional module is configured in the same manner as, for example, a known OA floor, has a floor surface configuration plate and a plurality of support legs, and is configured in a substantially rectangular parallelepiped shape as a whole. The second functional module is basically configured by including a floor surface configuration plate and support legs in the same manner as the first functional module, but a configuration necessary for performing various functions is further added. Examples of the necessary configuration include the connection terminal 91 shown in FIGS. 11 and 12 and the above-described electric field probe and magnetic field probe. Furthermore, a function for converting direct current to alternating current and a parallel resonance function can be added to the second functional module. Hereinafter, an example in which these functions are added will be described (however, the description and illustration of the connection terminal 91, the electric field probe, and the magnetic field probe are omitted).
 図13は、電力の供給のみを行う第2の機能モジュールである電源モジュール90を、供給パネル80に複数(ここでは2つ)並設した場合における、電源モジュール90の具体的な回路構成を示す図である。この電源モジュール90は、図2の回路と同様に、第1の送電電極12、第2の送電電極13、第1のコンデンサ14、第1のコイル15、及び第2のコイル16を備えている。これら第1の送電電極12や第2の送電電極13から第2のコイル16に至る間の回路構成は、実質的には図2の回路と同様である(図13では図示の便宜上、第1導電板12や第2導電板13を線路として示している)。ここでは可動体30の図示を省略するが、第1の受電電極31又は第2の受電電極32のいずれか一方が、床板3を挟んで第1の送電電極12に対向配置されて第1の結合コンデンサ40を構成し、第1の受電電極31又は第2の受電電極32のいずれか他方が、床板3を挟んで第2の送電電極13に対向配置されて第2の結合コンデンサ41を構成することで、可動体30に電力が供給される。 FIG. 13 shows a specific circuit configuration of the power supply module 90 when a plurality (two in this case) of power supply modules 90 that are second functional modules that only supply power are arranged on the supply panel 80. FIG. The power supply module 90 includes a first power transmission electrode 12, a second power transmission electrode 13, a first capacitor 14, a first coil 15, and a second coil 16, as in the circuit of FIG. . The circuit configuration from the first power transmission electrode 12 and the second power transmission electrode 13 to the second coil 16 is substantially the same as the circuit of FIG. 2 (in FIG. The conductive plate 12 and the second conductive plate 13 are shown as lines). Although illustration of the movable body 30 is omitted here, either the first power receiving electrode 31 or the second power receiving electrode 32 is disposed opposite to the first power transmitting electrode 12 with the floor plate 3 interposed therebetween. The coupling capacitor 40 is configured, and the other one of the first power receiving electrode 31 and the second power receiving electrode 32 is disposed opposite to the second power transmitting electrode 13 with the floor plate 3 interposed therebetween to form the second coupling capacitor 41. As a result, electric power is supplied to the movable body 30.
 ここで、第2のコイル16から供給パネル80に至るまでの間に、交流変換部96、第4のコンデンサ97、及びブレーカ98が設けられている。供給パネル80の導電板81、82のうち、陽極側の導電板82はブレーカ98を介して交流変換部96に接続され、接地極側の導電板81は交流変換部96に直接接続されている。交流変換部96は、供給パネル80から供給された直流電力を交流電力に変換するもので、図2の交流電源11に対応する。この交流変換部96は、具体的には、パワートランジスタ96a及びダイオード96bによりスイッチングを行うスイッチング部96cと、このスイッチング部96cを制御するコントローラ96dを備えて構成されており、コントローラ96dからの制御信号でスイッチング部96cのスイッチング周波数を制御することで、所望の高周波の交流電源11を生成する。第4のコンデンサ97は、第2のコイル16との間に並列共振を生じさせるもので、これにより送電効率を一層高めることが可能となる。ブレーカ98は、過電流が生じた場合に電流を遮断するもので、例えば、特定の交流変換部96でショートが起きた時に電流を遮断することで、その影響が全システムに波及することを回避できる。なお、同様の安全性の観点から、パワートランジスタ96aにはNormally-Offのものを使用し、非動作時のショートを防止することが好ましい。 Here, an AC converter 96, a fourth capacitor 97, and a breaker 98 are provided between the second coil 16 and the supply panel 80. Of the conductive plates 81 and 82 of the supply panel 80, the anode-side conductive plate 82 is connected to the AC converter 96 through the breaker 98, and the ground electrode-side conductive plate 81 is directly connected to the AC converter 96. . The AC conversion unit 96 converts the DC power supplied from the supply panel 80 into AC power, and corresponds to the AC power supply 11 of FIG. Specifically, the AC conversion unit 96 includes a switching unit 96c that performs switching using a power transistor 96a and a diode 96b, and a controller 96d that controls the switching unit 96c, and a control signal from the controller 96d. The desired high frequency AC power supply 11 is generated by controlling the switching frequency of the switching unit 96c. The fourth capacitor 97 causes parallel resonance with the second coil 16, thereby further improving power transmission efficiency. The breaker 98 cuts off the current when an overcurrent occurs. For example, the breaker 98 cuts off the current when a short circuit occurs in a specific AC converter 96, thereby preventing the influence from spreading to the entire system. it can. From the same safety viewpoint, it is preferable to use a normally-off power transistor 96a to prevent a short circuit during non-operation.
 図14は、図13の回路に通信機能を付加した図である。この図14では、電源モジュール90を1つのみ示すが、図13と同様に複数の電源モジュール90を並設することができる。通信部100は、第2の導電板19に直接接続されると共に、第1の導電板18にコンデンサ101を介して結合接続されている。通信部102は、供給パネル80の陽極側の導電板82から交流変換部96に至る線路と、接地極側の導電板81から交流変換部96に至る線路に接続されている。また、ブレーカ98の後段と通信部100が線路103を介して接続されており、通信部100はこの線路103を介して電力を受ける。このような構成において、電源モジュール90の上方に図示しない可動体30が配置された際、可動体30に設けた通信部から電力供給経路に重畳して送信された通信信号が、コンデンサ101を介して通信部100に入力されると、通信部100は線路103を介して通信部102に通信を行い、この通信の内容に基づいて通信部102がコントローラ96dを制御する。例えば、可動体30から給電要求信号を出力し、この給電要求信号に基づいて通信部102がコントローラ96dを制御して交流電力を発生させることで、給電要求信号がない場合における電力供給を停止して、安全性を確保する。また、この給電要求信号には、可動体30が所望する周波数を含めることで、この周波数で交流電力が供給できるように、通信部102がコントローラ96dを制御する。 FIG. 14 is a diagram in which a communication function is added to the circuit of FIG. Although only one power supply module 90 is shown in FIG. 14, a plurality of power supply modules 90 can be arranged in parallel as in FIG. The communication unit 100 is directly connected to the second conductive plate 19 and is coupled to the first conductive plate 18 via the capacitor 101. The communication unit 102 is connected to a line from the conductive plate 82 on the anode side of the supply panel 80 to the AC conversion unit 96 and a line from the conductive plate 81 on the ground electrode side to the AC conversion unit 96. Further, the rear stage of the breaker 98 and the communication unit 100 are connected via a line 103, and the communication unit 100 receives electric power via this line 103. In such a configuration, when the movable body 30 (not shown) is disposed above the power supply module 90, a communication signal transmitted from the communication unit provided in the movable body 30 superimposed on the power supply path is transmitted via the capacitor 101. Then, the communication unit 100 communicates with the communication unit 102 via the line 103, and the communication unit 102 controls the controller 96d based on the contents of the communication. For example, the power supply request signal is output from the movable body 30, and the communication unit 102 controls the controller 96d based on the power supply request signal to generate AC power, thereby stopping the power supply when there is no power supply request signal. To ensure safety. Further, the power supply request signal includes a frequency desired by the movable body 30, so that the communication unit 102 controls the controller 96 d so that AC power can be supplied at this frequency.
 図15は、図14の電源モジュール90を図2と同様に平板構造で表現したものである。この電源モジュール90は、図2の固定体70に対してさらに第3の導電板104を並行に配置して構成されている。第1の導電板18と第2の導電板19の間は第一共振領域であり、これら第1の導電板18と第2の導電板19により第1のコンデンサ14が構成され、この第1のコンデンサ14に第1のコイル15が並列接続されることで、並列共振が行われる。また、第2の導電板19と第3の導電板104の間は第二共振領域であり、これら第2の導電板19と第3の導電板104により第5のコンデンサ105が構成され、この第5のコンデンサ105に第2のコイル16が並列接続されることで、並列共振が行われる。さらに、第1のコイル15と第2のコイル16は磁気的に結合してトランス17を構成している。この磁界が交差する部分の第2の導電板19には、開口やスリットを設けて渦電量損失を低減することが好ましい。これら第1の導電板18、第2の導電板19、あるいは第3の導電板104の相互間には、絶縁材料が充填されており、さらに設置場所によっては耐荷重性や耐熱性等を持たせている。また、施工性および省資源の観点からは、絶縁材料は、発泡性材料によって軽量化されると共に、使用材料の倹約が図られていることが好ましい。さらに、電気的な観点からは、絶縁材料は、不燃性、低誘電率、絶縁性、及び水密性が満足されていることが好ましい。 FIG. 15 represents the power supply module 90 of FIG. 14 with a flat plate structure as in FIG. The power supply module 90 is configured by further arranging a third conductive plate 104 in parallel with the fixed body 70 of FIG. A region between the first conductive plate 18 and the second conductive plate 19 is a first resonance region, and the first capacitor 14 is constituted by the first conductive plate 18 and the second conductive plate 19, and the first Parallel resonance is performed by connecting the first coil 15 to the capacitor 14 in parallel. In addition, a space between the second conductive plate 19 and the third conductive plate 104 is a second resonance region. The second conductive plate 19 and the third conductive plate 104 constitute a fifth capacitor 105, and this Parallel resonance is performed by connecting the second coil 16 to the fifth capacitor 105 in parallel. Further, the first coil 15 and the second coil 16 are magnetically coupled to form a transformer 17. It is preferable to provide an opening or a slit in the second conductive plate 19 where the magnetic fields intersect to reduce eddy current loss. The first conductive plate 18, the second conductive plate 19, or the third conductive plate 104 is filled with an insulating material, and has load resistance, heat resistance, etc. depending on the installation location. It is Further, from the viewpoint of workability and resource saving, it is preferable that the insulating material is reduced in weight by the foamable material and that the used material is saved. Furthermore, from an electrical point of view, the insulating material preferably satisfies non-flammability, low dielectric constant, insulating properties, and water tightness.
 図16は、図15の電源モジュール90を供給パネル80と共に示した図である。施工時には、例えばまず供給パネル80を敷設し、その上面に電源モジュール90を敷設して接着剤またはボルト(図示せず)にて固定する。なお、これら供給パネル80と電源モジュール90の相互間には、防水性を高めるために防水材を挟み込こんだり防水性接着剤を塗布してもよく、あるいは絶縁性を高めるために絶縁性シートを挟み込こんでもよい。供給パネル80と電源モジュール90は、図11、12に示したような接続端子91で接続する。また、図16は、隣接する電源モジュール90の相互間に通信用のアクセスポイント106を設けた例を示しており、このアクセスポイント106は、上述した電界プローブ、磁界プローブ、あるいは接続端子91を介して、供給パネル80との間における通信信号の入出力を行う。さらに図16は、隣接する電源モジュール90の第2の導電板19を相互に結合コンデンサ107で接続した例を示す。これらアクセスポイント106や結合コンデンサ107を設けた接合領域には、絶縁性のキャップ、コーキング材、あるいは発泡材等が充填され、この充填後の接合領域の上面にも床板3を形成する表面層が配置される。 FIG. 16 is a diagram showing the power supply module 90 of FIG. 15 together with the supply panel 80. At the time of construction, for example, first, the supply panel 80 is laid, and the power supply module 90 is laid on the upper surface and fixed with an adhesive or a bolt (not shown). In addition, between the supply panel 80 and the power supply module 90, a waterproof material may be sandwiched or a waterproof adhesive may be applied in order to improve waterproofness, or an insulating sheet may be used to improve insulation. May be inserted. The supply panel 80 and the power supply module 90 are connected by connection terminals 91 as shown in FIGS. FIG. 16 shows an example in which an access point 106 for communication is provided between adjacent power supply modules 90, and this access point 106 is connected via the electric field probe, magnetic field probe, or connection terminal 91 described above. Thus, input / output of communication signals to / from the supply panel 80 is performed. Further, FIG. 16 shows an example in which the second conductive plates 19 of the adjacent power supply modules 90 are connected to each other by the coupling capacitor 107. The junction region provided with the access point 106 and the coupling capacitor 107 is filled with an insulating cap, caulking material, foaming material, or the like, and a surface layer that forms the floor board 3 is also formed on the upper surface of the junction region after the filling. Be placed.
 図17は、図14の電源モジュール90の変形例を示す図である。この電源モジュール90における交流変換部96は、複数のスイッチング部96cを一つのコントローラ96dで制御可能に構成されている。このような構成において、図示しない可動体30に設けた通信部から、当該可動体30の消費電力を特定する情報を含んだ給電要求信号が送信され、この給電要求信号に基づいてコントローラ96dが送信電力を決定し、当該決定した送信電力が送信されるようにスイッチング部96cを制御する。例えば、送信電力が少ない場合には、一つのスイッチング部96cのみを動作させ、送信電力が多い場合には、全てのスイッチング部96cを相互に同一位相かつ同一周波数で動作させる。あるいは、給電要求信号ではなく、可動体30に流れる電流をホール素子108でモニタし、このモニタした電流値に基づいて、コントローラ96dによりスイッチング部96cを制御してもよい。さらに、このように複数のスイッチング部96cを設けた場合には、いずれか一部のスイッチング部96cが故障した場合でも、他のスイッチング部96cを予備として動作させることも可能になる。 FIG. 17 is a view showing a modification of the power supply module 90 of FIG. The AC conversion unit 96 in the power supply module 90 is configured such that a plurality of switching units 96c can be controlled by a single controller 96d. In such a configuration, a power supply request signal including information specifying the power consumption of the movable body 30 is transmitted from a communication unit provided in the movable body 30 (not shown), and the controller 96d transmits based on the power supply request signal. The power is determined, and the switching unit 96c is controlled so that the determined transmission power is transmitted. For example, when the transmission power is low, only one switching unit 96c is operated, and when the transmission power is high, all the switching units 96c are operated at the same phase and the same frequency. Alternatively, instead of the power supply request signal, the current flowing through the movable body 30 may be monitored by the Hall element 108, and the switching unit 96c may be controlled by the controller 96d based on the monitored current value. Further, when a plurality of switching units 96c are provided in this way, even when any one of the switching units 96c fails, it is possible to operate another switching unit 96c as a spare.
 図18は、図14の電源モジュール90を2つ並設した状態を示す。電源モジュール90は、基本的には通信部100、102のみを起動して他の部分は休止させておき、特定の電源モジュール90上に可動体30が配置された場合には、上述のように給電要求信号を可動体30から当該電源モジュール90に送信して、当該電源モジュール90の他の部分を起動させることができる。また、1台の可動体30が複数の電源モジュール90に同時に跨るように配置された場合には、図18に示すように電力供給が行われる。すなわち、この例では、電源モジュール90の第1の送電電極12に可動体30の第2の受電電極32が対抗配置されており、他の電源モジュールの第2の送電電極13に可動体30の第1の受電電極31が対抗配置されている。この場合、可動体30の図示しない通信部と電源モジュール90の通信部100との間で、数GHz~数十GHzの高周波で通信を行うと、破線で示す経路に信号が流れる。この場合において、可動体30に第1の送電電極12が対抗配置されている側の電源モジュール90(図18の例では右側の電源モジュール90)の通信部100が通信部102との間で通信を行うことができるので、この電源モジュール90を起動して送電を行うことが可能となる。ただし、複数の電源モジュール90の相互の境界領域に、各々の第2の導電板19を接続するように結合コンデンサ110を挿入しておく必要があり、また、(1/2πfCm)≪(1/2πfCm)の関係を満たすように(すなわちf≪fの関係を満たすように)、各電源モジュール90の周波数や結合コンデンサ110のキャパシタンスを調整する必要がある。ここで、fは、通信用の周波数(GHz帯あるいはその近辺)、fは電源モジュール90の発振周波数(MHz帯あるいはその近辺)、Cmは結合コンデンサ110のキャパシタンスであり、この条件下においては、結合コンデンサ110には、通信信号が通るが電源モジュール90からの電力は通らないことになる。なお、1台の可動体30が3台以上の電源モジュール90に同時に跨るように配置された場合も同様であり、可動体30に第1の送電電極12が対抗配置されている側の電源モジュール90のみを起動して、電力供給を行うことが可能となる。 FIG. 18 shows a state where two power supply modules 90 of FIG. 14 are arranged side by side. The power supply module 90 basically activates only the communication units 100 and 102 and rests the other parts. When the movable body 30 is arranged on a specific power supply module 90, as described above, A power supply request signal can be transmitted from the movable body 30 to the power supply module 90 to activate other parts of the power supply module 90. Further, when one movable body 30 is arranged so as to straddle a plurality of power supply modules 90 simultaneously, power is supplied as shown in FIG. That is, in this example, the second power receiving electrode 32 of the movable body 30 is opposed to the first power transmission electrode 12 of the power supply module 90, and the movable body 30 of the second power transmission electrode 13 of the other power supply module is opposed. The first power receiving electrode 31 is arranged so as to be opposed. In this case, when communication is performed between a communication unit (not shown) of the movable body 30 and the communication unit 100 of the power supply module 90 at a high frequency of several GHz to several tens GHz, a signal flows through a path indicated by a broken line. In this case, the communication unit 100 of the power supply module 90 (the right power supply module 90 in the example of FIG. 18) on the side where the first power transmission electrode 12 is opposed to the movable body 30 communicates with the communication unit 102. Therefore, the power supply module 90 can be activated to perform power transmission. However, it is necessary to insert the coupling capacitor 110 in the boundary region between the plurality of power supply modules 90 so as to connect the second conductive plates 19, and (1 / 2πf 1 Cm) << ( It is necessary to adjust the frequency of each power supply module 90 and the capacitance of the coupling capacitor 110 so as to satisfy the relationship of 1 / 2πf 2 Cm (that is, satisfy the relationship of f 2 << f 1 ). Here, f 1 is a communication frequency (GHz band or its vicinity), f 2 is an oscillation frequency (MHz band or its vicinity) of the power supply module 90, and Cm is a capacitance of the coupling capacitor 110 under these conditions. That is, the communication signal passes through the coupling capacitor 110 but the power from the power supply module 90 does not pass. The same applies to the case where one movable body 30 is disposed so as to straddle three or more power supply modules 90 simultaneously, and the power module on the side where the first power transmission electrode 12 is opposed to the movable body 30. Only 90 can be activated to supply power.
(実施の形態3の効果) 
 このように実施の形態3によれば、供給パネル80に機能モジュール90を配置することで固定体70を構成でき、様々な機能を有する機能モジュール90を組み合わせることで、給電や通信のレイアウトの自由度を高めることや、モジュール化された機能モジュール90を配置することによる工事の簡易化を図ることができる。
(Effect of Embodiment 3)
As described above, according to the third embodiment, the fixed body 70 can be configured by disposing the functional module 90 on the supply panel 80, and by combining the functional modules 90 having various functions, power supply and communication layout can be freely performed. It is possible to simplify the construction by increasing the degree and arranging the functional modules 90 that are modularized.
 また、給電効率の高い直流電力を、必要に応じて交流電力に変換することで、可動体30に交流電力を供給することが可能となる。 Moreover, it becomes possible to supply AC power to the movable body 30 by converting DC power having high power supply efficiency into AC power as necessary.
〔III〕各実施の形態に対する変形例
 以上、本発明に係る各実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
[III] Modifications to Each Embodiment While each embodiment according to the present invention has been described above, the specific configuration and means of the present invention are the same as the technical idea of each invention described in the claims. Modifications and improvements can be arbitrarily made within the range. Hereinafter, such a modification will be described.
(解決しようとする課題や発明の効果について)
 まず、発明が解決しようとする課題や発明の効果は、前記した内容に限定されるものではなく、発明の実施環境や構成の細部に応じて異なる可能性があり、上述した課題の一部のみを解決したり、上述した効果の一部のみを奏することがある。さらに、本発明によって、上述していない課題を解決したり、上述していない効果を奏することもある。
(About problems to be solved and effects of the invention)
First, the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment of the invention and the details of the configuration, and only a part of the problems described above. May be solved, or only some of the effects described above may be achieved. Furthermore, according to the present invention, problems not described above may be solved or effects not described above may be achieved.
(第1の送電電極及び第2の送電電極について)
 上述の各実施の形態では、第1の導電板に第1の導電性ロッドを介して複数の第1の送電電極12が接続されていると説明したが、第1の導電板と複数の第1の送電電極12とを、相互に一体的に形成してもよい。同様に、第2の導電板と複数の第2の送電電極13とを、相互に一体的に形成してもよい。具体的な製造方法は任意であるが、例えば、フォトリソグラフィ技術やエッチング技術を用いることができる。
(About the first power transmission electrode and the second power transmission electrode)
In each of the above-described embodiments, it has been described that the plurality of first power transmission electrodes 12 are connected to the first conductive plate via the first conductive rod. One power transmission electrode 12 may be formed integrally with each other. Similarly, the second conductive plate and the plurality of second power transmission electrodes 13 may be integrally formed with each other. Although a specific manufacturing method is arbitrary, for example, a photolithography technique or an etching technique can be used.
 また、送電電極12、13の配置構成は任意に変更することができ、この配置構成に合わせて、受電電極31、32の配置構成や切替機構も変更可能である。例えば、図19(a)には、図1~3に示した送電電極12、13のみの配置構成を斜視図として概念的に示す(なお、図19(a)(b)では、図示の便宜上、送電電極12、13を相互に密接状に配置しているが、実際には相互に絶縁されている)。この例では、図示のX方向及びY方向のいずれの方向に関しても、送電電極12、13が交互に配置されており、いわゆる市松模様状の配置構成となっている。一方、図19(b)には、変形例に係る送電電極12、13のみの配置構成を斜視図として概念的に示す。この例では、送電電極12、13がそれぞれ図示のX方向に沿って連続的に構成されており、Y方向に関してのみ交互に配置されていて、全体としてはいわゆるストライプ状の配置構成となっている。例えば、送電電極12、13をそれぞれ帯状に形成して1本の導電性ロッド20、21で支持することで、このようなストライプ状の配置とすることができる。このストライプ状の配置の場合、市松模様状の配置に比べて、導電性ロッド20、21の数を低減できる。また、可動体30をX方向に沿って移動しても、受電電極31、32に対する送電電極12、13の極性が変わらないので、図20に示した従来の接続部214のような、切り替え機構(スイッチング機構)が不要となり、可動体30の構成についても簡素化することができる。 Further, the arrangement configuration of the power transmission electrodes 12 and 13 can be arbitrarily changed, and the arrangement configuration and the switching mechanism of the power reception electrodes 31 and 32 can be changed in accordance with the arrangement configuration. For example, FIG. 19A conceptually shows an arrangement configuration of only the power transmission electrodes 12 and 13 shown in FIGS. 1 to 3 as a perspective view (in FIGS. 19A and 19B, for convenience of illustration). The power transmission electrodes 12 and 13 are arranged in close contact with each other, but are actually insulated from each other). In this example, the power transmission electrodes 12 and 13 are alternately arranged in both the X direction and the Y direction shown in the figure, and the arrangement configuration is a so-called checkered pattern. On the other hand, FIG. 19B conceptually shows an arrangement configuration of only the power transmission electrodes 12 and 13 according to the modification as a perspective view. In this example, the power transmission electrodes 12 and 13 are each configured continuously along the X direction shown in the drawing, and are alternately disposed only in the Y direction, and the overall configuration is a so-called striped configuration. . For example, such a striped arrangement can be obtained by forming the power transmission electrodes 12 and 13 in a strip shape and supporting them with one conductive rod 20 and 21. In the case of this stripe arrangement, the number of conductive rods 20 and 21 can be reduced as compared with the checkerboard arrangement. Further, even if the movable body 30 is moved along the X direction, the polarity of the power transmitting electrodes 12 and 13 with respect to the power receiving electrodes 31 and 32 does not change. Therefore, a switching mechanism such as the conventional connecting portion 214 shown in FIG. (Switching mechanism) becomes unnecessary, and the configuration of the movable body 30 can be simplified.
(直列共振回路について)
 上述の実施の形態2では、交流電源11からの交流出力における基本波又は不要な高調波の周波数fで直列共振を発生させる一組の直列共振回路を固定体に設けているが、基本波及び不要な高調波の各周波数で直列共振を発生させる複数組の直列共振回路を、第1のコンデンサ14及び第1のコイル15と相互に並列接続してもよい。これにより、交流電源11から出力される交流電力のうち不要な周波数成分についてのスプリアスを、更に低減することが可能となる。
(About series resonant circuit)
In the second embodiment described above, a set of series resonance circuits that generate series resonance at the frequency f u of the fundamental wave or unnecessary harmonics in the AC output from the AC power supply 11 is provided on the fixed body. A plurality of sets of series resonance circuits that generate series resonance at each frequency of unnecessary harmonics may be connected in parallel to the first capacitor 14 and the first coil 15. Thereby, it becomes possible to further reduce spurious regarding unnecessary frequency components in the AC power output from the AC power supply 11.
 この発明は、各種の負荷に対して電力を供給するものであり、特に、利用者の安全確保を図ると共に、交流電源に用いられているパワートランジスタの動作周波数限界を超えた周波数で電力供給を行うことに有用である。 The present invention supplies power to various types of loads. In particular, while ensuring the safety of the user, the power is supplied at a frequency exceeding the operating frequency limit of the power transistor used in the AC power supply. Useful to do.
 1、200 電力供給領域
 2、202 電力被供給領域
 3、211 床板
 10、50、70、201 固定体
 11、215 交流電源
 12、205 第1の送電電極
 13、206 第2の送電電極
 14 第1のコンデンサ
 15 第1のコイル
 16 第2のコイル
 17、64 トランス
 18 第1の導電板
 18a 接続孔
 19 第2の導電板
 20 第1の導電性ロッド
 21 第2の導電性ロッド
 30、60、203 可動体
 31、207 第1の受電電極
 32、208 第2の受電電極
 33、204 負荷
 40、41、107、110、209 結合コンデンサ
 51 第3のコンデンサ
 52 第3のコイル
 61 第2のコンデンサ
 62 第4のコイル
 63 第5のコイル
 80 供給パネル
 81、82 導電板
 83、94 絶縁層
 84 直流電源
 90 機能モジュール(電源モジュール)
 91 接続端子
 92 外部電極
 93 内部電極
 95、103 線路
 96 交流変換部
 96a パワートランジスタ
 96b ダイオード
 96c スイッチング部
 96d コントローラ
 97 第4のコンデンサ
 98 ブレーカ
 100、102、212、213 通信部
 101 コンデンサ
 105 第5のコンデンサ
 106 アクセスポイント
 108 ホール素子
 210 コイル
 214 接続部
DESCRIPTION OF SYMBOLS 1,200 Electric power supply area | region 2,202 Electric power supply area | region 3, 211 Floor board 10,50,70,201 Fixed body 11,215 AC power supply 12,205 1st power transmission electrode 13,206 2nd power transmission electrode 14 1st Capacitor 15 first coil 16 second coil 17, 64 transformer 18 first conductive plate 18a connection hole 19 second conductive plate 20 first conductive rod 21 second conductive rod 30, 60, 203 Movable body 31, 207 First power receiving electrode 32, 208 Second power receiving electrode 33, 204 Load 40, 41, 107, 110, 209 Coupling capacitor 51 Third capacitor 52 Third coil 61 Second capacitor 62 Second 4 coil 63 5th coil 80 Supply panel 81, 82 Conductive plate 83, 94 Insulating layer 84 DC power supply 90 Functional module ( Power module)
91 connection terminal 92 external electrode 93 internal electrode 95, 103 line 96 AC conversion unit 96a power transistor 96b diode 96c switching unit 96d controller 97 fourth capacitor 98 breaker 100, 102, 212, 213 communication unit 101 capacitor 105 fifth capacitor 106 Access point 108 Hall element 210 Coil 214 Connection part

Claims (10)

  1.  電力供給領域に配置された固定体から、電力被供給領域に配置された可動体を介して、所定の負荷に対して電力を供給するための電力供給システムであって、
     前記固定体は、
     前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、交流電力が供給される第1の送電電極及び第2の送電電極と、
     前記第1の送電電極及び第2の送電電極に対して基本波及び当該基本波の逓倍周波数の高調波を含む交流出力にて電力を供給する交流電源と、
     前記第1の送電電極と前記第2の送電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第1のコンデンサと第1のコイルと、を備え、
     前記可動体は、
     前記第1の送電電極又は前記第2の送電電極に対して前記境界面を挟んで対向状かつ非接触に配置される第1の受電電極と第2の受電電極と、を備え、
     前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成され、
     前記交流電源は、
     前記第1の結合コンデンサ及び前記第2の結合コンデンサを介して前記負荷への送電を行うこと、
     を特徴とする電力供給システム。
    A power supply system for supplying power to a predetermined load from a fixed body arranged in a power supply area via a movable body arranged in a power supply area,
    The fixed body is
    A first power transmission electrode and a second power transmission electrode that are arranged in the vicinity of the boundary surface between the power supply region and the power supplied region, and to which AC power is supplied;
    An AC power supply that supplies power to the first power transmission electrode and the second power transmission electrode with an AC output including a fundamental wave and a harmonic of a frequency multiplied by the fundamental wave;
    A first capacitor and a first coil that are connected in parallel to each other between the first power transmission electrode and the second power transmission electrode, and generate parallel resonance at the multiplied frequency. ,
    The movable body is
    A first power receiving electrode and a second power receiving electrode, which are arranged in a non-contact manner and in a non-contact manner across the boundary surface with respect to the first power transmitting electrode or the second power transmitting electrode,
    A first coupling capacitor is configured by arranging either one of the first power receiving electrode or the second power receiving electrode so as to face the first power transmitting electrode, and the second power transmitting electrode A second coupling capacitor is configured by arranging the other one of the first power receiving electrode or the second power receiving electrode so as to face
    The AC power supply is
    Performing power transmission to the load via the first coupling capacitor and the second coupling capacitor;
    Power supply system characterized by
  2.  前記第1のコンデンサは、
     前記第1の送電電極に接続された第1の導電板と、前記第2の送電電極に接続された第2の導電板とを、相互に間隔を隔てて配置することにより構成され、
     前記第1のコイルは、
     前記第1の導電板と前記第2の導電板との相互間に接続されたこと、
     を特徴とする請求項1に記載の電力供給システム。
    The first capacitor is
    The first conductive plate connected to the first power transmission electrode and the second conductive plate connected to the second power transmission electrode are configured to be spaced apart from each other,
    The first coil is
    Being connected between the first conductive plate and the second conductive plate;
    The power supply system according to claim 1.
  3.  前記境界面に沿って、前記第1の送電電極と前記第2の送電電極とを、交互にそれぞれ複数並設し、
     前記複数の第1の送電電極を、共通の前記第1の導電板に接続し、
     前記複数の第2の送電電極を、共通の前記第2の導電板に接続したこと、
     を特徴とする請求項2に記載の電力供給システム。
    A plurality of the first power transmission electrodes and the second power transmission electrodes are alternately arranged in parallel along the boundary surface,
    Connecting the plurality of first power transmission electrodes to the common first conductive plate;
    Connecting the plurality of second power transmission electrodes to the common second conductive plate;
    The power supply system according to claim 2.
  4.  前記境界面と、前記第1の導電板と、前記第2の導電板とを、相互に間隔を隔てて順次重合させ、
     前記第1の導電板の両面のうち前記第2の導電板と対向していない面に、前記複数の第1の送電電極を、第1の接続手段を介して接続し、
     前記第2の導電板の両面のうち前記第1の導電板と対向する面に、前記複数の第2の送電電極を、前記第1の導電板に形成した接続孔に挿通された第2の接続手段を介して接続したこと、
     を特徴とする請求項3に記載の電力供給システム。
    The boundary surface, the first conductive plate, and the second conductive plate are sequentially polymerized at intervals from each other,
    The plurality of first power transmission electrodes are connected to the surface of the first conductive plate that is not opposed to the second conductive plate, through the first connecting means,
    Of the two surfaces of the second conductive plate, on the surface facing the first conductive plate, the plurality of second power transmission electrodes are inserted through connection holes formed in the first conductive plate. Connected via a connection means,
    The power supply system according to claim 3.
  5.  前記固定体は、
     前記第1のコンデンサ及び前記第1のコイルと相互に並列接続されるものであって、前記基本波の周波数により、又は当該基本波の周波数に対して逓倍の周波数を有する高調波の中で不要である高調波の周波数により、直列共振を発生させる直列共振回路を備えること、
     を特徴とする請求項1から4のいずれか一項に記載の電力供給システム。
    The fixed body is
    The first capacitor and the first coil are connected to each other in parallel, and are unnecessary depending on the frequency of the fundamental wave or in a harmonic having a frequency multiplied by the frequency of the fundamental wave. A series resonance circuit that generates a series resonance with a frequency of a harmonic that is,
    The power supply system according to any one of claims 1 to 4, wherein:
  6.  前記可動体は、
     前記第1の受電電極と前記第2の受電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第2のコンデンサと第2のコイルと、
     を備えることを特徴とする請求項1から5のいずれか一項に記載の電力供給システム。
    The movable body is
    A second capacitor and a second coil, which are connected in parallel with each other between the first power receiving electrode and the second power receiving electrode, and generate parallel resonance at the multiplied frequency;
    The power supply system according to any one of claims 1 to 5, further comprising:
  7.  前記固定体は、
     複数の導電板と、複数の導電板の相互間に設けられた絶縁層とを、相互に重畳状に配置して一体に構成された、電力又は通信信号を供給するための供給パネルと、
     前記供給パネルの上方に複数並設されるものであって、床面を構成する機能を有する第1の機能モジュール、又は、床面を構成する機能に加えて前記供給パネルに接続されて電力若しくは通信信号の入力若しくは出力を行う機能を有する第2の機能モジュールと、
     を備えることを特徴とする請求項1から6のいずれか一項に記載の電力供給システム。
    The fixed body is
    A supply panel for supplying electric power or a communication signal, wherein a plurality of conductive plates and an insulating layer provided between the plurality of conductive plates are arranged so as to overlap each other and integrated;
    A plurality of the above-mentioned supply panels are arranged side by side, and are connected to the supply panel in addition to the first function module having the function of configuring the floor surface or the function of configuring the floor surface. A second functional module having a function of inputting or outputting a communication signal;
    The power supply system according to any one of claims 1 to 6, further comprising:
  8.  前記供給パネルに、前記複数の導電板を介して直流電力を供給するように直流電源を接続し、
     前記第2の機能モジュールに、前記複数の導電板を介して供給された直流電力を交流電力に変換する前記交流電源と、前記第1の送電電極及び前記第2の送電電極と、前記第1のコンデンサ及び前記第1のコイルを配置したこと、
     を特徴とする請求項7に記載の電力供給システム。
    A DC power supply is connected to the supply panel so as to supply DC power via the plurality of conductive plates,
    The AC power source that converts DC power supplied to the second functional module through the plurality of conductive plates into AC power, the first power transmission electrode and the second power transmission electrode, and the first The capacitor and the first coil are disposed,
    The power supply system according to claim 7.
  9.  電力被供給領域に配置され、電力供給領域に配置された固定体から供給された電力を所定の負荷に供給する可動体であって、
     前記固定体に配置されたものであって交流電力が供給される第1の送電電極又は第2の送電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置される第1の受電電極と第2の受電電極と、
     前記第1の受電電極と前記第2の受電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第2のコンデンサと第2のコイルとを備え、
     前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成されること、
     を特徴とする可動体。
    A movable body that is disposed in the power supply area and that supplies power supplied from a fixed body disposed in the power supply area to a predetermined load,
    With respect to the first power transmission electrode or the second power transmission electrode arranged on the stationary body and supplied with AC power, the mutual boundary surface between the power supply region and the power supplied region is sandwiched. A first power receiving electrode and a second power receiving electrode which are arranged in a face-to-face contactless manner,
    The first power receiving electrode and the second power receiving electrode are connected in parallel to each other, and include a second capacitor and a second coil that generate parallel resonance at the multiplied frequency,
    A first coupling capacitor is configured by arranging either one of the first power receiving electrode or the second power receiving electrode so as to face the first power transmitting electrode, and the second power transmitting electrode A second coupling capacitor is configured by disposing one of the first power receiving electrode and the second power receiving electrode so as to face
    A movable body characterized by
  10.  電力供給領域に配置され、電力被供給領域に配置された可動体を介して所定の負荷に対して電力を供給する固定体であって、
     前記可動体に配置された少なくとも一組の受電電極に対して、前記電力供給領域と前記電力被供給領域との相互の境界面を挟んで対向状かつ非接触に配置されることにより、これら受電電極との間にコンデンサを構成する第1の送電電極及び第2の送電電極と、
     前記第1の送電電極及び第2の送電電極に対して基本波及び当該基本波の逓倍周波数の高調波を含む交流出力にて電力を供給する交流電源と、
     前記第1の送電電極と前記第2の送電電極との間に相互に並列接続されるものであって、前記逓倍周波数で並列共振を発生させる第1のコンデンサと第1のコイルとを備え、
     前記第1の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか一方が配置されることで第1の結合コンデンサが構成されると共に、前記第2の送電電極に対向するように前記第1の受電電極又は第2の受電電極のいずれか他方が配置されることで第2の結合コンデンサが構成され、
     前記交流電源は、
     前記第1の結合コンデンサ及び前記第2の結合コンデンサを介して前記負荷への送電を行うこと、
     を特徴とする固定体。
    A fixed body that is arranged in the power supply area and supplies power to a predetermined load via a movable body arranged in the power supply area,
    With respect to at least one set of power receiving electrodes arranged on the movable body, the power receiving area and the power supplied area are arranged in an opposing and non-contact manner across the boundary surface between the power supplying area and the power supplied area. A first power transmission electrode and a second power transmission electrode constituting a capacitor with the electrode;
    An AC power supply that supplies power to the first power transmission electrode and the second power transmission electrode with an AC output including a fundamental wave and a harmonic of a frequency multiplied by the fundamental wave;
    The first power transmission electrode and the second power transmission electrode are connected in parallel to each other, and include a first capacitor and a first coil that generate parallel resonance at the multiplied frequency,
    A first coupling capacitor is configured by arranging either one of the first power receiving electrode or the second power receiving electrode so as to face the first power transmitting electrode, and the second power transmitting electrode A second coupling capacitor is configured by arranging the other one of the first power receiving electrode or the second power receiving electrode so as to face
    The AC power supply is
    Performing power transmission to the load via the first coupling capacitor and the second coupling capacitor;
    A fixed body characterized by
PCT/JP2010/001614 2009-03-12 2010-03-08 Power supply system, and movable body and fixed body for same WO2010103787A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060001 2009-03-12
JP2009060001A JP2010213554A (en) 2009-03-12 2009-03-12 Power supply system

Publications (1)

Publication Number Publication Date
WO2010103787A1 true WO2010103787A1 (en) 2010-09-16

Family

ID=42728083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001614 WO2010103787A1 (en) 2009-03-12 2010-03-08 Power supply system, and movable body and fixed body for same

Country Status (2)

Country Link
JP (1) JP2010213554A (en)
WO (1) WO2010103787A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024385A3 (en) * 2011-08-16 2014-03-20 Koninklijke Philips N.V. A wireless power converter utilized as a capacitive power transfer system
ITUB20153094A1 (en) * 2015-08-12 2017-02-12 Eggtronic Eng S R L Method and apparatus for transferring electric power and data
US10875416B2 (en) 2015-08-06 2020-12-29 Sony Corporation Mobile object apparatus, non-contact power feed system, and method of driving mobile object apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011148803A1 (en) 2010-05-28 2011-12-01 株式会社村田製作所 Power transmission system
JP5672898B2 (en) * 2010-09-27 2015-02-18 株式会社村田製作所 Power transmission system
JP5777139B2 (en) * 2011-02-23 2015-09-09 株式会社豊田中央研究所 Vehicle power supply apparatus and vehicle power supply method
WO2012157011A1 (en) * 2011-05-13 2012-11-22 Murata Manufacturing Co., Ltd. Power transmission device and power transfer system
JP5532133B2 (en) 2011-06-28 2014-06-25 株式会社村田製作所 High frequency power device, power transmission device and power transmission system
WO2013024417A2 (en) * 2011-08-16 2013-02-21 Koninklijke Philips Electronics N.V. A conductive layer of a large surface for distribution of power using capacitive power transfer
JP5545415B2 (en) * 2011-09-07 2014-07-09 株式会社村田製作所 Power transmission system and power transmission device
RU2625334C2 (en) * 2011-12-12 2017-07-13 Филипс Лайтинг Холдинг Б.В. Lighting device
CN104040832B (en) * 2012-01-10 2016-08-24 株式会社村田制作所 Electrical power transmission system
WO2013114511A1 (en) * 2012-02-03 2013-08-08 日本電気株式会社 Electrical power transfer apparatus, and electrical power transfer method
CN104115367B (en) 2012-03-23 2017-03-08 株式会社村田制作所 Power transmission device, current-collecting device and non-contact power transmission system
JP6893683B2 (en) * 2017-03-05 2021-06-23 富士ウェーブ株式会社 Mobile power supply system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538232U (en) * 1991-10-25 1993-05-25 株式会社東海理化電機製作所 Vehicle key device
JPH11513518A (en) * 1995-10-11 1999-11-16 モトローラ・インコーポレイテッド Exciter / reader and method for remotely powered electronic tag
JP2005168232A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Cordless power supply method
JP2008280783A (en) * 2007-05-11 2008-11-20 Takenaka Komuten Co Ltd Power communication floor structure, and supply panel and functional module for the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08214405A (en) * 1995-02-02 1996-08-20 Technova:Kk Non-contact transmission device
JPH09312942A (en) * 1996-05-21 1997-12-02 Hitachi Ltd Noncontact collection method and its device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538232U (en) * 1991-10-25 1993-05-25 株式会社東海理化電機製作所 Vehicle key device
JPH11513518A (en) * 1995-10-11 1999-11-16 モトローラ・インコーポレイテッド Exciter / reader and method for remotely powered electronic tag
JP2005168232A (en) * 2003-12-04 2005-06-23 Takenaka Komuten Co Ltd Cordless power supply method
JP2008280783A (en) * 2007-05-11 2008-11-20 Takenaka Komuten Co Ltd Power communication floor structure, and supply panel and functional module for the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013024385A3 (en) * 2011-08-16 2014-03-20 Koninklijke Philips N.V. A wireless power converter utilized as a capacitive power transfer system
CN103875161A (en) * 2011-08-16 2014-06-18 皇家飞利浦有限公司 A wireless power converter utilized as a capacitive power transfer system
CN103875161B (en) * 2011-08-16 2017-02-15 皇家飞利浦有限公司 A wireless power converter utilized as a capacitive power transfer system
US9755435B2 (en) 2011-08-16 2017-09-05 Philips Lighting Holding B.V. Wireless power converter utilized as a capacitive power transfer system
US10875416B2 (en) 2015-08-06 2020-12-29 Sony Corporation Mobile object apparatus, non-contact power feed system, and method of driving mobile object apparatus
US11479138B2 (en) 2015-08-06 2022-10-25 Sony Corporation Mobile object apparatus and method of driving mobile object apparatus
ITUB20153094A1 (en) * 2015-08-12 2017-02-12 Eggtronic Eng S R L Method and apparatus for transferring electric power and data
WO2017025833A1 (en) * 2015-08-12 2017-02-16 Eggtronic S.R.L. A method and an apparatus for transferring electrical power and data
US10141747B2 (en) 2015-08-12 2018-11-27 Eggtronic Engineering S.R.L. Method and an apparatus for transferring electrical power and data

Also Published As

Publication number Publication date
JP2010213554A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
WO2010103787A1 (en) Power supply system, and movable body and fixed body for same
JP5415780B2 (en) Power supply system, and movable body and fixed body therefor
JP2010193692A5 (en)
US9912173B2 (en) Method and apparatus for wireless power transmission
JP5170054B2 (en) Power supply system, and movable body and fixed body therefor
CN101803222B (en) Method and device for transporting, distributing and managing electric energy by remote longitudinal coupling in near field between electric dipoles
RU2517435C2 (en) Scheme for inductive power transmission
EP1927176B1 (en) Device for recharging batteries
JP6472818B2 (en) Method and apparatus for transmitting power
JP2019009461A (en) Multiple coil flux pad
CN103718417A (en) A capacitive contactless powering system
KR20110127203A (en) Wireless energy transfer in lossy environments
KR20170115569A (en) Inductive power transmitter
Zhong et al. Analysis on a single-layer winding array structure for contactless battery charging systems with free-positioning and localized charging features
Gao et al. Capacitive power transfer through virtual self‐capacitance route
WO2013047732A1 (en) Power supply system
Makhdoom et al. Multi-MHz in-motion capacitive wireless power transfer system for mobile robots
US9899138B1 (en) Coil structure for generating a uniform magnetic field and coil apparatus having the same
WO2016017750A1 (en) Power supply system, and movable body for same
JP2011035980A (en) Power supply system
KR101294481B1 (en) Apparatus for receiving a wireless power and touch panel combined therein
CN113454875A (en) Inductive power transfer coupler array
JP2018093557A (en) Power transmission system
KR20230037479A (en) wireless power transmission device
CN117581445A (en) Wireless power receiving device with planar inductance device and reconfigurable switching network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750545

Country of ref document: EP

Kind code of ref document: A1