WO2010103714A1 - Semiconductor device and method for producing the same - Google Patents

Semiconductor device and method for producing the same Download PDF

Info

Publication number
WO2010103714A1
WO2010103714A1 PCT/JP2010/000395 JP2010000395W WO2010103714A1 WO 2010103714 A1 WO2010103714 A1 WO 2010103714A1 JP 2010000395 W JP2010000395 W JP 2010000395W WO 2010103714 A1 WO2010103714 A1 WO 2010103714A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
conductive members
fin
gate electrode
diffusion layer
Prior art date
Application number
PCT/JP2010/000395
Other languages
French (fr)
Japanese (ja)
Inventor
中林隆
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010103714A1 publication Critical patent/WO2010103714A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41791Source or drain electrodes for field effect devices for transistors with a horizontal current flow in a vertical sidewall, e.g. FinFET, MuGFET

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a Fin-type transistor having a Fin-like active region and a manufacturing method thereof.
  • the Fin-type transistor uses the upper surface and side surface in the Fin-like active region as the channel of the MOS transistor, and therefore, a large drive current can be obtained.
  • gate control is improved because the gate voltage is applied from three directions of both side surfaces and the upper surface. As a result, the short channel effect, which is the biggest problem in miniaturization of devices, can be suppressed, so that it is expected as a next-generation device.
  • the driving capability of the Fin-type transistor greatly depends on the height of the Fin, and increases as the Fin height increases.
  • the Fin width is usually as small as about 20 nm, it is difficult to increase the Fin height in processing. For this reason, the driving capability per one Fin type transistor is determined by this processing limit.
  • a height of about 50 nm is used.
  • Many circuits having high load parasitic resistance and parasitic capacitance exist in semiconductor integrated circuits (LSIs). In order to drive these high load circuits, the gate width is as high as several ⁇ m to several tens ⁇ m. Driving ability is required.
  • a Fin portion of a Fin-type transistor is formed on an SOI substrate made of a substrate 200 made of silicon, a buried oxide film 201, and a silicon layer 202.
  • the first resist pattern 230 is formed.
  • the silicon layer 202 is etched using the resist patterns 230, 231 and 232 as masks, so that the Fin portion 233 in the Fin-type transistor and its A common source pad 234 and a common drain pad 235 connected to both ends are formed.
  • the gate insulating film 205 and polycrystalline silicon are formed on the buried oxide film 201 and the Fin portion 233 so as to intersect the Fin portion 233.
  • a gate electrode 206 is sequentially formed.
  • arsenic (As) ions are implanted four times in total, once each from four directions perpendicular to the normal of the SOI substrate and at a 45 ° angle to the gate electrode 206 and the Fin portion 233. Do.
  • a source side LDD diffusion layer 236, a source common pad portion 237, a drain side LDD diffusion layer 238 and a drain common pad portion 239 are formed in the Fin portion 233.
  • the gate electrode 206, the source side LDD diffusion layer 236, the source common pad portion 237, the drain side LDD diffusion layer 238, and the drain common pad portion 239 are included.
  • a silicon nitride film is deposited over the entire surface of the buried oxide film 201.
  • the silicon nitride film is etched back to form a sidewall 209 made of silicon nitride and covering at least the source-side LDD diffusion layer 236 and the drain-side LDD diffusion layer 238.
  • the source diffusion layer 240, the source common pad portion 241, the drain diffusion layer 242, and the drain common pad portion 243 are formed in the Fin portion 233.
  • a nickel silicide film 244 on the gate electrode is formed on the surface of the gate electrode 206 by a known salicide technique.
  • a nickel silicide film 245 on the source diffusion layer and a nickel silicide film 246 on the source common pad are formed on the surfaces of the source diffusion layer 240 and the source common pad portion 241.
  • a nickel silicide film 247 on the drain diffusion layer and a nickel silicide film 248 on the drain common pad are formed on the surfaces of the drain diffusion layer 242 and the drain common pad portion 243.
  • an interlayer insulating film 249 is formed on the buried oxide film 201 so as to cover the nickel silicide films 244 to 248. Thereafter, openings 250, 251 and 252 exposing the nickel silicide film 244 on the gate electrode, the nickel silicide film 246 on the source common pad, and the nickel silicide film 248 on the common drain pad are respectively formed in the formed interlayer insulating film 249. Form.
  • the openings 250, 251 and 252 are filled with a tungsten film, and contact plugs 253, 254 and 255 are formed.
  • metal wirings 256 connected to the respective contact plugs 253, 254 and 255 are formed on the interlayer insulating film 249, respectively. Form.
  • the semiconductor device using the conventional manufacturing method has the following problems. That is, by the double patterning composed of the steps of FIGS. 16 and 17, the resist patterns 230 to 232 are formed with substantially planar openings.
  • the silicon layer 202 shown in FIG. 18 is etched, the end of the opening is rounded due to the etching characteristics, and the planar shape thereof is almost elliptical.
  • the retraction amount of the opening due to the rounding is about 50 nm in the case of Multi-Fin in the 80 nm space. This amount of receding increases as miniaturization progresses and the space becomes narrower. Since this rounding substantially widens the Fin width, it cannot be used for the channel portion of the Fin-type transistor.
  • An object of the present invention is to solve the above-mentioned problems and to realize a multi-fin transistor having a small layout area and a high driving capability without increasing the number of process steps.
  • the semiconductor device has a configuration in which the end portions of each Fin portion are connected to each other by one contact instead of the configuration in which the source / drain common pad region is formed in the Fin portion.
  • a semiconductor device includes a plurality of rectangular parallelepiped conductive members (Fin) formed on a substrate and spaced apart from each other in parallel, and a plurality of conductive members.
  • a gate electrode formed so as to intersect with each conductive member, and a contact electrically connected to at least two conductive members in the vicinity of at least one end of the plurality of conductive members. I have.
  • the contact is provided in the vicinity of at least one end of the plurality of conductive members and electrically connected to at least two conductive members. For this reason, since the plurality of conductive members (Fin) do not need to be provided with a common pad portion for the source or drain, the length of the Fin portion can be shortened. As a result, the layout area of the Multi-Fin transistor can be reduced, the parasitic resistance can be kept low, and the driving capability can be improved.
  • the substrate and the plurality of conductive members may be insulated by an insulating film, and the contact may reach the insulating film.
  • the contact may be formed at a position closer to the gate electrode side than the ends of the plurality of conductive members.
  • the semiconductor device can be further miniaturized.
  • the contacts may be formed inside the conductive members located at both ends of the plurality of conductive members.
  • the semiconductor device can be further miniaturized.
  • the method of manufacturing a semiconductor device includes a step of arranging a plurality of rectangular parallelepiped conductive members on a substrate in parallel with a space between each other, and intersecting each conductive member on the plurality of conductive members. And forming a gate electrode through an insulating film, and forming a source / drain diffusion layer from each conductive member by implanting impurities into each conductive member using the gate electrode as a mask, After forming the source / drain diffusion layer, forming an interlayer insulating film on the substrate so as to cover the gate electrode and each conductive member, and at least one end of the plurality of conductive members with respect to the interlayer insulating film A step of forming an opening in the vicinity of the portion and exposing at least two conductive members, and a step of forming a contact electrically connected to the exposed conductive member in the opening. To have.
  • an opening is formed in the interlayer insulating film in the vicinity of at least one end of the plurality of conductive members and exposing at least two conductive members.
  • a contact that is electrically connected to the exposed conductive member is formed on the portion.
  • the opening may be formed so as to reach the insulating film in the step of forming the opening.
  • the opening in the step of forming the opening, may be formed at a position closer to the gate electrode side than the ends of the plurality of conductive members.
  • the opening in the step of forming the opening, may be formed inside the conductive members positioned at both ends of the plurality of conductive members.
  • FIG. 1A and 1B show a semiconductor device according to an embodiment of the present invention
  • FIG. 1A is a perspective view
  • FIG. 1B is a plan view
  • 2A and 2B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention
  • FIG. 2A is a perspective view
  • FIG. 2B is a plan view
  • It is. 3A and 3B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention
  • FIG. 3A is a perspective view
  • FIG. 3B is a plan view.
  • FIG. 4 (a) and 4 (b) show one step of the method of manufacturing a semiconductor device according to one embodiment of the present invention
  • FIG. 4 (a) is a perspective view
  • FIG. 4 (b) is a plan view.
  • FIG. 5A and 5B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention
  • FIG. 5A is a perspective view
  • FIG. 5B is a plan view.
  • FIG. 6 (a) and 6 (b) show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention
  • FIG. 6 (a) is a perspective view
  • FIG. 6 (b) is a plan view.
  • FIG. 7A to FIG. 7C show one step of the method of manufacturing the semiconductor device according to one embodiment of the present invention
  • FIG. 7A is a perspective view
  • FIG. 7B is a plan view.
  • FIG. 7C is a cross-sectional view taken along the line VIIc-VIIc in FIG.
  • FIG. 8A and FIG. 8B show one step of the method of manufacturing a semiconductor device according to one embodiment of the present invention
  • FIG. 8A is a perspective view
  • FIG. 8B is a plan view.
  • FIG. 9A to FIG. 9C show one step of the method of manufacturing the semiconductor device according to one embodiment of the present invention
  • FIG. 9A is a perspective view
  • FIG. 9B is a plan view
  • FIG. 9C is a cross-sectional view taken along the line IXc-IXc in FIG.
  • FIG. 10A is a plan view showing the layout of the patterning mask for the silicon layer of the semiconductor device according to one embodiment of the present invention
  • FIG. 10B is the silicon pattern after etching, the gate electrode, and the contact plug. It is a top view which shows a layout.
  • FIG. 11A is a plan view showing a layout of a patterning mask for a silicon layer of a semiconductor device according to a conventional example
  • FIG. 11B is a plan view showing a layout of a silicon pattern, a gate electrode and a contact plug after etching.
  • FIG. FIG. 12 is a graph showing a simulation result of Id-Vd characteristics in the semiconductor device according to one embodiment of the present invention together with a conventional example.
  • FIG. 13A and FIG. 13B show a semiconductor device according to a first modification of one embodiment of the present invention
  • FIG. 13A is a plan view of the main part
  • FIG. 13A is a plan view of the main part
  • FIG. 14A and 14B show a semiconductor device according to a second modification of the embodiment of the present invention.
  • FIG. 14A is a plan view of the main part, and FIG. It is sectional drawing in the XIVb-XIVb line
  • FIG. 15A and FIG. 15B show a semiconductor device according to a third modification of one embodiment of the present invention,
  • FIG. 15A is a plan view of the main part, and FIG. FIG. 16 is a cross-sectional view taken along line XVb-XVb in FIG. 16 (a) and 16 (b) show one step in the method of manufacturing a semiconductor device according to the conventional example, FIG.
  • FIG. 16 (a) is a perspective view
  • FIG. 16 (b) is a plan view
  • 17 (a) and 17 (b) show one step of the manufacturing method of the semiconductor device according to the conventional example
  • FIG. 17 (a) is a perspective view
  • FIG. 17 (b) is a plan view
  • 18 (a) and 18 (b) show one step of the manufacturing method of the semiconductor device according to the conventional example
  • FIG. 18 (a) is a perspective view
  • FIG. 18 (b) is a plan view
  • FIG. 19A and FIG. 19B show one step of a method of manufacturing a semiconductor device according to a conventional example
  • FIG. 19A is a perspective view
  • FIG. 19B is a plan view.
  • FIG. 20 (a) and 20 (b) show a step of the manufacturing method of the semiconductor device according to the conventional example
  • FIG. 20 (a) is a perspective view
  • FIG. 20 (b) is a plan view
  • FIG. 21A and FIG. 21B show one process of the manufacturing method of the semiconductor device according to the conventional example
  • FIG. 21A is a perspective view
  • FIG. 21B is a plan view
  • 22 (a) and 22 (b) show one step in the method of manufacturing a semiconductor device according to the conventional example
  • FIG. 22 (a) is a perspective view
  • FIG. 22 (b) is a plan view
  • FIG. 23A and FIG. 23B show one process of the manufacturing method of the semiconductor device according to the conventional example
  • FIG. 23A is a perspective view
  • FIG. 23A is a perspective view
  • FIG. 23A is a perspective view
  • FIG. 23A is a perspective view
  • FIG. 23A is a perspective view
  • FIG. 23A is a perspective view
  • FIG. 23B is a plan view.
  • 24 (a) to 24 (c) show one step in the method of manufacturing a semiconductor device according to the conventional example, FIG. 24 (a) is a perspective view, and FIG. 24 (b) is a plan view.
  • 24 (c) is a cross-sectional view taken along the line XXIVc-XXIVc in FIG. 24 (a).
  • FIG. 1A and 1B are semiconductor devices according to the present invention, showing an N-channel Multi-Fin type transistor, FIG. 1A being a perspective view, and FIG. 1B being a plan view.
  • FIG. 1A being a perspective view
  • FIG. 1B being a plan view.
  • an embedded oxide film 101 made of silicon oxide having a thickness of 80 nm is formed on the main surface of a substrate 100 made of silicon.
  • a plurality of rectangular parallelepiped source diffusion layers 110 and drain diffusion layers 111 made of silicon each having a height of 50 nm are spaced apart from each other. They are arranged in parallel.
  • a gate electrode 106 is formed which intersects with each Fin portion and is formed with a gate insulating film (not shown) interposed therebetween.
  • nitriding is performed at the lower portion of each side surface of the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111, and at the intersection of the side surfaces of the gate electrode 106, the source diffusion layer 110, and the gate electrode 106, the drain diffusion layer 111 A side wall 109 made of silicon is formed.
  • An interlayer insulating film 115 made of silicon oxide is formed on the buried oxide film 101 so as to cover the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111.
  • a gate electrode portion contact plug 119 that is electrically connected to the gate electrode 106 is formed in the interlayer insulating film 115.
  • the nickel silicide films formed on the surfaces of the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111 are omitted.
  • FIGS. 2 to 9 show a method for manufacturing an N-channel Multi-Fin transistor according to this embodiment.
  • (a) of each figure is a perspective view
  • (b) is a top view
  • (c) is sectional drawing.
  • an SOI substrate made of a buried oxide film 101 having a thickness of 80 nm and a silicon layer 102 having a thickness of 50 nm
  • a resist pattern 103 for forming the Fin portion of the Fin transistor is formed by lithography.
  • the silicon layer 102 is etched using the resist pattern 103 as a mask to form a plurality of Fin portions 104 from the silicon layer 102.
  • a mask formation film made of silicon nitride or the like is formed on the silicon layer 102, and then the mask formation film is patterned using the resist pattern 103 as a mask, and the silicon layer 102 is formed using the patterned mask formation film as a hard mask. May be processed.
  • the gate insulating film 105 and polycrystalline silicon are formed on the buried oxide film 101 and the Fin portion 104 so as to intersect the Fin portion 104.
  • a gate electrode 106 is sequentially formed.
  • a silicon oxide film or a silicon nitride film can be used for the gate insulating film 105.
  • a high dielectric constant film such as hafnia (hafnium oxide) or zirconium oxide (zirconia) may be used.
  • the gate electrode 106 may be a stacked film of a conductive film containing metal such as titanium nitride and silicon, or a metal film such as tungsten, instead of polycrystalline silicon.
  • arsenic (As) ions are implanted at an acceleration energy of 2 keV, a dose of 2 ⁇ 10 14 cm ⁇ 2 , and at an angle of 45 ° with respect to the normal of the SOI substrate.
  • a total of four times of ion implantation are performed once from four directions perpendicular to the Fin portion 104.
  • the source side LDD diffusion layer 107 and the drain side LDD diffusion layer 108 are formed in each Fin portion 104.
  • the thickness of the entire surface of the buried oxide film 101 including the gate electrode 106, the source side LDD diffusion layer 107 and the drain side LDD diffusion layer 108 is increased.
  • a silicon nitride film having a thickness of 30 nm is deposited. Thereafter, the deposited silicon nitride film is etched back to form a sidewall 109 made of silicon nitride and covering at least the source-side LDD diffusion layer 107 and the drain-side LDD diffusion layer 108.
  • a nickel film is deposited over the entire surface of the buried oxide film 101 including the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111. . Thereafter, a predetermined heat treatment is performed, and a nickel silicide film 112 on the gate electrode, a nickel silicide film 113 on the source diffusion layer, and a nickel silicide film 114 on the drain diffusion layer are formed by a salicide technique for removing an unnecessary nickel film, respectively.
  • the nickel silicide films 112 to 114 are covered on the buried oxide film 101 by, for example, chemical vapor deposition (CVD).
  • An interlayer insulating film 115 made of silicon oxide is formed.
  • a first contact opening 116 that exposes the nickel silicide film 112 on the gate electrode, the nickel silicide film 113 on the source diffusion layer, and the nickel silicide film 114 on the drain diffusion layer to the formed interlayer insulating film 115,
  • a second contact opening 117 and a third contact opening 118 are formed.
  • the second contact opening 117 is formed across the plurality of source diffusion layers 110 composed of a plurality of Fin portions, and the bottom thereof is each source diffusion layer. It is formed deeper than the upper surface of 110. The same applies to the third contact opening 118 that exposes the nickel silicide films 114 on the plurality of drain diffusion layers.
  • each contact opening 116, 117, and 118 is filled with a tungsten film, so that the gate electrode contact plug 119 and the source diffusion layer contact plug 120 are filled.
  • the drain diffusion layer portion contact plug 121 is formed.
  • the gate electrode contact plug 119 On the interlayer insulating film 115, the gate electrode contact plug 119, the source diffusion layer contact plug 120, and the drain diffusion are formed. A plurality of metal wirings 122 connected to the layer contact plug 121 are formed.
  • each source diffusion layer 110 is in contact with one source diffusion layer portion contact plug 120 on the upper surface and side surfaces thereof, so that the contact resistance can be reduced.
  • FIG. 10A shows the layout of the patterning mask for the silicon layer according to this embodiment
  • FIG. 10B shows the layout of the etched silicon pattern, gate electrode, and contact plug.
  • 11A and 11B are for comparison
  • FIG. 11A shows a layout of a patterning mask for a silicon layer according to a conventional example
  • FIG. 11B shows a silicon pattern after etching
  • 2 shows a layout of gate electrodes and contact plugs. 10
  • the same reference numerals as those in FIGS. 2, 3, 4, and 8 are given.
  • FIG. 11 the same reference numerals as those in FIGS. 16, 18, 19, and 23 are given. is doing.
  • the length of the opening (gap) of the etched silicon layer is retreated (a part in the figure), and the rounded part (FIG. Middle part b) occurs. Since the width of the Fin portion 233 is increased by the a portion and the b portion, it cannot be used as a transistor channel.
  • the length of the Fin portion 104 is shortened after etching the silicon layer (e in the figure).
  • OPC optical proximity correction
  • the length of the Fin portion 104 is determined by the respective overlapping margins (f in the figure) of the source diffusion layer portion contact plug 120, the drain diffusion layer portion contact plug 121, and the gate electrode 106.
  • FIG. 12 shows the simulation result of the current-voltage (Id-Vd) characteristics of the N-channel Multi-Fin transistor according to this embodiment together with the conventional example.
  • the length of the fin portion 104 having a narrow high resistance width can be reduced from 60 nm of the conventional example to 20 nm.
  • the parasitic resistance can be reduced.
  • the driving power of the transistor can be improved by about 15%.
  • the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are formed so as to reach the buried oxide film 101. ing. In this way, the contact area of each contact plug 120, 121 can be increased, and the contact resistance can be reduced.
  • the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are provided from the end portions of the plurality of Fin portions 104. Is also formed at a position close to the gate electrode 106 side. In this case, since the occupied area per transistor is reduced, the transistor can be further miniaturized and highly integrated.
  • the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are provided at both ends of the plurality of Fin portions 104. It is formed inside the Fin portion 104. In this case, since the occupied area per transistor is reduced, the transistor can be further miniaturized and highly integrated.
  • the semiconductor device and the manufacturing method thereof according to the present invention can reduce the length of Fin, and as a result, a Multi-Fin type transistor having a small layout area and a high driving capability without increasing the number of process steps. It can be realized and is useful for a Fin-type transistor and a manufacturing method thereof.
  • Substrate 101 Embedded oxide film 103 Resist pattern 104 Fin portion 105 Gate insulating film 106 Gate electrode 107 Source side LDD diffusion layer 108 Drain side LDD diffusion layer 109 Side wall 110 Source diffusion layer 111 Drain diffusion layer 112 Nickel silicide film 113 on gate electrode Nickel silicide film on diffusion layer 114 Nickel silicide film on drain diffusion layer 115 Interlayer insulating film 116 First contact opening 117 Second contact opening 118 Third contact opening 119 Gate electrode contact plug 120 Source diffusion layer Contact plug 121 Drain diffusion layer contact plug 122 Metal wiring

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Disclosed is a semiconductor device comprised of fin portions composed of a plurality of source diffusion layers (110) and a plurality of drain diffusion layers (111); and a gate electrode (106) is formed on the fin portions via a gate insulation layer (105) so as to intersect with the fin portions. The source diffusion layers (110) and the drain diffusion layers (111) are formed in the form of a rectangular parallelepiped, on a substrate (100) composed of silicone, and are arranged in parallel and spaced at a distance. A contact plug (120) for the source diffusion layers, which is electrically connected to at least two of the fin portions, is formed in at least one end portion of the fin portions.

Description

半導体装置及びその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置及びその製造方法に関し、特に、Fin(フィン)状の活性領域を有するFin型トランジスタ及びその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a Fin-type transistor having a Fin-like active region and a manufacturing method thereof.
 Fin型トランジスタは、Fin状の活性領域における上面及び側面をMOSトランジスタのチャネルとして用いており、このため、大きな駆動電流を得ることができる。その上、両側面と上面との三方向からゲート電圧が印加されるため、ゲート制御性が向上する。その結果、デバイスの微細化において最大の課題である短チャネル効果を抑制できるため、次世代のデバイスとして期待されている。 The Fin-type transistor uses the upper surface and side surface in the Fin-like active region as the channel of the MOS transistor, and therefore, a large drive current can be obtained. In addition, gate control is improved because the gate voltage is applied from three directions of both side surfaces and the upper surface. As a result, the short channel effect, which is the biggest problem in miniaturization of devices, can be suppressed, so that it is expected as a next-generation device.
 Fin型トランジスタの駆動能力は、Finの高さに大きく依存し、Finの高さが高くなるにつれて増大する。しかしながら、Finの幅は通常20nm程度と極めて小さいため、Finの高さを高くすることは加工の上で困難である。このため、1つのFin型トランジスタ当たりの駆動能力は、この加工限界により決定される。通常50nm程度の高さが用いられており、この場合、実効的なゲート幅は、Finの高さ(50nm)×2+Finの幅(20nm)=120nmとなる。半導体集積回路(LSI)には、高負荷の寄生抵抗及び寄生容量を有する回路が多く存在しており、これらの高負荷回路を駆動するには、ゲート幅で数μm~数十μm相当の高駆動能力が必要とされる。ところが、単位ゲート幅当たりの駆動能力が、プレーナ型トランジスタと比べてFin型トランジスタの方が大きいからといって、それに対応することは極めて困難である。このため、Fin型トランジスタにおいては、複数のFin型トランジスタを並列に接続する(Multi-Fin)ことによって、高駆動能力を実現する構成が提案されている。 The driving capability of the Fin-type transistor greatly depends on the height of the Fin, and increases as the Fin height increases. However, since the Fin width is usually as small as about 20 nm, it is difficult to increase the Fin height in processing. For this reason, the driving capability per one Fin type transistor is determined by this processing limit. Usually, a height of about 50 nm is used. In this case, the effective gate width is Fin height (50 nm) × 2 + Fin width (20 nm) = 120 nm. Many circuits having high load parasitic resistance and parasitic capacitance exist in semiconductor integrated circuits (LSIs). In order to drive these high load circuits, the gate width is as high as several μm to several tens μm. Driving ability is required. However, it is extremely difficult to cope with the Fin type transistor because the driving capability per unit gate width is larger in the Fin type transistor than in the planar type transistor. For this reason, in the Fin-type transistor, a configuration has been proposed in which a plurality of Fin-type transistors are connected in parallel (Multi-Fin) to realize high driving capability.
 以下、図16~図24を参照しながら、下記の特許文献1に示されている、NチャネルMulti-Fin型トランジスタの製造方法について説明する。なお、各図の(a)は斜視図であり、(b)は平面図であり、(c)は断面図である。 Hereinafter, a method for manufacturing an N-channel Multi-Fin transistor disclosed in Patent Document 1 described below will be described with reference to FIGS. In addition, (a) of each figure is a perspective view, (b) is a top view, (c) is sectional drawing.
 まず、図16(a)及び図16(b)に示すように、シリコンからなる基板200、埋め込み酸化膜201及びシリコン層202からなるSOI基板の上に、Fin型トランジスタのFin部を構成するための第1のレジストパターン230を形成する。 First, as shown in FIGS. 16A and 16B, a Fin portion of a Fin-type transistor is formed on an SOI substrate made of a substrate 200 made of silicon, a buried oxide film 201, and a silicon layer 202. The first resist pattern 230 is formed.
 次に、図17(a)及び図17(b)に示すように、第1のレジストパターン230の両端部と接続するように、ソース共通パッド部を構成するための第2のレジストパターン231及びドレイン共通パッド部を構成するための第3のレジストパターン232をそれぞれ形成する。 Next, as shown in FIGS. 17A and 17B, a second resist pattern 231 for configuring a source common pad portion so as to be connected to both ends of the first resist pattern 230, and A third resist pattern 232 for forming the drain common pad portion is formed.
 次に、図18(a)及び図18(b)に示すように、各レジストパターン230、231及び232をマスクとして、シリコン層202をエッチングすることにより、Fin型トランジスタにおけるFin部233、並びにその両端部と接続されるソース共通パッド部234及びドレイン共通パッド部235を形成する。 Next, as shown in FIGS. 18A and 18B, the silicon layer 202 is etched using the resist patterns 230, 231 and 232 as masks, so that the Fin portion 233 in the Fin-type transistor and its A common source pad 234 and a common drain pad 235 connected to both ends are formed.
 次に、図19(a)及び図19(b)に示すように、埋め込み酸化膜201及びFin部233の上に該Fin部233と交差するように、ゲート絶縁膜205と多結晶シリコンからなるゲート電極206とを順次形成する。続いて、ヒ素(As)イオンを、SOI基板の法線に対して45°の角度で且つゲート電極206及びFin部233に対して垂直な四方向から1回ずつ、計4回のイオン注入を行う。これにより、Fin部233には、ソース側LDD拡散層236、ソース共通パッド部237、ドレイン側LDD拡散層238及びドレイン共通パッド部239が形成される。 Next, as shown in FIGS. 19A and 19B, the gate insulating film 205 and polycrystalline silicon are formed on the buried oxide film 201 and the Fin portion 233 so as to intersect the Fin portion 233. A gate electrode 206 is sequentially formed. Subsequently, arsenic (As) ions are implanted four times in total, once each from four directions perpendicular to the normal of the SOI substrate and at a 45 ° angle to the gate electrode 206 and the Fin portion 233. Do. As a result, a source side LDD diffusion layer 236, a source common pad portion 237, a drain side LDD diffusion layer 238 and a drain common pad portion 239 are formed in the Fin portion 233.
 次に、図20(a)及び図20(b)に示すように、ゲート電極206、ソース側LDD拡散層236、ソース共通パッド部237、ドレイン側LDD拡散層238及びドレイン共通パッド部239を含め、埋め込み酸化膜201の上の全面にわたって、シリコン窒化膜を堆積する。その後、シリコン窒化膜に対してエッチバックを行って、窒化シリコンからなり、少なくともソース側LDD拡散層236及びドレイン側LDD拡散層238を覆う側壁209を形成する。続いて、Asイオンを、SOI基板の法線に対して45°の角度で且つゲート電極206及びFin部233に対して垂直な四方向から1回ずつ、計4回のイオン注入を行う。これにより、Fin部233には、ソース拡散層240、ソース共通パッド部241、ドレイン拡散層242及びドレイン共通パッド部243が形成される。 Next, as shown in FIGS. 20A and 20B, the gate electrode 206, the source side LDD diffusion layer 236, the source common pad portion 237, the drain side LDD diffusion layer 238, and the drain common pad portion 239 are included. Then, a silicon nitride film is deposited over the entire surface of the buried oxide film 201. Thereafter, the silicon nitride film is etched back to form a sidewall 209 made of silicon nitride and covering at least the source-side LDD diffusion layer 236 and the drain-side LDD diffusion layer 238. Subsequently, As ions are implanted four times in total from the four directions perpendicular to the gate electrode 206 and the Fin portion 233 at an angle of 45 ° with respect to the normal line of the SOI substrate. Accordingly, the source diffusion layer 240, the source common pad portion 241, the drain diffusion layer 242, and the drain common pad portion 243 are formed in the Fin portion 233.
 次に、図21(a)及び図21(b)に示すように、周知のサリサイド技術により、ゲート電極206の表面に、ゲート電極上ニッケルシリサイド膜244を形成する。同様に、ソース拡散層240及びソース共通パッド部241の表面には、ソース拡散層上ニッケルシリサイド膜245及びソース共通パッド上ニッケルシリサイド膜246を形成する。また、ドレイン拡散層242及びドレイン共通パッド部243の表面には、ドレイン拡散層上ニッケルシリサイド膜247及びドレイン共通パッド上ニッケルシリサイド膜248を形成する。 Next, as shown in FIGS. 21A and 21B, a nickel silicide film 244 on the gate electrode is formed on the surface of the gate electrode 206 by a known salicide technique. Similarly, a nickel silicide film 245 on the source diffusion layer and a nickel silicide film 246 on the source common pad are formed on the surfaces of the source diffusion layer 240 and the source common pad portion 241. Also, a nickel silicide film 247 on the drain diffusion layer and a nickel silicide film 248 on the drain common pad are formed on the surfaces of the drain diffusion layer 242 and the drain common pad portion 243.
 次に、図22(a)及び図22(b)に示すように、埋め込み酸化膜201の上に各ニッケルシリサイド膜244~248を覆うように層間絶縁膜249を成膜する。その後、成膜した層間絶縁膜249に対して、ゲート電極上ニッケルシリサイド膜244、ソース共通パッド上ニッケルシリサイド膜246及びドレイン共通パッド上ニッケルシリサイド膜248をそれぞれ露出する開口部250、251及び252を形成する。 Next, as shown in FIGS. 22A and 22B, an interlayer insulating film 249 is formed on the buried oxide film 201 so as to cover the nickel silicide films 244 to 248. Thereafter, openings 250, 251 and 252 exposing the nickel silicide film 244 on the gate electrode, the nickel silicide film 246 on the source common pad, and the nickel silicide film 248 on the common drain pad are respectively formed in the formed interlayer insulating film 249. Form.
 次に、図23(a)及び図23(b)に示すように、各開口部250、251及び252をタングステン膜で埋めて、コンタクトプラグ253、254及び255を形成する。 Next, as shown in FIGS. 23A and 23B, the openings 250, 251 and 252 are filled with a tungsten film, and contact plugs 253, 254 and 255 are formed.
 次に、図24(a)、図24(b)及び図24(c)に示すように、層間絶縁膜249の上に、各コンタクトプラグ253、254及び255とそれぞれ接続される金属配線256を形成する。 Next, as shown in FIGS. 24A, 24B and 24C, metal wirings 256 connected to the respective contact plugs 253, 254 and 255 are formed on the interlayer insulating film 249, respectively. Form.
 このように製造されたNチャネルMulti-Fin型トランジスタは、図16及び図17の工程で示されるように、シリコン層202のレジストマスクによるパターニングをFin部233と共通パッド部234、235との2回に分けること(ダブルパターニング)により、Fin部233の狭ピッチ化が可能となる。このため、単位面積当たりのFinの本数を増加する、すなわちMulti-Fin型トランジスタの駆動能力を増加させることができる。 In the N-channel Multi-Fin type transistor manufactured in this way, as shown in the steps of FIGS. 16 and 17, patterning of the silicon layer 202 with a resist mask is performed using a Fin portion 233 and common pad portions 234 and 235. By dividing into two times (double patterning), the pitch of the Fin portions 233 can be reduced. Therefore, the number of Fins per unit area can be increased, that is, the driving capability of the Multi-Fin type transistor can be increased.
国際公開第2008/059440号パンフレットInternational Publication No. 2008/059440 Pamphlet
 しかしながら、前記従来の製造方法を用いた半導体装置には以下のような問題がある。すなわち、図16及び図17の工程からなるダブルパターニングによって、各レジストパターン230~232は、ほぼ平面方形状の開口部が形成される。しかしながら、図18に示すシリコン層202のエッチング時には、エッチング特性により開口部端が丸まり、その平面形状はほぼ楕円形となる。この丸まりによる開口部の後退量は、80nmスペースのMulti-Finでは約50nm程度となる。この後退量は、微細化が進み、スペースが狭くなるにつれて拡大する。この丸まりによってFin幅が実質的に広がるため、Fin型トランジスタのチャネル部に用いることができない。このため、この丸まり領域を避けるように、Fin部233をあらかじめ長くすることが必要となる。その結果、Multi-Fin型トランジスタのレイアウト面積が大きくなる。さらには、断面が小さく抵抗が高いFin部233の長さの増大によって寄生抵抗が増加することから、トランジスタの特性が劣化する。 However, the semiconductor device using the conventional manufacturing method has the following problems. That is, by the double patterning composed of the steps of FIGS. 16 and 17, the resist patterns 230 to 232 are formed with substantially planar openings. However, when the silicon layer 202 shown in FIG. 18 is etched, the end of the opening is rounded due to the etching characteristics, and the planar shape thereof is almost elliptical. The retraction amount of the opening due to the rounding is about 50 nm in the case of Multi-Fin in the 80 nm space. This amount of receding increases as miniaturization progresses and the space becomes narrower. Since this rounding substantially widens the Fin width, it cannot be used for the channel portion of the Fin-type transistor. For this reason, it is necessary to lengthen the Fin portion 233 in advance so as to avoid this rounded region. As a result, the layout area of the multi-fin transistor increases. Furthermore, since the parasitic resistance increases due to the increase in the length of the Fin portion 233 having a small cross section and a high resistance, the characteristics of the transistor deteriorate.
 本発明は、前記の問題を解決し、プロセス工程数を増加させることなく、レイアウト面積が小さく且つ駆動能力が高いMulti-Fin型トランジスタを実現できるようにすることを目的とする。 An object of the present invention is to solve the above-mentioned problems and to realize a multi-fin transistor having a small layout area and a high driving capability without increasing the number of process steps.
 前記の目的を達成するため、本発明は、半導体装置を、Fin部にソースドレイン共通パッド領域を形成する構成に代えて、各Fin部の端部同士を一のコンタクトで接続する構成とする。 In order to achieve the above object, according to the present invention, the semiconductor device has a configuration in which the end portions of each Fin portion are connected to each other by one contact instead of the configuration in which the source / drain common pad region is formed in the Fin portion.
 具体的に、本発明に係る半導体装置は、基板の上に形成され、それぞれ互いに間隔をおき且つ並列に配置された直方体状の複数の導電性部材(Fin)と、複数の導電性部材の上に、各導電性部材と交差するように形成されたゲート電極と、複数の導電性部材における少なくとも一方の端部の近傍で、且つ少なくとも2つの導電性部材と電気的に接続されたコンタクトとを備えている。 Specifically, a semiconductor device according to the present invention includes a plurality of rectangular parallelepiped conductive members (Fin) formed on a substrate and spaced apart from each other in parallel, and a plurality of conductive members. A gate electrode formed so as to intersect with each conductive member, and a contact electrically connected to at least two conductive members in the vicinity of at least one end of the plurality of conductive members. I have.
 本発明の半導体装置によると、複数の導電性部材における少なくとも一方の端部の近傍で、且つ少なくとも2つの導電性部材と電気的に接続されたコンタクトを備えている。このため、複数の導電性部材(Fin)は、ソース又はドレインの共通パッド部を設ける必要がなくなるので、Fin部の長さを短くすることができる。これにより、Multi-Fin型トランジスタのレイアウト面積を縮小し、且つ寄生抵抗を低く抑え、駆動能力を向上することができる。 According to the semiconductor device of the present invention, the contact is provided in the vicinity of at least one end of the plurality of conductive members and electrically connected to at least two conductive members. For this reason, since the plurality of conductive members (Fin) do not need to be provided with a common pad portion for the source or drain, the length of the Fin portion can be shortened. As a result, the layout area of the Multi-Fin transistor can be reduced, the parasitic resistance can be kept low, and the driving capability can be improved.
 本発明の半導体装置において、基板と複数の導電性部材とは絶縁膜により絶縁され、コンタクトは、絶縁膜に達していてもよい。 In the semiconductor device of the present invention, the substrate and the plurality of conductive members may be insulated by an insulating film, and the contact may reach the insulating film.
 このようにすると、コンタクト抵抗を下げることができる。 In this way, the contact resistance can be lowered.
 また、本発明の半導体装置において、コンタクトは、複数の導電性部材の端部よりもゲート電極側に近い位置に形成されていてもよい。 In the semiconductor device of the present invention, the contact may be formed at a position closer to the gate electrode side than the ends of the plurality of conductive members.
 このようにすると、半導体装置をより微細化することができる。 In this way, the semiconductor device can be further miniaturized.
 また、本発明の半導体装置において、コンタクトは、複数の導電性部材の両端に位置する導電性部材よりも内側に形成されていてもよい。 In the semiconductor device of the present invention, the contacts may be formed inside the conductive members located at both ends of the plurality of conductive members.
 このようにすると、半導体装置をより微細化することができる。 In this way, the semiconductor device can be further miniaturized.
 本発明に係る半導体装置の製造方法は、基板の上に直方体状の複数の導電性部材を互いに間隔をおいて並列に配置する工程と、複数の導電性部材の上に各導電性部材と交差すると共にそれぞれ絶縁膜を介在させてゲート電極を形成する工程と、ゲート電極をマスクとして、各導電性部材に不純物を注入することにより、各導電性部材からソースドレイン拡散層を形成する工程と、ソースドレイン拡散層を形成した後、基板の上に、ゲート電極及び各導電性部材を覆うように層間絶縁膜を形成する工程と、層間絶縁膜に対し、複数の導電性部材における少なくとも一方の端部の近傍で且つ少なくとも2つの導電性部材を露出する開口部を形成する工程と、開口部に、露出した導電性部材と電気的に接続されるコンタクトを形成する工程とを備えている。 The method of manufacturing a semiconductor device according to the present invention includes a step of arranging a plurality of rectangular parallelepiped conductive members on a substrate in parallel with a space between each other, and intersecting each conductive member on the plurality of conductive members. And forming a gate electrode through an insulating film, and forming a source / drain diffusion layer from each conductive member by implanting impurities into each conductive member using the gate electrode as a mask, After forming the source / drain diffusion layer, forming an interlayer insulating film on the substrate so as to cover the gate electrode and each conductive member, and at least one end of the plurality of conductive members with respect to the interlayer insulating film A step of forming an opening in the vicinity of the portion and exposing at least two conductive members, and a step of forming a contact electrically connected to the exposed conductive member in the opening. To have.
 本発明の半導体装置の製造方法によると、層間絶縁膜に対し、複数の導電性部材における少なくとも一方の端部の近傍で且つ少なくとも2つの導電性部材を露出する開口部を形成し、その後、開口部に、露出した導電性部材と電気的に接続されるコンタクトを形成する。このため、複数の導電性部材(Fin)は、ソース又はドレインの共通パッド部を設ける必要がなくなるので、Finの長さを短くすることができる。これにより、Multi-Fin型トランジスタのレイアウト面積を縮小し、且つ寄生抵抗を低く抑え、駆動能力を向上することができる。 According to the method for manufacturing a semiconductor device of the present invention, an opening is formed in the interlayer insulating film in the vicinity of at least one end of the plurality of conductive members and exposing at least two conductive members. A contact that is electrically connected to the exposed conductive member is formed on the portion. For this reason, since the plurality of conductive members (Fin) do not need to be provided with a common pad portion for the source or drain, the length of Fin can be shortened. As a result, the layout area of the Multi-Fin transistor can be reduced, the parasitic resistance can be kept low, and the driving capability can be improved.
 本発明の半導体装置の製造方法は、開口部を形成する工程において、開口部は絶縁膜に達するように形成してもよい。 In the method for manufacturing a semiconductor device of the present invention, the opening may be formed so as to reach the insulating film in the step of forming the opening.
 また、本発明の半導体装置の製造方法は、開口部を形成する工程において、開口部は、複数の導電性部材の端部よりもゲート電極側に近い位置に形成してもよい。 In the method for manufacturing a semiconductor device of the present invention, in the step of forming the opening, the opening may be formed at a position closer to the gate electrode side than the ends of the plurality of conductive members.
 また、本発明の半導体装置の製造方法は、開口部を形成する工程において、開口部は、前記複数の導電性部材の両端に位置する導電性部材よりも内側に形成してもよい。 Further, in the method of manufacturing a semiconductor device of the present invention, in the step of forming the opening, the opening may be formed inside the conductive members positioned at both ends of the plurality of conductive members.
 本発明に係る半導体装置及びその製造方法によれば、複数の導電性部材(Fin)の電気的な接続を一のコンタクトで行うことにより、共通パッド部を設ける必要がなくなるため、Finの長さを短くすることができるので、プロセス工程数を増加させることなく、レイアウト面積が小さく且つ駆動能力が高いMulti-Fin型トランジスタを実現することができる。 According to the semiconductor device and the method of manufacturing the same according to the present invention, it is not necessary to provide a common pad portion by electrically connecting a plurality of conductive members (Fin) with one contact. Therefore, a multi-fin transistor having a small layout area and a high driving capability can be realized without increasing the number of process steps.
図1(a)及び図1(b)は本発明の一実施形態に係る半導体装置を示し、図1(a)は斜視図であり、図1(b)は平面図である。1A and 1B show a semiconductor device according to an embodiment of the present invention, FIG. 1A is a perspective view, and FIG. 1B is a plan view. 図2(a)及び図2(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図2(a)は斜視図であり、図2(b)は平面図である。2A and 2B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention, FIG. 2A is a perspective view, and FIG. 2B is a plan view. It is. 図3(a)及び図3(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図3(a)は斜視図であり、図3(b)は平面図である。3A and 3B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention, FIG. 3A is a perspective view, and FIG. 3B is a plan view. It is. 図4(a)及び図4(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図4(a)は斜視図であり、図4(b)は平面図である。4 (a) and 4 (b) show one step of the method of manufacturing a semiconductor device according to one embodiment of the present invention, FIG. 4 (a) is a perspective view, and FIG. 4 (b) is a plan view. It is. 図5(a)及び図5(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図5(a)は斜視図であり、図5(b)は平面図である。5A and 5B show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention, FIG. 5A is a perspective view, and FIG. 5B is a plan view. It is. 図6(a)及び図6(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図6(a)は斜視図であり、図6(b)は平面図である。6 (a) and 6 (b) show a step of the method of manufacturing the semiconductor device according to the embodiment of the present invention, FIG. 6 (a) is a perspective view, and FIG. 6 (b) is a plan view. It is. 図7(a)~図7(c)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図7(a)は斜視図であり、図7(b)は平面図であり、図7(c)は図7(a)のVIIc-VIIc線における断面図である。FIG. 7A to FIG. 7C show one step of the method of manufacturing the semiconductor device according to one embodiment of the present invention, FIG. 7A is a perspective view, and FIG. 7B is a plan view. FIG. 7C is a cross-sectional view taken along the line VIIc-VIIc in FIG. 図8(a)及び図8(b)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図8(a)は斜視図であり、図8(b)は平面図である。FIG. 8A and FIG. 8B show one step of the method of manufacturing a semiconductor device according to one embodiment of the present invention, FIG. 8A is a perspective view, and FIG. 8B is a plan view. It is. 図9(a)~図9(c)は本発明の一実施形態に係る半導体装置の製造方法の一工程を示し、図9(a)は斜視図であり、図9(b)は平面図であり、図9(c)は図9(a)のIXc-IXc線における断面図である。FIG. 9A to FIG. 9C show one step of the method of manufacturing the semiconductor device according to one embodiment of the present invention, FIG. 9A is a perspective view, and FIG. 9B is a plan view. FIG. 9C is a cross-sectional view taken along the line IXc-IXc in FIG. 図10(a)は本発明の一実施形態に係る半導体装置のシリコン層用のパターニングマスクのレイアウトを示す平面図であり、図10(b)はエッチング後のシリコンパターン、ゲート電極及びコンタクトプラグのレイアウトを示す平面図である。FIG. 10A is a plan view showing the layout of the patterning mask for the silicon layer of the semiconductor device according to one embodiment of the present invention, and FIG. 10B is the silicon pattern after etching, the gate electrode, and the contact plug. It is a top view which shows a layout. 図11(a)は従来例に係る半導体装置のシリコン層用のパターニングマスクのレイアウトを示す平面図であり、図11(b)はエッチング後のシリコンパターン、ゲート電極及びコンタクトプラグのレイアウトを示す平面図である。FIG. 11A is a plan view showing a layout of a patterning mask for a silicon layer of a semiconductor device according to a conventional example, and FIG. 11B is a plan view showing a layout of a silicon pattern, a gate electrode and a contact plug after etching. FIG. 図12は本発明の一実施形態に係る半導体装置におけるId-Vd特性のシミュレーション結果を従来例と共に示したグラフである。FIG. 12 is a graph showing a simulation result of Id-Vd characteristics in the semiconductor device according to one embodiment of the present invention together with a conventional example. 図13(a)及び図13(b)は本発明の一実施形態の第1変形例に係る半導体装置を示し、図13(a)は要部の平面図であり、図13(b)は図13(a)のXIIIb-XIIIb線における断面図である。FIG. 13A and FIG. 13B show a semiconductor device according to a first modification of one embodiment of the present invention, FIG. 13A is a plan view of the main part, and FIG. It is sectional drawing in the XIIIb-XIIIb line | wire of Fig.13 (a). 図14(a)及び図14(b)は本発明の一実施形態の第2変形例に係る半導体装置を示し、図14(a)は要部の平面図であり、図14(b)は図14(a)のXIVb-XIVb線における断面図である。14A and 14B show a semiconductor device according to a second modification of the embodiment of the present invention. FIG. 14A is a plan view of the main part, and FIG. It is sectional drawing in the XIVb-XIVb line | wire of Fig.14 (a). 図15(a)及び図15(b)は本発明の一実施形態の第3変形例に係る半導体装置を示し、図15(a)は要部の平面図であり、図15(b)は図15(a)のXVb-XVb線における断面図である。FIG. 15A and FIG. 15B show a semiconductor device according to a third modification of one embodiment of the present invention, FIG. 15A is a plan view of the main part, and FIG. FIG. 16 is a cross-sectional view taken along line XVb-XVb in FIG. 図16(a)及び図16(b)は従来例に係る半導体装置の製造方法の一工程を示し、図16(a)は斜視図であり、図16(b)は平面図である。16 (a) and 16 (b) show one step in the method of manufacturing a semiconductor device according to the conventional example, FIG. 16 (a) is a perspective view, and FIG. 16 (b) is a plan view. 図17(a)及び図17(b)は従来例に係る半導体装置の製造方法の一工程を示し、図17(a)は斜視図であり、図17(b)は平面図である。17 (a) and 17 (b) show one step of the manufacturing method of the semiconductor device according to the conventional example, FIG. 17 (a) is a perspective view, and FIG. 17 (b) is a plan view. 図18(a)及び図18(b)は従来例に係る半導体装置の製造方法の一工程を示し、図18(a)は斜視図であり、図18(b)は平面図である。18 (a) and 18 (b) show one step of the manufacturing method of the semiconductor device according to the conventional example, FIG. 18 (a) is a perspective view, and FIG. 18 (b) is a plan view. 図19(a)及び図19(b)は従来例に係る半導体装置の製造方法の一工程を示し、図19(a)は斜視図であり、図19(b)は平面図である。FIG. 19A and FIG. 19B show one step of a method of manufacturing a semiconductor device according to a conventional example, FIG. 19A is a perspective view, and FIG. 19B is a plan view. 図20(a)及び図20(b)は従来例に係る半導体装置の製造方法の一工程を示し、図20(a)は斜視図であり、図20(b)は平面図である。20 (a) and 20 (b) show a step of the manufacturing method of the semiconductor device according to the conventional example, FIG. 20 (a) is a perspective view, and FIG. 20 (b) is a plan view. 図21(a)及び図21(b)は従来例に係る半導体装置の製造方法の一工程を示し、図21(a)は斜視図であり、図21(b)は平面図である。FIG. 21A and FIG. 21B show one process of the manufacturing method of the semiconductor device according to the conventional example, FIG. 21A is a perspective view, and FIG. 21B is a plan view. 図22(a)及び図22(b)は従来例に係る半導体装置の製造方法の一工程を示し、図22(a)は斜視図であり、図22(b)は平面図である。22 (a) and 22 (b) show one step in the method of manufacturing a semiconductor device according to the conventional example, FIG. 22 (a) is a perspective view, and FIG. 22 (b) is a plan view. 図23(a)及び図23(b)は従来例に係る半導体装置の製造方法の一工程を示し、図23(a)は斜視図であり、図23(b)は平面図である。FIG. 23A and FIG. 23B show one process of the manufacturing method of the semiconductor device according to the conventional example, FIG. 23A is a perspective view, and FIG. 23B is a plan view. 図24(a)~図24(c)は従来例に係る半導体装置の製造方法の一工程を示し、図24(a)は斜視図であり、図24(b)は平面図であり、図24(c)は図24(a)のXXIVc-XXIVc線における断面図である。24 (a) to 24 (c) show one step in the method of manufacturing a semiconductor device according to the conventional example, FIG. 24 (a) is a perspective view, and FIG. 24 (b) is a plan view. 24 (c) is a cross-sectional view taken along the line XXIVc-XXIVc in FIG. 24 (a).
 (一実施形態)
 本発明の第1の実施形態について図面を参照しながら説明する。
(One embodiment)
A first embodiment of the present invention will be described with reference to the drawings.
 図1(a)及び図1(b)は本発明に係る半導体装置であって、NチャネルMulti-Fin型トランジスタを示し、図1(a)は斜視図であり、図1(b)は平面図である。 1A and 1B are semiconductor devices according to the present invention, showing an N-channel Multi-Fin type transistor, FIG. 1A being a perspective view, and FIG. 1B being a plan view. FIG.
 図1(a)及び図1(b)に示すように、例えば、シリコンからなる基板100の主面上には、厚さが80nmの酸化シリコンからなる埋め込み酸化膜101が形成されている。該埋め込み酸化膜101の上には、それぞれ高さが50nmのシリコンからなる直方体状の複数(ここでは3つ)のFin部からなるソース拡散層110及びドレイン拡散層111が、互いに間隔をおき且つ並列に配置されている。 As shown in FIGS. 1A and 1B, for example, an embedded oxide film 101 made of silicon oxide having a thickness of 80 nm is formed on the main surface of a substrate 100 made of silicon. On the buried oxide film 101, a plurality of rectangular parallelepiped source diffusion layers 110 and drain diffusion layers 111 made of silicon each having a height of 50 nm are spaced apart from each other. They are arranged in parallel.
 Fin部の上には、各Fin部と交差すると共にそれぞれゲート絶縁膜(図示せず)を介在させて形成されたゲート電極106が形成されている。 On the Fin portion, a gate electrode 106 is formed which intersects with each Fin portion and is formed with a gate insulating film (not shown) interposed therebetween.
 また、ゲート電極106、ソース拡散層110及びドレイン拡散層111の各側面の下部、さらにはゲート電極106とソース拡散層110及びゲート電極106とドレイン拡散層111との側面の交差部には、窒化シリコンからなる側壁109が形成されている。 Further, nitriding is performed at the lower portion of each side surface of the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111, and at the intersection of the side surfaces of the gate electrode 106, the source diffusion layer 110, and the gate electrode 106, the drain diffusion layer 111 A side wall 109 made of silicon is formed.
 埋め込み酸化膜101の上には、ゲート電極106、ソース拡散層110及びドレイン拡散層111を覆うように、酸化シリコンからなる層間絶縁膜115が形成されている。層間絶縁膜115には、ゲート電極106と電気的に接続されるゲート電極部コンタクトプラグ119が形成されている。また、Fin部であるソース拡散層110及びドレイン拡散層111とそれぞれ電気的に接続される、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121が形成されている。なお、ここでは、ゲート電極106、ソース拡散層110及びドレイン拡散層111の表面に形成されるニッケルシリサイド膜は省略している。 An interlayer insulating film 115 made of silicon oxide is formed on the buried oxide film 101 so as to cover the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111. A gate electrode portion contact plug 119 that is electrically connected to the gate electrode 106 is formed in the interlayer insulating film 115. In addition, a source diffusion layer portion contact plug 120 and a drain diffusion layer portion contact plug 121 that are electrically connected to the source diffusion layer 110 and the drain diffusion layer 111 that are Fin portions, respectively, are formed. Here, the nickel silicide films formed on the surfaces of the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111 are omitted.
 以下、前記のように構成された半導体装置の製造方法について図面を参照しながら説明する。 Hereinafter, a method of manufacturing the semiconductor device configured as described above will be described with reference to the drawings.
 図2~図9は本実施形態に係るNチャネルMulti-Fin型トランジスタの製造方法を示している。なお、各図の(a)は斜視図であり、(b)は平面図であり、(c)は断面図である。 2 to 9 show a method for manufacturing an N-channel Multi-Fin transistor according to this embodiment. In addition, (a) of each figure is a perspective view, (b) is a top view, (c) is sectional drawing.
 まず、図2(a)及び図2(b)に示すように、シリコンからなる基板100、厚さが80nmの埋め込み酸化膜101及び厚さが50nmのシリコン層102からなるSOI基板の上に、リソグラフィ法により、Fin型トランジスタのFin部を構成するためのレジストパターン103を形成する。 First, as shown in FIGS. 2A and 2B, on a substrate 100 made of silicon, an SOI substrate made of a buried oxide film 101 having a thickness of 80 nm and a silicon layer 102 having a thickness of 50 nm, A resist pattern 103 for forming the Fin portion of the Fin transistor is formed by lithography.
 次に、図3(a)及び図3(b)に示すように、レジストパターン103をマスクとしてシリコン層102をエッチングして、シリコン層102から複数のFin部104を形成する。なお、シリコン層102の上に窒化シリコン等からなるマスク形成膜を成膜し、その後、レジストパターン103をマスクとしてマスク形成膜をパターニングし、パターニングされたマスク形成膜をハードマスクとして、シリコン層102を加工してもよい。 Next, as shown in FIGS. 3A and 3B, the silicon layer 102 is etched using the resist pattern 103 as a mask to form a plurality of Fin portions 104 from the silicon layer 102. Note that a mask formation film made of silicon nitride or the like is formed on the silicon layer 102, and then the mask formation film is patterned using the resist pattern 103 as a mask, and the silicon layer 102 is formed using the patterned mask formation film as a hard mask. May be processed.
 次に、図4(a)及び図4(b)に示すように、埋め込み酸化膜101及びFin部104の上に該Fin部104と交差するように、ゲート絶縁膜105と多結晶シリコンからなるゲート電極106とを順次形成する。なお、ゲート絶縁膜105には、シリコン酸化膜又はシリコン窒化膜を用いることができる。さらには、ハフニア(酸化ハフニウム)又は酸化ジルコニウム(ジルコニア)等の高誘電率膜を用いてもよい。また、ゲート電極106には、多結晶シリコンに代えて、窒化チタン等の金属を含む導電膜とシリコンとの積層膜又はタングステン等の金属膜を用いても構わない。続いて、ヒ素(As)イオンを、加速エネルギーが2keVで、ドーズ量が2×1014cm-2の注入条件で、且つSOI基板の法線に対して45°の角度で、ゲート電極106及びFin部104に対して垂直な四方向から1回ずつ、計4回のイオン注入を行う。これにより、各Fin部104には、ソース側LDD拡散層107及びドレイン側LDD拡散層108が形成される。 Next, as shown in FIGS. 4A and 4B, the gate insulating film 105 and polycrystalline silicon are formed on the buried oxide film 101 and the Fin portion 104 so as to intersect the Fin portion 104. A gate electrode 106 is sequentially formed. Note that a silicon oxide film or a silicon nitride film can be used for the gate insulating film 105. Furthermore, a high dielectric constant film such as hafnia (hafnium oxide) or zirconium oxide (zirconia) may be used. The gate electrode 106 may be a stacked film of a conductive film containing metal such as titanium nitride and silicon, or a metal film such as tungsten, instead of polycrystalline silicon. Subsequently, arsenic (As) ions are implanted at an acceleration energy of 2 keV, a dose of 2 × 10 14 cm −2 , and at an angle of 45 ° with respect to the normal of the SOI substrate. A total of four times of ion implantation are performed once from four directions perpendicular to the Fin portion 104. As a result, the source side LDD diffusion layer 107 and the drain side LDD diffusion layer 108 are formed in each Fin portion 104.
 次に、図5(a)及び図5(b)に示すように、ゲート電極106、ソース側LDD拡散層107及びドレイン側LDD拡散層108を含め、埋め込み酸化膜101の上の全面にわたって、厚さが30nmのシリコン窒化膜を堆積する。その後、堆積したシリコン窒化膜に対してエッチバックを行って、窒化シリコンからなり、少なくともソース側LDD拡散層107及びドレイン側LDD拡散層108を覆う側壁109を形成する。続いて、Asイオンを、加速エネルギーが20keVで、ドーズ量が1.5×1015cm-2の注入条件で、且つSOI基板の法線に対して45°の角度で、ゲート電極106及びFin部104に対して垂直な四方向から1回ずつ、計4回のイオン注入を行う。これにより、各Fin部104には、ソース拡散層110及びドレイン拡散層111が形成される。 Next, as shown in FIGS. 5A and 5B, the thickness of the entire surface of the buried oxide film 101 including the gate electrode 106, the source side LDD diffusion layer 107 and the drain side LDD diffusion layer 108 is increased. A silicon nitride film having a thickness of 30 nm is deposited. Thereafter, the deposited silicon nitride film is etched back to form a sidewall 109 made of silicon nitride and covering at least the source-side LDD diffusion layer 107 and the drain-side LDD diffusion layer 108. Subsequently, As ions are implanted into the gate electrode 106 and the Fin under the implantation conditions of an acceleration energy of 20 keV and a dose of 1.5 × 10 15 cm −2 and at an angle of 45 ° with respect to the normal of the SOI substrate. A total of four ion implantations are performed once from four directions perpendicular to the portion 104. Thus, the source diffusion layer 110 and the drain diffusion layer 111 are formed in each Fin portion 104.
 次に、図6(a)及び図6(b)に示すように、ゲート電極106、ソース拡散層110及びドレイン拡散層111を含め、埋め込み酸化膜101の上の全面にわたって、ニッケル膜を堆積する。その後、所定の熱処理を行い、不要なニッケル膜を除去するサリサイド技術により、ゲート電極上ニッケルシリサイド膜112、ソース拡散層上ニッケルシリサイド膜113及びドレイン拡散層上ニッケルシリサイド膜114をそれぞれ形成する。 Next, as shown in FIGS. 6A and 6B, a nickel film is deposited over the entire surface of the buried oxide film 101 including the gate electrode 106, the source diffusion layer 110, and the drain diffusion layer 111. . Thereafter, a predetermined heat treatment is performed, and a nickel silicide film 112 on the gate electrode, a nickel silicide film 113 on the source diffusion layer, and a nickel silicide film 114 on the drain diffusion layer are formed by a salicide technique for removing an unnecessary nickel film, respectively.
 次に、図7(a)及び図7(b)に示すように、例えば化学的気相堆積(CVD)法により、埋め込み酸化膜101の上に各ニッケルシリサイド膜112~114を覆うように、酸化シリコンからなる層間絶縁膜115を成膜する。その後、成膜した層間絶縁膜115に対して、ゲート電極上ニッケルシリサイド膜112、ソース拡散層上ニッケルシリサイド膜113及びドレイン拡散層上ニッケルシリサイド膜114をそれぞれ露出する第1のコンタクト開口部116、第2のコンタクト開口部117及び第3のコンタクト開口部118を形成する。ここで、図7(c)の断面図に示すように、第2のコンタクト開口部117は、複数のFin部からなる複数のソース拡散層110に跨って形成され、その底部は各ソース拡散層110の上面より深く形成される。なお、複数のドレイン拡散層上ニッケルシリサイド膜114を露出する第3のコンタクト開口部118も同様である。 Next, as shown in FIGS. 7A and 7B, the nickel silicide films 112 to 114 are covered on the buried oxide film 101 by, for example, chemical vapor deposition (CVD). An interlayer insulating film 115 made of silicon oxide is formed. Thereafter, a first contact opening 116 that exposes the nickel silicide film 112 on the gate electrode, the nickel silicide film 113 on the source diffusion layer, and the nickel silicide film 114 on the drain diffusion layer to the formed interlayer insulating film 115, A second contact opening 117 and a third contact opening 118 are formed. Here, as shown in the cross-sectional view of FIG. 7C, the second contact opening 117 is formed across the plurality of source diffusion layers 110 composed of a plurality of Fin portions, and the bottom thereof is each source diffusion layer. It is formed deeper than the upper surface of 110. The same applies to the third contact opening 118 that exposes the nickel silicide films 114 on the plurality of drain diffusion layers.
 次に、図8(a)及び図8(b)に示すように、各コンタクト開口部116、117及び118をタングステン膜で埋めることにより、ゲート電極部コンタクトプラグ119、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121をそれぞれ形成する。 Next, as shown in FIGS. 8A and 8B, each contact opening 116, 117, and 118 is filled with a tungsten film, so that the gate electrode contact plug 119 and the source diffusion layer contact plug 120 are filled. The drain diffusion layer portion contact plug 121 is formed.
 次に、図9(a)、図9(b)及び図9(c)に示すように、層間絶縁膜115の上に、ゲート電極部コンタクトプラグ119、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121と接続される複数の金属配線122をそれぞれ形成する。 Next, as shown in FIGS. 9A, 9B, and 9C, on the interlayer insulating film 115, the gate electrode contact plug 119, the source diffusion layer contact plug 120, and the drain diffusion are formed. A plurality of metal wirings 122 connected to the layer contact plug 121 are formed.
 以下、本実施形態に係る半導体装置の効果について、図9(c)、図10、図11及び図12を用いて説明する。 Hereinafter, effects of the semiconductor device according to the present embodiment will be described with reference to FIGS. 9C, 10, 11, and 12.
 まず、図9(c)に示すように、各ソース拡散層110は、一のソース拡散層部コンタクトプラグ120とその上面及び側面で接触しているため、コンタクト抵抗を低減することができる。 First, as shown in FIG. 9C, each source diffusion layer 110 is in contact with one source diffusion layer portion contact plug 120 on the upper surface and side surfaces thereof, so that the contact resistance can be reduced.
 図10(a)は本実施形態に係るシリコン層用のパターニングマスクのレイアウトを示し、図10(b)はエッチング後のシリコンパターン、ゲート電極及びコンタクトプラグのレイアウトを示している。図11(a)及び図11(b)は比較用であって、図11(a)は従来例に係るシリコン層用のパターニングマスクのレイアウトを示し、図11(b)はエッチング後のシリコンパターン、ゲート電極及びコンタクトプラグのレイアウトを示している。なお、図10においては、図2、図3、図4及び図8と同一の符号を付しており、図11においては、図16、図18、図19及び図23と同一の符号を付している。 FIG. 10A shows the layout of the patterning mask for the silicon layer according to this embodiment, and FIG. 10B shows the layout of the etched silicon pattern, gate electrode, and contact plug. 11A and 11B are for comparison, FIG. 11A shows a layout of a patterning mask for a silicon layer according to a conventional example, and FIG. 11B shows a silicon pattern after etching. 2 shows a layout of gate electrodes and contact plugs. 10, the same reference numerals as those in FIGS. 2, 3, 4, and 8 are given. In FIG. 11, the same reference numerals as those in FIGS. 16, 18, 19, and 23 are given. is doing.
 図11(b)に示すように、従来例では、シリコン層に対するエッチング後に、エッチングされたシリコン層の開口部(空隙部)の長さが後退して(図中a部)、丸まり部(図中b部)が発生する。このa部及びb部によってFin部233の幅が大きくなるため、トランジスタのチャネルとして用いることはできない。 As shown in FIG. 11B, in the conventional example, after etching the silicon layer, the length of the opening (gap) of the etched silicon layer is retreated (a part in the figure), and the rounded part (FIG. Middle part b) occurs. Since the width of the Fin portion 233 is increased by the a portion and the b portion, it cannot be used as a transistor channel.
 その上、ゲート電極206とシリコンパターンとの重ね合わせマージン(図中c)を考慮する必要がある。Fin部233のピッチが100nm、各Fin幅が20nm、ゲート長が30nm、及びコンタクトプラグの径が50nmであると想定した場合、トランジスタピッチ(コンタクトプラグ254の中心とコンタクトプラグ255の中心との距離)は、2×(a+b)+d(=(2×c+ゲート長))+コンタクトプラグ径=2×(10nm+40nm)+(2×20nm+30nm)+50nm=220nmとなる。 In addition, it is necessary to consider the overlap margin (c in the figure) between the gate electrode 206 and the silicon pattern. Assuming that the pitch of the Fin portion 233 is 100 nm, each Fin width is 20 nm, the gate length is 30 nm, and the diameter of the contact plug is 50 nm, the transistor pitch (the distance between the center of the contact plug 254 and the center of the contact plug 255) ) Is 2 × (a + b) + d (= (2 × c + gate length)) + contact plug diameter = 2 × (10 nm + 40 nm) + (2 × 20 nm + 30 nm) +50 nm = 220 nm.
 これに対し、図10(b)に示すように、本実施形態においては、シリコン層に対するエッチング後に、Fin部104の長さが短くなる(図中e)、しかしながら、最終加工形状に合わせて、Fin部104のマスクレイアウトを長く設計する等、極めて簡単な光近接効果補正(OPC)により、Fin部104の後退を抑制することができる。このため、Fin部104の長さは、ソース拡散層部コンタクトプラグ120、ドレイン拡散層部コンタクトプラグ121及びゲート電極106のそれぞれの重ね合わせマージン(図中f)により決定されることになる。 On the other hand, as shown in FIG. 10B, in this embodiment, the length of the Fin portion 104 is shortened after etching the silicon layer (e in the figure). However, according to the final processing shape, The receding of the Fin portion 104 can be suppressed by an extremely simple optical proximity correction (OPC) such as designing a long mask layout of the Fin portion 104. Therefore, the length of the Fin portion 104 is determined by the respective overlapping margins (f in the figure) of the source diffusion layer portion contact plug 120, the drain diffusion layer portion contact plug 121, and the gate electrode 106.
 従来例と同一の条件を想定した場合、トランジスタピッチは、g(=(2×f+ゲート長))+コンタクト径=(2×20nm+30nm)+50nm=120nmとなる。すなわち、本実施形態においては、トランジスタピッチを約55%に縮小することができる。 Assuming the same conditions as in the conventional example, the transistor pitch is g (= (2 × f + gate length)) + contact diameter = (2 × 20 nm + 30 nm) +50 nm = 120 nm. That is, in this embodiment, the transistor pitch can be reduced to about 55%.
 図12は本実施形態に係るNチャネルMulti-Fin型トランジスタの電流電圧(Id-Vd)特性のシミュレーション結果を従来例と共に表している。 FIG. 12 shows the simulation result of the current-voltage (Id-Vd) characteristics of the N-channel Multi-Fin transistor according to this embodiment together with the conventional example.
 本実施形態においては、高抵抗の幅が細いFin部104の長さを、従来例の60nmから20nmに短縮することができる。このため、寄生抵抗を削減できる結果、図12に示すように、約15%トランジスタの駆動力を向上させることができる。 In the present embodiment, the length of the fin portion 104 having a narrow high resistance width can be reduced from 60 nm of the conventional example to 20 nm. As a result, the parasitic resistance can be reduced. As a result, as shown in FIG. 12, the driving power of the transistor can be improved by about 15%.
 (一実施形態の第1変形例)
 以下、本発明の一実施形態の第1変形例について図面を参照しながら説明する。
(First Modification of One Embodiment)
Hereinafter, a first modification of one embodiment of the present invention will be described with reference to the drawings.
 図13(a)及び図13(b)、特に図13(b)に示すように、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121は、埋め込み酸化膜101に達するように形成されている。このようにすると、各コンタクトプラグ120、121の接触面積をそれぞれ増やすことができるため、コンタクト抵抗を低減することができる。 As shown in FIGS. 13A and 13B, particularly FIG. 13B, the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are formed so as to reach the buried oxide film 101. ing. In this way, the contact area of each contact plug 120, 121 can be increased, and the contact resistance can be reduced.
 (一実施形態の第2変形例)
 次に、本発明の一実施形態の第2変形例について図面を参照しながら説明する。
(Second Modification of One Embodiment)
Next, a second modification of the embodiment of the present invention will be described with reference to the drawings.
 図14(a)及び図14(b)、特に図14(a)に示すように、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121は、複数のFin部104の各端部よりもゲート電極106側に近い位置に形成されている。このようにすると、一トランジスタ当たりの占有面積が縮小するため、トランジスタのさらなる微細化及び高集積化が可能となる。 As shown in FIGS. 14A and 14B, particularly FIG. 14A, the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are provided from the end portions of the plurality of Fin portions 104. Is also formed at a position close to the gate electrode 106 side. In this case, since the occupied area per transistor is reduced, the transistor can be further miniaturized and highly integrated.
 (一実施形態の第3変形例)
 次に、本発明の一実施形態の第3変形例について図面を参照しながら説明する。
(Third Modification of One Embodiment)
Next, a third modification of the embodiment of the present invention will be described with reference to the drawings.
 図15(a)及び図15(b)、特に図15(a)に示すように、ソース拡散層部コンタクトプラグ120及びドレイン拡散層部コンタクトプラグ121は、複数のFin部104のうちの両端のFin部104よりも内側に形成されている。このようにすると、一トランジスタ当たりの占有面積が縮小するため、トランジスタのさらなる微細化及び高集積化が可能となる。 As shown in FIGS. 15A and 15B, particularly FIG. 15A, the source diffusion layer portion contact plug 120 and the drain diffusion layer portion contact plug 121 are provided at both ends of the plurality of Fin portions 104. It is formed inside the Fin portion 104. In this case, since the occupied area per transistor is reduced, the transistor can be further miniaturized and highly integrated.
 なお、以上の各変形例は、本実施形態の図7(b)、図7(c)、図9(b)及び図9(c)と対応する構成を模式的に表している。また、これらの各変形例を任意に組み合わせることにより、それぞれの効果を相乗させることも可能である。 Note that each of the above-described modifications schematically represents a configuration corresponding to FIGS. 7B, 7C, 9B, and 9C of the present embodiment. Moreover, it is also possible to make each effect synergistic by combining these each modified example arbitrarily.
 本発明に係る半導体装置及びその製造方法は、Finの長さを短くすることができ、その結果、プロセス工程数を増加させることなく、レイアウト面積が小さく且つ駆動能力が高いMulti-Fin型トランジスタを実現することができ、Fin型トランジスタ及びその製造方法等に有用である。 The semiconductor device and the manufacturing method thereof according to the present invention can reduce the length of Fin, and as a result, a Multi-Fin type transistor having a small layout area and a high driving capability without increasing the number of process steps. It can be realized and is useful for a Fin-type transistor and a manufacturing method thereof.
100  基板
101  埋め込み酸化膜
103  レジストパターン
104  Fin部
105  ゲート絶縁膜
106  ゲート電極
107  ソース側LDD拡散層
108  ドレイン側LDD拡散層
109  側壁
110  ソース拡散層
111  ドレイン拡散層
112  ゲート電極上ニッケルシリサイド膜
113  ソース拡散層上ニッケルシリサイド膜
114  ドレイン拡散層上ニッケルシリサイド膜
115  層間絶縁膜
116  第1のコンタクト開口部
117  第2のコンタクト開口部
118  第3のコンタクト開口部
119  ゲート電極部コンタクトプラグ
120  ソース拡散層部コンタクトプラグ
121  ドレイン拡散層部コンタクトプラグ
122  金属配線
100 Substrate 101 Embedded oxide film 103 Resist pattern 104 Fin portion 105 Gate insulating film 106 Gate electrode 107 Source side LDD diffusion layer 108 Drain side LDD diffusion layer 109 Side wall 110 Source diffusion layer 111 Drain diffusion layer 112 Nickel silicide film 113 on gate electrode Nickel silicide film on diffusion layer 114 Nickel silicide film on drain diffusion layer 115 Interlayer insulating film 116 First contact opening 117 Second contact opening 118 Third contact opening 119 Gate electrode contact plug 120 Source diffusion layer Contact plug 121 Drain diffusion layer contact plug 122 Metal wiring

Claims (8)

  1.  基板の上に形成され、それぞれ互いに間隔をおき且つ並列に配置された直方体状の複数の導電性部材と、
     前記複数の導電性部材の上に、前記各導電性部材と交差するように形成されたゲート電極と、
     前記複数の導電性部材における少なくとも一方の端部の近傍で、且つ少なくとも2つの導電性部材と電気的に接続されたコンタクトとを備えている半導体装置。
    A plurality of rectangular parallelepiped conductive members formed on the substrate and spaced apart from each other and arranged in parallel;
    A gate electrode formed on the plurality of conductive members so as to intersect the conductive members;
    A semiconductor device comprising a contact in the vicinity of at least one end portion of the plurality of conductive members and electrically connected to at least two conductive members.
  2.  請求項1において、
     前記基板と前記複数の導電性部材とは絶縁膜により絶縁され、
     前記コンタクトは、前記絶縁膜に達する半導体装置。
    In claim 1,
    The substrate and the plurality of conductive members are insulated by an insulating film,
    The contact is a semiconductor device that reaches the insulating film.
  3.  請求項1又は2において、
     前記コンタクトは、前記複数の導電性部材の端部よりも前記ゲート電極側に近い位置に形成されている半導体装置。
    In claim 1 or 2,
    The contact is a semiconductor device formed at a position closer to the gate electrode side than ends of the plurality of conductive members.
  4.  請求項1~3のいずれか1項において、
     前記コンタクトは、前記複数の導電性部材の両端に位置する導電性部材よりも内側に形成されている半導体装置。
    In any one of claims 1 to 3,
    The said contact is a semiconductor device currently formed inside the electroconductive member located in the both ends of these electroconductive members.
  5.  基板の上に、直方体状の複数の導電性部材を互いに間隔をおいて並列に配置する工程と、
     前記複数の導電性部材の上に、前記各導電性部材と交差すると共にそれぞれ絶縁膜を介在させてゲート電極を形成する工程と、
     前記ゲート電極をマスクとして、前記各導電性部材に不純物を注入することにより、前記各導電性部材からソースドレイン拡散層を形成する工程と、
     前記ソースドレイン拡散層を形成した後、前記基板の上に、前記ゲート電極及び前記各導電性部材を覆うように層間絶縁膜を形成する工程と、
     前記層間絶縁膜に対し、前記複数の導電性部材における少なくとも一方の端部の近傍で、且つ少なくとも2つの導電性部材を露出する開口部を形成する工程と、
     前記開口部に、露出した導電性部材と電気的に接続されるコンタクトを形成する工程とを備えている半導体装置の製造方法。
    On the substrate, a plurality of rectangular parallelepiped conductive members arranged in parallel with an interval between each other;
    Forming a gate electrode on each of the plurality of conductive members, intersecting with each of the conductive members and interposing an insulating film, respectively;
    Forming a source / drain diffusion layer from each conductive member by implanting impurities into each conductive member using the gate electrode as a mask;
    Forming an interlayer insulating film on the substrate so as to cover the gate electrode and each conductive member after forming the source / drain diffusion layer;
    Forming an opening in the interlayer insulating film in the vicinity of at least one end of the plurality of conductive members and exposing at least two conductive members;
    Forming a contact electrically connected to the exposed conductive member in the opening.
  6.  請求項5において、
     前記開口部を形成する工程では、
     前記開口部は、前記絶縁膜に達するように形成する半導体装置の製造方法。
    In claim 5,
    In the step of forming the opening,
    The method of manufacturing a semiconductor device, wherein the opening is formed to reach the insulating film.
  7.  請求項5又は6において、
     前記開口部を形成する工程では、
     前記開口部は、前記複数の導電性部材の端部よりも前記ゲート電極側に近い位置に形成する半導体装置の製造方法。
    In claim 5 or 6,
    In the step of forming the opening,
    The method of manufacturing a semiconductor device, wherein the opening is formed at a position closer to the gate electrode side than ends of the plurality of conductive members.
  8.  請求項5~7のいずれか1項において、
     前記開口部を形成する工程では、
     前記開口部は、前記複数の導電性部材の両端に位置する導電性部材よりも内側に形成する半導体装置の製造方法。
    In any one of claims 5 to 7,
    In the step of forming the opening,
    The method of manufacturing a semiconductor device, wherein the opening is formed inside a conductive member positioned at both ends of the plurality of conductive members.
PCT/JP2010/000395 2009-03-10 2010-01-25 Semiconductor device and method for producing the same WO2010103714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009056827A JP2010212450A (en) 2009-03-10 2009-03-10 Semiconductor device and method of fabricating the same
JP2009-056827 2009-03-10

Publications (1)

Publication Number Publication Date
WO2010103714A1 true WO2010103714A1 (en) 2010-09-16

Family

ID=42728015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000395 WO2010103714A1 (en) 2009-03-10 2010-01-25 Semiconductor device and method for producing the same

Country Status (2)

Country Link
JP (1) JP2010212450A (en)
WO (1) WO2010103714A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553089B2 (en) 2015-04-02 2017-01-24 Samsung Electronics Co., Ltd. Semiconductor device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644433B (en) * 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 Semiconductor device
US10903223B2 (en) 2019-01-15 2021-01-26 Micron Technology, Inc. Driver placement in memories having stacked memory arrays

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196821A (en) * 2005-01-17 2006-07-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2007035957A (en) * 2005-07-27 2007-02-08 Toshiba Corp Semiconductor device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196821A (en) * 2005-01-17 2006-07-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2007035957A (en) * 2005-07-27 2007-02-08 Toshiba Corp Semiconductor device and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553089B2 (en) 2015-04-02 2017-01-24 Samsung Electronics Co., Ltd. Semiconductor device
US9941281B2 (en) 2015-04-02 2018-04-10 Samsung Electronics Co., Ltd. Semiconductor device
US10276570B2 (en) 2015-04-02 2019-04-30 Samsung Electronics Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP2010212450A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4417601B2 (en) Semiconductor device and method for forming the same
JP5202473B2 (en) Manufacturing method of semiconductor device
KR100756808B1 (en) Semiconductor device and method for fabricating the same
KR102068395B1 (en) Semiconductor Device Structure having Low Rdson and Manufacturing Method thereof
KR100731054B1 (en) semiconductor device for using power and method for manufacturing the same
JP2007116049A (en) Semiconductor device
JP2009206490A (en) Semiconductor device and method of manufacturing the same
CN109801965B (en) Transistor with double-layer spacer and forming method thereof
US20090166765A1 (en) Mos transistor and method for manufacturing the transistor
JP2007134577A (en) Semiconductor device
JP2005064508A (en) High voltage transistor and manufacturing method therefor
US7902552B2 (en) Semiconductor device having a recess channel structure and method for manufacturing the same
WO2010103714A1 (en) Semiconductor device and method for producing the same
US9054185B2 (en) Semiconductor device
JP5478295B2 (en) Manufacturing method of semiconductor device
KR20070035492A (en) Fin field effect transistor arrangement and method for producing a fin field effect transistor arrangement
US20050133881A1 (en) Semiconductor device employing buried insulating layer and method of fabricating the same
US8513717B2 (en) Semiconductor device and method for manufacturing the same
US20070170499A1 (en) Semiconductor device and manufacturing method thereof
KR100787943B1 (en) Method of forming a non-volatile memory device
KR100846393B1 (en) Transistor in semiconductor device and method for manufacturing the same
JP2010021221A (en) Semiconductor device and fabrication process therefor
KR100824919B1 (en) Transistor of a semiconductor device and method of manufacturing thereof
KR100753103B1 (en) Method for manufacturing saddle type fin transistor
US7563673B2 (en) Method of forming gate structure of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750474

Country of ref document: EP

Kind code of ref document: A1