WO2013047732A1 - Power supply system - Google Patents

Power supply system Download PDF

Info

Publication number
WO2013047732A1
WO2013047732A1 PCT/JP2012/075050 JP2012075050W WO2013047732A1 WO 2013047732 A1 WO2013047732 A1 WO 2013047732A1 JP 2012075050 W JP2012075050 W JP 2012075050W WO 2013047732 A1 WO2013047732 A1 WO 2013047732A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
electrode
power supply
electrodes
power receiving
Prior art date
Application number
PCT/JP2012/075050
Other languages
French (fr)
Japanese (ja)
Inventor
原川 健一
影山 健二
鶴谷 守
Original Assignee
株式会社竹中工務店
パワーアシストテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社竹中工務店, パワーアシストテクノロジー株式会社 filed Critical 株式会社竹中工務店
Publication of WO2013047732A1 publication Critical patent/WO2013047732A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment

Definitions

  • This invention relates to a power supply system for supplying power to various loads.
  • a power supply system that supplies power to various loads generally includes a contact-type power supply system that supplies power by bringing an electrode of a power supply body and an electrode of a power-supplied body into contact with each other and the power supply system. It can be broadly classified into a non-contact type power supply system that supplies power without being in contact with the power source.
  • FIG. 22 is a circuit diagram of such a conventional power supply system.
  • the fixed body 101 arranged in the power supply region 100 includes power transmission electrodes 105 and 106.
  • the movable body 103 disposed in the power supplied region 102 includes power receiving electrodes 107 and 108 that are disposed to face the power transmitting electrodes 105 and 106 in a non-contact manner.
  • a coupling capacitor 109 is constituted by the power transmitting electrodes 105 and 106 and the power receiving electrodes 107 and 108 opposed to each other.
  • the coupling capacitor 109 and the coil 110 provided on the movable body 103 form a series resonance circuit, and the resonance frequency is controlled from the AC power supply 115 to the resonance frequency by switching the frequency of the AC power supply 115. It becomes possible to supply power in a state.
  • the power receiving electrodes 107 and 108 are formed to be sufficiently smaller than the interval between the power transmitting electrodes 105 and 106 so as not to cross between the power transmitting electrode 105 and the power transmitting electrode 106.
  • the power receiving electrodes 107 and 108 and the power transmitting electrodes 105 and 106 are not arranged at positions that completely correspond to each other in the vertical direction depending on the arrangement position of the movable body 103.
  • the power receiving electrodes 107 and 108 are arranged so as to cover only a part of the power transmitting electrodes 105 and 106.
  • the capacitor capacity of the coupling capacitor 109 is deviated from a predetermined capacity, and a predetermined series resonance condition is not satisfied, so that there is a possibility that power transmission efficiency may be reduced.
  • FIG. 23 is a circuit diagram of such a conventional power supply system.
  • an inductor 120 and a capacitor 121 are connected in parallel to the power transmission electrodes 105 and 106, and a parallel resonant circuit is formed by the inductor 120, the capacitor 121, and the coupling capacitor 109.
  • the power receiving electrode 107 is formed to be sufficiently smaller than the interval between the power transmitting electrodes 105 and 106 so as not to cross between the power transmitting electrode 105 and the power transmitting electrode 106. .
  • the power supply system described in Patent Document 2 includes an inductor and a capacitor connected in parallel to each of the power transmission electrodes.
  • the power supply system includes the wide range of power transmission electrodes. Since the current of the resonance circuit flows to the power supply, there is a problem that the capacity of the power supply becomes extremely large.
  • the present invention is a power supply system that can achieve a free position by non-contact, and is a power supply system that can form a resonance circuit only in a necessary range and flow current.
  • the purpose is to provide.
  • the power supply system according to claim 1 is configured such that the power supply body arranged in the power supply area passes through the power supply body arranged in the power supply area.
  • a power transmission means for supplying power to the body wherein the power receiver is configured to receive AC power supplied from the power transmission means and supply the AC power to the load; and a part of the power reception means or the power reception A capacity inducing means configured differently from the means, and through a mutual boundary surface between the power supply area and the power supplied area, a plurality of parts of the power transmission means and a plurality of parts of the power receiving means
  • the A plurality of coupling capacitors are formed by disposing each other so as not to contact each other, and the power transmission means and the capacity inducing means are disposed to face each other in a non-contact manner via the boundary surface.
  • a power supply system is the power supply system according to the first aspect, wherein the power transmission means is disposed in a vicinity of a boundary surface between the power supply area and the power supplied area.
  • the power supply body includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source, and the power supply body is connected to at least one of the first power transmission electrode and the second power transmission electrode among the plurality of power transmission electrodes.
  • the power receiving means includes a plurality of power receiving electrodes arranged in a non-contact manner across the boundary surface with respect to the plurality of power transmitting electrodes, and the capacitance inducing means includes a plurality of power receiving electrodes.
  • the first coupling capacitor is formed by making a part of the plurality of power receiving electrodes face the first power transmitting electrode of the plurality of power transmitting electrodes. Among the plurality of power receiving electrodes, the second power transmitting electrode adjacent to the first power transmitting electrode is different from the part of the power receiving electrodes opposed to the first power transmitting electrode.
  • a second coupling capacitor is formed by facing the power receiving electrodes of the first power transmitting electrode or the first power transmitting electrode or the second power transmitting electrode so as to straddle between the first power transmitting electrode and the second power transmitting electrode.
  • the resonance circuit including the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance, or including the inductor and the capacitor capacitance.
  • the resonant circuit formed in, via the first coupling capacitor and the second coupling capacitor is obtained by enabling supplying power from the power supply member through said power-receiving member.
  • a power supply system is the power supply system according to the first or second aspect, wherein the power transmission means is disposed in a vicinity of a boundary surface between the power supply region and the power supplied region.
  • the power supply body includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source, and the power supply body is at least one of the first power transmission electrode and the second power transmission electrode among the plurality of power transmission electrodes.
  • the power receiving means includes a plurality of power receiving electrodes arranged in contact with the plurality of power transmitting electrodes across the boundary surface, and the capacitance inducing means includes the plurality of power receiving electrodes.
  • a first coupling capacitor is formed by opposing a part of the power receiving electrodes of the plurality of power receiving electrodes to the first power transmitting electrode of the plurality of power transmitting electrodes, and the plurality of power transmitting electrodes Among the plurality of power receiving electrodes, the second power transmitting electrode adjacent to the first power transmitting electrode is a part of the other power receiving electrodes different from the part of the power receiving electrodes.
  • the capacitance inducing means To form a second coupling capacitor, and by positioning the capacitance inducing means so as to straddle between the first power transmission electrode and the second power transmission electrode, the first power transmission electrode and the Via the resonant circuit configured to include the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance by inducing the capacitor capacitance between the second power transmission electrodes; or Power can be supplied from the power supply body through the power supplied body through the resonance circuit including the inductor and the capacitor capacity, and the first coupling capacitor and the second coupling capacitor. It was.
  • a power supply system is the power supply system according to the third aspect, wherein the plurality of power reception electrodes are arranged in parallel in a power reception plane parallel to the boundary surface in an insulated state.
  • the capacitance inducing electrode is a flat body disposed in the power receiving plane, and has a hole in a region corresponding to each of the plurality of power receiving electrodes. It is formed as a plate-like body that is interposed between the power receiving electrode in an insulated state.
  • the power supply system according to claim 5 is the power supply system according to claim 3, wherein the plurality of power receiving electrodes are arranged in parallel in a power receiving plane parallel to the boundary surface in an insulated state.
  • the capacitance inducing electrode is a plate-like body at least partially disposed in a plane parallel to the boundary surface and further away from the boundary surface than the power receiving plane, and the plurality of power receiving electrodes And having a hole in a region corresponding to the line connected to the wire, and formed as a flat plate disposed in an insulated state with respect to the plurality of power receiving electrodes.
  • the power supply system according to claim 6 is the power supply system according to any one of claims 2 to 5, wherein the plurality of power transmission electrodes are formed in the same shape with respect to the boundary surface.
  • a plurality of rows are insulated from each other so that the polarities are alternately different along a predetermined first direction and a second direction orthogonal to the first direction in the power transmission plane. They are arranged side by side.
  • a power supply system is the power supply system according to the sixth aspect, wherein the plurality of power receiving electrodes have a shape wider than a mutual interval between the plurality of power transmission electrodes and have the same shape.
  • a plurality of insulating layers are insulated from each other along a predetermined first direction and a second direction orthogonal to the first direction in the power receiving plane. They are arranged side by side.
  • the power supply system according to claim 8 is the power supply system according to any one of claims 2 to 7, wherein the power transmission electrode is formed of a magnetic material, and the power reception electrode is formed of a soft conductive material.
  • the power receiving electrode and a magnetic material to be attracted are arranged on the surface of the power receiving electrode opposite to the boundary surface.
  • the power supply system according to claim 9 is the power supply system according to any one of claims 1 to 8, wherein the power supply body includes power transmission side communication means, and the power supplied body includes A power receiving-side communication unit that communicates with the power transmitting-side communication unit is provided through a part in which a plurality of parts of the power transmitting unit and a plurality of parts of the power receiving unit are arranged to face each other in a non-contact manner.
  • the power supplied body is a power supplied body arranged in the power supplied area, and an alternating current supplied from a predetermined AC power source via the power supply body arranged in the power supply area.
  • a power receiving means that receives AC power supplied from a power transmission means provided in the power supply body and supplies the AC power to the load; and one of the power receiving means
  • a capacity inducing unit configured as a part or different from the power receiving unit, and through a mutual boundary surface between the power supply region and the power supplied region, a plurality of parts of the power transmission unit
  • a plurality of coupling capacitors are formed by disposing a plurality of portions of the power receiving means in a non-contact manner with each other, and the power transmitting means and the capacity inducing means are not in contact with each other via the boundary surface.
  • the capacitor is induced in the power transmission means by being disposed opposite to the power supply unit, and power can be supplied from the power supply body via the resonance circuit including at least the capacitor capacity and the
  • the capacitor capacity is induced in the power transmission means of the power supply body by the capacity induction means of the power supplied body, and the resonance circuit is configured using the capacitor capacity, thereby Power can be supplied via the resonance circuit only at the position where the supply target is placed, and a non-contact free position can be achieved.
  • a resonance circuit can be formed only in the required range to pass current. become.
  • the configuration of the power supply body can be simplified.
  • the capacity inducing means is configured as a part of the plurality of power receiving electrodes, it is not necessary to provide the capacity inducing means separately from the plurality of power receiving electrodes.
  • the configuration can be simplified.
  • the capacity inducing means is configured as a capacity inducing electrode in addition to or in place of a part of the plurality of power receiving electrodes, Capacitance induction electrode can always be straddled with respect to the first power transmission electrode and the second power transmission electrode, a large capacitor capacity can be stably induced, and the parallel resonance condition can be stably maintained. Therefore, it is possible to increase the power supply efficiency. Furthermore, since a large capacitor capacity can be induced stably, the inductor can be made small.
  • the capacity inducing electrode is a flat body disposed in the power receiving plane, and has a hole in a region corresponding to each of the plurality of power receiving electrodes.
  • the electrode for capacity induction over a wide area is formed by forming a hole in one plate-like body. It can be manufactured easily.
  • the capacitance-inducing electrode is a flat body in which at least a part is disposed in a plane parallel to the boundary surface and farther from the boundary surface than the power receiving plane. And has a hole in a region corresponding to a line connected to a plurality of power receiving electrodes, and is formed as a flat plate disposed in an insulated state with respect to the plurality of power receiving electrodes.
  • the plurality of power transmission electrodes are arranged in parallel with each other in a mutually insulated state so that the polarities are alternately different along the first direction and the second direction, It is possible to supply power by moving the power supply object in both the first direction and the second direction, and it is possible to realize a free position in a two-dimensional region.
  • the plurality of power receiving electrodes are arranged in parallel in the first direction and the second direction in a plurality of rows in a mutually insulated state, the first direction and the second direction It is possible to supply power by moving the power supply object in any direction, and it is possible to realize a free position in a two-dimensional region.
  • the power transmission electrode is formed of a magnetic material
  • the power reception electrode is formed of a soft conductive material
  • the power transmission electrode and the suction surface are disposed on a surface opposite to the boundary surface of the power reception electrode. Even if there is a low smoothness of the surface close to the boundary surface of the power receiving electrode or a gas or liquid has entered between the power receiving electrode and the boundary surface, Since the power reception electrode is pressed toward the power transmission electrode by the attractive force, the mutual distance between the power reception electrode and the power transmission electrode is stabilized.
  • the power supply body includes the power transmission side communication means, and the power supplied body includes the power reception side communication means. Therefore, between the power supply body and the power supplied body. Communication can be performed, and adjustment for maintaining the resonance condition can be performed.
  • the power supplied body of claim 10 by inducing the capacitor capacity in the power transmission means of the power supply body by the capacity inducing means, and configuring the resonance circuit using this capacitor capacity, the power supplied body is Electric power can be supplied via the resonance circuit only at the position where it is arranged, and a non-contact free position can be achieved.
  • a resonance circuit can be formed only in a necessary range to allow current to flow.
  • the configuration of the power supply body can be simplified.
  • FIG. 1 is a perspective view of a power supply system according to Embodiment 1.
  • FIG. 2 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 1.
  • FIG. It is a top view of a plurality of power transmission electrodes and a plurality of power reception electrodes. It is the elements on larger scale of the periphery of the power transmission electrode and power receiving electrode in FIG.
  • FIG. 6 is an enlarged view of a region X in FIG. 5. It is a conceptual diagram for demonstrating capacitor capacity.
  • FIG. 6 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 2.
  • FIG. 10 is a partial perspective view illustrating a state where a plurality of power receiving electrodes are excluded from FIG. 9. It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode in FIG. It is a conceptual diagram for demonstrating capacitor capacity.
  • FIG. 5 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 3. It is a circuit diagram of the electric power supply body which concerns on a modification. It is a top view of the power receiving part manufactured using FPC. It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode which concern on a modification.
  • FIG. 1 is a block diagram for explaining the basic concept of the power supply system.
  • a power supply system 1 includes a predetermined AC power supply from a power supply body 3 disposed in a power supply area 2 via a power supply body 5 disposed in a power supply area 4.
  • 6 is configured as a system for supplying AC power supplied from 6 to a predetermined load 7.
  • the specific configuration of the “power supply area” 2 and the “power supply area” 4 is arbitrary, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or Including outdoor space.
  • a surface that partitions the power supply region 2 and the power supplied region 4 from each other is referred to as a “boundary surface” 8.
  • the power supply area 4 is a living room of a building and the power supply area 2 is a floor portion of the living room, the upper surface (floor surface) of the floor portion becomes the boundary surface 8.
  • the power supply area 2 may be set upward with respect to the boundary surface 8 and the power supplied area 4 may be set downward.
  • the boundary surface 8 may be set as a vertical surface or an inclined surface.
  • the “power supply body” 3 includes a power transmission unit 9 as power transmission means for supplying the AC power supplied from the AC power source 6 to the power supplied body 5.
  • the power supply body 3 is arranged in the power supply area 2, but is not limited to a fixed body that is permanently fixed to the power supply area 2 so as not to move, and is removed from the power supply area 2 when not in use. And those that can be moved to an arbitrary position inside the power supply area 2.
  • Examples of the power supply body 3 that is fixed so as not to move include the power supply body 3 embedded in the ground of a desk lamp in order to supply power to an automobile.
  • Examples of the movable power supply body 3 include a power supply body 3 placed at an arbitrary position on a table in order to supply power to an electronic device such as a mobile phone.
  • the whole power supply body 3 is not limited to what is always fixed, For example, the position of the one part component of the power supply body 3 is set.
  • the thing which can change the relative positional relationship of the said component and the electric power supplied body 5 is included by adjusting as needed.
  • a power supply body 3 for example, it is a power supply body 3 embedded in the ground of a desk lamp in order to supply power to an automobile, and only a power transmission electrode 36 (to be described later) can be moved up and down.
  • the power supply body 3 that can adjust the mutual distance between the power transmission electrode 36 and a power reception electrode 43 (described later) of the automobile can be exemplified.
  • the “AC power source” 6 is a source of AC power, and is provided inside the power supply body 3 (in the case shown in FIG. 1) or provided outside the power supply body 3 and does not show AC power. In some cases, the power supply body 5 is supplied via a line or the like (not shown). In the example shown in FIG. 1, one AC power supply 6 is provided for one power supply body 3, but a plurality of AC power supplies 6 may be provided for one power supply body 3, or a plurality of power supply bodies may be provided. Alternatively, power may be supplied from one AC power source 6 common to 3.
  • the “power supplied body” 5 is configured as a power receiving unit 10 that receives AC power supplied from the power transmitting unit and supplies the AC power to the load 7, and a part of the power receiving unit 10. And a capacity inducing section 11 as capacity inducing means configured as a different one.
  • the power supplied body 5 is used by being fixedly disposed in the power supplied area 4 (stationary body), and moves autonomously or otherwise in the power supplied area 4 as necessary. (Movable body, moving body).
  • the function and specific configuration of the power supply body 5 are arbitrary except for special points.
  • the stationary body can include a device such as a home appliance, and the movable body can be a power strip, a notebook, or the like.
  • At least one power supply body 5 is disposed for one power supply body 3, and two or more power supply bodies 5 are disposed as necessary.
  • the “load” 7 is an AC power supply target, and is provided inside the power supplied body 5 (in the case shown in FIG. 1) and provided outside the power supplied body 5 (illustration is omitted). )
  • the function and specific configuration of the load 7 are arbitrary except for special points, but the load 7 provided in the power supplied body 5 is provided in the home appliance or robot as the power supplied body 5.
  • Examples of the load 7 provided outside the power supplied body 5 include a motor connected to a power tap provided on the power supplied body 5. In the latter case, the power supplied body 5 and the load 7 are connected to each other via a line or another power supply system.
  • the load 7 is not limited to a power consumption source, and may be one that accumulates power, for example, like a storage battery.
  • the boundary between the power supplied body 5 and the load 7 is not necessarily clear.
  • Impedance may be included as part of the load 7.
  • At least one load 7 is arranged with respect to one power supplied body 5, and two or more are arranged as necessary.
  • the power supply system 1 configured in this way supplies power from the power supply body 3 to the power supplied body 5 in a contactless manner.
  • This non-contact power supply is generally performed using a capacitor arranged via the boundary surface 8. That is, by arranging a plurality of parts of the power transmission unit 9 and a plurality of parts of the power reception unit 10 to face each other in a non-contact manner via the boundary surface 8 between the power supply region 2 and the power supplied region 4.
  • a plurality of capacitors or capacitors; hereinafter referred to as “coupling capacitors” 12 and 13) are configured (in FIG. 1, for convenience of illustration, the coupling capacitors 12 and 13 are external to the power receiving unit 10 and the power transmission unit 9.
  • the power receiving unit 10 and a part of the power transmission unit 9 are included).
  • a plurality of such coupling capacitors 12 and 13 are arranged in the power transmission path, and electric field type power transmission is performed via these coupling capacitors 12 and 13. According to this configuration, it is possible to supply power while maintaining the power transmitting unit 9 and the power receiving unit 10 in a non-contact state, and power can be supplied even when the power transmitting unit 9 is covered with a dielectric material or the like. Therefore, it is not necessary to expose the power supply body 3 to the power supplied region 4, and the safety and durability of the power supply system 1 can be improved.
  • by arranging a plurality of power transmission units 9, even when the power supplied body 5 moves it is possible to continuously supply power to the power supplied body 5 and to move the power supplied body 5. Can be secured.
  • a part of the characteristic of the power supply system 1 is that the capacity induction unit 11 induces the capacitor capacity 14 in the power transmission unit 9 of the power supply body 3.
  • the capacity inducing unit 11 is configured as a part of the power receiving unit 10 (not shown), in addition to a part of the power receiving unit 10 or instead of a part of the power receiving unit 10, May be configured differently (as shown in FIG. 1).
  • the capacitance inducing portion 11 By disposing the capacitance inducing portion 11 so as to face the power transmitting portion 9 in a non-contact manner via the boundary surface 8, the power transmitting portion 9 induces a capacitor capacitance 14.
  • power can be supplied from the power supply body 3 through the power supplied body 5 through the resonance circuit including at least the capacitor capacitance 14 and the plurality of coupling capacitors 12 and 13. .
  • the resonance circuit including at least the capacitor capacitance 14 and the plurality of coupling capacitors 12 and 13. .
  • power transmission is performed using the capacitor capacitance 14 that is induced by disposing the power transmission unit 9 and the capacity inducing unit 11 so as to face each other in a non-contact manner. It becomes possible to flow current by forming.
  • the capacity inducing means is formed by a part of the power receiving electrode as the power receiving means.
  • FIG. 2 is a perspective view of the power supply system according to the first embodiment.
  • the power supply system 20 includes a power supply body 30 disposed in a power supply region 21 (a space below the top plate 23 of the desk 22),
  • the power supply body 30 includes a power supply body 40 (shown here as a laptop computer) disposed in a supply area 24 (a space above the top plate 23 of the desk 22). Power is supplied to the power supplied body 40 from the power supply.
  • the top plate 23 of the desk 22 corresponds to the boundary surface 25 between the power supply region 21 and the power supplied region 24, and a coupling capacitor 26 (to be described later) via the top plate 23 ( (Not shown in FIG. 2).
  • the top plate 23 constituting the boundary surface 25 between the power supply area 21 and the power supplied area 24 is made of a dielectric material that can constitute a coupling capacitor 26 described later.
  • a dielectric material for example, a fluororesin can be employed.
  • the dielectric material can be coated on a power receiving electrode side surface of a power transmitting electrode 36 described later or a power transmitting electrode side surface of a power receiving electrode 43 described later.
  • the material used for the top plate 23 and the material used for coating the power transmission electrode 36 and the power reception electrode 43 as described above are used to maintain the required insulation between the power transmission electrode 36 and the power reception electrode 43. It is preferable to provide insulation performance.
  • a component which comprises the boundary surface 25 it is not limited to a hard member like the top plate 23, You may use a soft member like an insulator sheet.
  • FIG. 3 is a circuit diagram of the power supply body 30 and the power supplied body 40 according to the first embodiment.
  • the power supply body 30 includes a power transmission unit 31.
  • the power transmission unit 31 includes an AC power source 32, a capacitor 33, a transformer 34, an inductor (coil) 35, and a plurality of power transmission electrodes 36 on a line. They are connected as shown in the figure.
  • AC power supply 32 is a supply source of AC power, and is configured as, for example, a commercial power supply, or a combination of a storage battery and a voltage / frequency converter.
  • the AC power supply 32 is a high-frequency (for example, a frequency in a band of about 10 kHz to 100 MHz) AC power supply 32 and has a capacity capable of transmitting an amount of electric power according to the load 42 of the power supplied body 40.
  • the capacitor 33 is connected in parallel to the AC power supply 32 and a coil 34a described later of the transformer 34, and constitutes a parallel resonance circuit together with the coil 34a.
  • the transformer 34 is configured by arranging a pair of coils 34a and 34b in parallel with each other at a predetermined interval, and power transmission is possible by mutual induction between the coils 34a and 34b. . Furthermore, in order to boost the output voltage of the AC power supply 32 at a desired transformation ratio and supply it to the power transmission electrode 36, the turn ratio between the coils 34a and 34b is set.
  • the inductor 35 is connected in series to each of the plurality of power transmission electrodes 36, and constitutes a parallel resonance circuit together with a capacitor capacitance 37 induced by a capacitance induction unit 44 described later.
  • the “resonant circuit” refers to the parallel resonant circuit.
  • the plurality of power transmission electrodes 36 are each generally formed as a flat conductor, and are substantially parallel to the top plate 23 at a position near the top plate 23 in the power supply region 21. Is arranged. These power transmission electrodes 36 may be brought into contact with the top plate 23 or may be arranged at a minute distance from the top plate 23. In any case, the surfaces of the power transmission electrodes 36 on the power supplied region 24 side are completely covered with the top plate 23, and the power transmitting electrodes 36 are not directly exposed to the power supplied region 24. It has a structure.
  • FIG. 4 shows a plan view of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43.
  • the power transmission electrode 36 is covered with the top plate 23 and cannot be seen from above the top plate 23.
  • the top plate 23 is omitted and the power transmission electrode 36 is exposed. (The same applies to FIGS. 9, 10, and 19-21 described later).
  • the plurality of power transmission electrodes 36 are formed in the same planar shape (regular square shape). Specifically, in the first embodiment, the planar shape of each power transmission electrode 36 is the same regular square shape.
  • the plurality of power transmission electrodes 36 are in a power transmission plane parallel to the top plate 23 that is the boundary surface 25, and a predetermined first direction and a second direction orthogonal to the first direction in the power transmission plane.
  • a plurality of rows are arranged in parallel. That is, when the direction indicated by the arrow D1 in FIG. 4 is the first direction, a plurality of power transmission electrodes 36 are arranged in parallel along the first direction over a plurality of rows.
  • the direction indicated by the arrow D2 in FIG. 4 is the second direction, a plurality of power transmission electrodes 36 are arranged in parallel along the second direction over a plurality of rows. In other words, the plurality of power transmission electrodes 36 are arranged in a so-called checkered pattern as a whole.
  • the power transmission electrodes 36 adjacent along the first direction are arranged in parallel so that the polarities are alternately different, and the power transmission electrodes 36 adjacent along the second direction are also alternately different in polarity. It is installed side by side. As shown in FIG. 3, among the two lines of the transformer 34, a plurality of power transmission electrodes 36 of one polarity connected to one line and a plurality of power transmissions of the other polarity connected to the other line. Electrodes 36 are arranged so as to be alternately adjacent.
  • first power transmission electrodes 36A
  • second power transmission electrodes 36B
  • power transmission electrodes 36A
  • power transmission electrodes 36A
  • power transmission electrodes 36A
  • power transmission electrodes 36B
  • the plurality of power transmission electrodes 36 are arranged in parallel with each other in an insulated state. That is, as shown in FIG.
  • the plurality of power transmission electrodes 36 are arranged at the same interval from each other, and this interval is sufficient to ensure mutual insulation of the plurality of power transmission electrodes 36. It is decided to become.
  • the insulation between the plurality of power transmission electrodes 36 may be performed by arranging a known insulating material between the plurality of power transmission electrodes 36.
  • the power supply body 40 includes a power receiving unit 41 and a load 42.
  • the power receiving unit 41 includes a plurality of power receiving electrodes 43, a capacity inducing unit 44, a polarity sorting unit 45, and a smoothing unit 46. It is configured.
  • Each of the plurality of power receiving electrodes 43 is generally formed as a flat conductor, and is substantially parallel to the top plate 23 at a position near the top plate 23 in the power supply region 24. It is arranged to be. These power receiving electrodes 43 may be brought into contact with the top plate 23 or may be arranged at a minute distance from the top plate 23. In FIG. 3, the power receiving electrode 43 is exposed to the outside of the power supplied body 40 at the lowest position of the power supplied body 40, but the surface of the power receiving electrode 43 on the power supply region 21 side is a dielectric. It is good also as a non-exposed state with respect to the exterior by covering with etc.
  • the plurality of power receiving electrodes 43 are formed in the same planar shape. Specifically, in the first embodiment, the planar shape of each power receiving electrode 43 is the same circular shape. In addition, the plurality of power receiving electrodes 43 are within a power receiving plane parallel to the top plate 23 that is the boundary surface 25, and a predetermined first direction and a second direction orthogonal to the first direction in the power receiving plane. A plurality of rows are arranged in parallel. That is, when the direction indicated by the arrow D1 in FIG. 4 is the first direction, a plurality of power receiving electrodes 43 are arranged in parallel along the first direction over a plurality of rows. In addition, when the direction indicated by the arrow D2 in FIG.
  • a plurality of power receiving electrodes 43 are arranged in parallel along the second direction over a plurality of rows.
  • the parallel arrangement direction of the power transmission electrode 36 and the parallel arrangement direction of the power reception electrode 43 are made to coincide with each other, but actually, the power reception electrode 43 is randomly opposed to the power transmission electrode 36 at a free position. Since they can be arranged, these juxtaposed directions need not coincide.
  • the plurality of power receiving electrodes 43 are arranged in parallel with each other in an insulated state. That is, as shown in FIG. 3, the plurality of power receiving electrodes 43 are spaced apart from each other, and this spacing is sufficient to ensure mutual insulation of the plurality of power receiving electrodes 43. Has been determined to be.
  • the plurality of power receiving electrodes 43 it is also possible to insulate the plurality of power receiving electrodes 43 from each other by disposing a known insulating material between the plurality of power receiving electrodes 43.
  • the plurality of power receiving electrodes 43 can be moved together while maintaining a relative relationship between them, for example, it is preferable to connect the plurality of power receiving electrodes 43 with an insulating member.
  • the capacity inducing unit 44 is configured by a part of the plurality of power receiving electrodes 43. That is, among the plurality of power receiving electrodes 43, the power receiving electrode 43 is different from the power receiving electrode 43 opposed to only the first power transmitting electrode 36A and the power receiving electrode 43 opposed to only the second power transmitting electrode 36B, and The power receiving electrode 43 disposed so as to straddle between the power transmitting electrode 36A and the second power transmitting electrode 36B constitutes the capacity inducing unit 44.
  • the power receiving electrode 43 that constitutes the capacity inducing portion 44 among the plurality of power receiving electrodes 43 can be changed according to the arrangement position of the power supplied body 40 with respect to the power supplying body 30.
  • the power receiving electrode 43 constituting the capacity inducing portion 44 is referred to as “capacity inducing power receiving electrode” 43A as necessary.
  • FIG. 5 is a partially enlarged view of the periphery of the power transmitting electrode 36 and the power receiving electrode 43 in FIG. 3
  • FIG. 6 is an enlarged view of a region X in FIG. 5
  • FIG. 7 is a conceptual diagram for explaining the capacitor capacity.
  • the power receiving electrode 43X is disposed opposite to the first power transmitting electrode 36A, and the first coupling capacitor 26A is configured by capacitive coupling between the first power transmitting electrode 36A and the power receiving electrode 43X. Is done.
  • the capacitance of the first coupling capacitor 26A C AX is generated.
  • capacitor capacitances 37 C AZ and C BZ are generated. To do.
  • the capacitor capacity 37 will be described in more detail.
  • the capacity inducing power receiving electrode 43A is located slightly closer to the second power transmitting electrode 36B than the first power transmitting electrode 36A.
  • the capacity induction power receiving electrode 43A is more than the opposed area to the first power transmitting electrode 36A.
  • the area facing the second power transmission electrode 36B is large. For this reason, more current flows from the second power transmission electrode 36B than the first power transmission electrode 36A, and the impedance is expressed by the following equation (1).
  • a plurality of capacity inducing power receiving electrodes 43A are simultaneously present along the arrangement direction of the power receiving electrodes 43, and each of the plurality of capacity inducing power receiving electrodes 43A is connected to the first power transmitting electrode 36A. Since the second power transmission electrodes 36B are capacitively coupled to each other, the combined capacity of the capacitor capacity 37 of the plurality of capacity induction power receiving electrodes 43A is expressed by the following equation (2).
  • the polarity separation unit 45 connects the power receiving electrode 43 and the load 42 to each other, separates the polarity of the current received through the power receiving electrode 43, and supplies the current of a predetermined polarity to each terminal of the load 42.
  • This is a means for separating the polarity.
  • the polarity separation unit 45 connects a pair of diodes 45a and 45b to each power receiving electrode 43 in different directions and then connects the diodes 45a and 45b in the same direction to each other. In addition, it is connected to one terminal of the load 42. Specifically, as shown in FIG.
  • one diode 45 a among a pair of diodes 45 a and 45 b arranged for each power receiving electrode 43 has an anode connected to the power receiving electrode 43 and a cathode connected to the other. Are connected to one terminal of the load 42 together with the cathode of the diode in the same direction.
  • the other diode 45b has a cathode connected to the power receiving electrode 43, and an anode connected to the other terminal of the load 42 together with the anode of another diode in the same direction.
  • a current having a predetermined polarity can flow through each terminal of the load 42 while generating a potential difference. it can.
  • the polarity separation unit 45 is configured by only the diodes 45a and 45b and the line, compared to the case where the polarity is switched using a mechanical switch as in the conventional example shown in FIG. In addition to simplifying the configuration, durability can be improved.
  • the smoothing unit 46 is configured as a smoothing circuit including an inductor 46a connected in series to each terminal of the load 42 and a capacitor 46b connected in parallel to the inductor 46a.
  • the load 42 is shown as a resistor for convenience of illustration, but in the present embodiment, the load 42 is configured as various power consuming components provided in the laptop computer shown in FIG.
  • the power transmission electrode 36 and the power reception electrode 43 are arranged such that when the power supplied body 40 is disposed opposite to the power supply body 30, 1) a part of the power reception electrode 43 faces only the first power transmission electrode 36 ⁇ / b> A. ) The other part of the power receiving electrode 43 faces only the second power transmitting electrode 36B, and 3) The other part of the power receiving electrode 43 is between the first power transmitting electrode 36A and the second power transmitting electrode 36B. It is configured to satisfy the three conditions of straddling (hereinafter, these three conditions are collectively referred to as “electrode arrangement conditions”).
  • the width length of the power transmission electrode 36 is L1
  • the diameter of the power reception electrode 43 is L2
  • the power receiving electrode 43 has an elliptical shape or a rectangular shape, its side, width, If the minimum length
  • these dimensions are determined such that L1> L2 and L3 ⁇ L4.
  • the planar shape of the spacing region of the power transmission electrodes 36) is a straight band
  • the planar shape of a region formed by the spacing between adjacent power receiving electrodes 43 is a straight band.
  • the AC power supply 32 is activated in a state where the power supply body 40 is disposed opposite to the power supply body 30.
  • the frequency of the AC power supply 32 is set so as to satisfy the resonance condition of the parallel resonance circuit.
  • the AC power supplied from the AC power supply 32 is boosted by the transformer 34 through the resonance circuit on the primary side of the transformer 34 and supplied to the power transmission electrode 36.
  • the AC power applied to the power transmission electrode 36 is boosted by a parallel resonance circuit including a capacitor capacitance 37 induced by the capacitance induction unit 44 and the inductor 35, and is received by the power reception electrode 43 via the coupling capacitor.
  • the AC power received in this way is subjected to polarity separation by the polarity separation unit 45, smoothed by the smoothing unit 46, and supplied to the load 42. Accordingly, it is possible to perform power supply in a non-contact state in which the power supply body 40 is not in direct contact with the power supply body 30.
  • contactless power supply is performed regardless of the arrangement position of the power supplied body 40 with respect to the power supply body 30.
  • a so-called free position of the power supplied body 40 can be achieved. For example, even if the power supplied body 40 is once lifted from the top plate 23 and then disposed again at a different position on the top plate 23, non-contact power supply is performed by satisfying the electrode arrangement conditions. Alternatively, even when the power supplied body 40 is moved along the top plate 23 while being in contact with the top plate 23, non-contact power supply is performed by satisfying the electrode arrangement condition.
  • the voltage is boosted by a parallel resonance circuit. Is not performed, the AC power voltage remains low. Therefore, even if the user intentionally or carelessly touches this portion via the top plate 23, the user will not be electrocuted.
  • the resonance condition of the parallel resonance circuit is not satisfied in this case, since the voltage is not boosted by the parallel resonance circuit, the voltage of the AC power remains low. Therefore, even if a conductor such as an iron plate is dropped on the upper surface of the power supply body 30 instead of the power supplied body 40 intentionally or carelessly, the induced capacitor capacity 37 is increased. For example, the resonance condition is not satisfied because the current passes too much, and no current flows through the conductor.
  • the capacitance inducing unit 44 of the power supplied body 40 induces the capacitor capacity 37 in the power transmission unit 31 of the power supply body 30 and the capacitor circuit 37 is used to configure the resonance circuit.
  • the resonance circuit can be formed only in a necessary range to form a current. It becomes possible to flow.
  • the configuration of the power supply body 30 can be simplified.
  • the capacity inducing part 44 is configured as a part of the plurality of power receiving electrodes 43, it is not necessary to provide the capacity inducing part 44 separately from the plurality of power receiving electrodes 43, and the structure of the power supplied body 40 can be simplified. Can do.
  • any one of the first direction and the second direction is arranged. It is possible to supply power by moving the power supplied body 40 also in the direction of, and it is possible to realize a free position in a two-dimensional region.
  • the plurality of power receiving electrodes 43 are arranged in parallel along the first direction and the second direction in a plurality of rows in a mutually insulated state, power is supplied to both the first direction and the second direction. It is possible to supply the power by moving the supply target 40 and to realize a free position in the two-dimensional region.
  • the capacity inducing means is constituted by a capacity inducing electrode.
  • the configuration of the second embodiment is substantially the same as the configuration of the first embodiment unless otherwise specified, and the configuration substantially the same as that of the first embodiment is the same as that used in the first embodiment.
  • the same reference numerals and / or names are assigned as necessary, and the description thereof is omitted.
  • FIG. 8 is a circuit diagram of the power supply body 30 and the power supplied body 50 according to the second embodiment.
  • the power receiving unit 51 of the power supply body 50 includes a plurality of power receiving electrodes 43, a capacity inducing unit 52, a polarity sorting unit 45, and a smoothing unit 46.
  • the capacitance inducing unit 52 induces a capacitor capacitance 37 between the first power transmission electrode 36A and the second power transmission electrode 36B.
  • the capacity inducing unit 52 is configured by a part of the power receiving electrode 43 and the capacity inducing electrode 53.
  • 9 is a plan view of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43
  • FIG. 10 is a partial perspective view showing a state in which the plurality of power reception electrodes 43 are excluded from FIG.
  • the capacitance inducing electrode 53 is a flat body arranged in the power receiving plane, and has a hole 53 a formed in a region corresponding to each of the plurality of power receiving electrodes 43.
  • the manufacturing method of the capacitance inducing electrode 53 is as follows. First, a conductive plate having a size slightly larger than the outer peripheral size of the plurality of power receiving electrodes 43 arranged in parallel as in the first embodiment is prepared. Next, a circular hole 53 a having a slightly larger diameter than each of the plurality of power receiving electrodes 43 is formed in the conductive plate at a position corresponding to each power receiving electrode 43, thereby completing the capacitance inducing electrode 53. To do. A power receiving electrode 43 is disposed in each hole 53 a of the capacitance inducing electrode 53.
  • the capacity inducing electrode 53 and the power receiving electrode 43 in order to ensure insulation between the capacity inducing electrode 53 and the power receiving electrode 43, in order to ensure insulation between the periphery of each hole 53 a of the capacity inducing electrode 53 and the power receiving electrode 43.
  • a sufficient interval is provided, or a known insulating material is disposed between them.
  • the plurality of power receiving electrodes 43 and the capacity inducing electrode 53 can be moved together while maintaining the relative relationship between them, for example, the plurality of power receiving electrodes 43 are formed by an insulating member. And the capacitance inducing electrode 53 are preferably connected.
  • FIG. 11 is an enlarged view of the periphery of the power transmission electrode 36 and the power reception electrode 43 in FIG. 8, and FIG. 12 is a conceptual diagram for explaining the capacitor capacity.
  • the capacity inducing electrode 53 is disposed so as to straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, as shown in FIG. 12, the capacity inducing electrode 53 and the first power transmitting electrode 36A.
  • a capacitance 37 C AF induced
  • the capacitor capacity 37 will be described in more detail.
  • the capacitance inducing electrode 53 is used in addition to the capacitance inducing power receiving electrode 43A of the first embodiment.
  • the power receiving electrode 43 is always supplied to all of the adjacent first power transmission electrode 36A and the second power transmission electrode 36B within the range in which the power supplied body 40 faces the power supply body 30. May not be straddled, and the power receiving electrode 43 may not be straddled with respect to a part of the adjacent first power transmitting electrode 36A and second power transmitting electrode 36B.
  • the power supply body 40 is opposed to the power supply body 30 at a position where the space area of the power transmission electrode 36 and the space area of the power reception electrode 43 overlap each other.
  • positions can be mentioned.
  • a dedicated capacity inducing electrode 53 for inducing the capacitor capacity 37 is used, so that capacity induction is always performed for all of the adjacent first power transmitting electrode 36A and second power transmitting electrode 36B.
  • the power supply efficiency can be increased because the large capacitor capacity 37 can be stably induced and the parallel resonance condition can be stably maintained. become. Furthermore, since the large capacitor capacity 37 can be induced stably, the inductor 35 can be made small.
  • the capacitance inducing portion 52 is configured as the capacitance inducing electrode 53, the capacitance inducing electrode 53 is always straddled across the first power transmitting electrode 36A and the second power transmitting electrode 36B. Since the large capacitor capacity 37 can be induced stably and the parallel resonance condition can be stably maintained, the power supply efficiency can be increased. Furthermore, since the large capacitor capacity 37 can be induced stably, the inductor 35 can be made small.
  • the capacity inducing electrode 53 is a flat body disposed in the power receiving plane, and has a hole 53a in a region corresponding to each of the plurality of power receiving electrodes 43. Since it is formed as a flat plate that is insulated from the power receiving electrode 43 between each other, the hole 53a is formed in one flat plate, so that the capacitance inducing electrode 53 can be easily manufactured over a wide area. be able to.
  • Embodiment 3 Next, Embodiment 3 will be described.
  • communication means is further provided in the configuration of the second embodiment.
  • the configuration of the third embodiment is substantially the same as the configuration of the second embodiment unless otherwise specified, and the configuration substantially the same as that of the second embodiment is the same as that used in the second embodiment.
  • the same reference numerals and / or names are assigned as necessary, and the description thereof is omitted.
  • FIG. 13 is a circuit diagram of the power supply body 60 and the power supplied body 70 according to the third embodiment.
  • the power supply body 60 includes a power transmission side communication unit 61.
  • the power transmission side communication unit 61 is a power transmission side communication unit that communicates with a power reception side communication unit 71 described later.
  • the power transmission side communication unit 61 is configured using RF / MAC that performs RF communication using the MAC protocol (the same applies to the power reception side communication unit 71 described later).
  • the power transmission side communication unit 61 is coupled to the line reaching the first power transmission electrode 36A via the capacitor 62, and is connected to the line reaching the second power transmission electrode 36B.
  • a specific communication method by the power transmission side communication unit 61 is arbitrary.
  • wireless communication can be adopted, but here, PLC (Power Line Communications) communication (semi-wireless communication) via the coupling capacitor 26 is used.
  • PLC Power Line Communications
  • the power transmission side communication unit 61 superimposes the analog communication signal on the alternating current and transmits it to the power supplied body 70 via the coupling capacitor 26 and is supplied from the power supplied body 70 via the coupling capacitor 26.
  • An analog communication signal component is separated from the current using a filter (not shown).
  • the carrier frequency for example, a frequency higher than the frequency of the AC power supply 32 (for example, a frequency higher by about 2 to 5 digits) is used.
  • the power supplied body 70 includes a power receiving side communication unit 71.
  • the power reception side communication unit 71 is a power reception side communication unit that communicates with the power transmission side communication unit 61 via the boundary surface 25.
  • the power receiving side communication unit 71 is coupled to a line reaching one terminal of the load 42 via the capacitor 72 and connected to a line reaching the other terminal of the load 42.
  • the power receiving side communication unit 71 superimposes the analog communication signal on the current and transmits the analog communication signal to the power supply body 60 via the coupling capacitor 26, and from the current supplied from the power supply body 60 via the coupling capacitor 26.
  • the analog communication signal component is separated using a filter that does not.
  • a control unit (not shown) provided in the power supplied body 70 calls a rated current value or voltage value of the load 42 from a storage unit (not shown) provided in the power supplied body 70 and receives these data. Always output via the side communication unit 71.
  • the power supply body 60 is in a standby mode in the initial state. Specifically, only a small amount of power is supplied to the power transmission side communication unit 61, and only the power transmission side communication unit 61 is left as a startup unit, and power is saved in the sleep state without supplying power to other parts. Plan.
  • the power transmission side communication unit 61 constantly monitors the output from the power reception side communication unit 71 of the power supplied body 70, and when the power supplied body 70 is disposed opposite to the power supply body 60, the power transmission side communication is performed.
  • the unit 61 receives data from the power receiving side communication unit 71. When data is received in this way, a control unit (not shown) provided in the power supply body 60 is activated and the standby mode is switched to the normal operation mode.
  • control unit of the power supply body 60 is configured to supply AC power that matches the rated current value and voltage value of the load 42. A value or frequency is determined, and the AC power supply 32 is controlled so that AC power is output at the current value, voltage value, or frequency, and the resonance condition of the parallel resonance circuit is satisfied.
  • the current value and voltage value of the alternating current input to the load 42 are detected by a known method, and these data are always output via the power receiving side communication unit 71.
  • the power transmission side communication unit 61 receives data from the power reception side communication unit 71.
  • the control unit of the power supply body 60 determines whether or not the resonance condition of the parallel resonance circuit is maintained based on the current value or voltage value of the alternating current input to the load 42. Then, the AC power supply 32 is controlled based on the determination result.
  • the power supply body 60 includes the power transmission side communication unit 61 and the power supplied body 70 includes the power reception side communication unit 71, the power supply body 60, the power supplied body 70, Can be communicated with each other, and adjustment for maintaining the resonance condition can be performed.
  • the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment of the invention and the details of the configuration, and only a part of the problems described above. In some cases, only a part of the effects described above may be achieved. Furthermore, according to the present invention, there may be a case where a problem not described above is solved or an effect which is not described above. For example, even if it is not possible to completely achieve a free position by non-contact, if the degree of free position improvement can be improved compared to the conventional case, or the free position of the same level as before is different from the conventional If the technology has achieved it, the problem of the present invention has been solved.
  • FIG. 14 is a circuit diagram of a power supply body according to a modification.
  • the power transmission unit 80 of the power supply body is basically configured in the same manner as the power transmission unit 31 of FIG. 8, but a capacitor 33 is disposed on the secondary side of the transformer 34, and the capacitor 33 and the transformer 34 are arranged.
  • the secondary side coil 34b forms a parallel resonance circuit.
  • the inductor 35 can form a resonance circuit, the connection position and the number of connections can be arbitrarily changed.
  • the inductor 35 is not necessarily connected to each of the plurality of power transmission electrodes 36.
  • one common inductor 35 may be connected to two or more power transmission electrodes 36. Specifically, it may be connected to at least one of the first power transmission electrode 36A or the second power transmission electrode 36B among the plurality of power transmission electrodes 36.
  • the polarity separation unit 45 may be configured using a known mechanical switch as shown in FIG. 23 instead of the diodes 45a and 45b.
  • the planar shape of the power transmission electrode 36 is not limited to a square shape, and may be any other shape (for example, a triangle, a rectangle, a pentagon, a hexagon, a circle, an ellipse, etc.). Further, the intervals between the plurality of power transmission electrodes 36 may be changed aperiodically or may be unequal intervals.
  • the planar shape of the power receiving electrode 43 is not limited to a circular shape, and may be any other shape (including, for example, a triangle, a square, a rectangle, a pentagon, a hexagon, an ellipse, and the like). Further, the intervals between the plurality of power transmission electrodes 36 may be changed aperiodically or may be unequal intervals.
  • FIG. 15 is a plan view of the power reception unit 90 manufactured using the FPC.
  • the power receiving unit 90 is formed by sequentially forming an adhesive layer and a conductor layer on a film-like insulating layer, and covering the conductor layer with an adhesive layer and an insulating layer as necessary.
  • a plurality of power receiving electrodes 43 are arranged in parallel, and diodes 45 a and 45 b constituting the polarity separation unit 45 are connected to each power receiving electrode 43. More specifically, the diodes 45 a and 45 b are formed in another layer superimposed on the layers of the plurality of power receiving electrodes 43.
  • a plurality of common lines 91 for connecting two or more power receiving electrodes 43 and two or more diodes 45a and 45b for each polarity are formed, and these plurality of lines 91 are further connected to a common main line 92 for each polarity. It is connected to the.
  • An electrode part 93 is provided at the end of the main line 92, and the power receiving part 90 can be connected to the load 42 via the electrode part 93.
  • the mutual capacitance between the power receiving electrode 43 and the power transmitting electrode 36 is stabilized to stabilize the capacitor capacitance 37 of the coupling capacitor, or the capacitance inducing power receiving electrode 43A or the like. It is preferable to stabilize the capacitor capacity 37 induced by the capacity inducing section 44 by stabilizing the mutual distance between the capacity inducing electrode 53 and the power transmission electrode 36. For this reason, for example, a configuration as shown in FIG. 16 may be adopted. In this configuration, the power transmission electrode 36 is formed of a magnetic material. Further, the power receiving electrode 43 (or the capacity inducing power receiving electrode 43A or the capacity inducing electrode 53) is formed of a conductive soft material such as polyimide.
  • the power transmission electrode 36 and the magnetic body 94 to be attracted are disposed on the surface of the power reception electrode 43 opposite to the boundary surface 25. According to such a configuration, even when the smoothness of the surface near the boundary surface 25 of the power receiving electrode 43 is low, or even when a gas or a liquid enters between the power receiving electrode 43 and the boundary surface 25. Since the power reception electrode 43 is pressed toward the power transmission electrode 36 by the attractive force of the magnetic body 94, the mutual distance between the power reception electrode 43 and the power transmission electrode 36 is stabilized.
  • a conductive soft material may be disposed between the power receiving electrode 43 and the boundary surface 25, and the conductive soft material may be brought into close contact with the boundary surface 25 by the weight of the power receiving electrode 43.
  • the capacity inducing means is 1) in the case where it is constituted by only a part of the power receiving electrode 43 as described in the first embodiment, and 2) in addition to a part of the power receiving electrode 43 as described in the second embodiment.
  • the capacity inducing electrode 53 in the case of using the capacity inducing electrode 53, and 3) in the case of using the capacity inducing electrode 53 in place of a part of the power receiving electrode 43, it is conceivable.
  • a part of the power receiving electrode 43 is disposed so as to straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, and the capacitance inducing electrode 53 is further disposed on the first power transmitting electrode 36A.
  • the second power transmission electrode 36B in the case where it is constituted by only a part of the power receiving electrode 43 as described in the first embodiment, and 2) in addition to a part of the power receiving electrode 43 as described in the second embodiment.
  • a part of the power receiving electrode 43 does not straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, and only the capacitance inducing electrode 53 is connected to the first power transmitting electrode 36A. It arrange
  • the first power transmitting electrode 36A and the second power transmitting electrode 36B A configuration in which the mutual interval between the power transmission electrodes 36 ⁇ / b> B is sufficiently wider than the maximum width of the power reception electrode 43 can be employed.
  • the capacitance inducing electrode 53 is not limited to the shape described in the second embodiment.
  • the capacitance inducing electrode 53 is not in the same power receiving plane as the power receiving electrode 43 but in a plane parallel to the boundary surface 25 and further away from the boundary surface 25 than the power receiving plane. You may comprise as the arrange
  • the capacitance inducing electrode 53 is formed with a hole 53a in a region corresponding to the line connected to the plurality of power receiving electrodes 43, and the line can be drawn toward the load 42 through the hole 53a. It is possible.
  • the capacitance inducing electrode 53 is disposed in an insulated state with respect to the plurality of power receiving electrodes 43.
  • a sufficient interval is provided between the capacitance inducing electrode 53 and the received power to ensure mutual insulation.
  • a known insulating material may be disposed between the capacitance inducing electrode 53 and the received power to insulate them from each other.
  • a portion 53 b corresponding to each other between the power receiving electrodes 43 is curved toward the boundary surface 25.
  • the curved portion 53 b may be interposed between the power receiving electrodes 43.
  • the induced capacitor capacity 37 can be adjusted by adjusting the distance between the curved portion 53 b and the power transmission electrode 36.
  • the number and arrangement of the power transmission electrodes 36 and the power reception electrodes 43 may be changed according to the range where the free position is required. For example, in the case where it is sufficient that the power supply body can be arranged only at one specific place with respect to the power supply body (strictly speaking, when a free position is not required and power supply is performed in a dotted area) As shown in the plan view of FIG. 19, only one first power transmission electrode 36A and two second power transmission electrodes 36B are disposed, and the power reception electrode 43 is a power reception electrode disposed opposite to only the first power transmission electrode 36A.
  • FIG. As shown in the plan view, the first power transmission electrode 36A and the second power transmission electrode 36B are arranged at a predetermined interval along one specific direction (the direction indicated by the arrow in FIG. 20), and the power reception electrode 43 is disposed in FIG. You may arrange
  • Such a configuration is suitable, for example, when power is supplied to a moving body as a power supplied body that moves on a straight track.
  • the spacing region of the power transmission electrode 36 is a straight strip and the planar shape of the spacing region of the power receiving electrode 43 is a straight strip
  • the spacing region of the power transmission electrode 36 and the receiving electrode 43 are configured.
  • the power supply body is disposed opposite to the power supply body at a position where the gap region overlaps with each other
  • the power reception electrode 43 is disposed between the first power transmission electrode 36A and the second power transmission electrode 36B. (Possibility that at least a part of the electrode arrangement condition is not satisfied) occurs.
  • the gap region of the power transmission electrode 36 and the gap region of the power reception electrode 43 have different shapes. For example, as shown in FIG.
  • each power transmission electrode 36 is a hexagonal shape and the plurality of power transmission electrodes 36 are arranged side by side in a honeycomb shape
  • the interval region of the power transmission electrodes 36 becomes a non-linear band shape. Therefore, even if the planar shape of the gap region of the power receiving electrode 43 is a straight band, the power receiving electrode 43 can be surely straddled between the first power transmitting electrode 36A and the second power transmitting electrode 36B.
  • one of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43 may be arranged so as to form a jigsaw puzzle pattern or a Penrose tile pattern.
  • the resonance circuit of the power supply body only needs to include at least the inductor 35 and the capacitor capacitance 37 induced by the capacitance inducing unit 44, and may include any other circuit element.
  • the capacitor capacitance 37 induced by the capacitance induction unit 44 is combined with a first coupling capacitor and a second coupling capacitor to form a resonance circuit.
  • the first coupling capacitor, the first coupling capacitor, A resonance circuit is configured including a two-coupling capacitor, an inductor 35, and a capacitor capacitance 37 induced by the capacitance inducing unit 44, and power can be supplied from the power supply body to the power supply target body via this resonance circuit. It becomes.
  • the capacitor capacitance 37 induced by the capacitance induction unit 44 may be considered separately from the first coupling capacitor and the second coupling capacitor.
  • the capacitor induced by the inductor 35 and the capacitance induction unit 44 Power can be supplied from the power supply body via the power supply body via the resonance circuit including the capacitor 37, the first coupling capacitor, and the second coupling capacitor.
  • the smoothing unit 46 in addition to the configuration described above, a different configuration using a known technique can be adopted, and for example, it may be configured only by a capacitor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

[Problem] To provide a power supply system capable of achieving free positioning in a non-contact manner and capable of forming a resonant circuit only in a necessary region and flowing current. [Solution] The power supply system (1) supplies the AC power supplied from an AC power supply (6) from a power-supplying body (3) disposed in a power-supplying region (2) to a load (7) via a power-supplied body (5) disposed in a power-supplied region (4). The power-supplying body (3) includes a power transmitting unit (9) for supplying the AC power supplied from the AC power supply (6) to the power-supplied body (5). The power-supplied body (5) includes: a power receiving unit (10) for receiving the AC power supplied from the power transmitting unit (9) and supplying the AC power to the load (7); and a capacitance induction unit (11) configured as a part of the power receiving unit (10) or configured as a unit different from the power receiving unit (10). The power transmitting unit (9) and the capacitance induction unit (11) are disposed facing each other in a non-contact manner, thereby inducing a capacitor's capacitance (14) in the power transmitting unit (9).

Description

電力供給システムPower supply system
 この発明は、各種の負荷に対して電力供給を行うための電力供給システムに関する。 This invention relates to a power supply system for supplying power to various loads.
 各種の負荷に対して給電を行う電力供給システムは、一般に、電力供給体の電極と電力被供給体の電極とを相互に接触させて給電する接触式の電力供給システムと、これらの電力を相互に接触させることなく給電する非接触式の電力供給システムとに大別できる。 In general, a power supply system that supplies power to various loads generally includes a contact-type power supply system that supplies power by bringing an electrode of a power supply body and an electrode of a power-supplied body into contact with each other and the power supply system. It can be broadly classified into a non-contact type power supply system that supplies power without being in contact with the power source.
 このうち、非接触式の電力供給システムとして、本願発明者等は、直列共振を利用した電力供給システムを提案した(特許文献1参照)。図22は、このような従来の電力供給システムの回路図である。この電力供給システムにおいて、電力供給領域100に配置された固定体101は、送電電極105、106を備える。また、電力被供給領域102に配置された可動体103は、送電電極105、106に対して対向状かつ非接触に配置される受電電極107、108を備える。そして、これら相互に対向させた送電電極105、106と受電電極107、108とから結合コンデンサ109を構成する。そして、この結合コンデンサ109と可動体103に設けたコイル110とにより直列共振回路を形成し、交流電源115の周波数をスイッチング制御して共振周波数とすることで、固定体101から可動体103へ共振状態で電力供給を行うことが可能となる。この電力供給システムでは、受電電極107、108は、送電電極105、送電電極106の相互間に跨ることがないように、送電電極105、106の並設間隔よりも十分に小さくなるように形成される。 Among these, the present inventors proposed a power supply system using series resonance as a non-contact type power supply system (see Patent Document 1). FIG. 22 is a circuit diagram of such a conventional power supply system. In this power supply system, the fixed body 101 arranged in the power supply region 100 includes power transmission electrodes 105 and 106. In addition, the movable body 103 disposed in the power supplied region 102 includes power receiving electrodes 107 and 108 that are disposed to face the power transmitting electrodes 105 and 106 in a non-contact manner. A coupling capacitor 109 is constituted by the power transmitting electrodes 105 and 106 and the power receiving electrodes 107 and 108 opposed to each other. The coupling capacitor 109 and the coil 110 provided on the movable body 103 form a series resonance circuit, and the resonance frequency is controlled from the AC power supply 115 to the resonance frequency by switching the frequency of the AC power supply 115. It becomes possible to supply power in a state. In this power supply system, the power receiving electrodes 107 and 108 are formed to be sufficiently smaller than the interval between the power transmitting electrodes 105 and 106 so as not to cross between the power transmitting electrode 105 and the power transmitting electrode 106. The
 しかし、上記特許文献1に記載の電力供給システムでは、可動体103の配置位置によっては、受電電極107、108と送電電極105、106とが相互に鉛直方向に完全に対応する位置に配置されず、受電電極107、108が送電電極105、106の一部のみに掛かるように配置される場合が生じる。この場合には、結合コンデンサ109のコンデンサ容量が所定容量からずれてしまい、所定の直列共振条件が満足されないために、送電効率が低下する可能性が生じるといった問題があった。 However, in the power supply system described in Patent Document 1, the power receiving electrodes 107 and 108 and the power transmitting electrodes 105 and 106 are not arranged at positions that completely correspond to each other in the vertical direction depending on the arrangement position of the movable body 103. In some cases, the power receiving electrodes 107 and 108 are arranged so as to cover only a part of the power transmitting electrodes 105 and 106. In this case, the capacitor capacity of the coupling capacitor 109 is deviated from a predetermined capacity, and a predetermined series resonance condition is not satisfied, so that there is a possibility that power transmission efficiency may be reduced.
 このため、本願発明者等は、直列共振に代えて並列共振を利用した非接触式の電力供給システムを提案した(特許文献2参照)。図23は、このような従来の電力供給システムの回路図である。この電力供給システムにおいて、送電電極105、106にはインダクタ120及びコンデンサ121が並列接続されており、これらインダクタ120及びコンデンサ121と結合コンデンサ109とにより並列共振回路を形成することで、固定体101から可動体103へ共振状態で電力供給を行うことが可能となる。特に、負荷部のインピーダンスを増大させることができるため、結合コンデンサ109における電圧降下を低減でき、結合コンデンサ109のコンデンサ容量の変動に関わらず安定した電力供給を可能とすることができる。この電力供給システムにおいても、受電電極107は、送電電極105、送電電極106の相互間に跨ることがないように、送電電極105、106の並設間隔よりも十分に小さくなるように形成される。 For this reason, the inventors of the present application proposed a non-contact power supply system using parallel resonance instead of series resonance (see Patent Document 2). FIG. 23 is a circuit diagram of such a conventional power supply system. In this power supply system, an inductor 120 and a capacitor 121 are connected in parallel to the power transmission electrodes 105 and 106, and a parallel resonant circuit is formed by the inductor 120, the capacitor 121, and the coupling capacitor 109. It becomes possible to supply power to the movable body 103 in a resonance state. In particular, since the impedance of the load portion can be increased, a voltage drop in the coupling capacitor 109 can be reduced, and stable power supply can be achieved regardless of fluctuations in the capacitance of the coupling capacitor 109. Also in this power supply system, the power receiving electrode 107 is formed to be sufficiently smaller than the interval between the power transmitting electrodes 105 and 106 so as not to cross between the power transmitting electrode 105 and the power transmitting electrode 106. .
特開2009-89520号公報JP 2009-89520 A 特開2010-193692号公報JP 2010-193692 A
 しかしながら、上記特許文献2に記載の電力供給システムは、送電電極の各々にインダクタ及びコンデンサが並列接続されており、広い範囲に送電電極を並設した場合には、この広い範囲の送電電極を含む共振回路の電流が電源に流れるため、電源の容量が極めて大きくなってしまうという問題があった。 However, the power supply system described in Patent Document 2 includes an inductor and a capacitor connected in parallel to each of the power transmission electrodes. When the power transmission electrodes are arranged in a wide range, the power supply system includes the wide range of power transmission electrodes. Since the current of the resonance circuit flows to the power supply, there is a problem that the capacity of the power supply becomes extremely large.
 このような点に鑑みて、本発明は、非接触によるフリーポジション化を達成できる電力供給システムであって、必要な範囲にのみ共振回路を形成して電流を流すことができる、電力供給システムを提供することを目的とする。 In view of such a point, the present invention is a power supply system that can achieve a free position by non-contact, and is a power supply system that can form a resonance circuit only in a necessary range and flow current. The purpose is to provide.
 上述した課題を解決し、目的を達成するため、請求項1に記載の電力供給システムは、電力供給領域に配置された電力供給体から、電力被供給領域に配置された電力被供給体を介して、所定の交流電源から供給された交流電力を所定の負荷に対して供給するための電力供給システムであって、前記電力供給体は、前記交流電源から供給された交流電力を前記電力被供給体に供給する送電手段を備え、前記電力被供給体は、前記送電手段から供給された交流電力を受電して前記負荷に供給する受電手段と、前記受電手段の一部として構成され又は前記受電手段とは異なるものとして構成された容量誘発手段とを備え、前記電力供給領域と前記電力被供給領域との相互の境界面を介して、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させることにより、複数の結合コンデンサを形成し、前記境界面を介して、前記送電手段と前記容量誘発手段とを相互に非接触状に対向配置させることにより、前記送電手段にコンデンサ容量を誘発させ、少なくとも前記コンデンサ容量を含んで構成される共振回路と前記複数の結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能としたものである。 In order to solve the above-described problems and achieve the object, the power supply system according to claim 1 is configured such that the power supply body arranged in the power supply area passes through the power supply body arranged in the power supply area. A power supply system for supplying AC power supplied from a predetermined AC power source to a predetermined load, wherein the power supply unit supplies AC power supplied from the AC power source to the power supply. A power transmission means for supplying power to the body, wherein the power receiver is configured to receive AC power supplied from the power transmission means and supply the AC power to the load; and a part of the power reception means or the power reception A capacity inducing means configured differently from the means, and through a mutual boundary surface between the power supply area and the power supplied area, a plurality of parts of the power transmission means and a plurality of parts of the power receiving means The A plurality of coupling capacitors are formed by disposing each other so as not to contact each other, and the power transmission means and the capacity inducing means are disposed to face each other in a non-contact manner via the boundary surface. By inducing a capacitor capacity in the power transmission means, the power is supplied from the power supply body through the power supplied body through a resonance circuit including at least the capacitor capacity and the plurality of coupling capacitors. It can be supplied.
 請求項2に記載の電力供給システムは、請求項1に記載の電力供給システムにおいて、前記送電手段は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、前記交流電源から交流電力の供給を受ける複数の送電電極を備え、前記電力供給体は、前記複数の送電電極の中の第1送電電極又は第2送電電極の少なくとも一方に接続されたインダクタを備え、前記受電手段は、前記複数の送電電極に対して前記境界面を挟んで非接触に配置される複数の受電電極を備え、前記容量誘発手段は、前記複数の受電電極の一部として構成され、前記複数の送電電極の中の前記第1送電電極に、前記複数の受電電極の中の一部の受電電極を対向させることにより、第1結合コンデンサを形成し、前記複数の送電電極の中の前記第1送電電極に隣接する第2送電電極に、前記複数の受電電極の中で前記第1送電電極に対向させた前記一部の受電電極とは異なる他の一部の受電電極を対向させることにより、第2結合コンデンサを形成し、前記第1送電電極と前記第2送電電極の相互間に跨るように、前記複数の受電電極の中で前記第1送電電極又は前記第2送電電極に対向させた前記受電電極とは異なる受電電極としての前記容量誘発手段を位置させることにより、前記第1送電電極と前記第2送電電極の相互間に前記コンデンサ容量を誘発させ、前記第1結合コンデンサ、前記第2結合コンデンサ、前記インダクタ、及び前記コンデンサ容量を含んで構成される前記共振回路を介して、あるいは、前記インダクタ及び前記コンデンサ容量を含んで構成される前記共振回路と、前記第1結合コンデンサ及び前記第2結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能としたものである。 A power supply system according to a second aspect is the power supply system according to the first aspect, wherein the power transmission means is disposed in a vicinity of a boundary surface between the power supply area and the power supplied area. The power supply body includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source, and the power supply body is connected to at least one of the first power transmission electrode and the second power transmission electrode among the plurality of power transmission electrodes. The power receiving means includes a plurality of power receiving electrodes arranged in a non-contact manner across the boundary surface with respect to the plurality of power transmitting electrodes, and the capacitance inducing means includes a plurality of power receiving electrodes. The first coupling capacitor is formed by making a part of the plurality of power receiving electrodes face the first power transmitting electrode of the plurality of power transmitting electrodes. Among the plurality of power receiving electrodes, the second power transmitting electrode adjacent to the first power transmitting electrode is different from the part of the power receiving electrodes opposed to the first power transmitting electrode. A second coupling capacitor is formed by facing the power receiving electrodes of the first power transmitting electrode or the first power transmitting electrode or the second power transmitting electrode so as to straddle between the first power transmitting electrode and the second power transmitting electrode. By positioning the capacity inducing means as a power receiving electrode different from the power receiving electrode opposed to the second power transmitting electrode, the capacitor capacity is induced between the first power transmitting electrode and the second power transmitting electrode. Through the resonance circuit including the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance, or including the inductor and the capacitor capacitance. Wherein the resonant circuit formed in, via the first coupling capacitor and the second coupling capacitor is obtained by enabling supplying power from the power supply member through said power-receiving member.
 請求項3に記載の電力供給システムは、請求項1又は2に記載の電力供給システムにおいて、前記送電手段は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、前記交流電源から交流電力の供給を受ける複数の送電電極を備え、前記電力供給体は、前記複数の送電電極の中の第1送電電極又は第2送電電極の少なくとも一方に接続されたインダクタを備え、前記受電手段は、前記複数の送電電極に対して前記境界面を挟んで非接触に配置される複数の受電電極を備え、前記容量誘発手段は、前記複数の受電電極の一部に加えて、あるいは前記複数の受電電極に代えて、その少なくとも一部が前記第1送電電極と前記第2送電電極の相互間に跨るように配置される容量誘発用電極として構成され、前記複数の送電電極の中の前記第1送電電極に、前記複数の受電電極の中の一部の受電電極を対向させることにより、第1結合コンデンサを形成し、前記複数の送電電極の中の前記第1送電電極に隣接する第2送電電極に、前記複数の受電電極の中で前記第1送電電極に対向させた前記一部の受電電極とは異なる他の一部の受電電極を対向させることにより、第2結合コンデンサを形成し、前記第1送電電極と前記第2送電電極の相互間に跨るように、前記容量誘発手段を位置させることにより、前記第1送電電極と前記第2送電電極の相互間に前記コンデンサ容量を誘発させ、前記第1結合コンデンサ、前記第2結合コンデンサ、前記インダクタ、及び前記コンデンサ容量を含んで構成される前記共振回路を介して、あるいは、前記インダクタ及び前記コンデンサ容量を含んで構成される前記共振回路と、前記第1結合コンデンサ及び前記第2結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能とした。 A power supply system according to a third aspect is the power supply system according to the first or second aspect, wherein the power transmission means is disposed in a vicinity of a boundary surface between the power supply region and the power supplied region. The power supply body includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source, and the power supply body is at least one of the first power transmission electrode and the second power transmission electrode among the plurality of power transmission electrodes. The power receiving means includes a plurality of power receiving electrodes arranged in contact with the plurality of power transmitting electrodes across the boundary surface, and the capacitance inducing means includes the plurality of power receiving electrodes. In addition to a part of the electrode or instead of the plurality of power receiving electrodes, as a capacitance inducing electrode arranged so that at least a part thereof straddles between the first power transmitting electrode and the second power transmitting electrode A first coupling capacitor is formed by opposing a part of the power receiving electrodes of the plurality of power receiving electrodes to the first power transmitting electrode of the plurality of power transmitting electrodes, and the plurality of power transmitting electrodes Among the plurality of power receiving electrodes, the second power transmitting electrode adjacent to the first power transmitting electrode is a part of the other power receiving electrodes different from the part of the power receiving electrodes. To form a second coupling capacitor, and by positioning the capacitance inducing means so as to straddle between the first power transmission electrode and the second power transmission electrode, the first power transmission electrode and the Via the resonant circuit configured to include the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance by inducing the capacitor capacitance between the second power transmission electrodes; or Power can be supplied from the power supply body through the power supplied body through the resonance circuit including the inductor and the capacitor capacity, and the first coupling capacitor and the second coupling capacitor. It was.
 請求項4に記載の電力供給システムは、請求項3に記載の電力供給システムにおいて、前記複数の受電電極を、前記境界面に対して平行な受電平面内に、相互に絶縁状態で並設し、前記容量誘発用電極を、前記受電平面内に配置された平板状体であり、前記複数の受電電極の各々に対応する領域に孔部を有するものであって、前記複数の受電電極の相互間において当該受電電極と絶縁状態で介在する平板状体として形成したものである。 A power supply system according to a fourth aspect is the power supply system according to the third aspect, wherein the plurality of power reception electrodes are arranged in parallel in a power reception plane parallel to the boundary surface in an insulated state. The capacitance inducing electrode is a flat body disposed in the power receiving plane, and has a hole in a region corresponding to each of the plurality of power receiving electrodes. It is formed as a plate-like body that is interposed between the power receiving electrode in an insulated state.
 請求項5に記載の電力供給システムは、請求項3に記載の電力供給システムにおいて、前記複数の受電電極を、前記境界面に対して平行な受電平面内に、相互に絶縁状態で並設し、前記容量誘発用電極を、前記境界面に対して平行であって前記受電平面よりも前記境界面から離れた平面内に少なくとも一部が配置された平板状体であり、前記複数の受電電極に接続された線路に対応する領域に孔部を有するものであって、前記複数の受電電極に対して絶縁状態で配置された平板状体として形成したものである。 The power supply system according to claim 5 is the power supply system according to claim 3, wherein the plurality of power receiving electrodes are arranged in parallel in a power receiving plane parallel to the boundary surface in an insulated state. The capacitance inducing electrode is a plate-like body at least partially disposed in a plane parallel to the boundary surface and further away from the boundary surface than the power receiving plane, and the plurality of power receiving electrodes And having a hole in a region corresponding to the line connected to the wire, and formed as a flat plate disposed in an insulated state with respect to the plurality of power receiving electrodes.
 請求項6に記載の電力供給システムは、請求項2から5のいずれか一項に記載の電力供給システムにおいて、前記複数の送電電極を、相互に同一形状で形成し、前記境界面に対して平行な送電平面内において、所定の第1方向と当該第1方向に対して前記送電平面内において直交する第2方向とに沿って極性が交互に異なるように、相互に絶縁状態で複数列ずつ並設したものである。 The power supply system according to claim 6 is the power supply system according to any one of claims 2 to 5, wherein the plurality of power transmission electrodes are formed in the same shape with respect to the boundary surface. In parallel power transmission planes, a plurality of rows are insulated from each other so that the polarities are alternately different along a predetermined first direction and a second direction orthogonal to the first direction in the power transmission plane. They are arranged side by side.
 請求項7に記載の電力供給システムは、請求項6に記載の電力供給システムにおいて、前記複数の受電電極を、前記複数の送電電極の相互間隔よりも広幅の形状であって相互に同一形状で形成し、前記境界面に対して平行な受電平面内において、所定の第1方向と当該第1方向に対して前記受電平面内において直交する第2方向とに沿って、相互に絶縁状態で複数列ずつ並設したものである。 A power supply system according to a seventh aspect is the power supply system according to the sixth aspect, wherein the plurality of power receiving electrodes have a shape wider than a mutual interval between the plurality of power transmission electrodes and have the same shape. In a power receiving plane that is formed parallel to the boundary surface, a plurality of insulating layers are insulated from each other along a predetermined first direction and a second direction orthogonal to the first direction in the power receiving plane. They are arranged side by side.
 請求項8に記載の電力供給システムは、請求項2から7のいずれか一項に記載の電力供給システムにおいて、前記送電電極を、磁性体から形成し、前記受電電極を、導電軟質材で形成し、前記受電電極における前記境界面と反対側の面には、前記送電電極と吸引する磁性体を配置したものである。 The power supply system according to claim 8 is the power supply system according to any one of claims 2 to 7, wherein the power transmission electrode is formed of a magnetic material, and the power reception electrode is formed of a soft conductive material. The power receiving electrode and a magnetic material to be attracted are arranged on the surface of the power receiving electrode opposite to the boundary surface.
 請求項9に記載の電力供給システムは、請求項1から8のいずれか一項に記載の電力供給システムにおいて、前記電力供給体は、送電側通信手段を備え、前記電力被供給体は、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させた部分を介して、前記送電側通信手段と通信する受電側通信手段を備えるものである。 The power supply system according to claim 9 is the power supply system according to any one of claims 1 to 8, wherein the power supply body includes power transmission side communication means, and the power supplied body includes A power receiving-side communication unit that communicates with the power transmitting-side communication unit is provided through a part in which a plurality of parts of the power transmitting unit and a plurality of parts of the power receiving unit are arranged to face each other in a non-contact manner.
 請求項10に記載の電力被供給体は、電力被供給領域に配置された電力被供給体であって、電力供給領域に配置された電力供給体を介して所定の交流電源から供給された交流電力を所定の負荷に対して供給する電力被供給体において、前記電力供給体に設けられた送電手段から供給された交流電力を受電して前記負荷に供給する受電手段と、前記受電手段の一部として構成され又は前記受電手段とは異なるものとして構成された容量誘発手段とを備え、前記電力供給領域と前記電力被供給領域との相互の境界面を介して、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させることにより、複数の結合コンデンサを形成し、前記境界面を介して、前記送電手段と前記容量誘発手段とを相互に非接触状に対向配置させることにより、前記送電手段にコンデンサ容量を誘発させ、少なくとも前記コンデンサ容量を含んで構成される共振回路と前記複数の結合コンデンサとを介して、前記電力供給体から電力を供給可能としたものである。 The power supplied body according to claim 10 is a power supplied body arranged in the power supplied area, and an alternating current supplied from a predetermined AC power source via the power supply body arranged in the power supply area. In a power supply body that supplies power to a predetermined load, a power receiving means that receives AC power supplied from a power transmission means provided in the power supply body and supplies the AC power to the load; and one of the power receiving means A capacity inducing unit configured as a part or different from the power receiving unit, and through a mutual boundary surface between the power supply region and the power supplied region, a plurality of parts of the power transmission unit A plurality of coupling capacitors are formed by disposing a plurality of portions of the power receiving means in a non-contact manner with each other, and the power transmitting means and the capacity inducing means are not in contact with each other via the boundary surface. The capacitor is induced in the power transmission means by being disposed opposite to the power supply unit, and power can be supplied from the power supply body via the resonance circuit including at least the capacitor capacity and the plurality of coupling capacitors. It is what.
 請求項1に記載の電力供給システムによれば、電力被供給体の容量誘発手段により電力供給体の送電手段にコンデンサ容量を誘発させ、このコンデンサ容量を用いて共振回路を構成することにより、電力被供給体を配置した位置のみにおいて共振回路を介した電力供給を行うことができ、非接触によるフリーポジション化を達成できると共に、必要な範囲にのみ共振回路を形成して電流を流すことが可能になる。また、電力供給体に共振回路のためのコンデンサを配置する必要がなくなるため、電力供給体の構成を簡易化することができる。 According to the power supply system of claim 1, the capacitor capacity is induced in the power transmission means of the power supply body by the capacity induction means of the power supplied body, and the resonance circuit is configured using the capacitor capacity, thereby Power can be supplied via the resonance circuit only at the position where the supply target is placed, and a non-contact free position can be achieved. In addition, a resonance circuit can be formed only in the required range to pass current. become. In addition, since it is not necessary to arrange a capacitor for the resonance circuit in the power supply body, the configuration of the power supply body can be simplified.
 請求項2に記載の電力供給システムによれば、容量誘発手段を複数の受電電極の一部として構成したので、容量誘発手段を複数の受電電極とは別に設ける必要がなく、電力被供給体の構成を簡易化することができる。 According to the power supply system of the second aspect, since the capacity inducing means is configured as a part of the plurality of power receiving electrodes, it is not necessary to provide the capacity inducing means separately from the plurality of power receiving electrodes. The configuration can be simplified.
 請求項3に記載の電力供給システムによれば、容量誘発手段を、複数の受電電極の一部に加えて、あるいは複数の受電電極の一部に代えて、容量誘発用電極として構成したので、第1送電電極と第2送電電極とに対して必ず容量誘発用電極を跨らせることができ、大きなコンデンサ容量を安定的に誘発することができて、並列共振条件を安定的に維持することが可能になるため、電力供給効率を高めることが可能になる。さらに、大きなコンデンサ容量を安定的に誘発できるので、インダクタを小さくすることができる。 According to the power supply system of claim 3, since the capacity inducing means is configured as a capacity inducing electrode in addition to or in place of a part of the plurality of power receiving electrodes, Capacitance induction electrode can always be straddled with respect to the first power transmission electrode and the second power transmission electrode, a large capacitor capacity can be stably induced, and the parallel resonance condition can be stably maintained. Therefore, it is possible to increase the power supply efficiency. Furthermore, since a large capacitor capacity can be induced stably, the inductor can be made small.
 請求項4に記載の電力供給システムによれば、容量誘発用電極を、受電平面内に配置された平板状体であり、複数の受電電極の各々に対応する領域に孔部を有するものであって、複数の受電電極の相互間において当該受電電極と絶縁状態で介在する平板状体として形成したので、1枚の平板状体に孔部を形成することにより、広域に渡る容量誘発用電極を容易に製造することができる。 According to the power supply system of the fourth aspect, the capacity inducing electrode is a flat body disposed in the power receiving plane, and has a hole in a region corresponding to each of the plurality of power receiving electrodes. Thus, the electrode for capacity induction over a wide area is formed by forming a hole in one plate-like body. It can be manufactured easily.
 請求項5に記載の電力供給システムによれば、容量誘発用電極を、境界面に対して平行であって受電平面よりも境界面から離れた平面内に少なくとも一部が配置された平板状体であり、複数の受電電極に接続された線路に対応する領域に孔部を有するものであって、複数の受電電極に対して絶縁状態で配置された平板状体として形成したので、1枚の平板状体に孔部を形成することにより、広域に渡る容量誘発用電極を容易に製造することができる。特に、複数の受電電極の相互間に平板状体を介在させる場合に比べて、孔部を小さくすることができるので、容量誘発用電極の抵抗を小さくすることが可能になる。 According to the power supply system of claim 5, the capacitance-inducing electrode is a flat body in which at least a part is disposed in a plane parallel to the boundary surface and farther from the boundary surface than the power receiving plane. And has a hole in a region corresponding to a line connected to a plurality of power receiving electrodes, and is formed as a flat plate disposed in an insulated state with respect to the plurality of power receiving electrodes. By forming the hole in the flat plate-like body, a capacity inducing electrode over a wide area can be easily manufactured. In particular, since the hole can be made smaller than in the case where a flat body is interposed between the plurality of power receiving electrodes, the resistance of the capacitance inducing electrode can be reduced.
 請求項6に記載の電力供給システムによれば、複数の送電電極を、第1方向と第2方向とに沿って極性が交互に異なるように相互に絶縁状態で複数列ずつ並設したので、これら第1方向と第2方向のいずれの方向に対しても電力被供給体を移動させて電力供給を行うことが可能となり、2次元領域でのフリーポジション化を実現することが可能になる。 According to the power supply system of claim 6, since the plurality of power transmission electrodes are arranged in parallel with each other in a mutually insulated state so that the polarities are alternately different along the first direction and the second direction, It is possible to supply power by moving the power supply object in both the first direction and the second direction, and it is possible to realize a free position in a two-dimensional region.
 請求項7に記載の電力供給システムによれば、複数の受電電極を、第1方向と第2方向とに沿って相互に絶縁状態で複数列ずつ並設したので、これら第1方向と第2方向のいずれの方向に対しても電力被供給体を移動させて電力供給を行うことが可能となり、2次元領域でのフリーポジション化を実現することが可能になる。 According to the power supply system of the seventh aspect, since the plurality of power receiving electrodes are arranged in parallel in the first direction and the second direction in a plurality of rows in a mutually insulated state, the first direction and the second direction It is possible to supply power by moving the power supply object in any direction, and it is possible to realize a free position in a two-dimensional region.
 請求項8に記載の電力供給システムによれば、送電電極を、磁性体から形成し、受電電極を、導電軟質材で形成し、受電電極における境界面と反対側の面には送電電極と吸引する磁性体を配置したので、受電電極の境界面に近い面の平滑度が低かったり、受電電極と境界面の相互間に気体や液体が入り込んだりしている場合であっても、磁性体の吸引力によって受電電極が送電電極に向けて押圧されるので、受電電極と送電電極との相互間隔が安定する。 According to the power supply system of claim 8, the power transmission electrode is formed of a magnetic material, the power reception electrode is formed of a soft conductive material, and the power transmission electrode and the suction surface are disposed on a surface opposite to the boundary surface of the power reception electrode. Even if there is a low smoothness of the surface close to the boundary surface of the power receiving electrode or a gas or liquid has entered between the power receiving electrode and the boundary surface, Since the power reception electrode is pressed toward the power transmission electrode by the attractive force, the mutual distance between the power reception electrode and the power transmission electrode is stabilized.
 請求項9に記載の電力供給システムによれば、電力供給体は送電側通信手段を備え、電力被供給体は受電側通信手段を備えるので、電力供給体と電力被供給体との相互間で通信を行うことが可能になり、共振条件維持のための調整等を行うことが可能になる。 According to the power supply system of the ninth aspect, the power supply body includes the power transmission side communication means, and the power supplied body includes the power reception side communication means. Therefore, between the power supply body and the power supplied body. Communication can be performed, and adjustment for maintaining the resonance condition can be performed.
 請求項10に記載の電力被供給体によれば、容量誘発手段により電力供給体の送電手段にコンデンサ容量を誘発させ、このコンデンサ容量を用いて共振回路を構成することにより、電力被供給体を配置した位置のみにおいて共振回路を介した電力供給を行うことができ、非接触によるフリーポジション化を達成できると共に、必要な範囲にのみ共振回路を形成して電流を流すことが可能になる。また、電力供給体に共振回路のためのコンデンサを配置する必要がなくなるため、電力供給体の構成を簡易化することができる。 According to the power supplied body of claim 10, by inducing the capacitor capacity in the power transmission means of the power supply body by the capacity inducing means, and configuring the resonance circuit using this capacitor capacity, the power supplied body is Electric power can be supplied via the resonance circuit only at the position where it is arranged, and a non-contact free position can be achieved. In addition, a resonance circuit can be formed only in a necessary range to allow current to flow. In addition, since it is not necessary to arrange a capacitor for the resonance circuit in the power supply body, the configuration of the power supply body can be simplified.
本発明の各実施の形態に係る電力供給システムの基本的概念を説明するためのブロック図である。It is a block diagram for demonstrating the basic concept of the electric power supply system which concerns on each embodiment of this invention. 実施の形態1に係る電力供給システムの斜視図である。1 is a perspective view of a power supply system according to Embodiment 1. FIG. 実施の形態1に係る電力供給体及び電力被供給体の回路図である。2 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 1. FIG. 複数の送電電極及び複数の受電電極の平面図である。It is a top view of a plurality of power transmission electrodes and a plurality of power reception electrodes. 図3における送電電極と受電電極の周辺の部分拡大図である。It is the elements on larger scale of the periphery of the power transmission electrode and power receiving electrode in FIG. 図5のX領域の拡大図である。FIG. 6 is an enlarged view of a region X in FIG. 5. コンデンサ容量を説明するための概念図である。It is a conceptual diagram for demonstrating capacitor capacity. 実施の形態2に係る電力供給体及び電力被供給体の回路図である。FIG. 6 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 2. 複数の送電電極及び複数の受電電極の平面図である。It is a top view of a plurality of power transmission electrodes and a plurality of power reception electrodes. 図9から複数の受電電極を除外した状態を示す部分斜視図である。FIG. 10 is a partial perspective view illustrating a state where a plurality of power receiving electrodes are excluded from FIG. 9. 図8における送電電極と受電電極の周辺の拡大図である。It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode in FIG. コンデンサ容量を説明するための概念図である。It is a conceptual diagram for demonstrating capacitor capacity. 実施の形態3に係る電力供給体及び電力被供給体の回路図である。FIG. 5 is a circuit diagram of a power supply body and a power supplied body according to Embodiment 3. 変形例に係る電力供給体の回路図である。It is a circuit diagram of the electric power supply body which concerns on a modification. FPCを用いて製造した受電部の平面図である。It is a top view of the power receiving part manufactured using FPC. 変形例に係る送電電極と受電電極の周辺の拡大図である。It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode which concern on a modification. 他の変形例に係る送電電極と受電電極の周辺の拡大図である。It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode which concern on another modification. 他の変形例に係る送電電極と受電電極の周辺の拡大図である。It is an enlarged view of the periphery of the power transmission electrode and power receiving electrode which concern on another modification. 他の変形例に係る複数の送電電極及び複数の受電電極の平面図である。It is a top view of a plurality of power transmission electrodes and a plurality of power reception electrodes concerning other modifications. 他の変形例に係る複数の送電電極及び複数の受電電極の平面図である。It is a top view of a plurality of power transmission electrodes and a plurality of power reception electrodes concerning other modifications. 他の変形例に係る複数の送電電極の平面図である。It is a top view of a plurality of power transmission electrodes concerning other modifications. 従来の電力供給システムに係る固定体及び可動体の回路図である。It is a circuit diagram of the fixed body and movable body which concern on the conventional electric power supply system. 他の従来の電力供給システムに係る固定体及び可動体の回路図である。It is a circuit diagram of the fixed body and movable body which concern on the other conventional power supply system.
 以下に添付図面を参照して、本発明に係る電力供給システム及び電力被供給体の各実施の形態について図面を参照しつつ詳細に説明する。まず、〔I〕各実施の形態に共通の基本的概念を説明した後、〔II〕各実施の形態の具体的内容について説明し、〔III〕最後に、各実施の形態に対する変形例について説明する。ただし、これら各実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of a power supply system and a power supply object according to the present invention will be described in detail with reference to the accompanying drawings. First, [I] the basic concept common to each embodiment was explained, then [II] the specific contents of each embodiment were explained, and [III] finally, a modification to each embodiment was explained. To do. However, the present invention is not limited by these embodiments.
〔I〕各実施の形態に共通の基本的概念
 まず、各実施の形態に係る電力供給システムに共通の基本的概念について説明する。図1は、電力供給システムの基本的概念を説明するためのブロック図である。この図1に示すように、電力供給システム1は、電力供給領域2に配置された電力供給体3から、電力被供給領域4に配置された電力被供給体5を介して、所定の交流電源6から供給された交流電力を所定の負荷7に対して供給するためのシステムとして構成されている。
[I] Basic concept common to the embodiments First, the basic concept common to the power supply systems according to the embodiments will be described. FIG. 1 is a block diagram for explaining the basic concept of the power supply system. As shown in FIG. 1, a power supply system 1 includes a predetermined AC power supply from a power supply body 3 disposed in a power supply area 2 via a power supply body 5 disposed in a power supply area 4. 6 is configured as a system for supplying AC power supplied from 6 to a predetermined load 7.
 「電力供給領域」2や「電力被供給領域」4の具体的構成は任意であり、例えば、一般住宅やオフィスビルの如き建屋の内部空間や、電車や飛行機の如き乗り物の内部空間、あるいは、屋外空間を含む。以下では、電力供給領域2と電力被供給領域4とを相互に区画する面を「境界面」8と称する。例えば、電力被供給領域4を建屋の居室とすると共に、電力供給領域2を居室の床部とした場合、床部の上面(床面)が境界面8になる。ただし、境界面8に対して、電力供給領域2を上方に設定すると共に、電力被供給領域4を下方に設定してもよい。あるいは、境界面8を垂直面や傾斜面として設定してもよい。 The specific configuration of the “power supply area” 2 and the “power supply area” 4 is arbitrary, for example, an internal space of a building such as a general house or an office building, an internal space of a vehicle such as a train or an airplane, or Including outdoor space. Hereinafter, a surface that partitions the power supply region 2 and the power supplied region 4 from each other is referred to as a “boundary surface” 8. For example, when the power supply area 4 is a living room of a building and the power supply area 2 is a floor portion of the living room, the upper surface (floor surface) of the floor portion becomes the boundary surface 8. However, the power supply area 2 may be set upward with respect to the boundary surface 8 and the power supplied area 4 may be set downward. Alternatively, the boundary surface 8 may be set as a vertical surface or an inclined surface.
 「電力供給体」3は、交流電源6から供給された交流電力を電力被供給体5に供給する送電手段としての送電部9を備える。この電力供給体3は、電力供給領域2に配置されるものであるが、電力供給領域2に恒久的に移動不能に固定される固定体に限定されず、不使用時には電力供給領域2から取り外し可能なものや、当該電力供給領域2の内部の任意位置に移動可能なものを含む。移動不能に固定される電力供給体3としては、例えば、自動車への給電を行うために電気スタンドの地中に埋設された電力供給体3を挙げることができる。移動可能な電力供給体3としては、携帯電話等の電子機器への給電を行うために卓上の任意の位置に載置された電力供給体3を挙げることができる。なお、移動不能に固定される電力供給体3であっても、電力供給体3の全体が常時固定的であるものに限定されず、例えば、電力供給体3の一部の構成要素の位置を必要に応じて調整することで、当該構成要素と電力被供給体5との相対的な位置関係を変更可能なものを含む。このような電力供給体3としては、例えば、自動車への給電を行うために電気スタンドの地中に埋設された電力供給体3であって、後述する送電電極36のみを昇降可能に構成することで、送電電極36と自動車の後述する受電電極43との相互間隔を調整可能とした電力供給体3を挙げることができる。 The “power supply body” 3 includes a power transmission unit 9 as power transmission means for supplying the AC power supplied from the AC power source 6 to the power supplied body 5. The power supply body 3 is arranged in the power supply area 2, but is not limited to a fixed body that is permanently fixed to the power supply area 2 so as not to move, and is removed from the power supply area 2 when not in use. And those that can be moved to an arbitrary position inside the power supply area 2. Examples of the power supply body 3 that is fixed so as not to move include the power supply body 3 embedded in the ground of a desk lamp in order to supply power to an automobile. Examples of the movable power supply body 3 include a power supply body 3 placed at an arbitrary position on a table in order to supply power to an electronic device such as a mobile phone. In addition, even if it is the power supply body 3 fixed so that it cannot move, the whole power supply body 3 is not limited to what is always fixed, For example, the position of the one part component of the power supply body 3 is set. The thing which can change the relative positional relationship of the said component and the electric power supplied body 5 is included by adjusting as needed. As such a power supply body 3, for example, it is a power supply body 3 embedded in the ground of a desk lamp in order to supply power to an automobile, and only a power transmission electrode 36 (to be described later) can be moved up and down. Thus, the power supply body 3 that can adjust the mutual distance between the power transmission electrode 36 and a power reception electrode 43 (described later) of the automobile can be exemplified.
 「交流電源」6は、交流電力の供給源であり、電力供給体3の内部に設けられる場合(図1に示す場合)と、電力供給体3の外部に設けられて、交流電力を図示しない線路等を介して電力被供給体5に供給する場合(図示は省略する)とがある。図1に示す例では、1つの電力供給体3に1つの交流電源6を設けているが、1つの電力供給体3に複数の交流電源6を設けてもよく、あるいは、複数の電力供給体3に共通の1つの交流電源6から電力供給を行ってもよい。 The “AC power source” 6 is a source of AC power, and is provided inside the power supply body 3 (in the case shown in FIG. 1) or provided outside the power supply body 3 and does not show AC power. In some cases, the power supply body 5 is supplied via a line or the like (not shown). In the example shown in FIG. 1, one AC power supply 6 is provided for one power supply body 3, but a plurality of AC power supplies 6 may be provided for one power supply body 3, or a plurality of power supply bodies may be provided. Alternatively, power may be supplied from one AC power source 6 common to 3.
 「電力被供給体」5は、送電手段から供給された交流電力を受電して負荷7に供給する受電手段としての受電部10と、受電部10の一部として構成され又は受電部10とは異なるものとして構成された容量誘発手段としての容量誘発部11とを備える。この電力被供給体5は、電力被供給領域4に固定的に配置して使用されるもの(静止体)と、電力被供給領域4の内部において必要に応じて自律的又は他律的に移動されるもの(可動体、移動体)とを含む。この電力被供給体5の機能や具体的構成は特記する点を除いて任意であるが、例えば、静止体としては、家電の如き機器を挙げることができ、可動体としては、電源タップ、ノート型コンピュータ、携帯電話、ロボット、あるいは電気自動車を挙げることができる。この電力被供給体5は、1つの電力供給体3に対して少なくとも1つ配置され、必要に応じて2つ以上が配置される。 The “power supplied body” 5 is configured as a power receiving unit 10 that receives AC power supplied from the power transmitting unit and supplies the AC power to the load 7, and a part of the power receiving unit 10. And a capacity inducing section 11 as capacity inducing means configured as a different one. The power supplied body 5 is used by being fixedly disposed in the power supplied area 4 (stationary body), and moves autonomously or otherwise in the power supplied area 4 as necessary. (Movable body, moving body). The function and specific configuration of the power supply body 5 are arbitrary except for special points. For example, the stationary body can include a device such as a home appliance, and the movable body can be a power strip, a notebook, or the like. A computer, a mobile phone, a robot, or an electric vehicle. At least one power supply body 5 is disposed for one power supply body 3, and two or more power supply bodies 5 are disposed as necessary.
 「負荷」7は、交流電力の供給対象であり、電力被供給体5の内部に設けられる場合(図1に示す場合)と、電力被供給体5の外部に設けられる場合(図示は省略する)とがある。この負荷7の機能や具体的構成は特記する点を除いて任意であるが、電力被供給体5の内部に設けられる負荷7としては、電力被供給体5としての家電やロボットの内部に設けられた電動機を挙げることができ、電力被供給体5の外部に設けられる負荷7としては、電力被供給体5に設けられた電源タップに接続された電動機を挙げることができる。後者の場合には、電力被供給体5と負荷7は、線路や他の電力供給システムを介して相互に接続される。また、負荷7とは、電力の消費源に限定されず、例えば蓄電池のように電力を蓄積するものであってもよい。なお、電力被供給体5と負荷7との境界は必ずしも明確である必要はなく、例えば、電力被供給体5の内部において、電動機以外にもインピーダンスによって交流電力が消費される場合には、当該インピーダンスを負荷7の一部に含めてもよい。この負荷7は、1つの電力被供給体5に対して少なくとも1つ配置され、必要に応じて2つ以上が配置される。 The “load” 7 is an AC power supply target, and is provided inside the power supplied body 5 (in the case shown in FIG. 1) and provided outside the power supplied body 5 (illustration is omitted). ) The function and specific configuration of the load 7 are arbitrary except for special points, but the load 7 provided in the power supplied body 5 is provided in the home appliance or robot as the power supplied body 5. Examples of the load 7 provided outside the power supplied body 5 include a motor connected to a power tap provided on the power supplied body 5. In the latter case, the power supplied body 5 and the load 7 are connected to each other via a line or another power supply system. The load 7 is not limited to a power consumption source, and may be one that accumulates power, for example, like a storage battery. Note that the boundary between the power supplied body 5 and the load 7 is not necessarily clear. For example, when AC power is consumed by impedance other than the electric motor inside the power supplied body 5, Impedance may be included as part of the load 7. At least one load 7 is arranged with respect to one power supplied body 5, and two or more are arranged as necessary.
 このように構成される電力供給システム1は、電力供給体3から電力被供給体5に対して電力を非接触で供給する。この非接触電力供給は、概略的には、境界面8を介して配置されたコンデンサを用いて行われる。すなわち、電力供給領域2と電力被供給領域4との相互の境界面8を介して、送電部9の複数部分と受電部10の複数部分とをそれぞれ相互に非接触状に対向配置させることにより、複数のコンデンサ(あるいはキャパシタ。以下、「結合コンデンサ」12、13と表記する)を構成する(なお、図1では、図示の便宜上、結合コンデンサ12、13を受電部10や送電部9の外部に示しているが、実際には、これら受電部10や送電部9の一部によって構成される)。このような複数の結合コンデンサ12、13を送電路に配置し、これら結合コンデンサ12、13を介して電界型の送電を行う。この構成によれば、送電部9と受電部10を非接触状態に維持したまま電力供給を行うことが可能となり、送電部9を誘電材料等で覆った状態でも電力供給を行うことが可能となるので、電力供給体3を電力被供給領域4に露出させる必要がなくなり、電力供給システム1の安全性や耐久性を高めることができる。また、送電部9を複数配置することで、電力被供給体5が移動した場合においても当該電力被供給体5に対して継続的に電力供給を行うことができ、電力被供給体5の移動の自由度を確保することができる。 The power supply system 1 configured in this way supplies power from the power supply body 3 to the power supplied body 5 in a contactless manner. This non-contact power supply is generally performed using a capacitor arranged via the boundary surface 8. That is, by arranging a plurality of parts of the power transmission unit 9 and a plurality of parts of the power reception unit 10 to face each other in a non-contact manner via the boundary surface 8 between the power supply region 2 and the power supplied region 4. , A plurality of capacitors (or capacitors; hereinafter referred to as “coupling capacitors” 12 and 13) are configured (in FIG. 1, for convenience of illustration, the coupling capacitors 12 and 13 are external to the power receiving unit 10 and the power transmission unit 9. Actually, the power receiving unit 10 and a part of the power transmission unit 9 are included). A plurality of such coupling capacitors 12 and 13 are arranged in the power transmission path, and electric field type power transmission is performed via these coupling capacitors 12 and 13. According to this configuration, it is possible to supply power while maintaining the power transmitting unit 9 and the power receiving unit 10 in a non-contact state, and power can be supplied even when the power transmitting unit 9 is covered with a dielectric material or the like. Therefore, it is not necessary to expose the power supply body 3 to the power supplied region 4, and the safety and durability of the power supply system 1 can be improved. In addition, by arranging a plurality of power transmission units 9, even when the power supplied body 5 moves, it is possible to continuously supply power to the power supplied body 5 and to move the power supplied body 5. Can be secured.
 特に、電力供給システム1の特徴の一部は、容量誘発部11により、電力供給体3の送電部9にコンデンサ容量14を誘発させることにある。この容量誘発部11は、受電部10の一部として構成される場合(図示は省略)と、受電部10の一部に加えて、あるいは受電部10の一部に代えて、受電部10とは異なるものとして構成される場合(図1に示す場合)とがある。この容量誘発部11を、境界面8を介して送電部9と相互に非接触状に対向配置させることにより、送電部9にコンデンサ容量14を誘発させる。そして、少なくともこのコンデンサ容量14を含んで構成される共振回路と複数の結合コンデンサ12、13とを介して、電力供給体3から電力被供給体5を介して電力を供給可能とする点にある。このように送電部9と容量誘発部11とを相互に非接触状に対向配置させることで誘発したコンデンサ容量14を利用して送電を行うので、容量誘発部11を配置した範囲のみに共振回路を形成して電流を流すことが可能になる。 Particularly, a part of the characteristic of the power supply system 1 is that the capacity induction unit 11 induces the capacitor capacity 14 in the power transmission unit 9 of the power supply body 3. When the capacity inducing unit 11 is configured as a part of the power receiving unit 10 (not shown), in addition to a part of the power receiving unit 10 or instead of a part of the power receiving unit 10, May be configured differently (as shown in FIG. 1). By disposing the capacitance inducing portion 11 so as to face the power transmitting portion 9 in a non-contact manner via the boundary surface 8, the power transmitting portion 9 induces a capacitor capacitance 14. In addition, power can be supplied from the power supply body 3 through the power supplied body 5 through the resonance circuit including at least the capacitor capacitance 14 and the plurality of coupling capacitors 12 and 13. . In this way, power transmission is performed using the capacitor capacitance 14 that is induced by disposing the power transmission unit 9 and the capacity inducing unit 11 so as to face each other in a non-contact manner. It becomes possible to flow current by forming.
〔II〕各実施の形態の具体的内容
 次に、電力供給システムの各実施の形態の具体的内容について説明する。なお、以下の各実施の形態の構成は、特記する場合を除いて上記基本的概念で説明した構成と同一であり、基本的概念と同一の構成については、この基本的概念の説明で用いたものと同一の符号及び/又は名称を必要に応じて付して、その説明を省略する。
[II] Specific Contents of Each Embodiment Next, specific contents of each embodiment of the power supply system will be described. The configuration of each of the following embodiments is the same as the configuration described in the above basic concept unless otherwise specified, and the same configuration as the basic concept was used in the description of this basic concept. The same reference numerals and / or names as those used are attached as necessary, and description thereof is omitted.
〔実施の形態1〕
 最初に、実施の形態1について説明する。この実施の形態1は、受電手段としての受電電極の一部によって、容量誘発手段を形成した形態である。
[Embodiment 1]
First, the first embodiment will be described. In the first embodiment, the capacity inducing means is formed by a part of the power receiving electrode as the power receiving means.
(構成)
 図2は、本実施の形態1に係る電力供給システムの斜視図である。この図2に示すように、本実施の形態1に係る電力供給システム20は、電力供給領域21(机22の天板23よりも下方側の空間)に配置された電力供給体30と、電力被供給領域24(机22の天板23よりも上方側の空間)に配置された電力被供給体40(ここではラップトップ型コンピュータとして図示)とを含んで構成されており、電力供給体30から電力被供給体40に電力を供給する。本実施の形態1では、机22の天板23が、電力供給領域21と電力被供給領域24との相互間の境界面25に相当し、この天板23を介して後述する結合コンデンサ26(図2には図示せず)が構成される。
(Constitution)
FIG. 2 is a perspective view of the power supply system according to the first embodiment. As shown in FIG. 2, the power supply system 20 according to the first embodiment includes a power supply body 30 disposed in a power supply region 21 (a space below the top plate 23 of the desk 22), The power supply body 30 includes a power supply body 40 (shown here as a laptop computer) disposed in a supply area 24 (a space above the top plate 23 of the desk 22). Power is supplied to the power supplied body 40 from the power supply. In the first embodiment, the top plate 23 of the desk 22 corresponds to the boundary surface 25 between the power supply region 21 and the power supplied region 24, and a coupling capacitor 26 (to be described later) via the top plate 23 ( (Not shown in FIG. 2).
(構成-境界面、天板)
 図2において、電力供給領域21と電力被供給領域24との相互間の境界面25を構成する天板23は、後述する結合コンデンサ26を構成し得る誘電材料にて構成される。このような誘電材料としては、例えばフッ素樹脂を採用することができる。この誘電材料は、天板23に用いる場合以外にも、後述する送電電極36における受電電極側の面や、後述する受電電極43における送電電極側の面にコーティングすることもできる。また、このように天板23に使用する材料や、送電電極36や受電電極43のコーティングに使用する材料には、送電電極36と受電電極43の相互間の所要の絶縁性を保持するための絶縁性能を持たせることが好ましい。なお、境界面25を構成する構成要素としては、天板23の如き硬質部材に限定されず、絶縁体シートの如き軟質部材を用いてもよい。
(Configuration-interface, top plate)
In FIG. 2, the top plate 23 constituting the boundary surface 25 between the power supply area 21 and the power supplied area 24 is made of a dielectric material that can constitute a coupling capacitor 26 described later. As such a dielectric material, for example, a fluororesin can be employed. In addition to the case of using the dielectric material for the top plate 23, the dielectric material can be coated on a power receiving electrode side surface of a power transmitting electrode 36 described later or a power transmitting electrode side surface of a power receiving electrode 43 described later. In addition, the material used for the top plate 23 and the material used for coating the power transmission electrode 36 and the power reception electrode 43 as described above are used to maintain the required insulation between the power transmission electrode 36 and the power reception electrode 43. It is preferable to provide insulation performance. In addition, as a component which comprises the boundary surface 25, it is not limited to a hard member like the top plate 23, You may use a soft member like an insulator sheet.
(構成-電力供給体)
 次に、電力供給体30の構成について説明する。図3は、実施の形態1に係る電力供給体30及び電力被供給体40の回路図である。電力供給体30は、送電部31を備えて構成されており、この送電部31は、交流電源32、コンデンサ33、トランス34、インダクタ(コイル)35、及び複数の送電電極36を、線路にて図示のように接続して構成されている。
(Configuration-power supply)
Next, the configuration of the power supply body 30 will be described. FIG. 3 is a circuit diagram of the power supply body 30 and the power supplied body 40 according to the first embodiment. The power supply body 30 includes a power transmission unit 31. The power transmission unit 31 includes an AC power source 32, a capacitor 33, a transformer 34, an inductor (coil) 35, and a plurality of power transmission electrodes 36 on a line. They are connected as shown in the figure.
 交流電源32は、交流電力の供給源であり、例えば、商用電源として構成され、あるいは蓄電池と電圧/周波数変換器とを組み合わせて構成される。特に、この交流電源32は、高周波(例えば、10kHz~100MHz程度の帯域の周波数)の交流電源32であり、電力被供給体40の負荷42に合わせた電力量が送電できる容量を有する。 AC power supply 32 is a supply source of AC power, and is configured as, for example, a commercial power supply, or a combination of a storage battery and a voltage / frequency converter. In particular, the AC power supply 32 is a high-frequency (for example, a frequency in a band of about 10 kHz to 100 MHz) AC power supply 32 and has a capacity capable of transmitting an amount of electric power according to the load 42 of the power supplied body 40.
 コンデンサ33は、交流電源32とトランス34の後述するコイル34aとに対して並列接続されたものであり、このコイル34aと共に並列共振回路を構成する。 The capacitor 33 is connected in parallel to the AC power supply 32 and a coil 34a described later of the transformer 34, and constitutes a parallel resonance circuit together with the coil 34a.
 トランス34は、一対のコイル34a、34bを相互に平行かつ所定間隔を隔てて配置して構成されたもので、これらコイル34a、34bの相互間における相互誘導作用により電力伝送が可能となっている。さらに、交流電源32の出力電圧を所望の変成比で昇圧して送電電極36に供給するため、これらコイル34a、34bの相互間の巻数比が設定されている。 The transformer 34 is configured by arranging a pair of coils 34a and 34b in parallel with each other at a predetermined interval, and power transmission is possible by mutual induction between the coils 34a and 34b. . Furthermore, in order to boost the output voltage of the AC power supply 32 at a desired transformation ratio and supply it to the power transmission electrode 36, the turn ratio between the coils 34a and 34b is set.
 インダクタ35は、複数の送電電極36の各々に対して直列接続されたものであり、後述する容量誘発部44によって誘発されたコンデンサ容量37と共に、並列共振回路を構成する。なお、本明細書においては、特記しない限り、「共振回路」とは、当該並列共振回路を示す。 The inductor 35 is connected in series to each of the plurality of power transmission electrodes 36, and constitutes a parallel resonance circuit together with a capacitor capacitance 37 induced by a capacitance induction unit 44 described later. In the present specification, unless otherwise specified, the “resonant circuit” refers to the parallel resonant circuit.
 複数の送電電極36は、概略的には、それぞれ平板状の導電体として形成されており、電力供給領域21における天板23の近傍位置において、当該天板23に対して略平行になるように配置されている。これら送電電極36は、天板23に対して接触させてもよく、あるいは、天板23に対して微小距離を隔てて配置してもよい。いずれの場合においても、これら送電電極36の電力被供給領域24側の面は、天板23によって完全に覆われており、これら送電電極36が電力被供給領域24に対して直接的に露出しない構造となっている。 The plurality of power transmission electrodes 36 are each generally formed as a flat conductor, and are substantially parallel to the top plate 23 at a position near the top plate 23 in the power supply region 21. Is arranged. These power transmission electrodes 36 may be brought into contact with the top plate 23 or may be arranged at a minute distance from the top plate 23. In any case, the surfaces of the power transmission electrodes 36 on the power supplied region 24 side are completely covered with the top plate 23, and the power transmitting electrodes 36 are not directly exposed to the power supplied region 24. It has a structure.
 図4には、複数の送電電極36及び複数の受電電極43の平面図を示す。なお、実際には、送電電極36は天板23に覆われているために天板23の上方からは見えないが、図4では説明の便宜上、天板23を省略して送電電極36が露出した状態を示している(後述する図9、10、19-21も同様)。この図4に示すように、複数の送電電極36は、相互に同一の平面形状(正四角形状)で形成されている。具体的には、本実施の形態1においては、各送電電極36の平面形状は、相互に同一の正四角形状とされている。また、複数の送電電極36は、境界面25である天板23に対して平行な送電平面内において、所定の第1方向と、当該第1方向に対して送電平面内において直交する第2方向とに沿って、複数列ずつ並設されている。つまり、図4に矢印D1で示す方向を第1方向とすると、当該第1方向に沿って複数の送電電極36が複数列に渡って並設されている。また、図4に矢印D2で示す方向を第2方向とすると、当該第2方向に沿って複数の送電電極36が複数列に渡って並設されている。換言すれば、複数の送電電極36は、全体として、いわゆる市松模様状に配置されている。また、第1方向に沿って隣接する各送電電極36は、極性が交互に異なるように並設されており、第2方向に沿って隣接する各送電電極36も、極性が交互に異なるように並設されている。そして、図3に示すように、トランス34の2つの線路のうち、一方の線路に接続された一方の極性の複数の送電電極36と、他方の線路に接続された他方の極性の複数の送電電極36とが、交互に隣接するように配置されている。以下では、これら複数の送電電極36の極性を相互に区別する必要がある場合には、当該一方の線路に接続された複数の送電電極36を「第1送電電極」36Aと称し、当該他方の線路に接続された複数の送電電極36を「第2送電電極」36Bと称する。ただし、これら複数の送電電極36の極性を相互に区別する必要がない場合には、単に「送電電極」36と称する。また、複数の送電電極36は、相互に絶縁状態で並設されている。つまり、図4に示すように、複数の送電電極36は、相互に同一の間隔を隔てて配置されており、この間隔は、複数の送電電極36の相互の絶縁を確保するために十分な間隔となるように決定されている。ただし、これら複数の送電電極36の相互間に公知の絶縁材を配置することで、これら複数の送電電極36の相互間の絶縁を行ってもよい。 FIG. 4 shows a plan view of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43. Actually, the power transmission electrode 36 is covered with the top plate 23 and cannot be seen from above the top plate 23. However, in FIG. 4, for convenience of explanation, the top plate 23 is omitted and the power transmission electrode 36 is exposed. (The same applies to FIGS. 9, 10, and 19-21 described later). As shown in FIG. 4, the plurality of power transmission electrodes 36 are formed in the same planar shape (regular square shape). Specifically, in the first embodiment, the planar shape of each power transmission electrode 36 is the same regular square shape. In addition, the plurality of power transmission electrodes 36 are in a power transmission plane parallel to the top plate 23 that is the boundary surface 25, and a predetermined first direction and a second direction orthogonal to the first direction in the power transmission plane. A plurality of rows are arranged in parallel. That is, when the direction indicated by the arrow D1 in FIG. 4 is the first direction, a plurality of power transmission electrodes 36 are arranged in parallel along the first direction over a plurality of rows. When the direction indicated by the arrow D2 in FIG. 4 is the second direction, a plurality of power transmission electrodes 36 are arranged in parallel along the second direction over a plurality of rows. In other words, the plurality of power transmission electrodes 36 are arranged in a so-called checkered pattern as a whole. The power transmission electrodes 36 adjacent along the first direction are arranged in parallel so that the polarities are alternately different, and the power transmission electrodes 36 adjacent along the second direction are also alternately different in polarity. It is installed side by side. As shown in FIG. 3, among the two lines of the transformer 34, a plurality of power transmission electrodes 36 of one polarity connected to one line and a plurality of power transmissions of the other polarity connected to the other line. Electrodes 36 are arranged so as to be alternately adjacent. Hereinafter, when it is necessary to distinguish the polarities of the plurality of power transmission electrodes 36 from each other, the plurality of power transmission electrodes 36 connected to the one line are referred to as “first power transmission electrodes” 36A, and the other The plurality of power transmission electrodes 36 connected to the line are referred to as “second power transmission electrodes” 36B. However, when it is not necessary to distinguish the polarities of the plurality of power transmission electrodes 36 from each other, they are simply referred to as “power transmission electrodes” 36. The plurality of power transmission electrodes 36 are arranged in parallel with each other in an insulated state. That is, as shown in FIG. 4, the plurality of power transmission electrodes 36 are arranged at the same interval from each other, and this interval is sufficient to ensure mutual insulation of the plurality of power transmission electrodes 36. It is decided to become. However, the insulation between the plurality of power transmission electrodes 36 may be performed by arranging a known insulating material between the plurality of power transmission electrodes 36.
(構成-電力被供給体)
 次に、図3の電力被供給体40の構成について説明する。この電力被供給体40は、受電部41及び負荷42を備えて構成されており、受電部41は、複数の受電電極43、容量誘発部44、極性分別部45、及び平滑部46を備えて構成されている。
(Configuration-Power supplied body)
Next, the configuration of the power supplied body 40 in FIG. 3 will be described. The power supply body 40 includes a power receiving unit 41 and a load 42. The power receiving unit 41 includes a plurality of power receiving electrodes 43, a capacity inducing unit 44, a polarity sorting unit 45, and a smoothing unit 46. It is configured.
 複数の受電電極43の各々は、概略的には、それぞれ平板状の導電体として形成されており、電力被供給領域24における天板23の近傍位置において、当該天板23に対して略平行になるように配置されている。これら受電電極43は、天板23に対して接触させてもよく、あるいは、天板23に対して微小距離を隔てて配置してもよい。図3においては、受電電極43を、電力被供給体40の最下方位置において、当該電力被供給体40の外部に露出させているが、受電電極43の電力供給領域21側の面を誘電体等にて覆うことで外部に対して非露出状としてもよい。 Each of the plurality of power receiving electrodes 43 is generally formed as a flat conductor, and is substantially parallel to the top plate 23 at a position near the top plate 23 in the power supply region 24. It is arranged to be. These power receiving electrodes 43 may be brought into contact with the top plate 23 or may be arranged at a minute distance from the top plate 23. In FIG. 3, the power receiving electrode 43 is exposed to the outside of the power supplied body 40 at the lowest position of the power supplied body 40, but the surface of the power receiving electrode 43 on the power supply region 21 side is a dielectric. It is good also as a non-exposed state with respect to the exterior by covering with etc.
 図4に示すように、複数の受電電極43は、相互に同一の平面形状で形成されている。具体的には、本実施の形態1においては、各受電電極43の平面形状は、相互に同一の円形状とされている。また、複数の受電電極43は、境界面25である天板23に対して平行な受電平面内において、所定の第1方向と、当該第1方向に対して受電平面内において直交する第2方向とに沿って、複数列ずつ並設されている。つまり、図4に矢印D1で示す方向を第1方向とすると、当該第1方向に沿って複数の受電電極43が複数列に渡って並設されている。また、図4に矢印D2で示す方向を第2方向とすると、当該第2方向に沿って複数の受電電極43が複数列に渡って並設されている。なお、ここでは、送電電極36の並設方向と受電電極43の並設方向とを相互に一致させているが、実際には、受電電極43は送電電極36に対してフリーポジションでランダムに対向配置可能であるため、これらの並設方向は一致しなくてもよい。また、複数の受電電極43は、相互に絶縁状態で並設されている。つまり、図3に示すように、複数の受電電極43は、相互に間隔を隔てて配置されており、この間隔は、複数の受電電極43の相互の絶縁を確保するために十分な間隔となるように決定されている。ただし、これら複数の受電電極43の相互間に公知の絶縁材を配置することで、これら複数の受電電極43の相互間の絶縁を行ってもよい。なお、これら複数の受電電極43は、相互間の相対的関係を維持したまま、一緒に移動可能とすることが好ましいため、例えば、絶縁部材にて複数の受電電極43を連結することが好ましい。 As shown in FIG. 4, the plurality of power receiving electrodes 43 are formed in the same planar shape. Specifically, in the first embodiment, the planar shape of each power receiving electrode 43 is the same circular shape. In addition, the plurality of power receiving electrodes 43 are within a power receiving plane parallel to the top plate 23 that is the boundary surface 25, and a predetermined first direction and a second direction orthogonal to the first direction in the power receiving plane. A plurality of rows are arranged in parallel. That is, when the direction indicated by the arrow D1 in FIG. 4 is the first direction, a plurality of power receiving electrodes 43 are arranged in parallel along the first direction over a plurality of rows. In addition, when the direction indicated by the arrow D2 in FIG. 4 is the second direction, a plurality of power receiving electrodes 43 are arranged in parallel along the second direction over a plurality of rows. Here, the parallel arrangement direction of the power transmission electrode 36 and the parallel arrangement direction of the power reception electrode 43 are made to coincide with each other, but actually, the power reception electrode 43 is randomly opposed to the power transmission electrode 36 at a free position. Since they can be arranged, these juxtaposed directions need not coincide. The plurality of power receiving electrodes 43 are arranged in parallel with each other in an insulated state. That is, as shown in FIG. 3, the plurality of power receiving electrodes 43 are spaced apart from each other, and this spacing is sufficient to ensure mutual insulation of the plurality of power receiving electrodes 43. Has been determined to be. However, it is also possible to insulate the plurality of power receiving electrodes 43 from each other by disposing a known insulating material between the plurality of power receiving electrodes 43. In addition, since it is preferable that the plurality of power receiving electrodes 43 can be moved together while maintaining a relative relationship between them, for example, it is preferable to connect the plurality of power receiving electrodes 43 with an insulating member.
 図3に示す容量誘発部44は、第1送電電極36Aと第2送電電極36Bの相互間にコンデンサ容量37を誘発させるものである。本実施の形態において、容量誘発部44は、複数の受電電極43の一部により構成される。すなわち、複数の受電電極43の中で、第1送電電極36Aのみに対向させた受電電極43や第2送電電極36Bのみに対向させた受電電極43とは異なる受電電極43であって、第1送電電極36Aと第2送電電極36Bの相互間に跨るように配置された受電電極43が、容量誘発部44を構成する。このため、電力供給体30に対する電力被供給体40の配置位置に応じて、複数の受電電極43の中で容量誘発部44を構成する受電電極43が変わり得る。以下、複数の受電電極43の中で、容量誘発部44を構成する受電電極43を、必要に応じて「容量誘発用受電電極」43Aと称する。 3 induces a capacitor capacitance 37 between the first power transmission electrode 36A and the second power transmission electrode 36B. In the present embodiment, the capacity inducing unit 44 is configured by a part of the plurality of power receiving electrodes 43. That is, among the plurality of power receiving electrodes 43, the power receiving electrode 43 is different from the power receiving electrode 43 opposed to only the first power transmitting electrode 36A and the power receiving electrode 43 opposed to only the second power transmitting electrode 36B, and The power receiving electrode 43 disposed so as to straddle between the power transmitting electrode 36A and the second power transmitting electrode 36B constitutes the capacity inducing unit 44. For this reason, the power receiving electrode 43 that constitutes the capacity inducing portion 44 among the plurality of power receiving electrodes 43 can be changed according to the arrangement position of the power supplied body 40 with respect to the power supplying body 30. Hereinafter, among the plurality of power receiving electrodes 43, the power receiving electrode 43 constituting the capacity inducing portion 44 is referred to as “capacity inducing power receiving electrode” 43A as necessary.
 図5は、図3における送電電極36と受電電極43の周辺の部分拡大図、図6は、図5の領域Xの拡大図、図7は、コンデンサ容量を説明するための概念図である。図5、6に示すように、第1送電電極36Aに対しては受電電極43Xが対向配置されており、これら第1送電電極36Aと受電電極43Xとの容量結合によって第1結合コンデンサ26Aが構成される。このことにより、図7に示すように、第1結合コンデンサ26Aのコンデンサ容量=CAXが発生する。また、図5、6に示すように、第2送電電極36Bに対しては受電電極43Yが対向配置されており、これら第2送電電極36Bと受電電極43Yとの容量結合によって第2結合コンデンサ26Bが構成される。このことにより、図7に示すように、第2結合コンデンサ26Bのコンデンサ容量=CBYが発生する(なお、これら第1結合コンデンサ26Aと第2結合コンデンサ26Bとを相互に区別する必要がない場合には、「結合コンデンサ」26と総称する)。さらに、図5、6に示すように、これら第1送電電極36Aと第2送電電極36Bの相互間に跨るように受電電極43Z(容量誘発用受電電極43A)が配置されており、これら第1送電電極36Aと受電電極43Zとの容量結合と、第2送電電極36Bと受電電極43Zとの容量結合との容量結合によって、図7に示すように、コンデンサ容量37=CAZ、BZが発生する。 5 is a partially enlarged view of the periphery of the power transmitting electrode 36 and the power receiving electrode 43 in FIG. 3, FIG. 6 is an enlarged view of a region X in FIG. 5, and FIG. 7 is a conceptual diagram for explaining the capacitor capacity. As shown in FIGS. 5 and 6, the power receiving electrode 43X is disposed opposite to the first power transmitting electrode 36A, and the first coupling capacitor 26A is configured by capacitive coupling between the first power transmitting electrode 36A and the power receiving electrode 43X. Is done. As a result, as shown in FIG. 7, the capacitance of the first coupling capacitor 26A = C AX is generated. As shown in FIGS. 5 and 6, the power receiving electrode 43Y is disposed opposite to the second power transmitting electrode 36B, and the second coupling capacitor 26B is formed by capacitive coupling between the second power transmitting electrode 36B and the power receiving electrode 43Y. Is configured. As a result, as shown in FIG. 7, the capacitance of the second coupling capacitor 26B = C BY is generated (if the first coupling capacitor 26A and the second coupling capacitor 26B do not need to be distinguished from each other). Is collectively referred to as “coupling capacitor” 26). Furthermore, as shown in FIGS. 5 and 6, a power receiving electrode 43Z (capacitance inducing power receiving electrode 43A) is arranged so as to straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B. Due to the capacitive coupling between the power transmission electrode 36A and the power reception electrode 43Z and the capacitive coupling between the second power transmission electrode 36B and the power reception electrode 43Z, as shown in FIG. 7, capacitor capacitances 37 = C AZ and C BZ are generated. To do.
 このコンデンサ容量37についてより詳細に説明する。図5、6に示す例では、容量誘発用受電電極43Aは、第1送電電極36Aよりもやや第2送電電極36B寄りに位置しており、この結果、第1送電電極36Aに対する対向面積よりも第2送電電極36Bに対する対向面積が大きくなっている。このため、第1送電電極36Aよりも第2送電電極36Bから多くの電流が流れることになり、そのインピーダンスは下記の式(1)で表される。 The capacitor capacity 37 will be described in more detail. In the example shown in FIGS. 5 and 6, the capacity inducing power receiving electrode 43A is located slightly closer to the second power transmitting electrode 36B than the first power transmitting electrode 36A. As a result, the capacity induction power receiving electrode 43A is more than the opposed area to the first power transmitting electrode 36A. The area facing the second power transmission electrode 36B is large. For this reason, more current flows from the second power transmission electrode 36B than the first power transmission electrode 36A, and the impedance is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 さらに、実際には、容量誘発用受電電極43Aは、受電電極43の配列方向に沿って同時に複数存在しており、これら複数個の容量誘発用受電電極43Aのそれぞれが、第1送電電極36Aと第2送電電極36Bの相互間を容量結合しているため、これら複数個の容量誘発用受電電極43Aのコンデンサ容量37の合成容量は下記の式(2)で表される。 Furthermore, in practice, a plurality of capacity inducing power receiving electrodes 43A are simultaneously present along the arrangement direction of the power receiving electrodes 43, and each of the plurality of capacity inducing power receiving electrodes 43A is connected to the first power transmitting electrode 36A. Since the second power transmission electrodes 36B are capacitively coupled to each other, the combined capacity of the capacitor capacity 37 of the plurality of capacity induction power receiving electrodes 43A is expressed by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 次に、図3の極性分別部45について説明する。この極性分別部45は、受電電極43と負荷42とを相互に接続するものであって、受電電極43を介して受電した電流の極性を分別し、所定の極性の電流を負荷42の各端子に流す極性分別手段である。具体的には、極性分別部45は、各受電電極43に対して一組のダイオード45a、45bを相互に異なる方向で接続した上で、各組における同一方向のダイオード45a、45bを相互に接続した上で負荷42の一方の端子に接続している。具体的には、図7に示すように、各受電電極43に対して配置された一組のダイオード45a、45bのうち、一方のダイオード45aは、アノードが受電電極43に接続され、カソードが他の同一方向のダイオードのカソードと共に負荷42の一方の端子に接続されている。また、他方のダイオード45bは、カソードが受電電極43に接続され、アノードが他の同一方向のダイオードのアノードと共に負荷42の他方の端子に接続されている。このような極性分別部45を設けることで、電力供給体30に対して電力被供給体40を任意の位置に対向配置した場合であっても、第1送電電極36Aに対向配置された受電電極43と第2送電電極36Bに対向配置された受電電極43との相互間で電位差を発生させつつ、所定の極性の電流を負荷42の各端子に流すことができ、フリーポジション化を図ることができる。特に、極性分別部45をダイオード45a、45bと線路のみにより構成しているので、図23に示した従来例のように機械的スイッチを用いて極性を切り替える場合に比べて、電力被供給体40の構成を簡素化できると共に、耐久性を向上させることができる。 Next, the polarity separation unit 45 in FIG. 3 will be described. The polarity separation unit 45 connects the power receiving electrode 43 and the load 42 to each other, separates the polarity of the current received through the power receiving electrode 43, and supplies the current of a predetermined polarity to each terminal of the load 42. This is a means for separating the polarity. Specifically, the polarity separation unit 45 connects a pair of diodes 45a and 45b to each power receiving electrode 43 in different directions and then connects the diodes 45a and 45b in the same direction to each other. In addition, it is connected to one terminal of the load 42. Specifically, as shown in FIG. 7, one diode 45 a among a pair of diodes 45 a and 45 b arranged for each power receiving electrode 43 has an anode connected to the power receiving electrode 43 and a cathode connected to the other. Are connected to one terminal of the load 42 together with the cathode of the diode in the same direction. The other diode 45b has a cathode connected to the power receiving electrode 43, and an anode connected to the other terminal of the load 42 together with the anode of another diode in the same direction. By providing such a polarity separation unit 45, the power receiving electrode disposed opposite to the first power transmission electrode 36 </ b> A even when the power supplied body 40 is disposed opposite to the power supplying body 30 at an arbitrary position. 43 and a power receiving electrode 43 disposed opposite to the second power transmitting electrode 36B, a current having a predetermined polarity can flow through each terminal of the load 42 while generating a potential difference. it can. In particular, since the polarity separation unit 45 is configured by only the diodes 45a and 45b and the line, compared to the case where the polarity is switched using a mechanical switch as in the conventional example shown in FIG. In addition to simplifying the configuration, durability can be improved.
 図3の平滑部46は、受電電極43を介して受電した電流を平滑化する平滑手段である。具体的には、平滑部46は、負荷42の各端子にそれぞれ直列接続されたインダクタ46aと、これらインダクタ46aに対して並列に接続されたコンデンサ46bとを備えた平滑回路として構成されている。 3 is a smoothing means for smoothing the current received through the power receiving electrode 43. Specifically, the smoothing unit 46 is configured as a smoothing circuit including an inductor 46a connected in series to each terminal of the load 42 and a capacitor 46b connected in parallel to the inductor 46a.
 負荷42は、図3では図示の便宜上、抵抗として示しているが、本実施の形態においては、図2に示すラップトップ型コンピュータに設けられた各種の電力消費部品等として構成されている。 In FIG. 3, the load 42 is shown as a resistor for convenience of illustration, but in the present embodiment, the load 42 is configured as various power consuming components provided in the laptop computer shown in FIG.
(送電電極と受電電極43の相互の関係)
 次に、送電電極36と受電電極43の相互の関係について説明する。これら送電電極36と受電電極43とは、電力供給体30に対して電力被供給体40を対向配置した際に、1)受電電極43の一部が第1送電電極36Aのみに対向し、2)受電電極43の他の一部が第2送電電極36Bのみに対向し、かつ、3)受電電極43のさらに他の一部が第1送電電極36Aと第2送電電極36Bとの相互間に跨る、という3つの条件を満たすように構成されている(以下、これら3つの条件を「電極配置条件」と総称する)。この電極配置条件を満たすための具体的な構成は任意であるが、例えば、図4に示すように、送電電極36の幅=長さをL1、受電電極43の直径をL2、複数の送電電極36の相互間隔の最大値(図4に示す例では、相互に隣接する4枚の送電電極36により形成される方形間隔の対角線の長さ)をL3、受電電極43の幅や長さの最小値(ここでは、受電電極43が円形状であるために、当該最小値=受電電極43の直径L2となるが、受電電極43が楕円形状や長方形状である場合には、その辺、幅、あるいは長さの最小値)をL4とすると、L1>L2であり、かつ、L3<L4となるように、これら各寸法が決定されている。
(Reciprocal relationship between power transmission electrode and power reception electrode 43)
Next, the mutual relationship between the power transmission electrode 36 and the power reception electrode 43 will be described. The power transmission electrode 36 and the power reception electrode 43 are arranged such that when the power supplied body 40 is disposed opposite to the power supply body 30, 1) a part of the power reception electrode 43 faces only the first power transmission electrode 36 </ b> A. ) The other part of the power receiving electrode 43 faces only the second power transmitting electrode 36B, and 3) The other part of the power receiving electrode 43 is between the first power transmitting electrode 36A and the second power transmitting electrode 36B. It is configured to satisfy the three conditions of straddling (hereinafter, these three conditions are collectively referred to as “electrode arrangement conditions”). The specific configuration for satisfying this electrode arrangement condition is arbitrary. For example, as shown in FIG. 4, the width = length of the power transmission electrode 36 is L1, the diameter of the power reception electrode 43 is L2, and a plurality of power transmission electrodes L3 is the maximum value of the mutual spacing of 36 (in the example shown in FIG. 4, the diagonal length of the square spacing formed by the four power transmitting electrodes 36 adjacent to each other), and the minimum width and length of the power receiving electrode 43 Value (here, since the power receiving electrode 43 has a circular shape, the minimum value = the diameter L2 of the power receiving electrode 43. However, when the power receiving electrode 43 has an elliptical shape or a rectangular shape, its side, width, If the minimum length) is L4, these dimensions are determined such that L1> L2 and L3 <L4.
 ただし、このように送電電極36と受電電極43とを構成した場合であっても、図4の如き配置の場合には、隣接する送電電極36の相互間の間隔により形成される領域(以下、送電電極36の間隔領域)の平面形状が直線帯状になると共に、隣接する受電電極43の相互間の間隔により形成される領域(以下、受電電極43の間隔領域)の平面形状が直線帯状になる。このため、送電電極36の間隔領域と受電電極43の間隔領域とが相互に重合するような位置で、電力供給体30に電力被供給体40を対向配置させた場合には、受電電極43が第1送電電極36Aと第2送電電極36Bとの相互間に跨らない可能性(電極配置条件の少なくとも一部が満たされない可能性)が生じる。この問題を防止するための構成については、実施の形態2及び変形例の項でそれぞれ説明する。 However, even in the case where the power transmission electrode 36 and the power reception electrode 43 are configured in this manner, in the case of the arrangement as shown in FIG. The planar shape of the spacing region of the power transmission electrodes 36) is a straight band, and the planar shape of a region formed by the spacing between adjacent power receiving electrodes 43 (hereinafter, the spacing region of the power receiving electrodes 43) is a straight band. . For this reason, when the power supply body 40 is disposed opposite to the power supply body 30 at a position where the space area of the power transmission electrode 36 and the space area of the power reception electrode 43 overlap each other, There is a possibility that the first power transmission electrode 36 </ b> A and the second power transmission electrode 36 </ b> B do not straddle each other (at least a part of the electrode arrangement condition may not be satisfied). The configuration for preventing this problem will be described in the second embodiment and the modification examples.
(電力供給動作)
 次に、本実施の形態に係る電力供給システムを用いて行われる電力供給動作について説明する。図3において、電力供給体30に対して電力被供給体40を対向配置した状態で交流電源32を起動する。この際、交流電源32の周波数は、並列共振回路の共振条件を満たすように設定しておく。すると、交流電源32から供給された交流電力が、トランス34の一次側の共振回路を経て、トランス34で昇圧されて、送電電極36に供給される。この送電電極36に加わる交流電力は、容量誘発部44により誘発されたコンデンサ容量37とインダクタ35によって構成される並列共振回路により昇圧され、結合コンデンサを介して受電電極43にて受電される。そして、このように受電された交流電力が、極性分別部45で極性を分別された後、平滑部46にて平滑されて、負荷42に供給される。従って、電力供給体30に対して電力被供給体40を直接接触させていない非接触状態での電力供給を行うことが可能になる。
(Power supply operation)
Next, the power supply operation performed using the power supply system according to the present embodiment will be described. In FIG. 3, the AC power supply 32 is activated in a state where the power supply body 40 is disposed opposite to the power supply body 30. At this time, the frequency of the AC power supply 32 is set so as to satisfy the resonance condition of the parallel resonance circuit. Then, the AC power supplied from the AC power supply 32 is boosted by the transformer 34 through the resonance circuit on the primary side of the transformer 34 and supplied to the power transmission electrode 36. The AC power applied to the power transmission electrode 36 is boosted by a parallel resonance circuit including a capacitor capacitance 37 induced by the capacitance induction unit 44 and the inductor 35, and is received by the power reception electrode 43 via the coupling capacitor. The AC power received in this way is subjected to polarity separation by the polarity separation unit 45, smoothed by the smoothing unit 46, and supplied to the load 42. Accordingly, it is possible to perform power supply in a non-contact state in which the power supply body 40 is not in direct contact with the power supply body 30.
 特に、送電電極36と受電電極43の相互の関係は、電極配置条件を満たすように決定されているため、電力供給体30に対する電力被供給体40の配置位置に関わらず非接触電力供給が行われ、いわゆる電力被供給体40のフリーポジション化を達成することができる。例えば、電力被供給体40を天板23から一旦持ち上げた後に、再び天板23の異なる位置に配置した場合であっても、電極配置条件が満たされることで、非接触電力供給が行われる。あるいは、電力被供給体40を天板23に接触させたまま当該天板23に沿って移動させた場合でも、電極配置条件が満たされることで、非接触電力供給が行われる。 In particular, since the mutual relationship between the power transmission electrode 36 and the power reception electrode 43 is determined so as to satisfy the electrode arrangement condition, contactless power supply is performed regardless of the arrangement position of the power supplied body 40 with respect to the power supply body 30. In other words, a so-called free position of the power supplied body 40 can be achieved. For example, even if the power supplied body 40 is once lifted from the top plate 23 and then disposed again at a different position on the top plate 23, non-contact power supply is performed by satisfying the electrode arrangement conditions. Alternatively, even when the power supplied body 40 is moved along the top plate 23 while being in contact with the top plate 23, non-contact power supply is performed by satisfying the electrode arrangement condition.
 また、容量誘発部44によりコンデンサ容量37が誘発されていない部分(電力被供給体40の容量誘発用受電電極43Aが対向配置されていない電力供給体30の各部)においては、並列共振回路による昇圧が行われないために、交流電力の電圧が低いままである。従って、故意又は不注意により、仮にユーザがこの部分に天板23を介して接触等した場合であっても、ユーザの感電を招くことがない。また、コンデンサ容量37が誘発されている部分(電力被供給体40の容量誘発用受電電極43Aが対向配置されている電力供給体30の各部)においても、並列共振回路の共振条件が満足されない場合には、並列共振回路による昇圧が行われないために、交流電力の電圧が低いままである。従って、故意又は不注意により、仮に電力被供給体40ではなく鉄板等の導電体を電力供給体30の上面に落下等させてしまった場合であっても、誘発されるコンデンサ容量37が大きくなり過ぎる等のために共振条件を満足しないことになり、導電体に電流が流れることがない。 Further, in a portion where the capacitor capacitance 37 is not induced by the capacitance inducing portion 44 (each portion of the power supply body 30 where the capacitance induction power receiving electrode 43A of the power supplied body 40 is not opposed), the voltage is boosted by a parallel resonance circuit. Is not performed, the AC power voltage remains low. Therefore, even if the user intentionally or carelessly touches this portion via the top plate 23, the user will not be electrocuted. Further, in the portion where the capacitor capacitance 37 is induced (each portion of the power supply body 30 where the capacitance induction power receiving electrode 43A of the power supplied body 40 is opposed), the resonance condition of the parallel resonance circuit is not satisfied In this case, since the voltage is not boosted by the parallel resonance circuit, the voltage of the AC power remains low. Therefore, even if a conductor such as an iron plate is dropped on the upper surface of the power supply body 30 instead of the power supplied body 40 intentionally or carelessly, the induced capacitor capacity 37 is increased. For example, the resonance condition is not satisfied because the current passes too much, and no current flows through the conductor.
(実施の形態1の効果)
 このように実施の形態1によれば、電力被供給体40の容量誘発部44により電力供給体30の送電部31にコンデンサ容量37を誘発させ、このコンデンサ容量37を用いて共振回路を構成することにより、電力被供給体40を配置した位置のみにおいて共振回路を介した電力供給を行うことができ、非接触によるフリーポジション化を達成できると共に、必要な範囲にのみ共振回路を形成して電流を流すことが可能になる。また、電力供給体30に共振回路のためのコンデンサを配置する必要がなくなるため、電力供給体30の構成を簡易化することができる。
(Effect of Embodiment 1)
As described above, according to the first embodiment, the capacitance inducing unit 44 of the power supplied body 40 induces the capacitor capacity 37 in the power transmission unit 31 of the power supply body 30 and the capacitor circuit 37 is used to configure the resonance circuit. As a result, power can be supplied via the resonance circuit only at the position where the power supplied body 40 is disposed, and a non-contact free position can be achieved, and the resonance circuit can be formed only in a necessary range to form a current. It becomes possible to flow. In addition, since it is not necessary to arrange a capacitor for the resonance circuit in the power supply body 30, the configuration of the power supply body 30 can be simplified.
 また、容量誘発部44を複数の受電電極43の一部として構成したので、容量誘発部44を複数の受電電極43とは別に設ける必要がなく、電力被供給体40の構成を簡易化することができる。 In addition, since the capacity inducing part 44 is configured as a part of the plurality of power receiving electrodes 43, it is not necessary to provide the capacity inducing part 44 separately from the plurality of power receiving electrodes 43, and the structure of the power supplied body 40 can be simplified. Can do.
 また、複数の送電電極36を、第1方向と第2方向とに沿って極性が交互に異なるように相互に絶縁状態で複数列ずつ並設したので、これら第1方向と第2方向のいずれの方向に対しても電力被供給体40を移動させて電力供給を行うことが可能となり、2次元領域でのフリーポジション化を実現することが可能になる。 In addition, since the plurality of power transmission electrodes 36 are arranged in parallel in a mutually insulated state so that the polarities are alternately changed along the first direction and the second direction, any one of the first direction and the second direction is arranged. It is possible to supply power by moving the power supplied body 40 also in the direction of, and it is possible to realize a free position in a two-dimensional region.
 また、複数の受電電極43を、第1方向と第2方向とに沿って相互に絶縁状態で複数列ずつ並設したので、これら第1方向と第2方向のいずれの方向に対しても電力被供給体40を移動させて電力供給を行うことが可能となり、2次元領域でのフリーポジション化を実現することが可能になる。 In addition, since the plurality of power receiving electrodes 43 are arranged in parallel along the first direction and the second direction in a plurality of rows in a mutually insulated state, power is supplied to both the first direction and the second direction. It is possible to supply the power by moving the supply target 40 and to realize a free position in the two-dimensional region.
〔実施の形態2〕
 次に、実施の形態2について説明する。この実施の形態2は、容量誘発手段を、容量誘発用電極により構成した形態である。なお、実施の形態2の構成は、特記する場合を除いて実施の形態1の構成と略同一であり、実施の形態1と略同一の構成については、この実施の形態1で用いたものと同一の符号及び/又は名称を必要に応じて付して、その説明を省略する。
[Embodiment 2]
Next, a second embodiment will be described. In the second embodiment, the capacity inducing means is constituted by a capacity inducing electrode. The configuration of the second embodiment is substantially the same as the configuration of the first embodiment unless otherwise specified, and the configuration substantially the same as that of the first embodiment is the same as that used in the first embodiment. The same reference numerals and / or names are assigned as necessary, and the description thereof is omitted.
(構成-電力被供給体)
 最初に、電力被供給体50の構成について説明する。図8は、実施の形態2に係る電力供給体30及び電力被供給体50の回路図である。この電力被供給体50の受電部51は、複数の受電電極43、容量誘発部52、極性分別部45、及び平滑部46を備えて構成されている。
(Configuration-Power supplied body)
First, the configuration of the power supplied body 50 will be described. FIG. 8 is a circuit diagram of the power supply body 30 and the power supplied body 50 according to the second embodiment. The power receiving unit 51 of the power supply body 50 includes a plurality of power receiving electrodes 43, a capacity inducing unit 52, a polarity sorting unit 45, and a smoothing unit 46.
 容量誘発部52は、第1送電電極36Aと第2送電電極36Bの相互間にコンデンサ容量37を誘発させるものである。本実施の形態において、容量誘発部52は、受電電極43の一部及び容量誘発用電極53から構成されている。図9は、複数の送電電極36及び複数の受電電極43の平面図、図10は、図9から複数の受電電極43を除外した状態を示す部分斜視図である。これら図9、10に示すように、容量誘発用電極53は、受電平面内に配置された平板状体であり、複数の受電電極43の各々に対応する領域に孔部53aが形成されたものであって、複数の受電電極43の相互間に当該受電電極43と絶縁状態で介在する平板状体として形成されたものである。例えば、容量誘発用電極53の製造方法は以下の通りである。まず、実施の形態1と同様に並設された複数の受電電極43の外周寸法より一回り大きな寸法の導電板を準備する。次いで、この導電板に対して、複数の受電電極43の各々より若干大きな直径の円形の孔部53aを、各受電電極43に対応する位置に穿設することにより、容量誘発用電極53が完成する。そして、この容量誘発用電極53の各孔部53aに、受電電極43を配置する。この際、容量誘発用電極53と受電電極43との相互間の絶縁を確保するため、容量誘発用電極53の各孔部53aの周縁と受電電極43との相互間には絶縁を確保するために十分な間隔を設け、あるいは、これらの相互間に公知の絶縁材を配置する。なお、これら複数の受電電極43と容量誘発用電極53とは、相互間の相対的関係を維持したまま、一緒に移動可能とすることが好ましいため、例えば、絶縁部材にて複数の受電電極43と容量誘発用電極53とを連結することが好ましい。 The capacitance inducing unit 52 induces a capacitor capacitance 37 between the first power transmission electrode 36A and the second power transmission electrode 36B. In the present embodiment, the capacity inducing unit 52 is configured by a part of the power receiving electrode 43 and the capacity inducing electrode 53. 9 is a plan view of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43, and FIG. 10 is a partial perspective view showing a state in which the plurality of power reception electrodes 43 are excluded from FIG. As shown in FIGS. 9 and 10, the capacitance inducing electrode 53 is a flat body arranged in the power receiving plane, and has a hole 53 a formed in a region corresponding to each of the plurality of power receiving electrodes 43. And it is formed as a plate-like body that is interposed between the plurality of power receiving electrodes 43 in an insulated state from the power receiving electrodes 43. For example, the manufacturing method of the capacitance inducing electrode 53 is as follows. First, a conductive plate having a size slightly larger than the outer peripheral size of the plurality of power receiving electrodes 43 arranged in parallel as in the first embodiment is prepared. Next, a circular hole 53 a having a slightly larger diameter than each of the plurality of power receiving electrodes 43 is formed in the conductive plate at a position corresponding to each power receiving electrode 43, thereby completing the capacitance inducing electrode 53. To do. A power receiving electrode 43 is disposed in each hole 53 a of the capacitance inducing electrode 53. At this time, in order to ensure insulation between the capacity inducing electrode 53 and the power receiving electrode 43, in order to ensure insulation between the periphery of each hole 53 a of the capacity inducing electrode 53 and the power receiving electrode 43. A sufficient interval is provided, or a known insulating material is disposed between them. In addition, since it is preferable that the plurality of power receiving electrodes 43 and the capacity inducing electrode 53 can be moved together while maintaining the relative relationship between them, for example, the plurality of power receiving electrodes 43 are formed by an insulating member. And the capacitance inducing electrode 53 are preferably connected.
 図11は、図8における送電電極36と受電電極43の周辺の拡大図、図12は、コンデンサ容量を説明するための概念図である。この図11、12の場合には、図7と同様に、コンデンサ容量=CAX、BYと、コンデンサ容量37=CAZ、BZが発生する。さらに、第1送電電極36Aと第2送電電極36Bの相互間に跨るように容量誘発用電極53が配置されているため、図12に示すように、容量誘発用電極53と第1送電電極36Aとの間に誘発されるコンデンサ容量37=CAFと、容量誘発用電極53と第2送電電極36Bとの間に誘発されるコンデンサ容量37=CBFとが誘発される。 FIG. 11 is an enlarged view of the periphery of the power transmission electrode 36 and the power reception electrode 43 in FIG. 8, and FIG. 12 is a conceptual diagram for explaining the capacitor capacity. In the case of FIGS. 11 and 12, as in FIG. 7, capacitor capacity = C AX and C BY and capacitor capacity 37 = C AZ and C BZ are generated. Furthermore, since the capacity inducing electrode 53 is disposed so as to straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, as shown in FIG. 12, the capacity inducing electrode 53 and the first power transmitting electrode 36A. a capacitance 37 = C AF induced a capacitance 37 = C BF induced between the capacitor induction electrode 53 and the second transmission electrode 36B is induced between.
 このコンデンサ容量37についてより詳細に説明する。コンデンサ容量37=CAFとコンデンサ容量37=CBFの合成容量は、下記の式(3)で表される。 The capacitor capacity 37 will be described in more detail. The combined capacity of the capacitor capacity 37 = CAF and the capacitor capacity 37 = CBF is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 従って、実施の形態2の場合には、実施の形態1で説明した式(2)の合成容量CX1と、上記式(3)の合成容量CX2とを合わせて、コンデンサ容量37は、下記の式(4)で表される。 Therefore, in the case of the second embodiment, the combined capacitance C X1 of the equation (2) described in the first embodiment and the combined capacitance C X2 of the above equation (3) are combined, and the capacitor capacitance 37 is expressed as follows. (4)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 このように、実施の形態2では、実施の形態1の容量誘発用受電電極43Aに加えて、容量誘発用電極53を用いている。以下、この理由について説明する。実施の形態1の電力供給システム1では、電力供給体30に対する電力被供給体40の対向配置範囲の中でも、隣接する第1送電電極36Aと第2送電電極36Bの全てに対して必ず受電電極43が跨がるようにすることができず、隣接する第1送電電極36Aと第2送電電極36Bの一部に対しては受電電極43を跨らせることができない場合が生じる。このような場合としては、例えば、上述したように、送電電極36の間隔領域と受電電極43の間隔領域とが相互に重合するような位置で、電力供給体30に電力被供給体40を対向配置させた場合を挙げることができる。このため、並列共振回路を形成するために必要なコンデンサ容量37を誘発させることができず、並列共振条件を維持できない可能性が生じる。そのため、受電電極43に加えて、コンデンサ容量37を誘発させるための専用の容量誘発用電極53を用いることで、隣接する第1送電電極36Aと第2送電電極36Bの全てに対して必ず容量誘発用電極53を跨らせることができ、大きなコンデンサ容量37を安定的に誘発することができて、並列共振条件を安定的に維持することが可能になるため、電力供給効率を高めることが可能になる。さらに、大きなコンデンサ容量37を安定的に誘発できるので、インダクタ35を小さくすることができる。 Thus, in the second embodiment, the capacitance inducing electrode 53 is used in addition to the capacitance inducing power receiving electrode 43A of the first embodiment. Hereinafter, this reason will be described. In the power supply system 1 according to the first embodiment, the power receiving electrode 43 is always supplied to all of the adjacent first power transmission electrode 36A and the second power transmission electrode 36B within the range in which the power supplied body 40 faces the power supply body 30. May not be straddled, and the power receiving electrode 43 may not be straddled with respect to a part of the adjacent first power transmitting electrode 36A and second power transmitting electrode 36B. In such a case, for example, as described above, the power supply body 40 is opposed to the power supply body 30 at a position where the space area of the power transmission electrode 36 and the space area of the power reception electrode 43 overlap each other. The case where it arrange | positions can be mentioned. For this reason, there is a possibility that the capacitor capacity 37 necessary for forming the parallel resonance circuit cannot be induced and the parallel resonance condition cannot be maintained. For this reason, in addition to the power receiving electrode 43, a dedicated capacity inducing electrode 53 for inducing the capacitor capacity 37 is used, so that capacity induction is always performed for all of the adjacent first power transmitting electrode 36A and second power transmitting electrode 36B. The power supply efficiency can be increased because the large capacitor capacity 37 can be stably induced and the parallel resonance condition can be stably maintained. become. Furthermore, since the large capacitor capacity 37 can be induced stably, the inductor 35 can be made small.
(実施の形態2の効果)
 このように実施の形態2によれば、容量誘発部52を容量誘発用電極53として構成したので、第1送電電極36Aと第2送電電極36Bとに対して必ず容量誘発用電極53を跨らせることができ、大きなコンデンサ容量37を安定的に誘発することができて、並列共振条件を安定的に維持することが可能になるため、電力供給効率を高めることが可能になる。さらに、大きなコンデンサ容量37を安定的に誘発できるので、インダクタ35を小さくすることができる。
(Effect of Embodiment 2)
As described above, according to the second embodiment, since the capacitance inducing portion 52 is configured as the capacitance inducing electrode 53, the capacitance inducing electrode 53 is always straddled across the first power transmitting electrode 36A and the second power transmitting electrode 36B. Since the large capacitor capacity 37 can be induced stably and the parallel resonance condition can be stably maintained, the power supply efficiency can be increased. Furthermore, since the large capacitor capacity 37 can be induced stably, the inductor 35 can be made small.
 また、容量誘発用電極53を、受電平面内に配置された平板状体であり、複数の受電電極43の各々に対応する領域に孔部53aを有するものであって、複数の受電電極43の相互間において当該受電電極43と絶縁状態で介在する平板状体として形成したので、1枚の平板状体に孔部53aを形成することにより、広域に渡る容量誘発用電極53を容易に製造することができる。 Further, the capacity inducing electrode 53 is a flat body disposed in the power receiving plane, and has a hole 53a in a region corresponding to each of the plurality of power receiving electrodes 43. Since it is formed as a flat plate that is insulated from the power receiving electrode 43 between each other, the hole 53a is formed in one flat plate, so that the capacitance inducing electrode 53 can be easily manufactured over a wide area. be able to.
〔実施の形態3〕
 次に、実施の形態3について説明する。この実施の形態3は、実施の形態2の構成に対してさらに通信手段を設けた形態である。なお、実施の形態3の構成は、特記する場合を除いて実施の形態2の構成と略同一であり、実施の形態2と略同一の構成については、この実施の形態2で用いたものと同一の符号及び/又は名称を必要に応じて付して、その説明を省略する。
[Embodiment 3]
Next, Embodiment 3 will be described. In the third embodiment, communication means is further provided in the configuration of the second embodiment. The configuration of the third embodiment is substantially the same as the configuration of the second embodiment unless otherwise specified, and the configuration substantially the same as that of the second embodiment is the same as that used in the second embodiment. The same reference numerals and / or names are assigned as necessary, and the description thereof is omitted.
(構成-電力供給体)
 最初に、電力供給体60の構成について説明する。図13は、実施の形態3に係る電力供給体60及び電力被供給体70の回路図である。この電力供給体60は、送電側通信部61を備える。この送電側通信部61は、後述する受電側通信部71と通信を行う送電側通信手段である。例えば、送電側通信部61は、RF通信をMACプロトコルにて行うRF/MACを用いて構成される(後述する受電側通信部71において同じ)。この送電側通信部61は、第1送電電極36Aに至る線路に対してコンデンサ62を介して結合されると共に、第2送電電極36Bに至る線路に対して接続されている。この送電側通信部61による具体的な通信方式は任意であり、例えば無線通信を採用することもできるが、ここでは、結合コンデンサ26を介したPLC(Power Line Communications)通信(準無線的通信)を行う(後述する受電側通信部71において同じ)。すなわち、送電側通信部61は、アナログ通信信号を交流電流に重畳して結合コンデンサ26を介して電力被供給体70に送信すると共に、電力被供給体70から結合コンデンサ26を介して供給された電流から図示しないフィルタを用いてアナログ通信信号成分を分離する。なお、搬送波周波数としては、例えば、交流電源32の周波数よりも高い周波数(一例として、2桁~5桁程度、高い周波数)を使用する。
(Configuration-power supply)
Initially, the structure of the electric power supply body 60 is demonstrated. FIG. 13 is a circuit diagram of the power supply body 60 and the power supplied body 70 according to the third embodiment. The power supply body 60 includes a power transmission side communication unit 61. The power transmission side communication unit 61 is a power transmission side communication unit that communicates with a power reception side communication unit 71 described later. For example, the power transmission side communication unit 61 is configured using RF / MAC that performs RF communication using the MAC protocol (the same applies to the power reception side communication unit 71 described later). The power transmission side communication unit 61 is coupled to the line reaching the first power transmission electrode 36A via the capacitor 62, and is connected to the line reaching the second power transmission electrode 36B. A specific communication method by the power transmission side communication unit 61 is arbitrary. For example, wireless communication can be adopted, but here, PLC (Power Line Communications) communication (semi-wireless communication) via the coupling capacitor 26 is used. (Same in the power receiving side communication unit 71 described later). In other words, the power transmission side communication unit 61 superimposes the analog communication signal on the alternating current and transmits it to the power supplied body 70 via the coupling capacitor 26 and is supplied from the power supplied body 70 via the coupling capacitor 26. An analog communication signal component is separated from the current using a filter (not shown). As the carrier frequency, for example, a frequency higher than the frequency of the AC power supply 32 (for example, a frequency higher by about 2 to 5 digits) is used.
(構成-電力被供給体)
 次に、電力被供給体70の構成について説明する。この電力被供給体70は、受電側通信部71を備える。この受電側通信部71は、送電側通信部61と境界面25を介して通信する受電側通信手段である。例えば、受電側通信部71は、負荷42の一方の端子に至る線路に対してコンデンサ72を介して結合されると共に、負荷42の他方の端子に至る線路に対して接続されている。そして、受電側通信部71は、アナログ通信信号を電流に重畳して結合コンデンサ26を介して電力供給体60に送信すると共に、電力供給体60から結合コンデンサ26を介して供給された電流から図示しないフィルタを用いてアナログ通信信号成分を分離する。
(Configuration-Power supplied body)
Next, the configuration of the power supplied body 70 will be described. The power supplied body 70 includes a power receiving side communication unit 71. The power reception side communication unit 71 is a power reception side communication unit that communicates with the power transmission side communication unit 61 via the boundary surface 25. For example, the power receiving side communication unit 71 is coupled to a line reaching one terminal of the load 42 via the capacitor 72 and connected to a line reaching the other terminal of the load 42. The power receiving side communication unit 71 superimposes the analog communication signal on the current and transmits the analog communication signal to the power supply body 60 via the coupling capacitor 26, and from the current supplied from the power supply body 60 via the coupling capacitor 26. The analog communication signal component is separated using a filter that does not.
(電力供給動作)
 次に、本実施の形態に係る電力供給動作について説明する。この制御においては、電力供給体60の一部機能を待機状態とすることによって当該電力供給体60の消費電力を低減する待機モードと、電力供給体60の全機能を可動状態として電力供給を行う通常運転モードとの2つのモードを切替えて電力供給を行う。
(Power supply operation)
Next, the power supply operation according to the present embodiment will be described. In this control, a part of the power supply body 60 is set to a standby state to reduce power consumption of the power supply body 60 and power supply is performed with all functions of the power supply body 60 in a movable state. The power supply is performed by switching between the two modes of the normal operation mode.
 例えば、電力被供給体70に設けられた図示しない制御部が、負荷42の定格の電流値や電圧値を、当該電力被供給体70に設けた図示しない記憶部から呼び出し、これらのデータを受電側通信部71を介して常時出力する。 For example, a control unit (not shown) provided in the power supplied body 70 calls a rated current value or voltage value of the load 42 from a storage unit (not shown) provided in the power supplied body 70 and receives these data. Always output via the side communication unit 71.
 一方、電力供給体60は、初期状態では待機モードとされている。具体的には、送電側通信部61のみに微小電力を供給して当該送電側通信部61のみを起動常体としておき、他の部分については電力供給を行わずにスリープ状態として省電力化を図る。この送電側通信部61は、電力被供給体70の受電側通信部71からの出力を常時監視しており、電力供給体60に電力被供給体70が対向配置された場合に、送電側通信部61が受電側通信部71からのデータを受信する。このようにデータを受信すると、電力供給体60に設けられた図示しない制御部が起動されて待機モードが通常運転モードに切り替えられる。この通常運転モードにおいて、電力供給体60の制御部は、負荷42の定格の電流値や電圧値に合致した交流電力を供給できるように、交流電源32から出力される交流電力の電流値、電圧値、あるいは周波数を決定し、これら電流値、電圧値、あるいは周波数で交流電力が出力されるように、かつ、並列共振回路の共振条件が満足されるように、交流電源32を制御する。 On the other hand, the power supply body 60 is in a standby mode in the initial state. Specifically, only a small amount of power is supplied to the power transmission side communication unit 61, and only the power transmission side communication unit 61 is left as a startup unit, and power is saved in the sleep state without supplying power to other parts. Plan. The power transmission side communication unit 61 constantly monitors the output from the power reception side communication unit 71 of the power supplied body 70, and when the power supplied body 70 is disposed opposite to the power supply body 60, the power transmission side communication is performed. The unit 61 receives data from the power receiving side communication unit 71. When data is received in this way, a control unit (not shown) provided in the power supply body 60 is activated and the standby mode is switched to the normal operation mode. In this normal operation mode, the control unit of the power supply body 60 is configured to supply AC power that matches the rated current value and voltage value of the load 42. A value or frequency is determined, and the AC power supply 32 is controlled so that AC power is output at the current value, voltage value, or frequency, and the resonance condition of the parallel resonance circuit is satisfied.
 また、電力被供給体70においては、負荷42に入力される交流電流の電流値や電圧値を、公知の方法で検知し、これらのデータを受電側通信部71を介して常時出力する。 In addition, in the power supplied body 70, the current value and voltage value of the alternating current input to the load 42 are detected by a known method, and these data are always output via the power receiving side communication unit 71.
 一方、電力供給体60は、送電側通信部61が受電側通信部71からのデータを受信する。このようにデータを受信すると、電力供給体60の制御部は、負荷42に入力される交流電流の電流値や電圧値に基づいて、並列共振回路の共振条件が維持されているか否かを判定し、この判定結果に基づいて、交流電源32を制御する。 On the other hand, in the power supply body 60, the power transmission side communication unit 61 receives data from the power reception side communication unit 71. When the data is received in this way, the control unit of the power supply body 60 determines whether or not the resonance condition of the parallel resonance circuit is maintained based on the current value or voltage value of the alternating current input to the load 42. Then, the AC power supply 32 is controlled based on the determination result.
(実施の形態3の効果)
 このように実施の形態3によれば、電力供給体60は送電側通信部61を備え、電力被供給体70は受電側通信部71を備えるので、電力供給体60と電力被供給体70との相互間で通信を行うことが可能になり、共振条件維持のための調整等を行うことが可能になる。
(Effect of Embodiment 3)
As described above, according to the third embodiment, since the power supply body 60 includes the power transmission side communication unit 61 and the power supplied body 70 includes the power reception side communication unit 71, the power supply body 60, the power supplied body 70, Can be communicated with each other, and adjustment for maintaining the resonance condition can be performed.
〔III〕各実施の形態に対する変形例
 以上、本発明に係る各実施の形態について説明したが、本発明の具体的な構成及び手段は、特許請求の範囲に記載した各発明の技術的思想の範囲内において、任意に改変及び改良することができる。以下、このような変形例について説明する。
[III] Modifications to Each Embodiment While each embodiment according to the present invention has been described above, the specific configuration and means of the present invention are the same as the technical idea of each invention described in the claims. Modifications and improvements can be arbitrarily made within the range. Hereinafter, such a modification will be described.
(解決しようとする課題や発明の効果について)
 まず、発明が解決しようとする課題や発明の効果は、前記した内容に限定されるものではなく、発明の実施環境や構成の細部に応じて異なる可能性があり、上述した課題の一部のみを解決する場合や、上述した効果の一部のみを奏する場合がある。さらに、本発明によって、上述していない課題を解決する場合や、上述していない効果を奏する場合もある。例えば、非接触によるフリーポジション化を完全に達成できない場合であっても、従来に比べてフリーポジション化の程度を向上できている場合や、従来と同様の程度のフリーポジション化を従来とは異なる技術で達成できている場合には、本発明の課題が解決されている。
(About problems to be solved and effects of the invention)
First, the problems to be solved by the invention and the effects of the invention are not limited to the above contents, and may vary depending on the implementation environment of the invention and the details of the configuration, and only a part of the problems described above. In some cases, only a part of the effects described above may be achieved. Furthermore, according to the present invention, there may be a case where a problem not described above is solved or an effect which is not described above. For example, even if it is not possible to completely achieve a free position by non-contact, if the degree of free position improvement can be improved compared to the conventional case, or the free position of the same level as before is different from the conventional If the technology has achieved it, the problem of the present invention has been solved.
(電力供給体について)
 電力供給体の構成の中で、特に送電電極を除いた送電部の構成に関しては、様々に変更することができる。図14は、変形例に係る電力供給体の回路図である。この電力供給体の送電部80は、基本的には図8の送電部31と同様に構成されているが、コンデンサ33がトランス34の2次側に配置されており、このコンデンサ33とトランス34の2次側のコイル34bとによって並列共振回路が構成されている。
(About power supply)
Among the configurations of the power supply body, the configuration of the power transmission unit excluding the power transmission electrode can be variously changed. FIG. 14 is a circuit diagram of a power supply body according to a modification. The power transmission unit 80 of the power supply body is basically configured in the same manner as the power transmission unit 31 of FIG. 8, but a capacitor 33 is disposed on the secondary side of the transformer 34, and the capacitor 33 and the transformer 34 are arranged. The secondary side coil 34b forms a parallel resonance circuit.
 また、インダクタ35は、共振回路を構成することができる限りにおいて、その接続位置や接続数を任意に変更することができる。例えば、インダクタ35は、複数の送電電極36の各々に対して必ずしも接続する必要はなく、例えば、2つ以上の送電電極36に対して1つの共通のインダクタ35を接続してもよい。具体的には、複数の送電電極36の中の第1送電電極36A又は第2送電電極36Bの少なくとも一方に接続されていればよい。 Further, as long as the inductor 35 can form a resonance circuit, the connection position and the number of connections can be arbitrarily changed. For example, the inductor 35 is not necessarily connected to each of the plurality of power transmission electrodes 36. For example, one common inductor 35 may be connected to two or more power transmission electrodes 36. Specifically, it may be connected to at least one of the first power transmission electrode 36A or the second power transmission electrode 36B among the plurality of power transmission electrodes 36.
(電力被供給体について)
 電力被供給体の構成の中で、特に受電電極43を除いた受電部の構成に関しては、様々に変更することができる。例えば、極性分別部45は、ダイオード45a、45bに代えて、図23に示したような公知の機械的スイッチを用いて構成してもよい。
(About the power supplied body)
Among the configurations of the power supplied body, various modifications can be made particularly with respect to the configuration of the power receiving unit excluding the power receiving electrode 43. For example, the polarity separation unit 45 may be configured using a known mechanical switch as shown in FIG. 23 instead of the diodes 45a and 45b.
(送電電極について)
 送電電極36の平面形状は、正方形状に限定されず、その他の任意の形状(例えば、三角形、長方形、五角形、六角形、円形、楕円形等を含む)であってもよい。また、複数の送電電極36の並設間隔は、非周期的に代えてもよく、不等間隔であってもよい。
(About power transmission electrode)
The planar shape of the power transmission electrode 36 is not limited to a square shape, and may be any other shape (for example, a triangle, a rectangle, a pentagon, a hexagon, a circle, an ellipse, etc.). Further, the intervals between the plurality of power transmission electrodes 36 may be changed aperiodically or may be unequal intervals.
(受電電極43について)
 受電電極43の平面形状は、円形状に限定されず、その他の任意の形状(例えば、三角形、正方形、長方形、五角形、六角形、楕円形等を含む)であってもよい。また、複数の送電電極36の並設間隔は、非周期的に代えてもよく、不等間隔であってもよい。
(Receiving electrode 43)
The planar shape of the power receiving electrode 43 is not limited to a circular shape, and may be any other shape (including, for example, a triangle, a square, a rectangle, a pentagon, a hexagon, an ellipse, and the like). Further, the intervals between the plurality of power transmission electrodes 36 may be changed aperiodically or may be unequal intervals.
 また、受電電極43を含む受電部の具体的な製造方法は任意であるが、例えば、FPC(Flexible Print Circuit)を用いて製造することができる。図15は、FPCを用いて製造した受電部90の平面図である。この受電部90は、フィルム状の絶縁層の上に接着層と導体層を順次形成し、この導体層を必要に応じて接着層と絶縁層で覆って構成されており、この導体層には、複数の受電電極43が並設されると共に、これら各受電電極43には極性分別部45を構成するダイオード45a、45bが接続されている。より具体的には、ダイオード45a、45bは、複数の受電電極43の層に重畳された別の層に形成されている。また、2つ以上の受電電極43及び2つ以上のダイオード45a、45bを極性毎に接続する共通の線路91が複数形成されており、これら複数の線路91がさらに共通の主線路92に極性毎に接続されている。この主線路92の端部には電極部93が設けられており、この電極部93を介して受電部90を負荷42に接続することができる。このようにFPCを用いて受電部90を製造することで、受電部90を印刷技術により包括的に製造でき、受電部90の製造コストを低減することができる。なお、図15には示していないが、さらに平滑部46や容量誘発用電極53を含む受電部90を、同様にFPCで製造してもよい。 In addition, a specific method for manufacturing the power receiving unit including the power receiving electrode 43 is arbitrary, but for example, it can be manufactured using FPC (Flexible Print Circuit). FIG. 15 is a plan view of the power reception unit 90 manufactured using the FPC. The power receiving unit 90 is formed by sequentially forming an adhesive layer and a conductor layer on a film-like insulating layer, and covering the conductor layer with an adhesive layer and an insulating layer as necessary. A plurality of power receiving electrodes 43 are arranged in parallel, and diodes 45 a and 45 b constituting the polarity separation unit 45 are connected to each power receiving electrode 43. More specifically, the diodes 45 a and 45 b are formed in another layer superimposed on the layers of the plurality of power receiving electrodes 43. In addition, a plurality of common lines 91 for connecting two or more power receiving electrodes 43 and two or more diodes 45a and 45b for each polarity are formed, and these plurality of lines 91 are further connected to a common main line 92 for each polarity. It is connected to the. An electrode part 93 is provided at the end of the main line 92, and the power receiving part 90 can be connected to the load 42 via the electrode part 93. By manufacturing the power receiving unit 90 using the FPC in this way, the power receiving unit 90 can be comprehensively manufactured by a printing technique, and the manufacturing cost of the power receiving unit 90 can be reduced. Although not shown in FIG. 15, the power receiving unit 90 including the smoothing unit 46 and the capacitance inducing electrode 53 may be similarly manufactured by FPC.
 また、共振条件を維持するためには、受電電極43と送電電極36との相互間隔を安定化させることにより、結合コンデンサのコンデンサ容量37を安定化させたり、あるいは、容量誘発用受電電極43Aや容量誘発用電極53と送電電極36との相互間隔を安定化させることにより、容量誘発部44にて誘発されるコンデンサ容量37を安定化させたりすることが好ましい。このため、例えば、図16に示すような構成を採用してもよい。この構成では、送電電極36を、磁性体から形成している。また、受電電極43(あるいは、容量誘発用受電電極43Aや容量誘発用電極53)を、ポリイミド等の導電軟質材から形成している。そして、受電電極43における境界面25と反対側の面には、送電電極36と吸引する磁性体94を配置する。このような構成によれば、受電電極43の境界面25に近い面の平滑度が低かったり、受電電極43と境界面25の相互間に気体や液体が入り込んだりしている場合であっても、磁性体94の吸引力によって受電電極43が送電電極36に向けて押圧されるので、受電電極43と送電電極36との相互間隔が安定する。この他にも、例えば、受電電極43と境界面25との相互間に導電軟質材を配置し、受電電極43の自重で導電軟質材を境界面25に密着させるようにしてもよい。 In order to maintain the resonance condition, the mutual capacitance between the power receiving electrode 43 and the power transmitting electrode 36 is stabilized to stabilize the capacitor capacitance 37 of the coupling capacitor, or the capacitance inducing power receiving electrode 43A or the like. It is preferable to stabilize the capacitor capacity 37 induced by the capacity inducing section 44 by stabilizing the mutual distance between the capacity inducing electrode 53 and the power transmission electrode 36. For this reason, for example, a configuration as shown in FIG. 16 may be adopted. In this configuration, the power transmission electrode 36 is formed of a magnetic material. Further, the power receiving electrode 43 (or the capacity inducing power receiving electrode 43A or the capacity inducing electrode 53) is formed of a conductive soft material such as polyimide. The power transmission electrode 36 and the magnetic body 94 to be attracted are disposed on the surface of the power reception electrode 43 opposite to the boundary surface 25. According to such a configuration, even when the smoothness of the surface near the boundary surface 25 of the power receiving electrode 43 is low, or even when a gas or a liquid enters between the power receiving electrode 43 and the boundary surface 25. Since the power reception electrode 43 is pressed toward the power transmission electrode 36 by the attractive force of the magnetic body 94, the mutual distance between the power reception electrode 43 and the power transmission electrode 36 is stabilized. In addition, for example, a conductive soft material may be disposed between the power receiving electrode 43 and the boundary surface 25, and the conductive soft material may be brought into close contact with the boundary surface 25 by the weight of the power receiving electrode 43.
(容量誘発手段について)
 容量誘発手段は、1)実施の形態1で説明したように、受電電極43の一部のみで構成する場合、2)実施の形態2で説明したように、受電電極43の一部に加えて、容量誘発用電極53を用いて構成する場合、及び3)受電電極43の一部に代えて、容量誘発用電極53を用いて構成する場合、が考えられる。この2)の場合には、受電電極43の一部を第1送電電極36Aと第2送電電極36Bの相互間に跨るように配置した上で、さらに容量誘発用電極53を第1送電電極36Aと第2送電電極36Bの相互間に跨るように配置する。また、3)の場合には、受電電極43の一部が第1送電電極36Aと第2送電電極36Bの相互間に跨らせることなく、容量誘発用電極53のみを第1送電電極36Aと第2送電電極36Bの相互間に跨るように配置する。このように受電電極43の一部が第1送電電極36Aと第2送電電極36Bの相互間に跨らせることがない構成としては、特許文献2のように、第1送電電極36Aと第2送電電極36Bの相互間隔を、受電電極43の最大幅よりも十分に広くした構成を採用することができる。
(About capacity induction means)
The capacity inducing means is 1) in the case where it is constituted by only a part of the power receiving electrode 43 as described in the first embodiment, and 2) in addition to a part of the power receiving electrode 43 as described in the second embodiment. In the case of using the capacity inducing electrode 53, and 3) in the case of using the capacity inducing electrode 53 in place of a part of the power receiving electrode 43, it is conceivable. In the case of 2), a part of the power receiving electrode 43 is disposed so as to straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, and the capacitance inducing electrode 53 is further disposed on the first power transmitting electrode 36A. And the second power transmission electrode 36B. In the case of 3), a part of the power receiving electrode 43 does not straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, and only the capacitance inducing electrode 53 is connected to the first power transmitting electrode 36A. It arrange | positions so that it may straddle between the 2nd power transmission electrodes 36B. Thus, as a configuration in which a part of the power receiving electrode 43 does not straddle between the first power transmitting electrode 36A and the second power transmitting electrode 36B, as in Patent Document 2, the first power transmitting electrode 36A and the second power transmitting electrode 36B A configuration in which the mutual interval between the power transmission electrodes 36 </ b> B is sufficiently wider than the maximum width of the power reception electrode 43 can be employed.
(容量誘発用電極53について)
 容量誘発用電極53は、実施の形態2で説明した形状に限定されない。例えば、図17に示すように、容量誘発用電極53を、受電電極43と同じ受電平面内ではなく、境界面25に対して平行であって受電平面よりも境界面25から離れた平面内に配置された平板状体として構成してもよい。この容量誘発用電極53には、複数の受電電極43に接続された線路に対応する領域に孔部53aが形成されており、この孔部53aを介して線路を負荷42に向けて引き出すことが可能となっている。この容量誘発用電極53は、複数の受電電極43に対して絶縁状態で配置されている。具体的には、容量誘発用電極53と受電電力との相互間には、これら相互の絶縁を確保するために十分な間隔が設けられている。あるいは、これら容量誘発用電極53と受電電力の相互間に公知の絶縁材を配置することで、これらの相互間の絶縁を行ってもよい。このように容量誘発用電極53を構成した場合には、実施の形態2の場合に比べて、孔部53aの直径を小さくすることができ、孔部53aの相互の面積(体積)を広くすることができるので、容量誘発用電極53の抵抗を低減することができる。
(About the capacitance inducing electrode 53)
The capacitance inducing electrode 53 is not limited to the shape described in the second embodiment. For example, as shown in FIG. 17, the capacitance inducing electrode 53 is not in the same power receiving plane as the power receiving electrode 43 but in a plane parallel to the boundary surface 25 and further away from the boundary surface 25 than the power receiving plane. You may comprise as the arrange | positioned flat body. The capacitance inducing electrode 53 is formed with a hole 53a in a region corresponding to the line connected to the plurality of power receiving electrodes 43, and the line can be drawn toward the load 42 through the hole 53a. It is possible. The capacitance inducing electrode 53 is disposed in an insulated state with respect to the plurality of power receiving electrodes 43. Specifically, a sufficient interval is provided between the capacitance inducing electrode 53 and the received power to ensure mutual insulation. Alternatively, a known insulating material may be disposed between the capacitance inducing electrode 53 and the received power to insulate them from each other. When the capacitance inducing electrode 53 is configured in this way, the diameter of the hole 53a can be reduced and the mutual area (volume) of the hole 53a can be increased compared to the case of the second embodiment. Therefore, the resistance of the capacitance inducing electrode 53 can be reduced.
 あるいは、図18に示すように、図17の例と同様に構成した容量誘発用電極53のうち、受電電極43の相互間に対応する部分53bを、境界面25に近くなる方に湾曲させることで、当該湾曲させた部分53bを、受電電極43の相互間に介在させるようにしてもよい。このように、当該湾曲させた部分53bと送電電極36との間隔を調整することで、誘発するコンデンサ容量37を調整することができる。 Alternatively, as shown in FIG. 18, among the capacitance inducing electrodes 53 configured in the same manner as in the example of FIG. 17, a portion 53 b corresponding to each other between the power receiving electrodes 43 is curved toward the boundary surface 25. Thus, the curved portion 53 b may be interposed between the power receiving electrodes 43. Thus, the induced capacitor capacity 37 can be adjusted by adjusting the distance between the curved portion 53 b and the power transmission electrode 36.
(送電電極と受電電極43の相互の関係について)
 フリーポジション化が必要とされる範囲に応じて、送電電極36や受電電極43の設置数や配列を変えてもよい。例えば、電力供給体に対する特定の1か所のみに電力被供給体を配置できればよい場合(厳密には、フリーポジション化が必要でない場合であり、点状領域での電力供給を行う場合)には、図19の平面図に示すように、第1送電電極36Aと第2送電電極36Bをそれぞれ一枚ずつのみ配置すると共に、受電電極43として、第1送電電極36Aのみに対向配置される受電電極43と、第2送電電極36Bのみに対向配置される受電電極43と、第1送電電極36Aと第2送電電極36Bの相互間に跨る受電電極43(容量誘発用受電電極43A)のみを配置してもよい(あるいは、容量誘発用受電電極43Aに代えて、1枚の容量誘発用電極53を配置してもよい)。このような構成は、例えば、電力被供給体としての携帯電話を、電力供給体としての充電器の特定位置に置くことで充電するような場合に適している。
(Regarding the mutual relationship between the power transmitting electrode and the power receiving electrode 43)
The number and arrangement of the power transmission electrodes 36 and the power reception electrodes 43 may be changed according to the range where the free position is required. For example, in the case where it is sufficient that the power supply body can be arranged only at one specific place with respect to the power supply body (strictly speaking, when a free position is not required and power supply is performed in a dotted area) As shown in the plan view of FIG. 19, only one first power transmission electrode 36A and two second power transmission electrodes 36B are disposed, and the power reception electrode 43 is a power reception electrode disposed opposite to only the first power transmission electrode 36A. 43, only the power receiving electrode 43 disposed opposite to the second power transmitting electrode 36B, and only the power receiving electrode 43 (capacitance inducing power receiving electrode 43A) straddling the first power transmitting electrode 36A and the second power transmitting electrode 36B. (Alternatively, one capacitive inducing electrode 53 may be arranged instead of the capacitive inducing power receiving electrode 43A). Such a configuration is suitable, for example, when a mobile phone as a power supply body is charged by being placed at a specific position of a charger as a power supply body.
 あるいは、電力供給体における特定の1方向に沿った任意の位置のみに電力被供給体を配置できればよい場合(線状領域(1次元領域)での電力供給を行う場合)には、図20の平面図に示すように、第1送電電極36Aと第2送電電極36Bとを特定の1方向(図20において矢印で示す方向)に沿って所定間隔で配置すると共に、受電電極43を図19の場合と同様に配置してもよい。このような構成は、例えば、直線軌道上を移動する電力被供給体としての移動体に電力供給を行うような場合に適している。 Alternatively, in the case where it is only necessary to arrange the power supply object at any position along one specific direction in the power supply body (when power supply is performed in a linear region (one-dimensional region)), FIG. As shown in the plan view, the first power transmission electrode 36A and the second power transmission electrode 36B are arranged at a predetermined interval along one specific direction (the direction indicated by the arrow in FIG. 20), and the power reception electrode 43 is disposed in FIG. You may arrange | position similarly to the case. Such a configuration is suitable, for example, when power is supplied to a moving body as a power supplied body that moves on a straight track.
 また、上述したように、送電電極36の間隔領域の平面形状が直線帯状になると共に、受電電極43の間隔領域の平面形状が直線帯状になる場合において、送電電極36の間隔領域と受電電極43の間隔領域とが相互に重合するような位置で、電力供給体に電力被供給体を対向配置させた場合には、受電電極43が第1送電電極36Aと第2送電電極36Bとの相互間に跨らない可能性(電極配置条件の少なくとも一部が満たされない可能性)が生じる。この問題を解決するため、送電電極36の間隔領域と受電電極43の間隔領域とを相互に異なる形状にすることが好ましい。例えば、図21に示すように、各送電電極36の平面形状を六角形状とし、これら複数の送電電極36をハニカム状に並設した場合には、送電電極36の間隔領域が非直線帯状になるため、受電電極43の間隔領域の平面形状が直線帯状としても、受電電極43が第1送電電極36Aと第2送電電極36Bとの相互間に必ず跨ぐようにすることができる。同様に、複数の送電電極36や複数の受電電極43の一方を、ジグソーパズル模様やペンローズタイル模様を形成するように配置してもよい。 In addition, as described above, when the planar shape of the spacing region of the power transmission electrode 36 is a straight strip and the planar shape of the spacing region of the power receiving electrode 43 is a straight strip, the spacing region of the power transmission electrode 36 and the receiving electrode 43 are configured. In the case where the power supply body is disposed opposite to the power supply body at a position where the gap region overlaps with each other, the power reception electrode 43 is disposed between the first power transmission electrode 36A and the second power transmission electrode 36B. (Possibility that at least a part of the electrode arrangement condition is not satisfied) occurs. In order to solve this problem, it is preferable that the gap region of the power transmission electrode 36 and the gap region of the power reception electrode 43 have different shapes. For example, as shown in FIG. 21, when the planar shape of each power transmission electrode 36 is a hexagonal shape and the plurality of power transmission electrodes 36 are arranged side by side in a honeycomb shape, the interval region of the power transmission electrodes 36 becomes a non-linear band shape. Therefore, even if the planar shape of the gap region of the power receiving electrode 43 is a straight band, the power receiving electrode 43 can be surely straddled between the first power transmitting electrode 36A and the second power transmitting electrode 36B. Similarly, one of the plurality of power transmission electrodes 36 and the plurality of power reception electrodes 43 may be arranged so as to form a jigsaw puzzle pattern or a Penrose tile pattern.
(共振回路について)
 電力供給体の共振回路は、少なくともインダクタ35と容量誘発部44にて誘発されたコンデンサ容量37とを含んで構成されていればよく、その他の任意の回路要素を含んでもよい。例えば、容量誘発部44にて誘発されたコンデンサ容量37を、第1結合コンデンサと第2結合コンデンサに合成して共振回路を構成すると考えてもよく、この場合には、第1結合コンデンサ、第2結合コンデンサ、インダクタ35、及び容量誘発部44にて誘発されたコンデンサ容量37を含んで共振回路が構成され、この共振回路を介して、電力供給体から電力被供給体への電力が供給可能となる。容量誘発部44にて誘発されたコンデンサ容量37は、第1結合コンデンサや第2結合コンデンサと分離して考えてもよく、この場合には、インダクタ35及び容量誘発部44にて誘発されたコンデンサ容量37を含んで構成される共振回路と、第1結合コンデンサ及び第2結合コンデンサとを介して、電力供給体から電力被供給体を介して電力を供給可能となる。
(Resonant circuit)
The resonance circuit of the power supply body only needs to include at least the inductor 35 and the capacitor capacitance 37 induced by the capacitance inducing unit 44, and may include any other circuit element. For example, it may be considered that the capacitor capacitance 37 induced by the capacitance induction unit 44 is combined with a first coupling capacitor and a second coupling capacitor to form a resonance circuit. In this case, the first coupling capacitor, the first coupling capacitor, A resonance circuit is configured including a two-coupling capacitor, an inductor 35, and a capacitor capacitance 37 induced by the capacitance inducing unit 44, and power can be supplied from the power supply body to the power supply target body via this resonance circuit. It becomes. The capacitor capacitance 37 induced by the capacitance induction unit 44 may be considered separately from the first coupling capacitor and the second coupling capacitor. In this case, the capacitor induced by the inductor 35 and the capacitance induction unit 44 Power can be supplied from the power supply body via the power supply body via the resonance circuit including the capacitor 37, the first coupling capacitor, and the second coupling capacitor.
(平滑部について)
 平滑部46の構成としては、上述した構成以外にも、公知の技術を用いた異なる構成を採用することができ、例えば、コンデンサのみで構成してもよい。
(About smooth part)
As the configuration of the smoothing unit 46, in addition to the configuration described above, a different configuration using a known technique can be adopted, and for example, it may be configured only by a capacitor.
(送電側通信部及び受電側通信部について)
 送電側通信部61や受電側通信部71の構成としては、上述した構成以外にも、公知の技術を用いた異なる構成を採用することができ、例えば、RF無線通信をMACプロトコルにて行う無線通信部として構成してもよい。
(About power transmission side communication unit and power reception side communication unit)
As the configuration of the power transmission side communication unit 61 and the power reception side communication unit 71, in addition to the configuration described above, a different configuration using a known technique can be adopted. For example, wireless communication that performs RF wireless communication using the MAC protocol You may comprise as a communication part.
  1、20 電力供給システム
  2、21、100 電力供給領域
  3、30、60 電力供給体
  4、24、102 電力被供給領域
  5、40、70 電力被供給体
  7、42 負荷
  8、25 境界面
  9、31、80 送電部
 10、41、51、90 受電部
 11、44、52 容量誘発部
 12、13、26、109 結合コンデンサ
 14、37 コンデンサ容量
 22 机
 23 天板
 26A 第1結合コンデンサ
 26B 第2結合コンデンサ
 6、32、115 交流電源
 34 トランス
 34a、34b、110 コイル
 35、120 インダクタ(コイル)
 36、105、106 送電電極
 36A 第1送電電極
 36B 第2送電電極
 43、107、108 受電電極
 43A 容量誘発用受電電極
 45 極性分別部
 46 平滑部
 53 容量誘発用電極
 53a 孔部
 61 送電側通信部
 33、62、72、121 コンデンサ
 71 受電側通信部
 91 線路
 92 主線路
 93 電極部
 94 磁性体
 101 固定体
 103 可動体
DESCRIPTION OF SYMBOLS 1,20 Electric power supply system 2, 21, 100 Electric power supply area 3, 30, 60 Electric power supply body 4, 24, 102 Electric power supply area 5, 40, 70 Electric power supply object 7, 42 Load 8, 25 Boundary surface 9 , 31, 80 Power transmission unit 10, 41, 51, 90 Power receiving unit 11, 44, 52 Capacitance induction unit 12, 13, 26, 109 Coupling capacitor 14, 37 Capacitor capacity 22 Machine 23 Top plate 26A First coupling capacitor 26B Second Coupling capacitor 6, 32, 115 AC power supply 34 Transformer 34a, 34b, 110 Coil 35, 120 Inductor (coil)
36, 105, 106 Power transmitting electrode 36A First power transmitting electrode 36B Second power transmitting electrode 43, 107, 108 Power receiving electrode 43A Capacity inducing power receiving electrode 45 Polarity separating unit 46 Smoothing unit 53 Capacity inducing electrode 53a Hole 61 Power transmitting side communication unit 33, 62, 72, 121 Capacitor 71 Power-receiving-side communication unit 91 Line 92 Main line 93 Electrode unit 94 Magnetic body 101 Fixed body 103 Movable body

Claims (10)

  1.  電力供給領域に配置された電力供給体から、電力被供給領域に配置された電力被供給体を介して、所定の交流電源から供給された交流電力を所定の負荷に対して供給するための電力供給システムであって、
     前記電力供給体は、
     前記交流電源から供給された交流電力を前記電力被供給体に供給する送電手段を備え、
     前記電力被供給体は、
     前記送電手段から供給された交流電力を受電して前記負荷に供給する受電手段と、
     前記受電手段の一部として構成され又は前記受電手段とは異なるものとして構成された容量誘発手段とを備え、
     前記電力供給領域と前記電力被供給領域との相互の境界面を介して、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させることにより、複数の結合コンデンサを形成し、
     前記境界面を介して、前記送電手段と前記容量誘発手段とを相互に非接触状に対向配置させることにより、前記送電手段にコンデンサ容量を誘発させ、
     少なくとも前記コンデンサ容量を含んで構成される共振回路と前記複数の結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能とした、
     電力供給システム。
    Power for supplying AC power supplied from a predetermined AC power source to a predetermined load from a power supply body arranged in the power supply area via a power supplied body arranged in the power supplied area A feeding system,
    The power supplier is
    Power transmission means for supplying AC power supplied from the AC power source to the power supplied body,
    The power supplied body is
    Power receiving means for receiving AC power supplied from the power transmitting means and supplying the AC power to the load;
    A capacity inducing means configured as a part of the power receiving means or different from the power receiving means,
    By arranging a plurality of portions of the power transmission means and a plurality of portions of the power reception means to face each other in a non-contact manner through a boundary surface between the power supply region and the power supplied region, Forming a coupling capacitor,
    By causing the power transmission means and the capacity inducing means to face each other in a non-contact manner via the boundary surface, the power transmission means induces a capacitor capacity,
    Through the resonant circuit configured to include at least the capacitor capacity and the plurality of coupling capacitors, power can be supplied from the power supply body through the power supplied body.
    Power supply system.
  2.  前記送電手段は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、前記交流電源から交流電力の供給を受ける複数の送電電極を備え、
     前記電力供給体は、前記複数の送電電極の中の第1送電電極又は第2送電電極の少なくとも一方に接続されたインダクタを備え、
     前記受電手段は、前記複数の送電電極に対して前記境界面を挟んで非接触に配置される複数の受電電極を備え、
     前記容量誘発手段は、前記複数の受電電極の一部として構成され、
     前記複数の送電電極の中の前記第1送電電極に、前記複数の受電電極の中の一部の受電電極を対向させることにより、第1結合コンデンサを形成し、
     前記複数の送電電極の中の前記第1送電電極に隣接する第2送電電極に、前記複数の受電電極の中で前記第1送電電極に対向させた前記一部の受電電極とは異なる他の一部の受電電極を対向させることにより、第2結合コンデンサを形成し、
     前記第1送電電極と前記第2送電電極の相互間に跨るように、前記複数の受電電極の中で前記第1送電電極又は前記第2送電電極に対向させた前記受電電極とは異なる受電電極としての前記容量誘発手段を位置させることにより、前記第1送電電極と前記第2送電電極の相互間に前記コンデンサ容量を誘発させ、
     前記第1結合コンデンサ、前記第2結合コンデンサ、前記インダクタ、及び前記コンデンサ容量を含んで構成される前記共振回路を介して、あるいは、前記インダクタ及び前記コンデンサ容量を含んで構成される前記共振回路と、前記第1結合コンデンサ及び前記第2結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能とした、
     請求項1に記載の電力供給システム。
    The power transmission means is disposed at a position near a boundary surface between the power supply region and the power supplied region, and includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source,
    The power supply body includes an inductor connected to at least one of the first power transmission electrode or the second power transmission electrode among the plurality of power transmission electrodes,
    The power receiving means includes a plurality of power receiving electrodes arranged in a non-contact manner across the boundary surface with respect to the plurality of power transmitting electrodes,
    The capacitance inducing means is configured as a part of the plurality of power receiving electrodes,
    A first coupling capacitor is formed by opposing a part of the power receiving electrodes of the plurality of power receiving electrodes to the first power transmitting electrode of the plurality of power transmitting electrodes,
    The second power transmitting electrode adjacent to the first power transmitting electrode among the plurality of power transmitting electrodes is different from the part of the power receiving electrodes that are opposed to the first power transmitting electrode among the plurality of power receiving electrodes. A second coupling capacitor is formed by facing a part of the receiving electrodes,
    A power receiving electrode different from the power receiving electrode opposed to the first power transmitting electrode or the second power transmitting electrode among the plurality of power receiving electrodes so as to straddle between the first power transmitting electrode and the second power transmitting electrode. Inducing the capacitor capacity between the first power transmission electrode and the second power transmission electrode by positioning the capacity inducing means as
    Via the resonance circuit including the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance, or the resonance circuit including the inductor and the capacitor capacitance; The power can be supplied from the power supply body via the first coupling capacitor and the second coupling capacitor via the power supplied body.
    The power supply system according to claim 1.
  3.  前記送電手段は、前記電力供給領域と前記電力被供給領域との相互の境界面に対する近傍位置に配置されるものであって、前記交流電源から交流電力の供給を受ける複数の送電電極を備え、
     前記電力供給体は、前記複数の送電電極の中の第1送電電極又は第2送電電極の少なくとも一方に接続されたインダクタを備え、
     前記受電手段は、前記複数の送電電極に対して前記境界面を挟んで非接触に配置される複数の受電電極を備え、
     前記容量誘発手段は、前記複数の受電電極の一部に加えて、あるいは前記複数の受電電極に代えて、その少なくとも一部が前記第1送電電極と前記第2送電電極の相互間に跨るように配置される容量誘発用電極として構成され、
     前記複数の送電電極の中の前記第1送電電極に、前記複数の受電電極の中の一部の受電電極を対向させることにより、第1結合コンデンサを形成し、
     前記複数の送電電極の中の前記第1送電電極に隣接する第2送電電極に、前記複数の受電電極の中で前記第1送電電極に対向させた前記一部の受電電極とは異なる他の一部の受電電極を対向させることにより、第2結合コンデンサを形成し、
     前記第1送電電極と前記第2送電電極の相互間に跨るように、前記容量誘発手段を位置させることにより、前記第1送電電極と前記第2送電電極の相互間に前記コンデンサ容量を誘発させ、
     前記第1結合コンデンサ、前記第2結合コンデンサ、前記インダクタ、及び前記コンデンサ容量を含んで構成される前記共振回路を介して、あるいは、前記インダクタ及び前記コンデンサ容量を含んで構成される前記共振回路と、前記第1結合コンデンサ及び前記第2結合コンデンサとを介して、前記電力供給体から前記電力被供給体を介して電力を供給可能とした、
     請求項1又は2に記載の電力供給システム。
    The power transmission means is disposed at a position near a boundary surface between the power supply region and the power supplied region, and includes a plurality of power transmission electrodes that receive supply of AC power from the AC power source,
    The power supply body includes an inductor connected to at least one of the first power transmission electrode or the second power transmission electrode among the plurality of power transmission electrodes,
    The power receiving means includes a plurality of power receiving electrodes arranged in a non-contact manner across the boundary surface with respect to the plurality of power transmitting electrodes,
    In addition to a part of the plurality of power receiving electrodes or in place of the plurality of power receiving electrodes, the capacity inducing means may be such that at least a part thereof straddles between the first power transmitting electrode and the second power transmitting electrode. Configured as a capacitance inducing electrode,
    A first coupling capacitor is formed by opposing a part of the power receiving electrodes of the plurality of power receiving electrodes to the first power transmitting electrode of the plurality of power transmitting electrodes,
    The second power transmitting electrode adjacent to the first power transmitting electrode among the plurality of power transmitting electrodes is different from the part of the power receiving electrodes that are opposed to the first power transmitting electrode among the plurality of power receiving electrodes. A second coupling capacitor is formed by facing a part of the receiving electrodes,
    By positioning the capacitance inducing means so as to straddle between the first power transmission electrode and the second power transmission electrode, the capacitor capacitance is induced between the first power transmission electrode and the second power transmission electrode. ,
    Via the resonance circuit including the first coupling capacitor, the second coupling capacitor, the inductor, and the capacitor capacitance, or the resonance circuit including the inductor and the capacitor capacitance; The power can be supplied from the power supply body via the first coupling capacitor and the second coupling capacitor via the power supplied body.
    The power supply system according to claim 1 or 2.
  4.  前記複数の受電電極を、前記境界面に対して平行な受電平面内に、相互に絶縁状態で並設し、
     前記容量誘発用電極を、前記受電平面内に配置された平板状体であり、前記複数の受電電極の各々に対応する領域に孔部を有するものであって、前記複数の受電電極の相互間において当該受電電極と絶縁状態で介在する平板状体として形成した、
     請求項3に記載の電力供給システム。
    The plurality of power receiving electrodes are arranged in parallel in a power receiving plane parallel to the boundary surface in an insulated state,
    The capacitance inducing electrode is a plate-like body arranged in the power receiving plane, and has a hole in a region corresponding to each of the plurality of power receiving electrodes, and between the plurality of power receiving electrodes. Formed as a flat body interposed in an insulated state with the power receiving electrode in
    The power supply system according to claim 3.
  5.  前記複数の受電電極を、前記境界面に対して平行な受電平面内に、相互に絶縁状態で並設し、
     前記容量誘発用電極を、前記境界面に対して平行であって前記受電平面よりも前記境界面から離れた平面内に少なくとも一部が配置された平板状体であり、前記複数の受電電極に接続された線路に対応する領域に孔部を有するものであって、前記複数の受電電極に対して絶縁状態で配置された平板状体として形成した、
     請求項3に記載の電力供給システム。
    The plurality of power receiving electrodes are arranged in parallel in a power receiving plane parallel to the boundary surface in an insulated state,
    The capacitance inducing electrode is a flat body that is parallel to the boundary surface and at least partially disposed in a plane that is farther from the boundary surface than the power receiving plane, and the plurality of power receiving electrodes It has a hole in a region corresponding to the connected line, and is formed as a flat plate disposed in an insulated state with respect to the plurality of power receiving electrodes.
    The power supply system according to claim 3.
  6.  前記複数の送電電極を、相互に同一形状で形成し、前記境界面に対して平行な送電平面内において、所定の第1方向と当該第1方向に対して前記送電平面内において直交する第2方向とに沿って極性が交互に異なるように、相互に絶縁状態で複数列ずつ並設した、
     請求項2から5のいずれか一項に記載の電力供給システム。
    The plurality of power transmission electrodes are formed in the same shape as each other, and in a power transmission plane parallel to the boundary surface, a second direction orthogonal to the predetermined first direction and the first direction in the power transmission plane. A plurality of rows are arranged in parallel in an insulated state so that the polarities are alternately different along the direction.
    The power supply system according to any one of claims 2 to 5.
  7.  前記複数の受電電極を、前記複数の送電電極の相互間隔よりも広幅の形状であって相互に同一形状で形成し、前記境界面に対して平行な受電平面内において、所定の第1方向と当該第1方向に対して前記受電平面内において直交する第2方向とに沿って、相互に絶縁状態で複数列ずつ並設した、
     請求項6に記載の電力供給システム。
    The plurality of power receiving electrodes are formed in a shape wider than the interval between the plurality of power transmitting electrodes and in the same shape, and in a power receiving plane parallel to the boundary surface, a predetermined first direction and A plurality of rows are juxtaposed in a mutually insulated state along a second direction orthogonal to the first direction in the power receiving plane.
    The power supply system according to claim 6.
  8.  前記送電電極を、磁性体から形成し、
     前記受電電極を、導電軟質材で形成し、
     前記受電電極における前記境界面と反対側の面には、前記送電電極と吸引する磁性体を配置した、
     請求項2から7のいずれか一項に記載の電力供給システム。
    The power transmission electrode is formed of a magnetic material,
    The power receiving electrode is formed of a conductive soft material,
    On the surface of the power receiving electrode opposite to the boundary surface, a magnetic body that attracts the power transmitting electrode is disposed.
    The power supply system according to any one of claims 2 to 7.
  9.  前記電力供給体は、送電側通信手段を備え、
     前記電力被供給体は、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させた部分を介して、前記送電側通信手段と通信する受電側通信手段を備える、
     請求項1から8のいずれか一項に記載の電力供給システム。
    The power supply body includes power transmission side communication means,
    The power supplied body communicates with the power transmission side communication means via a portion in which a plurality of portions of the power transmission means and a plurality of portions of the power reception means are arranged to face each other in a non-contact manner. Comprising
    The power supply system according to any one of claims 1 to 8.
  10.  電力被供給領域に配置された電力被供給体であって、電力供給領域に配置された電力供給体を介して所定の交流電源から供給された交流電力を所定の負荷に対して供給する電力被供給体において、
     前記電力供給体に設けられた送電手段から供給された交流電力を受電して前記負荷に供給する受電手段と、
     前記受電手段の一部として構成され又は前記受電手段とは異なるものとして構成された容量誘発手段とを備え、
     前記電力供給領域と前記電力被供給領域との相互の境界面を介して、前記送電手段の複数部分と前記受電手段の複数部分とをそれぞれ相互に非接触状に対向配置させることにより、複数の結合コンデンサを形成し、
     前記境界面を介して、前記送電手段と前記容量誘発手段とを相互に非接触状に対向配置させることにより、前記送電手段にコンデンサ容量を誘発させ、
     少なくとも前記コンデンサ容量を含んで構成される共振回路と前記複数の結合コンデンサとを介して、前記電力供給体から電力を供給可能とした、
     電力被供給体。
    A power supply body disposed in the power supply area, wherein the power supply body is configured to supply AC power supplied from a predetermined AC power source to a predetermined load via the power supply body disposed in the power supply area. In the supplier
    A power receiving means for receiving AC power supplied from a power transmitting means provided in the power supply body and supplying the AC power to the load;
    A capacity inducing means configured as a part of the power receiving means or different from the power receiving means,
    By arranging a plurality of portions of the power transmission means and a plurality of portions of the power reception means to face each other in a non-contact manner through a boundary surface between the power supply region and the power supplied region, Forming a coupling capacitor,
    By causing the power transmission means and the capacity inducing means to face each other in a non-contact manner via the boundary surface, the power transmission means induces a capacitor capacity,
    Through the resonant circuit configured to include at least the capacitor capacity and the plurality of coupling capacitors, power can be supplied from the power supply body.
    Electric power recipient.
PCT/JP2012/075050 2011-09-30 2012-09-28 Power supply system WO2013047732A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218002A JP2013078238A (en) 2011-09-30 2011-09-30 Power supply system
JP2011-218002 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047732A1 true WO2013047732A1 (en) 2013-04-04

Family

ID=47995757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075050 WO2013047732A1 (en) 2011-09-30 2012-09-28 Power supply system

Country Status (2)

Country Link
JP (1) JP2013078238A (en)
WO (1) WO2013047732A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124242A1 (en) 2018-12-21 2020-06-25 Solace Power Inc. Wireless electric field power transfer system and transmitter, and method of wirelessly transferring power

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6127777B2 (en) * 2013-06-28 2017-05-17 ソニー株式会社 Power supply device and power supply system
CN105339858B (en) * 2013-07-31 2019-07-09 英特尔公司 Wireless charging unit for wireless device and the docking combination based on coupler
ES2752134T3 (en) * 2014-06-26 2020-04-03 Eggtronic Eng S R L A procedure and apparatus for transferring electrical energy
JP7103779B2 (en) * 2017-11-22 2022-07-20 国立大学法人豊橋技術科学大学 Wireless power supply
JP7126657B2 (en) * 2018-09-19 2022-08-29 株式会社アイシン Contactless power supply system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system
JP2010508008A (en) * 2006-10-26 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Floor covering and inductive power system
JP2010193692A (en) * 2009-02-20 2010-09-02 Takenaka Komuten Co Ltd Electric power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010508008A (en) * 2006-10-26 2010-03-11 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Floor covering and inductive power system
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system
JP2010193692A (en) * 2009-02-20 2010-09-02 Takenaka Komuten Co Ltd Electric power supply system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124242A1 (en) 2018-12-21 2020-06-25 Solace Power Inc. Wireless electric field power transfer system and transmitter, and method of wirelessly transferring power
EP3900155A4 (en) * 2018-12-21 2022-09-28 Solace Power Inc. Wireless electric field power transfer system and transmitter, and method of wirelessly transferring power
US11689059B2 (en) 2018-12-21 2023-06-27 Solace Power Inc. Wireless electric field power transfer system and transmitter, and method of wirelessly transferring power

Also Published As

Publication number Publication date
JP2013078238A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
US9275792B2 (en) Power supply system, and fixed body and movable body therefor
WO2013047732A1 (en) Power supply system
JP6023785B2 (en) Wireless power transmission control method and wireless power transmission device
EP2811614B1 (en) Wireless power transfer method, wireless power transmitter and wireless charging system
US20190139693A1 (en) Reconfigurable distributed active wireless charging system
CN103718417B (en) Capacitive character contactless power supply system
KR101374691B1 (en) Apparatus and method for wireless power transmission
KR20130099103A (en) Wireless energy distribution system
KR20130028448A (en) Wireless power relay apparatus and wireless power transmission system
JP2010193692A5 (en)
KR20120108759A (en) Portable device and wireless power charging system
KR102624909B1 (en) Apparatus for wireless charging using multi-coil and wireless charging system comprising the same
KR20120134079A (en) Apparatus and method that divide wireless power in Wireless Resonant Power Transmission System
KR20160030672A (en) Wireless power receiving apparatus and wireless power transmitting and receiving system
WO2013125091A1 (en) Power transmission device and power transmission control method
KR20150050024A (en) Wireless power relay apparatus and case having the same
JP2016039644A (en) Power transmission device and radio power transmission system
KR20160007332A (en) Wireless power transmitter and wireless power transmitting system
US20150372540A1 (en) Wireless power transmission system
US10881002B2 (en) Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
CN110323837B (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission system
EP2913886A1 (en) Magnetic field adjusting three-dimensional flexible resonator for wireless power transmission system
US20190140478A1 (en) Capacitor module, resonator, wireless power transmission device, wireless power reception device, and wireless power transmission system
WO2021148585A1 (en) Position-free, multiple output capacitive power transfer system
US20140054972A1 (en) Wireless power transmission system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835276

Country of ref document: EP

Kind code of ref document: A1