JP7103779B2 - Wireless power supply - Google Patents

Wireless power supply Download PDF

Info

Publication number
JP7103779B2
JP7103779B2 JP2017224659A JP2017224659A JP7103779B2 JP 7103779 B2 JP7103779 B2 JP 7103779B2 JP 2017224659 A JP2017224659 A JP 2017224659A JP 2017224659 A JP2017224659 A JP 2017224659A JP 7103779 B2 JP7103779 B2 JP 7103779B2
Authority
JP
Japan
Prior art keywords
power
electrode member
power transmission
transmission electrode
circuit unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017224659A
Other languages
Japanese (ja)
Other versions
JP2019097297A (en
Inventor
正芳 杉野
孝 大平
尚貴 坂井
智 北林
基照 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyohashi University of Technology NUC
Denso Corp
Original Assignee
Toyohashi University of Technology NUC
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyohashi University of Technology NUC, Denso Corp filed Critical Toyohashi University of Technology NUC
Priority to JP2017224659A priority Critical patent/JP7103779B2/en
Publication of JP2019097297A publication Critical patent/JP2019097297A/en
Application granted granted Critical
Publication of JP7103779B2 publication Critical patent/JP7103779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、無線給電装置に関する。 The present invention relates to a wireless power supply device.

電界共鳴を利用した無線給電装置の場合、送電から受電までの整合が電力の伝達効率に大きな影響を与える。仮に送電電極から電力を受け取る受電電極の数が一定であれば、この受電電極の数にあわせた整合回路を設定することにより、電力の伝達効率の最適化が図られる。一方、送電電極から数が変化する複数の対象物へ電力を伝達する場合、対象物の数が変化すると整合にも変化が生じる。 In the case of a wireless power feeding device using electric field resonance, matching from power transmission to power reception has a great influence on power transmission efficiency. If the number of power receiving electrodes that receive power from the power transmission electrodes is constant, the power transmission efficiency can be optimized by setting a matching circuit that matches the number of power receiving electrodes. On the other hand, when electric power is transmitted from a power transmission electrode to a plurality of objects whose numbers change, the matching also changes when the number of objects changes.

例えば、送電電極から電力を受け取る対象物の数、つまり受電電極の数が変化する場合、送電電極から電力を受け取る受電電極の数を検出する必要がある。そして、検出した受電電極の数にあわせた整合回路の制御が必要となる。この場合、送電電極への進入側および送電電極からの退出側にそれぞれ対象物を検出する光学的な装置を設け、送電電極から電力を受け取る対象物の数を検出することが考えられる。これにより、整合回路は、光学的に検出された対象物の数に基づいて制御される。 For example, when the number of objects receiving power from the power transmission electrode, that is, the number of power receiving electrodes changes, it is necessary to detect the number of power receiving electrodes receiving power from the power transmission electrode. Then, it is necessary to control the matching circuit according to the number of detected power receiving electrodes. In this case, it is conceivable to provide optical devices for detecting objects on the entrance side to the power transmission electrode and the exit side from the power transmission electrode to detect the number of objects receiving power from the power transmission electrode. This allows the matching circuit to be controlled based on the number of optically detected objects.

しかしながら、光学的に対象物の数を特定する場合、送電電極にあわせて対象物が進入および退出するための特定の進入口および退出口を設ける必要がある。また、電力の伝達を必要としない機器や物体が送電電極に進入すると、これらの機器や物体が誤って検出され、送電電極から電力を受け取る対象物の数を特定できないおそれがある。その結果、対象物の数にあわせた整合回路の制御が困難となり、電力の伝達効率の低下を招くという問題がある。 However, when the number of objects is optically specified, it is necessary to provide specific entrances and exits for the objects to enter and exit according to the power transmission electrode. Further, if a device or object that does not require power transmission enters the power transmission electrode, these devices or objects may be erroneously detected and the number of objects receiving power from the power transmission electrode may not be specified. As a result, it becomes difficult to control the matching circuit according to the number of objects, and there is a problem that the power transmission efficiency is lowered.

国際公開WO2014/002190号公報International Publication WO2014 / 002190

そこで、本発明の目的は、対象となる受電電極部材の数を光学的に検出することなく、伝達効率を向上する無線給電装置を提供することにある。 Therefore, an object of the present invention is to provide a wireless power feeding device that improves transmission efficiency without optically detecting the number of target power receiving electrode members.

請求項1記載の発明では、受電電極部材に対して無線で電力を供給する送電電極部材のインピーダンスは、飽和インピーダンスに設定されている。飽和インピーダンスとは、電力を供給する対象となる受電電極部材の数が増加しても変化しないインピーダンスである。上述のように電力の伝達効率を高めるためには、送電電極部材は、この送電電極部材から電力の供給を受ける受電電極部材の数にあわせて整合を図る必要がある。すなわち、送電電極部材は、送電電極部材から電力の供給を受ける受電電極部材の数に合わせて、インピーダンスの整合を図る必要がある。従来、この課題に対して、受電電極部材の数を検出し、これにあわせてインピーダンスの制御を行なうことが主眼とされていた。 In the invention according to claim 1, the impedance of the power transmission electrode member that wirelessly supplies power to the power receiving electrode member is set to the saturation impedance. The saturation impedance is an impedance that does not change even if the number of power receiving electrode members to which power is supplied increases. As described above, in order to improve the power transmission efficiency, the power transmission electrode members need to be matched according to the number of power receiving electrode members to which power is supplied from the power transmission electrode members. That is, it is necessary to match the impedance of the power transmission electrode member according to the number of power receiving electrode members to which power is supplied from the power transmission electrode member. Conventionally, in order to solve this problem, the main purpose has been to detect the number of power receiving electrode members and control the impedance accordingly.

これに対し、本願発明者らは、送電電極部材から電力の供給を受ける受電電極部材の数が増加するにつれて、電力の供給を受ける対象となる受電電極部材の数が増加しても、インピーダンスの変化が小さくなること、つまりインピーダンスが飽和することを見出した。この受電電極部材の数が増加してもインピーダンスの変化が小さくなる送電電極部材のインピーダンスは、飽和インピーダンスである。送電電極部材のインピーダンスを、この飽和インピーダンスに設定することにより、送電電極部材から電力の供給を受ける受電電極部材の数が変化しても、電力の伝達効率はほとんど変化しなくなる。つまり、電力の伝達効率は、受電電極部材の数に対して不感性が高くなる。その結果、送電電極部材の数の検出は不要となり、その数を検出するための構成、そして検出した数にあわせた整合を図るための制御も不要となる。したがって、対象となる受電電極部材の数を光学的に検出することなく、伝達効率を向上することができる。 On the other hand, the inventors of the present application have found that as the number of power receiving electrode members to which power is supplied from the power transmission electrode member increases, even if the number of power receiving electrode members to be supplied with power increases, the impedance becomes high. We have found that the change is small, that is, the impedance is saturated. The impedance of the power transmission electrode member whose impedance change is small even if the number of power receiving electrode members increases is the saturation impedance. By setting the impedance of the power transmission electrode member to this saturation impedance, even if the number of power receiving electrode members to which power is supplied from the power transmission electrode member changes, the power transmission efficiency hardly changes. That is, the power transmission efficiency is highly insensitive to the number of power receiving electrode members. As a result, it is not necessary to detect the number of power transmission electrode members, and it is not necessary to have a configuration for detecting the number and a control for matching according to the detected number. Therefore, the transmission efficiency can be improved without optically detecting the number of target power receiving electrode members.

一実施形態による無線給電装置を適用した搬送システムの構成を示す概略図Schematic diagram showing the configuration of a transport system to which the wireless power supply device according to one embodiment is applied. 一実施形態による無線給電装置を適用した搬送システムの構成を示す概略図Schematic diagram showing the configuration of a transport system to which the wireless power supply device according to one embodiment is applied. 一実施形態による無線給電装置を適用した搬送システムの移動体の構成を示す概略図Schematic diagram showing the configuration of a moving body of a transport system to which a wireless power feeding device according to an embodiment is applied. 一実施形態による無線給電装置の回路構成を示す概略図Schematic diagram showing the circuit configuration of the wireless power supply device according to one embodiment. 一実施形態による無線給電装置に適用される整合回路の例を示す概略図Schematic diagram showing an example of a matching circuit applied to a wireless power supply device according to an embodiment. 一実施形態による無線給電装置に適用される整合回路の例を示す概略図Schematic diagram showing an example of a matching circuit applied to a wireless power supply device according to an embodiment. 無線給電装置を適用した搬送システムにおける移動体の数と送電電極部材のインピーダンスの実部との関係を示す概略図Schematic diagram showing the relationship between the number of moving bodies and the actual impedance of the power transmission electrode member in a transport system to which a wireless power feeding device is applied. 無線給電装置を適用した搬送システムにおける移動体の数と送電電極部材のインピーダンスの虚部との関係を示す概略図Schematic diagram showing the relationship between the number of moving bodies and the imaginary part of the impedance of the power transmission electrode member in the transport system to which the wireless power feeding device is applied.

以下、無線給電装置の一実施形態について図面に基づいて説明する。
まず、無線給電装置を適用した搬送システムについて説明する。
図1に示すように、搬送システム10は、移動体11および無線給電装置12を備える。無線給電装置12は、送電電極部材13および受電電極部材14を備えている。送電電極部材13は、例えば工場や倉庫など、搬送システム10を用いる設備15に設けられている。移動体11は、図2に示すように設備15に設定されている走行路16に沿って移動する。移動体11は、図3に示すように整流回路部21、バッテリ22、制御部23および駆動部24を有している。整流回路部21は、受電電極部材14で受け取った高周波を直流に整流する。バッテリ22は、例えばリチウムイオン電池などの二次電池で構成され、整流回路部21で整流された電力を貯える。制御部23は、バッテリ22への充電を制御するとともに、駆動部24で発生する駆動力を制御する。駆動部24は、モータ25および車輪26を有しており、モータ25によって車輪26を回転駆動する。移動体11は、駆動部24で発生する駆動力によって走行路16に沿って移動する。移動体11は、図2に示すように送電電極部材13と反対側の端面に荷物などを搭載する荷台27を有している。
Hereinafter, an embodiment of the wireless power feeding device will be described with reference to the drawings.
First, a transport system to which a wireless power feeding device is applied will be described.
As shown in FIG. 1, the transport system 10 includes a mobile body 11 and a wireless power feeding device 12. The wireless power supply device 12 includes a power transmission electrode member 13 and a power reception electrode member 14. The power transmission electrode member 13 is provided in equipment 15 that uses the transfer system 10, such as a factory or a warehouse. As shown in FIG. 2, the moving body 11 moves along the traveling path 16 set in the equipment 15. As shown in FIG. 3, the moving body 11 has a rectifier circuit unit 21, a battery 22, a control unit 23, and a drive unit 24. The rectifier circuit unit 21 rectifies the high frequency received by the power receiving electrode member 14 to direct current. The battery 22 is composed of a secondary battery such as a lithium ion battery, and stores the electric power rectified by the rectifier circuit unit 21. The control unit 23 controls the charging of the battery 22 and also controls the driving force generated by the drive unit 24. The drive unit 24 has a motor 25 and wheels 26, and the wheels 26 are rotationally driven by the motor 25. The moving body 11 moves along the traveling path 16 by the driving force generated by the driving unit 24. As shown in FIG. 2, the moving body 11 has a loading platform 27 on which a load or the like is mounted on an end surface opposite to the power transmission electrode member 13.

本実施形態の搬送システム10の場合、送電電極部材13は、移動体11が移動する走行路16のうち一部に設けられている。移動体11は、走行路16に沿って移動する際に、走行路16の一部に設けられた送電電極部材13と対向することにより、送電電極部材13から駆動用の電源となる電力を受け取る。移動体11は、受電電極部材14で受け取った電力を、整流回路部21で整流した後、バッテリ22に貯える。送電電極部材13の全長は、1台の移動体11の全長よりも長く設定されている。送電電極部材13の全長を延長することにより、2台以上の移動体11が送電電極部材13から同時に電力を受け取ることができる。 In the case of the transport system 10 of the present embodiment, the power transmission electrode member 13 is provided in a part of the traveling path 16 in which the moving body 11 moves. When the moving body 11 moves along the traveling path 16, it faces the power transmission electrode member 13 provided in a part of the traveling path 16 and receives electric power serving as a power source for driving from the transmission electrode member 13. .. The moving body 11 stores the electric power received by the power receiving electrode member 14 in the battery 22 after being rectified by the rectifying circuit unit 21. The total length of the power transmission electrode member 13 is set to be longer than the total length of one moving body 11. By extending the total length of the power transmission electrode member 13, two or more moving bodies 11 can receive electric power from the power transmission electrode member 13 at the same time.

無線給電装置12を構成する送電電極部材13は、一対の並列するレール状に設けられている。送電電極部材13は、直線状に限らず、設備の構造に応じた曲線状や屈曲状であってもよい。送電電極部材13は、例えばアルミニウム、銅、あるいは鉄などの金属材料で形成され、板状である。無線給電装置12を構成する受電電極部材14は、移動体11に設けられている。受電電極部材14は、送電電極部材13と同様に導電性の材料で形成されている。受電電極部材14は、一対の送電電極部材13に対応して移動体11に一対設けられている。受電電極部材14は、送電電極部材13と対向している。この場合、送電電極部材13と受電電極部材14とは、所定の間隔を形成しつつ非接触で対向している。 The power transmission electrode member 13 constituting the wireless power feeding device 12 is provided in a pair of parallel rails. The power transmission electrode member 13 is not limited to a linear shape, but may be a curved shape or a bent shape according to the structure of the equipment. The power transmission electrode member 13 is made of a metal material such as aluminum, copper, or iron, and has a plate shape. The power receiving electrode member 14 constituting the wireless power feeding device 12 is provided on the moving body 11. The power receiving electrode member 14 is made of a conductive material like the power transmission electrode member 13. A pair of power receiving electrode members 14 are provided on the moving body 11 corresponding to the pair of power transmission electrode members 13. The power receiving electrode member 14 faces the power transmission electrode member 13. In this case, the power transmission electrode member 13 and the power reception electrode member 14 face each other in a non-contact manner while forming a predetermined interval.

このように、送電電極部材13と受電電極部材14との間に隙間を形成することにより、これらの間には誘電体となる空気が満たされる。これにより、送電電極部材13と受電電極部材14との間には、静電的な容量が確保される。そのため、送電電極部材13から受電電極部材14には、電界結合を利用して無線による電力の供給が行なわれる。 By forming a gap between the power transmission electrode member 13 and the power reception electrode member 14 in this way, air serving as a dielectric is filled between them. As a result, an electrostatic capacity is secured between the power transmission electrode member 13 and the power reception electrode member 14. Therefore, electric power is wirelessly supplied from the power transmission electrode member 13 to the power reception electrode member 14 by utilizing electric field coupling.

次に、本実施形態の無線給電装置12について詳細に説明する。
図1に示すように無線給電装置12は、上述した送電電極部材13および受電電極部材14に加え、高周波生成部31、送電側整合回路部32および電力回収部33を備えている。送電電極部材13は、高周波生成部31に接続している。高周波生成部31は、高周波を生成するE級インバータによって構成され、生成した高周波の電力を送電電極部材13に印加する。高周波生成部31は、主電源34に接続している。高周波生成部31は、主電源34から得られた電力を用いて高周波を生成する。なお、高周波生成部31は、E級インバータに限らず、高周波を生成可能であれば任意の構成とすることができる。
Next, the wireless power feeding device 12 of the present embodiment will be described in detail.
As shown in FIG. 1, the wireless power feeding device 12 includes a high frequency generation unit 31, a power transmission side matching circuit unit 32, and a power recovery unit 33 in addition to the power transmission electrode member 13 and the power reception electrode member 14 described above. The power transmission electrode member 13 is connected to the high frequency generation unit 31. The high frequency generation unit 31 is composed of a class E inverter that generates high frequencies, and applies the generated high frequency power to the power transmission electrode member 13. The high frequency generator 31 is connected to the main power supply 34. The high frequency generation unit 31 generates a high frequency using the electric power obtained from the main power supply 34. The high frequency generation unit 31 is not limited to the class E inverter, and may have any configuration as long as it can generate high frequencies.

送電側整合回路部32は、高周波生成部31と送電電極部材13との間に設けられている。一実施形態の場合、送電側整合回路部32は、図4に示すように高周波生成部31との間にバラン回路35を挟んでいる。送電側整合回路部32は、送電電極部材13のインピーダンスを飽和インピーダンスに設定するための回路である。すなわち、送電側整合回路部32は、送電電極部材13のインピーダンスが飽和インピーダンスとなるように整合されている。高周波生成部31と送電電極部材13との間に送電側整合回路部32を設けることにより、高周波生成部31で生成される高周波と送電電極部材13から発振される高周波との間の整合が図られる。なお、バラン回路35は、省略してもよい。 The power transmission side matching circuit unit 32 is provided between the high frequency generation unit 31 and the power transmission electrode member 13. In the case of one embodiment, the power transmission side matching circuit unit 32 sandwiches the balun circuit 35 with the high frequency generation unit 31 as shown in FIG. The power transmission side matching circuit unit 32 is a circuit for setting the impedance of the power transmission electrode member 13 to the saturation impedance. That is, the power transmission side matching circuit unit 32 is matched so that the impedance of the power transmission electrode member 13 becomes the saturation impedance. By providing the power transmission side matching circuit unit 32 between the high frequency generation unit 31 and the power transmission electrode member 13, matching between the high frequency generated by the high frequency generation unit 31 and the high frequency oscillated from the power transmission electrode member 13 is shown. Be done. The balun circuit 35 may be omitted.

電力回収部33は、図1に示すように回収側整合回路部41、整流回路部42およびコンバータ43を有している。回収側整合回路部41は、送電電極部材13に接続されている。回収側整合回路部41は、送電電極部材13と高周波生成部31との間に設けられている。一実施形態の場合、回収側整合回路部41は、図4に示すように整流回路部42との間にバラン回路44を挟んでいる。回収側整合回路部41は、送電側整合回路部32と同様に送電電極部材13のインピーダンスを飽和インピーダンスに設定するための回路である。すなわち、回収側整合回路部41は、送電電極部材13のインピーダンスが飽和インピーダンスとなるように整合されている。送電電極部材13と高周波生成部31との間に回収側整合回路部41を設けることにより、送電電極部材13から電力を回収する場合でも、高周波生成部31で生成される高周波と送電電極部材13から発振される高周波との間の整合が図られる。なお、バラン回路44は、省略してもよい。 As shown in FIG. 1, the power recovery unit 33 includes a recovery side matching circuit unit 41, a rectifier circuit unit 42, and a converter 43. The recovery side matching circuit unit 41 is connected to the power transmission electrode member 13. The recovery side matching circuit unit 41 is provided between the power transmission electrode member 13 and the high frequency generation unit 31. In the case of one embodiment, the recovery side matching circuit unit 41 sandwiches the balun circuit 44 with the rectifier circuit unit 42 as shown in FIG. The recovery side matching circuit unit 41 is a circuit for setting the impedance of the power transmission electrode member 13 to the saturation impedance, similarly to the power transmission side matching circuit unit 32. That is, the recovery side matching circuit unit 41 is matched so that the impedance of the power transmission electrode member 13 becomes the saturation impedance. By providing the recovery side matching circuit unit 41 between the power transmission electrode member 13 and the high frequency generation unit 31, even when power is recovered from the power transmission electrode member 13, the high frequency generated by the high frequency generation unit 31 and the power transmission electrode member 13 Matching with the high frequency oscillated from is achieved. The balun circuit 44 may be omitted.

送電側整合回路部32および回収側整合回路部41は、例えば図5および図6に示すような素子で構成された回路を有している。これら、図5および図6に示す送電側整合回路部32および回収側整合回路部41は、いずれも例示であり、機能を果たす範囲で任意の回路構成とすることができる。 The power transmission side matching circuit unit 32 and the recovery side matching circuit unit 41 have a circuit composed of elements as shown in FIGS. 5 and 6, for example. The power transmission side matching circuit unit 32 and the recovery side matching circuit unit 41 shown in FIGS. 5 and 6 are both exemplary, and can have any circuit configuration as long as they function.

図1に示す整流回路部42は、回収側整合回路部41を通して送電電極部材13から回収した高周波を直流に整流する。コンバータ43は、DC-DCコンバータで構成されており、整流回路部42で直流に整流された電力の電圧を変換し、高周波生成部31へ印加する。上記のような構成により、電力回収部33は、高周波生成部31から送電電極部材13に印加された送電用の電力のうち余剰となった電力を送電電極部材13から回収する。そして、電力回収部33は、回収した電力を高周波生成部31へ供給する機能を果たす。 The rectifying circuit unit 42 shown in FIG. 1 rectifies the high frequency collected from the power transmission electrode member 13 to direct current through the collecting side matching circuit unit 41. The converter 43 is composed of a DC-DC converter, and converts the voltage of the electric power rectified to direct current by the rectifier circuit unit 42 and applies it to the high frequency generation unit 31. With the above configuration, the power recovery unit 33 recovers the surplus power of the power for power transmission applied to the power transmission electrode member 13 from the high frequency generation unit 31 from the power transmission electrode member 13. Then, the power recovery unit 33 fulfills a function of supplying the recovered power to the high frequency generation unit 31.

次に、上記の構成による無線給電装置12の動作について詳細に説明する。
送電電極部材13のインピーダンスは、図7および図8に示すように飽和する傾向を示す。すなわち、送電電極部材13のインピーダンスは、送電電極部材13と対向する移動体11の数、つまり受電電極部材14の数に応じて変化する。具体的には、送電電極部材13におけるインピーダンスを実部と虚部とからなる複素数で表したとき、実数となる実部は、図7に示すように移動体11の台数とともに受電電極部材14の数が増加するにつれて小さくする。ところが、移動体11の数、つまり送電電極部材13から電力を受け取る受電電極部材14の数が一定数を超えると、移動体11の数が増加しても、インピーダンスの実部の変化はほとんど生じなくなる。このように、送電電極部材13におけるインピーダンスの実部は、電力を受け取る受電電極部材14の数が一定数を超えると、下限値で飽和する。
Next, the operation of the wireless power feeding device 12 according to the above configuration will be described in detail.
The impedance of the power transmission electrode member 13 tends to saturate as shown in FIGS. 7 and 8. That is, the impedance of the power transmission electrode member 13 changes according to the number of moving bodies 11 facing the power transmission electrode member 13, that is, the number of the power reception electrode members 14. Specifically, when the impedance of the power transmission electrode member 13 is represented by a complex number composed of a real part and an imaginary part, the real part, which is a real number, is the number of moving bodies 11 and the power receiving electrode member 14 as shown in FIG. Decrease as the number increases. However, when the number of moving bodies 11, that is, the number of receiving electrode members 14 receiving electric power from the power transmitting electrode member 13 exceeds a certain number, even if the number of moving bodies 11 increases, the actual part of the impedance changes almost completely. It disappears. As described above, the real part of the impedance in the power transmission electrode member 13 is saturated at the lower limit value when the number of the power receiving electrode members 14 receiving electric power exceeds a certain number.

一方、送電電極部材13のインピーダンスのうち虚数となる虚部は、図8に示すように移動体11の台数とともに受電電極部材14の数が増加するにつれて大きくなる。ところが、移動体11の数、つまり送電電極部材13から電力を受け取る受電電極部材14の数が一定数を超えると、移動体11の数が増加しても、インピーダンスの虚部の変化はほとんど生じなくなる。このように、送電電極部材13におけるインピーダンスの虚部は、電力を受け取る受電電極部材14の数が一定数を超えると、上限値で飽和する。以上のように、送電電極部材13のインピーダンスには、移動体11つまり受電電極部材14の数の変化にかかわらず、インピーダンスの変化がほとんど生じない飽和領域が含まれている。 On the other hand, the imaginary portion of the impedance of the power transmission electrode member 13, which is an imaginary number, increases as the number of the power receiving electrode members 14 increases with the number of moving bodies 11 as shown in FIG. However, when the number of moving bodies 11, that is, the number of receiving electrode members 14 receiving electric power from the power transmitting electrode member 13 exceeds a certain number, even if the number of moving bodies 11 increases, the change in the imaginary part of the impedance almost occurs. It disappears. As described above, the imaginary portion of the impedance in the power transmission electrode member 13 is saturated at the upper limit value when the number of the power receiving electrode members 14 receiving electric power exceeds a certain number. As described above, the impedance of the power transmission electrode member 13 includes a saturation region in which the impedance hardly changes regardless of the change in the number of moving bodies 11, that is, the power receiving electrode members 14.

この飽和領域つまり飽和インピーダンスのとき、移動体11の数、つまり送電電極部材13から電力を受け取る受電電極部材14の数が変化しても、送電電極部材13と受電電極部材14との間の整合にはほとんど影響が生じない。すなわち、送電電極部材13が飽和インピーダンスのとき、送電電極部材13から電力を受け取る受電電極部材14を搭載した移動体11の数が変化しても、送電電極部材13と受電電極部材14との間の電力の伝達効率はほとんど変化しない。そこで、本実施形態では、送電電極部材13のインピーダンスは、移動体11の数にかかわらず飽和インピーダンスに設定している。すなわち、本実施形態の場合、送電電極部材13のインピーダンスは、初期値として飽和インピーダンスに設定されている。つまり、送電電極部材13のインピーダンスは、初期値として実部が飽和する下限値に設定され、虚部が飽和する上限値に設定される。これにより、送電電極部材13と対向する移動体11つまり受電電極部材14の数にかかわらず、送電電極部材13のインピーダンスは一定の飽和インピーダンスに維持される。 In this saturation region, that is, the saturation impedance, even if the number of moving bodies 11, that is, the number of the power receiving electrode members 14 that receive power from the power transmission electrode member 13 changes, the alignment between the power transmission electrode member 13 and the power receiving electrode member 14 Has little effect. That is, when the power transmission electrode member 13 has a saturated impedance, even if the number of moving bodies 11 equipped with the power reception electrode member 14 that receives power from the power transmission electrode member 13 changes, the space between the power transmission electrode member 13 and the power reception electrode member 14 The power transmission efficiency of the power transmission is almost unchanged. Therefore, in the present embodiment, the impedance of the power transmission electrode member 13 is set to the saturation impedance regardless of the number of moving bodies 11. That is, in the case of the present embodiment, the impedance of the power transmission electrode member 13 is set to the saturation impedance as an initial value. That is, the impedance of the power transmission electrode member 13 is set as an initial value at a lower limit value at which the real part is saturated, and is set at an upper limit value at which the imaginary part is saturated. As a result, the impedance of the power transmission electrode member 13 is maintained at a constant saturation impedance regardless of the number of moving bodies 11 facing the power transmission electrode member 13, that is, the power reception electrode member 14.

以上説明した一実施形態では、送電電極部材13のインピーダンスを、飽和インピーダンスに設定している。これにより、送電電極部材13から受電電極部材14への電力の伝達効率は、電力の供給を受ける受電電極部材14の数の変化に対する影響が小さくなる。つまり、電力の伝達効率は、受電電極部材14の数に対して不感性が高くなる。その結果、送電電極部材13のインピーダンスを予め飽和インピーダンスに設定することにより、送電電極部材13の数の検出は不要となり、その数を検出するための構成も不要となる。したがって、対象となる受電電極部材14の数を光学的に検出することなく、伝達効率を向上することができる。 In one embodiment described above, the impedance of the power transmission electrode member 13 is set to the saturation impedance. As a result, the power transmission efficiency from the power transmission electrode member 13 to the power receiving electrode member 14 is less affected by the change in the number of power receiving electrode members 14 to be supplied with the power. That is, the power transmission efficiency is highly insensitive to the number of power receiving electrode members 14. As a result, by setting the impedance of the power transmission electrode member 13 to the saturation impedance in advance, it is not necessary to detect the number of the power transmission electrode members 13, and the configuration for detecting the number is also unnecessary. Therefore, the transmission efficiency can be improved without optically detecting the number of the target power receiving electrode members 14.

また、一実施形態では、送電電極部材13と受電電極部材14との整合のためにインピーダンスの変更や高周波の周波数を変更するといった制御が不要となる。つまり、一実施形態では、制御器による制御に依存することなく、送電電極部材13と受電電極部材14との間の整合が図られ、送電電極部材13から受電電極部材14への電力の伝達効率の維持が図られる。したがって、制御や機器の複雑化を招くことなく、受電電極部材14の数が変化しても、全体的な電力の伝達効率の向上を図ることができる。 Further, in one embodiment, control such as changing the impedance or changing the high frequency frequency is not required for matching the power transmission electrode member 13 and the power reception electrode member 14. That is, in one embodiment, the power transmission electrode member 13 and the power reception electrode member 14 are matched without depending on the control by the controller, and the power transmission efficiency from the power transmission electrode member 13 to the power reception electrode member 14 is achieved. Is maintained. Therefore, even if the number of the power receiving electrode members 14 changes, the overall power transmission efficiency can be improved without inviting complication of control and equipment.

さらに、一実施形態では、電力回収部33によって送電電極部材13に供給された電力のうち余剰の電力を回収している。回収された電力は、再び高周波生成部31から送電電極部材13へ供給される。これにより、余剰の電力が有効に利用される。したがって、全体的な電力の伝達効率の向上を図ることができる。 Further, in one embodiment, the surplus electric power of the electric power supplied to the power transmission electrode member 13 is recovered by the electric power recovery unit 33. The recovered electric power is again supplied from the high frequency generation unit 31 to the power transmission electrode member 13. As a result, the surplus electric power is effectively used. Therefore, it is possible to improve the overall power transmission efficiency.

以上説明した本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。
本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
The present invention described above is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.
Although the present disclosure has been described in accordance with the examples, it is understood that the present disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within a uniform range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

図面中、12は無線給電装置、13は送電電極部材、14は受電電極部材、31は高周波生成部、33は電力回収部、41は回収側整合回路部、42は整流回路部、43はコンバータを示す。 In the drawing, 12 is a wireless power feeding device, 13 is a power transmission electrode member, 14 is a power receiving electrode member, 31 is a high frequency generator, 33 is a power recovery unit, 41 is a recovery side matching circuit unit, 42 is a rectifier circuit unit, and 43 is a converter. Is shown.

Claims (1)

1つ以上の受電電極部材(14)と、
前記受電電極部材(14)と対向して設けられ、前記受電電極部材(14)との間の静電容量を用いた電界結合によって前記受電電極部材(14)へ無線で電力を供給する送電電極部材(13)と、
前記送電電極部材(13)に印加する高周波の電力を生成する高周波生成部(31)と、
前記高周波生成部(31)前記送電電極部材(13)との間に設けられている送電側整合回路部(32)と、
前記送電電極部材(13)から余剰の電力を回収する電力回収部(33)と、
を備え
前記電力回収部(33)は、
前記送電電極部材(13)に接続されている回収側整合回路部(41)と、
前記回収側整合回路部(41)から回収した高周波を整流する整流回路部(42)と、
前記整流回路部(42)で整流した電力の電圧を変換し、前記高周波生成部(31)へ印加するコンバータ(43)と、を有し、
前記高周波生成部(31)と前記送電電極部材(13)との間は前記送電側整合回路(32)により、前記電力回収部(33)を経由する前記送電電極部材(13)と前記高周波生成部(31)との間は前記回収側整合回路部(41)により、電力を供給する対象となる前記受電電極部材(14)の数が増加しても不感性が高くなる飽和インピーダンスによって整合されることにより、前記送電側整合回路部(32)と前記回収側整合回路部(41)との間も前記飽和インピーダンスで整合されている無線給電装置。
With one or more power receiving electrode members (14),
Power transmission that is provided so as to face the power receiving electrode member (14) and wirelessly supplies power to the power receiving electrode member (14) by electric field coupling using capacitance between the power receiving electrode member (14). Electrode member (13) and
A high-frequency generator (31) that generates high-frequency power applied to the power transmission electrode member (13), and a high-frequency generator (31).
A power transmission side matching circuit unit (32) provided between the high frequency generation unit (31) and the power transmission electrode member (13), and a power transmission side matching circuit unit (32).
A power recovery unit (33) that recovers excess power from the power transmission electrode member (13),
With
The power recovery unit (33)
The recovery side matching circuit unit (41) connected to the power transmission electrode member (13) and
A rectifier circuit unit (42) that rectifies high frequencies collected from the collection side matching circuit unit (41), and a rectifier circuit unit (42).
It has a converter (43) that converts the voltage of the electric power rectified by the rectifier circuit unit (42) and applies it to the high frequency generation unit (31).
Between the high frequency generation unit (31) and the transmission electrode member (13), the transmission electrode member (13) and the high frequency generation are generated via the power recovery unit (33) by the transmission side matching circuit (32). The recovery side matching circuit section (41) is matched with the section (31) by a saturation impedance that increases insensitivity even if the number of the power receiving electrode members (14) to be supplied with power increases. As a result, the wireless power feeding device in which the transmission side matching circuit unit (32) and the recovery side matching circuit unit (41) are also matched with the saturation impedance .
JP2017224659A 2017-11-22 2017-11-22 Wireless power supply Active JP7103779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017224659A JP7103779B2 (en) 2017-11-22 2017-11-22 Wireless power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017224659A JP7103779B2 (en) 2017-11-22 2017-11-22 Wireless power supply

Publications (2)

Publication Number Publication Date
JP2019097297A JP2019097297A (en) 2019-06-20
JP7103779B2 true JP7103779B2 (en) 2022-07-20

Family

ID=66972176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017224659A Active JP7103779B2 (en) 2017-11-22 2017-11-22 Wireless power supply

Country Status (1)

Country Link
JP (1) JP7103779B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7367608B2 (en) * 2020-05-15 2023-10-24 株式会社デンソー Contactless power supply line and its construction method
WO2022130439A1 (en) 2020-12-14 2022-06-23 三菱電機株式会社 Power transmission device and contactless power feeding system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078238A (en) 2011-09-30 2013-04-25 Takenaka Komuten Co Ltd Power supply system
JP2014121184A (en) 2012-12-17 2014-06-30 Furukawa Electric Co Ltd:The Wireless power transmission system
JP2015139279A (en) 2014-01-22 2015-07-30 ソニー株式会社 Power supply unit, power reception unit and power supply system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013078238A (en) 2011-09-30 2013-04-25 Takenaka Komuten Co Ltd Power supply system
JP2014121184A (en) 2012-12-17 2014-06-30 Furukawa Electric Co Ltd:The Wireless power transmission system
JP2015139279A (en) 2014-01-22 2015-07-30 ソニー株式会社 Power supply unit, power reception unit and power supply system

Also Published As

Publication number Publication date
JP2019097297A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
EP3654490B1 (en) Contactless power transmission system
JP4695691B2 (en) Non-contact charge battery and charger, battery charge set including these, and charge control method
JP5752506B2 (en) Wireless power supply method
KR102004541B1 (en) Method for controlling wireless power transmission in resonat wireless power transmission system, wireless power transmitting apparatus using the same, and wireless power receiving apparatus using the same
US20180062417A1 (en) Case for portable terminal having built-in battery
US20130015813A1 (en) Wireless power receiver
EP2587613A2 (en) Wireless power receiver for adjusting magnitude of wireless power
JP7103779B2 (en) Wireless power supply
JP5839105B2 (en) Power transmission device and power transmission control method
US20170174088A1 (en) Impedance control device and vehicular non-contact power receiving device
US20130249309A1 (en) Power receiving device and power feeding system
US9673658B2 (en) Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
JP6166915B2 (en) Power transmission device and power supply system
JP2019009981A (en) Wireless power transmission system, power transmission device, and power reception device
US10404092B2 (en) System, apparatus and method for facilitating wireless charging of one or more battery-powered devices
JP6918669B2 (en) A wireless power supply device, a transport system using the wireless power supply device, and a control method for the wireless power supply device.
KR102235673B1 (en) Wireless power trasmission method using inphase feeding with dual loops and apparatus using the method
US10784043B2 (en) Wireless power transmission device, wireless power reception device, and wireless charging system
KR101305657B1 (en) A wireless power transmission device and trnasmission method
US9729188B2 (en) Protecting wireless communication components in a highly resonant field
JP6726081B2 (en) Transport device
JP2019146371A (en) Automatic guided vehicle
JP7237302B2 (en) Wireless power supply device and factory equipment using the same
JP2018117404A (en) Power transmission unit of wireless power supply device
JP2012143093A (en) Proximity wireless charging ac adapter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220707

R150 Certificate of patent or registration of utility model

Ref document number: 7103779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150