WO2013153841A1 - Non-contact power transmission system - Google Patents

Non-contact power transmission system Download PDF

Info

Publication number
WO2013153841A1
WO2013153841A1 PCT/JP2013/052634 JP2013052634W WO2013153841A1 WO 2013153841 A1 WO2013153841 A1 WO 2013153841A1 JP 2013052634 W JP2013052634 W JP 2013052634W WO 2013153841 A1 WO2013153841 A1 WO 2013153841A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
power transmission
main surface
power
power receiving
Prior art date
Application number
PCT/JP2013/052634
Other languages
French (fr)
Japanese (ja)
Inventor
博紀 酒井
Original Assignee
株式会社 村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 村田製作所 filed Critical 株式会社 村田製作所
Priority to CN201390000248.7U priority Critical patent/CN204145084U/en
Priority to JP2014510064A priority patent/JP5794444B2/en
Publication of WO2013153841A1 publication Critical patent/WO2013153841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • the present invention relates to a contactless power transmission system, and more particularly to a contactless power transmission system that transmits electric power from a power transmission device to a power reception device using an electric field.
  • the power feeding device has two power feeding electrodes respectively connected to one end and the other end of the resonance unit.
  • the AC signal generated in the resonance part is applied to the two power supply electrodes and radiated to the outside as a potential difference in the electrostatic field.
  • the power receiving device includes 16 power receiving electrodes that sense a potential difference radiated from the power feeding device, and a selection determination unit that classifies these power receiving electrodes into a first set and a second set.
  • the electric signal output from the power receiving electrode belonging to the first set is applied to one end of the resonance part
  • the electric signal output from the power receiving electrode belonging to the second set is applied to the other end of the resonance part
  • the resonance The output of the unit is supplied to the load through the rectifying unit.
  • the feeding electrode is much larger than the receiving electrode, the capacity of the receiving electrode on the side belonging to the second set having the opposite polarity to that of the first feeding electrode is increased. May decrease.
  • a main object of the present invention is to provide a non-contact power transmission system that can avoid a decrease in power transmission efficiency.
  • a non-contact power transmission system includes a first power transmission electrode (AC1) that is provided along a first main surface of a first housing (CB1: reference numeral corresponding to the embodiment; the same applies hereinafter) to which an AC voltage is applied.
  • E1 and a power transmission device (10) including a second power transmission electrode (E2), and an electric field coupling with the first power transmission electrode and the second power transmission electrode provided along the second main surface of the second housing (CB2).
  • the electrode is divided into a plurality of partial electrodes (E1_1 to E1_6) by the notch, and the arrangement of the notch is in a specific state. Part of the second power receiving electrode is adjusted so as to face the notch Te.
  • the notch is formed so that a plurality of partial electrodes (E1_1 to E1_6) are arranged in the first direction.
  • each of the plurality of partial electrodes forms a strip extending in the second direction orthogonal to the first direction, and the maximum distance between two points assigned to the outline of the first power receiving electrode is the width of the notch and the length of the strip. It exceeds the distance corresponding to the sum of the width.
  • the main surface of the second power receiving electrode has a rectangular shape
  • the second power transmitting electrode has a rectangular opening for accommodating the first power transmitting electrode
  • the length of the short side of the rectangle forming the main surface of the second power receiving electrode is It is larger than the length of the short side of the rectangle forming the opening.
  • the main surface of the second power receiving electrode has a size covering the main surface of the first power receiving electrode, and the first power receiving electrode is stacked on the second power receiving electrode toward the outside of the second housing.
  • the second main surface has a size covered by the first main surface, and the specific state is a positional relationship in which the second main surface is within the outer edge of the first main surface when viewed from a direction orthogonal to the second main surface.
  • selection means for selecting any one of the plurality of partial electrodes as an AC voltage application destination
  • control means (16) for controlling the operation of the selection means with reference to impedance characteristics.
  • the AC voltage is changed to the first power transmitting electrode, the second power transmitting electrode, the first power receiving electrode, and the second power receiving The power is transmitted from the power transmission device to the power reception device via the electrode.
  • each of the first power transmission electrode and the first power reception electrode has the first power reception electrode viewed from the direction orthogonal to the second main surface in a specific state in which the second main surface is opposed to the first main surface.
  • the size fits within the outer edge of the power transmission electrode. Accordingly, when the relative position of the power receiving device is changed along the first main surface, the amount of change in the coupling capacitance between the first power transmission electrode and the first power receiving electrode is suppressed compared to the amount of change in the relative position. .
  • the first power transmission electrode is divided into a plurality of partial electrodes by the notch, and the arrangement of the notch is adjusted so that a part of the second power receiving electrode faces the notch in a specific state.
  • capacitance of a 2nd receiving electrode and a 1st power transmission electrode is suppressed.
  • a decrease in power transmission efficiency is avoided.
  • FIG. 1 It is a perspective view which shows an example of the external appearance of the power transmission apparatus applied to the non-contact electric power transmission system of this Example. It is a perspective view which shows an example of the external appearance of the power receiving apparatus applied to the non-contact electric power transmission system of this Example.
  • (A) is an illustration figure which shows an example of an electrode raw material
  • (B) is an illustration figure which shows an example of the power transmission side active electrode produced by forming a notch in an electrode raw material.
  • (A) is an illustration figure which shows another example of an electrode raw material
  • (B) is an illustration figure which shows an example of the power transmission side passive electrode produced by forming opening in an electrode raw material. It is an illustration figure which shows an example of a receiving side active electrode and a receiving side passive electrode.
  • FIG. 1 It is an illustration figure which shows an example of the difference in size between a power transmission apparatus and a power receiving apparatus.
  • A is an illustration figure which shows an example of the positional relationship of a power transmission apparatus and a power receiving apparatus
  • (B) is an illustration figure which shows another example of the positional relationship of a power transmission apparatus and a power receiving apparatus.
  • A) is an illustration figure which shows the other example of the positional relationship of a power transmission apparatus and a power receiving apparatus
  • (B) is an illustration figure which shows another example of the positional relationship of a power transmission apparatus and a power receiving apparatus.
  • (A) is an illustrative view showing another example of the positional relationship between the power transmitting device and the power receiving device
  • (B) is an illustrative view showing another example of the positional relationship between the power transmitting device and the power receiving device.
  • (A) is an illustrative view showing another example of the power transmission side active electrode
  • (B) is an illustrative view showing another example of the power transmission side active electrode. It is an illustration figure which shows an example of the power transmission apparatus and power receiving apparatus which are applied to another Example. It is a block diagram which shows a part of structure of the power transmission apparatus applied to another Example.
  • the contactless power transmission system of this embodiment is formed by the power transmission device 10 shown in FIG. 1 and the power reception device 30 shown in FIG.
  • the power transmission device 10 has a plate-like casing CB1 provided with a power transmission side active electrode E1 and a power transmission side passive electrode E2, and the power reception device 30 is a plate provided with a power reception side active electrode E3 and a power reception side passive electrode E4.
  • the housing CB2 has a shape. More specifically, the power transmission side active electrode E1 and the power transmission side passive electrode E2 are provided along the upper surface of the housing CB1, and the power reception side active electrode E3 and the power reception side passive electrode E4 are provided along the upper surface of the housing CB2.
  • the power transmission side active electrode E1 is formed by six partial electrodes E1_1 to E1_6.
  • the power transmission side active electrode E1 is produced based on the electrode material EM1 shown in FIG.
  • the electrode material EM1 has a rectangular main surface with long sides and short sides extending in the X direction and the Y direction, respectively, and is formed in a plate shape.
  • the thickness of the electrode material EM1 is much smaller than the thickness of the housing CB1.
  • notches CT1 to CT5 each having a width corresponding to “W1” and extending in the Y direction are formed as shown in FIG.
  • the notches CT1 to CT5 are formed at the same distance in the X direction.
  • strip-shaped partial electrodes E1_1 to E1_6 having a common size are obtained.
  • Each main surface of the partial electrodes E1_1 to E1_6 has a short side extending in the X direction and a long side extending in the Y direction. The length of the short side corresponds to “X1”, while the length of the long side is Corresponds to “Y1”.
  • the power transmission side passive electrode E2 is produced based on the electrode material EM2 shown in FIG.
  • the electrode material EM2 has a rectangular main surface with long sides and short sides extending in the X direction and the Y direction, respectively, and is formed in a plate shape.
  • the thickness of the electrode material EM2 is also much smaller than the thickness of the housing CB1.
  • the length of the long side corresponds to “X2a”, while the length of the short side corresponds to “Y2a”.
  • the size of the main surface of the electrode material EM2 matches the size of the upper surface of the housing CB1.
  • the long side and the short side of the rectangle forming the opening OP1 extend in the X direction and the Y direction, the length of the long side corresponds to “X2b”, and the length of the short side corresponds to “Y2b”.
  • the length of the short side of the rectangle forming the opening OP1 is larger than the length of the short side of the rectangle forming the main surface of the electrode member EM1, and the length of the long side of the rectangle forming the opening OP1 is the length of the electrode member EM1. It is larger than the length of the long side of the rectangle forming the main surface.
  • the power transmission side active electrode E1 is provided at the center of the upper surface of the casing CB1.
  • the power transmission side passive electrode E2 is provided on the upper surface of the housing CB1 so that the outer edge of the upper surface of the housing CB1 coincides with the outer edge of the main surface of the power transmission side passive electrode E2. Since the sizes of the power transmission side active electrode E1 and the power transmission side passive electrode E2 are as described above, the power transmission side active electrode E1 is accommodated in the opening OP1 provided in the power transmission side passive electrode E2.
  • the power receiving side active electrode E3 is formed in a plate shape having a square main surface with each side extending in the X direction or the Y direction.
  • the length of each side corresponds to “X3” or “Y3”.
  • the power receiving side passive electrode E4 has a rectangular main surface with a short side and a long side extending in the X direction and the Y direction, respectively, and is formed in a plate shape.
  • the length of the short side corresponds to “X4”
  • the length of the long side corresponds to “Y4”
  • both the short side and the long side have the length of each square forming the power receiving side active electrode E3. It is larger than the side length.
  • the size of the main surface of the power receiving side passive electrode E4 matches the size of the upper surface of the housing CB2, and the power receiving side passive electrode E4 has the outer edge of the upper surface of the housing CB2 aligned with the outer edge of the main surface of the power transmitting side passive electrode E2.
  • the power receiving-side active electrode E3 is stacked on the power receiving-side passive electrode E4 (that is, toward the outside of the housing CB2) at a certain distance corresponding to the center position of the upper surface of the housing CB2.
  • the power transmission device 10 and the power reception device 30 have the size relationship shown in FIG. Indicates.
  • FIG. As can be seen from (B), the upper surface of the housing CB2 has a size covered by the upper surface of the housing CB1.
  • the sizes of the power transmission side active electrode E1 and the power reception side active electrode E3 are determined based on the power receiving side active when viewed from the direction orthogonal to each upper surface in a specific state where the upper surface of the housing CB1 is opposed to the upper surface of the housing CB2.
  • the electrode E3 is adjusted so as to be within the outer edge or contour of the power transmission side active electrode E1 (the outer edge or contour is defined by a broken line in FIG. 6).
  • a part of the power receiving side passive electrode E4 faces a part of the notches CT1 to CT5.
  • the specific state is premised on a positional relationship in which the top surface of the housing CB2 is within the outer edge or contour of the top surface of the housing CB1 when viewed from a direction orthogonal to the top surface of the housing CB2.
  • the maximum distance between the two points assigned to the contour of the power receiving side active electrode E3 is the width W1 of each of the cutouts CT1 to CT5 and the length X1 of the short side that forms the main surface of each of the partial electrodes E1_1 to E1_6. It exceeds the distance equivalent to the sum of Further, the length X4 of the rectangular short side forming the main surface of the power receiving side passive electrode E4 is larger than the length Yb2 of the rectangular short side forming the opening OP1 provided in the power transmitting side passive electrode E2.
  • power transmission device 10 includes a DC power supply 12.
  • the DC power supply 12 applies a DC voltage to the input terminal of the switch SW1 connected to either one of the terminals T1 and T2.
  • the terminal T1 is directly connected to the inverter 18, and the terminal T2 is connected to the inverter 18 via the resistor R1. Therefore, when the switch SW1 is connected to the terminal T1, a DC voltage is supplied to the inverter 18, and when the switch SW1 is connected to the terminal T2, the voltage dropped by the resistor R1 is supplied to the inverter 18.
  • the inverter 18 is turned on during a period when the PWM signal output from the PWM generation circuit 14 is at the H level, and is turned off during a period when the PWM signal output from the PWM generation circuit 14 is at the L level. Inverter 18 is also connected to primary winding Np1 among primary winding Np1 and secondary winding Ns1 forming transformer 20.
  • the inverter 18 when the inverter 18 is turned on / off as described above, an AC voltage is excited in the secondary winding Ns1.
  • the number of turns of the secondary winding Ns1 is larger than the number of turns of the primary winding Np1, and the AC voltage appearing in the secondary winding Ns1 is higher than the AC voltage appearing in the primary winding Np1.
  • the frequency and height of the AC voltage appearing in each of the primary winding Np1 and the secondary winding Ns1 depend on the frequency and duty ratio of the PWM signal, respectively.
  • the one end of the secondary winding Ns1 is connected to the power transmission side active electrode E1 via the switch circuit SW2, and the other end of the secondary winding Ns1 is directly connected to the power transmission side passive electrode E2.
  • the switch circuit SW2 is formed by switches SW2_1 to SW2_6 that are assigned to the partial electrodes E1_1 to E1_6 and are selectively turned on. Therefore, the AC voltage excited in the secondary winding Ns1 is applied to any one of the partial electrodes E1_1 to E1_6 and the power transmission side passive electrode E2.
  • the excited AC voltage is excited by the electric field coupling in the power receiving side active electrode E3 and the passive side power receiving electrode E4.
  • the excited AC voltage has a frequency corresponding to the frequency of the AC voltage applied to the power transmission side active electrode E1 and the power transmission side passive electrode E2 and a height depending on the electric field coupling degree.
  • the alternating voltage thus excited is supplied to the load 34 via the primary winding Np2 and the secondary winding Ns2 forming the transformer 32.
  • the number of turns of the secondary winding Ns2 is smaller than the number of turns of the primary winding Np2, and the AC voltage supplied to the load 34 is higher than the AC voltage excited by the power receiving side active electrode E3 and the passive side power receiving electrode E4. Indicates a low value.
  • the CPU 16 provided in the power transmission device 10 adjusts the setting of the switch SW2 and the frequency of the PWM signal in the following manner when starting the power supply to the power receiving device 30 that is electric field coupled.
  • CPU 16 first connects the connection destination of switch SW1 to terminal T2, and initializes the frequency and duty ratio of the PWM signal.
  • the PWM generation circuit 14 supplies a PWM signal having an initial frequency and a duty ratio to the inverter 18. As a result, an AC voltage having a height and frequency depending on the duty ratio and frequency is excited in the secondary winding Ns1 of the transformer 20.
  • the CPU 16 sets the variable K to “1” to “6”, and turns on only the switch SW2_K among the switches SW2_1 to SW2_6.
  • the frequency of the PWM signal is swept, and in parallel with this, the impedance characteristic on the transformer 20 side of the inverter 18 is measured. In the measurement, the voltage at the input terminal of the inverter 18 is referred to.
  • the connection state of the switch SW2 and the frequency of the PWM signal corresponding to the maximum value when the impedance value indicates an impedance characteristic that falls within the predetermined range are searched.
  • the switch SW2 is set to the detected connection state, and the frequency of the PWM signal is set to the detected frequency.
  • the switch SW1 is connected to the terminal T1. Thereby, power supply to the power receiving device 30 is started.
  • the CPU 16 executes processing according to the flowcharts shown in FIGS.
  • a control program corresponding to this flowchart is stored in the flash memory 16m.
  • step S1 switch SW1 is connected to terminal T2, and in step S3, the frequency and duty ratio of the PWM signal are initialized.
  • the PWM generation circuit 14 supplies a PWM signal having a set frequency and duty ratio to the inverter 18.
  • step S5 the variable K is set to “1”, and in step S7, only the switch SW2_K among the switches SW2_1 to SW2_6 is turned on.
  • step S9 the frequency of the PWM signal is swept, and in parallel with this, the impedance characteristic on the transformer 20 side of the inverter 18 is measured. In the measurement, the voltage at the input terminal of the inverter 18 is referred to.
  • step S11 the impedance maximum value is searched with reference to the measured impedance characteristic.
  • step S13 it is determined whether or not the maximum value has been detected. If the determination result is NO, the process proceeds to step S17, and if the determination result is YES, the process proceeds to step S15. In step S15, it is determined whether or not the detected maximum value belongs to the predetermined range. If the determination result is NO, the process proceeds to step S17, and if the determination result is YES, the process proceeds to step S25.
  • step S17 the variable K is incremented, and in step S19, it is determined whether or not the current value of the variable K exceeds “6”. If a determination result is NO, it will return to step S7 as it is. On the other hand, if the determination result is YES, it waits for a predetermined time in step S21, sets the variable K to “1” in step S23, and then returns to step S7.
  • step S25 the frequency at which the impedance has a maximum value is set as the frequency of the PWM signal.
  • the switch SW1 is connected to the terminal T1 in step S27, and then the process ends.
  • the power transmission device 10 includes a power transmission side active electrode E1 and a power transmission side passive electrode E2 that are provided along the upper surface of the housing CB1 and to which an AC voltage is applied.
  • the power receiving device 30 includes a power receiving side active electrode E3 and a power receiving side passive electrode E4 that are provided along the upper surface of the housing CB2 and are electrically coupled to the power transmitting side active electrode E1 and the power transmitting side passive electrode E2.
  • each of the power transmitting side active electrode E1 and the power receiving side active electrode E3 is such that the upper surface of the housing CB1 faces the upper surface of the housing CB2 and is viewed from the direction orthogonal to each upper surface.
  • the side active electrode E3 is adjusted so as to be within the outer edge of the power transmission side active electrode E1.
  • the power transmission side active electrode E1 is divided into partial electrodes E1_1 to E1_6 by notches CT1 to CT5. It is adjusted so as to face a part of.
  • the power transmission side active electrode E1 and the power reception side active electrode E3 By adjusting the sizes of the power transmission side active electrode E1 and the power reception side active electrode E3 as described above, when the relative position of the power reception device 30 is changed in the direction along each upper surface, the power transmission side active electrode E1 and the power reception side active The fluctuation amount of the coupling capacitance with the electrode E3 is suppressed as compared with the fluctuation amount of the relative position.
  • the power transmission side active electrode E1 is divided into partial electrodes E1_1 to E1_6 by notches CT1 to CT5, and in a specific state, the power receiving side passive electrode E4 is partly cut away so as to face a part of the notches CT1 to CT5.
  • the coupling capacitance between the power receiving side passive electrode E4 and the power transmitting side active electrode E1 is suppressed.
  • a decrease in power transmission efficiency is avoided.
  • each of the partial electrodes E1_1 to E1_6 is formed in a rectangular shape.
  • the shape of each of the partial electrodes E1_1 to E1_6 is not limited to a rectangular shape, and FIG. You may make it employ
  • the power receiving side active electrode E3 is formed in a square shape, it may have a rectangular shape in which the lengths of the sides X3 and Y3 are different as long as the above relationship is satisfied.
  • one end of the secondary winding Ns1 is connected to one of the partial electrodes E1_1 to E1_6, and the other end of the secondary winding Ns1 is connected to the power transmission side passive electrode E2.
  • one end of the secondary winding Ns1 may be connected to one of the partial electrodes E1_1 to E1_6, and the other end of the secondary winding Ns1 may be connected to the other one of the partial electrodes E1_1 to E1_6.
  • the power transmission side passive electrode E2 is omitted from the casing CB1 as shown in FIG. 15, and the power transmission device 10 is configured as shown in FIG.
  • the switch circuit SW2 is formed by the switches SW2_11 to SW2_16.
  • the connection destination of each of the switches SW2_11 to SW2_13 is switched between one end of the secondary winding Ns1, the other end of the secondary winding Ns1, and the open end.
  • the connection destination of each of the switches SW2_14 to SW2_16 is switched between one end of the secondary winding Ns1, the other end of the secondary winding Ns1, and the ground. Further, the connection state of the switch circuit SW2 is controlled by the CPU 16.
  • one of the switches SW2_11 to SW2_16 is connected to one end of the secondary winding Ns, and the other one of the switches SW2_11 to SW2_16 is connected to the other end of the secondary winding Ns, and the remaining switches Is connected to the open end or ground.

Abstract

A power transmission device (10) comprises a power transmission side active electrode (E1) and a power transmission side passive electrode (E2) disposed along the upper surface of a housing (CB1). A power receiving device (30) comprises a power receiving side active electrode (E3) and a power receiving side passive electrode (E4) disposed along the upper surface of a housing (CB2). Herein, the size of each of the power transmission side active electrode (E1) and the power receiving side active electrode (E3) is adjusted so that the power receiving side active electrode (E3) is accommodated in the outer edge of the power transmission side active electrode (E1) when viewed from the direction orthogonal to each of the upper surfaces in a specific state where the upper surface of the housing (CB1) faces the upper surface of the housing (CB2). Also, the power transmission side active electrode (E1) is divided by notches (CT1 to CT5), and the arrangement of the notches (CT1 to CT5) is adjusted so that part of the power receiving side passive electrode (E4) faces part of the notches (CT1 to CT5) in the specific state.

Description

非接触電力伝送システムNon-contact power transmission system
 この発明は、非接触電力伝送システムに関し、特に電界を利用して送電装置から受電装置に電力を伝送する、非接触電力伝送システムに関する。 The present invention relates to a contactless power transmission system, and more particularly to a contactless power transmission system that transmits electric power from a power transmission device to a power reception device using an electric field.
 この種のシステムの一例が、特許文献1に開示されている。この背景技術によれば、給電装置は、共振部の一方端および他方端とそれぞれ接続された2つの給電電極を有する。共振部で生成された交流信号はこの2つの給電電極に印加され、静電界における電位差として外部に放射される。一方、受電装置は、給電装置から放射された電位差を感知する16個の受電電極と、これらの受電電極を第1の集合および第2の集合に分類する選択判定部とを有する。第1の集合に属する受電電極から出力された電気信号は共振部の一方端に印加され、第2の集合に属する受電電極から出力された電気信号は共振部の他方端に印加され、そして共振部の出力が整流部を経て負荷に供給される。 An example of this type of system is disclosed in Patent Document 1. According to this background art, the power feeding device has two power feeding electrodes respectively connected to one end and the other end of the resonance unit. The AC signal generated in the resonance part is applied to the two power supply electrodes and radiated to the outside as a potential difference in the electrostatic field. On the other hand, the power receiving device includes 16 power receiving electrodes that sense a potential difference radiated from the power feeding device, and a selection determination unit that classifies these power receiving electrodes into a first set and a second set. The electric signal output from the power receiving electrode belonging to the first set is applied to one end of the resonance part, the electric signal output from the power receiving electrode belonging to the second set is applied to the other end of the resonance part, and the resonance The output of the unit is supplied to the load through the rectifying unit.
特開2009-296857号公報JP 2009-296857 A
 しかし、背景技術では、給電電極が受電電極よりも格段に大きいため、第1給電電極と逆の極性である第2の集合に属する側の受電電極との容量が増大し、これによって電力伝送効率が低下するおそれがある。 However, in the background art, since the feeding electrode is much larger than the receiving electrode, the capacity of the receiving electrode on the side belonging to the second set having the opposite polarity to that of the first feeding electrode is increased. May decrease.
 それゆえに、この発明の主たる目的は、電力伝送効率の低下を回避することができる、非接触電力伝送システムを提供することである。 Therefore, a main object of the present invention is to provide a non-contact power transmission system that can avoid a decrease in power transmission efficiency.
 この発明に従う非接触電力伝送システムは、第1筐体(CB1:実施例で相当する参照符号。以下同じ)の第1主面に沿って設けられて交流電圧が印加される第1送電電極(E1)および第2送電電極(E2)を備える送電装置(10)と、第2筐体(CB2)の第2主面に沿って設けられて第1送電電極および第2送電電極と電界結合される第1受電電極(E3)および第2受電電極(E4)を備える受電装置(20)とによって形成された非接触電力電送システムであって、第1送電電極および第1受電電極の各々のサイズは第2主面を第1主面に対向させた特定状態において第2主面に直交する方向から眺めて第1受電電極が第1送電電極の外縁内に収まるように調整され、第1送電電極は切り欠きによって複数の部分電極(E1_1~E1_6)に分割され、そして切り欠きの配置は特定状態において第2受電電極の一部が切り欠きと対向するように調整される。 A non-contact power transmission system according to the present invention includes a first power transmission electrode (AC1) that is provided along a first main surface of a first housing (CB1: reference numeral corresponding to the embodiment; the same applies hereinafter) to which an AC voltage is applied. E1) and a power transmission device (10) including a second power transmission electrode (E2), and an electric field coupling with the first power transmission electrode and the second power transmission electrode provided along the second main surface of the second housing (CB2). A non-contact power transmission system formed by a power receiving device (20) including a first power receiving electrode (E3) and a second power receiving electrode (E4), each size of the first power transmitting electrode and the first power receiving electrode Is adjusted so that the first power receiving electrode is within the outer edge of the first power transmitting electrode when viewed from the direction orthogonal to the second main surface in a specific state where the second main surface is opposed to the first main surface. The electrode is divided into a plurality of partial electrodes (E1_1 to E1_6) by the notch, and the arrangement of the notch is in a specific state. Part of the second power receiving electrode is adjusted so as to face the notch Te.
 好ましくは、切り欠きは複数の部分電極(E1_1~E1_6)が第1方向に並ぶように形成される。 Preferably, the notch is formed so that a plurality of partial electrodes (E1_1 to E1_6) are arranged in the first direction.
 さらに好ましくは、複数の部分電極の各々は第1方向に直交する第2方向に延びる短冊をなし、第1受電電極の輪郭に割り当てられた2点間の最大距離は切り欠きの幅と短冊の幅との和に相当する距離を上回る。 More preferably, each of the plurality of partial electrodes forms a strip extending in the second direction orthogonal to the first direction, and the maximum distance between two points assigned to the outline of the first power receiving electrode is the width of the notch and the length of the strip. It exceeds the distance corresponding to the sum of the width.
 好ましくは、第2受電電極の主面は長方形をなし、第2送電電極は第1送電電極を収める長方形の開口を有し、第2受電電極の主面をなす長方形の短辺の長さは開口をなす長方形の短辺の長さよりも大きい。 Preferably, the main surface of the second power receiving electrode has a rectangular shape, the second power transmitting electrode has a rectangular opening for accommodating the first power transmitting electrode, and the length of the short side of the rectangle forming the main surface of the second power receiving electrode is It is larger than the length of the short side of the rectangle forming the opening.
 好ましくは、第2受電電極の主面は第1受電電極の主面を覆うサイズを有し、第1受電電極は第2筐体の外側に向かって第2受電電極に積層される。 Preferably, the main surface of the second power receiving electrode has a size covering the main surface of the first power receiving electrode, and the first power receiving electrode is stacked on the second power receiving electrode toward the outside of the second housing.
 好ましくは、第2主面は第1主面によって覆われるサイズを有し、特定状態は第2主面に直交する方向から眺めて第2主面が第1主面の外縁内に収まる位置関係を前提とする。 Preferably, the second main surface has a size covered by the first main surface, and the specific state is a positional relationship in which the second main surface is within the outer edge of the first main surface when viewed from a direction orthogonal to the second main surface. Assuming
 好ましくは、複数の部分電極のいずれか1つを交流電圧の印加先として選択する選択手段(SW2)、および選択手段の動作をインピーダンス特性を参照して制御する制御手段(16)がさらに備えられる。 Preferably, there is further provided selection means (SW2) for selecting any one of the plurality of partial electrodes as an AC voltage application destination, and control means (16) for controlling the operation of the selection means with reference to impedance characteristics. .
 この発明によれば、第2主面が第1主面に対向する姿勢で受電装置を送電装置に近づけると、交流電圧が第1送電電極,第2送電電極,第1受電電極および第2受電電極を介して送電装置から受電装置に伝送される。 According to this invention, when the power receiving device is brought close to the power transmitting device in a posture in which the second main surface faces the first main surface, the AC voltage is changed to the first power transmitting electrode, the second power transmitting electrode, the first power receiving electrode, and the second power receiving The power is transmitted from the power transmission device to the power reception device via the electrode.
 ここで、第1送電電極および第1受電電極の各々は、第2主面を第1主面に対向させた特定状態において第2主面に直交する方向から眺めて第1受電電極が第1送電電極の外縁内に収まるサイズを有する。これによって、受電装置の相対位置を第1主面に沿って変動させたとき、第1送電電極と第1受電電極との結合容量の変動量は、相対位置の変動量に比べて抑制される。 Here, each of the first power transmission electrode and the first power reception electrode has the first power reception electrode viewed from the direction orthogonal to the second main surface in a specific state in which the second main surface is opposed to the first main surface. The size fits within the outer edge of the power transmission electrode. Accordingly, when the relative position of the power receiving device is changed along the first main surface, the amount of change in the coupling capacitance between the first power transmission electrode and the first power receiving electrode is suppressed compared to the amount of change in the relative position. .
 また、第1送電電極は切り欠きによって複数の部分電極に分割され、切り欠きの配置は特定状態において第2受電電極の一部が切り欠きと対向するように調整される。これによって、第2受電電極と第1送電電極との容量が抑制される。こうして、電力伝送効率の低下が回避される。 Also, the first power transmission electrode is divided into a plurality of partial electrodes by the notch, and the arrangement of the notch is adjusted so that a part of the second power receiving electrode faces the notch in a specific state. Thereby, the capacity | capacitance of a 2nd receiving electrode and a 1st power transmission electrode is suppressed. Thus, a decrease in power transmission efficiency is avoided.
 この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の実施例の詳細な説明から一層明らかとなろう。 The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments with reference to the drawings.
この実施例の非接触電力電送システムに適用される送電装置の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the power transmission apparatus applied to the non-contact electric power transmission system of this Example. この実施例の非接触電力伝送システムに適用される受電装置の外観の一例を示す斜視図である。It is a perspective view which shows an example of the external appearance of the power receiving apparatus applied to the non-contact electric power transmission system of this Example. (A)は電極素材の一例を示す図解図であり、(B)は電極素材に切り欠きを形成して作製された送電側アクティブ電極の一例を示す図解図である。(A) is an illustration figure which shows an example of an electrode raw material, (B) is an illustration figure which shows an example of the power transmission side active electrode produced by forming a notch in an electrode raw material. (A)は電極素材の他の一例を示す図解図であり、(B)は電極素材に開口を形成して作製された送電側パッシブ電極の一例を示す図解図である。(A) is an illustration figure which shows another example of an electrode raw material, (B) is an illustration figure which shows an example of the power transmission side passive electrode produced by forming opening in an electrode raw material. 受電側アクティブ電極および受電側パッシブ電極の一例を示す図解図である。It is an illustration figure which shows an example of a receiving side active electrode and a receiving side passive electrode. 送電装置および受電装置の間のサイズの相違の一例を示す図解図である。It is an illustration figure which shows an example of the difference in size between a power transmission apparatus and a power receiving apparatus. (A)は送電装置および受電装置の位置関係の一例を示す図解図であり、(B)は送電装置および受電装置の位置関係の他の一例を示す図解図である。(A) is an illustration figure which shows an example of the positional relationship of a power transmission apparatus and a power receiving apparatus, (B) is an illustration figure which shows another example of the positional relationship of a power transmission apparatus and a power receiving apparatus. (A)は送電装置および受電装置の位置関係のその他の一例を示す図解図であり、(B)は送電装置および受電装置の位置関係のさらにその他の一例を示す図解図である。(A) is an illustration figure which shows the other example of the positional relationship of a power transmission apparatus and a power receiving apparatus, (B) is an illustration figure which shows another example of the positional relationship of a power transmission apparatus and a power receiving apparatus. (A)は送電装置および受電装置の位置関係の他の一例を示す図解図であり、(B)は送電装置および受電装置の位置関係のその他の一例を示す図解図である。(A) is an illustrative view showing another example of the positional relationship between the power transmitting device and the power receiving device, and (B) is an illustrative view showing another example of the positional relationship between the power transmitting device and the power receiving device. この実施例の非接触電力伝送システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the non-contact electric power transmission system of this Example. 送電装置に適用されるスイッチ回路の構成の一例を示す図解図である。It is an illustration figure which shows an example of a structure of the switch circuit applied to a power transmission apparatus. 送電装置に適用されるCPUの動作の一部を示すフロー図である。It is a flowchart which shows a part of operation | movement of CPU applied to a power transmission apparatus. 送電装置に適用されるCPUの動作の他の一部を示すフロー図である。It is a flowchart which shows a part of other operation | movement of CPU applied to a power transmission apparatus. (A)は送電側アクティブ電極の他の一例を示す図解図であり、(B)は送電側アクティブ電極のその他の一例を示す図解図である。(A) is an illustrative view showing another example of the power transmission side active electrode, and (B) is an illustrative view showing another example of the power transmission side active electrode. 他の実施例に適用される送電装置および受電装置の一例を示す図解図である。It is an illustration figure which shows an example of the power transmission apparatus and power receiving apparatus which are applied to another Example. 他の実施例に適用される送電装置の構成の一部を示すブロック図である。It is a block diagram which shows a part of structure of the power transmission apparatus applied to another Example.
 この実施例の非接触電力電送システムは、図1に示す送電装置10と図2に示す受電装置30とによって形成される。送電装置10は、送電側アクティブ電極E1および送電側パッシブ電極E2が設けられた板状の筐体CB1を有し、受電装置30は受電側アクティブ電極E3および受電側パッシブ電極E4が設けられた板状の筐体CB2を有する。より詳しくは、送電側アクティブ電極E1および送電側パッシブ電極E2は筐体CB1の上面に沿って設けられ、受電側アクティブ電極E3および受電側パッシブ電極E4は筐体CB2の上面に沿って設けられる。また、送電側アクティブ電極E1は、6つの部分電極E1_1~E1_6によって形成される。 The contactless power transmission system of this embodiment is formed by the power transmission device 10 shown in FIG. 1 and the power reception device 30 shown in FIG. The power transmission device 10 has a plate-like casing CB1 provided with a power transmission side active electrode E1 and a power transmission side passive electrode E2, and the power reception device 30 is a plate provided with a power reception side active electrode E3 and a power reception side passive electrode E4. The housing CB2 has a shape. More specifically, the power transmission side active electrode E1 and the power transmission side passive electrode E2 are provided along the upper surface of the housing CB1, and the power reception side active electrode E3 and the power reception side passive electrode E4 are provided along the upper surface of the housing CB2. The power transmission side active electrode E1 is formed by six partial electrodes E1_1 to E1_6.
 送電側アクティブ電極E1は、図3(A)に示す電極素材EM1に基づいて作製される。電極素材EM1は、長辺および短辺がX方向およびY方向にそれぞれ延びる長方形の主面を有して、板状に形成される。ここで、電極素材EM1の厚みは、筐体CB1の厚みよりも格段に小さい。 The power transmission side active electrode E1 is produced based on the electrode material EM1 shown in FIG. The electrode material EM1 has a rectangular main surface with long sides and short sides extending in the X direction and the Y direction, respectively, and is formed in a plate shape. Here, the thickness of the electrode material EM1 is much smaller than the thickness of the housing CB1.
 電極EM1には、各々が“W1”に相当する幅を有してY方向に延びる切り欠きCT1~CT5が図3(B)に示すように形成される。切り欠きCT1~CT5は、X方向に同じ距離を隔てて形成される。これによって、サイズが共通する短冊状の部分電極E1_1~E1_6が得られる。部分電極E1_1~E1_6の各々の主面は、X方向に延びる短辺とY方向に延びる長辺とを有し、短辺の長さは“X1”に相当する一方、長辺の長さは“Y1”に相当する。 In the electrode EM1, notches CT1 to CT5 each having a width corresponding to “W1” and extending in the Y direction are formed as shown in FIG. The notches CT1 to CT5 are formed at the same distance in the X direction. Thus, strip-shaped partial electrodes E1_1 to E1_6 having a common size are obtained. Each main surface of the partial electrodes E1_1 to E1_6 has a short side extending in the X direction and a long side extending in the Y direction. The length of the short side corresponds to “X1”, while the length of the long side is Corresponds to “Y1”.
 送電側パッシブ電極E2は、図4(A)に示す電極素材EM2に基づいて作製される。電極素材EM2は、長辺および短辺がX方向およびY方向にそれぞれ延びる長方形の主面を有して、板状に形成される。ここで、電極素材EM2の厚みもまた、筐体CB1の厚みよりも格段に小さい。また、長辺の長さは“X2a”に相当する一方、短辺の長さは“Y2a”に相当する。さらに、電極素材EM2の主面のサイズは筐体CB1の上面のサイズと一致する。 The power transmission side passive electrode E2 is produced based on the electrode material EM2 shown in FIG. The electrode material EM2 has a rectangular main surface with long sides and short sides extending in the X direction and the Y direction, respectively, and is formed in a plate shape. Here, the thickness of the electrode material EM2 is also much smaller than the thickness of the housing CB1. The length of the long side corresponds to “X2a”, while the length of the short side corresponds to “Y2a”. Furthermore, the size of the main surface of the electrode material EM2 matches the size of the upper surface of the housing CB1.
 電極素材EM2の中央に長方形の開口OP1を形成すると、図4(B)に示す送電側パッシブ電極E2が得られる。ここで、開口OP1をなす長方形の長辺および短辺はX方向およびY方向に延び、長辺の長さは“X2b”に相当する一方、短辺の長さは“Y2b”に相当する。また、開口OP1をなす長方形の短辺の長さは、電極部材EM1の主面をなす長方形の短辺の長さよりも大きく、開口OP1をなす長方形の長辺の長さは、電極部材EM1の主面をなす長方形の長辺の長さよりも大きい。 When the rectangular opening OP1 is formed in the center of the electrode material EM2, a power transmission side passive electrode E2 shown in FIG. 4B is obtained. Here, the long side and the short side of the rectangle forming the opening OP1 extend in the X direction and the Y direction, the length of the long side corresponds to “X2b”, and the length of the short side corresponds to “Y2b”. The length of the short side of the rectangle forming the opening OP1 is larger than the length of the short side of the rectangle forming the main surface of the electrode member EM1, and the length of the long side of the rectangle forming the opening OP1 is the length of the electrode member EM1. It is larger than the length of the long side of the rectangle forming the main surface.
 図1に示すように、送電側アクティブ電極E1は筐体CB1の上面の中央に設けられる。また、送電側パッシブ電極E2は、筐体CB1の上面の外縁が送電側パッシブ電極E2の主面の外縁と一致するように筐体CB1の上面に設けられる。送電側アクティブ電極E1および送電側パッシブ電極E2のサイズは上述のとおりであるため、送電側アクティブ電極E1は、送電側パッシブ電極E2に設けられた開口OP1に収められる。 As shown in FIG. 1, the power transmission side active electrode E1 is provided at the center of the upper surface of the casing CB1. The power transmission side passive electrode E2 is provided on the upper surface of the housing CB1 so that the outer edge of the upper surface of the housing CB1 coincides with the outer edge of the main surface of the power transmission side passive electrode E2. Since the sizes of the power transmission side active electrode E1 and the power transmission side passive electrode E2 are as described above, the power transmission side active electrode E1 is accommodated in the opening OP1 provided in the power transmission side passive electrode E2.
 図5を参照して、受電側アクティブ電極E3は、各辺がX方向またはY方向に延びる正方形の主面を有して、板状に形成される。ここで、各辺の長さは“X3”または“Y3”に相当する。また、受電側パッシブ電極E4は、短辺および長辺がX方向およびY方向にそれぞれ延びる長方形の主面を有して、板状に形成される。ここで、短辺の長さは“X4”に相当する一方、長辺の長さは“Y4”に相当し、短辺および長辺のいずれの長さも受電側アクティブ電極E3をなす正方形の各辺の長さよりも大きい。 Referring to FIG. 5, the power receiving side active electrode E3 is formed in a plate shape having a square main surface with each side extending in the X direction or the Y direction. Here, the length of each side corresponds to “X3” or “Y3”. The power receiving side passive electrode E4 has a rectangular main surface with a short side and a long side extending in the X direction and the Y direction, respectively, and is formed in a plate shape. Here, while the length of the short side corresponds to “X4”, the length of the long side corresponds to “Y4”, and both the short side and the long side have the length of each square forming the power receiving side active electrode E3. It is larger than the side length.
 受電側パッシブ電極E4の主面のサイズは筐体CB2の上面のサイズと一致し、受電側パッシブ電極E4は筐体CB2の上面の外縁が送電側パッシブ電極E2の主面の外縁と一致するように筐体CB2の上面に平行な平面に設けられる。受電側アクティブ電極E3は、筐体CB2の上面の中央位置に対応して、受電側パッシブ電極E4の上に(つまり筐体CB2の外側に向かって)一定の距離を隔てて積層される。 The size of the main surface of the power receiving side passive electrode E4 matches the size of the upper surface of the housing CB2, and the power receiving side passive electrode E4 has the outer edge of the upper surface of the housing CB2 aligned with the outer edge of the main surface of the power transmitting side passive electrode E2. Are provided on a plane parallel to the upper surface of the casing CB2. The power receiving-side active electrode E3 is stacked on the power receiving-side passive electrode E4 (that is, toward the outside of the housing CB2) at a certain distance corresponding to the center position of the upper surface of the housing CB2.
 送電側アクティブ電極E1,送電側パッシブ電極E2,受電側アクティブ電極E3および受電側パッシブ電極E4のサイズが上述のように設定されるため、送電装置10および受電装置30は、図6に示すサイズ関係を示す。 Since the sizes of the power transmission side active electrode E1, the power transmission side passive electrode E2, the power reception side active electrode E3, and the power reception side passive electrode E4 are set as described above, the power transmission device 10 and the power reception device 30 have the size relationship shown in FIG. Indicates.
 また、送電装置10の上に受電装置30を載置した状態を示す図7(A)~図7(B),図8(A)~図8(B)および図9(A)~図9(B)から分かるように、筐体CB2の上面は筐体CB1の上面によって覆われるサイズを有する。また、送電側アクティブ電極E1および受電側アクティブ電極E3の各々のサイズは、筐体CB1の上面を筐体CB2の上面に対向させた特定状態で各上面に直交する方向から眺めて、受電側アクティブ電極E3が送電側アクティブ電極E1の外縁ないし輪郭内に収まるように調整される(外縁ないし輪郭は、図6において破線で定義)。また、上述した特定状態において、受電側パッシブ電極E4の一部は、切り欠きCT1~CT5の一部と対向する。 7A to 7B, 8A to 8B, and 9A to 9 showing a state where the power receiving device 30 is placed on the power transmitting device 10. FIG. As can be seen from (B), the upper surface of the housing CB2 has a size covered by the upper surface of the housing CB1. In addition, the sizes of the power transmission side active electrode E1 and the power reception side active electrode E3 are determined based on the power receiving side active when viewed from the direction orthogonal to each upper surface in a specific state where the upper surface of the housing CB1 is opposed to the upper surface of the housing CB2. The electrode E3 is adjusted so as to be within the outer edge or contour of the power transmission side active electrode E1 (the outer edge or contour is defined by a broken line in FIG. 6). In the specific state described above, a part of the power receiving side passive electrode E4 faces a part of the notches CT1 to CT5.
 なお、特定状態は、筐体CB2の上面に直交する方向から眺めて、筐体CB2の上面が筐体CB1の上面の外縁ないし輪郭内に収まる位置関係を前提とする。 Note that the specific state is premised on a positional relationship in which the top surface of the housing CB2 is within the outer edge or contour of the top surface of the housing CB1 when viewed from a direction orthogonal to the top surface of the housing CB2.
 また、受電側アクティブ電極E3の輪郭に割り当てられた2点間の最大距離は、切り欠きCT1~CT5の各々の幅W1と部分電極E1_1~E1_6の各々の主面をなす短辺の長さX1との和に相当する距離を上回る。さらに、受電側パッシブ電極E4の主面をなす長方形の短辺の長さX4は、送電側パッシブ電極E2に設けられた開口OP1をなす矩形の短辺の長さYb2よりも大きい。 The maximum distance between the two points assigned to the contour of the power receiving side active electrode E3 is the width W1 of each of the cutouts CT1 to CT5 and the length X1 of the short side that forms the main surface of each of the partial electrodes E1_1 to E1_6. It exceeds the distance equivalent to the sum of Further, the length X4 of the rectangular short side forming the main surface of the power receiving side passive electrode E4 is larger than the length Yb2 of the rectangular short side forming the opening OP1 provided in the power transmitting side passive electrode E2.
 図10を参照して、送電装置10は直流電源12を含む。直流電源12は、端子T1およびT2のいずれか一方と接続されるスイッチSW1の入力端に直流電圧を印加する。端子T1は直接的にインバータ18と接続され、端子T2は抵抗R1を介してインバータ18と接続される。したがって、スイッチSW1が端子T1と接続されるときは直流電圧がインバータ18に供給され、スイッチSW1が端子T2と接続されるときは抵抗R1で電圧降下された電圧がインバータ18に供給される。 Referring to FIG. 10, power transmission device 10 includes a DC power supply 12. The DC power supply 12 applies a DC voltage to the input terminal of the switch SW1 connected to either one of the terminals T1 and T2. The terminal T1 is directly connected to the inverter 18, and the terminal T2 is connected to the inverter 18 via the resistor R1. Therefore, when the switch SW1 is connected to the terminal T1, a DC voltage is supplied to the inverter 18, and when the switch SW1 is connected to the terminal T2, the voltage dropped by the resistor R1 is supplied to the inverter 18.
 インバータ18は、PWM発生回路14から出力されたPWM信号がHレベルを示す期間にオン状態となり、PWM発生回路14から出力されたPWM信号がLレベルを示す期間にオフ状態となる。インバータ18はまた、トランス20を形成する一次巻線Np1および二次巻線Ns1のうち、一次巻線Np1と接続される。 The inverter 18 is turned on during a period when the PWM signal output from the PWM generation circuit 14 is at the H level, and is turned off during a period when the PWM signal output from the PWM generation circuit 14 is at the L level. Inverter 18 is also connected to primary winding Np1 among primary winding Np1 and secondary winding Ns1 forming transformer 20.
 したがって、インバータ18が上述の要領でオン/オフされると、二次巻線Ns1に交流電圧が励起される。ただし、二次巻線Ns1の巻き数は一次巻線Np1の巻き数よりも大きく、二次巻線Ns1に現われる交流電圧は一次巻線Np1に現われる交流電圧よりも高い値を示す。また、一次巻線Np1および二次巻線Ns1の各々に現われる交流電圧の周波数および高さはそれぞれ、PWM信号の周波数およびデューティ比に依存する。 Therefore, when the inverter 18 is turned on / off as described above, an AC voltage is excited in the secondary winding Ns1. However, the number of turns of the secondary winding Ns1 is larger than the number of turns of the primary winding Np1, and the AC voltage appearing in the secondary winding Ns1 is higher than the AC voltage appearing in the primary winding Np1. The frequency and height of the AC voltage appearing in each of the primary winding Np1 and the secondary winding Ns1 depend on the frequency and duty ratio of the PWM signal, respectively.
 二次巻線Ns1の一方端はスイッチ回路SW2を介して送電側アクティブ電極E1と接続され、二次巻線Ns1の他方端は直接的に送電側パッシブ電極E2と接続される。図11に示すように、スイッチ回路SW2は、部分電極E1_1~E1_6にそれぞれ割り当てられて択一的にオンされるスイッチSW2_1~SW2_6によって形成される。したがって、二次巻線Ns1に励起された交流電圧は、部分電極E1_1~E1_6のいずれか1つと送電側パッシブ電極E2とに印加される。 The one end of the secondary winding Ns1 is connected to the power transmission side active electrode E1 via the switch circuit SW2, and the other end of the secondary winding Ns1 is directly connected to the power transmission side passive electrode E2. As shown in FIG. 11, the switch circuit SW2 is formed by switches SW2_1 to SW2_6 that are assigned to the partial electrodes E1_1 to E1_6 and are selectively turned on. Therefore, the AC voltage excited in the secondary winding Ns1 is applied to any one of the partial electrodes E1_1 to E1_6 and the power transmission side passive electrode E2.
 受電側アクティブ電極E3およびパッシブ側受電電極E4には、電界結合によって交流電圧が励起される。励起される交流電圧は、送電側アクティブ電極E1および送電側パッシブ電極E2に印加された交流電圧の周波数に相当する周波数と電界結合度に依存する高さとを有する。 AC voltage is excited by the electric field coupling in the power receiving side active electrode E3 and the passive side power receiving electrode E4. The excited AC voltage has a frequency corresponding to the frequency of the AC voltage applied to the power transmission side active electrode E1 and the power transmission side passive electrode E2 and a height depending on the electric field coupling degree.
 こうして励起された交流電圧は、トランス32を形成する一次巻線Np2および二次巻線Ns2を介して負荷34に供給される。ただし、二次巻線Ns2の巻き数は一次巻線Np2の巻き数よりも小さく、負荷34に供給される交流電圧は受電側アクティブ電極E3およびパッシブ側受電電極E4に励起された交流電圧よりも低い値を示す。 The alternating voltage thus excited is supplied to the load 34 via the primary winding Np2 and the secondary winding Ns2 forming the transformer 32. However, the number of turns of the secondary winding Ns2 is smaller than the number of turns of the primary winding Np2, and the AC voltage supplied to the load 34 is higher than the AC voltage excited by the power receiving side active electrode E3 and the passive side power receiving electrode E4. Indicates a low value.
 送電装置10に設けられたCPU16は、電界結合された受電装置30への給電を開始する際に、以下のようにしてスイッチSW2の設定とPWM信号の周波数を調整する。 The CPU 16 provided in the power transmission device 10 adjusts the setting of the switch SW2 and the frequency of the PWM signal in the following manner when starting the power supply to the power receiving device 30 that is electric field coupled.
 CPU16はまず、スイッチSW1の接続先を端子T2に接続し、PWM信号の周波数およびデューディ比を初期化する。PWM発生回路14は、初期の周波数およびデューディ比を有するPWM信号をインバータ18に与える。これによって、デューディ比および周波数に依存する高さおよび周波数を有する交流電圧がトランス20の二次巻線Ns1に励起される。 CPU 16 first connects the connection destination of switch SW1 to terminal T2, and initializes the frequency and duty ratio of the PWM signal. The PWM generation circuit 14 supplies a PWM signal having an initial frequency and a duty ratio to the inverter 18. As a result, an AC voltage having a height and frequency depending on the duty ratio and frequency is excited in the secondary winding Ns1 of the transformer 20.
 CPU16は続いて、変数Kを“1”~“6”の各々に設定し、スイッチSW2_1~SW2_6のうちスイッチSW2_Kのみをオンする。PWM信号の周波数を掃引し、これと並行してインバータ18よりもトランス20側のインピーダンス特性を測定する。測定にあたっては、インバータ18の入力端の電圧が参照される。測定されたインピーダンス特性を参照して、極大値が既定範囲に収まるインピーダンス特性を示すときのスイッチSW2の接続状態と極大値に対応するPWM信号の周波数を探索する。スイッチSW2は探知された接続状態に設定され、PWM信号の周波数は探知された周波数に設定される。設定が完了すると、スイッチSW1を端子T1に接続する。これによって、受電装置30への給電が開始される。 Subsequently, the CPU 16 sets the variable K to “1” to “6”, and turns on only the switch SW2_K among the switches SW2_1 to SW2_6. The frequency of the PWM signal is swept, and in parallel with this, the impedance characteristic on the transformer 20 side of the inverter 18 is measured. In the measurement, the voltage at the input terminal of the inverter 18 is referred to. With reference to the measured impedance characteristic, the connection state of the switch SW2 and the frequency of the PWM signal corresponding to the maximum value when the impedance value indicates an impedance characteristic that falls within the predetermined range are searched. The switch SW2 is set to the detected connection state, and the frequency of the PWM signal is set to the detected frequency. When the setting is completed, the switch SW1 is connected to the terminal T1. Thereby, power supply to the power receiving device 30 is started.
 CPU16は、具体的には、図12~図13に示すフロー図に従う処理を実行する。なお、このフロー図に対応する制御プログラムは、フラッシュメモリ16mに記憶される。 Specifically, the CPU 16 executes processing according to the flowcharts shown in FIGS. A control program corresponding to this flowchart is stored in the flash memory 16m.
 図12を参照して、ステップS1ではスイッチSW1を端子T2に接続し、ステップS3ではPWM信号の周波数およびデューティ比を初期化する。PWM発生回路14は、設定された周波数およびデューディ比を有するPWM信号をインバータ18に与える。 Referring to FIG. 12, in step S1, switch SW1 is connected to terminal T2, and in step S3, the frequency and duty ratio of the PWM signal are initialized. The PWM generation circuit 14 supplies a PWM signal having a set frequency and duty ratio to the inverter 18.
 ステップS5では変数Kを“1”に設定し、ステップS7ではスイッチSW2_1~SW2_6のうちスイッチSW2_Kのみをオンする。ステップS9ではPWM信号の周波数を掃引し、これと並行してインバータ18よりもトランス20側のインピーダンス特性を測定する。測定にあたっては、インバータ18の入力端の電圧が参照される。ステップS11では、測定されたインピーダンス特性を参照してインピーダンスの極大値を探索する。 In step S5, the variable K is set to “1”, and in step S7, only the switch SW2_K among the switches SW2_1 to SW2_6 is turned on. In step S9, the frequency of the PWM signal is swept, and in parallel with this, the impedance characteristic on the transformer 20 side of the inverter 18 is measured. In the measurement, the voltage at the input terminal of the inverter 18 is referred to. In step S11, the impedance maximum value is searched with reference to the measured impedance characteristic.
 ステップS13では極大値が探知されたか否かを判別し、判別結果がNOであればステップS17に進む一方、判別結果がYESであればステップS15に進む。ステップS15では、探知された極大値が既定範囲に属するか否かを判別し、判別結果がNOであればステップS17に進む一方、判別結果がYESであればステップS25に進む。 In step S13, it is determined whether or not the maximum value has been detected. If the determination result is NO, the process proceeds to step S17, and if the determination result is YES, the process proceeds to step S15. In step S15, it is determined whether or not the detected maximum value belongs to the predetermined range. If the determination result is NO, the process proceeds to step S17, and if the determination result is YES, the process proceeds to step S25.
 ステップS17では変数Kをインクリメントし、ステップS19では現時点の変数Kの値が“6”を上回るか否かを判別する。判別結果がNOであれば、そのままステップS7に戻る。一方、判別結果がYESであれば、ステップS21で既定時間だけ待機し、ステップS23で変数Kを“1”に設定し、その後にステップS7に戻る。 In step S17, the variable K is incremented, and in step S19, it is determined whether or not the current value of the variable K exceeds “6”. If a determination result is NO, it will return to step S7 as it is. On the other hand, if the determination result is YES, it waits for a predetermined time in step S21, sets the variable K to “1” in step S23, and then returns to step S7.
 ステップS25ではインピーダンスが極大値を示す周波数をPWM信号の周波数として設定する。設定が完了すると、ステップS27でスイッチSW1を端子T1に接続し、その後に処理を終了する。 In step S25, the frequency at which the impedance has a maximum value is set as the frequency of the PWM signal. When the setting is completed, the switch SW1 is connected to the terminal T1 in step S27, and then the process ends.
 以上の説明から分かるように、送電装置10は、筐体CB1の上面に沿って設けられて交流電圧が印加される送電側アクティブ電極E1および送電側パッシブ電極E2を備える。また、受電装置30は、筐体CB2の上面に沿って設けられて送電側アクティブ電極E1および送電側パッシブ電極E2と電界結合される受電側アクティブ電極E3および受電側パッシブ電極E4を備える。 As can be seen from the above description, the power transmission device 10 includes a power transmission side active electrode E1 and a power transmission side passive electrode E2 that are provided along the upper surface of the housing CB1 and to which an AC voltage is applied. The power receiving device 30 includes a power receiving side active electrode E3 and a power receiving side passive electrode E4 that are provided along the upper surface of the housing CB2 and are electrically coupled to the power transmitting side active electrode E1 and the power transmitting side passive electrode E2.
 ここで、送電側アクティブ電極E1および受電側アクティブ電極E3の各々のサイズは、筐体CB1の上面を筐体CB2の上面に対向させた特定状態で、各上面に直交する方向から眺めて、受電側アクティブ電極E3が送電側アクティブ電極E1の外縁内に収まるように調整される。また、送電側アクティブ電極E1は切り欠きCT1~CT5によって部分電極E1_1~E1_6に分割され、切り欠きCT1~CT6の配置は上述の特定状態において受電側パッシブ電極E4の一部が切り欠きCT1~CT6の一部と対向するように調整される。 Here, the size of each of the power transmitting side active electrode E1 and the power receiving side active electrode E3 is such that the upper surface of the housing CB1 faces the upper surface of the housing CB2 and is viewed from the direction orthogonal to each upper surface. The side active electrode E3 is adjusted so as to be within the outer edge of the power transmission side active electrode E1. Further, the power transmission side active electrode E1 is divided into partial electrodes E1_1 to E1_6 by notches CT1 to CT5. It is adjusted so as to face a part of.
 送電側アクティブ電極E1および受電側アクティブ電極E3のサイズを上述のように調整することで、受電装置30の相対位置を各上面に沿う方向に変動させたとき、送電側アクティブ電極E1と受電側アクティブ電極E3との結合容量の変動量は、相対位置の変動量に比べて抑制される。 By adjusting the sizes of the power transmission side active electrode E1 and the power reception side active electrode E3 as described above, when the relative position of the power reception device 30 is changed in the direction along each upper surface, the power transmission side active electrode E1 and the power reception side active The fluctuation amount of the coupling capacitance with the electrode E3 is suppressed as compared with the fluctuation amount of the relative position.
 また、送電側アクティブ電極E1を切り欠きCT1~CT5によって部分電極E1_1~E1_6に分割し、かつ特定状態において受電側パッシブ電極E4の一部が切り欠きCT1~CT5の一部と対向するように切り欠きCT1~CT5の配置を調整することで、受電側パッシブ電極E4と送電側アクティブ電極E1との結合容量が抑制される。こうして、電力伝送効率の低下が回避される。 Further, the power transmission side active electrode E1 is divided into partial electrodes E1_1 to E1_6 by notches CT1 to CT5, and in a specific state, the power receiving side passive electrode E4 is partly cut away so as to face a part of the notches CT1 to CT5. By adjusting the arrangement of the notches CT1 to CT5, the coupling capacitance between the power receiving side passive electrode E4 and the power transmitting side active electrode E1 is suppressed. Thus, a decrease in power transmission efficiency is avoided.
 なお、この実施例では、部分電極E1_1~E1_6の各々を長方形状に形成するようにしているが、部分電極E1_1~E1_6の各々の形状は長方形に限られるものではなく、図14(A)に示す平行四辺形または図14(B)に示すひょうたん形を採用するようにしてもよい。また、受電側アクティブ電極E3は正方形状に形成しているが、前述の関係を満たす限りにおいて、辺X3とY3の長さが異なる長方形状としてもよい。 In this embodiment, each of the partial electrodes E1_1 to E1_6 is formed in a rectangular shape. However, the shape of each of the partial electrodes E1_1 to E1_6 is not limited to a rectangular shape, and FIG. You may make it employ | adopt the parallelogram shown or the gourd shape shown to FIG. 14 (B). In addition, although the power receiving side active electrode E3 is formed in a square shape, it may have a rectangular shape in which the lengths of the sides X3 and Y3 are different as long as the above relationship is satisfied.
 また、この実施例では、二次巻線Ns1の一方端を部分電極E1_1~E1_6の1つと接続し、二次巻線Ns1の他方端を送電側パッシブ電極E2に接続するようにしている。しかし、二次巻線Ns1の一方端を部分電極E1_1~E1_6の1つと接続し、二次巻線Ns1の他方端を部分電極E1_1~E1_6の他の1つと接続するようにしてもよい。 Further, in this embodiment, one end of the secondary winding Ns1 is connected to one of the partial electrodes E1_1 to E1_6, and the other end of the secondary winding Ns1 is connected to the power transmission side passive electrode E2. However, one end of the secondary winding Ns1 may be connected to one of the partial electrodes E1_1 to E1_6, and the other end of the secondary winding Ns1 may be connected to the other one of the partial electrodes E1_1 to E1_6.
 この場合、図15に示すように送電側パッシブ電極E2が筐体CB1から省かれ、送電装置10は図16に示すように構成される。 In this case, the power transmission side passive electrode E2 is omitted from the casing CB1 as shown in FIG. 15, and the power transmission device 10 is configured as shown in FIG.
 図16によれば、スイッチ回路SW2は、スイッチSW2_11~スイッチSW2_16によって形成される。スイッチSW2_11~SW2_13の各々の接続先は、二次巻線Ns1の一方端,二次巻線Ns1の他方端および開放端の間で切り換えられる。また、スイッチSW2_14~SW2_16の各々の接続先は、二次巻線Ns1の一方端,二次巻線Ns1の他方端およびグランドの間で切り換えられる。さらに、スイッチ回路SW2の接続状態は、CPU16によって制御される。 According to FIG. 16, the switch circuit SW2 is formed by the switches SW2_11 to SW2_16. The connection destination of each of the switches SW2_11 to SW2_13 is switched between one end of the secondary winding Ns1, the other end of the secondary winding Ns1, and the open end. The connection destination of each of the switches SW2_14 to SW2_16 is switched between one end of the secondary winding Ns1, the other end of the secondary winding Ns1, and the ground. Further, the connection state of the switch circuit SW2 is controlled by the CPU 16.
 これによって、スイッチSW2_11~スイッチSW2_16の1つは二次巻線Nsの一方端と接続され、スイッチSW2_11~スイッチSW2_16の他の1つは二次巻線Nsの他方端と接続され、残りのスイッチは開放端またはグランドと接続される。 Accordingly, one of the switches SW2_11 to SW2_16 is connected to one end of the secondary winding Ns, and the other one of the switches SW2_11 to SW2_16 is connected to the other end of the secondary winding Ns, and the remaining switches Is connected to the open end or ground.
 10 …送電装置
 14 …PWM発生回路
 16 …CPU
 18 …インバータ
 20,32 …トランス
 E1~E2 …送電電極
 E3~E4 …受電電極
DESCRIPTION OF SYMBOLS 10 ... Power transmission apparatus 14 ... PWM generation circuit 16 ... CPU
18 ... Inverter 20, 32 ... Transformer E1-E2 ... Power transmitting electrode E3-E4 ... Power receiving electrode

Claims (7)

  1.  第1筐体の第1主面に沿って設けられて交流電圧が印加される第1送電電極および第2送電電極を備える送電装置と、第2筐体の第2主面に沿って設けられて前記第1送電電極および前記第2送電電極と電界結合される第1受電電極および第2受電電極を備える受電装置とによって形成された非接触電力電送システムであって、
     前記第1送電電極および前記第1受電電極の各々のサイズは前記第2主面を前記第1主面に対向させた特定状態において前記第2主面に直交する方向から眺めて前記第1受電電極が前記第1送電電極の外縁内に収まるように調整され、
     前記第1送電電極は切り欠きによって複数の部分電極に分割され、そして
     前記切り欠きの配置は前記特定状態において前記第2受電電極の一部が前記切り欠きと対向するように調整された、非接触電力伝送システム。
    A power transmission device provided along the first main surface of the first housing and provided with a first power transmission electrode and a second power transmission electrode to which an alternating voltage is applied, and provided along the second main surface of the second housing. A non-contact power transmission system formed by a power receiving device including a first power receiving electrode and a second power receiving electrode that are electrically coupled to the first power transmitting electrode and the second power transmitting electrode,
    Each size of the first power transmission electrode and the first power reception electrode is the first power reception as viewed from a direction orthogonal to the second main surface in a specific state where the second main surface is opposed to the first main surface. An electrode is adjusted to fit within an outer edge of the first power transmission electrode;
    The first power transmission electrode is divided into a plurality of partial electrodes by a notch, and the arrangement of the notch is adjusted so that a part of the second power receiving electrode faces the notch in the specific state. Contact power transmission system.
  2.  前記切り欠きは前記複数の部分電極が第1方向に並ぶように形成される、請求項1記載の非接触電力電送システム。 The non-contact power transmission system according to claim 1, wherein the notch is formed so that the plurality of partial electrodes are arranged in the first direction.
  3.  前記複数の部分電極の各々は前記第1方向に直交する第2方向に延びる短冊をなし、
     前記第1受電電極の輪郭に割り当てられた2点間の最大距離は前記切り欠きの幅と前記短冊の幅との和に相当する距離を上回る、請求項2記載の非接触電力電送システム。
    Each of the plurality of partial electrodes forms a strip extending in a second direction orthogonal to the first direction,
    The non-contact power transmission system according to claim 2, wherein a maximum distance between two points assigned to an outline of the first power receiving electrode exceeds a distance corresponding to a sum of a width of the notch and a width of the strip.
  4.  前記第2受電電極の主面は長方形をなし、
     前記第2送電電極は前記第1送電電極を収める長方形の開口を有し、
     前記第2受電電極の主面をなす長方形の短辺の長さは前記開口をなす長方形の短辺の長さよりも大きい、請求項1ないし3のいずれかに記載の非接触電力伝送システム。
    The main surface of the second power receiving electrode is rectangular.
    The second power transmission electrode has a rectangular opening for accommodating the first power transmission electrode;
    4. The non-contact power transmission system according to claim 1, wherein a length of a short side of a rectangle forming the main surface of the second power receiving electrode is larger than a length of a short side of the rectangle forming the opening.
  5.  前記第2受電電極の主面は前記第1受電電極の主面を覆うサイズを有し、
     前記第1受電電極は前記第2筐体の外側に向かって前記第2受電電極に一定の距離を隔てて積層される、請求項1ないし4のいずれかに記載の非接触電力伝送システム。
    The main surface of the second power receiving electrode has a size covering the main surface of the first power receiving electrode,
    5. The non-contact power transmission system according to claim 1, wherein the first power receiving electrode is stacked on the second power receiving electrode at a certain distance toward the outside of the second housing.
  6.  前記第2主面は前記第1主面によって覆われるサイズを有し、
     前記特定状態は前記第2主面に直交する方向から眺めて前記第2主面が前記第1主面の外縁内に収まる位置関係を前提とする、請求項1ないし5のいずれかに記載の非接触電力伝送システム。
    The second main surface has a size covered by the first main surface;
    The said specific state presupposes the positional relationship in which the said 2nd main surface is settled in the outer edge of the said 1st main surface when it sees from the direction orthogonal to the said 2nd main surface. Non-contact power transmission system.
  7.  前記複数の部分電極のいずれか1つを交流電圧の印加先として選択する選択手段、および
     前記選択手段の動作をインピーダンス特性を参照して制御する制御手段をさらに備える、請求項1ないし6のいずれかに記載の非接触電力伝送システム。
    7. The apparatus according to claim 1, further comprising a selection unit that selects any one of the plurality of partial electrodes as an AC voltage application destination, and a control unit that controls an operation of the selection unit with reference to an impedance characteristic. A non-contact power transmission system according to crab.
PCT/JP2013/052634 2012-04-13 2013-02-05 Non-contact power transmission system WO2013153841A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201390000248.7U CN204145084U (en) 2012-04-13 2013-02-05 Non-contact power transmission system
JP2014510064A JP5794444B2 (en) 2012-04-13 2013-02-05 Non-contact power transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-091479 2012-04-13
JP2012091479 2012-04-13

Publications (1)

Publication Number Publication Date
WO2013153841A1 true WO2013153841A1 (en) 2013-10-17

Family

ID=49327421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052634 WO2013153841A1 (en) 2012-04-13 2013-02-05 Non-contact power transmission system

Country Status (3)

Country Link
JP (1) JP5794444B2 (en)
CN (1) CN204145084U (en)
WO (1) WO2013153841A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521030A (en) * 2014-06-26 2017-07-27 エッグトロニック エス.アール.エル. Method and apparatus for transmitting power
JP2019187158A (en) * 2018-04-13 2019-10-24 スミダコーポレーション株式会社 Non-contact power transmission system, power reception device and power transmission device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537613A (en) * 2007-08-17 2010-12-02 Tmms株式会社 Method and apparatus for transferring, distributing and managing electrical energy by remote longitudinal coupling in the near field between electric dipoles
WO2010150317A1 (en) * 2009-06-25 2010-12-29 Murata Manufacturing Co., Ltd. Power transfer system and noncontact charging device
WO2011093438A1 (en) * 2010-01-29 2011-08-04 株式会社村田製作所 Power reception device and power transmission device
JP2012070574A (en) * 2010-09-27 2012-04-05 Murata Mfg Co Ltd Power transmission system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5839105B2 (en) * 2012-02-22 2016-01-06 株式会社村田製作所 Power transmission device and power transmission control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537613A (en) * 2007-08-17 2010-12-02 Tmms株式会社 Method and apparatus for transferring, distributing and managing electrical energy by remote longitudinal coupling in the near field between electric dipoles
WO2010150317A1 (en) * 2009-06-25 2010-12-29 Murata Manufacturing Co., Ltd. Power transfer system and noncontact charging device
WO2011093438A1 (en) * 2010-01-29 2011-08-04 株式会社村田製作所 Power reception device and power transmission device
JP2012070574A (en) * 2010-09-27 2012-04-05 Murata Mfg Co Ltd Power transmission system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017521030A (en) * 2014-06-26 2017-07-27 エッグトロニック エス.アール.エル. Method and apparatus for transmitting power
JP2019187158A (en) * 2018-04-13 2019-10-24 スミダコーポレーション株式会社 Non-contact power transmission system, power reception device and power transmission device
JP7187810B2 (en) 2018-04-13 2022-12-13 スミダコーポレーション株式会社 Contactless power transmission system, power receiving device and power transmitting device

Also Published As

Publication number Publication date
CN204145084U (en) 2015-02-04
JP5794444B2 (en) 2015-10-14
JPWO2013153841A1 (en) 2015-12-17

Similar Documents

Publication Publication Date Title
US11962163B2 (en) Power transmission device and wireless power transmission system
US10199883B2 (en) Power supply apparatus and method for wireless power transmission
US9787105B2 (en) Apparatus and method for high efficiency variable power transmission
JP6122402B2 (en) Power transmission device and wireless power transmission system
EP3696941A1 (en) Receiving coil and foreign object detecting apparatus in multiple charging condition using plurality of transmitting coils
US9224533B2 (en) Wireless electric power transmission apparatus
KR20160030672A (en) Wireless power receiving apparatus and wireless power transmitting and receiving system
TWI628892B (en) Method and device for operating the inverter of a wireless power transmitter and the corresponding wireless power transmitter
JP2016039644A (en) Power transmission device and radio power transmission system
JP6260693B2 (en) Contactless power supply
JP5794444B2 (en) Non-contact power transmission system
US10523055B2 (en) Wireless power transmission device
US20170305281A1 (en) Power reception device, and contactless power transmission device provided with same
WO2014203442A1 (en) Wireless power transmission system
JP2016015808A (en) Power reception equipment and non-contact power transmission device
DK176584B1 (en) Headset with rechargeable battery, base unit designed to charge a rechargeable battery as well as a communication device
KR102348019B1 (en) Capacitor isolated balanced converter
JP7378084B2 (en) Contactless power transfer system
JP6094205B2 (en) Wireless power transmission system
US20240136859A1 (en) Contactless power feed apparatus
JP2021125982A (en) Non-contact power supply system
KR101642638B1 (en) An electronic component, and a wireless power transmitter and a wireless power receiver including the same
WO2019198347A1 (en) Power storage device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201390000248.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13775745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014510064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13775745

Country of ref document: EP

Kind code of ref document: A1