JP5672898B2 - Power transmission system - Google Patents

Power transmission system Download PDF

Info

Publication number
JP5672898B2
JP5672898B2 JP2010214685A JP2010214685A JP5672898B2 JP 5672898 B2 JP5672898 B2 JP 5672898B2 JP 2010214685 A JP2010214685 A JP 2010214685A JP 2010214685 A JP2010214685 A JP 2010214685A JP 5672898 B2 JP5672898 B2 JP 5672898B2
Authority
JP
Japan
Prior art keywords
power transmission
electrode
transmission device
active electrode
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010214685A
Other languages
Japanese (ja)
Other versions
JP2012070574A (en
Inventor
市川 敬一
敬一 市川
数矢 加藤
数矢 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2010214685A priority Critical patent/JP5672898B2/en
Publication of JP2012070574A publication Critical patent/JP2012070574A/en
Application granted granted Critical
Publication of JP5672898B2 publication Critical patent/JP5672898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

本発明はワイヤレスで電力を伝送する電力伝送システムに関するものである。   The present invention relates to a power transmission system that wirelessly transmits power.

代表的なワイヤレス電力伝送システムとして、送電装置のコイル(一次コイル)から受電装置のコイル(二次コイル)に磁界を利用して電力を伝送する磁界結合方式の電力伝送システムが知られている。しかし、磁界結合で電力を伝送する場合、各コイルを通る磁束の大きさが起電力に大きく影響するため、一次コイルと二次コイルとの相対位置関係に高い精度が要求される。また、コイルを利用するため、装置の小型化が難しい。   As a typical wireless power transmission system, a magnetic field coupling type power transmission system that transmits power from a coil (primary coil) of a power transmission device to a coil (secondary coil) of a power reception device using a magnetic field is known. However, when power is transmitted by magnetic field coupling, since the magnitude of magnetic flux passing through each coil greatly affects the electromotive force, high accuracy is required for the relative positional relationship between the primary coil and the secondary coil. Moreover, since the coil is used, it is difficult to reduce the size of the apparatus.

一方、特許文献1に開示されているような電界結合方式のワイヤレス電力伝送システムも知られている。このシステムでは、送電装置の結合電極から受電装置の結合電極に電界を介して電力が伝送される。この方式は、結合電極の相対位置精度が比較的緩く、また、結合電極の小型・薄型化が可能である。   On the other hand, an electric field coupling type wireless power transmission system as disclosed in Patent Document 1 is also known. In this system, power is transmitted from the coupling electrode of the power transmission apparatus to the coupling electrode of the power reception apparatus via an electric field. In this method, the relative positional accuracy of the coupling electrode is relatively loose, and the coupling electrode can be reduced in size and thickness.

図1は特許文献1の電力伝送システムの基本構成を示す図である。この電力伝送システムは、送電装置と受電装置とで構成される。送電装置には、高周波高電圧発生回路1、パッシブ電極2及びアクティブ電極3を備えている。受電装置には、負荷回路5、パッシブ電極7及びアクティブ電極6を備えている。そして、送電装置のアクティブ電極3と受電装置のアクティブ電極6とが空隙4を介して近接することにより、この二つの電極同士が電界結合する。   FIG. 1 is a diagram illustrating a basic configuration of a power transmission system disclosed in Patent Document 1. In FIG. This power transmission system includes a power transmission device and a power reception device. The power transmission device includes a high frequency high voltage generation circuit 1, a passive electrode 2, and an active electrode 3. The power receiving device includes a load circuit 5, a passive electrode 7, and an active electrode 6. Then, when the active electrode 3 of the power transmission device and the active electrode 6 of the power reception device come close to each other through the gap 4, the two electrodes are electrically coupled.

送電装置のパッシブ電極、送電装置のアクティブ電極、受電装置のアクティブ電極及び受電装置のパッシブ電極は、この順に重ねられ、それらの中心を通る法線を共有している。   The passive electrode of the power transmission device, the active electrode of the power transmission device, the active electrode of the power reception device, and the passive electrode of the power reception device are overlapped in this order and share a normal line passing through the center thereof.

特表2009−531009号公報Special table 2009-531009

特許文献1の電力伝送システムにおいては、送電装置と受電装置のそれぞれのアクティブ電極およびパッシブ電極が長手方向に一つの軸に沿って配置されているので、広範囲に亘る位置関係で送電装置と受電装置は電界結合して電力伝送できる。しかし、図1に示したように、位置自由度を高くする目的で送電装置側アクティブ電極3の面積を広くした場合に、次に述べる問題が生じる。   In the power transmission system of Patent Document 1, since the active electrode and the passive electrode of each of the power transmission device and the power reception device are arranged along one axis in the longitudinal direction, the power transmission device and the power reception device have a wide range of positional relationships. Can transmit electric power by electric field coupling. However, as shown in FIG. 1, when the area of the power transmission device side active electrode 3 is increased for the purpose of increasing the degree of freedom of position, the following problem occurs.

図1中の矢印線は電極間に生じる電気力線を概念的に表している。このように送電装置側アクティブ電極3と受電装置側パッシブ電極7との間に浮遊容量が生じてしまう。それとともに、送電装置側アクティブ電極3が、送電装置側パッシブ電極2と受電装置側パッシブ電極7との結合を遮蔽してしまう。その結果、送電装置と受電装置間の結合度が小さくなって、電力伝送効率が著しく低下するおそれがある。   The arrow lines in FIG. 1 conceptually represent the lines of electric force generated between the electrodes. In this way, stray capacitance is generated between the power transmitting device side active electrode 3 and the power receiving device side passive electrode 7. At the same time, the power transmitting device side active electrode 3 shields the coupling between the power transmitting device side passive electrode 2 and the power receiving device side passive electrode 7. As a result, the degree of coupling between the power transmitting device and the power receiving device is reduced, and the power transmission efficiency may be significantly reduced.

本発明は、電力伝送に寄与しない浮遊容量を小さくし、必要な結合を確保して、装置を大型化することなく電力伝送効率を高めた電力伝送システムを提供することを目的としている。   An object of the present invention is to provide a power transmission system in which stray capacitance that does not contribute to power transmission is reduced, necessary coupling is ensured, and power transmission efficiency is increased without increasing the size of the apparatus.

本発明の電力伝送システムは、アクティブ電極およびパッシブ電極をそれぞれ有する、第1と第2の二つの電力伝送装置を備え、前記第1と第2の電力伝送装置のアクティブ電極同士の間に生じる容量およびパッシブ電極同士の間に生じる容量で前記第1と第2の電力伝送装置が結合する電力伝送システムにおいて、
第1の電力伝送装置のアクティブ電極の形成領域の面積をSta、第1の電力伝送装置のパッシブ電極の形成領域の面積をStp、第2の電力伝送装置のアクティブ電極の形成領域の面積をSra、第2の電力伝送装置のパッシブ電極の形成領域の面積をSrpで表すと、
Sta≦Stp,Sra≦Srp
の関係であり、
第1の電力伝送装置のアクティブ電極または第2の電力伝送装置のアクティブ電極のうち少なくとも一方は、形成領域の一部に非導体部を有する一体形状の電極であり、前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極との間に重ねられ、
前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極とは、前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極との間に重ねられた前記アクティブ電極の前記非導体部を介して結合するものである。
The power transmission system according to the present invention includes first and second power transmission devices each having an active electrode and a passive electrode, and a capacitance generated between the active electrodes of the first and second power transmission devices. And a power transmission system in which the first and second power transmission devices are coupled with each other with a capacitance generated between the passive electrodes,
The area of the active electrode formation region of the first power transmission device is Sta, the area of the passive electrode formation region of the first power transmission device is Stp, and the area of the active electrode formation region of the second power transmission device is Sra. When the area of the passive electrode formation region of the second power transmission device is represented by Srp,
Sta ≦ Stp, Sra ≦ Srp
Relationship
At least one of the active electrode of the first power transmission device or the active electrode of the second power transmission device is an integral electrode having a non-conductor portion in a part of the formation region, and the first power transmission device Between the passive electrode and the passive electrode of the second power transmission device,
The passive electrode of the first power transmission device and the passive electrode of the second power transmission device are overlapped between the passive electrode of the first power transmission device and the passive electrode of the second power transmission device. It couple | bonds through the said non-conductor part of the said active electrode .

この構成により、パッシブ電極同士の結合容量が増大し、高い結合度が得られるので電力伝送効率を高めることができる。したがって、二つの電力伝送装置の相対位置関係の自由度を高めるとともに、電力伝送効率を改善した電力伝送システムが実現できる。   With this configuration, the coupling capacity between the passive electrodes increases and a high degree of coupling can be obtained, so that the power transmission efficiency can be increased. Therefore, it is possible to realize a power transmission system that increases the degree of freedom of the relative positional relationship between the two power transmission devices and improves the power transmission efficiency.

前記アクティブ電極の非導体部の幅をG、導体部の幅をWで表すと、電極比率W/(W+G)は10%〜50%の範囲内である。
この構造により、受電装置および送電装置のパッシブ電極間の結合を充分に高めることができる。
When the width of the non-conductor portion of the active electrode is represented by G and the width of the conductor portion is represented by W, the electrode ratio W / (W + G) is in the range of 10% to 50%.
With this structure, the coupling between the power receiving device and the passive electrode of the power transmission device can be sufficiently increased.

前記電極比率を10%〜35%の範囲内とすれば、受電装置および送電装置のパッシブ電極間の結合をさらに充分に高めることができる。   When the electrode ratio is in the range of 10% to 35%, the coupling between the passive electrodes of the power receiving device and the power transmitting device can be further sufficiently increased.

また、例えば、第1、第2の電力伝送装置のうち少なくとも一方の電力伝送装置のアクティブ電極およびパッシブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、前記アクティブ電極の非導体部で前記パッシブ電極の枠部が交差する。   Further, for example, the active electrode and the passive electrode of at least one of the first and second power transmission devices have a frame-like, striped, or grid-like conductor portion periodically arranged in the plane direction, The frame portion of the passive electrode intersects with the non-conductive portion of the active electrode.

この構造により、第1の電力伝送装置側アクティブ電極と第1の電力伝送装置側パッシブ電極との間の浮遊容量が削減されるとともに、第1の電力伝送装置側パッシブ電極と第2の電力伝送装置側パッシブ電極との間の結合容量が増す。その結果、第1の電力伝送装置と第2の電力伝送装置との間の結合度が高まる。
この構造により、アクティブ電極とパッシブ電極との間の浮遊容量を低減できる。
With this structure, the stray capacitance between the first power transmission device side active electrode and the first power transmission device side passive electrode is reduced, and the first power transmission device side passive electrode and the second power transmission are reduced. The coupling capacity between the device side passive electrode increases. As a result, the degree of coupling between the first power transmission device and the second power transmission device is increased.
With this structure, stray capacitance between the active electrode and the passive electrode can be reduced.

また、例えば第1の電力伝送装置のアクティブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、第1の電力伝送装置のアクティブ電極を第2の電力伝送装置に投影した時に第2の電力伝送装置のアクティブ電極の内側に収まる第1の電力伝送装置のアクティブ電極の非導体部が、第1の電力伝送装置のアクティブ電極の配列方向に二つ以上、且つ、この配列方向に直交する方向に二つ以上存在する。   Further, for example, the active electrode of the first power transmission device has a frame-like, striped, or grid-like conductor portion periodically arranged in the plane direction, and the active electrode of the first power transmission device is used as the second power transmission. Two or more non-conductive portions of the active electrode of the first power transmission device that fit inside the active electrode of the second power transmission device when projected onto the device are arranged in the arrangement direction of the active electrodes of the first power transmission device, Two or more exist in a direction orthogonal to the arrangement direction.

この構造により、平面方向の位置による第1、第2のアクティブ電極同士の結合容量の変動が少なくなる。   With this structure, the variation in the coupling capacitance between the first and second active electrodes due to the position in the planar direction is reduced.

また、例えば第1の電力伝送装置のアクティブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、第2の電力伝送装置のパッシブ電極は枠状の導体であり、第2の電力伝送装置のアクティブ電極は第2の電力伝送装置のパッシブ電極の内側に収まる大きさの導体である。   Further, for example, the active electrode of the first power transmission device has a frame-like, striped or grid-like conductor portion periodically arranged in the plane direction, and the passive electrode of the second power transmission device is a frame-like conductor. The active electrode of the second power transmission device is a conductor that fits inside the passive electrode of the second power transmission device.

この構造により、第2の電力伝送装置のアクティブ電極とパッシブ電極間の浮遊容量が低減されるとともに、第1、第2の電力伝送装置のアクティブ電極間の結合容量およびパッシブ電極間の結合容量を大きくすることができる。   With this structure, the stray capacitance between the active electrode and the passive electrode of the second power transmission device is reduced, and the coupling capacitance between the active electrode and the passive electrode of the first and second power transmission devices is reduced. Can be bigger.

本発明によれば、送電装置側パッシブ電極と受電装置側パッシブ電極との結合容量が増大し、高い結合度が得られるので電力伝送効率を高めることができる。したがって、送電装置と受電装置との位置関係の自由度を高めるとともに、電力伝送効率を改善したワイヤレス電力伝送システムが実現できる。   According to the present invention, the coupling capacity between the power transmitting device side passive electrode and the power receiving device side passive electrode is increased, and a high degree of coupling can be obtained, so that power transmission efficiency can be increased. Accordingly, it is possible to realize a wireless power transmission system in which the degree of freedom of the positional relationship between the power transmission device and the power reception device is increased and the power transmission efficiency is improved.

図1は特許文献1の電力伝送システムの基本構成を示す図である。FIG. 1 is a diagram illustrating a basic configuration of a power transmission system disclosed in Patent Document 1. As illustrated in FIG. 図2は第1の実施形態に係る電力伝送システム301を構成する送電装置101と受電装置201の斜視図である。FIG. 2 is a perspective view of the power transmission apparatus 101 and the power reception apparatus 201 that constitute the power transmission system 301 according to the first embodiment. 図3は第1の実施形態に係る電力伝送システム301の概略断面図である。FIG. 3 is a schematic cross-sectional view of the power transmission system 301 according to the first embodiment. 図4はワイヤレス電力伝送システムの等価回路図である。FIG. 4 is an equivalent circuit diagram of the wireless power transmission system. 図5(A)、図5(B)は、送電装置101と受電装置201の各電極の形状、寸法、および位置関係を示す図である。FIGS. 5A and 5B are diagrams illustrating the shapes, dimensions, and positional relationships of the electrodes of the power transmission device 101 and the power reception device 201. 図6は、図5(A)に示した条件で電極比率を変化させたときの、電極比率に対する、送電装置と受電装置との結合度C/C0の関係を示す図である。FIG. 6 is a diagram illustrating a relationship of the degree of coupling C / C0 between the power transmitting device and the power receiving device with respect to the electrode ratio when the electrode ratio is changed under the conditions illustrated in FIG. 図7は第2の実施形態に係る電力伝送システム302の概略断面図である。FIG. 7 is a schematic cross-sectional view of a power transmission system 302 according to the second embodiment. 図8(A)は送電装置側のパッシブ電極21とアクティブ電極31の形状および平面視したときの位置関係を示す図である。図8(B)は受電装置側のパッシブ電極71とアクティブ電極6の形状および平面視したときの位置関係を示す図である。FIG. 8A is a diagram illustrating the shape of the passive electrode 21 and the active electrode 31 on the power transmission device side and the positional relationship when viewed in plan. FIG. 8B is a diagram illustrating the shape of the passive electrode 71 and the active electrode 6 on the power receiving device side and the positional relationship when viewed in plan. 図9は第3の実施形態に係る電力伝送システム303の概略断面図である。FIG. 9 is a schematic cross-sectional view of a power transmission system 303 according to the third embodiment. 図10(A)は送電装置側のパッシブ電極21とアクティブ電極31の形状および平面視したときの位置関係を示す図である。図10(B)は受電装置側パッシブ電極72とアクティブ電極61の形状および平面視したときの位置関係を示す図である。FIG. 10A is a diagram illustrating the shapes of the passive electrode 21 and the active electrode 31 on the power transmission device side and the positional relationship when viewed in plan. FIG. 10B is a diagram illustrating the shape of the power receiving device side passive electrode 72 and the active electrode 61 and the positional relationship when viewed in plan. 図11は第4の実施形態に係る電力伝送システムに備える送電装置のパッシブ電極22とアクティブ電極31の形状および平面視したときの位置関係を示す図である。FIG. 11 is a diagram illustrating the shapes of the passive electrode 22 and the active electrode 31 of the power transmission device included in the power transmission system according to the fourth embodiment and the positional relationship when viewed in plan. 図12は第5の実施形態に係る電力伝送システム305の概略断面図である。FIG. 12 is a schematic cross-sectional view of a power transmission system 305 according to the fifth embodiment. 図13(A)は第6の実施形態に係る送電装置側のパッシブ電極とアクティブ電極の形状および平面視したときの位置関係を示す図である。図13(B)は第6の実施形態にかかる電力伝送システムの概略断面図である。FIG. 13A is a diagram illustrating the shape of the passive electrode and the active electrode on the power transmission device side according to the sixth embodiment and the positional relationship when viewed in plan. FIG. 13B is a schematic cross-sectional view of the power transmission system according to the sixth embodiment.

《第1の実施形態》
図2は第1の実施形態に係る電力伝送システム301を構成する送電装置101と受電装置201の斜視図である。この送電装置101と受電装置201とでワイヤレス電力伝送システムを構成している。送電装置101は本発明の第1の電力伝送装置に相当し、受電装置201は本発明の第2の電力伝送装置に相当する。第1、第2の電力伝送装置のうち一方が送電装置、他方が受電装置になることは、第2の実施形態以降の各実施形態についても同様である。
<< First Embodiment >>
FIG. 2 is a perspective view of the power transmission apparatus 101 and the power reception apparatus 201 that constitute the power transmission system 301 according to the first embodiment. The power transmission apparatus 101 and the power reception apparatus 201 constitute a wireless power transmission system. The power transmission device 101 corresponds to the first power transmission device of the present invention, and the power reception device 201 corresponds to the second power transmission device of the present invention. Of the first and second power transmission devices, one is a power transmission device, and the other is a power reception device. The same applies to each of the second and subsequent embodiments.

送電装置101は、その筐体111内に送電装置側パッシブ電極2と送電装置側アクティブ電極31を備えている。受電装置201は、その筐体211内に受電装置側パッシブ電極7と受電装置側アクティブ電極6を備えている。   The power transmission device 101 includes a power transmission device side passive electrode 2 and a power transmission device side active electrode 31 in a casing 111 thereof. The power receiving apparatus 201 includes the power receiving apparatus side passive electrode 7 and the power receiving apparatus side active electrode 6 in the casing 211.

送電装置101に受電装置201を載置することによって、送電装置側アクティブ電極31と受電装置側アクティブ電極6との間に容量が生じ、且つ送電装置側パッシブ電極2と受電装置側パッシブ電極7との間に容量が生じる。この容量で電界結合した状態で、送電装置101は受電装置201へ電力を伝送する。   By placing the power receiving device 201 on the power transmitting device 101, a capacity is generated between the power transmitting device side active electrode 31 and the power receiving device side active electrode 6, and the power transmitting device side passive electrode 2 and the power receiving device side passive electrode 7 Capacity is generated between The power transmission apparatus 101 transmits power to the power reception apparatus 201 in a state where the electric field coupling is performed with this capacity.

送電装置側パッシブ電極2、送電装置側アクティブ電極31、受電装置側アクティブ電極6および受電装置側パッシブ電極7はこの順に重ねられている。送電装置側アクティブ電極31と受電装置側アクティブ電極6とが空隙を介して近接することにより、互いに電界結合する。また送電装置側パッシブ電極2と受電装置側パッシブ電極7とが電界結合する。送電装置側アクティブ電極31と受電装置側アクティブ電極6とは、送電装置側パッシブ電極2と受電装置側パッシブ電極7のいずれよりも高電圧である。このような各電極の位置関係および各電極の電圧の関係となることは、第2の実施形態以降の各実施形態についても同様である。   The power transmission device side passive electrode 2, the power transmission device side active electrode 31, the power reception device side active electrode 6, and the power reception device side passive electrode 7 are stacked in this order. When the power transmitting device side active electrode 31 and the power receiving device side active electrode 6 are close to each other through a gap, they are electrically coupled to each other. In addition, the power transmission device side passive electrode 2 and the power reception device side passive electrode 7 are electrically coupled. The power transmission device side active electrode 31 and the power reception device side active electrode 6 have a higher voltage than either the power transmission device side passive electrode 2 or the power reception device side passive electrode 7. The relationship between the positional relationship of each electrode and the voltage of each electrode is the same in the second and subsequent embodiments.

図3は第1の実施形態に係る電力伝送システム301の概略断面図である。送電装置101の筐体111内の下面付近には送電装置側パッシブ電極2が形成されている。また、筐体111内の上面付近には送電装置側アクティブ電極31が形成されている。受電装置201の筐体211内の上面付近には受電装置側パッシブ電極7が形成されている。また、筐体211内の下面付近には受電装置側アクティブ電極6が形成されている。   FIG. 3 is a schematic cross-sectional view of the power transmission system 301 according to the first embodiment. Near the lower surface in the casing 111 of the power transmission device 101, the power transmission device side passive electrode 2 is formed. In addition, a power transmission device side active electrode 31 is formed near the upper surface in the casing 111. Near the upper surface in the casing 211 of the power receiving apparatus 201, the power receiving apparatus side passive electrode 7 is formed. Further, the power receiving device side active electrode 6 is formed near the lower surface in the housing 211.

送電装置側パッシブ電極2とアクティブ電極31との間には高周波高電圧発生回路1が接続されている。受電装置側パッシブ電極7とアクティブ電極6との間には負荷回路5が接続されている。   A high frequency high voltage generation circuit 1 is connected between the power transmission device side passive electrode 2 and the active electrode 31. A load circuit 5 is connected between the power receiving device side passive electrode 7 and the active electrode 6.

ここで、送電装置101のアクティブ電極31の形成領域の面積をSta、送電装置101のパッシブ電極2の形成領域の面積をStp、受電装置201のアクティブ電極6の形成領域の面積をSra、受電装置201のパッシブ電極7の形成領域の面積をSrpで表すと、
Sta=Stp,Sra<Srp,Sra<Sta
の関係である。
Here, the area of the formation region of the active electrode 31 of the power transmission device 101 is Sta, the area of the formation region of the passive electrode 2 of the power transmission device 101 is Stp, the area of the formation region of the active electrode 6 of the power reception device 201 is Sra, and the power reception device When the area of the formation region of the passive electrode 7 of 201 is represented by Srp,
Sta = Stp, Sra <Srp, Sra <Sta
It is a relationship.

図3中の矢印線は電極間に生じる電気力線を概念的に表している。送電装置側アクティブ電極31は正方格子状である。そのため、送電装置側アクティブ電極31が、送電装置側パッシブ電極2と受電装置側パッシブ電極7との結合を遮蔽せず、受電装置側パッシブ電極7と送電装置側パッシブ電極2との間に容量が生じる。その結果、送電装置側アクティブ電極31が受電装置側パッシブ電極7より拡がっているにもかかわらず、送電装置101と受電装置201間の結合度が大きく、必要な電力伝送効率が得られる。   The arrow lines in FIG. 3 conceptually represent the lines of electric force generated between the electrodes. The power transmission device side active electrode 31 has a square lattice shape. Therefore, the power transmission device side active electrode 31 does not shield the coupling between the power transmission device side passive electrode 2 and the power reception device side passive electrode 7, and there is a capacitance between the power reception device side passive electrode 7 and the power transmission device side passive electrode 2. Arise. As a result, despite the fact that the power transmission device side active electrode 31 is wider than the power reception device side passive electrode 7, the degree of coupling between the power transmission device 101 and the power reception device 201 is large, and the required power transmission efficiency is obtained.

図4はワイヤレス電力伝送システムの等価回路図である。この図4において、送電装置101の高周波電圧発生回路OSCは例えば100kHz〜数10MHzの高周波電圧を発生する。昇圧トランスTGおよびインダクタLGによる昇圧回路37は、高周波電圧発生回路OSCの発生する電圧を昇圧してパッシブ電極2とアクティブ電極31との間に印加する。キャパシタCGはパッシブ電極2とアクティブ電極31とによる容量である。昇圧回路37とキャパシタCGは共振回路を構成する。受電装置201のパッシブ電極5とアクティブ電極6との間には、降圧トランスTLおよびインダクタLLによる降圧回路45が接続されている。キャパシタCLはパッシブ電極5とアクティブ電極6とによる容量である。降圧回路45とキャパシタCLは共振回路を構成する。降圧トランスTLの二次側には負荷RLが接続されている。この負荷RLは、ダイオードとコンデンサによる整流平滑回路および二次電池で構成されている。降圧回路45と負荷RLとで構成される回路が本発明の「負荷回路」に相当する。キャパシタCmは容量結合の状態を示している。   FIG. 4 is an equivalent circuit diagram of the wireless power transmission system. In FIG. 4, the high-frequency voltage generation circuit OSC of the power transmission apparatus 101 generates a high-frequency voltage of, for example, 100 kHz to several tens of MHz. A step-up circuit 37 including a step-up transformer TG and an inductor LG steps up a voltage generated by the high-frequency voltage generation circuit OSC and applies it between the passive electrode 2 and the active electrode 31. The capacitor CG is a capacitance due to the passive electrode 2 and the active electrode 31. The booster circuit 37 and the capacitor CG constitute a resonance circuit. A step-down circuit 45 including a step-down transformer TL and an inductor LL is connected between the passive electrode 5 and the active electrode 6 of the power receiving device 201. The capacitor CL is a capacitance due to the passive electrode 5 and the active electrode 6. The step-down circuit 45 and the capacitor CL constitute a resonance circuit. A load RL is connected to the secondary side of the step-down transformer TL. The load RL includes a rectifying / smoothing circuit using a diode and a capacitor, and a secondary battery. A circuit composed of the step-down circuit 45 and the load RL corresponds to the “load circuit” of the present invention. Capacitor Cm indicates a capacitively coupled state.

次に、送電装置101と受電装置201の各電極の構造と結合特性について示す。
図5(A)、図5(B)は、送電装置101と受電装置201の各電極の形状、寸法、および位置関係を示す図である。図5(A)は、送電装置側パッシブ電極2の幅Wtp、送電装置側アクティブ電極31の最外周幅Wta、受電装置側アクティブ電極6の幅Wra、受電装置側パッシブ電極7の幅Wrp、送電装置側のパッシブ電極2とアクティブ電極31との間隙Gt、受電装置側のパッシブ電極7とアクティブ電極6との間隙Gr、送電装置側アクティブ電極31と受電装置側アクティブ電極6との間隙Gtrをそれぞれ示している。各部の寸法は次のとおりである。
Next, the structure and coupling characteristics of each electrode of the power transmission device 101 and the power reception device 201 will be described.
FIGS. 5A and 5B are diagrams illustrating the shapes, dimensions, and positional relationships of the electrodes of the power transmission device 101 and the power reception device 201. 5A shows the width Wtp of the power transmitting device side passive electrode 2, the outermost peripheral width Wta of the power transmitting device side active electrode 31, the width Wra of the power receiving device side active electrode 6, the width Wrp of the power receiving device side passive electrode 7, The gap Gt between the passive electrode 2 on the device side and the active electrode 31, the gap Gr between the passive electrode 7 on the power receiving device side and the active electrode 6, and the gap Gtr between the active electrode 31 on the power transmitting device side and the active electrode 6 on the power receiving device side, respectively. Show. The dimensions of each part are as follows.

Wtp=240mm
Wta=240mm
Wrp=100mm
Wra=30mm
Gt=3mm
Gr=5mm
Gtr=0.2mm
送電装置側アクティブ電極31は、図5(B)に示すように、孔である非導体部Hおよび導体部Eの枠部が平面方向に(平面に沿って)周期的に配列されたものである。ここで、導体部Eの幅をW、非導体部Hの幅をG、で表すと、W/(W+G)で電極比率を表すことができる。導体Eの配置ピッチをPで表すと、電極比率はW/Pで表すこともできる。
Wtp = 240mm
Wta = 240mm
Wrp = 100mm
Wra = 30mm
Gt = 3mm
Gr = 5mm
Gtr = 0.2mm
As shown in FIG. 5 (B), the power transmitting device side active electrode 31 is configured such that the non-conductor portion H and the frame portion of the conductor portion E, which are holes, are periodically arranged in the plane direction (along the plane). is there. Here, when the width of the conductor part E is represented by W and the width of the non-conductor part H is represented by G, the electrode ratio can be represented by W / (W + G). When the arrangement pitch of the conductors E is represented by P, the electrode ratio can also be represented by W / P.

図6は、図5(A)に示した条件で前記電極比率を変化させたときの、電極比率に対する、送電装置と受電装置との結合度C/C0の関係を示す図である。ここでCは等価結合容量(Cm)、C0は非導体部がない場合の等価結合容量(Cm)である。電極比率W/P=100%は、非導体部の無い従来構造に相当する。図6に表れているように、電極比率を100から小さくしていくと、すなわち非導体部の割合を増していくと、結合度C/C0は増大する。電極比率W/(W+G)=20%程度で結合度C/C0は最大になる。このとき、非導体部が無い状態に比べて結合度は8倍にも増大する。電極比率を20%よりさらに小さくすると、結合度C/C0は少し低下する。   FIG. 6 is a diagram showing the relationship of the degree of coupling C / C0 between the power transmitting device and the power receiving device with respect to the electrode ratio when the electrode ratio is changed under the conditions shown in FIG. Here, C is an equivalent coupling capacity (Cm), and C0 is an equivalent coupling capacity (Cm) when there is no non-conductor portion. The electrode ratio W / P = 100% corresponds to a conventional structure having no non-conductor portion. As shown in FIG. 6, when the electrode ratio is decreased from 100, that is, the ratio of the non-conductor portion is increased, the degree of coupling C / C0 increases. The degree of coupling C / C0 is maximized when the electrode ratio W / (W + G) is about 20%. At this time, the degree of coupling increases by a factor of eight compared to the state without the non-conductor portion. When the electrode ratio is further reduced below 20%, the degree of coupling C / C0 is slightly reduced.

このように、全体的には電極比率を小さくするほど結合度は増すが、最適値が存在する。したがって、送電装置側のパッシブ電極2、アクティブ電極31、受電装置側のパッシブ電極7、アクティブ電極6の寸法および位置関係が定まれば、あとは結合度が最大になるように、送電装置側アクティブ電極31の電極比率を決定すればよい。   As described above, the coupling degree increases as the electrode ratio is reduced as a whole, but an optimum value exists. Therefore, once the dimensions and positional relationships of the passive electrode 2 and the active electrode 31 on the power transmission device side, the passive electrode 7 on the power reception device side, and the active electrode 6 are determined, the power transmission device side active is set so that the degree of coupling is maximized thereafter. What is necessary is just to determine the electrode ratio of the electrode 31. FIG.

電極比率W/(W+G)が10%〜50%の範囲内であれば結合度は5倍以上になるので充分な改善効果がある。また、前記電極比率W/(W+G)が10%〜35%の範囲内で結合度は7倍以上となって、さらなる改善効果が得られる。   If the electrode ratio W / (W + G) is in the range of 10% to 50%, the degree of coupling is 5 times or more, so that there is a sufficient improvement effect. Further, when the electrode ratio W / (W + G) is within a range of 10% to 35%, the degree of coupling becomes 7 times or more, and a further improvement effect is obtained.

送電装置側アクティブ電極31を受電装置側アクティブ電極6に投影したときの、送電装置側アクティブ電極31を受電装置に投影した時に受電装置側アクティブ電極6の面積に収まる送電装置側アクティブ電極31の非導体部は、送電装置側アクティブ電極31の配列方向に少なくとも二つ(2本)、且つ、その配列方向に直交する方向に少なくとも二つ(2本)存在する。   When the power transmission device side active electrode 31 is projected onto the power reception device side active electrode 6, the power transmission device side active electrode 31 that is within the area of the power reception device side active electrode 6 when the power transmission device side active electrode 31 is projected onto the power reception device. There are at least two (two) conductor portions in the arrangement direction of the power transmission device side active electrodes 31 and at least two (two) in the direction orthogonal to the arrangement direction.

上記条件であれば、平面方向に位置ずれした場合であっても、送電装置側アクティブ電極31の1本の導体部を受電装置側アクティブ電極6に確実に対向させることができる。すなわち載置位置のずれによる結合容量の変化幅が小さく安定した結合度が得られ、且つ二つのパッシブ電極2,7同士の結合容量を確保できる。   If it is the said conditions, even if it is a case where it shifts | deviates to a plane direction, one conductor part of the power transmission apparatus side active electrode 31 can be reliably made to oppose the power receiving apparatus side active electrode 6. FIG. That is, the variation in the coupling capacitance due to the displacement of the mounting position is small and a stable coupling degree can be obtained, and the coupling capacitance between the two passive electrodes 2 and 7 can be secured.

なお、高周波高電圧発生回路1が発生する交流電圧の周波数は、送電装置101および受電装置201の周囲の誘電性媒質(すなわち空気)での波長が、送電装置101および受電装置201の大きさに比べて長い関係にある。すなわち準静電場により電力伝送される。このことにより、電磁波放射の形で輻射(分散)されるエネルギーが少ないので、電力伝送効率が高まる。また、高周波高電圧発生回路1が発生する交流電圧の周波数は、輻射される電磁波エネルギーが、送電装置101から受電装置201へ伝搬される電界エネルギーに比べて小さい範囲で、できるだけ高い周波数とする。このことによって、送電装置側アクティブ電極31、送電装置側パッシブ電極2、受電装置側アクティブ電極6、受電装置側パッシブ電極7のそれぞれの面積が小さくても(小さい割りに)送電装置101と受電装置201のアクティブ電極同士およびパッシブ電極同士の結合度を高めることができる。したがって、小型でありながら電力伝送効率の高い電力伝送システムが構成できる。これらのことは第2の実施形態以降の各実施形態についても同様である。   The frequency of the AC voltage generated by the high-frequency high-voltage generation circuit 1 is such that the wavelength of the dielectric medium (that is, air) around the power transmission device 101 and the power reception device 201 is the same as the size of the power transmission device 101 and the power reception device 201. It has a long relationship. That is, power is transmitted by a quasi-electrostatic field. This increases power transmission efficiency because less energy is radiated (dispersed) in the form of electromagnetic radiation. The frequency of the alternating voltage generated by the high-frequency high-voltage generation circuit 1 is set as high as possible in a range where the radiated electromagnetic wave energy is smaller than the electric field energy propagated from the power transmission apparatus 101 to the power reception apparatus 201. Thus, even if the areas of the power transmission device side active electrode 31, the power transmission device side passive electrode 2, the power reception device side active electrode 6, and the power reception device side passive electrode 7 are small (albeit small), the power transmission device 101 and the power reception device. The degree of coupling between the active electrodes 201 and the passive electrodes 201 can be increased. Therefore, it is possible to configure a power transmission system that is small and has high power transmission efficiency. The same applies to each of the second and subsequent embodiments.

《第2の実施形態》
図7は第2の実施形態に係る電力伝送システム302の概略断面図である。送電装置102の筐体112内の上面付近には送電装置側パッシブ電極21が形成されている。また、筐体112内の上面付近には送電装置側アクティブ電極31が形成されている。受電装置202の筐体212内の下面付近には受電装置側パッシブ電極71が形成されている。また、筐体212内の下面付近には受電装置側アクティブ電極6が形成されている。
<< Second Embodiment >>
FIG. 7 is a schematic cross-sectional view of a power transmission system 302 according to the second embodiment. A power transmitting device side passive electrode 21 is formed near the upper surface in the housing 112 of the power transmitting device 102. In addition, a power transmission device side active electrode 31 is formed near the upper surface in the housing 112. A power receiving device side passive electrode 71 is formed near the lower surface in the housing 212 of the power receiving device 202. In addition, the power receiving device side active electrode 6 is formed near the lower surface in the housing 212.

図7では図示を省略しているが、送電装置側パッシブ電極21とアクティブ電極31との間には高周波高電圧発生回路が接続されている。また、受電装置側パッシブ電極71とアクティブ電極6との間には負荷回路が接続されている。   Although not shown in FIG. 7, a high-frequency and high-voltage generation circuit is connected between the power transmission device side passive electrode 21 and the active electrode 31. In addition, a load circuit is connected between the passive electrode 71 on the power receiving device side and the active electrode 6.

ここで、送電装置102のアクティブ電極31の形成領域の面積をSta、送電装置102のパッシブ電極21の形成領域の面積をStp、受電装置202のアクティブ電極6の形成領域の面積をSra、受電装置202のパッシブ電極71の形成領域の面積をSrpで表すと、
Sta<Stp,Sra<Srp,Sra<Sta
の関係である。
Here, the area of the formation region of the active electrode 31 of the power transmission device 102 is Sta, the area of the formation region of the passive electrode 21 of the power transmission device 102 is Stp, the area of the formation region of the active electrode 6 of the power reception device 202 is Sra, and the power reception device When the area of the formation region of the passive electrode 71 of 202 is represented by Srp,
Sta <Stp, Sra <Srp, Sra <Sta
It is a relationship.

図8(A)は送電装置側のパッシブ電極21とアクティブ電極31の形状および平面視したときの位置関係を示している。図8(B)は受電装置側のパッシブ電極71とアクティブ電極6の形状および平面視したときの位置関係を示している。   FIG. 8A shows the shape of the passive electrode 21 and the active electrode 31 on the power transmission device side and the positional relationship when viewed in plan. FIG. 8B shows the shape of the passive electrode 71 and the active electrode 6 on the power receiving device side and the positional relationship when viewed in plan.

この第2の実施形態では、送電装置側のパッシブ電極21とアクティブ電極31は共に正方格子状である。このアクティブ電極31の非導体部の中心にパッシブ電極21の格子の交差部が位置するように、アクティブ電極31とパッシブ電極21の形状および平面視したときの位置関係を定めている。   In the second embodiment, both the passive electrode 21 and the active electrode 31 on the power transmission device side are in a square lattice shape. The shape of the active electrode 31 and the passive electrode 21 and the positional relationship in plan view are determined so that the intersection of the lattice of the passive electrode 21 is located at the center of the non-conductive portion of the active electrode 31.

また、この第2の実施形態では、受電装置側パッシブ電極71を矩形の枠状に形成している。そして、受電装置側アクティブ電極6は受電装置側パッシブ電極71の内側に収まる大きさに形成している。   In the second embodiment, the power receiving device side passive electrode 71 is formed in a rectangular frame shape. The power receiving device side active electrode 6 is formed in a size that fits inside the power receiving device side passive electrode 71.

このように、送電装置側のパッシブ電極21とアクティブ電極31の双方を格子状にしたことにより、両者間に生じる浮遊容量を低減できる。しかも、アクティブ電極31の非導体部の中心にパッシブ電極21の格子の交差部が位置するように配置したことにより、両者間に生じる浮遊容量を効果的に低減できる。   Thus, by forming both the passive electrode 21 and the active electrode 31 on the power transmission device side in a lattice shape, the stray capacitance generated between them can be reduced. In addition, the stray capacitance generated between the active electrode 31 and the active electrode 31 can be effectively reduced by arranging the crossing portion of the lattice of the passive electrode 21 at the center of the non-conductor portion.

また、受電装置側についても、受電装置側のパッシブ電極71とアクティブ電極6との間の実質的な対向面積が小さく、対向距離が大きいので、両者間に生じる浮遊容量を低減できる。   Moreover, since the substantial facing area between the passive electrode 71 and the active electrode 6 on the power receiving device side is small and the facing distance is large on the power receiving device side, the stray capacitance generated between them can be reduced.

以上に示した構成により、送電装置側パッシブ電極と受電装置側パッシブ電極との結合容量が増大するだけなく、送電装置102と受電装置202のそれぞれでの浮遊容量が減少するので、送電装置102と受電装置202との高い結合度が得られる。その結果、電力伝送効率を高めることができる。   With the configuration described above, not only the coupling capacitance between the power transmission device side passive electrode and the power reception device side passive electrode increases, but also the stray capacitance in each of the power transmission device 102 and the power reception device 202 decreases. A high degree of coupling with the power receiving apparatus 202 is obtained. As a result, power transmission efficiency can be increased.

《第3の実施形態》
図9は第3の実施形態に係る電力伝送システム303の概略断面図である。送電装置103の筐体113内の上面付近には送電装置側パッシブ電極21が形成されている。また、筐体113内の上面付近には送電装置側アクティブ電極31が形成されている。受電装置203の筐体213内の下面付近には受電装置側パッシブ電極72が形成されている。また、筐体213内の下面付近には受電装置側アクティブ電極61が形成されている。
<< Third Embodiment >>
FIG. 9 is a schematic cross-sectional view of a power transmission system 303 according to the third embodiment. Near the upper surface in the casing 113 of the power transmission device 103, the power transmission device side passive electrode 21 is formed. In addition, a power transmission device side active electrode 31 is formed near the upper surface in the housing 113. Near the lower surface in the housing 213 of the power receiving device 203, a power receiving device side passive electrode 72 is formed. A power receiving device side active electrode 61 is formed near the lower surface in the housing 213.

図9では図示を省略しているが、送電装置側パッシブ電極21とアクティブ電極31との間には高周波高電圧発生回路が接続されている。また、受電装置側パッシブ電極72とアクティブ電極61との間には負荷回路が接続されている。   Although not shown in FIG. 9, a high-frequency and high-voltage generation circuit is connected between the power transmission device side passive electrode 21 and the active electrode 31. In addition, a load circuit is connected between the power receiving device side passive electrode 72 and the active electrode 61.

ここで、送電装置103のアクティブ電極31の形成領域の面積をSta、送電装置103のパッシブ電極21の形成領域の面積をStp、受電装置203のアクティブ電極61の形成領域の面積をSra、受電装置203のパッシブ電極72の形成領域の面積をSrpで表すと、
Sta<Stp,Sra<Srp,Sra<Sta
の関係である。
Here, the area of the formation region of the active electrode 31 of the power transmission device 103 is Sta, the area of the formation region of the passive electrode 21 of the power transmission device 103 is Stp, the area of the formation region of the active electrode 61 of the power reception device 203 is Sra, and the power reception device When the area of the formation region of the 203 passive electrode 72 is represented by Srp,
Sta <Stp, Sra <Srp, Sra <Sta
It is a relationship.

図10(A)は送電装置側のパッシブ電極21とアクティブ電極31の形状および平面視したときの位置関係を示している。図10(B)は受電装置側パッシブ電極72とアクティブ電極61の形状および平面視したときの位置関係を示している。   FIG. 10A shows the shape of the passive electrode 21 and the active electrode 31 on the power transmission device side and the positional relationship when viewed in plan. FIG. 10B shows the shape of the power receiving device side passive electrode 72 and the active electrode 61 and the positional relationship in plan view.

この第3の実施形態では、送電装置側のパッシブ電極21とアクティブ電極31は共に正方格子状である。このアクティブ電極31の非導体部の中心にパッシブ電極21の格子の交差部が位置するように、アクティブ電極31とパッシブ電極21の形状および平面視したときの位置関係を定めている。アクティブ電極31の導体幅Wtaはパッシブ電極21の導体幅Wtpより細くしている。アクティブ電極31の導体配置ピッチ(格子間ピッチ)とパッシブ電極21の導体配置ピッチ(格子間ピッチ)は同じである。したがって、アクティブ電極31の電極比率はパッシブ電極21の電極比率より小さい。図6に例示したように、電極比率によって結合度が変化するので、この電極比率は、最も高い結合度が得られるように定めればよい。   In the third embodiment, both the passive electrode 21 and the active electrode 31 on the power transmission device side are in a square lattice shape. The shape of the active electrode 31 and the passive electrode 21 and the positional relationship in plan view are determined so that the intersection of the lattice of the passive electrode 21 is located at the center of the non-conductive portion of the active electrode 31. The conductor width Wta of the active electrode 31 is smaller than the conductor width Wtp of the passive electrode 21. The conductor arrangement pitch (interstitial pitch) of the active electrode 31 and the conductor arrangement pitch (interstitial pitch) of the passive electrode 21 are the same. Therefore, the electrode ratio of the active electrode 31 is smaller than the electrode ratio of the passive electrode 21. As illustrated in FIG. 6, since the degree of coupling varies depending on the electrode ratio, the electrode ratio may be determined so as to obtain the highest degree of coupling.

第3の実施形態では、受電装置側のパッシブ電極72とアクティブ電極61の両方が正方格子状である。但し、図10(B)に示した例では、パッシブ電極72とアクティブ電極61共に格子が粗くて1ピッチ分の格子形状である。そのため、パッシブ電極72は格子状に見えるが、アクティブ電極61は十字形状に見える。このアクティブ電極61の十字の交差部はパッシブ電極72の非導体部の中心に位置している。   In the third embodiment, both the passive electrode 72 and the active electrode 61 on the power receiving device side have a square lattice shape. However, in the example shown in FIG. 10B, both the passive electrode 72 and the active electrode 61 have a coarse lattice and a lattice shape for one pitch. Therefore, the passive electrode 72 looks like a grid, but the active electrode 61 looks like a cross. The crossed portion of the active electrode 61 is located at the center of the non-conductive portion of the passive electrode 72.

このように、受電装置側のパッシブ電極72とアクティブ電極61を格子状にした場合も、受電装置側のパッシブ電極72とアクティブ電極61との間の実質的な対向面積が小さく、対向距離が大きいので、両者間に生じる浮遊容量を低減できる。また、受電装置側のパッシブ電極72とアクティブ電極61の導体幅Wrp,Wraを定めて電極比率を変化させると、送電装置と受電装置との結合度が変化するので、最も高い結合度が得られるように、受電装置側のパッシブ電極72とアクティブ電極61のそれぞれの電極比率を定めればよい。   Thus, even when the passive electrode 72 and the active electrode 61 on the power receiving device side are arranged in a lattice shape, the substantial facing area between the passive electrode 72 and the active electrode 61 on the power receiving device side is small and the facing distance is large. Therefore, stray capacitance generated between the two can be reduced. Moreover, when the conductor widths Wrp and Wra of the passive electrode 72 and the active electrode 61 on the power receiving device side are determined and the electrode ratio is changed, the degree of coupling between the power transmitting device and the power receiving device changes, so that the highest degree of coupling is obtained. Thus, the electrode ratios of the passive electrode 72 and the active electrode 61 on the power receiving device side may be determined.

《第4の実施形態》
図11は第4の実施形態に係る電力伝送システムに備える送電装置のパッシブ電極22とアクティブ電極31の形状および平面視したときの位置関係を示す図である。
図11に示すように、アクティブ電極31とパッシブ電極22の両電極とも格子状である。パッシブ電極22のうち、平面視でアクティブ電極31と重なる部分の導体幅Wp2は他の部分の導体幅Wp1より細い。
<< Fourth Embodiment >>
FIG. 11 is a diagram illustrating the shapes of the passive electrode 22 and the active electrode 31 of the power transmission device included in the power transmission system according to the fourth embodiment and the positional relationship when viewed in plan.
As shown in FIG. 11, both the active electrode 31 and the passive electrode 22 have a lattice shape. Of the passive electrode 22, the conductor width Wp2 of the portion overlapping the active electrode 31 in plan view is narrower than the conductor width Wp1 of the other portion.

なお、アクティブ電極31のうち、平面視でパッシブ電極22と重なる部分の導体幅を他の部分の導体幅より細くしてもよい。また、パッシブ電極22とアクティブ電極31の両方について、平面視で重なる部分の導体幅を細くしてもよい。   In addition, you may make the conductor width of the part which overlaps with the passive electrode 22 planarly among the active electrodes 31 narrower than the conductor width of another part. Moreover, you may make the conductor width of the part which overlaps by planar view about both the passive electrode 22 and the active electrode 31 narrow.

このようにして、アクティブ電極とパッシブ電極とが平面視で交差する部分の導体幅を細くすることにより、アクティブ電極とパッシブ電極との間の浮遊容量が低減される。したがって容量結合度が高まり、電力伝送効率がさらに改善できる。   In this way, the stray capacitance between the active electrode and the passive electrode is reduced by reducing the conductor width at the portion where the active electrode and the passive electrode intersect in plan view. Accordingly, the degree of capacitive coupling is increased and the power transmission efficiency can be further improved.

《第5の実施形態》
図12は第5の実施形態に係る電力伝送システム305の概略断面図である。送電装置105の筐体115内の上面付近には送電装置側パッシブ電極22が形成されている。また、筐体115内の上面付近には送電装置側アクティブ電極3が形成されている。受電装置205の筐体215内の下面付近には受電装置側パッシブ電極7が形成されている。また、筐体215内の下面付近には受電装置側アクティブ電極62が形成されている。
<< Fifth Embodiment >>
FIG. 12 is a schematic cross-sectional view of a power transmission system 305 according to the fifth embodiment. Near the upper surface in the casing 115 of the power transmission device 105, the power transmission device side passive electrode 22 is formed. Further, the power transmission device side active electrode 3 is formed in the vicinity of the upper surface in the housing 115. The power receiving device side passive electrode 7 is formed in the vicinity of the lower surface in the housing 215 of the power receiving device 205. A power receiving device side active electrode 62 is formed near the lower surface in the housing 215.

図12では図示を省略しているが、送電装置側パッシブ電極22とアクティブ電極3との間には高周波高電圧発生回路が接続されている。また、受電装置側パッシブ電極7とアクティブ電極62との間には負荷回路が接続されている。   Although not shown in FIG. 12, a high frequency high voltage generation circuit is connected between the power transmission device side passive electrode 22 and the active electrode 3. Further, a load circuit is connected between the power receiving device side passive electrode 7 and the active electrode 62.

ここで、送電装置105のアクティブ電極3の形成領域の面積をSta、送電装置105のパッシブ電極22の形成領域の面積をStp、受電装置205のアクティブ電極62の形成領域の面積をSra、受電装置205のパッシブ電極7の形成領域の面積をSrpで表すと、
Sta<Stp,Sra<Srp,Sra>Sta
の関係である。
Here, the area of the formation region of the active electrode 3 of the power transmission device 105 is Sta, the area of the formation region of the passive electrode 22 of the power transmission device 105 is Stp, the area of the formation region of the active electrode 62 of the power reception device 205 is Sra, and the power reception device When the area of the formation region of 205 passive electrode 7 is represented by Srp,
Sta <Stp, Sra <Srp, Sra> Sta
It is a relationship.

送電装置のパッシブ電極22の形状は矩形枠状、アクティブ電極3の形状は矩形状である。受電装置側パッシブ電極7は非導体部の無い矩形状の導体板で構成されている。受電装置側アクティブ電極62は正方格子状の導体板で構成されている。   The passive electrode 22 of the power transmission device has a rectangular frame shape, and the active electrode 3 has a rectangular shape. The power receiving device side passive electrode 7 is formed of a rectangular conductor plate having no non-conductor portion. The power receiving device side active electrode 62 is formed of a square lattice conductor plate.

この第5の実施形態では、受電装置側アクティブ電極62の最外周幅が送電装置側アクティブ電極3の幅より大きい。このような関係であっても、受電装置側アクティブ電極62に非導体部が配列されているため、受電装置側アクティブ電極62が、送電装置側パッシブ電極22と受電装置側パッシブ電極7との結合を遮蔽せず、受電装置側パッシブ電極7と送電装置側パッシブ電極22との間に容量が生じる。
このように、非導体部を備える電極を受電装置側にのみ設けてもよい。
In the fifth embodiment, the outermost peripheral width of the power receiving device side active electrode 62 is larger than the width of the power transmitting device side active electrode 3. Even in such a relationship, since the non-conductor portion is arranged on the power receiving device side active electrode 62, the power receiving device side active electrode 62 is coupled to the power transmitting device side passive electrode 22 and the power receiving device side passive electrode 7. Is not shielded, and a capacitance occurs between the power receiving device side passive electrode 7 and the power transmitting device side passive electrode 22.
In this manner, an electrode including a non-conductor portion may be provided only on the power receiving device side.

《第6の実施形態》
これまでに示した非導体部及び導体部の枠状または格子状のパターンは2次元状に拡がるものに限らず、1次元状に拡がるパターンであってもよい。第6の実施形態では、非導体部と導体部が縞状である例を示す。
<< Sixth Embodiment >>
The frame-like or lattice-like pattern of the non-conductor portion and the conductor portion shown so far is not limited to a two-dimensional pattern, but may be a pattern that extends one-dimensionally. In the sixth embodiment, an example in which the non-conductor portion and the conductor portion are striped is shown.

図13(A)は第6の実施形態に係る送電装置側のパッシブ電極とアクティブ電極の形状および平面視したときの位置関係を示す図である。図13(B)は第6の実施形態に係る電力伝送システムの概略断面図である。   FIG. 13A is a diagram illustrating the shape of the passive electrode and the active electrode on the power transmission device side according to the sixth embodiment and the positional relationship when viewed in plan. FIG. 13B is a schematic cross-sectional view of the power transmission system according to the sixth embodiment.

送電装置106の筐体116内には送電装置側パッシブ電極23が形成されている。また、筐体116内の上面付近には送電装置側アクティブ電極33が形成されている。受電装置206の筐体216内には受電装置側パッシブ電極7が形成されている。また、筐体216内の下面付近には受電装置側アクティブ電極6が形成されている。   A power transmission device-side passive electrode 23 is formed in the casing 116 of the power transmission device 106. In addition, a power transmission device side active electrode 33 is formed near the upper surface in the housing 116. The power receiving device side passive electrode 7 is formed in the housing 216 of the power receiving device 206. In addition, a power receiving device side active electrode 6 is formed near the lower surface in the housing 216.

第4の実施形態では導体部を図11に示すように、アクティブ電極31とパッシブ電極22の両電極とも格子状である。パッシブ電極22のうち、平面視でアクティブ電極31と重なる部分の導体幅Wp2は他の部分の導体幅Wp1より細い。導体幅を細くしたとしても平面視でアクティブ電極31と重なる部分で容量が発生する。第4の実施形態では送電装置側のパッシブ電極22とアクティブ電極31間の浮遊容量の増加を低減するためにパッシブ電極22とアクティブ電極31との距離を大きく保つ必要がある。   In the fourth embodiment, as shown in FIG. 11, both the active electrode 31 and the passive electrode 22 have a lattice shape as the conductor portion. Of the passive electrode 22, the conductor width Wp2 of the portion overlapping the active electrode 31 in plan view is narrower than the conductor width Wp1 of the other portion. Even if the conductor width is reduced, a capacitance is generated at a portion overlapping the active electrode 31 in plan view. In the fourth embodiment, it is necessary to keep the distance between the passive electrode 22 and the active electrode 31 large in order to reduce the increase in stray capacitance between the passive electrode 22 and the active electrode 31 on the power transmission device side.

これに対して、図13に示すくし歯電極では送電装置側のアクティブ電極33とパッシブ電極23がそれぞれくし歯電極形状とされ、平面視で互いに間挿し合っている。そのため、平面視でパッシブ電極23がアクティブ電極33と重なる部分がない。従ってパッシブ電極23とアクティブ電極33の距離を近づけたとしても送電装置側のパッシブ電極23とアクティブ電極33との間の浮遊容量の増加を低減できる。よって、送電装置を薄型化することができる。   On the other hand, in the comb electrode shown in FIG. 13, the active electrode 33 and the passive electrode 23 on the power transmission device side have a comb electrode shape, and are interleaved with each other in plan view. Therefore, there is no portion where the passive electrode 23 overlaps the active electrode 33 in plan view. Therefore, even if the distance between the passive electrode 23 and the active electrode 33 is reduced, an increase in stray capacitance between the passive electrode 23 and the active electrode 33 on the power transmission device side can be reduced. Therefore, the power transmission device can be thinned.

《他の実施形態》
以上に示した幾つかの実施形態では、送電装置または受電装置のパッシブ電極が枠状の導体部を備えるようにしたが、送電装置と受電装置のいずれについても、パッシブ電極が格子状の導体部を備える電極であってもよい。この構造により、パッシブ電極とアクティブ電極間の浮遊容量を低減できる。
<< Other embodiments >>
In some embodiments described above, the passive electrode of the power transmitting device or the power receiving device is provided with the frame-shaped conductor portion. However, the passive electrode is a grid-shaped conductor portion for both the power transmitting device and the power receiving device. It may be an electrode provided with. With this structure, stray capacitance between the passive electrode and the active electrode can be reduced.

また、格子状である導体部の形状は、正方格子状に限らず、六角格子状や三角格子状であってもよい。また、非導体部の形状は正方形、六角形、三角形のような多角形に限らず、円形や楕円形であってもよい。   Further, the shape of the conductor portion having a lattice shape is not limited to a square lattice shape, and may be a hexagonal lattice shape or a triangular lattice shape. The shape of the non-conductor portion is not limited to a polygon such as a square, hexagon, or triangle, and may be a circle or an ellipse.

また、導体部が平面方向に完全に周期的に配列されたものである必要はない。部分的に導体部が平面方向に非周期的に配列されていてもよい。導体部が平面方向に実質的に周期的に配列されていてもよい。   Moreover, it is not necessary that the conductor portions are arranged periodically in the plane direction. The conductor portions may be partially aperiodically arranged in the planar direction. The conductor portions may be arranged substantially periodically in the planar direction.

CG…キャパシタ
CL…キャパシタ
Cm…キャパシタ
E…導体部
Gr,Gt,Gtr…間隙
H…非導体部
LG,LL…インダクタ
OSC…高周波電圧発生回路
RL…負荷
TG…昇圧トランス
TL…降圧トランス
1…高周波高電圧発生回路
2…送電装置側パッシブ電極
3…送電装置側アクティブ電極
5…負荷回路
6…受電装置側アクティブ電極
7…受電装置側パッシブ電極
21,22,23…送電装置側パッシブ電極
31,33…送電装置側アクティブ電極
37…昇圧回路
45…降圧回路
61,62…受電装置側アクティブ電極
71,72…受電装置側パッシブ電極
101〜103,105…送電装置
111〜113,115,116…筐体
201〜203,205…受電装置
211〜213,215,216…筐体
301〜303,305,306…電力伝送システム
CG ... Capacitor CL ... Capacitor Cm ... Capacitor E ... Conductor portions Gr, Gt, Gtr ... Gap H ... Non-conductor portions LG, LL ... Inductor OSC ... High frequency voltage generation circuit RL ... Load TG ... Step-up transformer TL ... Step-down transformer 1 ... High frequency High-voltage generating circuit 2 ... Power transmission device side passive electrode 3 ... Power transmission device side active electrode 5 ... Load circuit 6 ... Power reception device side active electrode 7 ... Power reception device side passive electrodes 21, 22, 23 ... Power transmission device side passive electrodes 31, 33 ... Power transmission device side active electrode 37 ... Boost circuit 45 ... Step down circuit 61,62 ... Power reception device side active electrode 71,72 ... Power reception device side passive electrodes 101-103, 105 ... Power transmission device 111-113,115,116 ... Case 201-203, 205 ... Power receiving devices 211-213, 215, 216 ... Housings 301-303, 305, 06 ... power transmission system

Claims (6)

アクティブ電極及びパッシブ電極をそれぞれ有する、第1と第2の二つの電力伝送装置を備え、前記第1と第2の電力伝送装置のアクティブ電極同士の間に生じる容量及びパッシブ電極同士の間に生じる容量で前記第1と第2の電力伝送装置が結合する電力伝送システムにおいて、
第1の電力伝送装置のアクティブ電極の形成領域の面積をSta、第1の電力伝送装置のパッシブ電極の形成領域の面積をStp、第2の電力伝送装置のアクティブ電極の形成領域の面積をSra、第2の電力伝送装置のパッシブ電極の形成領域の面積をSrpで表すと、
Sta≦Stp,Sra≦Srp
の関係であり、
前記第1の電力伝送装置のアクティブ電極または前記第2の電力伝送装置のアクティブ電極のうち少なくとも一方は、形成領域の一部に非導体部を有する一体形状の電極であり、前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極との間に重ねられ、
前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極とは、前記第1の電力伝送装置のパッシブ電極と前記第2の電力伝送装置のパッシブ電極との間に重ねられた前記アクティブ電極の前記非導体部を介して結合する、電力伝送システム。
The first and second power transmission devices each having an active electrode and a passive electrode are provided, and a capacitance generated between the active electrodes of the first and second power transmission devices is generated between the passive electrodes. In the power transmission system in which the first and second power transmission devices are combined with each other in capacity,
The area of the active electrode formation region of the first power transmission device is Sta, the area of the passive electrode formation region of the first power transmission device is Stp, and the area of the active electrode formation region of the second power transmission device is Sra. When the area of the passive electrode formation region of the second power transmission device is represented by Srp,
Sta ≦ Stp, Sra ≦ Srp
Relationship
At least one of the active electrode of the first power transmission device or the active electrode of the second power transmission device is an integral electrode having a non-conductor portion in a part of a formation region, and the first power Superimposed between the passive electrode of the transmission device and the passive electrode of the second power transmission device,
The passive electrode of the first power transmission device and the passive electrode of the second power transmission device are overlapped between the passive electrode of the first power transmission device and the passive electrode of the second power transmission device. the coupling through the non-conductive portion of the active electrode, the power transmission system which is.
前記アクティブ電極の非導体部の幅をG、導体部の幅をWで表すと、電極比率W/(W+G)は10%〜50%の範囲内である、請求項1に記載の電力伝送システム。   2. The power transmission system according to claim 1, wherein the electrode ratio W / (W + G) is within a range of 10% to 50%, where G represents the width of the non-conductor portion of the active electrode and W represents the width of the conductor portion. . 前記電極比率は10%〜35%の範囲内である、請求項2に記載の電力伝送システム。   The power transmission system according to claim 2, wherein the electrode ratio is in a range of 10% to 35%. 第1、第2の電力伝送装置のうち少なくとも一方の電力伝送装置の前記アクティブ電極および前記パッシブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、
前記アクティブ電極の非導体部で前記パッシブ電極の枠部が交差する、請求項1〜3のいずれかに記載の電力伝送システム。
The active electrode and the passive electrode of at least one of the first and second power transmission devices have frame-like, striped, or grid-like conductor portions periodically arranged in a plane direction,
The power transmission system according to claim 1, wherein a frame portion of the passive electrode intersects with a non-conductor portion of the active electrode.
第1の電力伝送装置のアクティブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、第1の電力伝送装置のアクティブ電極を第2の電力伝送装置に投影した時に第2の電力伝送装置のアクティブ電極の内側に収まる第1の電力伝送装置のアクティブ電極の非導体部が、第1の電力伝送装置のアクティブ電極の配列方向に二つ以上、且つ、この配列方向に直交する方向に二つ以上存在する、請求項1〜3のいずれかに記載の電力伝送システム。   The active electrode of the first power transmission device has frame-like, striped, or grid-like conductor portions periodically arranged in a plane direction, and the active electrode of the first power transmission device is projected onto the second power transmission device. When there are two or more non-conductive portions of the active electrode of the first power transmission device that fit inside the active electrode of the second power transmission device in the arrangement direction of the active electrodes of the first power transmission device, The power transmission system according to claim 1, wherein there are two or more in a direction orthogonal to the arrangement direction. 第1の電力伝送装置のアクティブ電極は、枠状、縞状または格子状の導体部が平面方向に周期的に配列され、第2の電力伝送装置のパッシブ電極は枠状の導体であり、第2の電力伝送装置のアクティブ電極は第2の電力伝送装置のパッシブ電極の内側に収まる大きさの導体である、請求項1〜3のいずれかに記載の電力伝送システム。   The active electrode of the first power transmission device has a frame-like, striped or grid-like conductor portion periodically arranged in the plane direction, the passive electrode of the second power transmission device is a frame-like conductor, The power transmission system according to claim 1, wherein the active electrode of the second power transmission device is a conductor having a size that fits inside the passive electrode of the second power transmission device.
JP2010214685A 2010-09-27 2010-09-27 Power transmission system Active JP5672898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010214685A JP5672898B2 (en) 2010-09-27 2010-09-27 Power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010214685A JP5672898B2 (en) 2010-09-27 2010-09-27 Power transmission system

Publications (2)

Publication Number Publication Date
JP2012070574A JP2012070574A (en) 2012-04-05
JP5672898B2 true JP5672898B2 (en) 2015-02-18

Family

ID=46167161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010214685A Active JP5672898B2 (en) 2010-09-27 2010-09-27 Power transmission system

Country Status (1)

Country Link
JP (1) JP5672898B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013153841A1 (en) * 2012-04-13 2013-10-17 株式会社 村田製作所 Non-contact power transmission system
EP2712054B1 (en) * 2012-05-09 2018-12-19 Murata Manufacturing Co., Ltd. Wireless power transmission system
WO2014045375A1 (en) * 2012-09-20 2014-03-27 富士機械製造株式会社 Contactless power supply device
US9923380B2 (en) * 2014-03-07 2018-03-20 Intel Corporation Capacitive element coupling in wireless power
JP6573199B2 (en) * 2016-02-04 2019-09-11 パナソニックIpマネジメント株式会社 Wireless power transmission system and power transmission device
JP6817604B2 (en) * 2017-03-24 2021-01-20 パナソニックIpマネジメント株式会社 Transmission equipment and wireless power transmission system
JP7054834B2 (en) * 2017-07-20 2022-04-15 パナソニックIpマネジメント株式会社 Electrode units, power transmission equipment, power receiving equipment, electronic devices, mobile bodies, and wireless power transmission systems
CN111937271A (en) * 2018-03-29 2020-11-13 松下知识产权经营株式会社 Power transmission module, power transmission device, and wireless power transmission system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0621437A2 (en) * 2006-03-21 2012-07-10 Tmms Co Ltd electricity conveying devices through vacuum and dielectric materials
FR2920061A1 (en) * 2007-08-17 2009-02-20 Patrick Camurati METHOD AND DEVICE FOR TRANSPORTING, DISTRIBUTING AND MANAGING ELECTRICAL ENERGY BY LONGITUDINAL COUPLING IN A CLOSE FIELD BETWEEN ELECTRIC DIPOLES
JP2010213554A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Power supply system

Also Published As

Publication number Publication date
JP2012070574A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5672898B2 (en) Power transmission system
US9947462B2 (en) Wireless power transmission system, power transmitting device, and power receiving device
US10530178B2 (en) Bi-plane wireless power transmission pad
JP5354030B2 (en) Power transmission system and non-contact charging device
JP5924496B2 (en) Power transmission system
JP5737545B2 (en) Power receiving device, power transmitting device, and power transmission system
WO2012094051A3 (en) Travelling wave distributed active antenna radiator structures, high frequency power generation and quasi-optical filtering
JP5667019B2 (en) Wireless power transmission apparatus and method
US20160126001A1 (en) Wireless charging coil pcb structure with slit
JP6168500B2 (en) Wireless power transmission device, power transmission device, and power reception device
JP6118268B2 (en) Photovoltaic element with resonator
JP5729626B2 (en) Power transmission device, power reception device, and non-contact power transmission system
JP2011211491A (en) Plate-shaped built-in antenna, high-frequency module using the same, and radio terminal
WO2016173485A1 (en) Slot antenna and mobile terminal
JP5601152B2 (en) Wireless power transmission system and power transmission device
JP2014093797A (en) Power transmission system
WO2017169709A1 (en) Coil antenna, power-feeding device, power-receiving device, and wireless power supply system
JP2015053439A (en) Non-contact power transmission device
JP7287402B2 (en) Wireless power supply system
JP2014093320A (en) Power transmission system
JP6424710B2 (en) Contactless power transmission coil and contactless power transmission device
TWI676318B (en) Antenna device
WO2019198355A1 (en) Contactless power transmission system, power transmitting device, and power receiving device
CN106067370A (en) For the method and apparatus that the coil of uniform wireless charging is integrated
WO2019210503A1 (en) Wireless charging system capable of achieving energy funnel effect and wireless charging method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130628

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R150 Certificate of patent or registration of utility model

Ref document number: 5672898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150