JP7187810B2 - Contactless power transmission system, power receiving device and power transmitting device - Google Patents

Contactless power transmission system, power receiving device and power transmitting device Download PDF

Info

Publication number
JP7187810B2
JP7187810B2 JP2018077783A JP2018077783A JP7187810B2 JP 7187810 B2 JP7187810 B2 JP 7187810B2 JP 2018077783 A JP2018077783 A JP 2018077783A JP 2018077783 A JP2018077783 A JP 2018077783A JP 7187810 B2 JP7187810 B2 JP 7187810B2
Authority
JP
Japan
Prior art keywords
power
electrodes
power transmission
power receiving
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018077783A
Other languages
Japanese (ja)
Other versions
JP2019187158A (en
Inventor
弘行 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumida Corp
Original Assignee
Sumida Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumida Corp filed Critical Sumida Corp
Priority to JP2018077783A priority Critical patent/JP7187810B2/en
Priority to PCT/JP2019/007028 priority patent/WO2019198355A1/en
Publication of JP2019187158A publication Critical patent/JP2019187158A/en
Application granted granted Critical
Publication of JP7187810B2 publication Critical patent/JP7187810B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、非接触電力伝送システム、受電装置及び送電装置に関する。 The present invention relates to a contactless power transmission system, a power receiving device, and a power transmitting device.

電界結合方式の非接触電力伝送システムとしては、特許文献1に記載のものがある。
特許文献1の非接触電力伝送システムは、第1主面に沿って設けられて交流電圧が印加される第1送電電極および第2送電電極を備える送電装置と、第2主面に沿って設けられて第1送電電極および第2送電電極と電界結合される第1受電電極および第2受電電極を備える受電装置とを備えている。第1送電電極および第1受電電極の各々のサイズは第2主面を第1主面に対向させた特定状態において第2主面に直交する方向から眺めて第1受電電極が第1送電電極の外縁内に収まるように調整されている。第1送電電極は切り欠きによって第1方向に並ぶ複数の部分電極に分割され、複数の部分電極の各々は第1方向に直交する第2方向に延びる短冊形状に形成されている。この非接触電力伝送システムは、更に、複数の部分電極のいずれか1つを交流電圧の印加先として選択する選択手段を備えている。第1受電電極の輪郭に割り当てられた2点間の最大距離は上記切り欠きの幅と短冊の幅との和に相当する距離を上回り、上記切り欠きの配置は特定状態において第2受電電極の一部が上記切り欠きと対向するように調整されている。
特許文献1の非接触電力伝送システムによれば、同文献の図7(A)から図9(A)に示すように、送電装置に対して受電装置を高い自由度で配置して、送電装置から受電装置に電力を伝送することができる。
Patent Document 1 discloses an electric field coupling type contactless power transmission system.
The contactless power transmission system of Patent Document 1 includes a power transmission device including a first power transmission electrode and a second power transmission electrode provided along a first main surface and to which an AC voltage is applied, and a power transmission device provided along the second main surface. a power receiving device including a first power receiving electrode and a second power receiving electrode that are coupled to each other by electric field coupling with the first power transmitting electrode and the second power transmitting electrode. The size of each of the first power transmitting electrode and the first power receiving electrode is such that the first power receiving electrode is larger than the first power transmitting electrode when viewed from a direction orthogonal to the second main surface in a specific state in which the second main surface faces the first main surface. adjusted to fit within the outer edge of the The first power transmitting electrode is divided into a plurality of partial electrodes arranged in a first direction by notches, and each of the plurality of partial electrodes is formed in a strip shape extending in a second direction orthogonal to the first direction. This non-contact power transmission system further includes selection means for selecting any one of the plurality of partial electrodes as a destination to which the AC voltage is applied. The maximum distance between two points assigned to the outline of the first power receiving electrode exceeds the distance corresponding to the sum of the width of the cutout and the width of the strip, and the arrangement of the cutouts is such that in a specific state, the second power receiving electrode A part of it is adjusted to face the notch.
According to the contactless power transmission system of Patent Document 1, as shown in FIGS. power can be transmitted from the device to the receiving device.

国際公開第2013/153841号パンフレットInternational Publication No. 2013/153841 pamphlet

しかしながら、特許文献1の非接触電力伝送システムでは、同文献の図7(A)から図9(A)に示すように、第2受電電極(同文献の受電電極E4)が、互いに逆位相となる第1送電電極(同文献の送電電極E1)と第2送電電極(同文献の送電電極E2)との双方と対向するため、電力伝送効率が低下する懸念がある。 However, in the contactless power transmission system of Patent Document 1, as shown in FIGS. Since it faces both the first power transmission electrode (power transmission electrode E1 in the same document) and the second power transmission electrode (power transmission electrode E2 in the same document), there is a concern that the power transmission efficiency may decrease.

本発明は、送電装置に対する受電装置の高い配置の自由度と、送電装置から受電装置への高い電力伝送効率と、を両立させることが可能な構造の非接触電力伝送システム、受電装置及び送電装置を提供するものである。 The present invention provides a contactless power transmission system, a power receiving device, and a power transmitting device having a structure capable of achieving both a high degree of freedom in arranging a power receiving device with respect to a power transmitting device and high power transmission efficiency from the power transmitting device to the power receiving device. It provides

本発明によれば、交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる複数の第1送電電極と複数の第2送電電極とが含まれ、
前記受電面が前記送電面に重ねて配置されている状態において、前記送電面と前記受電面との相対的な位置及び相対的な向きにかかわらず、(1)前記複数の受電電極のうち1つ以上の受電電極が前記第1送電電極と重なるとともに他の1つ以上の受電電極が前記第2送電電極と重なり、且つ、(2)前記送電電極と重なるいずれの受電電極も前記第1送電電極又は前記第2送電電極の一方にのみ重なる、という条件を満たし得るように、前記複数の送電電極と前記複数の受電電極とが配置されており、
前記複数の受電電極の各々は円形状に形成されており、
前記複数の送電電極の各々は正方形状に形成されており、
前記複数の受電電極の各々の外径が、前記複数の送電電極の一辺の長さの半分以上であり且つ前記複数の送電電極の一辺の長さよりも小さく
互いに隣り合う前記受電電極の中心間距離が前記送電電極の対角線の長さよりも大きく、一の前記送電電極に重なり得る前記受電電極の中心が1つ以下である非接触電力伝送システムが提供される。
According to the present invention, a power transmission device comprising: an AC power supply; and a plurality of power transmission electrodes electrically connected to the AC power supply and arranged along a power transmission surface;
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a plurality of first power transmission electrodes and a plurality of second power transmission electrodes having phases opposite to each other,
In a state in which the power receiving surface is superimposed on the power transmitting surface, regardless of the relative positions and relative orientations of the power transmitting surface and the power receiving surface, (1) one of the plurality of power receiving electrodes At least one power receiving electrode overlaps the first power transmitting electrode and at least one other power receiving electrode overlaps the second power transmitting electrode; and (2) any power receiving electrode overlapping the power transmitting electrode is the first power transmitting electrode. The plurality of power transmitting electrodes and the plurality of power receiving electrodes are arranged so as to satisfy the condition that they overlap only one of the electrodes or the second power transmitting electrodes,
each of the plurality of power receiving electrodes is formed in a circular shape,
each of the plurality of power transmission electrodes is formed in a square shape,
the outer diameter of each of the plurality of power receiving electrodes is half or more of the length of one side of the plurality of power transmitting electrodes and smaller than the length of one side of the plurality of power transmitting electrodes ;
A contactless power transmission system is provided in which the distance between the centers of the power receiving electrodes adjacent to each other is greater than the length of the diagonal line of the power transmitting electrodes, and the number of centers of the power receiving electrodes that can overlap one of the power transmitting electrodes is one or less. be.

また、本発明によれば、交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる第1送電電極と第2送電電極とが含まれ、
前記複数の送電電極は格子状に配置されており、
前記第1送電電極と前記第2送電電極とが交互に配置されており、
前記複数の送電電極のうち隣り合う送電電極間の間隙が、前記受電電極の外径よりも大きく、
前記複数の受電電極は格子状に配置されており、
前記複数の受電電極のうち隣り合う受電電極間の間隙が、前記送電電極の外径よりも小さく、
前記複数の受電電極の各々は円形状に形成されており、
前記複数の送電電極の各々は正方形状に形成されており、
前記複数の受電電極の各々の外径が、前記複数の送電電極の一辺の長さの半分以上であり且つ前記複数の送電電極の一辺の長さよりも小さく
互いに隣り合う前記受電電極の中心間距離が前記送電電極の対角線の長さよりも大きく、一の前記送電電極に重なり得る前記受電電極の中心が1つ以下である非接触電力伝送システムが提供される。
Further, according to the present invention, a power transmission device including an AC power supply and a plurality of power transmission electrodes electrically connected to the AC power supply and arranged along a power transmission surface,
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a first power transmission electrode and a second power transmission electrode having opposite phases to each other,
The plurality of power transmission electrodes are arranged in a lattice,
The first power transmission electrodes and the second power transmission electrodes are alternately arranged,
a gap between adjacent power transmitting electrodes among the plurality of power transmitting electrodes is larger than an outer diameter of the power receiving electrode;
The plurality of power receiving electrodes are arranged in a grid,
a gap between adjacent power receiving electrodes among the plurality of power receiving electrodes is smaller than an outer diameter of the power transmitting electrode;
each of the plurality of power receiving electrodes is formed in a circular shape,
each of the plurality of power transmission electrodes is formed in a square shape,
the outer diameter of each of the plurality of power receiving electrodes is half or more of the length of one side of the plurality of power transmitting electrodes and smaller than the length of one side of the plurality of power transmitting electrodes ;
A contactless power transmission system is provided in which the distance between the centers of the power receiving electrodes adjacent to each other is greater than the length of the diagonal line of the power transmitting electrodes, and the number of centers of the power receiving electrodes that can overlap one of the power transmitting electrodes is one or less. be.

また、本発明によれば、本発明の非接触電力伝送システムにおける送電装置が提供される。 Further, according to the present invention, there is provided a power transmitting device in the contactless power transmission system of the present invention.

また、本発明によれば、本発明の非接触電力伝送システムにおける受電装置が提供される。 Further, according to the present invention, there is provided a power receiving device in the contactless power transmission system of the present invention.

本発明によれば、送電装置に対して受電装置を高い自由度で配置して送電装置から受電装置に電力を伝送することと、送電装置から受電装置への高い電力伝送効率と、を両立させ得ることが可能となる。 According to the present invention, a power receiving device can be arranged with a high degree of freedom with respect to a power transmitting device, and power can be transmitted from the power transmitting device to the power receiving device, while high power transmission efficiency from the power transmitting device to the power receiving device can be achieved at the same time. can be obtained.

図1(a)は第1実施形態に係る非接触電力伝送システムの受電装置を示す模式的な斜視図であり、図1(b)は第1実施形態に係る非接触電力伝送システムの送電装置を示す模式的な斜視図である。FIG. 1(a) is a schematic perspective view showing a power receiving device of the contactless power transmission system according to the first embodiment, and FIG. 1(b) is a power transmitting device of the contactless power transmission system according to the first embodiment. It is a schematic perspective view showing the. 第1実施形態に係る非接触電力伝送システムの受電装置における受電電極の平面的な配置を説明するための平面図である。FIG. 2 is a plan view for explaining the planar arrangement of power receiving electrodes in the power receiving device of the contactless power transmission system according to the first embodiment; 第1実施形態に係る非接触電力伝送システムの送電装置における送電電極の平面的な配置を説明するための平面図である。FIG. 4 is a plan view for explaining the planar arrangement of power transmission electrodes in the power transmission device of the contactless power transmission system according to the first embodiment; 第1実施形態に係る非接触電力伝送システムの回路構成を示す図である。1 is a diagram showing a circuit configuration of a contactless power transmission system according to a first embodiment; FIG. 第1実施形態に係る非接触電力伝送システムの送電装置に対する受電装置の配置の一例を示す模式的な平面図である。FIG. 2 is a schematic plan view showing an example of arrangement of power receiving devices with respect to the power transmitting device of the contactless power transmission system according to the first embodiment; 第1実施形態に係る非接触電力伝送システムの送電装置に対する受電装置の配置の他の一例を示す模式的な平面図である。4 is a schematic plan view showing another example of arrangement of power receiving devices with respect to the power transmitting device of the contactless power transmission system according to the first embodiment; FIG. 第1実施形態に係る非接触電力伝送システムの送電装置に対する受電装置の配置の更に他の一例を示す模式的な平面図である。FIG. 7 is a schematic plan view showing still another example of the arrangement of the power receiving device with respect to the power transmitting device of the contactless power transmission system according to the first embodiment; 第1実施形態に係る非接触電力伝送システムの送電装置に対する受電装置の配置の更に他の一例を示す模式的な平面図である。FIG. 7 is a schematic plan view showing still another example of the arrangement of the power receiving device with respect to the power transmitting device of the contactless power transmission system according to the first embodiment; 第2実施形態に係る非接触電力伝送システムの受電装置における受電電極の平面的な配置を説明するための平面図である。FIG. 10 is a plan view for explaining the planar arrangement of power receiving electrodes in the power receiving device of the contactless power transmission system according to the second embodiment; 第2実施形態に係る非接触電力伝送システムの送電装置に対する受電装置の配置の一例を示す模式的な平面図である。FIG. 10 is a schematic plan view showing an example of the arrangement of power receiving devices with respect to the power transmitting device of the contactless power transmission system according to the second embodiment;

以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様の構成要素には同一の符号を付し、適宜に説明を省略する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in all the drawings, the same reference numerals are given to the same constituent elements, and the description thereof will be omitted as appropriate.

〔第1実施形態〕
先ず、図1から図8を用いて第1実施形態を説明する。
本実施形態に係る非接触電力伝送システム100は、交流電源31(図4)と、それぞれ交流電源31と電気的に接続されているとともに送電面A2(図1(b))に沿って配置されている複数の送電電極(第1送電電極21、第2送電電極22)とを有する送電装置20と、送電面A2に重ねて配置される受電面A1(図1(a))に沿って配置されていて送電電極と電界結合される複数の受電電極11を有し送電装置20から非接触で電力供給を受ける受電装置10と、を備える非接触電力伝送システム100である。
複数の送電電極には、互いに逆位相となる複数の第1送電電極21と複数の第2送電電極22とが含まれている。
受電面A1が送電面A2に重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、(1)複数の受電電極11のうち1つ以上の受電電極11が第1送電電極21と重なるとともに他の1つ以上の受電電極11が第2送電電極22と重なり、且つ、(2)送電電極と重なるいずれの受電電極11も第1送電電極21又は第2送電電極22の一方にのみ重なる、という条件を満たし得るように、複数の送電電極と複数の受電電極11とが配置されている。
[First embodiment]
First, a first embodiment will be described with reference to FIGS. 1 to 8. FIG.
The contactless power transmission system 100 according to the present embodiment is electrically connected to an AC power supply 31 (FIG. 4) and arranged along a power transmission plane A2 (FIG. 1B). A power transmission device 20 having a plurality of power transmission electrodes (a first power transmission electrode 21 and a second power transmission electrode 22) arranged along a power receiving surface A1 (FIG. 1(a)) arranged to overlap the power transmission surface A2. a power receiving device 10 having a plurality of power receiving electrodes 11 electrically coupled to the power transmitting electrodes and receiving power from the power transmitting device 20 in a contactless manner.
The plurality of power transmission electrodes includes a plurality of first power transmission electrodes 21 and a plurality of second power transmission electrodes 22 that are in opposite phases to each other.
In a state in which the power receiving surface A1 is superimposed on the power transmitting surface A2, regardless of the relative positions and orientations of the power transmitting surface A2 and the power receiving surface A1, (1) one of the plurality of power receiving electrodes 11 At least one power receiving electrode 11 overlaps with the first power transmitting electrode 21, and at least one other power receiving electrode 11 overlaps with the second power transmitting electrode 22, and (2) any power receiving electrode 11 overlapping with the power transmitting electrode A plurality of power transmission electrodes and a plurality of power reception electrodes 11 are arranged so as to satisfy the condition that they overlap only one of the power transmission electrodes 21 and the second power transmission electrodes 22 .

ここで、図1(a)及び図2に二点鎖線で示される包絡線E1は、受電装置10が有する複数の受電電極11の配置領域を最短距離で包絡する包絡線である。受電面A1は、この包絡線E1に囲まれた内側領域である。
図1(b)及び図5に二点鎖線で示される包絡線E2は、送電装置20が有する複数の送電電極の配置領域を最短距離で包絡する包絡線である。送電面A2は、この包絡線E2に囲まれた内側領域である。
本発明において、「受電面A1が送電面A2に重ねて配置されている状態」とは、受電面A1の少なくとも一部分と送電面A2の少なくとも一部分とが重なっている(対向している)状態を意味する。この状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たし得るように、複数の送電電極と複数の受電電極11とが配置されている。
Here, an envelope E1 indicated by a two-dot chain line in FIGS. 1A and 2 is an envelope that envelops the arrangement area of the plurality of power receiving electrodes 11 of the power receiving device 10 at the shortest distance. The power receiving surface A1 is an inner area surrounded by the envelope E1.
An envelope E2 indicated by a two-dot chain line in FIGS. 1B and 5 is an envelope that envelops the arrangement area of the plurality of power transmission electrodes of the power transmission device 20 at the shortest distance. A power transmission surface A2 is an inner area surrounded by the envelope E2.
In the present invention, “a state in which the power receiving surface A1 is arranged to overlap the power transmitting surface A2” refers to a state in which at least a portion of the power receiving surface A1 and at least a portion of the power transmitting surface A2 overlap (face each other). means. In this state, regardless of the relative positions and orientations of the power transmission surface A2 and the power reception surface A1, the plurality of power transmission electrodes and the plurality of power reception electrodes are arranged so as to satisfy the conditions (1) and (2) above. An electrode 11 is arranged.

本実施形態によれば、受電面A1が送電面A2に重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、送電装置20から受電装置10へ良好な伝送効率で電力を伝送し得るようにできる。
つまり、送電装置20に対する受電装置10の高い配置の自由度と、送電装置20から受電装置10への高い電力伝送効率と、を両立させ得ることができる。
According to the present embodiment, in a state where the power receiving surface A1 is superimposed on the power transmitting surface A2, regardless of the relative positions and orientations of the power transmitting surface A2 and the power receiving surface A1, Power can be transmitted to the power receiving device 10 with good transmission efficiency.
In other words, it is possible to achieve both a high degree of freedom in arranging the power receiving device 10 with respect to the power transmitting device 20 and high power transmission efficiency from the power transmitting device 20 to the power receiving device 10 .

図1(a)に示すように、受電装置10は、例えば、筐体13を有し、この筐体13が有する1つの平坦な外面が受電側対向面15となっている。複数の受電電極11は、受電側対向面15に沿って配置されている。したがって、受電面A1は、受電側対向面15に沿って配置されている。複数の受電電極11は、例えば、筐体13内に配置されている。筐体13の形状は特に限定されないが、本実施形態の場合、筐体13は扁平な直方体形状となっており、平面視矩形状に形成されている。 As shown in FIG. 1A , the power receiving device 10 has, for example, a housing 13 , and one flat outer surface of the housing 13 serves as a power receiving side facing surface 15 . The plurality of power receiving electrodes 11 are arranged along the power receiving side facing surface 15 . Therefore, the power receiving surface A1 is arranged along the power receiving side facing surface 15 . The plurality of power receiving electrodes 11 are arranged inside the housing 13, for example. Although the shape of the housing 13 is not particularly limited, in the case of the present embodiment, the housing 13 has a flat rectangular parallelepiped shape, and is formed in a rectangular shape in plan view.

図1(b)に示すように、送電装置20は、例えば、筐体23を有し、この筐体23が有する1つの平坦な外面が送電側対向面25となっている。複数の送電電極は、送電側対向面25に沿って配置されている。したがって、送電面A2は、送電側対向面25に沿って配置されている。複数の送電電極は、例えば、筐体23内に配置されている。筐体23の形状は特に限定されないが、本実施形態の場合、筐体23は扁平な直方体形状となっており、平面視矩形状に形成されている。 As shown in FIG. 1B , the power transmission device 20 has, for example, a housing 23 , and one flat outer surface of the housing 23 serves as a power transmission side facing surface 25 . A plurality of power transmission electrodes are arranged along the power transmission side facing surface 25 . Therefore, the power transmission surface A2 is arranged along the power transmission side facing surface 25 . The plurality of power transmission electrodes are arranged inside the housing 23, for example. Although the shape of the housing 23 is not particularly limited, in the case of the present embodiment, the housing 23 has a flat rectangular parallelepiped shape and is formed in a rectangular shape in plan view.

本発明において、受電面A1と送電面A2とは、どちらの面積が広くてもよいし、受電面A1と送電面A2とは面積が互いに等しくてもよい。
送電面A2の面積が受電面A1の面積よりも広い場合、受電面A1の全面が送電面A2と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
また、送電面A2の面積が受電面A1の面積よりも狭い場合、送電面A2の全面が受電面A1と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
In the present invention, either the power receiving surface A1 or the power transmitting surface A2 may have a larger area, or the power receiving surface A1 and the power transmitting surface A2 may have the same area.
When the area of the power transmission surface A2 is larger than the area of the power reception surface A1, the relative position and relationship between the power transmission surface A2 and the power reception surface A1 in a state where the entire power reception surface A1 is overlapped with the power transmission surface A2. It is preferable that the plurality of power transmission electrodes and the plurality of power reception electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of the physical orientation.
Further, when the area of the power transmission surface A2 is smaller than the area of the power reception surface A1, the relative positions of the power transmission surface A2 and the power reception surface A1 in a state where the entire power transmission surface A2 is overlapped with the power reception surface A1. And regardless of the relative orientation, it is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the conditions (1) and (2) above.

本発明において、受電側対向面15と送電側対向面25とは、どちらの面積が広くてもよいし、受電側対向面15と送電側対向面25とは面積が互いに等しくてもよい。
送電側対向面25の面積が受電側対向面15の面積よりも広い場合、受電側対向面15の全面が送電側対向面25と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
また、送電側対向面25の面積が受電側対向面15の面積よりも狭い場合、送電側対向面25の全面が受電側対向面15と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
In the present invention, either the power receiving side facing surface 15 or the power transmitting side facing surface 25 may have a larger area, or the power receiving side facing surface 15 and the power transmitting side facing surface 25 may have the same area.
When the area of the power transmission side facing surface 25 is larger than the area of the power receiving side facing surface 15, the power transmission side A2 and the power receiving side A1 are arranged in a state where the entire power receiving side facing surface 15 is overlapped with the power transmission side facing surface 25. It is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of the relative positions and relative orientations with the .
Further, when the area of the power transmission side facing surface 25 is smaller than the area of the power receiving side facing surface 15, in a state where the entire power transmission side facing surface 25 is arranged to overlap the power receiving side facing surface 15, the power transmission surface A2 and the power receiving side facing surface 25 A plurality of power transmitting electrodes and a plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of the relative position and relative orientation with respect to the surface A1. preferable.

本発明において、受電面A1と送電側対向面25とは、どちらの面積が広くてもよいし、受電面A1と送電側対向面25とは面積が互いに等しくてもよい。
送電側対向面25の面積が受電面A1の面積よりも広い場合、受電面A1の全面が送電側対向面25と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
また、送電側対向面25の面積が受電面A1の面積よりも狭い場合、送電側対向面25の全面が受電面A1と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
In the present invention, either the power receiving surface A1 or the power transmission side facing surface 25 may have a larger area, or the power receiving surface A1 and the power transmission side facing surface 25 may have the same area.
When the area of the power transmission side facing surface 25 is larger than the area of the power receiving surface A1, the power transmission side A2 and the power receiving surface A1 are relatively It is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their positions and relative orientations.
Further, when the area of the power transmission side facing surface 25 is smaller than the area of the power receiving surface A1, in a state where the entire power transmission side facing surface 25 is overlapped with the power receiving surface A1, the power transmission surface A2 and the power receiving surface A1 It is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their relative positions and relative orientations.

本発明において、受電側対向面15と送電面A2とは、どちらの面積が広くてもよいし、受電側対向面15と送電面A2とは面積が互いに等しくてもよい。
送電面A2の面積が受電側対向面15の面積よりも広い場合、受電側対向面15の全面が送電面A2と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
また、送電面A2の面積が受電側対向面15の面積よりも狭い場合、送電面A2の全面が受電側対向面15と重ねて配置されている状態において、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されていることが好ましい。
In the present invention, either the power receiving side facing surface 15 or the power transmitting surface A2 may have a larger area, or the power receiving side facing surface 15 and the power transmitting surface A2 may have the same area.
When the area of the power transmission surface A2 is larger than the area of the power receiving side facing surface 15, in a state where the entire power receiving side facing surface 15 is overlapped with the power transmission surface A2, there is a relative difference between the power transmission surface A2 and the power receiving surface A1. It is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their positions and relative orientations.
Further, when the area of the power transmission surface A2 is smaller than the area of the power receiving side facing surface 15, in a state where the entire power transmission surface A2 is overlapped with the power receiving side facing surface 15, the power transmission surface A2 and the power receiving surface A1 It is preferable that the plurality of power transmitting electrodes and the plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their relative positions and relative orientations.

これらの条件を満たすような構成を実現するため、受電装置10における受電電極11の数、送電装置20における送電電極の数、受電側対向面15の面積、及び、送電側対向面25の面積を、それぞれ設定することができる。 In order to realize a configuration that satisfies these conditions, the number of power receiving electrodes 11 in the power receiving device 10, the number of power transmitting electrodes in the power transmitting device 20, the area of the power receiving side facing surface 15, and the area of the power transmitting side facing surface 25 are set to , can be set respectively.

本実施形態の場合、送電面A2の面積が受電面A1の面積よりも広く、少なくとも、受電面A1の全面が送電面A2と重ねて配置されている状態では、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されている。更に、受電面A1の一部分が送電面A2からはみ出ていても、上記(1)及び(2)の条件を満たすような配置(送電面A2と受電面A1との相対的な位置及び相対的な向き)も存在する。 In the case of the present embodiment, the area of the power transmission surface A2 is larger than the area of the power reception surface A1, and at least in a state where the entire power reception surface A1 is overlapped with the power transmission surface A2, the power transmission surface A2 and the power reception surface A1 A plurality of power transmitting electrodes and a plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of the relative positions and relative orientations of the electrodes. Furthermore, even if part of the power receiving surface A1 protrudes from the power transmitting surface A2, an arrangement that satisfies the above conditions (1) and (2) (relative positions and relative positions between the power transmitting surface A2 and the power receiving surface A1) can be used. orientation) also exists.

本実施形態の場合、送電側対向面25の面積が受電側対向面15の面積よりも広く、少なくとも、受電側対向面15の全面が送電側対向面25と重ねて配置されている状態では、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されている。更に、受電側対向面15の一部分が送電側対向面25からはみ出ていても、上記(1)及び(2)の条件を満たすような配置(送電面A2と受電面A1との相対的な位置及び相対的な向き)も存在する。 In the case of the present embodiment, when the area of the power transmission side facing surface 25 is larger than the area of the power receiving side facing surface 15 and at least the entire surface of the power receiving side facing surface 15 is overlapped with the power transmission side facing surface 25, A plurality of power transmitting electrodes and a plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of the relative positions and orientations of the power transmitting surface A2 and the power receiving surface A1. It is Furthermore, even if a part of the power receiving side facing surface 15 protrudes from the power transmitting side facing surface 25, an arrangement that satisfies the above conditions (1) and (2) (relative positions between the power transmitting surface A2 and the power receiving surface A1) and relative orientations).

本実施形態の場合、送電側対向面25の面積が受電面A1の面積よりも広く、少なくとも、受電面A1の全面が送電側対向面25と重ねて配置されている状態では、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されている。更に、受電面A1の一部分が送電側対向面25からはみ出ていても、上記(1)及び(2)の条件を満たすような配置(送電面A2と受電面A1との相対的な位置及び相対的な向き)も存在する。 In the case of the present embodiment, the area of the power transmission side facing surface 25 is larger than the area of the power receiving surface A1, and at least in a state where the entire power receiving surface A1 is overlapped with the power transmission side facing surface 25, the power transmission surface A2 A plurality of power transmitting electrodes and a plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their relative positions and relative orientations with respect to the power receiving surface A1. Furthermore, even if part of the power receiving surface A1 protrudes from the power transmission side facing surface 25, the arrangement (relative position and relative position between the power transmission surface A2 and the power receiving surface A1) that satisfies the above conditions (1) and (2) orientation) also exist.

本実施形態の場合、送電面A2の面積が受電側対向面15の面積よりも広く、少なくとも、受電側対向面15の全面が送電面A2と重ねて配置されている状態では、送電面A2と受電面A1との相対的な位置及び相対的な向きにかかわらず、上記(1)及び(2)の条件を満たすように、複数の送電電極と複数の受電電極11とが配置されている。更に、受電側対向面15の一部分が送電面A2からはみ出ていても、上記(1)及び(2)の条件を満たすような配置(送電面A2と受電面A1との相対的な位置及び相対的な向き)も存在する。 In the case of the present embodiment, the area of the power transmission surface A2 is larger than the area of the power receiving side facing surface 15, and at least in a state where the entire power receiving side facing surface 15 is overlapped with the power transmission surface A2, A plurality of power transmitting electrodes and a plurality of power receiving electrodes 11 are arranged so as to satisfy the above conditions (1) and (2) regardless of their relative positions and relative orientations with respect to the power receiving surface A1. Furthermore, even if a part of the power receiving side facing surface 15 protrudes from the power transmission surface A2, an arrangement that satisfies the above conditions (1) and (2) (relative position and relative position between the power transmission surface A2 and the power reception surface A1) orientation) also exist.

本実施形態の場合、図5等に示すように、受電側対向面15と送電側対向面25とを対向させて(受電側対向面15と送電側対向面25とを互いに突き合わせて)送電装置20に受電装置10を重ねたときに、平面視において筐体13の外形線が筐体23の外形線の内側に収まるように、筐体13及び筐体23の寸法及び形状が設定されている。 In the case of the present embodiment, as shown in FIG. 5 and the like, the power transmission device is arranged such that the power receiving side facing surface 15 and the power transmitting side facing surface 25 face each other (the power receiving side facing surface 15 and the power transmitting side facing surface 25 face each other). The dimensions and shapes of the housing 13 and the housing 23 are set so that the outline of the housing 13 fits inside the outline of the housing 23 in plan view when the power receiving device 10 is placed on the power receiving device 20 . .

受電装置10において、複数の受電電極11は、互いに同一平面上に配置されていることが好ましい。受電面A1は、受電側対向面15に対して平行に配置されていることが好ましい。
送電装置20において、複数の送電電極は、互いに同一平面上に配置されていることが好ましい。送電面A2は、送電側対向面25に対して平行に配置されていることが好ましい。
In the power receiving device 10, the plurality of power receiving electrodes 11 are preferably arranged on the same plane. The power receiving surface A1 is preferably arranged parallel to the power receiving side facing surface 15 .
In the power transmission device 20, the plurality of power transmission electrodes are preferably arranged on the same plane. The power transmission surface A2 is preferably arranged parallel to the power transmission side facing surface 25 .

本実施形態の場合、図2に示すように、複数の受電電極11は、格子状に配置されている。より詳細には、複数の受電電極11は、例えば、正方格子状に配置されている。
受電装置10が有する受電電極11の数は特に限定されないが、本実施形態の場合、受電装置10は、例えば、2行4列の合計8つの受電電極11を有する。
これら受電電極11に、便宜的に、図2に示すように、C1、C2、C3、C4、C5、C6、C7、C8の呼称をそれぞれ与える。
本実施形態の場合、複数の受電電極11の各々は、円形状に形成されている。
また、各受電電極11の寸法は、互いに等しい。
In the case of this embodiment, as shown in FIG. 2, the plurality of power receiving electrodes 11 are arranged in a grid pattern. More specifically, the plurality of power receiving electrodes 11 are arranged in, for example, a square lattice.
Although the number of power receiving electrodes 11 included in the power receiving device 10 is not particularly limited, in the case of the present embodiment, the power receiving device 10 has, for example, a total of eight power receiving electrodes 11 arranged in two rows and four columns.
For convenience, these power receiving electrodes 11 are given designations C1, C2, C3, C4, C5, C6, C7, and C8, respectively, as shown in FIG.
In the case of this embodiment, each of the plurality of power receiving electrodes 11 is formed in a circular shape.
Moreover, the dimensions of each power receiving electrode 11 are equal to each other.

本実施形態の場合、第1送電電極21と第2送電電極22とが交互に配置されている。ここで、第1送電電極21と第2送電電極22とが交互に配置されているとは、第1送電電極21と第2送電電極22とが第1方向(例えば図3における左右方向)において周期的に繰り返し配置されているとともに、第1方向に対して直交する第2方向(例えば図3における上下方向)においても周期的に繰り返し配置されていることを意味する。
本実施形態の場合、図3及び図5に示すように、上記第1方向において隣り合う送電電極が互いに異なる位相になり、且つ、上記第2方向において隣り合う送電電極が互いに異なる位相になるように、複数の送電電極が配置されている。
ただし、本発明において、第1送電電極21と第2送電電極22とが交互に配置されているとは、必ずしも、隣り合う送電電極が互いに異なる位相になることに限定されず、図5等に示される個々の送電電極(第1送電電極21や第2送電電極22)が同位相の複数の電極に細分化されているような構成であってもよい。
In the case of this embodiment, the first power transmission electrodes 21 and the second power transmission electrodes 22 are alternately arranged. Here, the fact that the first power transmission electrodes 21 and the second power transmission electrodes 22 are alternately arranged means that the first power transmission electrodes 21 and the second power transmission electrodes 22 are arranged in the first direction (for example, the horizontal direction in FIG. 3). It means that they are cyclically and repeatedly arranged, and that they are also cyclically and repeatedly arranged in a second direction perpendicular to the first direction (for example, the vertical direction in FIG. 3).
In the case of the present embodiment, as shown in FIGS. 3 and 5, the phases of power transmission electrodes adjacent to each other in the first direction are different from each other, and the phases of power transmission electrodes adjacent to each other in the second direction are different from each other. , a plurality of power transmission electrodes are arranged.
However, in the present invention, the fact that the first power transmission electrodes 21 and the second power transmission electrodes 22 are alternately arranged does not necessarily mean that the adjacent power transmission electrodes are in phases different from each other. The individual power transmission electrodes (the first power transmission electrode 21 and the second power transmission electrode 22) shown may be subdivided into a plurality of electrodes of the same phase.

より詳細には、複数の送電電極は格子状に配置されている。より詳細には、複数の受電電極11は、例えば、正方格子状に配置されている。
複数の送電電極の各々は、正方形状に形成されている。より詳細には、複数の送電電極の各々は角丸の正方形状に形成されている。また、各送電電極は、互いに同じ向きに配置されている。すなわち、各送電電極の対応する辺どうしが互いに平行に配置されている。
また、各送電電極の寸法は、互いに等しい。
なお、図3、図5から図8においては、便宜的に、各第1送電電極21の電位がLow、各第2送電電極22の電位がHighとなった状態を示しているものとし、各第1送電電極21にはLの文字を付しており、各第2送電電極22にはHの文字を付している。
More specifically, the power transmission electrodes are arranged in a grid. More specifically, the plurality of power receiving electrodes 11 are arranged in, for example, a square lattice.
Each of the plurality of power transmission electrodes is formed in a square shape. More specifically, each of the plurality of power transmission electrodes is formed in a square shape with rounded corners. Moreover, each power transmission electrode is arrange|positioned mutually in the same direction. That is, the corresponding sides of each power transmission electrode are arranged parallel to each other.
Also, the dimensions of each power transmitting electrode are equal to each other.
3 and 5 to 8 , for the sake of convenience, it is assumed that the potential of each first power transmission electrode 21 is Low and the potential of each second power transmission electrode 22 is High. The first power transmission electrode 21 is labeled with the letter L, and each second power transmission electrode 22 is labeled with the letter H.

ここで、複数の送電電極のうち隣り合う送電電極間の間隙D2(図3)が、受電電極11の外径R1(図2)よりも大きい。ここで、本発明において、受電電極11の形状は円形に限らない。ここでいう受電電極11の外径R1は、一の受電電極11の中心を通り当該受電電極11の外周上の2点を繋ぐ線分の長さ(差し渡しの長さ)のうち最大のもの(最大外径)である。
また、複数の受電電極11のうち隣り合う受電電極11間の間隙D1(図2)が、送電電極の外径R2(図3)よりも小さい。ここでいう送電電極の外径R2は、一の送電電極の中心を通り当該送電電極の外周上の2点を繋ぐ線分の長さ(差し渡しの長さ)のうち最小のもの(最小外径)である。なお、送電電極の最大外径R3、すなわち一の送電電極の中心を通り当該送電電極の外周上の2点を繋ぐ線分の長さのうち最大のものは、隣り合う受電電極11間の間隙D1よりも大きい。
Here, the gap D2 ( FIG. 3 ) between adjacent power transmitting electrodes among the plurality of power transmitting electrodes is larger than the outer diameter R1 ( FIG. 2 ) of the power receiving electrode 11 . Here, in the present invention, the shape of the power receiving electrode 11 is not limited to circular. The outer diameter R1 of the power-receiving electrode 11 referred to here is the maximum length (length across) of the line segment passing through the center of one power-receiving electrode 11 and connecting two points on the outer periphery of the power-receiving electrode 11 ( maximum outer diameter).
Further, the gap D1 (FIG. 2) between adjacent power receiving electrodes 11 among the plurality of power receiving electrodes 11 is smaller than the outer diameter R2 (FIG. 3) of the power transmitting electrodes. The outer diameter R2 of the power transmission electrode referred to here is the smallest (minimum outer diameter ). Note that the maximum outer diameter R3 of the power transmitting electrode, that is, the maximum length of the line segment passing through the center of one power transmitting electrode and connecting two points on the outer periphery of the power transmitting electrode is the gap between the adjacent power receiving electrodes 11. Greater than D1.

本実施形態に係る非接触電力伝送システム100は、以下のように定義することもできる。
すなわち、本実施形態に係る非接触電力伝送システム100は、交流電源31と、それぞれ交流電源31と電気的に接続されているとともに送電面A2に沿って配置されている複数の送電電極とを有する送電装置20と、送電面A2に重ねて配置される受電面A1に沿って配置されていて送電電極と電界結合される複数の受電電極11を有し送電装置20から非接触で電力供給を受ける受電装置10と、を備える非接触電力伝送システム100であって、複数の送電電極には、互いに逆位相となる第1送電電極21と第2送電電極22とが含まれ、複数の送電電極は格子状に配置されており、第1送電電極21と第2送電電極22とが交互に配置されており、複数の送電電極のうち隣り合う送電電極間の間隙D2(図3)が受電電極11の外径R1(図2)よりも大きく、複数の受電電極11は格子状に配置されており、複数の受電電極11のうち隣り合う受電電極11間の間隙D1(図2)が、送電電極の外径R2(図3)よりも小さい。
The contactless power transmission system 100 according to this embodiment can also be defined as follows.
That is, the contactless power transmission system 100 according to the present embodiment has an AC power supply 31 and a plurality of power transmission electrodes electrically connected to the AC power supply 31 and arranged along the power transmission plane A2. It has a power transmitting device 20 and a plurality of power receiving electrodes 11 arranged along a power receiving surface A1 overlapping the power transmitting surface A2 and electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device 20 in a contactless manner. A contactless power transmission system 100 comprising a power receiving device 10, wherein the plurality of power transmission electrodes include a first power transmission electrode 21 and a second power transmission electrode 22 having opposite phases to each other, and the plurality of power transmission electrodes are First power transmission electrodes 21 and second power transmission electrodes 22 are arranged in a grid pattern, and a gap D2 ( FIG. The plurality of power receiving electrodes 11 are arranged in a grid pattern, and a gap D1 ( FIG. 2 ) between adjacent power receiving electrodes 11 among the plurality of power receiving electrodes 11 is larger than the outer diameter R1 (FIG. 2) of the power transmitting electrode. is smaller than the outer diameter R2 (FIG. 3) of the

受電電極11及び送電電極の寸法及び配置の具体的な一例としては、例えば、受電電極11の外径R1を9mmとし、隣り合う受電電極11間の間隙D1を6mmとし、送電電極の外径R2を10mmとし、隣り合う送電電極間の間隙D2を10mmとすることが挙げられる。
このため、本実施形態の場合、複数の受電電極11の各々の外径R1が、複数の送電電極の外径R2よりも小さい。そして、複数の受電電極11の各々の外径R1が、複数の送電電極の外径R2の半分以上である。
As a specific example of the dimensions and arrangement of the power receiving electrode 11 and the power transmitting electrode, for example, the outer diameter R1 of the power receiving electrode 11 is set to 9 mm, the gap D1 between adjacent power receiving electrodes 11 is set to 6 mm, and the outer diameter R2 of the power transmitting electrode is set. is 10 mm, and the gap D2 between adjacent power transmission electrodes is 10 mm.
Therefore, in the case of the present embodiment, the outer diameter R1 of each of the power receiving electrodes 11 is smaller than the outer diameter R2 of the power transmitting electrodes. The outer diameter R1 of each of the plurality of power receiving electrodes 11 is at least half the outer diameter R2 of the plurality of power transmitting electrodes.

図4に示すように、交流電源31は、互いに逆位相となる第1交流出力端子32と第2交流出力端子33とを有する。交流電源31は、単相でも三相でもよい。
第1送電電極21の各々は、個別の第1共振コイル34を介して、第1交流出力端子32と電気的に接続されている。すなわち、送電装置20は、第1送電電極21の各々と対応する第1共振コイル34を備えており、各第1共振コイル34の一端は第1交流出力端子32に対して電気的に接続されており、各第1共振コイル34の他端は対応する第1送電電極21に対して電気的に接続されている。
同様に、第2送電電極22の各々は、個別の第2共振コイル35を介して、第2交流出力端子33と電気的に接続されている。すなわち、送電装置20は、第2送電電極22の各々と対応する第2共振コイル35を備えており、各第2共振コイル35の一端は第2交流出力端子33に対して電気的に接続されており、各第2共振コイル35の他端は対応する第2送電電極22に対して電気的に接続されている。
このため、各第1送電電極21は常に互いに同位相となり、各第2送電電極22は常に互いに同位相となり、第1送電電極21と第2送電電極22とは常に互いに逆位相になる。
ここで、第1送電電極21と、当該第1送電電極21と対応する第1共振コイル34とにより、第1LC共振要素が構成されている。第1LC共振要素は、当該第1LC共振要素に含まれる第1送電電極21と受電電極11とが重なったときに、LC共振回路の一部分を構成する。
同様に、第2送電電極22と、当該第2送電電極22と対応する第2共振コイル35とにより、第2LC共振要素が構成されている。第2LC共振要素は、当該第2LC共振要素に含まれる第2送電電極22と受電電極11とが重なったときに、LC共振回路の一部分を構成する。
As shown in FIG. 4, the AC power supply 31 has a first AC output terminal 32 and a second AC output terminal 33 that are in opposite phases to each other. The AC power supply 31 may be single-phase or three-phase.
Each of the first power transmission electrodes 21 is electrically connected to the first AC output terminal 32 via an individual first resonance coil 34 . That is, the power transmission device 20 includes first resonance coils 34 corresponding to the respective first power transmission electrodes 21 , and one end of each first resonance coil 34 is electrically connected to the first AC output terminal 32 . The other end of each first resonance coil 34 is electrically connected to the corresponding first power transmission electrode 21 .
Similarly, each of the second power transmission electrodes 22 is electrically connected to the second AC output terminal 33 via an individual second resonance coil 35 . That is, the power transmission device 20 includes a second resonance coil 35 corresponding to each of the second power transmission electrodes 22 , and one end of each second resonance coil 35 is electrically connected to the second AC output terminal 33 . The other end of each second resonance coil 35 is electrically connected to the corresponding second power transmission electrode 22 .
Therefore, the first power transmission electrodes 21 are always in phase with each other, the second power transmission electrodes 22 are always in phase with each other, and the first power transmission electrodes 21 and the second power transmission electrodes 22 are always in opposite phases with each other.
Here, the first power transmission electrode 21 and the first resonance coil 34 corresponding to the first power transmission electrode 21 constitute a first LC resonance element. The first LC resonant element configures a part of the LC resonant circuit when the first power transmitting electrode 21 and the power receiving electrode 11 included in the first LC resonant element are overlapped.
Similarly, the second power transmission electrode 22 and the second resonance coil 35 corresponding to the second power transmission electrode 22 constitute a second LC resonance element. The second LC resonant element constitutes a part of the LC resonant circuit when the second power transmitting electrode 22 and the power receiving electrode 11 included in the second LC resonant element are overlapped.

各第1LC共振要素の共振周波数は互いに等しく、各第2LC共振要素の共振周波数は互いに等しく、前記第1LC共振要素と前記第2LC共振要素との共振周波数が互いに等しい。
これにより、重なり合った電極間の伝送効率を向上させることができる。
第1LC共振要素の共振周波数とは、当該第1LC共振要素に含まれる第1送電電極21と受電電極11とが重なったときに構成されるLC共振回路の共振周波数であり、第2LC共振要素の共振周波数とは、当該第2LC共振要素に含まれる第2送電電極22と受電電極11とが重なったときに構成されるLC共振回路の共振周波数である。
また、2つのLC共振回路どうしの共振周波数が互いに等しいとは、一方のLC共振回路を構成する送電電極と受電電極11とが所定の重なり面積で重なったときの当該LC共振回路の共振周波数と、他方のLC共振回路を構成する送電電極と受電電極11とが上記所定の重なり面積で重なったときの当該LC共振回路の共振周波数と、が互いに等しいことを意味する。
The resonance frequencies of the first LC resonance elements are equal to each other, the resonance frequencies of the second LC resonance elements are equal to each other, and the resonance frequencies of the first LC resonance element and the second LC resonance elements are equal to each other.
Thereby, the transmission efficiency between the overlapping electrodes can be improved.
The resonance frequency of the first LC resonance element is the resonance frequency of the LC resonance circuit formed when the first power transmission electrode 21 and the power reception electrode 11 included in the first LC resonance element overlap. The resonance frequency is the resonance frequency of the LC resonance circuit formed when the second power transmission electrode 22 and the power reception electrode 11 included in the second LC resonance element are overlapped.
Further, the expression that two LC resonant circuits have the same resonant frequency means that the resonant frequency of the LC resonant circuit when the power transmitting electrode and the power receiving electrode 11 constituting one LC resonant circuit overlap with each other with a predetermined overlapping area. , and the resonance frequency of the other LC resonant circuit when the power transmitting electrode and the power receiving electrode 11 constituting the other LC resonant circuit are overlapped with each other with the predetermined overlapping area.

また、受電装置10の受電電極11と送電装置20の送電電極との間には、高誘電率の絶縁板(例えば、樹脂板)が介在することが好ましい。例えば、筐体13の受電側対向面15、又は、筐体23の送電側対向面25が平板状の樹脂板により構成されていて、受電側対向面15や送電側対向面25がこの絶縁板を構成していてもよい。
このような構成により、送電電極と受電電極11との間の静電容量を増加させインピーダンスを低下させることができる。
Moreover, it is preferable that an insulating plate (for example, a resin plate) having a high dielectric constant is interposed between the power receiving electrode 11 of the power receiving device 10 and the power transmitting electrode of the power transmitting device 20 . For example, the power receiving side facing surface 15 of the housing 13 or the power transmitting side facing surface 25 of the housing 23 is made of a flat resin plate, and the power receiving side facing surface 15 and the power transmitting side facing surface 25 are made of this insulating plate. may constitute
With such a configuration, it is possible to increase the capacitance between the power transmitting electrode and the power receiving electrode 11 and reduce the impedance.

図4に示すように、受電装置10は、負荷60とそれぞれ電気的に接続される第1受電出力端子41と第2受電出力端子42とを有する。
受電電極11の各々は、第1伝送線43を介して第1受電出力端子41と電気的に接続されているとともに、第2伝送線44を介して第2受電出力端子42と電気的に接続されている。
第1伝送線43には、第1整流素子として、例えば、第1ダイオード51が挿入されている。これにより、第1伝送線43において、電流が受電電極11から第1受電出力端子41側に一方向に流れるようになっている。すなわち、第1ダイオード51は、アノードが受電電極11側に、カソードが第1受電出力端子41側に、それぞれ配置されている。
第2伝送線44には、第1整流素子と同方向に電流を整流する第2整流素子として、例えば、第2ダイオード52が挿入されている。これにより、第2伝送線44において、電流が第2受電出力端子42から受電電極11側に一方向に流れるようになっている。すなわち、第2ダイオード52は、アノードが第2受電出力端子42側に、カソードが受電電極11側に、それぞれ配置されている。
このように、受電装置10は、第1伝送線43、第2伝送線44、複数の第1ダイオード51及び複数の第2ダイオード52を備えている。
As shown in FIG. 4 , the power receiving device 10 has a first power receiving output terminal 41 and a second power receiving output terminal 42 electrically connected to the load 60 .
Each of the power receiving electrodes 11 is electrically connected to the first power receiving output terminal 41 via the first transmission line 43 and electrically connected to the second power receiving output terminal 42 via the second transmission line 44 . It is
For example, a first diode 51 is inserted in the first transmission line 43 as a first rectifying element. As a result, in the first transmission line 43, current flows in one direction from the power receiving electrode 11 to the first power receiving output terminal 41 side. That is, the first diode 51 has an anode disposed on the power receiving electrode 11 side and a cathode disposed on the first power receiving output terminal 41 side.
For example, a second diode 52 is inserted in the second transmission line 44 as a second rectifying element that rectifies the current in the same direction as the first rectifying element. As a result, in the second transmission line 44 , current flows in one direction from the second power receiving output terminal 42 to the power receiving electrode 11 side. That is, the second diode 52 has an anode disposed on the second power receiving output terminal 42 side and a cathode disposed on the power receiving electrode 11 side.
Thus, the power receiving device 10 includes the first transmission line 43 , the second transmission line 44 , the plurality of first diodes 51 and the plurality of second diodes 52 .

ここで、第1伝送線43は、個々の受電電極11と対応して配置されていて各々の一端が対応する受電電極11に対して電気的に接続されている複数の分枝線43aと、これら複数の分枝線43aの他端に対して一端が電気的に接続されている合流線43bと、により構成されている。合流線43bの他端が、第1受電出力端子41に対して電気的に接続されている。各分枝線43aに、それぞれ第1ダイオード51が挿入されている。
同様に、第2伝送線44は、個々の受電電極11と対応して配置されていて各々の一端が対応する受電電極11に対して電気的に接続されている複数の分枝線44aと、これら複数の分枝線44aの他端に対して一端が電気的に接続されている合流線44bと、により構成されている。合流線44bの他端が、第2受電出力端子42に対して電気的に接続されている。各分枝線44aに、それぞれ第2ダイオード52が挿入されている。
Here, the first transmission line 43 includes a plurality of branch lines 43a arranged corresponding to the respective power receiving electrodes 11 and electrically connected to the corresponding power receiving electrodes 11 at one ends thereof; and a merging line 43b having one end electrically connected to the other end of the plurality of branch lines 43a. The other end of the junction line 43b is electrically connected to the first power reception output terminal 41 . A first diode 51 is inserted in each branch line 43a.
Similarly, the second transmission line 44 includes a plurality of branch lines 44a arranged corresponding to the individual power receiving electrodes 11 and electrically connected to the corresponding power receiving electrodes 11 at one ends of the branch lines 44a, and a merging line 44b having one end electrically connected to the other end of the plurality of branch lines 44a. The other end of the junction line 44b is electrically connected to the second power reception output terminal 42 . A second diode 52 is inserted in each branch line 44a.

受電装置10は、更に、第1伝送線43及び第2伝送線44を流れる電流のリップルを低減する平滑素子を有する。この平滑素子は、例えば、コンデンサ53、電解コンデンサ54及び電解コンデンサ55の3つのコンデンサを含んで構成されている。
平滑素子は、第1伝送線43における第1ダイオード51(第1整流素子)と第1受電出力端子41との間の部分と、第2伝送線44における第2ダイオード52(第2整流素子)と第2受電出力端子42との間の部分と、に接続されている。
より詳細には、平滑素子は、合流線43bと合流線44bとに接続されている。すなわち、コンデンサ53、電解コンデンサ54及び電解コンデンサ55の各々の一端が合流線43bに接続されており、コンデンサ53、電解コンデンサ54及び電解コンデンサ55の各々の他端が合流線44bに接続されている。
The power receiving device 10 further includes a smoothing element that reduces ripples in the current flowing through the first transmission line 43 and the second transmission line 44 . This smoothing element includes, for example, three capacitors, a capacitor 53 , an electrolytic capacitor 54 and an electrolytic capacitor 55 .
The smoothing element is a portion between the first diode 51 (first rectifying element) and the first power receiving output terminal 41 in the first transmission line 43 and a second diode 52 (second rectifying element) in the second transmission line 44. and the second power receiving output terminal 42 .
More specifically, the smoothing element is connected to merge line 43b and merge line 44b. That is, one end of each of the capacitor 53, the electrolytic capacitor 54, and the electrolytic capacitor 55 is connected to the merging line 43b, and the other end of each of the capacitor 53, the electrolytic capacitor 54, and the electrolytic capacitor 55 is connected to the merging line 44b. .

受電装置10は負荷60を含んで構成されていてもよいし、受電装置10の外部の構成であってもよい。後者の場合、負荷60と電気的に接続されるインターフェースが第1受電出力端子41及び第2受電出力端子42を有する。
負荷60は、特に限定されないが、例えば、スマートフォンなどのような、充電可能な二次電池を有する端末装置であることが挙げられる。
The power receiving device 10 may be configured including the load 60 , or may be configured outside the power receiving device 10 . In the latter case, the interface electrically connected to the load 60 has the first power reception output terminal 41 and the second power reception output terminal 42 .
The load 60 is not particularly limited, but may be, for example, a terminal device having a rechargeable secondary battery, such as a smartphone.

非接触電力伝送システム100は、以上のように構成されている。
本実施形態に係る受電装置10は、本実施形態に係る非接触電力伝送システム100の受電装置10である。
また、本実施形態に係る送電装置20は、本実施形態に係る非接触電力伝送システム100の送電装置20である。
非接触電力伝送システム100の受電装置10は、送電装置20と組み合わせた非接触電力伝送システム100として流通する他、受電装置10の単体で流通してもよい。同様に、送電装置20も単体で流通してもよい。
The contactless power transmission system 100 is configured as described above.
The power receiving device 10 according to this embodiment is the power receiving device 10 of the contactless power transmission system 100 according to this embodiment.
Further, the power transmission device 20 according to this embodiment is the power transmission device 20 of the contactless power transmission system 100 according to this embodiment.
The power receiving device 10 of the contactless power transmission system 100 may be distributed as the contactless power transmission system 100 in combination with the power transmitting device 20, or may be distributed as the power receiving device 10 alone. Similarly, the power transmission device 20 may be distributed alone.

図5に示す状態は、平面視における筐体13の4辺と筐体23との4辺とのうち一辺どうしが平行に配置された状態を示す。
この状態において、C2の受電電極11及びC8の受電電極11がそれぞれ対応する第1送電電極21と重なり、C6の受電電極11が第2送電電極22と重なっている。このため、C2の受電電極11、C8の受電電極11及びC6の受電電極11には、電界結合によって交流電圧が励起される。励起される交流電圧は、第1送電電極21及び第2送電電極22に印加された交流電圧の周波数に相当する周波数と電界結合度に依存する高さとを有する。
また、C2の受電電極11及びC8の受電電極11は、いずれも、第2送電電極22とは重なっておらず、C6の受電電極11は第1送電電極21とは重なっていない。
よって、送電装置20から受電装置10へ電力を伝送することができ、送電装置20から受電装置10へ良好な伝送効率で電力を伝送することができる。
The state shown in FIG. 5 shows a state in which one of the four sides of the housing 13 and the four sides of the housing 23 in plan view are arranged parallel to each other.
In this state, the power receiving electrodes 11 of C2 and the power receiving electrodes 11 of C8 overlap the corresponding first power transmitting electrodes 21, and the power receiving electrode 11 of C6 overlaps the second power transmitting electrodes 22. As shown in FIG. Therefore, an AC voltage is excited by electric field coupling in the power receiving electrode 11 of C2, the power receiving electrode 11 of C8, and the power receiving electrode 11 of C6. The excited AC voltage has a frequency corresponding to the frequency of the AC voltage applied to the first power transmission electrode 21 and the second power transmission electrode 22 and a height dependent on the degree of electric field coupling.
Further, neither the power receiving electrode 11 of C2 nor the power receiving electrode 11 of C8 overlaps the second power transmitting electrode 22, and the power receiving electrode 11 of C6 does not overlap the first power transmitting electrode 21.
Therefore, power can be transmitted from the power transmitting device 20 to the power receiving device 10, and power can be transmitted from the power transmitting device 20 to the power receiving device 10 with good transmission efficiency.

図6に示す状態は、図5に示す状態から、受電装置10を送電装置20に対して相対的に図5における右方に移動させた状態である。
この状態では、C1の受電電極11とC2の受電電極11とが共通の第1送電電極21と重なり、C5の受電電極11とC6の受電電極11とが共通の第2送電電極22と重なり、C7の受電電極11とC8の受電電極11とが共通の第1送電電極21と重なっている。このため、これら受電電極11には電界結合によって交流電圧が励起される。
また、C1の受電電極11、C2の受電電極11、C7の受電電極11及びC8の受電電極11は、いずれも、第2送電電極22とは重なっておらず、C5の受電電極11及びC6の受電電極11は、いずれも、第1送電電極21とは重なっていない。
よって、やはり、送電装置20から受電装置10へ電力を伝送することができ、送電装置20から受電装置10へ良好な伝送効率で電力を伝送することができる。
The state shown in FIG. 6 is a state in which the power receiving device 10 is moved to the right in FIG. 5 relative to the power transmitting device 20 from the state shown in FIG.
In this state, the power receiving electrode 11 of C1 and the power receiving electrode 11 of C2 overlap the common first power transmitting electrode 21, the power receiving electrode 11 of C5 and the power receiving electrode 11 of C6 overlap the common second power transmitting electrode 22, The power receiving electrode 11 of C7 and the power receiving electrode 11 of C8 overlap the common first power transmission electrode 21 . Therefore, an AC voltage is excited in these power receiving electrodes 11 by electric field coupling.
Further, the power receiving electrode 11 of C1, the power receiving electrode 11 of C2, the power receiving electrode 11 of C7 and the power receiving electrode 11 of C8 do not overlap the second power transmitting electrode 22, and the power receiving electrode 11 of C5 and the power receiving electrode 11 of C6 do not overlap each other. None of the power receiving electrodes 11 overlap the first power transmitting electrodes 21 .
Therefore, power can be transmitted from the power transmitting device 20 to the power receiving device 10, and power can be transmitted from the power transmitting device 20 to the power receiving device 10 with good transmission efficiency.

図7に示す状態は、図6に示す状態から、受電装置10を送電装置20に対して相対的に図6における下方に移動させた状態である。
この状態では、C1の受電電極11とC2の受電電極11とが共通の第1送電電極21と重なり、C3の受電電極11、C4の受電電極11、C5の受電電極11及びC6の受電電極11が共通の第2送電電極22と重なり、C7の受電電極11とC8の受電電極11とが共通の第1送電電極21に重なっている。このため、これら受電電極11には電界結合によって交流電圧が励起される。
また、C1の受電電極11、C2の受電電極11、C7の受電電極11及びC8の受電電極11は、いずれも、第2送電電極22とは重なっておらず、C3の受電電極11、C4の受電電極11、C5の受電電極11及びC6の受電電極11は、いずれも第1送電電極21とは重なっていない。
よって、やはり、送電装置20から受電装置10へ電力を伝送することができ、送電装置20から受電装置10へ良好な伝送効率で電力を伝送することができる。
The state shown in FIG. 7 is a state in which the power receiving device 10 is moved downward in FIG. 6 relative to the power transmitting device 20 from the state shown in FIG. 6 .
In this state, the power receiving electrode 11 of C1 and the power receiving electrode 11 of C2 overlap the common first power transmitting electrode 21, the power receiving electrode 11 of C3, the power receiving electrode 11 of C4, the power receiving electrode 11 of C5 and the power receiving electrode 11 of C6. overlaps the common second power transmitting electrode 22 , and the power receiving electrode 11 of C 7 and the power receiving electrode 11 of C 8 overlap the common first power transmitting electrode 21 . Therefore, an AC voltage is excited in these power receiving electrodes 11 by electric field coupling.
Further, the power receiving electrode 11 of C1, the power receiving electrode 11 of C2, the power receiving electrode 11 of C7 and the power receiving electrode 11 of C8 do not overlap the second power transmitting electrode 22, and the power receiving electrode 11 of C3 and the power receiving electrode 11 of C4 do not overlap each other. None of the power receiving electrode 11 , the power receiving electrode 11 of C<b>5 and the power receiving electrode 11 of C<b>6 overlap the first power transmitting electrode 21 .
Therefore, power can be transmitted from the power transmitting device 20 to the power receiving device 10, and power can be transmitted from the power transmitting device 20 to the power receiving device 10 with good transmission efficiency.

図8に示す状態は、平面視における筐体13の4辺が筐体23の4辺に対して45度傾斜するように受電装置10を配置し、且つ、送電電極に対する受電電極11の重なり面積が最も小さくなるようにした状態を示す。
この状態は、C5の受電電極11とC6の受電電極11とがそれぞれ対応する第1送電電極21と重なり、C7の受電電極11とC8の受電電極11とがそれぞれ対応する第2送電電極22と重なっている。このため、これら受電電極11には電界結合によって交流電圧が励起される。
また、C5の受電電極11とC6の受電電極11は、いずれも、第2送電電極22とは重なっておらず、C7の受電電極11とC8の受電電極11は、いずれも第1送電電極21とは重なっていない。
よって、やはり、送電装置20から受電装置10へ電力を伝送することができ、送電装置20から受電装置10へ良好な伝送効率で電力を伝送することができる。
In the state shown in FIG. 8, the power receiving device 10 is arranged such that the four sides of the housing 13 in plan view are inclined by 45 degrees with respect to the four sides of the housing 23, and the overlapping area of the power receiving electrodes 11 with respect to the power transmitting electrodes is is minimized.
In this state, the power receiving electrodes 11 of C5 and C6 overlap with the corresponding first power transmitting electrodes 21, and the power receiving electrodes 11 of C7 and C8 overlap with the corresponding second power transmitting electrodes 22, respectively. overlapping. Therefore, an AC voltage is excited in these power receiving electrodes 11 by electric field coupling.
Further, neither the power receiving electrode 11 of C5 nor the power receiving electrode 11 of C6 overlaps the second power transmitting electrode 22, and both the power receiving electrode 11 of C7 and the power receiving electrode 11 of C8 overlap the first power transmitting electrode 21. does not overlap with
Therefore, power can be transmitted from the power transmitting device 20 to the power receiving device 10, and power can be transmitted from the power transmitting device 20 to the power receiving device 10 with good transmission efficiency.

また、図示は省略するが、受電装置10を送電装置20に対して図5から図8に示す以外の位置に移動させても、受電装置10を送電装置20に対して図5から図8に示す以外の回転角度で配置しても、(A)少なくとも受電面A1の全面が送電面A2と重ねて配置されている限りにおいて、又は、(B)少なくとも受電側対向面15の全面が送電側対向面25と重ねて配置されている限りにおいて、又は、(C)少なくとも受電面A1の全面が送電側対向面25と重ねて配置されている限りにおいて、又は、(D)少なくとも受電側対向面15の全面が送電面A2と重ねて配置されている限りにおいて、常に、1つ以上の受電電極11が第1送電電極21と重なるとともに他の1つ以上の受電電極11が第2送電電極22と重なり、且つ、送電電極と重なるいずれの受電電極11も第1送電電極21又は第2送電電極22の一方にのみ重なる。
つまり、いずれの受電電極11も第1送電電極21と第2送電電極22とを跨ぐことはない。より詳細には、本実施形態の場合、いずれの受電電極11も、複数の送電電極を跨ぐことはない(第1送電電極21どうしを跨ぐことも、第2送電電極22どうしを跨ぐこともない)。
このため、送電装置20から受電装置10へ良好な伝送効率で電力を伝送することが可能である。
Although not shown, even if the power receiving device 10 is moved to a position other than that shown in FIGS. Even if it is arranged at a rotation angle other than that shown, (A) at least the entire surface of the power receiving surface A1 is overlapped with the power transmitting surface A2, or (B) at least the entire surface of the power receiving side facing surface 15 is on the power transmitting side. As long as it overlaps with the facing surface 25, or (C) at least as long as the entire surface of the power receiving surface A1 overlaps with the power transmission side facing surface 25, or (D) at least the power receiving side facing surface 15 are arranged to overlap the power transmission surface A2, one or more power receiving electrodes 11 always overlap the first power transmission electrode 21 and the other one or more power reception electrodes 11 overlap the second power transmission electrode 22. , and any power receiving electrode 11 that overlaps with the power transmitting electrode overlaps only one of the first power transmitting electrode 21 and the second power transmitting electrode 22 .
That is, none of the power receiving electrodes 11 straddle the first power transmitting electrode 21 and the second power transmitting electrode 22 . More specifically, in the case of the present embodiment, none of the power receiving electrodes 11 straddles a plurality of power transmission electrodes (they do not straddle the first power transmission electrodes 21 nor straddle the second power transmission electrodes 22). ).
Therefore, power can be transmitted from the power transmitting device 20 to the power receiving device 10 with good transmission efficiency.

ここで、特許文献1の技術では、電界結合している送電電極を判定し、当該送電電極と対応するスイッチをオンにする制御を、CPUが行う。
これに対し、本実施形態の場合、送電装置20において、各送電電極と対応してコイル(第1共振コイル34又は第2共振コイル35が設けられている。このため、受電電極11が重なった送電電極を有するLC共振回路においてのみ共振条件が成立し、当該LC共振回路のみが高圧になり、その他のLC共振回路の送電電極は共振条件が成立しないので低圧のままとなる。
よって、本実施形態の場合、特許文献1の技術とは異なり、CPUによるスイッチの制御が不要である。
Here, in the technique disclosed in Patent Literature 1, the CPU determines the power transmission electrodes that are electrically coupled and turns on the switches corresponding to the power transmission electrodes.
On the other hand, in the case of the present embodiment, the power transmission device 20 is provided with a coil (the first resonance coil 34 or the second resonance coil 35) corresponding to each power transmission electrode. The resonance condition is satisfied only in the LC resonance circuit having the power transmission electrode, and only the LC resonance circuit has a high voltage.
Therefore, in the case of this embodiment, unlike the technique of Patent Document 1, control of the switch by the CPU is unnecessary.

〔第2実施形態〕
次に、図9及び図10を用いて第2実施形態を説明する。
本実施形態の場合、受電装置10の構成が、上記の第1実施形態と相違しており、それ以外の構成は、第1実施形態と同様である。
[Second embodiment]
Next, a second embodiment will be described with reference to FIGS. 9 and 10. FIG.
In the case of this embodiment, the configuration of the power receiving device 10 is different from that of the above-described first embodiment, and the configuration other than that is the same as that of the first embodiment.

本実施形態の場合、受電面が送電面に重ねて配置されている状態において、送電面に対する受電面の位置及び向きにかかわらず、複数の受電電極11のうち、2つ以上の受電電極11が一の第1送電電極21と重なるとともに他の2つ以上の受電電極11が一の第2送電電極22と重なるように、複数の送電電極と複数の受電電極11とが配置されている(図10参照)。
このことを実現するため、図9に示すように、受電装置10において、第1実施形態と比べてより多くの受電電極11が密集して配置されている。
本実施形態の場合、複数の受電電極11の各々の外径が、送電電極の外径の半分未満である。
In the case of the present embodiment, in a state in which the power receiving surface is superimposed on the power transmitting surface, two or more of the power receiving electrodes 11 out of the plurality of power receiving electrodes 11 are arranged regardless of the position and orientation of the power receiving surface with respect to the power transmitting surface. A plurality of power transmission electrodes and a plurality of power reception electrodes 11 are arranged so that one first power transmission electrode 21 overlaps and two or more other power reception electrodes 11 overlap one second power transmission electrode 22 (FIG. 10).
To achieve this, as shown in FIG. 9, in the power receiving device 10, more power receiving electrodes 11 are densely arranged than in the first embodiment.
In the case of this embodiment, the outer diameter of each of the plurality of power receiving electrodes 11 is less than half the outer diameter of the power transmitting electrodes.

以上、図面を参照して各実施形態を説明したが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。また、上記の各実施形態は、本発明の主旨を逸脱しない範囲で、適宜に組み合わせることができる。 Although each embodiment has been described above with reference to the drawings, these are examples of the present invention, and various configurations other than those described above can be employed. Moreover, each of the above-described embodiments can be appropriately combined without departing from the gist of the present invention.

本実施形態は以下の技術思想を包含する。
(1)交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる複数の第1送電電極と複数の第2送電電極とが含まれ、
前記受電面が前記送電面に重ねて配置されている状態において、前記送電面と前記受電面との相対的な位置及び相対的な向きにかかわらず、(1)前記複数の受電電極のうち1つ以上の受電電極が前記第1送電電極と重なるとともに他の1つ以上の受電電極が前記第2送電電極と重なり、且つ、(2)前記送電電極と重なるいずれの受電電極も前記第1送電電極又は前記第2送電電極の一方にのみ重なる、という条件を満たし得るように、前記複数の送電電極と前記複数の受電電極とが配置されている非接触電力伝送システム。
(2)前記第1送電電極と前記第2送電電極とが交互に配置されている(1)に記載の非接触電力伝送システム。
(3)前記複数の送電電極は格子状に配置されている(1)又は(2)に記載の非接触電力伝送システム。
(4)前記複数の送電電極のうち隣り合う送電電極間の間隙が、前記受電電極の外径よりも大きい(1)から(3)のいずれか一項に記載の非接触電力伝送システム。
(5)前記複数の受電電極は格子状に配置されている(1)から(4)のいずれか一項に記載の非接触電力伝送システム。
(6)前記複数の受電電極のうち隣り合う受電電極間の間隙が、前記送電電極の外径よりも小さい(1)から(5)のいずれか一項に記載の非接触電力伝送システム。
(7)交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる第1送電電極と第2送電電極とが含まれ、
前記複数の送電電極は格子状に配置されており、
前記第1送電電極と前記第2送電電極とが交互に配置されており、
前記複数の送電電極のうち隣り合う送電電極間の間隙が、前記受電電極の外径よりも大きく、
前記複数の受電電極は格子状に配置されており、
前記複数の受電電極のうち隣り合う受電電極間の間隙が、前記送電電極の外径よりも小さい非接触電力伝送システム。
(8)前記複数の送電電極の各々は正方形状に形成されている(1)から(7)のいずれか一項に記載の非接触電力伝送システム。
(9)前記複数の受電電極の各々は円形状に形成されている(1)から(8)のいずれか一項に記載の非接触電力伝送システム。
(10)前記複数の受電電極の各々の外径が、前記複数の送電電極の外径の半分以上である(1)から(9)のいずれか一項に記載の非接触電力伝送システム。
(11)前記交流電源は、互いに逆位相となる第1交流出力端子と第2交流出力端子とを有し、
前記第1送電電極の各々は、個別の第1共振コイルを介して、前記第1交流出力端子と電気的に接続されており、
前記第1送電電極と、当該第1送電電極と対応する前記第1共振コイルとにより、第1LC共振要素が構成されており、
前記第2送電電極の各々は、個別の第2共振コイルを介して、前記第2交流出力端子と電気的に接続されており、
前記第2送電電極と、当該第2送電電極と対応する前記第2共振コイルとにより、第2LC共振要素が構成されている(1)から(10)のいずれか一項に記載の非接触電力伝送システム。
(12)前記第1LC共振要素の各々の共振周波数が互いに等しく、前記第2LC共振要素の各々の共振周波数が互いに等しく、前記第1LC共振要素と前記第2LC共振要素との共振周波数が互いに等しい(11)に記載の非接触電力伝送システム。
(13)前記受電装置は、負荷とそれぞれ電気的に接続される第1受電出力端子と第2受電出力端子とを有し、
前記受電電極の各々は、第1伝送線を介して前記第1受電出力端子と電気的に接続されているとともに、第2伝送線を介して前記第2受電出力端子と電気的に接続されており、
前記第1伝送線には、第1整流素子が挿入されており、
前記第2伝送線には、前記第1整流素子と同方向に電流を整流する第2整流素子が挿入されている(1)から(12)のいずれか一項に記載の非接触電力伝送システム。
(14)(1)から(13)のいずれか一項に記載の非接触電力伝送システムの前記送電装置。
(15)(1)から(13)のいずれか一項に記載の非接触電力伝送システムの前記受電装置。
This embodiment includes the following technical ideas.
(1) a power transmission device having an AC power supply and a plurality of power transmission electrodes electrically connected to the AC power supply and arranged along a power transmission surface;
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a plurality of first power transmission electrodes and a plurality of second power transmission electrodes having phases opposite to each other,
In a state in which the power receiving surface is superimposed on the power transmitting surface, regardless of the relative positions and relative orientations of the power transmitting surface and the power receiving surface, (1) one of the plurality of power receiving electrodes At least one power receiving electrode overlaps the first power transmitting electrode and at least one other power receiving electrode overlaps the second power transmitting electrode; and (2) any power receiving electrode overlapping the power transmitting electrode is the first power transmitting electrode. A contactless power transmission system, wherein the plurality of power transmission electrodes and the plurality of power reception electrodes are arranged so as to satisfy the condition that they overlap only one of the electrodes or the second power transmission electrodes.
(2) The contactless power transmission system according to (1), in which the first power transmission electrodes and the second power transmission electrodes are alternately arranged.
(3) The contactless power transmission system according to (1) or (2), wherein the plurality of power transmission electrodes are arranged in a grid.
(4) The contactless power transmission system according to any one of (1) to (3), wherein a gap between adjacent power transmitting electrodes among the plurality of power transmitting electrodes is larger than an outer diameter of the power receiving electrode.
(5) The contactless power transmission system according to any one of (1) to (4), wherein the plurality of power receiving electrodes are arranged in a grid.
(6) The contactless power transmission system according to any one of (1) to (5), wherein a gap between adjacent power receiving electrodes among the plurality of power receiving electrodes is smaller than an outer diameter of the power transmitting electrode.
(7) a power transmission device having an AC power supply and a plurality of power transmission electrodes electrically connected to the AC power supply and arranged along a power transmission surface;
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a first power transmission electrode and a second power transmission electrode having opposite phases to each other,
The plurality of power transmission electrodes are arranged in a lattice,
The first power transmission electrodes and the second power transmission electrodes are alternately arranged,
a gap between adjacent power transmitting electrodes among the plurality of power transmitting electrodes is larger than an outer diameter of the power receiving electrode;
The plurality of power receiving electrodes are arranged in a grid,
The non-contact power transmission system, wherein a gap between adjacent power receiving electrodes among the plurality of power receiving electrodes is smaller than an outer diameter of the power transmitting electrode.
(8) The contactless power transmission system according to any one of (1) to (7), wherein each of the plurality of power transmission electrodes is formed in a square shape.
(9) The contactless power transmission system according to any one of (1) to (8), wherein each of the plurality of power receiving electrodes is circular.
(10) The contactless power transmission system according to any one of (1) to (9), wherein the outer diameter of each of the plurality of power receiving electrodes is half or more of the outer diameter of the plurality of power transmitting electrodes.
(11) The AC power supply has a first AC output terminal and a second AC output terminal having opposite phases,
Each of the first power transmission electrodes is electrically connected to the first AC output terminal via an individual first resonance coil,
A first LC resonance element is configured by the first power transmission electrode and the first resonance coil corresponding to the first power transmission electrode,
Each of the second power transmission electrodes is electrically connected to the second AC output terminal via an individual second resonance coil,
The contactless power according to any one of (1) to (10), wherein the second power transmission electrode and the second resonance coil corresponding to the second power transmission electrode constitute a second LC resonance element. transmission system.
(12) The resonance frequencies of the first LC resonance elements are equal to each other, the resonance frequencies of the second LC resonance elements are equal to each other, and the resonance frequencies of the first LC resonance element and the second LC resonance element are equal to each other ( 11) The contactless power transmission system according to 11).
(13) the power receiving device has a first power receiving output terminal and a second power receiving output terminal electrically connected to a load, respectively;
Each of the power receiving electrodes is electrically connected to the first power receiving output terminal via a first transmission line and electrically connected to the second power receiving output terminal via a second transmission line. cage,
A first rectifying element is inserted in the first transmission line,
The contactless power transmission system according to any one of (1) to (12), wherein a second rectifying element that rectifies current in the same direction as the first rectifying element is inserted in the second transmission line. .
(14) The power transmission device of the contactless power transmission system according to any one of (1) to (13).
(15) The power receiving device of the contactless power transmission system according to any one of (1) to (13).

10 受電装置
11、C1、C2、C3、C4、C5、C6、C7、C8 受電電極
13 筐体
15 受電側対向面
20 送電装置
21 第1送電電極
22 第2送電電極
23 筐体
25 送電側対向面
31 交流電源
32 第1交流出力端子
33 第2交流出力端子
34 第1共振コイル
35 第2共振コイル
41 第1受電出力端子
42 第2受電出力端子
43 第1伝送線
43a 分枝線
43b 合流線
44 第2伝送線
44a 分枝線
44b 合流線
51 第1ダイオード(第1整流素子)
52 第2ダイオード(第2整流素子)
53 コンデンサ(平滑素子)
54 電解コンデンサ(平滑素子)
55 電解コンデンサ(平滑素子)
60 負荷
100 非接触電力伝送システム
E1 包絡線
E2 包絡線
A1 受電面
A2 送電面
10 power receiving device 11, C1, C2, C3, C4, C5, C6, C7, C8 power receiving electrode 13 housing 15 power receiving side facing surface 20 power transmitting device 21 first power transmitting electrode 22 second power transmitting electrode 23 housing 25 power transmitting side facing Surface 31 AC power supply 32 First AC output terminal 33 Second AC output terminal 34 First resonance coil 35 Second resonance coil 41 First power receiving output terminal 42 Second power receiving output terminal 43 First transmission line 43a Branch line 43b Combined line 44 Second transmission line 44a Branch line 44b Junction line 51 First diode (first rectifying element)
52 second diode (second rectifying element)
53 capacitor (smoothing element)
54 electrolytic capacitor (smoothing element)
55 electrolytic capacitor (smoothing element)
60 load 100 contactless power transmission system E1 envelope E2 envelope A1 power receiving surface A2 power transmission surface

Claims (12)

交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる複数の第1送電電極と複数の第2送電電極とが含まれ、
前記受電面が前記送電面に重ねて配置されている状態において、前記送電面と前記受電面との相対的な位置及び相対的な向きにかかわらず、(1)前記複数の受電電極のうち1つ以上の受電電極が前記第1送電電極と重なるとともに他の1つ以上の受電電極が前記第2送電電極と重なり、且つ、(2)前記送電電極と重なるいずれの受電電極も前記第1送電電極又は前記第2送電電極の一方にのみ重なる、という条件を満たし得るように、前記複数の送電電極と前記複数の受電電極とが配置されており、
前記複数の受電電極の各々は円形状に形成されており、
前記複数の送電電極の各々は正方形状に形成されており、
前記複数の受電電極の各々の外径が、前記複数の送電電極の一辺の長さの半分以上であり且つ前記複数の送電電極の一辺の長さよりも小さく
互いに隣り合う前記受電電極の中心間距離が前記送電電極の対角線の長さよりも大きく、一の前記送電電極に重なり得る前記受電電極の中心が1つ以下である非接触電力伝送システム。
a power transmission device having an AC power source and a plurality of power transmission electrodes electrically connected to the AC power source and arranged along a power transmission surface;
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a plurality of first power transmission electrodes and a plurality of second power transmission electrodes having phases opposite to each other,
In a state in which the power receiving surface is superimposed on the power transmitting surface, regardless of the relative positions and relative orientations of the power transmitting surface and the power receiving surface, (1) one of the plurality of power receiving electrodes At least one power receiving electrode overlaps the first power transmitting electrode and at least one other power receiving electrode overlaps the second power transmitting electrode; and (2) any power receiving electrode overlapping the power transmitting electrode is the first power transmitting electrode. The plurality of power transmitting electrodes and the plurality of power receiving electrodes are arranged so as to satisfy the condition that they overlap only one of the electrodes or the second power transmitting electrodes,
each of the plurality of power receiving electrodes is formed in a circular shape,
each of the plurality of power transmission electrodes is formed in a square shape,
the outer diameter of each of the plurality of power receiving electrodes is half or more of the length of one side of the plurality of power transmitting electrodes and smaller than the length of one side of the plurality of power transmitting electrodes ;
A contactless power transmission system, wherein the distance between the centers of the power receiving electrodes adjacent to each other is greater than the length of the diagonal line of the power transmitting electrodes, and the number of centers of the power receiving electrodes that can overlap one power transmitting electrode is one or less.
前記第1送電電極と前記第2送電電極とが交互に配置されている請求項1に記載の非接触電力伝送システム。 The contactless power transmission system according to claim 1, wherein the first power transmission electrodes and the second power transmission electrodes are alternately arranged. 前記複数の送電電極は格子状に配置されている請求項1又は2に記載の非接触電力伝送システム。 3. The contactless power transmission system according to claim 1, wherein the plurality of power transmission electrodes are arranged in a lattice. 前記複数の送電電極のうち隣り合う送電電極間の間隙が、前記受電電極の外径よりも大きい請求項1から3のいずれか一項に記載の非接触電力伝送システム。 The contactless power transmission system according to any one of claims 1 to 3, wherein a gap between adjacent power transmission electrodes among the plurality of power transmission electrodes is larger than an outer diameter of the power reception electrodes. 前記複数の受電電極は格子状に配置されている請求項1から4のいずれか一項に記載の非接触電力伝送システム。 The contactless power transmission system according to any one of claims 1 to 4, wherein the plurality of power receiving electrodes are arranged in a lattice. 前記複数の受電電極のうち隣り合う受電電極間の間隙が、前記送電電極の外径よりも小さい請求項1から5のいずれか一項に記載の非接触電力伝送システム。 The contactless power transmission system according to any one of claims 1 to 5, wherein a gap between adjacent power receiving electrodes among the plurality of power receiving electrodes is smaller than an outer diameter of the power transmitting electrode. 交流電源と、それぞれ前記交流電源と電気的に接続されているとともに送電面に沿って配置されている複数の送電電極と、を有する送電装置と、
前記送電面に重ねて配置される受電面に沿って配置されていて前記送電電極と電界結合される複数の受電電極を有し、前記送電装置から非接触で電力供給を受ける受電装置と、
を備える非接触電力伝送システムであって、
前記複数の送電電極には、互いに逆位相となる第1送電電極と第2送電電極とが含まれ、
前記複数の送電電極は格子状に配置されており、
前記第1送電電極と前記第2送電電極とが交互に配置されており、
前記複数の送電電極のうち隣り合う送電電極間の間隙が、前記受電電極の外径よりも大きく、
前記複数の受電電極は格子状に配置されており、
前記複数の受電電極のうち隣り合う受電電極間の間隙が、前記送電電極の外径よりも小さく、
前記複数の受電電極の各々は円形状に形成されており、
前記複数の送電電極の各々は正方形状に形成されており、
前記複数の受電電極の各々の外径が、前記複数の送電電極の一辺の長さの半分以上であり且つ前記複数の送電電極の一辺の長さよりも小さく
互いに隣り合う前記受電電極の中心間距離が前記送電電極の対角線の長さよりも大きく、一の前記送電電極に重なり得る前記受電電極の中心が1つ以下である非接触電力伝送システム。
a power transmission device having an AC power source and a plurality of power transmission electrodes electrically connected to the AC power source and arranged along a power transmission surface;
a power receiving device that has a plurality of power receiving electrodes that are arranged along a power receiving surface that is arranged to overlap the power transmitting surface and is electrically coupled to the power transmitting electrodes, and receives power from the power transmitting device in a contactless manner;
A contactless power transmission system comprising:
The plurality of power transmission electrodes include a first power transmission electrode and a second power transmission electrode having opposite phases to each other,
The plurality of power transmission electrodes are arranged in a lattice,
The first power transmission electrodes and the second power transmission electrodes are alternately arranged,
a gap between adjacent power transmitting electrodes among the plurality of power transmitting electrodes is larger than an outer diameter of the power receiving electrode;
The plurality of power receiving electrodes are arranged in a grid,
a gap between adjacent power receiving electrodes among the plurality of power receiving electrodes is smaller than an outer diameter of the power transmitting electrode;
each of the plurality of power receiving electrodes is formed in a circular shape,
each of the plurality of power transmission electrodes is formed in a square shape,
the outer diameter of each of the plurality of power receiving electrodes is half or more of the length of one side of the plurality of power transmitting electrodes and smaller than the length of one side of the plurality of power transmitting electrodes ;
A contactless power transmission system, wherein the distance between the centers of the power receiving electrodes adjacent to each other is greater than the length of the diagonal line of the power transmitting electrodes, and the number of centers of the power receiving electrodes that can overlap one power transmitting electrode is one or less.
前記交流電源は、互いに逆位相となる第1交流出力端子と第2交流出力端子とを有し、
前記第1送電電極の各々は、個別の第1共振コイルを介して、前記第1交流出力端子と電気的に接続されており、
前記第1送電電極と、当該第1送電電極と対応する前記第1共振コイルとにより、第1LC共振要素が構成されており、
前記第2送電電極の各々は、個別の第2共振コイルを介して、前記第2交流出力端子と電気的に接続されており、
前記第2送電電極と、当該第2送電電極と対応する前記第2共振コイルとにより、第2LC共振要素が構成されている請求項1からのいずれか一項に記載の非接触電力伝送システム。
The AC power supply has a first AC output terminal and a second AC output terminal having opposite phases to each other,
Each of the first power transmission electrodes is electrically connected to the first AC output terminal via an individual first resonance coil,
A first LC resonance element is configured by the first power transmission electrode and the first resonance coil corresponding to the first power transmission electrode,
Each of the second power transmission electrodes is electrically connected to the second AC output terminal via an individual second resonance coil,
The contactless power transmission system according to any one of claims 1 to 7 , wherein the second power transmission electrode and the second resonance coil corresponding to the second power transmission electrode constitute a second LC resonance element. .
前記第1LC共振要素の各々の共振周波数が互いに等しく、前記第2LC共振要素の各々の共振周波数が互いに等しく、前記第1LC共振要素と前記第2LC共振要素との共振周波数が互いに等しい請求項に記載の非接触電力伝送システム。 9. The resonant frequency of each of the first LC resonant elements is equal to each other, the resonant frequency of each of the second LC resonant elements is equal to each other, and the resonant frequencies of the first LC resonant element and the second LC resonant element are equal to each other. A contactless power transfer system as described. 前記受電装置は、負荷とそれぞれ電気的に接続される第1受電出力端子と第2受電出力端子とを有し、
前記受電電極の各々は、第1伝送線を介して前記第1受電出力端子と電気的に接続されているとともに、第2伝送線を介して前記第2受電出力端子と電気的に接続されており、
前記第1伝送線には、第1整流素子が挿入されており、
前記第2伝送線には、前記第1整流素子と同方向に電流を整流する第2整流素子が挿入されている請求項1からのいずれか一項に記載の非接触電力伝送システム。
the power receiving device has a first power receiving output terminal and a second power receiving output terminal electrically connected to a load, respectively;
Each of the power receiving electrodes is electrically connected to the first power receiving output terminal via a first transmission line and electrically connected to the second power receiving output terminal via a second transmission line. cage,
A first rectifying element is inserted in the first transmission line,
The contactless power transmission system according to any one of claims 1 to 9 , wherein a second rectifying element that rectifies current in the same direction as the first rectifying element is inserted in the second transmission line.
請求項1から1のいずれか一項に記載の非接触電力伝送システムの前記送電装置。 The power transmission device of the contactless power transmission system according to any one of claims 1 to 10. 請求項1から1のいずれか一項に記載の非接触電力伝送システムの前記受電装置。 The power receiving device of the contactless power transmission system according to any one of claims 1 to 10.
JP2018077783A 2018-04-13 2018-04-13 Contactless power transmission system, power receiving device and power transmitting device Active JP7187810B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018077783A JP7187810B2 (en) 2018-04-13 2018-04-13 Contactless power transmission system, power receiving device and power transmitting device
PCT/JP2019/007028 WO2019198355A1 (en) 2018-04-13 2019-02-25 Contactless power transmission system, power transmitting device, and power receiving device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018077783A JP7187810B2 (en) 2018-04-13 2018-04-13 Contactless power transmission system, power receiving device and power transmitting device

Publications (2)

Publication Number Publication Date
JP2019187158A JP2019187158A (en) 2019-10-24
JP7187810B2 true JP7187810B2 (en) 2022-12-13

Family

ID=68164068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018077783A Active JP7187810B2 (en) 2018-04-13 2018-04-13 Contactless power transmission system, power receiving device and power transmitting device

Country Status (2)

Country Link
JP (1) JP7187810B2 (en)
WO (1) WO2019198355A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148287A (en) 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd Power supply system
WO2012086411A1 (en) 2010-12-24 2012-06-28 株式会社村田製作所 Wireless electrical power transmission system, electrical power transmission device, and electrical power receiving device
WO2013153841A1 (en) 2012-04-13 2013-10-17 株式会社 村田製作所 Non-contact power transmission system
WO2014038017A1 (en) 2012-09-05 2014-03-13 富士機械製造株式会社 Non-contact power supply device
JP2014150646A (en) 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Non-contact power transmission system
WO2015097809A1 (en) 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 Resonant transmitting power-supply device and resonant transmitting power-supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010148287A (en) 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd Power supply system
WO2012086411A1 (en) 2010-12-24 2012-06-28 株式会社村田製作所 Wireless electrical power transmission system, electrical power transmission device, and electrical power receiving device
WO2013153841A1 (en) 2012-04-13 2013-10-17 株式会社 村田製作所 Non-contact power transmission system
WO2014038017A1 (en) 2012-09-05 2014-03-13 富士機械製造株式会社 Non-contact power supply device
JP2014150646A (en) 2013-01-31 2014-08-21 Furukawa Electric Co Ltd:The Non-contact power transmission system
WO2015097809A1 (en) 2013-12-26 2015-07-02 三菱電機エンジニアリング株式会社 Resonant transmitting power-supply device and resonant transmitting power-supply system

Also Published As

Publication number Publication date
JP2019187158A (en) 2019-10-24
WO2019198355A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
JP6206578B2 (en) Power receiving coil structure and wireless power feeding system
US10910140B2 (en) Matrix transformer and winding structure
US20160035486A1 (en) Secondary-side coil assembly for inductive energy transfer using quadrupoles
EP3761329A1 (en) Coil module, wireless charging emission device, receiving device, system and terminal
US9595383B2 (en) Wireless charging coil PCB structure
EP3352328B1 (en) Non-contact power supply device
JPWO2012157053A1 (en) Reactor device and power converter using the same
US10056788B2 (en) Wireless transmission device
KR20160030672A (en) Wireless power receiving apparatus and wireless power transmitting and receiving system
RU2659568C1 (en) Ground side coil unit
US20160028242A1 (en) Primary-side coil assembly for inductive energy transfer using quadrupoles
US20220208425A1 (en) Integrated inductor and power module
WO2013065277A1 (en) Wireless power supply device and coil usage method
CN109155188A (en) coil unit
JP7187810B2 (en) Contactless power transmission system, power receiving device and power transmitting device
JP2018148146A (en) Coil unit, wireless power transmission equipment, wireless power reception device, and wireless power transmission system
US20150372540A1 (en) Wireless power transmission system
WO2015163296A1 (en) Power-receiving antenna
US11094874B2 (en) Piezoelectric vibration device
US10964473B2 (en) Coil unit, wireless power transmission device, wireless power receiving device, and wireless power transmission system
JP7300381B2 (en) Transformer and power converter using the same
US20140265623A1 (en) Step-down circuit and power receiving device using step-down circuit
JP6814608B2 (en) Coil unit and non-contact power supply system
JP2017225235A (en) Single-phase inverter device
US20210408835A1 (en) Power reception device for wireless power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220105

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221114

R150 Certificate of patent or registration of utility model

Ref document number: 7187810

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150