WO2010103687A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2010103687A1
WO2010103687A1 PCT/JP2009/067423 JP2009067423W WO2010103687A1 WO 2010103687 A1 WO2010103687 A1 WO 2010103687A1 JP 2009067423 W JP2009067423 W JP 2009067423W WO 2010103687 A1 WO2010103687 A1 WO 2010103687A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
type
diffusion
type impurity
impurity
Prior art date
Application number
PCT/JP2009/067423
Other languages
French (fr)
Japanese (ja)
Inventor
正浩 小池
光介 辰村
大輔 萩島
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2010103687A1 publication Critical patent/WO2010103687A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2658Bombardment with radiation with high-energy radiation producing ion implantation of a molecular ion, e.g. decaborane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823814Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823821Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/84Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body
    • H01L21/845Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being other than a semiconductor body, e.g. being an insulating body including field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1203Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI
    • H01L27/1211Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body the substrate comprising an insulating body on a semiconductor body, e.g. SOI combined with field-effect transistors with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Definitions

  • the present invention relates to a semiconductor device having a channel region whose main component is Ge.
  • Ge is expected as a semiconductor substrate replacing Si. This is because the bulk mobility of electrons and holes is higher than that of Si. Therefore, if a Ge substrate is used, it is expected that a MISFET (Metal Insulator Semiconductor Field Effect Transistor) having a high surface mobility can be realized, and a Ge pMISFET is actually a Si pMISFET. Higher mobility is indicated.
  • a MISFET Metal Insulator Semiconductor Field Effect Transistor
  • the contact resistance between metal and n + Ge is high, but one of them is because n + Ge with high carrier (electron) concentration can not be formed.
  • the n-type impurity in Ge has a very rapid diffusion for the reason to be described in detail later, and can not maintain the impurity at a high concentration when heat-treated, so the electron concentration can not be high.
  • the contact resistance Rc is in the relationship shown by the following equation with the electron concentration n.
  • Patent Document 1 a method of controllably forming an impurity layer having a desired concentration, depth or conductivity of a diffusion layer in a solid phase diffusion method by changing the diffusion coefficient of the impurity.
  • Patent Document 1 The feature of this patent document is the method of solid phase diffusion, which utilizes the property that As becomes difficult to diffuse when As-doped SiO 2 contains hydrogen, and As becomes easy to diffuse when it is reduced by oxidation. There is.
  • n + Si by As is formed on the surface side of Si, and p ⁇ Si by B is formed on the inner side, ie, n + Si / p ⁇ Si Will be formed.
  • this patent document 1 only shows an example of the diffusion of the impurity in Si, and that the characteristic diffusion of the n-type impurity in Ge is fast, the diffusion of the p-type impurity is slow, and the p-type impurity is No consideration is given to the suppression of the diffusion of n-type impurities.
  • the finally formed structure is n + Si / p - Si.
  • the concentration profile of p-type impurities will necessarily be higher near the surface, which is undesirable for forming an n + layer. Therefore, it is difficult to form n + Ge on a pGe layer consisting of extremely shallow and high concentration electrons even if this method is applied to Ge as it is.
  • the present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a semiconductor device having an extremely shallow and high carrier concentration n-type impurity diffusion region in a Ge layer, and a manufacturing method that enables the same. I assume.
  • a semiconductor device includes a semiconductor substrate of one of n-type and p-type conductivity types, and a pair of impurity diffusion regions selectively provided on the surface of the semiconductor substrate and the other conductivity type.
  • a gate insulating layer provided on the semiconductor substrate sandwiched by the pair of impurity diffusion regions, and a gate electrode provided on the gate insulating layer, at least a part of the impurity diffusion regions being It is characterized in that it has the one conductivity type and has an impurity concentration higher than the impurity concentration of the substrate.
  • a method of manufacturing a semiconductor device is a method of forming a high concentration impurity diffusion region on the surface of a semiconductor layer containing Ge as a main component, wherein the surface of the semiconductor layer is formed. And the steps of: introducing n-type impurities and p-type impurities; and forming an n-type impurity diffusion region in the semiconductor layer by heat treatment after introducing the n-type impurities and p-type impurities.
  • the present invention it is possible to provide a semiconductor device in which an n-type impurity diffusion region having extremely shallow and high carrier (electron) concentration is formed in a Ge layer, and a method of manufacturing the same.
  • FIG. 2B is a schematic diagram of an impurity concentration profile illustrating a method of suppressing the diffusion of P by B and forming an n + Ge region composed of shallow and high-concentration electrons, showing a state before heat treatment. It is a schematic diagram of the impurity concentration profile explaining the method of suppressing the diffusion of P by B and forming an n + Ge region composed of shallow and high concentration electrons, and shows a state after heat treatment. It is a figure which shows the heat processing back and front of the impurity concentration profile of P in a Ge board
  • the impurity concentration profile in the absence of B in the Ge substrate corresponds to the absence of B in FIG.
  • the impurity concentration profile in the absence of B corresponds to the absence of B in FIG. It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. It is a carrier concentration profile corresponding to the impurity concentration profile of FIG.
  • the carrier concentration profile of Ge substrate formed by introducing both P and B the case where the dose amount of B is 2 ⁇ 10 14 cm ⁇ 2 is shown.
  • the carrier concentration profile of a Ge substrate formed by introducing both P and B shows the case where the dose amount of B is 1 ⁇ 10 15 cm ⁇ 2 .
  • FIG. 28 is a cross-sectional view at a step subsequent to FIG. 27.
  • FIG. 29 is a cross-sectional view in the process following FIG. 28.
  • FIG. 30 is a cross-sectional view at a step subsequent to FIG. 29.
  • FIG. 31 is a cross-sectional view in the process following FIG. 30. It is sectional drawing of the semiconductor substrate for demonstrating the method using CVD by the method of forming n ⁇ +> Ge layer which concerns on 3rd Embodiment.
  • FIG. 33 is a cross-sectional view at a step subsequent to FIG. 32.
  • FIG. 34 is a cross-sectional view in the process following FIG.
  • FIG. 35 is a cross-sectional view at a step subsequent to FIG. 34.
  • FIG. 40 is a perspective view at the next step of FIG. 39.
  • P exists in Ge board
  • FIG. 50 is a cross-sectional view at a step subsequent to FIG. 50.
  • FIG. 52 is a cross-sectional view in a step subsequent to FIG. 51;
  • FIG. 52 is a cross-sectional view at a step subsequent to FIG. 52.
  • FIG. 50 is a cross-sectional view at a step subsequent to FIG. 50.
  • FIG. 56 is a cross-sectional view at a step subsequent to FIG. 54.
  • FIG. 56 is a cross-sectional view at a step subsequent to FIG. 55.
  • FIG. 56 is a cross-sectional view at a step subsequent to FIG. 56.
  • It is sectional drawing of the semiconductor substrate for demonstrating the method to form n ⁇ +> Ge layer which concerns on 12th Embodiment.
  • FIG. 58 is a cross-sectional view at a step subsequent to FIG. 58.
  • FIG. 60 is a cross-sectional view in the process following FIG. 59.
  • FIG. 61 is a cross-sectional view at a step subsequent to FIG. 60.
  • FIG. 61 is a cross-sectional view in a step subsequent to FIG.
  • C s + (x, t) is the concentration of the positive ion of the n-type impurity at the lattice substitution position
  • x is the coordinate of the n-type impurity (herein defined as the depth from the substrate surface)
  • t is a diffusion time
  • n (x, t) is an electron concentration
  • ni (x, t; T) is an intrinsic carrier concentration (depends on temperature T)
  • D * (ni) is a coefficient depending on ni.
  • the effective diffusion coefficient of the n-type impurity has the dependence of the square of the electron concentration n. This is derived from the difference in charge state of A + s and (AV) ⁇ .
  • the n-type impurity in Ge exhibits an unusual diffusion phenomenon due to the dependence of the electron concentration of D eff on the square.
  • D eff when high impurity concentration is increased, D eff when the impurity concentration is low is reduced.
  • FIG. 63 shows the result of SIMS analysis of the impurity concentration profile when phosphorus (P) is ion-implanted into Ge and heat-treated.
  • the dose amount of P is 5 ⁇ 10 15 cm ⁇ 2
  • the acceleration energy is 30 keV
  • heat treatment is performed at 600 ° C. for 30 minutes in a nitrogen atmosphere.
  • simulation results before heat treatment that is, in the case of only ion implantation are also shown.
  • the peak concentration is approximately 10 21 cm ⁇ 3 and the depth is 1 ⁇ 10 19 cm ⁇ 3 at a concentration of approximately 100 nm.
  • boron (B) was selected as a p-type impurity to compensate for the n-type impurity and introduced into a Ge substrate to check whether the diffusion of P can be suppressed.
  • the impurity profile of P in Ge introduced B was determined by SIMS analysis. After introducing B into a Ge substrate with a dose of 5 ⁇ 10 15 cm ⁇ 2 and an acceleration energy of 30 keV, P is introduced and heat-treated under the same conditions as FIG.
  • the peak concentration of B is about 1 ⁇ 10 21 cm ⁇ 3 , and it is understood from the profile that the peak concentration is not diffused even when heat treatment is applied. It has been reported that B does not diffuse at all even when ion-implanting BF 2 into Ge at a dose of 4 ⁇ 10 15 cm ⁇ 2 and acceleration energy of 20 keV and heat treatment at 650 ° C. for 10 seconds. (See, CO Chui et al., Appl. Phys. Lett. 83, 3275 (2003)), consistent with the results of the present invention.
  • the depth at which the concentration of P is 1 ⁇ 10 19 cm ⁇ 3 is about 100 nm, which is the same as the profile before heat treatment. That is, P is not diffused at all.
  • the concentration of P decreased to 2 ⁇ 10 19 cm -3 (Fig. 63), but in the presence of B, P peaked at about 7 ⁇ 10 20 cm -3 at the peak. The concentration is maintained.
  • n-type impurity a diffusion form of n-type impurity (PV) -
  • PV n-type impurity
  • a method as shown in FIG. 66 can be considered.
  • B is introduced at a high concentration to the back of the substrate as a p-type impurity
  • P is introduced near the surface of the substrate as an n-type impurity.
  • B does not diffuse, but P diffuses to the back of the substrate, and if the concentration of B is sufficiently high compared to the concentration of P, B suppresses the diffusion of P. Since the impurity concentration of P can be increased, the electron concentration can also be increased, and n + Ge is formed on the surface of the substrate.
  • n + Ge may be formed, but p + Ge will be formed at the same time due to the presence of a high concentration of B. That is, an n + Ge / p + Ge structure is formed, which is not applicable to the source / drain.
  • the present inventors have solved the problems associated with the above discovery and have found a method for forming an n + Ge structure which is an extremely shallow and high carrier (electron) concentration without the presence of p + Ge. It was also possible to find the ideal n + Ge structure formed thereby. This will be described below as an embodiment. Although the embodiments of the present invention will be described with reference to the drawings, the same reference numerals are given to the same components throughout the embodiments, and the redundant description will be omitted. Further, in each of the drawings, there is a schematic view for explaining the present invention and promoting its understanding, and even if there are places where its shape, size, ratio, etc. are different from the actual device, these will be described below. The design can be changed as appropriate in consideration of the technique of
  • “having Ge as a main component” means that the content of Ge is 85 at. It means that it is% or more.
  • the minimum value of the conduction band of Si is the ⁇ point
  • the minimum value of the conduction band of Ge is the L point
  • SiGe depends on the composition ratio
  • FIG. 1A and 1B are schematic views showing impurity profiles in a Ge substrate.
  • FIG. 1A shows the state before heat treatment.
  • An n-type impurity and a p-type impurity which are higher in concentration than the substrate concentration, are introduced into a substrate containing a constant, low-concentration p-type impurity.
  • the p-type impurity is introduced to the inner side of the substrate, and the n-type impurity is introduced to the surface side more than that.
  • n-type impurity was selected as P
  • p-type impurity as B.
  • the concentration of each impurity is characterized in that the peak concentration of P is sufficiently higher than that of B.
  • p-type impurities are used to suppress the diffusion of n-type impurities, and finally n-type impurities can be made higher than p-type impurities, so the p + Ge region is left shallow and shallow and high electron concentration N + Ge structure can be formed.
  • n + Ge according to the present invention is formed quantitatively and what kind of structure it takes.
  • the diffusion of n-type impurities in Ge is expressed by the diffusion equations (2) to (4).
  • p-type impurities also coexist, the following may be taken into consideration in addition to them.
  • p-type impurities do not diffuse even by heat treatment.
  • Ge satisfies the charge neutral condition (5).
  • n + (N A- p A ) p + (N D- n D ) (5)
  • n is an electron concentration
  • p is a hole concentration
  • N A is a p-type impurity concentration
  • N D is an n-type impurity concentration
  • p A is a hole density at the acceptor level
  • n D is a donor at the donor level It is a density.
  • n, p, p A and n D be expressed by the statistical mechanics of a normal equilibrium system.
  • the diffusion of n-type impurities in Ge was calculated by the equation (3) while obtaining the coordinates of the Ge substrate and n at each diffusion time using the equation (5).
  • the influence of the p-type impurity coexisting with the n-type impurity is reflected through n determined from the equation (5).
  • FIG. 2 is an example of calculating the process of forming n + Ge according to the present embodiment, and shows the relationship between the impurity concentration and the depth. In order to calculate, the diffusion coefficient etc. are required, and they were found by fitting with the experimental values.
  • FIG. 2 shows the case where only n-type impurities are present in Ge.
  • P was selected as an example of the n-type impurity.
  • the initial profile of P (profile before heat treatment) is a Gaussian distribution with a Projected Range Rp of 5.0 nm, a standard deviation of 1.0 nm, and a dose of 1 ⁇ 10 15 cm ⁇ 2 from the Ge substrate surface I assumed.
  • the heat treatment assumes spike annealing for a short time (1 second).
  • the temperature is 773K.
  • the time evolution during heat treatment was made equal (0, 0.1, 0.2, ..., 1.0) to show the change with time of the impurity concentration profile of P.
  • the light first diffuses and then gradually spreads gradually.
  • the concentration is 1 ⁇ 10 19 cm -3 from Rp to 3.5 nm, but after 0.1 sec, it spreads to 13.2 nm, and after 0.2 sec, 16.8 nm, 0.3 sec After that, it spreads to 19.0 nm, and diffuses to 27.2 nm after one second.
  • FIG. 3 shows the electron concentration profile under the same conditions as FIG. Similar to FIG. 2, the time evolution during the heat treatment was made sufficiently equal to show the change of the electron concentration profile of P.
  • the impurity and electron concentrations almost coincide with each other at 7 ⁇ 10 17 cm ⁇ 3 or more. This is because only P, which is an n-type dopant, is present in Ge, and is n + Ge consisting only of electrons up to a depth of about 33 nm from the surface.
  • the electron concentration is at a temperature at which the impurity of 773 K diffuses. Therefore, it is considered that the impurity concentration is approximately the same as the electron concentration, that is, approximately 100% ionized.
  • the impurity may cause incomplete ionization, and the electron concentration may be lower than the impurity concentration.
  • the concentration of the impurity is high, there is no incomplete ionization of the impurity due to metal-insulator transition, that is, the impurity concentration and the electron concentration may be considered to be almost the same even at room temperature.
  • the constant region with an electron concentration of 7 ⁇ 10 17 cm -3 is due to the intrinsic carrier concentration ni, which is lower than the substrate concentration at room temperature, and the region with a constant hole concentration is Appears at room temperature.
  • FIG. 4 shows the case where a p-type impurity is also present simultaneously with the n-type impurity.
  • p-type impurities coexist in the entire Ge substrate at a high concentration of 2.5 ⁇ 10 20 cm ⁇ 3 .
  • B was selected as an example of the p-type impurity.
  • FIG. 5 compares the diffusion distances of P without B (FIG. 2) and with P (FIG. 4). Each diffusion distance (depth when taking Rp as the origin) at the same diffusion time when the concentration is 1 ⁇ 10 19 cm ⁇ 3 was plotted. As apparent from the figure, the presence of B shortens the diffusion distance, and the larger the distance, in other words, the longer the diffusion time, the larger the difference. Thus, it can be seen that the presence of B suppresses diffusion.
  • FIG. 6 shows the electron concentration profile under the same conditions as FIG. Since B is present at a high concentration of 2.5 ⁇ 10 20 cm -3 throughout the Ge substrate, the electron concentration is 2.8 ⁇ 10 15 cm at a place where the P concentration is lower than the B concentration before the heat treatment. It becomes -3 .
  • the effective diffusion coefficient is proportional to the square of the electron concentration, so the lower the electron concentration, the slower the diffusion. In the absence of B, it is 8.4 ⁇ 10 17 cm ⁇ 3 , but in the presence of B, it is 2.8 ⁇ 10 15 cm ⁇ 3 , and the electron concentration decreases by two digits or more. Therefore, the presence of B reduces the effective diffusion coefficient and makes diffusion slower.
  • n + Ge / p + Ge because there is a region where the concentration of B is higher than P.
  • the electron concentration is lower than the impurity concentration of P.
  • the profile of B may be adjusted in order to form a high concentration n + Ge of electrons without forming ap + Ge layer and without reducing the electron concentration at the surface and forming a shallow electron.
  • FIG. 7 is an adjustment of the profile of B. As shown in FIG. 3, B does not enter entirely, and the condition of constant concentration of 2.5 ⁇ 10 20 cm -3 is the same, B is only from the surface to a depth of 7.3 nm to 18.9 nm. It was made to exist.
  • the profile of P is almost the same as the profile of P in FIG. 4, as can be seen from FIG. Moreover, although FIG.
  • FIG. 9 shows the electron concentration profile under the same conditions as FIG.
  • the parabolic curve shows the heat treatment before and the terrace curve shows the heat treatment after the heat treatment as in FIG.
  • the inner side of the substrate has an intrinsic carrier concentration, which is the same as FIG. 3 when B is absent. That is, it can be seen that the inner side of the substrate is not the p + Ge, but the original Ge substrate state, for example, a pGe substrate containing impurities at a normal level. Also, compared to FIG. 6, the electron concentration is higher on the surface side.
  • FIG. 10 shows the case where B is introduced from Rp (5 nm) to 10 nm at a concentration of 5 ⁇ 10 19 cm ⁇ 3 .
  • the diffusion time was 3 seconds.
  • the position of P concentration of 1 ⁇ 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 10.4 nm after heat treatment, and the difference between before and after heat treatment is only 1.6 nm. It is spreading.
  • FIG. 11 which eliminated only B from the case of FIG.
  • the position of P concentration of 1 ⁇ 10 18 cm ⁇ 3 is the same 8.8 nm before the heat treatment, and diffused to 14.8 nm after the heat treatment.
  • the diffused distance is 6.0 nm. That is, when B is absent, the light is diffused by 6.0 nm, but when 5 ⁇ 10 19 cm -3 is present, the diffusion is suppressed only by 1.6 nm.
  • FIGS. 12 and 13 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 10 and 11 at this time are shown in FIGS. 12 and 13, respectively.
  • B When B is not present (FIG. 13), the position at an electron concentration of 1 ⁇ 10 18 cm ⁇ 3 is 10.4 nm, corresponding to the impurity concentration profile (FIG. 11).
  • B when B is present (FIG. 12), the n + Ge region is expanded to 14.8 nm corresponding to the impurity concentration profile (FIG. 10).
  • the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed.
  • FIG. 14 shows the case where the B concentration is reduced to 1 ⁇ 10 19 cm ⁇ 3 as compared with FIG. B was loaded from Rp to 25.3 nm.
  • the lower the B concentration the wider the region to which P diffuses, so it is better to widen the region into which B is to be inserted.
  • the diffusion time was 95 seconds.
  • the position of P concentration of 1 ⁇ 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 25.4 nm after heat treatment, and the difference between before and after heat treatment is only 17.0 nm. It is spreading.
  • FIG. 15 which eliminated only B from the case of FIG.
  • the position of P concentration of 1 ⁇ 10 18 cm ⁇ 3 is the same 8.4 nm before the heat treatment, and diffused to 32.2 nm after the heat treatment.
  • the diffused distance is 23.2 nm. That is, when B is not present, 23.2 nm is diffused, but because 1 ⁇ 10 19 cm ⁇ 3 of B is present, it is suppressed only by 17.0 nm.
  • FIGS. 16 and 17 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 14 and 15 at this time are shown in FIGS. 16 and 17, respectively.
  • B When B is not present (FIG. 17), the position of the electron concentration of 1 ⁇ 10 18 cm ⁇ 3 is 32.2 nm, corresponding to the impurity concentration profile (FIG. 15).
  • the n + Ge region extends up to 25.4 nm, corresponding to the impurity concentration profile (FIG. 14).
  • the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed.
  • the electron concentration is low, it diffuses slowly and finally there is no region where the electron concentration is lower than the intrinsic carrier concentration, that is, there is no p + Ge region, and n + Ge consisting of extremely shallow and high electron concentration Only can be formed.
  • FIG. 18 shows the case where the B concentration is further reduced to 1 ⁇ 10 18 cm ⁇ 3 as compared with FIGS. 10 and 14.
  • B is from Rp to 31.8 nm.
  • the diffusion time was 100 seconds.
  • the position of P concentration of 1 ⁇ 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 31.6 nm after heat treatment, and the difference between before and after heat treatment is only 22.8 nm It is spreading.
  • FIG. 19 which eliminated only B from the case of FIG.
  • the position of P concentration of 1 ⁇ 10 18 cm ⁇ 3 is the same 8.8 nm before the heat treatment, and diffused to 32.6 nm after the heat treatment.
  • the diffused distance is 23.8 nm. That is, when B is not present, 23.8 nm is diffused, but because 1 ⁇ 10 18 cm -3 of B is present, it is suppressed only by 22.8 nm.
  • FIGS. 20 and 21 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 18 and 19 at this time are shown in FIGS. 20 and 21, respectively.
  • B When B is absent (FIG. 21), the position of the electron concentration of 1 ⁇ 10 18 cm ⁇ 3 is 32.6 nm, corresponding to the impurity concentration profile (FIG. 19).
  • B when B is present (FIG. 20), the position of the electron concentration of 1 ⁇ 10 18 cm ⁇ 3 is 31.6 nm, corresponding to the impurity concentration profile (FIG. 18).
  • the electron concentration n is lower than the intrinsic carrier concentration ni (the hole concentration p is high), that is, p + Ge is formed.
  • the upper limit of the B concentration that suppresses the diffusion of P to form n + Ge is, in the extreme, slightly lower than the concentration Cn (x, 0) of P before heat treatment (Cn (x, 0) > Cp (x, 0)), or diffuse after heat treatment so that the P concentration becomes higher than B (Cn (x, t)> Cp (x, t)).
  • Cn (x, t) and Cp (x, t) are impurity concentrations at depth x and diffusion time t of P and B, respectively.
  • the B concentration may be higher than P as long as it is a diffusion direction.
  • the minimum B concentration Cp (x, 0) for suppressing the diffusion of P is effective if it is higher than the intrinsic carrier concentration ni (x, 0; T) at the diffusion temperature T (Cp (x, 0)> ni (x, 0; T)).
  • n + Ge can be formed which is shallower and has a high concentration of electrons.
  • FIG. 22 shows the case where only the diffusion time is different from FIG. The diffusion time was 3 seconds in FIG. 10, but 10 seconds in FIG. As can be seen from FIG. 22, the diffusion of P is advanced from FIG. For example, the position of P concentration of 1 ⁇ 10 18 cm -3 was 8.8 nm before heat treatment, but moved to 13.8 nm after heat treatment, and the difference between before and after heat treatment is 5.0 nm. It is spreading.
  • FIG. 23 which eliminated only B from the case of FIG.
  • the position of P concentration of 1 ⁇ 10 18 cm ⁇ 3 is the same 8.4 nm before the heat treatment, and diffused to 18.9 nm after the heat treatment.
  • the diffused distance is 10.5 nm. That is, when B is not present, 10.5 nm is diffused, but due to the presence of 1 ⁇ 10 19 cm -3 B, only 5.0 nm is suppressed. It should be noted here that, as apparent from FIG. 22, the concentration of B does not exceed the concentration of P even if P diffuses far beyond the region where B is present.
  • the electron concentration profiles corresponding to the impurity concentration profiles of FIGS. 22 and 23 are FIGS. 24 and 25, respectively.
  • the position of the electron concentration of 1 ⁇ 10 18 cm ⁇ 3 is 18.9 nm, corresponding to the impurity concentration profile (FIG. 23).
  • the n + Ge region extends to 13.8 nm, corresponding to the impurity concentration profile (FIG. 22).
  • the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed.
  • n + Ge consisting of electron concentration of concentration can be formed.
  • ⁇ Carrier concentration profile of Ge introduced P and B> 26A and 26B show carrier concentration profiles of Ge formed by introducing two of P and B.
  • FIG. It was determined by spreading resistance probe analysis.
  • the dose amount of P is 5 ⁇ 10 15 cm ⁇ 2 and is heat treated for 30 minutes in a nitrogen atmosphere.
  • the dose amount of B is 2 ⁇ 10 14 and 1 ⁇ 10 15 cm ⁇ 2 , respectively.
  • the heat treatment temperature was three ways of 400, 500 and 600 ° C.
  • the carrier concentration profile in the absence of B was also examined.
  • the carriers present at high concentration on the substrate surface side are all electrons, and the constant concentration region present on the inner side of the substrate is holes generated by impurities (Ga) contained in the substrate.
  • Second Embodiment an embodiment of a method of forming an n-type impurity layer will be described.
  • B is ion implanted into the p-type Ge substrate 1 (FIG. 27).
  • the acceleration energy of ion implantation is adjusted, and implantation is performed on the inner side of the substrate surface.
  • the B high concentration layer 2 is formed on the inner side of the surface of the p-type Ge substrate 1 (FIG. 28).
  • P is ion-implanted into the p-type Ge substrate 1 (FIG. 29). The acceleration energy is adjusted and injected on the surface side of the high concentration layer 2 of B.
  • the high concentration layer 3 of P is formed on the surface side of the p-type Ge substrate 1, and the high concentration layer 4 of B is formed on the back side of the substrate (FIG. 30). Then, when this substrate is heat-treated, P diffuses but B suppresses diffusion, and finally P becomes higher in concentration than B, so the p + Ge region disappears, and the shallow and high concentration electron concentration An n + Ge layer is formed (FIG. 31).
  • the n + Ge layer contains more p-type impurities than contained in the substrate 1.
  • the third embodiment shows another method of forming an n-type impurity diffusion layer.
  • Ge doped with B is deposited by CVD on the p-type Ge substrate 1 (FIG. 32).
  • ap + Ge layer 6 is formed on the surface of the p-type Ge substrate 1 (FIG. 33).
  • P-doped Ge is deposited by CVD.
  • An n + Ge layer 7 is formed on the p + Ge layer 6 (FIG. 34).
  • an n + Ge layer 8 of shallow and high concentration electrons is formed by the above-described effect (FIG. 35). In this process, if the n + Ge layer 7 of FIG.
  • n + Ge layer 8 consisting of shallow, high concentration electrons. If the p + Ge layer 6 is formed as in this process, diffusion of P to the back side of the substrate can be prevented when depositing P-doped Ge.
  • FIG. 36 is a schematic cross-sectional view of a semiconductor device (MISFET) using the n + Ge layer described above.
  • the semiconductor device according to the fourth embodiment includes a p-type semiconductor layer 10 mainly composed of Ge formed on a substrate, a gate insulating layer 12 formed on the p-type semiconductor layer 10, and a gate insulating layer.
  • a pair selectively formed on the surface of the p-type semiconductor layer 10 so as to sandwich the boundary region between the gate electrode 14 formed on the gate electrode 12 and the gate insulating layer 12 of the p-type semiconductor 10 from both sides in the gate length direction.
  • This semiconductor device contains an n-type impurity in all or part of the n-type impurity diffusion region 18 and also contains a higher concentration of p-type impurity than contained in the p-type semiconductor layer 10.
  • a contact electrode 16 is bonded to the surface of the n-type impurity diffusion region.
  • the whole substrate is Ge, or at least the surface is a surface layer of the substrate mainly containing Ge, and contains a p-type impurity.
  • the p-type impurity may be present in the entire n-type impurity region, it is desirable that the p-type impurity is not present on the substrate surface in order to increase the electron concentration to reduce the contact resistance.
  • a so-called LDD, an n-type extension, or a halo layer may be formed around the n-type impurity region.
  • the n-type source / drain region 18 which is extremely shallow and has a high carrier density.
  • the fine Ge channel semiconductor device it is possible to suppress the short channel effect and reduce the parasitic resistance, and it is possible to provide a MISFET with a high current driving capability.
  • FIG. 37 is a schematic cross-sectional view of a CMISFET (Complementary Metal Insulator Semiconductor Field Effect Transistor) using the n + Ge layer and the p + Ge layer described above.
  • CMISFET Complementary Metal Insulator Semiconductor Field Effect Transistor
  • FIG. 37 shows a cross section in the gate length direction of a CMISFET having a Ge channel.
  • a p-type well region 102 and an n-type well region 104 made of Ge are electrically separated by an element isolation layer 106.
  • the substrate 100 may be a Ge substrate, a Si substrate, a substrate on which a Ge layer is formed on a Si substrate, or a substrate on which an intermediate layer of a SiGe layer is formed on a Si substrate and a Ge layer is further formed thereon.
  • the element isolation layer 106 is formed of SiO 2 , for example.
  • an n-channel MIS transistor is formed, and in the n-type well region 104, a p-channel MIS transistor is formed.
  • n-type extension regions 108 are formed in the p-type well region 102 on both sides of the gate length of the region (channel region) to be a current path. Deep regions 110 are formed.
  • a gate insulating film 116 is formed on the channel region on the upper surface of the p-type well region 102 in such a manner that the gate insulating film 116 is applied to the inner end in the gate length direction of the opposing n-type extension regions 108.
  • a gate electrode 118 is stacked on the upper surface of the gate insulating film 116.
  • Gate sidewalls 124 are formed on both sides of the gate insulating film 116 and the gate electrode 118.
  • the n-type deep region 110 is configured such that the junction depth with the p-type well region 102 is deeper than the n-type extension region 108.
  • the n-type extension region 108 and the n-type deep region 110 become source / drain regions of the n-channel MIS transistor.
  • a pair of p-type extension regions 112 are formed on both sides in the gate length direction of a region (channel region) serving as a current path in the n-type well region 104.
  • a pair of p-type deep regions 114 are formed.
  • a gate insulating film 120 is formed on the channel region on the upper surface of the n-type well region 104 in such a manner that the gate insulating film 120 is applied to the inner end in the gate length direction of the pair of p-type extension regions 112.
  • a gate electrode 122 is stacked on the upper surface of the gate insulating film 120.
  • Gate sidewall insulating films 126 are formed on both sides of the gate insulating film 120 and the gate electrode 122.
  • the p-type deep region 114 is configured such that the junction depth with the n-type well region 104 is deeper than the p-type extension region 112.
  • the p-type extension region 112 and the p-type deep region 114 become source / drain regions of the p-channel MIS transistor.
  • the n-channel MIS transistor and the p-channel MIS transistor are covered by an interlayer insulating film 130.
  • one or both of the n-type extension region 108 and the n-type deep region 110 are formed by the above-described embodiment and include a p-type dopant.
  • the p-type dopant can also be the same as the p-type dopant contained in the p-type extension region 112 and the p-type deep region 114.
  • the element isolation layer 106 is formed on the main surface of the substrate 100.
  • the substrate may be a Ge substrate, a Si substrate, a substrate in which a Ge layer is formed on a Si substrate, or a substrate in which a Ge layer is formed on a Si substrate with an intermediate layer of a SiGe layer.
  • the formation method of the element isolation layer 106 may be a local oxidation method or an STI (Shallow Trench Isolation) method, and the shape of the element isolation layer 106 may be a mesa.
  • the p-type well region 102 and the n-type well region 104 are formed.
  • a conventional ion implantation method for the Ge layer may be used, or the ion implantation may be performed after the Ge layer is epitaxially grown.
  • gate insulating films 116 and 120 are formed on the upper surfaces of p type well region 102 and n type well region 104.
  • a method of forming the gate insulating films 116 and 120 for example, a Ge oxide film may be formed by a thermal oxidation method, or a Ge oxynitride film may be formed by a plasma oxynitridation method. Hf, Zr, La , Y, Al or the like may be deposited by a CVD (Chemical Vapor Deposition) method.
  • CVD Chemical Vapor Deposition
  • Tantalum carbide is formed on the gate electrode 118 (for n-channel MIS transistor), and tungsten is formed on the gate electrode 122 (for p-channel MIS transistor) to a film thickness of 10 nm by physical vapor deposition (PVD). Thereafter, titanium nitride is deposited to a thickness of 10 nm on the upper surface by PVD. After that, a polycrystalline Si layer is deposited to a thickness of 50 nm on the upper surface by a low pressure CVD method.
  • tantalum silicide, tantalum nitride silicide, titanium nitride silicide, tungsten silicide, tungsten nitride silicide, or the like can be used.
  • ruthenium, titanium nitride, titanium aluminum nitride, platinum, platinum iridium, or the like can be used for the gate electrode 122 (for p-channel MIS transistor).
  • gate electrodes 118 and 122 Thereafter, patterning by photolithography is performed, and an unnecessary film is removed by anisotropic etching to form gate electrodes 118 and 122. Thereafter, for example, the sidewall insulating film 124, the n-type extension region 108, and the n-type deep region 110 are formed by using the method according to the above-described embodiment.
  • source / drain regions of the p-channel MIS transistor are formed by a self-aligned gate method.
  • the “self-aligned gate method” is a method in which a gate stack is first formed and then source / drain regions are formed by ion implantation or the like. That is, ion implantation of boron (B) is performed using the gate electrode 122 as an umbrella to form the p-type extension region 112 of the p-channel MIS transistor. Thereafter, a sidewall insulating film 124 for insulation between the gate electrode 122 and the source / drain regions (p-type extension region 112 and p-type deep region 114) is formed. Thereafter, boron (B) ions are implanted at an acceleration voltage higher than in the case where the p-type extension region 112 is formed, to form the p-type deep region 114.
  • the activation process temperature of the source / drain region is the gate laminate portion (gate insulating film 116, gate electrode 118).
  • a temperature which does not degrade the characteristics of the gate insulating film 120 and the np junction of the gate electrode 122) and the source / drain region is desirable, for example, 600.degree.
  • flash lamp annealing, laser annealing, or the like can also be used as a method for activating the source / drain regions.
  • activation of the impurities in the semiconductor can be realized by processing in a shorter time, so the gate electrode 118, 122 / gate insulating film 116, 120 / semiconductor (p-type well region 102, n-type well region 104, Thermal degradation of a semiconductor device having a structure of n-type extension region 108, n-type deep region 110, p-type extension region 112, and p-type deep region 114) can be reduced.
  • a Si oxide film to be the interlayer insulating film 130 is deposited by low pressure CVD, and the upper ends of the gate electrodes 118 and 122 are exposed by CMP (Chemical Mechanical Planarization). Thereafter, a 50 nm thick nickel layer is formed on the upper surfaces of the gate electrodes 118 and 122 by sputtering or the like. Thereafter, by performing a low temperature heat treatment at 500 ° C., a silicide is formed from the interface region of nickel and polycrystalline Si, and Ni 2 Si is formed.
  • a silicide is formed from the interface region of nickel and polycrystalline Si, and Ni 2 Si is formed.
  • Ni 2 Si is formed from the interface region of nickel and polycrystalline Si, and Ni 2 Si is formed.
  • all polycrystalline Si is converted to silicide in the present embodiment, only part of polycrystalline Si may be silicided by making the film thickness of Ni thinner. After that, unreacted Ni is removed using a mixed solution of sulfuric acid and hydrogen peroxide solution or the like.
  • the CMOSFET semiconductor device having the structure shown in FIG. 37 is manufactured by the manufacturing method described above.
  • By controlling the concentration and distribution of the p-type dopant it is possible to form an n-type source / drain region (n-type extension region 108 and n-type deep region 110) which is extremely shallow and has a high carrier density.
  • n-type source / drain region n-type extension region 108 and n-type deep region 110
  • FIG. 38 is a schematic perspective view of FinMISFET according to the sixth embodiment.
  • the present embodiment is an example in which the n + Ge / pGe structure described above is applied to FinMISFET.
  • 208 is a support substrate
  • 209 is an insulating layer
  • 210 is a Ge layer
  • 208 to 210 form a GOI (Germanium on Insulator) substrate 211.
  • the GOI layer 210 is processed to form a linear (rectangular) element region 202.
  • a gate electrode 204 is formed in the central portion of the element region 202 with the gate insulating film 203 interposed therebetween. Portions of the element region 202 sandwiching the gate electrode 204 become source / drain regions 205.
  • a HfO 2 film 212 with a thickness of 5 nm, for example, is formed by using a method such as CVD (chemical vapor deposition).
  • CVD chemical vapor deposition
  • a refractory metal film of, eg, 100 nm thickness, eg, tungsten is deposited by, eg, CVD method, and anisotropic etching, eg, RIE method, etc.
  • the high melting point metal film is processed to form the gate electrode 204.
  • the HfO 2 film 212 is processed by performing anisotropic etching such as RIE, for example, to form the gate insulating film 203.
  • B is implanted over the entire surface of the substrate, and then P is implanted.
  • the order of injection of P and B may be reversed.
  • the gate electrode 204 and the gate insulating film 212 may be further thinned by RIE or the like after P implantation.
  • RIE reactive ion etching
  • a source / drain region 5 made of n + Ge is formed by a thermal process to form a MOSFET.
  • the surface can be made of n + Ge having a high carrier concentration, and the diffusion of P can be suppressed, so that the lateral diffusion into the channel region can also be suppressed.
  • the semiconductor device is formed through a normal interlayer insulating film forming process, a wiring hole forming process, a wiring process and the like.
  • the source / drain region 5 made of n + Ge can be formed to be extremely shallow and have a high carrier concentration, and a high performance Fin MISFET can be provided.
  • the seventh embodiment another method of forming a shallow n-type diffusion layer will be described.
  • a method of making the n-type diffusion layer shallow so far, a method of introducing a p-type impurity (B) into the inside of the substrate has been shown.
  • the p-type impurity suppresses the diffusion of the n-type impurity to the back side (inward) of the substrate. That is, it was thought only to suppress the inward diffusion of the n-type impurity (P).
  • P n-type impurity
  • FIG. 41 shows an impurity profile of P in Ge, in which out diffusion occurs, and the maximum amount of the out diffusion is controlled by some method described later. There is nothing to prevent the outward diffusion on the surface, and the case of outward diffusion to vacuum is considered to be the upper limit of the amount of outward diffusion.
  • the conditions are the same as in FIG. 2 except for the presence or absence of outward diffusion.
  • the physical quantity representing the outward diffusion is defined as the number of atoms of impurities released outward from the outermost surface of the substrate per unit time and unit area. At that time, equation (3) is changed as equation (6).
  • J (cm -2 s -1 ) determines the maximum amount of out diffusion, and when the surface concentration is high, only J diffuses out at the surface, and when the surface concentration is low, An amount smaller than J diffuses out.
  • J 1 ⁇ 10 15 cm ⁇ 2 s ⁇ 1 .
  • the concentration is 1 ⁇ 10 19 cm -3 from Rp to 3.5 nm, and after 0.1 seconds it spreads to 12.7 nm, after 0.2 seconds 15.1 nm, after 0.3 seconds Spreads to 16.6 nm and diffuses to 21.6 nm after one second.
  • the concentration on the surface side decreases as compared with the case where there is no outward diffusion. This is because impurities present at the outermost surface escape to the outside of the surface.
  • the outward diffusion J in this case is 1 ⁇ 10 15 cm ⁇ 2 s ⁇ 1 . Since the impurity concentration at the outermost surface and the back of the substrate is high at first, the same amount of impurity as J is eliminated. Therefore, the reduction of the impurity concentration on the surface is fast at first. However, as time passes, the inward diffusion of the impurity also proceeds, and the impurity concentration at the outermost surface and the back of the substrate decreases.
  • outward diffusion is also affected by inward diffusion. The less the inward diffusion, the more the outward diffusion, and the more the inward diffusion, the less the outward diffusion.
  • FIG. 42 compares the diffusion distances of P in the case of no outward diffusion (FIG. 2) and in the case of presence (FIG. 41). Respective inward diffusion distances (depths with Rp taken as the origin) at the same diffusion time when the concentration is 1 ⁇ 10 19 cm ⁇ 3 were plotted. As apparent from the figure, the inward diffusion distance is shortened by causing the outward diffusion, and the difference becomes larger as the distance becomes longer, that is, as the diffusion time becomes longer. As described above, it can be understood that inward diffusion can be suppressed by intentionally causing outward diffusion as compared with the case where outward diffusion is suppressed.
  • FIG. 43 shows the electron concentration profile under the same conditions as FIG. As in FIG. 3, since there is only n-type dopant in this case, the electron concentration is in agreement with the impurity concentration at the intrinsic carrier concentration ni or more at 773 K (> 7 ⁇ 10 17 cm ⁇ 3) . Thus, it is understood that 26.6 nm from the surface is n + Ge, and a shallow n + Ge layer can be formed as compared with the case without out diffusion.
  • the effect of the inward diffusion suppression by the outward diffusion is more effective if it is used together with the effect of suppressing the diffusion of the n-type impurity by the p-type impurity of the present invention, and the effect is more than a mere combination.
  • a p-type impurity is simultaneously present in the Ge substrate together with the n-type impurity, and it is shown what kind of difference appears in the diffusion of the n-type impurity when comparing the case of the out diffusion and the case of the out diffusion.
  • FIG. 44 shows the case where the n-type impurity P and the p-type impurity B coexist and there is no out diffusion.
  • B is present at a depth of 7.5 to 17.5 nm from the surface of the Ge substrate.
  • P diffuses far beyond the region where B is distributed.
  • FIG. 45 is a comparison of the diffusion distance of P in the case without B (FIG. 2) and in the case with (FIG. 44), both of which are cases where there is no outward diffusion.
  • Each diffusion distance (depth when taking Rp as the origin) at the same diffusion time when the concentration is 1 ⁇ 10 19 cm ⁇ 3 was plotted. As apparent from the figure, even if P greatly exceeds the area where B is distributed, the diffusion distance is shorter than when B is not present.
  • FIG. 46 shows the electron concentration profile under the same conditions as FIG. It turns out that the whole becomes n ⁇ +> Ge similarly to what was mentioned above.
  • FIG. 47 shows the impurity profile when B is present in the Ge substrate and further outward diffusion is present.
  • the outward diffusion amount J is 1 ⁇ 10 15 cm ⁇ 2 s ⁇ 1 .
  • FIG. 44 shows the diffusion behavior in the case where there is no outward diffusion (FIG. 1) or the case where B is inherent (FIG. 44). In this case, outward and inward diffusion occur simultaneously.
  • the inward diffusion of P slows down in the region where B is present. If there is no outward diffusion, P can not escape from the surface, so it will be repelled in an inward manner. Therefore, in the case of FIG. 44, a large amount of P passes through the region where B exists and diffuses inward of the substrate.
  • P can diffuse toward the surface at the same time as it diffuses slowly in the region where B exists, and can escape outward from the surface. That is, by diffusing outward from the surface so as not to diffuse too far into the substrate, it is possible to suppress the inward diffusion by using the diffusion suppression effect of B.
  • the concentration is 1 ⁇ 10 19 cm -3 from Rp to 3.5 nm, and after 0.1 seconds it spreads to 8.9 nm, after 0.2 seconds 10.3 nm, after 0.3 seconds Spreads to 11.0 nm, and diffuses to 12.2 nm after one second.
  • FIG. 48 compares the diffusion distances of P in the case where B exists in the Ge substrate and there is no outward diffusion (FIG. 44) and in the case where it is present (FIG. 47). Respective inward diffusion distances (depths with Rp taken as the origin) at the same diffusion time when the concentration is 1 ⁇ 10 19 cm ⁇ 3 were plotted. As apparent from the figure, the inward diffusion distance is shortened by causing the outward diffusion, and the difference becomes larger as the distance becomes longer, that is, as the diffusion time becomes longer. As described above, it can be understood that inward diffusion can be suppressed by intentionally causing outward diffusion as compared with the case where outward diffusion is suppressed.
  • FIG. 49 shows the electron concentration profile under the same conditions as FIG. Since B is present at a high concentration of 2.5 ⁇ 10 20 cm -3 in the range of 7.5 to 17.5 nm from the surface of the Ge substrate, a place where the P concentration is lower than the B concentration before the heat treatment Then, the electron concentration is 2.8 ⁇ 10 15 cm ⁇ 3 .
  • the effective diffusion coefficient is proportional to the square of the electron concentration, so the lower the electron concentration, the slower the diffusion. In this case, the diffusion is faster because the electron concentration is higher when going outward. Unlike the case of FIG. 46, since there is outward diffusion, it does not significantly exceed the region where B is present.
  • the surface of the p-type Ge substrate 1 is pretreated, for example, with a halogen acid such as HF or HCl. Then, normally, a protective film or the like formed before ion implantation is not formed, and P is ion implanted into the p-type Ge substrate 1 in a state where nothing is formed on the surface (FIG. 50). Then, a high concentration layer 3 of P is formed in the vicinity of the surface of the p-type Ge substrate 1 (FIG. 51). Subsequently, when the substrate is heat-treated, inward diffusion and outward diffusion of P occur (FIG.
  • a halogen acid such as HF or HCl
  • n + Ge layer is formed although it is lower than the ion implanted dose (FIG. 53).
  • Ions may be implanted in a state in which a protective film or the like is present on the surface, and then pretreatment of the surface may be performed to cause outward diffusion while nothing is formed on the surface.
  • FIGS. 54 to 57 Eleventh Embodiment Subsequently, another embodiment of the method for forming the n-type impurity layer will be described with reference to FIGS. 54 to 57.
  • P ions are implanted into the surface of the p-type Ge substrate 1 (FIG. 54).
  • the protective film may or may not be present on the surface.
  • a SiOx thin film 20 is deposited on the Ge surface by a method such as CVD. It may be formed before ion implantation.
  • P is ion-implanted into the p-type Ge substrate (FIG. 55). Subsequently, when the substrate is heat-treated, inward diffusion and outward diffusion of P occur (FIG. 56).
  • the amount of outward diffusion can be reduced as compared with the case where the SiOx thin film is not present. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness.
  • the film thickness is desirably in the range of 0 to 3 nm.
  • an n + Ge layer 7 can be formed which is shallow and has a high concentration of electrons.
  • a part or all of P may be trapped in the SiOx or the SiOx / Ge interface. If SiOx is, for example, porous, P can be incorporated into the membrane. There is no problem if Si or O remains near the substrate surface without removing SiOx. It is preferable that Si and O be left since the influence of the metal of the contact being pinned to the charge neutrality level of the Ge substrate surface is reduced.
  • the GeOx thin film 22 is deposited on the surface of the Ge substrate or formed in an oxygen atmosphere.
  • Ge has the property of being desorbed in the form of GeO, but since desorption is suppressed in a high pressure oxygen atmosphere, deposition of GeO x and maintenance of film thickness are possible.
  • the substrate is heat treated, inward diffusion and outward diffusion of P occur.
  • the amount of out-diffusion can be reduced as compared with the case where the GeOx thin film is absent. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness.
  • the film thickness is desirably in the range of 0 to 3 nm.
  • GeOx is removed from the surface of the Ge substrate by halogen acid pretreatment such as HF treatment.
  • the GeOx layer is released by heat treatment from an oxygen atmosphere to another atmosphere, for example, in a nitrogen atmosphere or vacuum.
  • an n + Ge layer having a shallow and high electron concentration can be formed.
  • the membrane that suppresses the outward diffusion need not always be present during the heat treatment.
  • those films may not be present at the beginning of the heat treatment and may be formed on the way, or may be present at the beginning of the heat treatment and eliminated on the way.
  • a GeOx layer is always present on the surface during heat treatment, but this may not be the case.
  • the pressure of oxygen is performed in a high pressure atmosphere of, for example, 70 atm. Then, desorption of the GeOx layer does not occur, and growth can also be performed.
  • the pressure is lowered in the middle of the heat treatment, for example, when atmospheric pressure or vacuum is applied under oxygen or other atmosphere, desorption of GeO occurs, so that the GeOx layer can be removed.
  • the surface can be made empty by applying atmospheric pressure or vacuum in oxygen or other atmosphere.
  • the heat treatment is performed in an atmosphere at a high pressure of, for example, 70 atm under the pressure of oxygen. Then, since desorption of the GeOx layer does not occur, a GeOx layer can be formed on the surface.
  • SiOx and GeOx have been described above, other films may be used as long as the effect of out diffusion is obtained.
  • a thin film insulator such as SiON, SiGeO, GeON, HfOx, LaOx, AlOx, TiOx, TaOx, or ZrOx may be used, or a semiconductor thin film such as Si or SiGe may be used. These may be left near the n + Ge substrate surface. Note that the composition ratio of the constituent elements of the film is optional even in the case where it is not displayed using x.
  • P is ion implanted into the surface of the p-type Ge substrate 1 (FIG. 58). Then, a Ni thin film 24 is deposited on the surface of the Ge substrate (FIG. 59). Alternatively, P may be ion-implanted after the Ni thin film is formed. Subsequently, heat treatment of this substrate causes inward diffusion and outward diffusion of P (FIG. 60).
  • the NiGe layer 26 is formed, and the amount of outward diffusion can be reduced as compared with the case where the Ni thin film is not present. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness. Since it is better to be thinner, the thickness T Ni of the Ni layer 24 before heat treatment should satisfy the range of 0 ⁇ T Ni ⁇ 5 nm, and the thickness T NiGe of the formed NiGe layer 26 satisfy the range of 0 ⁇ T NiGe ⁇ 10 nm Desirable (FIG. 61). After the heat treatment, unreacted Ni is removed with, for example, HCl (FIG. 62).
  • an n + Ge layer can be formed which is shallow and has a concentration of electrons.
  • P may be present in the region where NiGe exists.
  • Ni may react with Ge at low temperature and have a low resistivity.
  • Such materials include Fe, Co, Pd, Pt, Cu, etc. which react at 150 to 360 ° C. and have a low resistance phase of 22 to 129 ⁇ cm (S. Gaudet et al., International SiGe Technology and Devices Meeting , 18 (2006); J. Appl. Phys. 100, 034306 (2006). One or more of these may be used.
  • P is taken as an example of the n-type impurity throughout the embodiment, other elements may be used, for example, one or more of As, Sb, Bi and the like.
  • the p-type impurity is also the same, and may be another one, for example, one or more of B, Al, Ga, In and the like.
  • a temperature 773 K at which B does not diffuse is assumed. However, if the diffusion is slower than P, it is effective even at a high temperature at which B diffuses, and of course it is effective even at a low temperature, and the temperature is not limited.
  • examples of CVD and ion implantation have been shown as methods of introducing impurities, other methods may be used.
  • a p-type semiconductor mainly composed of Ge has been described as an example of the substrate, it may be an n-type semiconductor or another semiconductor such as a compound semiconductor. What becomes an n-type impurity for the semiconductor is paired with a vacancy and, if it is charged, cancels the charge, similarly to the diffusion mechanism of the n-type impurity in Ge described in the present invention If p-type impurities are used in the same manner as in the present invention, the same effects as in the present invention can be obtained, diffusion of n-type impurities can be suppressed, and extremely shallow n-type impurity regions with high carrier concentration can be formed.
  • a semiconductor containing Ge as a main component is exemplified, but a compound semiconductor may be used.
  • compound semiconductors include III-V semiconductors, such as GaAs, InP, InSb, GaN, and InGaAs.
  • GaAs for example, Zn is used as a p-type dopant, and Si is used as an n-type dopant.
  • the diffusion of Zn in GaAs is explained by the kick-out mechanism represented by the following chemical equilibrium (see, for example, H. Bracht et al., Physica B, 308, 831 (2001)) .
  • Zn - Ga is a Zn occupying Ga site
  • I 2 + Ga is a self-interstitial Ga.
  • Zn + i is diffused between the lattice
  • Ga is kick out between the lattice (I 2+ Ga)
  • the p-type impurity layer is formed on the inner side of the Ge substrate, the p-type impurity layer is formed on the surface side of the p-type semiconductor substrate, and the outward diffusion of the n-type impurity occurs during heat treatment. That is, it can also be used as a barrier layer which suppresses the diffusion from the surface to the outside.
  • the p-type impurity layer may be Ge containing p-type impurities, may be Si, or may be SiO 2 or the like. After the heat treatment, the p-type impurity layer may be removed.
  • the p-type impurity layer may be formed not only to suppress the diffusion of the n-type impurity to the deep side in the substrate but also to suppress the diffusion in the lateral direction with the channel.
  • the p-type impurity is contained on the channel side of the n-type impurity diffusion layer.
  • a p-type impurity may be used to prevent the n-type impurity from escaping in the direction of element isolation to reduce the impurity concentration.
  • the n-type impurity diffusion layer has a structure including the p-type impurity on the element isolation side.
  • the p-type impurity can be formed in the direction to prevent the diffusion of the n-type impurity, and after suppressing the diffusion, can be used to compensate for the n-type impurity to form only n + Ge.
  • the above description can be applied not only to the formation of n + layer but also to the formation of p + layer.
  • the p-type impurity can be used to suppress the diffusion of the n-type impurity.
  • the n-type impurity It is because it can be utilized for the diffusion suppression of the type impurity. That is, by suppressing the diffusion of the fast diffusion impurity using the slow diffusion impurity, it is possible to form a shallow, high carrier concentration impurity diffusion layer made of the fast diffusion impurity.
  • substrate substrate, 102 ... p-type well area, 104 ... n-type well area, 106 ... element separation layer, 108 ... n-type extension area 110 ... n-type deep region, 112 ... p-type extension region, 114 ... p-type deep region, 116 ... gate insulating film, 118 ... gate electrode, 120 ... gate insulating film, 122 ... gate electrode, 124, 126 ...
  • gate sidewall Insulating film 130 interlayer insulating film 202: element (semiconductor) region 203: gate insulating film 204: gate electrode 205: source / drain region , 208: supporting substrate, 209: embedded insulating layer, 210: Ge layer, 211: GOI substrate, 212: HfO 2 film

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Thin Film Transistor (AREA)

Abstract

Disclosed is a semiconductor device wherein an n-type impurity region, which is extremely shallow and composed of high-density carriers, is formed in a Ge semiconductor layer. The semiconductor device comprises: a semiconductor substrate which has either n-type or p-type conductivity; a pair of impurity diffusion regions which are selectively formed in the surface of the semiconductor substrate and have the other conductivity type; a gate insulating layer which is formed on the semiconductor substrate part sandwiched between the pair of impurity diffusion regions; and a gate electrode formed on the gate insulating layer. At least a part of the impurity diffusion regions has the conductivity type of the substrate, while having an impurity concentration higher than the impurity concentration of the substrate.

Description

半導体装置およびその製造方法Semiconductor device and method of manufacturing the same
 本発明は、Geを主成分としたチャネル領域を有する半導体装置に関する。 The present invention relates to a semiconductor device having a channel region whose main component is Ge.
 次世代LSI開発において、Siにかわる半導体基板としてGeが期待されている。Siに較べて、電子およびホールのバルク移動度が高いからである。それゆえ、Ge基板を用いれば、表面移動度の高いMISFET(Metal Insulator Semiconductor Field Effect Transistor:金属/絶縁体/半導体型電界効果トランジスタ)が実現できると予想され、実際にGeのpMISFETではSiのpMISFETよりも高い移動度が示されている。しかし、その一方で、GeのnMISFETでは、まだSiのnMISFETよりも高い移動度を確認したという例がない。これは、nMISFETでは、金属とnGeのコンタクト抵抗が高いため、本来のnMISFETの性能が充分に引き出せていないからである。 In the next-generation LSI development, Ge is expected as a semiconductor substrate replacing Si. This is because the bulk mobility of electrons and holes is higher than that of Si. Therefore, if a Ge substrate is used, it is expected that a MISFET (Metal Insulator Semiconductor Field Effect Transistor) having a high surface mobility can be realized, and a Ge pMISFET is actually a Si pMISFET. Higher mobility is indicated. However, on the other hand, there is no example in which the mobility of Ge n-type MISFET is higher than that of Si n-MISFET. This is because, in the nMISFET, since the contact resistance between the metal and the n + Ge is high, the performance of the original nMISFET can not be sufficiently extracted.
 金属とnGeのコンタクト抵抗が高くなる理由はいくつかあるが、そのうちのひとつは、高キャリア(電子)濃度のnGeが形成できないためである。Ge中のn型不純物は、後に詳述する理由により、拡散が非常に速く、熱処理すると高濃度に不純物を維持できず、そのため電子濃度が高くできない。コンタクト抵抗Rcは、電子濃度nと次式で示される関係にある。 There are several reasons why the contact resistance between metal and n + Ge is high, but one of them is because n + Ge with high carrier (electron) concentration can not be formed. The n-type impurity in Ge has a very rapid diffusion for the reason to be described in detail later, and can not maintain the impurity at a high concentration when heat-treated, so the electron concentration can not be high. The contact resistance Rc is in the relationship shown by the following equation with the electron concentration n.
    Rc∝exp(C/(n1/2))       …   (1)
ここで、Cは電子濃度によらない定数である。この式からわかるように、電子濃度nを高くできないと、金属とnGeのコンタクト抵抗Rcが高くなる。GeのnMISFETを開発するには、極浅かつ高キャリア濃度のnGeを形成する必要があり、そのためにはGeにおけるn型不純物の拡散を充分に抑制しなければならない。
Rc∝exp (C / (n 1/2 )) (1)
Here, C is a constant independent of the electron concentration. As can be understood from this equation, if the electron concentration n can not be increased, the contact resistance Rc of the metal and n + Ge becomes high. In order to develop a Ge nMISFET, it is necessary to form an extremely shallow and high carrier concentration n + Ge, and for this purpose, the diffusion of n-type impurities in Ge must be sufficiently suppressed.
 なお、関連技術として、固相拡散法において、不純物の拡散係数を変えることによって、拡散層の所望の濃度、深さ、あるいは導電型を有する不純物層を制御よく形成する方法が知られている(特許文献1参照)。この特許文献の特徴は、固相拡散の方法にあり、AsドープしたSiOが水素を含むとAsが拡散しにくくなり、酸化によって還元されるとAsが拡散しやすくなるという性質を利用している。 As a related art, there is known a method of controllably forming an impurity layer having a desired concentration, depth or conductivity of a diffusion layer in a solid phase diffusion method by changing the diffusion coefficient of the impurity ( Patent Document 1). The feature of this patent document is the method of solid phase diffusion, which utilizes the property that As becomes difficult to diffuse when As-doped SiO 2 contains hydrogen, and As becomes easy to diffuse when it is reduced by oxidation. There is.
 たとえば、AsとBをドープしたSiOに水素が含まれる場合、Siに固相拡散させるとAsは拡散しにくいので、AsよりもBが拡散される。そして、そのSiOを酸化することによりAsも拡散されやすくなるため、Siの表面側にAsによるnSi,内奥側にBによるpSiが形成され、つまりnSi/pSiが形成されることになる。 For example, when hydrogen is contained in SiO 2 doped with As and B, B diffuses more than As because As is hard to diffuse in solid phase diffusion into Si. Then, As is also easily diffused by oxidizing the SiO 2 , n + Si by As is formed on the surface side of Si, and p Si by B is formed on the inner side, ie, n + Si / p Si Will be formed.
 しかしながら、この特許文献1では、Siにおける不純物の拡散の実施例を示しただけであり、Geにおいて特徴的なn型不純物の拡散が速いことやp型不純物の拡散が遅いこと、p型不純物によってn型不純物の拡散が抑制されることなどを全く考慮していない。また最終的に形成される構造がnSi/pSiとある。さらに、高温が必要な固相拡散に限定される方法のため、p型不純物の濃度プロファイルは必ず表面に近くなるほど高くなり、n層を形成するのに望ましくない。それゆえ、この方法だけではそのままGeに適用しても、極浅かつ高濃度の電子からなるpGe層上のnGeを形成することは難しい。 However, this patent document 1 only shows an example of the diffusion of the impurity in Si, and that the characteristic diffusion of the n-type impurity in Ge is fast, the diffusion of the p-type impurity is slow, and the p-type impurity is No consideration is given to the suppression of the diffusion of n-type impurities. In addition, the finally formed structure is n + Si / p - Si. Furthermore, due to the method being limited to solid phase diffusion where high temperatures are required, the concentration profile of p-type impurities will necessarily be higher near the surface, which is undesirable for forming an n + layer. Therefore, it is difficult to form n + Ge on a pGe layer consisting of extremely shallow and high concentration electrons even if this method is applied to Ge as it is.
特許第3131436号公報Patent No. 3131436
 本発明は、上記の事情に基づいてなされたものであり、Ge層に極浅かつ高キャリア濃度のn型不純物拡散領域を有する半導体装置、およびそれを可能にする製造方法を提供することを課題とする。 The present invention has been made based on the above-described circumstances, and an object of the present invention is to provide a semiconductor device having an extremely shallow and high carrier concentration n-type impurity diffusion region in a Ge layer, and a manufacturing method that enables the same. I assume.
 本発明の1態様に係る半導体装置は、n型とp型のうちの一方の導電型の半導体基板と、前記半導体基板表面に選択的に設けられ、他方の導電型の一対の不純物拡散領域と、前記一対の不純物拡散領域により挟まれた前記半導体基板上に設けられたゲート絶縁層と、前記ゲート絶縁層の上に設けられたゲート電極とを備え、前記不純物拡散領域の少なくとも一部は、前記一方の導電型を有し、かつ前記基板の不純物濃度より高い不純物濃度を有していることを特徴とする。 A semiconductor device according to one aspect of the present invention includes a semiconductor substrate of one of n-type and p-type conductivity types, and a pair of impurity diffusion regions selectively provided on the surface of the semiconductor substrate and the other conductivity type. A gate insulating layer provided on the semiconductor substrate sandwiched by the pair of impurity diffusion regions, and a gate electrode provided on the gate insulating layer, at least a part of the impurity diffusion regions being It is characterized in that it has the one conductivity type and has an impurity concentration higher than the impurity concentration of the substrate.
 また、本発明の第2の態様に係る半導体装置の製造方法は、Geを主成分とする半導体層の表面に、高濃度の不純物拡散領域を形成する方法であって、前記半導体層の表面に、n型不純物およびp型不純物を導入する工程と、前記n型不純物とp型不純物を導入後、熱処理して、前記半導体層内にn型不純物拡散領域を形成する工程とを含むことを特徴とする。 A method of manufacturing a semiconductor device according to a second aspect of the present invention is a method of forming a high concentration impurity diffusion region on the surface of a semiconductor layer containing Ge as a main component, wherein the surface of the semiconductor layer is formed. And the steps of: introducing n-type impurities and p-type impurities; and forming an n-type impurity diffusion region in the semiconductor layer by heat treatment after introducing the n-type impurities and p-type impurities. I assume.
 本発明によれば、Ge層に極浅かつ高キャリア(電子)濃度からなるn型不純物拡散領域が形成された半導体装置およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a semiconductor device in which an n-type impurity diffusion region having extremely shallow and high carrier (electron) concentration is formed in a Ge layer, and a method of manufacturing the same.
BによってPの拡散を抑制し、浅くて高濃度の電子からなるnGe領域を形成する方法を説明する不純物濃度プロファイルの模式図で、熱処理前の状態を示す。FIG. 2B is a schematic diagram of an impurity concentration profile illustrating a method of suppressing the diffusion of P by B and forming an n + Ge region composed of shallow and high-concentration electrons, showing a state before heat treatment. BによってPの拡散を抑制し、浅くて高濃度の電子からなるnGe領域を形成する方法を説明する不純物濃度プロファイルの模式図で、熱処理後の状態を示す。It is a schematic diagram of the impurity concentration profile explaining the method of suppressing the diffusion of P by B and forming an n + Ge region composed of shallow and high concentration electrons, and shows a state after heat treatment. Ge基板におけるPの不純物濃度プロファイルの熱処理前後を示す図である。It is a figure which shows the heat processing back and front of the impurity concentration profile of P in a Ge board | substrate. 図2の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板にPとBが存在する場合の不純物濃度プロファイルの熱処理前後を示す図である。It is a figure which shows the heat processing back and front of the impurity concentration profile in case P and B exist in Ge board | substrate. 図2のPの不純物プロファイルで、Bが無い場合とBが基板全体にある場合の拡散距離を比較した図である。It is the figure which compared the diffusion distance in the case where there is no B, and B in the whole board | substrate, with the impurity profile of P of FIG. 図2の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板の一定深さの領域にBが存在する場合における、不純物濃度プロファイルの熱処理前後を示す図である。It is a figure which shows the heat processing back and front of impurity concentration profile in, when B exists in the area | region of fixed depth of Ge board | substrate. 図2のPの不純物プロファイルで、Bが無い場合とBが基板の一部にある場合(図7)の拡散距離を比較した図である。It is the figure which compared the diffusion distance in the case where there is no B, and B in a part of board | substrate (FIG. 7) by the impurity profile of P of FIG. 図7の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板においてBがPの不純物濃度プロファイルに及ぼす影響を示す図で、拡散時間が3秒の場合である。It is a figure which shows the influence which B exerts on the impurity concentration profile of P in Ge board | substrate, and is a case where diffusion time is 3 second. Ge基板においてBがPの不純物濃度プロファイルに及ぼす影響を示す図で、図10のBが無いものに対応する。It is a figure which shows the influence which B exerts on the impurity concentration profile of P in Ge board | substrate, and respond | corresponds to what there is no B of FIG. 図10の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. 図11の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板においてBがPの不純物濃度プロファイルに及ぼす影響を示す図で、拡散時間95秒の場合である。It is a figure which shows the influence which B exerts on the impurity concentration profile of P in Ge board | substrate, and is a case of 95 second of diffusion times. Ge基板においてBが無い場合の不純物濃度プロファイルで、図14のBが無いものに相当する。In the Ge substrate, the impurity concentration profile in the absence of B corresponds to the absence of B in FIG. 図14の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. 図15の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板においてBがPの不純物濃度プロファイルに及ぼす影響を示す図で、拡散時間100秒の場合である。It is a figure which shows the influence which B exerts on the impurity concentration profile of P in Ge board | substrate, and is the case of 100 second of diffusion times. Ge基板においてBが無い場合の不純物濃度プロファイルで、図18のBが無いものに相当する。The impurity concentration profile in the absence of B in the Ge substrate corresponds to the absence of B in FIG. 図18の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. 図19の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. Ge基板においてBがPの不純物濃度プロファイルに及ぼす影響を示す図で、拡散時間が10秒の場合である。It is a figure which shows the influence which B exerts on the impurity concentration profile of P in Ge board | substrate, and is a case where diffusion time is 10 second. Ge基板においてBが無い場合の不純物濃度プロファイルで、図22のBが無いものに相当する。In the Ge substrate, the impurity concentration profile in the absence of B corresponds to the absence of B in FIG. 図22の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. 図23の不純物濃度プロファイルに対応するキャリア濃度プロファイルである。It is a carrier concentration profile corresponding to the impurity concentration profile of FIG. PとBの両方を導入して形成したGe基板のキャリア濃度プロファイルで、Bのドーズ量が2×1014cm-2の場合を示す。In the carrier concentration profile of Ge substrate formed by introducing both P and B, the case where the dose amount of B is 2 × 10 14 cm −2 is shown. PとBの両方を導入して形成したGe基板のキャリア濃度プロファイルで、Bのドーズ量が1×1015cm-2の場合を示す。The carrier concentration profile of a Ge substrate formed by introducing both P and B shows the case where the dose amount of B is 1 × 10 15 cm −2 . 第2の実施形態に係るnGe層を形成する方法で、イオン注入を用いた方法を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating the method of forming n + Ge layer which concerns on 2nd Embodiment, and using ion implantation. 図27に続く工程での断面図である。FIG. 28 is a cross-sectional view at a step subsequent to FIG. 27. 図28に続く工程での断面図である。FIG. 29 is a cross-sectional view in the process following FIG. 28. 図29に続く工程での断面図である。FIG. 30 is a cross-sectional view at a step subsequent to FIG. 29. 図30に続く工程での断面図である。FIG. 31 is a cross-sectional view in the process following FIG. 30. 第3の実施形態に係るnGe層を形成する方法で、CVDを用いた方法を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating the method using CVD by the method of forming n <+> Ge layer which concerns on 3rd Embodiment. 図32に続く工程での断面図である。FIG. 33 is a cross-sectional view at a step subsequent to FIG. 32. 図33に続く工程での断面図である。FIG. 34 is a cross-sectional view in the process following FIG. 図34に続く工程での断面図である。FIG. 35 is a cross-sectional view at a step subsequent to FIG. 34. 本発明の第4の実施形態に係るMIS型トランジスタの断面図である。It is sectional drawing of the MIS type | mold transistor which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係るCMISFETの断面図である。It is sectional drawing of CMISFET which concerns on the 5th Embodiment of this invention. 本発明の第6の実施形態に係るFinMISFETの斜視図である。It is a perspective view of FinMISFET which concerns on the 6th Embodiment of this invention. 第6の実施形態に係る素子領域を形成する方法を説明するための半導体基板の斜視図である。It is a perspective view of the semiconductor substrate for demonstrating the method to form the element area | region which concerns on 6th Embodiment. 図39の次の工程での斜視図である。FIG. 40 is a perspective view at the next step of FIG. 39. 第7の実施形態において、Ge基板にPが存在し、外方拡散する場合の熱処理前後の不純物濃度プロファイルを示す図である。In 7th Embodiment, P exists in Ge board | substrate and it is a figure which shows the impurity concentration profile before and behind heat processing in the case of carrying out outward diffusion. 図41のPの不純物プロファイルで、外方拡散がある場合と無い場合の拡散距離を比較した図である。It is the figure which compared the diffusion distance in the case where there is an outward diffusion, and there is no in the impurity profile of P of FIG. 図41の不純物濃度プロファイルに対応する電子濃度プロファイルである。It is an electron concentration profile corresponding to the impurity concentration profile of FIG. 第8の実施形態において、PとBが共存し外方拡散が無い場合における、熱処理前後の不純物濃度プロファイルを示す図である。In 8th Embodiment, when P and B coexist and there is no outward diffusion, it is a figure which shows the impurity concentration profile before and behind heat processing. Bが有る場合と無い場合で、いずれも外方拡散が無い場合のPの拡散距離を比較した図である。It is the figure which compared the diffusion distance of P in the case where there is no B and the case where there is no outward diffusion. 図45の不純物濃度プロファイルに対応する電子濃度プロファイルである。It is an electron concentration profile corresponding to the impurity concentration profile of FIG. 第9の実施形態において、PとBが共存し外方拡散が有る場合における、熱処理前後の不純物濃度プロファイルを示す図である。In 9th Embodiment, when P and B coexist and there exists outward diffusion, it is a figure which shows the impurity concentration profile before and behind heat processing. Ge基板中にBが存在し、外方拡散がある場合と無い場合のPの拡散距離を比較した図である。It is the figure which compared the diffusion distance of P in case B exists in Ge board | substrate, and there are cases and there is no out diffusion. 図47の不純物濃度プロファイルに対応する電子濃度プロファイルである。It is an electron concentration profile corresponding to the impurity concentration profile of FIG. 第10の実施形態に係るnGe層を形成する方法を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating the method to form n <+> Ge layer which concerns on 10th Embodiment. 図50に続く工程での断面図である。FIG. 50 is a cross-sectional view at a step subsequent to FIG. 50. 図51に続く工程での断面図である。FIG. 52 is a cross-sectional view in a step subsequent to FIG. 51; 図52に続く工程での断面図である。FIG. 52 is a cross-sectional view at a step subsequent to FIG. 52. 第11の実施形態に係るnGe層を形成する方法を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating the method to form n <+> Ge layer which concerns on 11th Embodiment. 図54に続く工程での断面図である。FIG. 56 is a cross-sectional view at a step subsequent to FIG. 54. 図55に続く工程での断面図である。FIG. 56 is a cross-sectional view at a step subsequent to FIG. 55. 図56に続く工程での断面図である。FIG. 56 is a cross-sectional view at a step subsequent to FIG. 56. 第12の実施形態に係るnGe層を形成する方法を説明するための半導体基板の断面図である。It is sectional drawing of the semiconductor substrate for demonstrating the method to form n <+> Ge layer which concerns on 12th Embodiment. 図58に続く工程での断面図である。FIG. 58 is a cross-sectional view at a step subsequent to FIG. 58. 図59に続く工程での断面図である。FIG. 60 is a cross-sectional view in the process following FIG. 59. 図60に続く工程での断面図である。FIG. 61 is a cross-sectional view at a step subsequent to FIG. 60. 図61に続く工程での断面図である。FIG. 61 is a cross-sectional view in a step subsequent to FIG. 61; Ge基板中にPをイオン注入したままの状態での不純物濃度(SIMS)プロファイルである。It is an impurity concentration (SIMS) profile in a state in which P is ion-implanted into a Ge substrate. Ge基板中にPをイオン注入して熱処理した場合の不純物濃度(SIMS)プロファイルである。It is an impurity concentration (SIMS) profile at the time of ion-implanting P into a Ge substrate and performing heat treatment. 図42のGe基板中のBとPの不純物濃度プロファイルとその際に形成される半導体の導電型のプロファイルを説明する模式図である。It is a schematic diagram explaining the impurity concentration profile of B and P in Ge board | substrate of FIG. 42, and the profile of the conductivity type of the semiconductor formed in that case. Ge基板中の高濃度のBによってPの拡散が抑制されることと、その際に形成される半導体の導電型のプロファイルを説明する模式図である。It is a schematic diagram explaining that the diffusion of P is suppressed by high concentration B in a Ge board | substrate, and the profile of the conductivity type of the semiconductor formed in that case.
 本発明の実施形態を説明する前に、本発明に至った経緯について説明する。前述したように、極浅かつ高電子濃度からなるnGeを形成するためには、熱処理時にn型不純物を拡散させないようにする技術が必要である。 Before describing the embodiments of the present invention, the background of the present invention will be described. As described above, in order to form n + Ge having an extremely shallow and high electron concentration, a technique for preventing the diffusion of n-type impurities during heat treatment is required.
 Geにおいてn型不純物の拡散のメカニズムは次のように説明される(例えば、 H. Bracht, Phys. Rev. B 75, 035210 (2007)参照)。Ge中でのn型不純物Aの拡散は、格子置換位置(substitutional site)にある正イオンA と二価の負電荷を持つ空孔V2-
       A +V2-⇔(AV) … (2)
の、化学平衡[質量作用の法則]によって表される反応によってペアになり、(AV)(dopant-vacancy pair)の形を取って拡散する。つまり、A による直接の拡散はなく、(AV)という形態(diffusion vehicle)を通して間接的に拡散する。A による拡散と見なしたとき、拡散方程式は、実効的な拡散係数Deffを持つ下記の式(3)、(4)で表現される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
The mechanism of diffusion of n-type impurities in Ge is described as follows (see, for example, H. Bracht, Phys. Rev. B 75, 035210 (2007)). In the diffusion of n-type impurity A in Ge, a positive ion A + s at a substitutional site (vacancy site) and a vacancy V 2 − having a divalent negative charge are A + s + V 2 − (AV) - ... (2)
The reaction is represented by the chemical equilibrium [the law of mass action], and is diffused in the form of (AV) - (dopant-vacancy pair). That is, no direct diffusion by A + s, (AV) - indirectly diffuses through form (Diffusion vehicle) that. When considered as diffusion by A + s , the diffusion equation is expressed by the following equations (3) and (4) having an effective diffusion coefficient D eff .
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
ここで、C (x,t)は、格子置換位置にあるn型不純物の正イオンの濃度であり、xはn型不純物の座標(本明細書では基板表面からの深さと定義)、tは拡散時間、n(x,t)は電子濃度、ni(x,t;T)は真性キャリア濃度(温度Tに依存)、D(ni)はniに依存した係数である。このように、n型不純物の実効拡散係数は、電子濃度nの自乗の依存性を持っている。これは、A と(AV)の電荷状態の差に由来している。Ge中のn型不純物は、このDeffの電子濃度の自乗の依存性によって、特異な拡散現象を示す。Ge中にn型不純物しかない場合、不純物濃度が高くなるほど、それに伴って電子濃度も高くなると考えて良い。それゆえ、(4)式より、不純物濃度が高いときにはDeffは大きくなり、不純物濃度が低くなるとDeffは小さくなる。 Here, C s + (x, t) is the concentration of the positive ion of the n-type impurity at the lattice substitution position, x is the coordinate of the n-type impurity (herein defined as the depth from the substrate surface), t is a diffusion time, n (x, t) is an electron concentration, ni (x, t; T) is an intrinsic carrier concentration (depends on temperature T), and D * (ni) is a coefficient depending on ni. Thus, the effective diffusion coefficient of the n-type impurity has the dependence of the square of the electron concentration n. This is derived from the difference in charge state of A + s and (AV) . The n-type impurity in Ge exhibits an unusual diffusion phenomenon due to the dependence of the electron concentration of D eff on the square. When only n-type impurities are present in Ge, it may be considered that the higher the impurity concentration, the higher the electron concentration. Therefore, (4) from the equation, D eff when high impurity concentration is increased, D eff when the impurity concentration is low is reduced.
 図63は、燐(P)をGeにイオン注入して熱処理したときの不純物濃度プロファイルをSIMSによって分析したものである。Pのドーズ量は5×1015cm-2、加速エネルギーは30keVであり、窒素雰囲気で600℃、30分の熱処理を施している。比較のために、熱処理を加える前、つまりイオン注入しただけの場合のシミュレーションによる結果も示した。熱処理前は、ピーク濃度で略1021cm-3あり、濃度が1×1019cm-3である深さは約100nmである。 FIG. 63 shows the result of SIMS analysis of the impurity concentration profile when phosphorus (P) is ion-implanted into Ge and heat-treated. The dose amount of P is 5 × 10 15 cm −2 , the acceleration energy is 30 keV, and heat treatment is performed at 600 ° C. for 30 minutes in a nitrogen atmosphere. For comparison, simulation results before heat treatment, that is, in the case of only ion implantation are also shown. Before the heat treatment, the peak concentration is approximately 10 21 cm −3 and the depth is 1 × 10 19 cm −3 at a concentration of approximately 100 nm.
 一方で、熱処理後は、ピーク濃度で2×1019cm-3程度までに大きく減少し、また濃度が1×1019cm-3である深さは400nmを超えるほど拡散してしまう。ここで特徴的なのはその箱形というべきプロファイルの形状である。表面から400nm程度までは緩やかに濃度は減少するが、それよりも深くなると急峻に濃度が減少する。これは、Deffがnに比例しているためである。つまり、濃度が高いとDeffが大きいため拡散が速く、濃度が低くなるとDeffが小さくなるため、特徴的な箱形プロファイルになると説明できる。 On the other hand, after the heat treatment, greatly reduced by 2 × 10 approximately 19 cm -3 at the peak concentration and the depth concentration of 1 × 10 19 cm -3 is diffuses more than the 400 nm. What is characteristic here is the shape of the profile which should be said box-like. The concentration gradually decreases from the surface to about 400 nm, but the concentration sharply decreases as it gets deeper than that. This is because D eff is proportional to n 2 . That is, if the concentration is high, the diffusion is fast because D eff is large, and since D eff is small if the concentration is low, it can be explained that the characteristic box-like profile is obtained.
 このように、Ge中のn型不純物の拡散が(AV)という形態を通して拡散し、電子濃度の自乗nに依存する拡散係数を持つのならば、この負電荷を打ち消せば拡散が抑制できるかもしれない,と本発明者らは考えた。そこで、n型不純物を補償するp型不純物としてボロン(B)を選び、Ge基板に導入して、Pの拡散が抑制できるかを確かめた。その結果が図64である。Bを導入したGeにおけるPの不純物プロファイルをSIMS分析によって求めた。Ge基板にBをドーズ量5×1015cm-2、加速エネルギー30keVで導入したあと、図63と同じ条件でPを導入して熱処理している。 Thus, diffusion of the n-type impurities in the Ge (AV) - diffuse through the form of if to have a diffusion coefficient dependent on the square n 2 of the electron density, diffusion suppressing if Uchikese this negative charge The present inventors thought that it might be possible. Therefore, boron (B) was selected as a p-type impurity to compensate for the n-type impurity and introduced into a Ge substrate to check whether the diffusion of P can be suppressed. The result is shown in FIG. The impurity profile of P in Ge introduced B was determined by SIMS analysis. After introducing B into a Ge substrate with a dose of 5 × 10 15 cm −2 and an acceleration energy of 30 keV, P is introduced and heat-treated under the same conditions as FIG.
 その結果によると、まず、Bのピーク濃度は約1×1021cm-3であり、またそのプロファイルから熱処理を加えても拡散していないことがわかる。従来までに、BFをドーズ量4×1015cm-2、加速エネルギー20keVでGeにイオン注入し、650℃,10秒の熱処理を施した場合でも、Bは全く拡散しない、という報告があり(C. O. Chui et al., Appl. Phys. Lett. 83, 3275 (2003)参照))、本発明での結果と矛盾がない。 According to the results, first, the peak concentration of B is about 1 × 10 21 cm −3 , and it is understood from the profile that the peak concentration is not diffused even when heat treatment is applied. It has been reported that B does not diffuse at all even when ion-implanting BF 2 into Ge at a dose of 4 × 10 15 cm −2 and acceleration energy of 20 keV and heat treatment at 650 ° C. for 10 seconds. (See, CO Chui et al., Appl. Phys. Lett. 83, 3275 (2003)), consistent with the results of the present invention.
 また、Pの濃度が1×1019cm-3である深さは約100nmであって、これは熱処理前のプロファイルと同じである。つまりPは全く拡散していない。Bがない場合には、Pの濃度は2×1019cm-3まで低下してしまったが(図63)、Bがある場合にはPはピークで約7×1020cm-3という高濃度を維持している。 Also, the depth at which the concentration of P is 1 × 10 19 cm −3 is about 100 nm, which is the same as the profile before heat treatment. That is, P is not diffused at all. In the absence of B, the concentration of P decreased to 2 × 10 19 cm -3 (Fig. 63), but in the presence of B, P peaked at about 7 × 10 20 cm -3 at the peak. The concentration is maintained.
 こうして、Geにおけるn型不純物の拡散メカニズムに基づき、n型不純物の拡散形態である(PV)を打ち消すようにp型不純物を導入すれば、n型不純物の拡散が完全に抑制できることを発見した。しかし、BによってPの拡散は完全に抑えられるが、図65からわかるように、基板の全体でPよりもBの濃度が高いため、pGeが形成されている。Pの拡散が抑制できても、nGeが形成されないのでは意味がない。 Thus, based on the diffusion mechanism of n-type impurity in Ge, a diffusion form of n-type impurity (PV) - By introducing a p-type impurity so as to cancel the diffusion of n-type impurities are found to be able to completely suppress . However, although the diffusion of P is completely suppressed by B, as can be seen from FIG. 65, p + Ge is formed because the concentration of B is higher than P in the entire substrate. Even if the diffusion of P can be suppressed, it does not make sense that n + Ge is not formed.
 Pの拡散を抑制しながらnGeを形成する方法としては、例えば、図66のような方法が考えられる。p型不純物としてBを基板の奥に高濃度に導入し、n型不純物としてPを基板の表面付近に導入する。熱処理を加えると、Bは拡散しないが、Pは基板の奥に拡散し、Pの濃度に較べてBの濃度が充分に高ければ、BによってPの拡散が抑制される。Pの不純物濃度が高くできるので、電子濃度も高くでき、基板の表面にnGeが形成されることになる。しかし、この構造では、nGeが形成されるかもしれないが、高濃度のBが存在するためpGeも同時に形成されることになる。つまり、nGe/pGe構造ができてしまい、これではソース/ドレインには適用できない。 As a method of forming n + Ge while suppressing the diffusion of P, for example, a method as shown in FIG. 66 can be considered. B is introduced at a high concentration to the back of the substrate as a p-type impurity, and P is introduced near the surface of the substrate as an n-type impurity. When heat treatment is applied, B does not diffuse, but P diffuses to the back of the substrate, and if the concentration of B is sufficiently high compared to the concentration of P, B suppresses the diffusion of P. Since the impurity concentration of P can be increased, the electron concentration can also be increased, and n + Ge is formed on the surface of the substrate. However, in this structure, n + Ge may be formed, but p + Ge will be formed at the same time due to the presence of a high concentration of B. That is, an n + Ge / p + Ge structure is formed, which is not applicable to the source / drain.
 本発明者らは、上記発見に伴う問題を解決し、pGeを存在させずに、極浅かつ高キャリア(電子)濃度であるnGe構造を形成する方法を見出した。またそれによって形成された理想的なnGe構造を見出すことができた。これを以下に実施形態として説明する。本発明の実施形態について図面を参照しながら説明するが、各実施形態を通して共通の構成には同一符号を付すものとし、重複する説明は省略する。また、各図の中には本発明の説明とその理解を促すための模式図があり、その形状や寸法、比などが実際の装置と異なる個所があっても、これらは以下の説明と公知の技術を参酌して適宜、設計変更することができる。 The present inventors have solved the problems associated with the above discovery and have found a method for forming an n + Ge structure which is an extremely shallow and high carrier (electron) concentration without the presence of p + Ge. It was also possible to find the ideal n + Ge structure formed thereby. This will be described below as an embodiment. Although the embodiments of the present invention will be described with reference to the drawings, the same reference numerals are given to the same components throughout the embodiments, and the redundant description will be omitted. Further, in each of the drawings, there is a schematic view for explaining the present invention and promoting its understanding, and even if there are places where its shape, size, ratio, etc. are different from the actual device, these will be described below. The design can be changed as appropriate in consideration of the technique of
 なお、本明細書において「Geを主成分とする」とは、Geの含有量が85at.%以上であることをさす。例えば、Semicond. Sci. Technol. 12(1997)1515-1549には、Siの伝導帯の最小値はΔ点であり、Geの伝導帯の最小値はL点であり、SiGeは組成比に依存して、SiGe1-xの場合、x<0.85でΔとなり、x>0.85でL点となることが報告されている。 In the present specification, "having Ge as a main component" means that the content of Ge is 85 at. It means that it is% or more. For example, in Semicond. Sci. Technol. 12 (1997) 1515-1549, the minimum value of the conduction band of Si is the Δ point, the minimum value of the conduction band of Ge is the L point, and SiGe depends on the composition ratio Then, in the case of Si x Ge 1 -x , it has been reported that Δ is obtained at x <0.85 and L point is obtained at x> 0.85.
(第1の実施形態)
 ここでは、本発明の第1の実施形態に係わる極浅かつ高電子濃度からなるnGe層を有する半導体装置(基板)とその製造方法を説明する。図1A,1Bは、Ge基板における不純物プロファイルを表す模式図である。
First Embodiment
Here, a semiconductor device (substrate) having an extremely shallow and high electron concentration n + Ge layer according to the first embodiment of the present invention and a method of manufacturing the same will be described. 1A and 1B are schematic views showing impurity profiles in a Ge substrate.
 図1Aは熱処理前を示している。一定で低濃度のp型不純物を含む基板に、基板濃度に較べれば高濃度の、n型不純物とp型不純物の二つを導入する。そのとき、p型不純物は基板の内奥側に導入し、n型不純物はそれよりも表面側に導入する。ここで、典型的な例として、n型不純物はP、p型不純物はBを選んだ。このとき、Ge中の各不純物が電気的に活性化していれば、図に示すように、nGe/pGe/pGe構造が形成される。尚、熱処理前にこのように不純物が電気的に活性化している必要は無い。各不純物の濃度は、図63の場合と異なり、Pのピーク濃度の方が、Bのそれよりも充分に高くなっていることが特徴である。 FIG. 1A shows the state before heat treatment. An n-type impurity and a p-type impurity, which are higher in concentration than the substrate concentration, are introduced into a substrate containing a constant, low-concentration p-type impurity. At that time, the p-type impurity is introduced to the inner side of the substrate, and the n-type impurity is introduced to the surface side more than that. Here, as a typical example, n-type impurity was selected as P, and p-type impurity as B. At this time, if each impurity in Ge is electrically activated, an n + Ge / p + Ge / p - Ge structure is formed as shown in the figure. It is not necessary to electrically activate the impurities in this manner before the heat treatment. Unlike the case of FIG. 63, the concentration of each impurity is characterized in that the peak concentration of P is sufficiently higher than that of B.
 この構造に熱処理を加えると、前述したように、Geにおけるn型およびp型不純物の特性から、Pは拡散するが、Bは拡散しない。またGe中におけるPは、(PV)という形態を通して間接的に拡散するため、プロファイルは箱形の、濃度が急峻に変化するものになる。そして、高濃度にBが存在する領域をPが拡散するとき、Bによって負電荷が打ち消されるため、(PV)という形態での拡散が起こりにくくなり、Pの拡散が遅くなる。さらに熱処理を続けると、Pは図1Bのように、Bが高濃度に存在する領域全体に拡散する。Ge中でBよりも常にPの濃度を高くできるので、nGeを形成できる。 When heat treatment is applied to this structure, as described above, P diffuses but B does not diffuse due to the characteristics of n-type and p-type impurities in Ge. P in the Ge also, (PV) - to indirectly diffused through that form, the profile of the box-shaped, concentration of which changes sharply. Then, when P diffuses in a region where B is present at a high concentration, the negative charge is canceled by B, so diffusion in the form of (PV) becomes difficult to occur and diffusion of P becomes slow. When the heat treatment is further continued, P diffuses throughout the region where B is present at a high concentration as shown in FIG. 1B. Since the concentration of P can always be higher than B in Ge, n + Ge can be formed.
 つまり、最初はp型不純物を用いてn型不純物の拡散を抑制し、最終的にn型不純物をp型不純物よりも高くできるので、pGe領域を残さずに、浅くて高電子濃度からなるnGe構造を形成できる。 That is, first, p-type impurities are used to suppress the diffusion of n-type impurities, and finally n-type impurities can be made higher than p-type impurities, so the p + Ge region is left shallow and shallow and high electron concentration N + Ge structure can be formed.
 次に、本発明によるnGeが定量的にどのように形成され、どのような構造になるかを説明する。前述したように、Geにおけるn型不純物の拡散は、(2)~(4)式の拡散方程式で表現される。p型不純物も共存する場合は、それらに加えて次のことを考慮すれば良い。まず、p型不純物は熱処理をしても拡散しないと仮定する。また、Geは電荷中性条件である(5)式をを満たすと仮定する。 Next, it will be explained how n + Ge according to the present invention is formed quantitatively and what kind of structure it takes. As described above, the diffusion of n-type impurities in Ge is expressed by the diffusion equations (2) to (4). When p-type impurities also coexist, the following may be taken into consideration in addition to them. First, it is assumed that p-type impurities do not diffuse even by heat treatment. Further, it is assumed that Ge satisfies the charge neutral condition (5).
       n+(NA-pA)=p+(ND-nD)      … (5)
ここで、nは電子濃度、pはホール濃度、NAはp型不純物濃度、NDはn型不純物濃度、pAはアクセプターレベルに存在するホール密度、nDはドナーレベルに存在するドナー密度である。n,p,pA,nDは通常の平衡系の統計力学で表現できるとする。この(5)式を用いて、Ge基板の各座標、拡散の各時間におけるnを求めながら、(3)式によって、Geにおけるn型不純物の拡散を計算した。n型不純物と共存するp型不純物の影響は、(5)式から決まるnを通して反映されている。
n + (N A- p A ) = p + (N D- n D ) (5)
Here, n is an electron concentration, p is a hole concentration, N A is a p-type impurity concentration, N D is an n-type impurity concentration, p A is a hole density at the acceptor level, and n D is a donor at the donor level It is a density. Let n, p, p A and n D be expressed by the statistical mechanics of a normal equilibrium system. The diffusion of n-type impurities in Ge was calculated by the equation (3) while obtaining the coordinates of the Ge substrate and n at each diffusion time using the equation (5). The influence of the p-type impurity coexisting with the n-type impurity is reflected through n determined from the equation (5).
<nGe層にn型不純物だけが存在している場合>
 図2は、本実施形態によるn+Geが形成される過程を計算した一例であり、不純物濃度と深さの関係である。計算するには拡散係数などが必要であり、それらは実験値とフィッティングして求めた。図2は、n型不純物だけがGeに存在している場合である。ここで、n型不純物の例としてPを選んだ。Pの初期プロファイル(熱処理前のプロファイル)は、Ge基板表面から射影飛程(Projected Range)Rpが5.0nm、標準偏差1.0nm、ドーズ量1×1015cm-2のガウス分布であると想定した。熱処理は短時間(1秒)のスパイクアニールを想定している。温度は773Kである。熱処理中の時間発展を十等分(0,0.1,0.2,…,1.0)にして、Pの不純物濃度プロファイルの経時変化を示した。
<When only n-type impurities exist in n + Ge layer>
FIG. 2 is an example of calculating the process of forming n + Ge according to the present embodiment, and shows the relationship between the impurity concentration and the depth. In order to calculate, the diffusion coefficient etc. are required, and they were found by fitting with the experimental values. FIG. 2 shows the case where only n-type impurities are present in Ge. Here, P was selected as an example of the n-type impurity. The initial profile of P (profile before heat treatment) is a Gaussian distribution with a Projected Range Rp of 5.0 nm, a standard deviation of 1.0 nm, and a dose of 1 × 10 15 cm −2 from the Ge substrate surface I assumed. The heat treatment assumes spike annealing for a short time (1 second). The temperature is 773K. The time evolution during heat treatment was made equal (0, 0.1, 0.2, ..., 1.0) to show the change with time of the impurity concentration profile of P.
 本例のようにBが無い場合には、図2のプロファイルの経時変化からわかるように、最初に大きく拡散し、徐々にゆっくりになって拡散していく。熱処理前に濃度が1×1019cm-3の位置はRpから3.5nmであるが、0.1秒後は13.2nmまで広がり、0.2秒後では16.8nm、0.3秒後では19.0nmと広がり、1秒後では27.2nmまで拡散する。 When B is not present as in this example, as is apparent from the change with time of the profile in FIG. 2, the light first diffuses and then gradually spreads gradually. Before heat treatment, the concentration is 1 × 10 19 cm -3 from Rp to 3.5 nm, but after 0.1 sec, it spreads to 13.2 nm, and after 0.2 sec, 16.8 nm, 0.3 sec After that, it spreads to 19.0 nm, and diffuses to 27.2 nm after one second.
 図3は、図2と同じ条件のものであり、その電子濃度プロファイルを示したものである。図2と同様に、熱処理中の時間発展を十等分にして、Pの電子濃度プロファイルの変化を示した。図3を図2と較べるとわかるように、7×1017cm-3以上で不純物と電子濃度はほぼ一致している。これはGe中にn型ドーパントであるPだけが存在するからであり、表面から約33nmの深さまで電子だけからなるnGeになっている。 FIG. 3 shows the electron concentration profile under the same conditions as FIG. Similar to FIG. 2, the time evolution during the heat treatment was made sufficiently equal to show the change of the electron concentration profile of P. As can be seen by comparing FIG. 3 with FIG. 2, the impurity and electron concentrations almost coincide with each other at 7 × 10 17 cm −3 or more. This is because only P, which is an n-type dopant, is present in Ge, and is n + Ge consisting only of electrons up to a depth of about 33 nm from the surface.
 尚、ここでの電子濃度は、773Kという不純物が拡散する温度のときのものである。そのため、不純物濃度が電子濃度とほぼ同じ、つまりほぼ100%イオン化していると考えている。一方で、室温では不純物が不完全イオン化を起こし、電子濃度が不純物濃度よりも低くなることがある。しかし、不純物が高濃度の場合には金属絶縁体転移により不純物の不完全イオン化はなく、つまり室温でも不純物濃度と電子濃度はほとんど同じと考えて良い。電子濃度が7×1017cm-3の一定領域は、真性キャリア濃度niによるものであり、室温では基板濃度より低くなり、基板が通常の濃度のp型であれば、ホール濃度一定の領域が室温では現れる。 Here, the electron concentration is at a temperature at which the impurity of 773 K diffuses. Therefore, it is considered that the impurity concentration is approximately the same as the electron concentration, that is, approximately 100% ionized. On the other hand, at room temperature, the impurity may cause incomplete ionization, and the electron concentration may be lower than the impurity concentration. However, when the concentration of the impurity is high, there is no incomplete ionization of the impurity due to metal-insulator transition, that is, the impurity concentration and the electron concentration may be considered to be almost the same even at room temperature. The constant region with an electron concentration of 7 × 10 17 cm -3 is due to the intrinsic carrier concentration ni, which is lower than the substrate concentration at room temperature, and the region with a constant hole concentration is Appears at room temperature.
<nGe層にn型不純物とp型不純物が同時に存在している場合>
 図4は、n型不純物と共にp型不純物も同時に存在している場合である。図2の場合に加えて、p型不純物がGe基板全体に2.5×1020cm-3の高濃度で共存している。ここではp型不純物の例としてBを選んだ。
<When n-type impurity and p-type impurity exist simultaneously in n + Ge layer>
FIG. 4 shows the case where a p-type impurity is also present simultaneously with the n-type impurity. In addition to the case of FIG. 2, p-type impurities coexist in the entire Ge substrate at a high concentration of 2.5 × 10 20 cm −3 . Here, B was selected as an example of the p-type impurity.
 BがGe基板全体にある場合でも、Bが無い場合と同様に、最初は大きく拡散し、徐々にゆっくり拡散していく。しかしながら、Bがある場合には、Bが無い場合に較べて、その拡散速度は相対的にゆっくりである。熱処理前に濃度が1×1019cm-3の位置はRpら3.5nmであり、0.1秒後は9.0nmまで広がり、0.2秒後では10.6nm、0.3秒後では11.4nmと広がり、1秒後では14.2nmまで拡散する。 Even when B is in the whole of the Ge substrate, it diffuses at first largely and gradually and gradually as in the case without B. However, when B is present, its diffusion rate is relatively slow compared to when B is absent. Before heat treatment, the position of the concentration is 1 × 10 19 cm -3 is 3.5 nm at Rp et al. And spreads to 9.0 nm after 0.1 sec, 10.6 nm after 0.2 sec, after 0.3 sec Spreads to 11.4 nm and diffuses to 14.2 nm after one second.
 図5は、B無しの場合(図2)と有りの場合(図4)のPの拡散距離を比較したものである。濃度が1×1019cm-3の場合の、同じ拡散時間におけるそれぞれの拡散距離(Rpを原点に取ったときの深さ)をプロットした。図から明らかなように、Bがあることによって拡散距離が短くなっており、それは距離が大きくなるほど、言い換えれば拡散時間が長くなるほど、その差は大きくなっていく。このように、Bがあることによって拡散が抑えられることがわかる。 FIG. 5 compares the diffusion distances of P without B (FIG. 2) and with P (FIG. 4). Each diffusion distance (depth when taking Rp as the origin) at the same diffusion time when the concentration is 1 × 10 19 cm −3 was plotted. As apparent from the figure, the presence of B shortens the diffusion distance, and the larger the distance, in other words, the longer the diffusion time, the larger the difference. Thus, it can be seen that the presence of B suppresses diffusion.
 図6は、図4と同じ条件のものであり、その電子濃度プロファイルを示したものである。BがGe基板全体に2.5×1020cm-3という高濃度で存在しているため、熱処理前の状態でP濃度がB濃度より低い場所では、電子濃度は2.8×1015cm-3になる。(4)式からわかるように実効拡散係数は電子濃度の自乗に比例しているため、電子濃度が低いほど拡散が遅くなる。Bが無い場合には8.4×1017cm-3であるが、Bがある場合には2.8×1015cm-3であり、電子濃度が2桁以上低くなる。それゆえ、Bの存在によって実効拡散係数が小さくなり、拡散がゆっくりになる。 FIG. 6 shows the electron concentration profile under the same conditions as FIG. Since B is present at a high concentration of 2.5 × 10 20 cm -3 throughout the Ge substrate, the electron concentration is 2.8 × 10 15 cm at a place where the P concentration is lower than the B concentration before the heat treatment. It becomes -3 . As can be seen from equation (4), the effective diffusion coefficient is proportional to the square of the electron concentration, so the lower the electron concentration, the slower the diffusion. In the absence of B, it is 8.4 × 10 17 cm −3 , but in the presence of B, it is 2.8 × 10 15 cm −3 , and the electron concentration decreases by two digits or more. Therefore, the presence of B reduces the effective diffusion coefficient and makes diffusion slower.
 こうして、BがあることによってPの拡散を抑えることができ、Bが無いときに較べて、浅くて高濃度のnGeが表面に形成されることになる。しかし、図4からわかるように、PよりBの濃度が高い領域があるため、これはnGe/pGeである。pGeにおけるホール濃度pは、図6と質量作用の法則np=ni(nは電子濃度)の関係式から求められ、それは1.75×1020[=(7×1017/(2.8×1015)]cm-3という高濃度である。また、さらに、高濃度のPが存在していてもBによって補償されるため、Pの不純物濃度に較べて電子濃度が低くなっている。 Thus, the presence of B can suppress the diffusion of P, and a shallow and high concentration of n + Ge will be formed on the surface as compared to the absence of B. However, as can be seen from FIG. 4, this is n + Ge / p + Ge because there is a region where the concentration of B is higher than P. The hole concentration p in p + Ge is obtained from the relationship between FIG. 6 and the mass action law np = ni 2 (n is the electron concentration), which is 1.75 × 10 20 [= (7 × 10 17 ) 2 / It is a high concentration of (2.8 × 10 15 )] cm −3 . Furthermore, even if a high concentration of P is present, since it is compensated by B, the electron concentration is lower than the impurity concentration of P.
<pGe層を作らずにnGeを形成する方法>
 pGe層を作らず、また表面での電子濃度を下げずに浅くて電子が高濃度のnGeを形成するには、Bのプロファイルを調整すればよい。図7はBのプロファイルを調整したものである。図3のように全体にBを入れず、2.5×1020cm-3の一定濃度であるという条件は同じままに、表面から7.3nm~18.9nmまでの深さにだけBが存在するようにした。Pのプロファイルは、図7からわかるように、図4のPのプロファイルとほとんど差がない。また、このように一部にだけBがある場合とBが無い場合のPの拡散距離を比較したものが図8であるが、図5とほぼ同じである。つまり、Bを基板全体に入れずに、一部だけに入れてもPの拡散抑制の効果が同じくらいあるということを意味している。そして、一部だけにBを入れるために、図4からわかるように、熱処理後に最終的に得られるPのプロファイルは、Bよりも基板全体で濃度を高くすることができる。
<Method to form n + Ge without forming p + Ge layer>
The profile of B may be adjusted in order to form a high concentration n + Ge of electrons without forming ap + Ge layer and without reducing the electron concentration at the surface and forming a shallow electron. FIG. 7 is an adjustment of the profile of B. As shown in FIG. 3, B does not enter entirely, and the condition of constant concentration of 2.5 × 10 20 cm -3 is the same, B is only from the surface to a depth of 7.3 nm to 18.9 nm. It was made to exist. The profile of P is almost the same as the profile of P in FIG. 4, as can be seen from FIG. Moreover, although FIG. 8 compares the diffusion distance of P when there is B only in a part and there is no B in this way, it is almost the same as FIG. In other words, this means that even if only B is added to the entire substrate, and even if it is added to only a part, the effect of suppressing the diffusion of P is the same. Then, in order to put B only in part, the profile of P finally obtained after the heat treatment can be made higher in concentration in the whole substrate than B, as can be seen from FIG.
 図9は、図7と同じ条件のものであり、その電子濃度プロファイルを示したものである。図9以降の類似図面には、熱処理前と熱処理後の注記の記載を省略するが、図2と同様に、放物線状の曲線が熱処理前、テラス状の曲線が熱処理後を示す。図6とは異なり、基板の内奥側では真性キャリア濃度になっていて、Bが無い場合の図3と同じである。つまり、基板の内奥側にはpGeではなく、もともとのGe基板の状態、例えば通常程度の不純物を含んだpGe基板になっていることがわかる。また、図6と較べて、表面側において電子濃度が高くなっている。これは表面にBが存在しないため、電子濃度の減少、損失などが起こらず、したがって、電子濃度がPの不純物濃度とほぼ同じ濃度になっているためである。PはBによる拡散抑制効果により高い不純物濃度が維持されているので、Bが無い場合よりも高い電子濃度が実現されている。 FIG. 9 shows the electron concentration profile under the same conditions as FIG. Although the description of the notes before and after the heat treatment is omitted in the similar drawings after FIG. 9, the parabolic curve shows the heat treatment before and the terrace curve shows the heat treatment after the heat treatment as in FIG. Unlike FIG. 6, the inner side of the substrate has an intrinsic carrier concentration, which is the same as FIG. 3 when B is absent. That is, it can be seen that the inner side of the substrate is not the p + Ge, but the original Ge substrate state, for example, a pGe substrate containing impurities at a normal level. Also, compared to FIG. 6, the electron concentration is higher on the surface side. This is because there is no B on the surface, so there is no reduction or loss of the electron concentration, and hence the electron concentration is approximately the same as the impurity concentration of P. Since P has a high impurity concentration maintained by the diffusion suppressing effect of B, a higher electron concentration is realized than when B is absent.
 このように、Bを表面と基板の内奥側に入れず、最適な場所に最適な濃度で導入すれば、BによってPの拡散を抑制し、BがあってもpGeを残さず、また表面の電子濃度を低くすることなく、浅くて高濃度の電子からなるnGe層を形成することができる。 In this way, if B is introduced at the optimum concentration to the surface and the inner side of the substrate, the diffusion of P is suppressed by B, and even if B is present, p + Ge is not left, In addition, it is possible to form an n + Ge layer composed of shallow and high concentration electrons without lowering the electron concentration on the surface.
<n型不純物を抑制するために必要なp型不純物の濃度>
 つづいて、n型不純物を抑制するためには、どのくらいの濃度のp型不純物が必要かを説明する。ここでもn型不純物としてP,p型不純物としてBを選んだ。Pの初期プロファイル(熱処理前のプロファイル)は、Ge基板表面からRpが5.0nm、標準偏差1.0nm、ドーズ量1×1014cm-2のガウス分布であると想定した。拡散温度は773Kである。Bの濃度を3通りに変化させた場合を示した。BはGe基板表面からPのRpの位置まで存在しない場合を想定した。
<P-type impurity concentration required to suppress n-type impurities>
Subsequently, in order to suppress the n-type impurity, it will be described how much concentration of the p-type impurity is required. Here too, P was selected as the n-type impurity and B was selected as the p-type impurity. The initial profile of P (profile before heat treatment) was assumed to be a Gaussian distribution with Rp of 5.0 nm, a standard deviation of 1.0 nm, and a dose of 1 × 10 14 cm −2 from the Ge substrate surface. The diffusion temperature is 773K. The case where the concentration of B was changed in three ways was shown. It is assumed that B does not exist from the surface of the Ge substrate to the position of Rp of P.
 まず、図10はBを5×1019cm-3の濃度で、Rp(5nm)から10nmまで入れた場合である。拡散時間は3秒とした。例えば、P濃度が1×1018cm-3の位置は、熱処理前には8.8nmであったのが、熱処理後には10.4nmまで拡散しており、熱処理前後の差で1.6nmだけ拡散している。 First, FIG. 10 shows the case where B is introduced from Rp (5 nm) to 10 nm at a concentration of 5 × 10 19 cm −3 . The diffusion time was 3 seconds. For example, the position of P concentration of 1 × 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 10.4 nm after heat treatment, and the difference between before and after heat treatment is only 1.6 nm. It is spreading.
 図10の場合からBだけを無くしたものが図11である。P濃度が1×1018cm-3の位置は、熱処理前は同じ8.8nmであり、熱処理後には14.8nmまで拡散している。拡散した距離は6.0nmである。つまり、Bが無い場合には6.0nm拡散しているが、5×1019cm-3のBがあることによって1.6nm拡散するだけで抑えられている。 It is FIG. 11 which eliminated only B from the case of FIG. The position of P concentration of 1 × 10 18 cm −3 is the same 8.8 nm before the heat treatment, and diffused to 14.8 nm after the heat treatment. The diffused distance is 6.0 nm. That is, when B is absent, the light is diffused by 6.0 nm, but when 5 × 10 19 cm -3 is present, the diffusion is suppressed only by 1.6 nm.
 このときの図10,11の不純物濃度プロファイルに対応する電子濃度プロファイルは、それぞれ、図12,13である。Bが無い場合(図13)には、不純物濃度プロファイル(図11)に対応して、電子濃度が1×1018cm-3の位置は10.4nmである。一方で、Bがある場合(図12)には、不純物濃度プロファイル(図10)に対応して、14.8nmまでnGeの領域が広がっている。また図からわかるように、拡散している途中はBによって補償されるため、真性キャリア濃度より電子濃度が低く(ホール濃度が高く)、つまりpGeが形成されている。そのとき、電子濃度が低いのでゆっくり拡散し、最終的には電子濃度が真性キャリア濃度より低い領域が無くなり、つまりpGe領域が無くて、極浅かつ高濃度の電子濃度からなるnGeだけが形成できている。 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 10 and 11 at this time are shown in FIGS. 12 and 13, respectively. When B is not present (FIG. 13), the position at an electron concentration of 1 × 10 18 cm −3 is 10.4 nm, corresponding to the impurity concentration profile (FIG. 11). On the other hand, when B is present (FIG. 12), the n + Ge region is expanded to 14.8 nm corresponding to the impurity concentration profile (FIG. 10). As can be seen from the figure, since B is compensated during the diffusion, the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed. At that time, since the electron concentration is low, it diffuses slowly and finally there is no region where the electron concentration is lower than the intrinsic carrier concentration, that is, there is no p + Ge region, and n + Ge consisting of extremely shallow and high electron concentration Only can be formed.
 図14は、図10よりもB濃度を減らして、1×1019cm-3にした場合である。BはRpから25.3nmまで入れた。ここまでの内容から予想されるように、B濃度が低くなれば、Pが拡散する領域も広くなるため、Bを入れる領域も広くした方が良いからである。拡散時間は95秒とした。例えば、P濃度が1×1018cm-3の位置は、熱処理前には8.8nmであったのが、熱処理後には25.4nmまで拡散しており、熱処理前後の差で17.0nmだけ拡散している。 FIG. 14 shows the case where the B concentration is reduced to 1 × 10 19 cm −3 as compared with FIG. B was loaded from Rp to 25.3 nm. As expected from the above contents, the lower the B concentration, the wider the region to which P diffuses, so it is better to widen the region into which B is to be inserted. The diffusion time was 95 seconds. For example, the position of P concentration of 1 × 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 25.4 nm after heat treatment, and the difference between before and after heat treatment is only 17.0 nm. It is spreading.
 図14の場合からBだけを無くしたものが図15である。P濃度が1×1018cm-3の位置は、熱処理前は同じ8.4nmであり、熱処理後には32.2nmまで拡散している。拡散した距離は23.2nmである。つまり、Bが無い場合には23.2nm拡散しているが、1×1019cm-3のBがあることによって17.0nm拡散するだけで抑えられている。 It is FIG. 15 which eliminated only B from the case of FIG. The position of P concentration of 1 × 10 18 cm −3 is the same 8.4 nm before the heat treatment, and diffused to 32.2 nm after the heat treatment. The diffused distance is 23.2 nm. That is, when B is not present, 23.2 nm is diffused, but because 1 × 10 19 cm −3 of B is present, it is suppressed only by 17.0 nm.
 このときの図14,15の不純物濃度プロファイルに対応する電子濃度プロファイルは、それぞれ、図16,17である。Bが無い場合(図17)には、不純物濃度プロファイル(図15)と対応して、電子濃度が1×1018cm-3の位置は32.2nmである。 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 14 and 15 at this time are shown in FIGS. 16 and 17, respectively. When B is not present (FIG. 17), the position of the electron concentration of 1 × 10 18 cm −3 is 32.2 nm, corresponding to the impurity concentration profile (FIG. 15).
 一方で、Bがある場合(図16)には、不純物濃度プロファイル(図14)と対応して、25.4nmまでnGeの領域が広がっている。また図からわかるように、拡散している途中はBによって補償されるため、真性キャリア濃度より電子濃度が低く(ホール濃度が高く)、つまりpGeが形成されている。そのとき、電子濃度が低いのでゆっくり拡散し、最終的には電子濃度が真性キャリア濃度より低い領域が無くなり、つまりpGe領域が無くて、極浅かつ高濃度の電子濃度からなるnGeだけが形成できている。 On the other hand, when B is present (FIG. 16), the n + Ge region extends up to 25.4 nm, corresponding to the impurity concentration profile (FIG. 14). As can be seen from the figure, since B is compensated during the diffusion, the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed. At that time, since the electron concentration is low, it diffuses slowly and finally there is no region where the electron concentration is lower than the intrinsic carrier concentration, that is, there is no p + Ge region, and n + Ge consisting of extremely shallow and high electron concentration Only can be formed.
 図18は、図10,図14よりもさらにB濃度を減らして、1×1018cm-3にした場合である。BはRpから31.8nmまで入れている。前述したように、B濃度が低くなれば、Pが拡散する領域も広くなるため、Bを入れる領域も広くした方が良いからである。拡散時間は100秒とした。例えば、P濃度が1×1018cm-3の位置は、熱処理前には8.8nmであったのが、熱処理後には31.6nmまで拡散しており、熱処理前後の差で22.8nmだけ拡散している。 FIG. 18 shows the case where the B concentration is further reduced to 1 × 10 18 cm −3 as compared with FIGS. 10 and 14. B is from Rp to 31.8 nm. As described above, since the lower the B concentration, the wider the region where P diffuses, it is better to widen the region where B is to be contained. The diffusion time was 100 seconds. For example, the position of P concentration of 1 × 10 18 cm -3 was 8.8 nm before heat treatment, but diffused to 31.6 nm after heat treatment, and the difference between before and after heat treatment is only 22.8 nm It is spreading.
 図18の場合からBだけを無くしたものが図19である。P濃度が1×1018cm-3の位置は、熱処理前は同じ8.8nmであり、熱処理後には32.6nmまで拡散している。拡散した距離は23.8nmである。つまり、Bが無い場合には23.8nm拡散しているが、1×1018cm-3のBがあることによって22.8nm拡散するだけで抑えられている。 It is FIG. 19 which eliminated only B from the case of FIG. The position of P concentration of 1 × 10 18 cm −3 is the same 8.8 nm before the heat treatment, and diffused to 32.6 nm after the heat treatment. The diffused distance is 23.8 nm. That is, when B is not present, 23.8 nm is diffused, but because 1 × 10 18 cm -3 of B is present, it is suppressed only by 22.8 nm.
 このときの図18,図19の不純物濃度プロファイルに対応する電子濃度プロファイルは、それぞれ、図20,図21である。Bが無い場合(図21)には、不純物濃度プロファイル(図19)と対応して、電子濃度が1×1018cm-3の位置は32.6nmである。一方で、Bがある場合(図20)には、不純物濃度プロファイル(図18)と対応して、電子濃度が1×1018cm-3の位置は31.6nmである。また図からわかるように、拡散している途中はBによって補償されるため、真性キャリア濃度niより電子濃度nが低く(ホール濃度pが高く)、つまりpGeが形成されている。そのとき、電子濃度が低いのでゆっくり拡散し、最終的には電子濃度が真性キャリア濃度より低い領域が無くなり、つまりpGe領域が無くて、極浅かつ高濃度の電子濃度からなるnGeだけが形成できている。 The electron concentration profiles corresponding to the impurity concentration profiles in FIGS. 18 and 19 at this time are shown in FIGS. 20 and 21, respectively. When B is absent (FIG. 21), the position of the electron concentration of 1 × 10 18 cm −3 is 32.6 nm, corresponding to the impurity concentration profile (FIG. 19). On the other hand, when B is present (FIG. 20), the position of the electron concentration of 1 × 10 18 cm −3 is 31.6 nm, corresponding to the impurity concentration profile (FIG. 18). Also, as can be seen from the figure, since B is compensated during the diffusion, the electron concentration n is lower than the intrinsic carrier concentration ni (the hole concentration p is high), that is, p + Ge is formed. At that time, since the electron concentration is low, it diffuses slowly and finally there is no region where the electron concentration is lower than the intrinsic carrier concentration, that is, there is no p + Ge region, and n + Ge consisting of extremely shallow and high electron concentration Only can be formed.
 このように、Pの拡散距離を短くするには、B濃度が高いほど良い。Pの拡散を抑制してnGeを形成するB濃度の上限は、極限的には、熱処理前のPの濃度Cn(x,0)よりわずかに低くしておく(Cn(x,0)>Cp(x,0))、あるいは、熱処理後に拡散してBよりP濃度が高くなるようにする(Cn(x,t)>Cp(x,t))。ここで、Cn(x,t),Cp(x,t)は、それぞれ、P,Bの深さx,拡散時間tにおける不純物濃度である。熱処理前には、拡散する方向であれば、PよりB濃度を高くしても構わない。また、Pの拡散を抑制する最低限のB濃度Cp(x,0)は、拡散温度Tにおける真性キャリア濃度ni(x,0;T)より高ければ効果がある(Cp(x,0)>ni(x,0;T))。 Thus, to shorten the diffusion distance of P, the higher the B concentration, the better. The upper limit of the B concentration that suppresses the diffusion of P to form n + Ge is, in the extreme, slightly lower than the concentration Cn (x, 0) of P before heat treatment (Cn (x, 0) > Cp (x, 0)), or diffuse after heat treatment so that the P concentration becomes higher than B (Cn (x, t)> Cp (x, t)). Here, Cn (x, t) and Cp (x, t) are impurity concentrations at depth x and diffusion time t of P and B, respectively. Before the heat treatment, the B concentration may be higher than P as long as it is a diffusion direction. In addition, the minimum B concentration Cp (x, 0) for suppressing the diffusion of P is effective if it is higher than the intrinsic carrier concentration ni (x, 0; T) at the diffusion temperature T (Cp (x, 0)> ni (x, 0; T)).
 Pの拡散を抑制するためのBのプロファイルとして、一定濃度の矩形領域を考えたが、これは前述したように、Ge中のn型不純物拡散メカニズムにより、n型不純物のプロファイルが一定濃度の領域から急峻に濃度が減少する、いわば箱形プロファイルになるからである。より望ましくは、p型不純物のプロファイルを、最終的に得たいn型不純物のプロファイルに近づけると、さらに浅くて高濃度の電子からなるnGeが形成できる。 As a profile of B for suppressing the diffusion of P, a rectangular area of constant concentration was considered, but as described above, the n-type impurity diffusion mechanism in Ge, an area of n-type impurity profile of constant concentration The density decreases sharply from the above, so to say, it becomes a box-shaped profile. More desirably, when the profile of the p-type impurity is made closer to the profile of the n-type impurity which is desired to be finally obtained, n + Ge can be formed which is shallower and has a high concentration of electrons.
 ここまでは、BによるPの拡散抑制が最も適した時間の例を示してきた。ここでは、最適な時間を大きく超えた場合に、Pのプロファイルがどのようになるかを示す。図22は、図10と拡散時間だけが違う場合である。図10では拡散時間が3秒であったが、図22では10秒である。図22からわかるように、図10よりPの拡散が進んでいる。例えば、P濃度が1×1018cm-3の位置は、熱処理前には8.8nmであったのが、熱処理後には13.8nmまで移動しており、熱処理前後の差で5.0nmだけ拡散している。 So far, we have shown an example of the time when the diffusion suppression of P by B is most suitable. Here, it is shown how the profile of P becomes when the optimal time is greatly exceeded. FIG. 22 shows the case where only the diffusion time is different from FIG. The diffusion time was 3 seconds in FIG. 10, but 10 seconds in FIG. As can be seen from FIG. 22, the diffusion of P is advanced from FIG. For example, the position of P concentration of 1 × 10 18 cm -3 was 8.8 nm before heat treatment, but moved to 13.8 nm after heat treatment, and the difference between before and after heat treatment is 5.0 nm. It is spreading.
 図22の場合からBだけを無くしたものが図23である。P濃度が1×1018cm-3の位置は、熱処理前は同じ8.4nmであり、熱処理後には18.9nmまで拡散している。拡散した距離は10.5nmである。つまり、Bが無い場合には10.5nm拡散してしまうが、1×1019cm-3のBがあることによって5.0nm拡散するだけで抑えられている。ここで注目すべきは、図22から明らかなように、PがBのある領域を大きく超えて拡散しても、Bの濃度がPの濃度を超えることはない、ということである。 It is FIG. 23 which eliminated only B from the case of FIG. The position of P concentration of 1 × 10 18 cm −3 is the same 8.4 nm before the heat treatment, and diffused to 18.9 nm after the heat treatment. The diffused distance is 10.5 nm. That is, when B is not present, 10.5 nm is diffused, but due to the presence of 1 × 10 19 cm -3 B, only 5.0 nm is suppressed. It should be noted here that, as apparent from FIG. 22, the concentration of B does not exceed the concentration of P even if P diffuses far beyond the region where B is present.
 図22,23の不純物濃度プロファイルに対応する電子濃度プロファイルは、それぞれ、図24,25である。Bが無い場合(図25)には、不純物濃度プロファイル(図23)と対応して、電子濃度が1×1018cm-3の位置は18.9nmである。一方で、Bがある場合(図24)には、不純物濃度プロファイル(図22)と対応して、13.8nmまでnGeの領域が広がっている。また図からわかるように、拡散している途中はBによって補償されるため、真性キャリア濃度より電子濃度が低く(ホール濃度が高く)、つまりpGeが形成されている。そのとき、電子濃度が低いのでゆっくり拡散し、最終的には電子濃度が真性キャリア濃度より低い領域が無くなる。そしてこの場合にはBが無い基板内奥側の領域にさらにPは拡散していくが、この位置ではPの濃度が低くなっているため、Pの拡散はゆっくりである。 The electron concentration profiles corresponding to the impurity concentration profiles of FIGS. 22 and 23 are FIGS. 24 and 25, respectively. When B is not present (FIG. 25), the position of the electron concentration of 1 × 10 18 cm −3 is 18.9 nm, corresponding to the impurity concentration profile (FIG. 23). On the other hand, when B is present (FIG. 24), the n + Ge region extends to 13.8 nm, corresponding to the impurity concentration profile (FIG. 22). As can be seen from the figure, since B is compensated during the diffusion, the electron concentration is lower than the intrinsic carrier concentration (the hole concentration is high), that is, p + Ge is formed. At that time, since the electron concentration is low, it diffuses slowly, and finally, there is no region where the electron concentration is lower than the intrinsic carrier concentration. In this case, P diffuses further into the region at the back of the substrate where there is no B, but at this position, the concentration of P is low, so the diffusion of P is slow.
 また、Bがある領域から無い領域に遷移する場所で、電子濃度の若干の低下が見られるが、それでも真性キャリア濃度よりも高く、室温では基板濃度よりも充分に電子濃度が高い。尚、これは急峻に高濃度からゼロに落ち込むようなBのプロファイルを想定したからであり、現実には連続的に濃度は変化するため、電子濃度がこのように特異的に低くなることは無い。 In addition, although there is a slight decrease in the electron concentration at a place where B transitions from a region to a region, the electron concentration is still higher than the intrinsic carrier concentration and sufficiently higher than the substrate concentration at room temperature. This is because it assumed a profile of B that drops sharply from high concentration to zero, and in reality the concentration changes continuously, so the electron concentration does not fall specifically like this .
 このように、Pの拡散を抑制する最適な時間を大きく超えても、pGeが形成されることはなく、B無しの場合に較べて充分に拡散抑制の効果もあり、極浅かつ高濃度の電子濃度からなるnGeだけが形成できる。 As described above, even if the optimum time for suppressing the diffusion of P is greatly exceeded, p + Ge is not formed, and the effect of suppressing the diffusion is sufficient compared to the case without B, and thus extremely shallow and high. Only n + Ge consisting of electron concentration of concentration can be formed.
<PとBが導入されたGeのキャリア濃度プロファイル>
 図26A,26Bは、PとBの二つを導入して形成したGeのキャリア濃度プロファイルである。スプレディングレジスタンスプローブ(Spreading resistance probe)分析により求めた。Pのドーズ量は5×1015cm-2であり、窒素雰囲気で30分の熱処理を施したものである。図26A、26Bは、それぞれBのドーズ量が2×1014、1×1015cm-2である。熱処理温度は、400,500,600℃の3通りで行った。また、すべての条件において、Bが無い場合のキャリア濃度プロファイルも調べた。基板表面側に高濃度に存在するキャリアはすべて電子であり、また、基板の内奥側に存在する濃度一定領域は基板に含まれる不純物(Ga)により生じたホールである。
<Carrier concentration profile of Ge introduced P and B>
26A and 26B show carrier concentration profiles of Ge formed by introducing two of P and B. FIG. It was determined by spreading resistance probe analysis. The dose amount of P is 5 × 10 15 cm −2 and is heat treated for 30 minutes in a nitrogen atmosphere. In FIGS. 26A and 26B, the dose amount of B is 2 × 10 14 and 1 × 10 15 cm −2 , respectively. The heat treatment temperature was three ways of 400, 500 and 600 ° C. In addition, under all conditions, the carrier concentration profile in the absence of B was also examined. The carriers present at high concentration on the substrate surface side are all electrons, and the constant concentration region present on the inner side of the substrate is holes generated by impurities (Ga) contained in the substrate.
 まず、図26A,26Bから、400,500,600℃と温度を高くするほど、電子が高濃度に存在する領域が基板の内奥側に広がっていくことがわかる。また、Bがある場合と無い場合を比較すると、Bがある方が拡散を抑えられている。その傾向は、Bのドーズ量に強く依存していて、Bのドーズ量が2×1014cm-2より1×1015cm-2の方が、各熱処理温度で拡散が抑制される。また、この高濃度領域はすべて電子であり、Bがあっても、pGeの無いnGeが形成できている。 First, it is understood from FIGS. 26A and 26B that as the temperature is increased to 400, 500, and 600 ° C., the region in which the electron concentration is high spreads to the inner side of the substrate. Also, comparing B with and without B, diffusion is suppressed in the presence of B. The tendency strongly depends on the dose amount of B, and the diffusion amount is suppressed at each heat treatment temperature when the dose amount of B is 1 × 10 15 cm −2 from 2 × 10 14 cm −2 . Also, this high concentration region is all electrons, and even if there is B, n + Ge without p + Ge can be formed.
(第2の実施形態)
 第2の実施形態では、n型不純物層の形成方法の実施形態を説明する。まず、p型Ge基板1にBをイオン注入する(図27)。このとき、イオン注入の加速エネルギーを調整し、基板表面よりも内奥側に注入する。すると、p型Ge基板1の表面より内奥側にBの高濃度層2が形成される(図28)。続いて、p型Ge基板1にPをイオン注入する(図29)。加速エネルギーを調整し、Bの高濃度層2よりも表面側に注入する。p型Ge基板1には表面側にPの高濃度層3が形成され、それよりも基板奥側にBの高濃度層4が形成される(図30)。そして、この基板を熱処理すると、Pは拡散するがBにより拡散が抑制され、最終的にはPがBよりも濃度が高くなるため、pGe領域が無くなり、浅くて高濃度の電子濃度からなるnGe層が形成される(図31)。このnGe層には基板1に含まれるよりも多くのp型不純物が含まれている。
Second Embodiment
In the second embodiment, an embodiment of a method of forming an n-type impurity layer will be described. First, B is ion implanted into the p-type Ge substrate 1 (FIG. 27). At this time, the acceleration energy of ion implantation is adjusted, and implantation is performed on the inner side of the substrate surface. Then, the B high concentration layer 2 is formed on the inner side of the surface of the p-type Ge substrate 1 (FIG. 28). Subsequently, P is ion-implanted into the p-type Ge substrate 1 (FIG. 29). The acceleration energy is adjusted and injected on the surface side of the high concentration layer 2 of B. The high concentration layer 3 of P is formed on the surface side of the p-type Ge substrate 1, and the high concentration layer 4 of B is formed on the back side of the substrate (FIG. 30). Then, when this substrate is heat-treated, P diffuses but B suppresses diffusion, and finally P becomes higher in concentration than B, so the p + Ge region disappears, and the shallow and high concentration electron concentration An n + Ge layer is formed (FIG. 31). The n + Ge layer contains more p-type impurities than contained in the substrate 1.
(第3の実施形態)
 第3の実施形態では、n型不純物拡散層の別の形成方法を示す。まず、p型Ge基板1にBをドープしたGeをCVDによって堆積する(図32)。すると、p型Ge基板1表面にpGe層6が形成される(図33)。つづいてPをドープしたGeをCVDによって堆積する。pGe層6の上にnGe層7が形成される(図34)。このとき基板を加熱しながら堆積、あるいは堆積してから熱処理すると、前述の効果により浅くて高濃度の電子からなるnGe層8が形成される(図35)。このプロセスで、図33のpGe層6を形成せずに、図34のnGe層7を堆積すると、n型不純物の拡散が速いため、p型Ge基板1の内奥側に拡散してしまい、浅くて高濃度の電子からなるnGe層8を形成できない。本プロセスのように、pGe層6を形成すれば、PをドープしたGeを堆積するときに、Pの基板奥側への拡散を防ぐことができる。
Third Embodiment
The third embodiment shows another method of forming an n-type impurity diffusion layer. First, Ge doped with B is deposited by CVD on the p-type Ge substrate 1 (FIG. 32). Then, ap + Ge layer 6 is formed on the surface of the p-type Ge substrate 1 (FIG. 33). Subsequently, P-doped Ge is deposited by CVD. An n + Ge layer 7 is formed on the p + Ge layer 6 (FIG. 34). At this time, when the substrate is heated or deposited and then heat-treated, an n + Ge layer 8 of shallow and high concentration electrons is formed by the above-described effect (FIG. 35). In this process, if the n + Ge layer 7 of FIG. 34 is deposited without forming the p + Ge layer 6 of FIG. It is impossible to form an n + Ge layer 8 consisting of shallow, high concentration electrons. If the p + Ge layer 6 is formed as in this process, diffusion of P to the back side of the substrate can be prevented when depositing P-doped Ge.
 以上第1~第3の実施形態によれば、p型不純物の濃度および分布を制御することによって、極浅く、かつ高濃度キャリア密度を有するn型領域を形成することができる。 According to the first to third embodiments described above, by controlling the concentration and distribution of the p-type impurity, it is possible to form an n-type region which is extremely shallow and has a high carrier density.
(第4の実施形態)
 図36は、上述のnGe層を用いた半導体装置(MISFET)の模式断面図である。第4の実施形態の半導体装置は、基板の上に形成されたGeを主成分とするp型半導体層10と、p型半導体層10の上に形成されたゲート絶縁層12と、ゲート絶縁層12の上に形成されたゲート電極14と、p型半導体10のゲート絶縁層12との境界領域をゲート長方向の両側から挟むようにp型半導体層10の表面に選択的に形成された一対のn型不純物拡散領域(ソース・ドレイン領域)18とを備えている。この半導体装置は、n型不純物拡散領域18の全部または一部に、n型不純物を含有すると同時に、p型半導体層10に含有されるよりも高濃度のp型不純物を含有している。n型不純物拡散領域の表面には、コンタクト電極16が接合されている。
Fourth Embodiment
FIG. 36 is a schematic cross-sectional view of a semiconductor device (MISFET) using the n + Ge layer described above. The semiconductor device according to the fourth embodiment includes a p-type semiconductor layer 10 mainly composed of Ge formed on a substrate, a gate insulating layer 12 formed on the p-type semiconductor layer 10, and a gate insulating layer. A pair selectively formed on the surface of the p-type semiconductor layer 10 so as to sandwich the boundary region between the gate electrode 14 formed on the gate electrode 12 and the gate insulating layer 12 of the p-type semiconductor 10 from both sides in the gate length direction. And an n-type impurity diffusion region (source / drain region) 18 of FIG. This semiconductor device contains an n-type impurity in all or part of the n-type impurity diffusion region 18 and also contains a higher concentration of p-type impurity than contained in the p-type semiconductor layer 10. A contact electrode 16 is bonded to the surface of the n-type impurity diffusion region.
 p型半導体層10は、基板全体がGe、あるいは少なくとも表面はGeを主成分とした基板の表層からなり、p型不純物を含有している。また、p型不純物はn型不純物領域全体にあっても良いが、電子濃度を高くしてコンタクト抵抗を低くするために、基板表面にはないことが望ましい。さらに、n型不純物領域の周りに追加して、いわゆるLDDやn型エクステンション、ハロー(halo)層を形成しても良い。 In the p-type semiconductor layer 10, the whole substrate is Ge, or at least the surface is a surface layer of the substrate mainly containing Ge, and contains a p-type impurity. Although the p-type impurity may be present in the entire n-type impurity region, it is desirable that the p-type impurity is not present on the substrate surface in order to increase the electron concentration to reduce the contact resistance. Furthermore, a so-called LDD, an n-type extension, or a halo layer may be formed around the n-type impurity region.
 本実施形態によれば、p型不純物の濃度および分布を制御することによって、極浅く、かつ高濃度キャリア密度を有するn型ソース・ドレイン領域18を形成することができる。この結果、微細Geチャネル半導体装置において、短チャネル効果を抑制するとともに寄生抵抗を少なくすることが可能となり、電流駆動力の高いMISFETを提供できる。 According to the present embodiment, by controlling the concentration and distribution of the p-type impurity, it is possible to form the n-type source / drain region 18 which is extremely shallow and has a high carrier density. As a result, in the fine Ge channel semiconductor device, it is possible to suppress the short channel effect and reduce the parasitic resistance, and it is possible to provide a MISFET with a high current driving capability.
(第5の実施形態)
 図37は、上述のnGe層およびpGe層を用いたCMISFET(Complementary Metal Insulator Semiconductor Field Effect Transistor:相補型金属/酸化物/半導体型電界効果トランジスタ)の模式的断面図である。
Fifth Embodiment
FIG. 37 is a schematic cross-sectional view of a CMISFET (Complementary Metal Insulator Semiconductor Field Effect Transistor) using the n + Ge layer and the p + Ge layer described above.
 より詳細には、図37はGeチャネルを有するCMISFETのゲート長方向の断面図を表す。基板100の上部表面(主表面)に、Geからなるp型ウェル領域102及びn型ウェル領域104が、素子分離層106によって電気的に分離されて形成される。基板100は、Ge基板や、Si基板や、Si基板上にGe層を形成したものや、Si基板上にSiGe層の中間層を形成しさらにその上にGe層を形成したものであってもよい。素子分離層106は、例えばSiOによって形成される。p型ウェル領域102には、nチャネルMISトランジスタが形成され、n型ウェル領域104にはpチャネルMISトランジスタが形成される。 More specifically, FIG. 37 shows a cross section in the gate length direction of a CMISFET having a Ge channel. In the upper surface (main surface) of the substrate 100, a p-type well region 102 and an n-type well region 104 made of Ge are electrically separated by an element isolation layer 106. The substrate 100 may be a Ge substrate, a Si substrate, a substrate on which a Ge layer is formed on a Si substrate, or a substrate on which an intermediate layer of a SiGe layer is formed on a Si substrate and a Ge layer is further formed thereon. Good. The element isolation layer 106 is formed of SiO 2 , for example. In the p-type well region 102, an n-channel MIS transistor is formed, and in the n-type well region 104, a p-channel MIS transistor is formed.
 nチャネルMISトランジスタの構成としては、p型ウェル領域102内に、電流通路となる領域(チャネル領域)のゲート長両側に一対のn型エクステンション領域108が形成され、これらの外側に一対のn型ディープ領域110が形成される。p型ウェル領域102の上部表面には、対向するn型エクステンション領域108、108のゲート長方向内側の端部にかかるようにしてチャネル領域上にゲート絶縁膜116が形成される。ゲート絶縁膜116の上部表面には、ゲート電極118が積層形成される。ゲート絶縁膜116及びゲート電極118の両側には、ゲート側壁124が形成される。 As the configuration of the n-channel MIS transistor, a pair of n-type extension regions 108 are formed in the p-type well region 102 on both sides of the gate length of the region (channel region) to be a current path. Deep regions 110 are formed. A gate insulating film 116 is formed on the channel region on the upper surface of the p-type well region 102 in such a manner that the gate insulating film 116 is applied to the inner end in the gate length direction of the opposing n-type extension regions 108. A gate electrode 118 is stacked on the upper surface of the gate insulating film 116. Gate sidewalls 124 are formed on both sides of the gate insulating film 116 and the gate electrode 118.
 n型ディープ領域110は、n型エクステンション領域108よりもp型ウェル領域102との接合深さが深くなるように構成される。n型エクステンション領域108及びn型ディープ領域110は、nチャネルMISトランジスタのソース・ドレイン領域となる。 The n-type deep region 110 is configured such that the junction depth with the p-type well region 102 is deeper than the n-type extension region 108. The n-type extension region 108 and the n-type deep region 110 become source / drain regions of the n-channel MIS transistor.
 同様に、pチャネルMISトランジスタの構成としては、n型ウェル領域104内に、電流通路となる領域(チャネル領域)のゲート長方向両側に一対のp型エクステンション領域112が形成され、これらの外側に一対のp型ディープ領域114が形成される。n型ウェル領域104の上部表面には、一対のp型エクステンション領域112、112のゲート長方向内側の端部にかかるようにしてチャネル領域上にゲート絶縁膜120が形成される。ゲート絶縁膜120の上部表面には、ゲート電極122が積層形成される。ゲート絶縁膜120及びゲート電極122の両側には、ゲート側壁絶縁膜126が形成される。 Similarly, as a configuration of the p-channel MIS transistor, a pair of p-type extension regions 112 are formed on both sides in the gate length direction of a region (channel region) serving as a current path in the n-type well region 104. A pair of p-type deep regions 114 are formed. A gate insulating film 120 is formed on the channel region on the upper surface of the n-type well region 104 in such a manner that the gate insulating film 120 is applied to the inner end in the gate length direction of the pair of p-type extension regions 112. A gate electrode 122 is stacked on the upper surface of the gate insulating film 120. Gate sidewall insulating films 126 are formed on both sides of the gate insulating film 120 and the gate electrode 122.
 p型ディープ領域114は、p型エクステンション領域112よりもn型ウェル領域104との接合深さが深くなるように構成される。p型エクステンション領域112及びp型ディープ領域114は、pチャネルMISトランジスタのソース・ドレイン領域となる。 The p-type deep region 114 is configured such that the junction depth with the n-type well region 104 is deeper than the p-type extension region 112. The p-type extension region 112 and the p-type deep region 114 become source / drain regions of the p-channel MIS transistor.
nチャネルMISトランジスタ及びpチャネルMISトランジスタは、層間絶縁膜130によって覆われている。 The n-channel MIS transistor and the p-channel MIS transistor are covered by an interlayer insulating film 130.
 本実施形態において、n型エクステンション領域108、n型ディープ領域110のどちらか、あるいは両方は、前述の実施形態により形成されたものであり、p型ドーパントを含んでいる。尚、このp型ドーパントは、p型エクステンション領域112、p型ディープ領域114に含まれているp型ドーパントと同じものにすることも可能である。 In the present embodiment, one or both of the n-type extension region 108 and the n-type deep region 110 are formed by the above-described embodiment and include a p-type dopant. The p-type dopant can also be the same as the p-type dopant contained in the p-type extension region 112 and the p-type deep region 114.
 次に、図17を参照して上記のCMISFETの製造方法について説明する。まず、基板100の主表面上に素子分離層106を形成する。基板は、Ge基板や、Si基板や、Si基板の上にGe層を形成したものや、Si基板上にSiGe層の中間層を挟みGe層を形成したものであってよい。素子分離層106の形成方法は、局所酸化法や、STI(Shallow Trench Isolation)法であってもよく、素子分離層106の形状は、メサ型でもよい。素子分離層106を形成した後、p型ウェル領域102及びn型ウェル領域104を形成する。p型ウェル領域102及びn型ウェル領域104の形成には、Ge層に対する通常のイオン注入法を用いてもよいし、Ge層をエピタキシャル成長させた後にイオン注入を行ってもよい。 Next, a method of manufacturing the above-described CMISFET will be described with reference to FIG. First, the element isolation layer 106 is formed on the main surface of the substrate 100. The substrate may be a Ge substrate, a Si substrate, a substrate in which a Ge layer is formed on a Si substrate, or a substrate in which a Ge layer is formed on a Si substrate with an intermediate layer of a SiGe layer. The formation method of the element isolation layer 106 may be a local oxidation method or an STI (Shallow Trench Isolation) method, and the shape of the element isolation layer 106 may be a mesa. After the element isolation layer 106 is formed, the p-type well region 102 and the n-type well region 104 are formed. For the formation of the p-type well region 102 and the n-type well region 104, a conventional ion implantation method for the Ge layer may be used, or the ion implantation may be performed after the Ge layer is epitaxially grown.
 次に、p型ウェル領域102及びn型ウェル領域104の上部表面にゲート絶縁膜116及び120を形成する。ゲート絶縁膜116及び120の形成方法については、例えば、Ge酸化物膜を熱酸化法で形成してもよく、Ge酸窒化膜をプラズマ酸窒化法で形成してもよく、Hf,Zr,La,Y,Alなどから選ばれる金属元素を含む酸化物からなる高誘電率膜をCVD(Chemical Vapor Deposition:化学気相蒸着)法で堆積させてもよい。その後、既存の成膜技術を用いて、ゲート絶縁膜116及び120の上部表面にゲート電極118及び122となる単層または多層の導電膜を形成する。ここでは、一例として次の手法を用いる。ゲート電極118(nチャネルMISトランジスタ用)にタンタルカーバイドを、ゲート電極122(pチャネルMISトランジスタ用)にタングステンを、PVD(Physical Vapor deposition:物理気相蒸着)により10nm成膜する。その後、その上部表面にチタンナイトライドをPVDにより10nm成膜する。さらにその後、その上部表面に多結晶Si層を減圧CVD法により50nm成膜する。 Next, gate insulating films 116 and 120 are formed on the upper surfaces of p type well region 102 and n type well region 104. As a method of forming the gate insulating films 116 and 120, for example, a Ge oxide film may be formed by a thermal oxidation method, or a Ge oxynitride film may be formed by a plasma oxynitridation method. Hf, Zr, La , Y, Al or the like may be deposited by a CVD (Chemical Vapor Deposition) method. Thereafter, a single layer or multilayer conductive film to be gate electrodes 118 and 122 is formed on the upper surfaces of the gate insulating films 116 and 120 using the existing film forming technology. Here, the following method is used as an example. Tantalum carbide is formed on the gate electrode 118 (for n-channel MIS transistor), and tungsten is formed on the gate electrode 122 (for p-channel MIS transistor) to a film thickness of 10 nm by physical vapor deposition (PVD). Thereafter, titanium nitride is deposited to a thickness of 10 nm on the upper surface by PVD. After that, a polycrystalline Si layer is deposited to a thickness of 50 nm on the upper surface by a low pressure CVD method.
 ゲート電極118(nチャネルMISトランジスタ用)には、タンタルシリサイド、窒化タンタルシリサイド、窒化チタンシリサイド、タングステンシリサイド、窒化タングステンシリサイド等を用いることができる。また、ゲート電極122(pチャネルMISトランジスタ用)には、ルテニウム、窒化チタン、窒化チタンアルミニウム、白金、白金イリジウム等を用いることができる。 For the gate electrode 118 (for n-channel MIS transistor), tantalum silicide, tantalum nitride silicide, titanium nitride silicide, tungsten silicide, tungsten nitride silicide, or the like can be used. Further, ruthenium, titanium nitride, titanium aluminum nitride, platinum, platinum iridium, or the like can be used for the gate electrode 122 (for p-channel MIS transistor).
 その後、フォトリソグラフィ技術によるパターニングを行い、異方性エッチングにより不要な膜を削除し、ゲート電極118及び122を形成する。その後、例えば、前述の実施形態による方法を用いて、側壁絶縁膜124、n型エクステンション領域108、n型ディープ領域110を形成する。 Thereafter, patterning by photolithography is performed, and an unnecessary film is removed by anisotropic etching to form gate electrodes 118 and 122. Thereafter, for example, the sidewall insulating film 124, the n-type extension region 108, and the n-type deep region 110 are formed by using the method according to the above-described embodiment.
 次に、自己整合ゲート方式により、pチャネルMISトランジスタのソース・ドレイン領域を形成する。ここで、「自己整合ゲート方法」とは、まずゲート積層を形成し、その後イオン注入等によってソース・ドレイン領域を形成する、という手法である。すなわち、ゲート電極122を傘として用いてボロン(B)のイオン注入を行い、pチャネル型MISトランジスタのp型エクステンション領域112を形成する。その後、ゲート電極122とソース・ドレイン領域(p型エクステンション領域112及びp型ディープ領域114)の間の絶縁のための側壁絶縁膜124を形成する。その後、p型エクステンション領域112を作製した場合よりも大きな加速電圧によりボロン(B)のイオン注入を行い、p型ディープ領域114を形成する。 Next, source / drain regions of the p-channel MIS transistor are formed by a self-aligned gate method. Here, the “self-aligned gate method” is a method in which a gate stack is first formed and then source / drain regions are formed by ion implantation or the like. That is, ion implantation of boron (B) is performed using the gate electrode 122 as an umbrella to form the p-type extension region 112 of the p-channel MIS transistor. Thereafter, a sidewall insulating film 124 for insulation between the gate electrode 122 and the source / drain regions (p-type extension region 112 and p-type deep region 114) is formed. Thereafter, boron (B) ions are implanted at an acceleration voltage higher than in the case where the p-type extension region 112 is formed, to form the p-type deep region 114.
 ソース・ドレイン領域(n型エクステンション領域108、n型ディープ領域110、p型エクステンション領域112、及びp型ディープ領域114)の活性化プロセス温度としては、ゲート積層部(ゲート絶縁膜116、ゲート電極118、ゲート絶縁膜120、及びゲート電極122)及びソース・ドレイン領域のnp接合部の特性を劣化させない温度が望ましく、例えば600℃とすることができる。 The activation process temperature of the source / drain region (n-type extension region 108, n-type deep region 110, p-type extension region 112, and p-type deep region 114) is the gate laminate portion (gate insulating film 116, gate electrode 118). A temperature which does not degrade the characteristics of the gate insulating film 120 and the np junction of the gate electrode 122) and the source / drain region is desirable, for example, 600.degree.
 また、ソース・ドレイン領域の活性化処理方法としては、フラッシュランプアニール、レーザアニール等を用いることもできる。これらによれば、より短時間の処理で半導体中の不純物の活性化を実現できるため、ゲート電極118、122/ゲート絶縁膜116、120/半導体(p型ウェル領域102、n型ウェル領域104、n型エクステンション領域108、n型ディープ領域110、p型エクステンション領域112、及びp型ディープ領域114)の構造を有する半導体装置の熱による劣化を低減することができる。 In addition, flash lamp annealing, laser annealing, or the like can also be used as a method for activating the source / drain regions. According to these, activation of the impurities in the semiconductor can be realized by processing in a shorter time, so the gate electrode 118, 122 / gate insulating film 116, 120 / semiconductor (p-type well region 102, n-type well region 104, Thermal degradation of a semiconductor device having a structure of n-type extension region 108, n-type deep region 110, p-type extension region 112, and p-type deep region 114) can be reduced.
 その後、減圧CVDにより層間絶縁膜130となるSi酸化膜を堆積し、CMP(Chemical Mechanical Planarization:化学機械平坦化)によりゲート電極118及び122の上端を露出させる。その後、スパッタ法等によりゲート電極118及び122の上面にニッケル層を50nm成膜する。その後、500℃の低温熱処理を行うことによって、ニッケルと多結晶Siとの界面領域からシリサイドが形成され、NiSiが形成される。ここで、本実施形態においては多結晶Siが全てシリサイドへと変換されているが、Niの膜厚をより薄くすることによって多結晶Siの一部だけをシリサイド化してもよい。その後、硫酸と過酸化水素水との混合溶液等を用いて未反応のNiを除去する。 Thereafter, a Si oxide film to be the interlayer insulating film 130 is deposited by low pressure CVD, and the upper ends of the gate electrodes 118 and 122 are exposed by CMP (Chemical Mechanical Planarization). Thereafter, a 50 nm thick nickel layer is formed on the upper surfaces of the gate electrodes 118 and 122 by sputtering or the like. Thereafter, by performing a low temperature heat treatment at 500 ° C., a silicide is formed from the interface region of nickel and polycrystalline Si, and Ni 2 Si is formed. Here, although all polycrystalline Si is converted to silicide in the present embodiment, only part of polycrystalline Si may be silicided by making the film thickness of Ni thinner. After that, unreacted Ni is removed using a mixed solution of sulfuric acid and hydrogen peroxide solution or the like.
 以上説明した製造方法により、図37に表す構造のCMOSFET半導体装置が作製される。p型ドーパントの濃度および分布を制御することによって、極浅く、かつ高濃度キャリア密度を有するn型ソース・ドレイン領域(n型エクステンション領域108及びn型ディープ領域110)を形成することができる。この結果、微細Geチャネル半導体装置において、短チャネル効果を抑制するとともに寄生抵抗を少なくすることが可能となり、電流駆動力が高くなる。 The CMOSFET semiconductor device having the structure shown in FIG. 37 is manufactured by the manufacturing method described above. By controlling the concentration and distribution of the p-type dopant, it is possible to form an n-type source / drain region (n-type extension region 108 and n-type deep region 110) which is extremely shallow and has a high carrier density. As a result, in the fine Ge channel semiconductor device, it is possible to suppress the short channel effect and reduce the parasitic resistance, and the current driving force becomes high.
(第6の実施形態)
 図38は、第6の実施形態に係るFinMISFETの模式的斜視図である。本実施形態は、前述のnGe/pGe構造をFinMISFETに応用した例である。より詳細には、図38において、208は支持基板、209は絶縁層、210はGe層であり、208~210でGOI(Germanium on Insulator)基板211を形成している。GOI層210を加工して線状(直方体状)の素子領域202が形成されている。素子領域202の中央部分には、ゲート絶縁膜203を介してゲート電極204が形成されている。ゲート電極204を挟む素子領域202の部分がソース・ドレイン領域205となる。
Sixth Embodiment
FIG. 38 is a schematic perspective view of FinMISFET according to the sixth embodiment. The present embodiment is an example in which the n + Ge / pGe structure described above is applied to FinMISFET. More specifically, in FIG. 38, 208 is a support substrate, 209 is an insulating layer, 210 is a Ge layer, and 208 to 210 form a GOI (Germanium on Insulator) substrate 211. The GOI layer 210 is processed to form a linear (rectangular) element region 202. A gate electrode 204 is formed in the central portion of the element region 202 with the gate insulating film 203 interposed therebetween. Portions of the element region 202 sandwiching the gate electrode 204 become source / drain regions 205.
 次に、本実施形態のFinMISFETの製造方法を説明する。まず図39に示すように、GOI層210に対し、例えばBイオンを100keV、2.0×1012cm-2で注入し、その後に、例えば500℃、30秒の熱工程を施す。続いて、例えばRIE法(反応性イオンエッチング法)等の異方性エッチングを施す事により、素子領域202以外の領域のGOI層210を除去し、素子領域202を形成する。 Next, a method of manufacturing the FinMISFET of this embodiment will be described. First, as shown in FIG. 39, with respect GOI layer 210, for example, by implanting B ions 100 keV, at 2.0 × 10 12 cm -2, followed by, for example 500 ° C., subjected to 30 seconds of heat treatment. Subsequently, by performing anisotropic etching such as RIE (reactive ion etching), the GOI layer 210 in the region other than the element region 202 is removed, and the element region 202 is formed.
 次に図39に示すように、例えばCVD法(化学的気相成長法)等の方法を用いることにより、例えば厚さ5nmのHfO膜212を形成する。次に、図40に示すように、HfO膜212の上に、例えばCVD法により、例えば厚さ100nmの、例えばタングステン等の高融点金属膜を堆積し、例えばRIE法等の異方性エッチングを施すことにより、高融点金属膜を加工してゲート電極204を形成する。続いて、例えばRIE法等の異方性エッチングを施すことにより、HfO膜212を加工して、ゲート絶縁膜203を形成する。 Next, as shown in FIG. 39, a HfO 2 film 212 with a thickness of 5 nm, for example, is formed by using a method such as CVD (chemical vapor deposition). Next, as shown in FIG. 40, on the HfO 2 film 212, a refractory metal film of, eg, 100 nm thickness, eg, tungsten is deposited by, eg, CVD method, and anisotropic etching, eg, RIE method, etc. The high melting point metal film is processed to form the gate electrode 204. Subsequently, the HfO 2 film 212 is processed by performing anisotropic etching such as RIE, for example, to form the gate insulating film 203.
 次に、第1の実施形態と同様に、例えば、Bを基板上方より全面に注入し、続いてPを注入する。PとBの注入の順序は逆でも良い。またこのとき、P注入の後にRIE法等によってゲート電極204,ゲート絶縁膜212をさらに細く加工してもよい。その後にBを注入すれば、GOI層210のチャネル側にBだけを導入できる。そして熱工程によりnGeからなるソース・ドレイン領域5を形成すれば、MOSFETが形成される。このようにすれば、表面を高キャリア濃度のnGeにすることができ、またPの拡散を抑制できるので、チャネル領域への横方向への拡散も抑制できる。以後は通常の層間絶縁膜形成工程、配線孔開孔工程、配線工程等を経て半導体装置が形成される。 Next, as in the first embodiment, for example, B is implanted over the entire surface of the substrate, and then P is implanted. The order of injection of P and B may be reversed. At this time, the gate electrode 204 and the gate insulating film 212 may be further thinned by RIE or the like after P implantation. After that, if B is injected, only B can be introduced on the channel side of the GOI layer 210. Then, a source / drain region 5 made of n + Ge is formed by a thermal process to form a MOSFET. In this way, the surface can be made of n + Ge having a high carrier concentration, and the diffusion of P can be suppressed, so that the lateral diffusion into the channel region can also be suppressed. Thereafter, the semiconductor device is formed through a normal interlayer insulating film forming process, a wiring hole forming process, a wiring process and the like.
 本実施形態によれば、nGeからなるソース・ドレイン領域5を極浅かつ高キャリア濃度に形成することができ、高性能のFinMISFETを提供することができる。 According to this embodiment, the source / drain region 5 made of n + Ge can be formed to be extremely shallow and have a high carrier concentration, and a high performance Fin MISFET can be provided.
(第7の実施形態)
 第7の実施形態では、浅いn型拡散層を形成する別の方法について説明する。ここまでn型拡散層を浅くする方法として、p型不純物(B)を基板内部に導入する方法を示した。p型不純物によってn型不純物の基板奥側(内方)への拡散を抑制する。つまり、n型不純物(P)の内方への拡散を抑えようとだけ考えた。そのとき、基板表面から雰囲気中への不純物の拡散(外方拡散)は全く起こらない状況を設定した。外方拡散が起こると不純物のドーズを損失することになり、表面を高キャリア濃度にする目的とは相反しているので、これを抑えようとすることは通常のプロセスでは当然のことである。しかしながら、内方への拡散を抑えようと考えたとき、むしろ積極的に外方拡散させた方がよいことが本発明での検討により明らかとなった。
Seventh Embodiment
In the seventh embodiment, another method of forming a shallow n-type diffusion layer will be described. As a method of making the n-type diffusion layer shallow so far, a method of introducing a p-type impurity (B) into the inside of the substrate has been shown. The p-type impurity suppresses the diffusion of the n-type impurity to the back side (inward) of the substrate. That is, it was thought only to suppress the inward diffusion of the n-type impurity (P). At that time, a situation was set in which diffusion (outward diffusion) of impurities from the substrate surface into the atmosphere did not occur at all. When out diffusion occurs, the dose of impurities is lost, which is contrary to the purpose of making the surface have a high carrier concentration, and it is natural for the ordinary process to try to suppress this. However, when it was intended to suppress the inward diffusion, it was clarified by the examination in the present invention that it is better to make the outward diffusion rather positive.
 図41は、Ge中Pの不純物プロファイルであり、外方拡散を生じ、またその外方拡散の最大量が後述する何らかの方法によって制御された場合である。尚、表面に外方拡散を妨げるものが何もなく、真空へ外方拡散する場合が外方拡散量の上限と考える。図2とは外方拡散の有無が異なるだけで、その他はすべて同じ条件である。本発明において、外方拡散を表す物理量を、単位時間・単位面積当たりに基板最表面から外方へ放出される不純物の原子数と定義した。そのとき、(3)式は(6)式のように変更される。
Figure JPOXMLDOC01-appb-M000003
FIG. 41 shows an impurity profile of P in Ge, in which out diffusion occurs, and the maximum amount of the out diffusion is controlled by some method described later. There is nothing to prevent the outward diffusion on the surface, and the case of outward diffusion to vacuum is considered to be the upper limit of the amount of outward diffusion. The conditions are the same as in FIG. 2 except for the presence or absence of outward diffusion. In the present invention, the physical quantity representing the outward diffusion is defined as the number of atoms of impurities released outward from the outermost surface of the substrate per unit time and unit area. At that time, equation (3) is changed as equation (6).
Figure JPOXMLDOC01-appb-M000003
ここで、
Figure JPOXMLDOC01-appb-M000004
here,
Figure JPOXMLDOC01-appb-M000004
と定義した。J(cm-2-1)は、外方拡散の最大量を決めるものであり、表面の濃度が高い場合には、表面でJだけが外方拡散し、表面濃度が低い場合には、Jよりも少ない量が外方拡散する。 It was defined as J (cm -2 s -1 ) determines the maximum amount of out diffusion, and when the surface concentration is high, only J diffuses out at the surface, and when the surface concentration is low, An amount smaller than J diffuses out.
 図41では、J=1×1015cm-2-1である。これからわかるように、外方拡散がない場合(図1)と同様に、最初は大きく拡散し、徐々にゆっくりになりながら拡散していく。しかし、外方拡散がある場合には、その拡散速度は、無い場合に較べて相対的にゆっくりである。熱処理前に濃度が1×1019cm-3の位置はRpから3.5nmであり、0.1秒後は12.7nmまで広がり、0.2秒後では15.1nm、0.3秒後では16.6nmと広がり、1秒後では21.6nmまで拡散する。 In FIG. 41, J = 1 × 10 15 cm −2 s −1 . As can be seen from this, as in the case of no outward diffusion (FIG. 1), the light diffuses initially at a large rate and gradually diffuses gradually. However, if there is outward diffusion, the rate of diffusion is relatively slow compared to when it is not. Before heat treatment, the concentration is 1 × 10 19 cm -3 from Rp to 3.5 nm, and after 0.1 seconds it spreads to 12.7 nm, after 0.2 seconds 15.1 nm, after 0.3 seconds Spreads to 16.6 nm and diffuses to 21.6 nm after one second.
 外方拡散がある場合には、無い場合に較べて、表面側の濃度が減少していくことが特徴的である。最表面において存在する不純物が表面の外側に抜けていくからである。この場合の外方拡散Jは、1×1015cm-2-1である。最初は最表面と基板奥での不純物濃度が高いため、Jと同じ量の不純物が抜けていく。そのため、最初は表面での不純物濃度の減少が速い。しかし、時間が経過するに従って、不純物の内方への拡散も進み、最表面と基板奥での不純物濃度が低下する。すると、最表面ではJよりも少ない量しか外方拡散できなくなるため、最表面での濃度の減少する速度も遅くなる。つまり、外方拡散は、内方への拡散の影響も受けている。内方への拡散が少なければ外方拡散は多くなり、反対に内方への拡散が多ければ外方への拡散は少なくなる。 It is characteristic that when there is outward diffusion, the concentration on the surface side decreases as compared with the case where there is no outward diffusion. This is because impurities present at the outermost surface escape to the outside of the surface. The outward diffusion J in this case is 1 × 10 15 cm −2 s −1 . Since the impurity concentration at the outermost surface and the back of the substrate is high at first, the same amount of impurity as J is eliminated. Therefore, the reduction of the impurity concentration on the surface is fast at first. However, as time passes, the inward diffusion of the impurity also proceeds, and the impurity concentration at the outermost surface and the back of the substrate decreases. Then, at the outermost surface, only an amount smaller than J can be diffused outward, so the rate of decrease of the concentration at the outermost surface also becomes slower. In other words, outward diffusion is also affected by inward diffusion. The less the inward diffusion, the more the outward diffusion, and the more the inward diffusion, the less the outward diffusion.
 図42は、外方拡散無しの場合(図2)と有りの場合(図41)のPの拡散距離を比較したものである。濃度が1×1019cm-3の場合の、同じ拡散時間におけるそれぞれの内方拡散距離(Rpを原点に取ったときの深さ)をプロットした。図から明らかなように、外方拡散を起こすことによって内方への拡散距離が短くなっており、それは距離が大きくなるほど、言い換えれば拡散時間が長くなるほど、その差は大きくなっていく。このように、外方拡散をあえて起こすことによって、外方拡散を抑えた場合に較べて、内方拡散が抑えられることがわかる。 FIG. 42 compares the diffusion distances of P in the case of no outward diffusion (FIG. 2) and in the case of presence (FIG. 41). Respective inward diffusion distances (depths with Rp taken as the origin) at the same diffusion time when the concentration is 1 × 10 19 cm −3 were plotted. As apparent from the figure, the inward diffusion distance is shortened by causing the outward diffusion, and the difference becomes larger as the distance becomes longer, that is, as the diffusion time becomes longer. As described above, it can be understood that inward diffusion can be suppressed by intentionally causing outward diffusion as compared with the case where outward diffusion is suppressed.
 図43は、図41と同じ条件のものであり、その電子濃度プロファイルを示したものである。図3と同様に、この場合にはn型ドーパントしかないため、電子濃度は、773Kにおける真性キャリア濃度ni以上(>7×1017cm-3)で不純物濃度と一致している。このように、表面から26.6nmがnGeとなっており、外方拡散無しの場合に較べて、浅いnGe層が形成できることがわかる。 FIG. 43 shows the electron concentration profile under the same conditions as FIG. As in FIG. 3, since there is only n-type dopant in this case, the electron concentration is in agreement with the impurity concentration at the intrinsic carrier concentration ni or more at 773 K (> 7 × 10 17 cm −3) . Thus, it is understood that 26.6 nm from the surface is n + Ge, and a shallow n + Ge layer can be formed as compared with the case without out diffusion.
(第8の実施形態)
 この外方拡散による内方拡散抑制の効果は、本発明のp型不純物によってn型不純物の拡散を抑制する効果と一緒に用いれば、単なる組み合わせ以上の効果があり、さらに効果的である。ここでは、Ge基板にn型不純物と共にp型不純物も同時に存在して、外方拡散がある場合と無い場合を比較した場合に、n型不純物の拡散にどのような違いが現れるかを示す。
Eighth Embodiment
The effect of the inward diffusion suppression by the outward diffusion is more effective if it is used together with the effect of suppressing the diffusion of the n-type impurity by the p-type impurity of the present invention, and the effect is more than a mere combination. Here, a p-type impurity is simultaneously present in the Ge substrate together with the n-type impurity, and it is shown what kind of difference appears in the diffusion of the n-type impurity when comparing the case of the out diffusion and the case of the out diffusion.
 図44は、n型不純物Pとp型不純物Bが共存している場合で、外方拡散がない場合である。図2の場合に加えて、BがGe基板の表面から7.5~17.5nmまでの深さに存在している。ここでは、PがBの分布している領域を大きく超えて拡散する場合を示した。前述したように、n型不純物の拡散が、p型不純物が分布している領域を超えてしまっても、p型不純物が無い場合に較べれば、内方への拡散が極めて効果的に抑制できる。 FIG. 44 shows the case where the n-type impurity P and the p-type impurity B coexist and there is no out diffusion. In addition to the case of FIG. 2, B is present at a depth of 7.5 to 17.5 nm from the surface of the Ge substrate. Here, the case is shown where P diffuses far beyond the region where B is distributed. As described above, even if the diffusion of the n-type impurity exceeds the region where the p-type impurity is distributed, the inward diffusion can be extremely effectively suppressed as compared with the case where the p-type impurity is not present. .
 図45は、B無しの場合(図2)と有りの場合(図44)のPの拡散距離を比較したものであり、どちらも外方拡散が無い場合である。濃度が1×1019cm-3の場合の、同じ拡散時間におけるそれぞれの拡散距離(Rpを原点に取ったときの深さ)をプロットした。図から明らかなように、PがBの分布している領域を大きく超えても、Bが無い場合に較べて拡散距離が短くなっている。 FIG. 45 is a comparison of the diffusion distance of P in the case without B (FIG. 2) and in the case with (FIG. 44), both of which are cases where there is no outward diffusion. Each diffusion distance (depth when taking Rp as the origin) at the same diffusion time when the concentration is 1 × 10 19 cm −3 was plotted. As apparent from the figure, even if P greatly exceeds the area where B is distributed, the diffusion distance is shorter than when B is not present.
 図46は、図44と同じ条件のものであり、その電子濃度プロファイルを示したものである。前述したものと同様に、全体がnGeになっていることがわかる。 FIG. 46 shows the electron concentration profile under the same conditions as FIG. It turns out that the whole becomes n <+> Ge similarly to what was mentioned above.
(第9の実施形態)
 Ge基板中にBが存在し、さらに外方拡散がある場合の不純物プロファイルを示したものが図47である。外方拡散量Jは1×1015cm-2-1である。これからわかるように、拡散の振る舞いは、外方拡散がない場合(図1)やBが内在する場合(図44)と大きく異なっている。この場合には、外方と内方への拡散が同時に起こる。内方へ拡散するPはBが存在する領域で拡散速度が遅くなる。外方拡散がない場合には、表面からPが外に抜けられないので、いわば内方へ跳ね返されることになる。そのため、図44の場合にはBの存在する領域を多くのPが通り抜け、基板の内方へ拡散した。
Ninth Embodiment
FIG. 47 shows the impurity profile when B is present in the Ge substrate and further outward diffusion is present. The outward diffusion amount J is 1 × 10 15 cm −2 s −1 . As can be understood from this, the diffusion behavior is largely different from the case where there is no outward diffusion (FIG. 1) or the case where B is inherent (FIG. 44). In this case, outward and inward diffusion occur simultaneously. The inward diffusion of P slows down in the region where B is present. If there is no outward diffusion, P can not escape from the surface, so it will be repelled in an inward manner. Therefore, in the case of FIG. 44, a large amount of P passes through the region where B exists and diffuses inward of the substrate.
 一方、図47の場合には、PはBの存在する領域をゆっくり拡散すると同時に、表面に向かい、表面から外側に抜け出すことができる。つまり、基板奥へ拡散しすぎないように表面から外方拡散させることにより、Bによる拡散抑制の効果を利用して内方への拡散を抑制することができる。熱処理前に濃度が1×1019cm-3の位置はRpから3.5nmであり、0.1秒後は8.9nmまで広がり、0.2秒後では10.3nm、0.3秒後では11.0nmと広がり、1秒後では12.2nmまで拡散する。 On the other hand, in the case of FIG. 47, P can diffuse toward the surface at the same time as it diffuses slowly in the region where B exists, and can escape outward from the surface. That is, by diffusing outward from the surface so as not to diffuse too far into the substrate, it is possible to suppress the inward diffusion by using the diffusion suppression effect of B. Before heat treatment, the concentration is 1 × 10 19 cm -3 from Rp to 3.5 nm, and after 0.1 seconds it spreads to 8.9 nm, after 0.2 seconds 10.3 nm, after 0.3 seconds Spreads to 11.0 nm, and diffuses to 12.2 nm after one second.
 図48は、Ge基板中にBが存在し、さらに外方拡散無しの場合(図44)と有りの場合(図47)のPの拡散距離を比較したものである。濃度が1×1019cm-3の場合の、同じ拡散時間におけるそれぞれの内方拡散距離(Rpを原点に取ったときの深さ)をプロットした。図から明らかなように、外方拡散を起こすことによって内方への拡散距離が短くなっており、それは距離が大きくなるほど、言い換えれば拡散時間が長くなるほど、その差は大きくなっていく。このように、外方拡散をあえて起こすことによって、外方拡散を抑えた場合に較べて、内方拡散が抑えられることがわかる。 FIG. 48 compares the diffusion distances of P in the case where B exists in the Ge substrate and there is no outward diffusion (FIG. 44) and in the case where it is present (FIG. 47). Respective inward diffusion distances (depths with Rp taken as the origin) at the same diffusion time when the concentration is 1 × 10 19 cm −3 were plotted. As apparent from the figure, the inward diffusion distance is shortened by causing the outward diffusion, and the difference becomes larger as the distance becomes longer, that is, as the diffusion time becomes longer. As described above, it can be understood that inward diffusion can be suppressed by intentionally causing outward diffusion as compared with the case where outward diffusion is suppressed.
 図49は、図47と同じ条件のものであり、その電子濃度プロファイルを示したものである。BがGe基板の表面から7.5~17.5nmの範囲に、2.5×1020cm-3という高濃度で存在しているため、熱処理前の状態でP濃度がB濃度より低い場所では、電子濃度は2.8×1015cm-3になる。(4)式からわかるように実効拡散係数は電子濃度の自乗に比例しているため、電子濃度が低いほど拡散が遅くなる。またこの場合には、外方へ向かう方が電子濃度が高いため拡散が速い。図46の場合とは異なり、外方拡散があるため、Bのある領域を大幅に超えることがない。 FIG. 49 shows the electron concentration profile under the same conditions as FIG. Since B is present at a high concentration of 2.5 × 10 20 cm -3 in the range of 7.5 to 17.5 nm from the surface of the Ge substrate, a place where the P concentration is lower than the B concentration before the heat treatment Then, the electron concentration is 2.8 × 10 15 cm −3 . As can be seen from equation (4), the effective diffusion coefficient is proportional to the square of the electron concentration, so the lower the electron concentration, the slower the diffusion. In this case, the diffusion is faster because the electron concentration is higher when going outward. Unlike the case of FIG. 46, since there is outward diffusion, it does not significantly exceed the region where B is present.
 外方拡散するとドーズを損失することになるが、それ以上に500℃以上の熱処理をしても内部への拡散が抑えられる利点の方が遙かに大きい。n型不純物を導入したあとは、不純物の電気的活性化をさせなければならないので、高温での熱処理が必要になる。高温での熱処理を行うと拡散が速くなり、nGe層が深くなる。制御して外方拡散を起こせば、高温の熱処理を行っても、内方への拡散が遅くなるため、浅いnGe層が形成できる。 When it diffuses out, it loses the dose, but the advantage is that the inward diffusion is suppressed even if the heat treatment is performed at 500 ° C. or more. After the n-type impurity is introduced, it is necessary to electrically activate the impurity, so heat treatment at a high temperature is required. Heat treatment at high temperatures results in faster diffusion and deeper n + Ge layers. If controlled outward diffusion is performed, a shallow n + Ge layer can be formed because the inward diffusion is delayed even if a high temperature heat treatment is performed.
(第10の実施形態)
 ここでは、n型不純物層の形成方法の実施形態を図50~53を参照して説明する。まず、p型Ge基板1の表面を、例えば、HFやHClなどのハロゲン酸により前処理する。そして、通常はイオン注入前に形成する保護膜などは形成せず、表面に何も形成しない状態でp型Ge基板1にPをイオン注入する(図50)。すると、p型Ge基板1の表面付近にPの高濃度層3が形成される(図51)。続いて、この基板を熱処理すると、Pの内方への拡散と外方への拡散が起きる(図52)。本発明の効果により、イオン注入したドーズよりは低くなるが、浅くて高濃度のnGe層が形成される(図53)。ここでは、表面の前処理などを行い、表面に何も形成していない状態にしてからイオン注入し、外方拡散を起こす例を示した。表面に保護膜などがある状態でイオン注入し、その後に表面の前処理などを行い、表面に何も形成していない状態にして、外方拡散を起こしても良い。
Tenth Embodiment
Here, an embodiment of a method of forming an n-type impurity layer will be described with reference to FIGS. First, the surface of the p-type Ge substrate 1 is pretreated, for example, with a halogen acid such as HF or HCl. Then, normally, a protective film or the like formed before ion implantation is not formed, and P is ion implanted into the p-type Ge substrate 1 in a state where nothing is formed on the surface (FIG. 50). Then, a high concentration layer 3 of P is formed in the vicinity of the surface of the p-type Ge substrate 1 (FIG. 51). Subsequently, when the substrate is heat-treated, inward diffusion and outward diffusion of P occur (FIG. 52). By the effect of the present invention, a shallow and high concentration n + Ge layer is formed although it is lower than the ion implanted dose (FIG. 53). Here, an example is shown in which the surface is pretreated and nothing is formed on the surface and then ion implantation is performed to cause outward diffusion. Ions may be implanted in a state in which a protective film or the like is present on the surface, and then pretreatment of the surface may be performed to cause outward diffusion while nothing is formed on the surface.
(第11の実施形態)
 続いて、n型不純物層の他の形成方法の実施形態を図54~57を参照して説明する。まず、p型Ge基板1の表面にPイオン注入する(図54)。このとき、表面に保護膜があってもなくても構わない。続いて、Ge表面にSiOx薄膜20をCVDなどの方法により堆積する。なお、イオン注入する前に形成しても構わない。そして、p型Ge基板にPをイオン注入する(図55)。続いて、この基板を熱処理すると、Pの内方への拡散と外方への拡散が起きる(図56)。このとき、Ge基板表面にはSiOx薄膜があるため、SiOx薄膜が無い場合と較べて外方拡散量を少なくすることができる。またその膜厚を調整することにより外方拡散量も制御できる。その膜厚は、0~3nmの範囲であることが望ましい。熱処理後、HF処理などのハロゲン酸前処理によりSiOxをGe基板表面から除去する(図57)。
Eleventh Embodiment
Subsequently, another embodiment of the method for forming the n-type impurity layer will be described with reference to FIGS. 54 to 57. First, P ions are implanted into the surface of the p-type Ge substrate 1 (FIG. 54). At this time, the protective film may or may not be present on the surface. Subsequently, a SiOx thin film 20 is deposited on the Ge surface by a method such as CVD. It may be formed before ion implantation. Then, P is ion-implanted into the p-type Ge substrate (FIG. 55). Subsequently, when the substrate is heat-treated, inward diffusion and outward diffusion of P occur (FIG. 56). At this time, since the SiOx thin film is present on the surface of the Ge substrate, the amount of outward diffusion can be reduced as compared with the case where the SiOx thin film is not present. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness. The film thickness is desirably in the range of 0 to 3 nm. After the heat treatment, SiOx is removed from the surface of the Ge substrate by halogen acid pretreatment such as HF treatment (FIG. 57).
 こうして、浅くて高濃度の電子濃度からなるnGe層7が形成できる。尚、ここではSiOxを通してすべてが外方拡散する例について示したが、SiOx中やSiOx/Ge界面に一部、あるいはすべてPをトラップさせても良い。SiOxが、例えばポーラスである場合、Pは膜の中により取り込むことができる。SiOxが除去しきれずに、基板表面付近にSiやOが残っていても問題ない。コンタクトのメタルがGe基板表面の電荷中性準位(charge neutrality level)にピニング(pinning)される影響が低くなるため、むしろSiやOは残った方がよい。 Thus, an n + Ge layer 7 can be formed which is shallow and has a high concentration of electrons. Here, although an example in which all out-diffuse through SiOx is shown, a part or all of P may be trapped in the SiOx or the SiOx / Ge interface. If SiOx is, for example, porous, P can be incorporated into the membrane. There is no problem if Si or O remains near the substrate surface without removing SiOx. It is preferable that Si and O be left since the influence of the metal of the contact being pinned to the charge neutrality level of the Ge substrate surface is reduced.
 以上、SiOx薄膜を用いて説明したが、これに代えて、GeOx薄膜を用いてもよい。GeOx薄膜の場合、Pをイオン注入した後に、Ge基板表面に、GeOx薄膜22を堆積、あるいは酸素雰囲気で成膜する。GeはGeOの形態で脱離する性質があるが、高圧の酸素雰囲気では脱離が抑えられるので、GeOxの成膜や膜厚の維持が可能である。 As mentioned above, although explained using a SiOx thin film, it may replace with this and may use a GeOx thin film. In the case of the GeOx thin film, after ion implantation of P, the GeOx thin film 22 is deposited on the surface of the Ge substrate or formed in an oxygen atmosphere. Ge has the property of being desorbed in the form of GeO, but since desorption is suppressed in a high pressure oxygen atmosphere, deposition of GeO x and maintenance of film thickness are possible.
 続いて、この基板を熱処理すると、Pの内方への拡散と外方への拡散が起きる。このとき、SiOx薄膜の場合と同じように、Ge基板表面にはGeOx薄膜があるため、GeOx薄膜が無い場合と較べて外方拡散量を少なくすることができる。またその膜厚を調整することにより外方拡散量も制御できる。その膜厚は、0~3nmの範囲であることが望ましい。 Subsequently, when the substrate is heat treated, inward diffusion and outward diffusion of P occur. At this time, as in the case of the SiOx thin film, since the GeOx thin film is present on the surface of the Ge substrate, the amount of out-diffusion can be reduced as compared with the case where the GeOx thin film is absent. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness. The film thickness is desirably in the range of 0 to 3 nm.
 熱処理後、HF処理などのハロゲン酸前処理によりGeOxをGe基板表面から除去する。あるいは、酸素雰囲気からそれ以外の雰囲気で、例えば窒素雰囲気や真空中で熱処理して、GeOx層を脱離させる。こうして、浅くて高濃度の電子濃度からなるnGe層が形成できる。 After the heat treatment, GeOx is removed from the surface of the Ge substrate by halogen acid pretreatment such as HF treatment. Alternatively, the GeOx layer is released by heat treatment from an oxygen atmosphere to another atmosphere, for example, in a nitrogen atmosphere or vacuum. Thus, an n + Ge layer having a shallow and high electron concentration can be formed.
 なお、ここではGeOxを通してすべてが外方拡散する例について示したが、GeOx中やGeOx/Ge界面に一部、あるいはすべてPをトラップさせても良い。GeOxが、例えばポーラスである場合、Pは膜の中により取り込むことができる。また、Ge表面をプラズマ酸化すれば、GeOxが形成されると同時に、Ge基板の表面付近に空孔が形成される。拡散係数は空孔の数が増えると大きくなるため、外方拡散が促進される。さらに表面が負に帯電していれば、拡散メカニズムにより、負に帯電した空孔が多く増えるため、外方拡散が促進される。 Note that although an example in which all out-diffuse through GeOx is shown here, a part or all of P may be trapped in the GeOx or GeOx / Ge interface. When GeOx is, for example, porous, P can be incorporated into the membrane. In addition, when the Ge surface is plasma oxidized, GeOx is formed, and at the same time, vacancies are formed in the vicinity of the surface of the Ge substrate. Since the diffusion coefficient increases as the number of holes increases, outward diffusion is promoted. Furthermore, if the surface is negatively charged, the diffusion mechanism promotes the outward diffusion because the number of negatively charged holes increases.
 外方拡散を抑制する膜は、熱処理中常に存在する必要がない。例えば、それらの膜は、熱処理の最初は存在していなくて途中で形成しても良いし、熱処理の最初に存在していて途中で無くしても良い。例えば、GeOxの場合、常に熱処理中にGeOx層が表面に存在したが、そうでなくても良い。熱処理の最初の段階では、酸素の圧力を、例えば70気圧の高圧雰囲気で行う。すると、GeOx層の脱離が起こらず、成長させることもできる。そして、熱処理の途中で圧力を下げ、例えば、酸素やそれ以外の雰囲気で常圧あるいは真空にするとGeOの脱離が起きるので、GeOx層の除去が可能になる。あるいは、熱処理の最初の段階では、酸素やそれ以外の雰囲気で常圧あるいは真空にすると、表面に何もない状態にすることができる。そして、酸素の圧力が、例えば70気圧の高圧の雰囲気で熱処理を行う。すると、GeOx層の脱離が起こらないので、表面にGeOx層を形成することができる。 The membrane that suppresses the outward diffusion need not always be present during the heat treatment. For example, those films may not be present at the beginning of the heat treatment and may be formed on the way, or may be present at the beginning of the heat treatment and eliminated on the way. For example, in the case of GeOx, a GeOx layer is always present on the surface during heat treatment, but this may not be the case. In the first stage of the heat treatment, the pressure of oxygen is performed in a high pressure atmosphere of, for example, 70 atm. Then, desorption of the GeOx layer does not occur, and growth can also be performed. Then, the pressure is lowered in the middle of the heat treatment, for example, when atmospheric pressure or vacuum is applied under oxygen or other atmosphere, desorption of GeO occurs, so that the GeOx layer can be removed. Alternatively, in the first stage of the heat treatment, the surface can be made empty by applying atmospheric pressure or vacuum in oxygen or other atmosphere. Then, the heat treatment is performed in an atmosphere at a high pressure of, for example, 70 atm under the pressure of oxygen. Then, since desorption of the GeOx layer does not occur, a GeOx layer can be formed on the surface.
 以上、SiOxとGeOxについての例を示したが、外方拡散の効果があれば他の膜でも良い。例えば、SiONやSiGeO,GeON,HfOx,LaOx,AlOx,TiOx,TaOx,ZrOxなどの薄膜の絶縁体でも良いし、Si,SiGeなどの半導体薄膜でも良い。これらがnGe基板表面付近に残っていても良い。なお、上記膜の構成元素の構成比は、xを用いて表示していない場合においても任意である。 Although the examples of SiOx and GeOx have been described above, other films may be used as long as the effect of out diffusion is obtained. For example, a thin film insulator such as SiON, SiGeO, GeON, HfOx, LaOx, AlOx, TiOx, TaOx, or ZrOx may be used, or a semiconductor thin film such as Si or SiGe may be used. These may be left near the n + Ge substrate surface. Note that the composition ratio of the constituent elements of the film is optional even in the case where it is not displayed using x.
(第12の実施形態)
 続いて、n型不純物層の他の形成方法の実施形態を図58~62を参照して説明する。まず、p型Ge基板1の表面にPをイオン注入する(図58)。そして、Ge基板表面に、Ni薄膜24を堆積する(図59)。尚、Ni薄膜を形成してからPをイオン注入しても良い。続いて、この基板を熱処理すると、Pの内方への拡散と外方への拡散が起きる(図60)。
Twelfth Embodiment
Subsequently, another embodiment of the method for forming the n-type impurity layer will be described with reference to FIGS. First, P is ion implanted into the surface of the p-type Ge substrate 1 (FIG. 58). Then, a Ni thin film 24 is deposited on the surface of the Ge substrate (FIG. 59). Alternatively, P may be ion-implanted after the Ni thin film is formed. Subsequently, heat treatment of this substrate causes inward diffusion and outward diffusion of P (FIG. 60).
 このとき、Ge基板1の表面にはNi薄膜があるため、NiGe層26が形成されると共に、Ni薄膜が無い場合と較べて外方拡散量を少なくすることができる。またその膜厚を調整することにより外方拡散量も制御できる。薄い方がよいため、熱処理前のNi層24の厚さTNiは、0<TNi<5nm、形成されたNiGe層26の厚さTNiGeは0<TNiGe<10nmの範囲を満たすことが望ましい(図61)。熱処理後、未反応のNiを例えばHClなどで除去する(図62)。 At this time, since the Ni thin film is present on the surface of the Ge substrate 1, the NiGe layer 26 is formed, and the amount of outward diffusion can be reduced as compared with the case where the Ni thin film is not present. Further, the amount of outward diffusion can also be controlled by adjusting the film thickness. Since it is better to be thinner, the thickness T Ni of the Ni layer 24 before heat treatment should satisfy the range of 0 <T Ni <5 nm, and the thickness T NiGe of the formed NiGe layer 26 satisfy the range of 0 <T NiGe <10 nm Desirable (FIG. 61). After the heat treatment, unreacted Ni is removed with, for example, HCl (FIG. 62).
 こうして、浅くて濃度の電子濃度からなるnGe層が形成できる。尚、NiGeが存在する領域にPが存在していても良い。また、Niについての実施例を示したが、Geと低温で反応し、低い抵抗率を持てばよい。そのような材料として、150~360℃で反応し、22~129μΩcmの低抵抗な相を持つFe,Co,Pd,Pt,Cuなどがある(S. Gaudet et al., International SiGe Technology and Devices Meeting, 18 (2006); J. Appl. Phys. 100, 034306 (2006).参照)。これらの一つ以上を用いても良い。 Thus, an n + Ge layer can be formed which is shallow and has a concentration of electrons. P may be present in the region where NiGe exists. Also, although an example of Ni is shown, it may react with Ge at low temperature and have a low resistivity. Such materials include Fe, Co, Pd, Pt, Cu, etc. which react at 150 to 360 ° C. and have a low resistance phase of 22 to 129 μΩ cm (S. Gaudet et al., International SiGe Technology and Devices Meeting , 18 (2006); J. Appl. Phys. 100, 034306 (2006). One or more of these may be used.
 なお実施形態を通じ、n型不純物としてPを例に取ったが、他のものでも良く、例えば、As,Sb,Biなどの一つ以上であっても良い。p型不純物も同様であり、他のものでも良く、例えば、B,Al,Ga,Inなどの一つ以上であっても良い。また本発明ではBが拡散しない温度773Kを想定したが、Pよりも拡散が遅ければBが拡散する高い温度でも効果があるし、もちろん低い温度でも効果があり、温度には制限がない。不純物を導入する方法として、CVD、イオン注入の例を示したが、その他の方法でも構わない。 Although P is taken as an example of the n-type impurity throughout the embodiment, other elements may be used, for example, one or more of As, Sb, Bi and the like. The p-type impurity is also the same, and may be another one, for example, one or more of B, Al, Ga, In and the like. In the present invention, a temperature 773 K at which B does not diffuse is assumed. However, if the diffusion is slower than P, it is effective even at a high temperature at which B diffuses, and of course it is effective even at a low temperature, and the temperature is not limited. Although examples of CVD and ion implantation have been shown as methods of introducing impurities, other methods may be used.
 基板としてGe主成分とするp型半導体を例に取り説明したが、n型半導体でもよく、あるいは化合物半導体などの他の半導体でも構わない。その半導体にとってn型不純物となるものが、本発明で説明したGeにおけるn型不純物の拡散メカニズムと同様に、空孔とペアになり、それが電荷を帯びているのならば、その電荷を打ち消すp型不純物を本発明と同様に用いれば、本発明と同様の効果があり、n型不純物の拡散が抑制され、極浅かつ高キャリア濃度のn型不純物領域が形成できる。 Although a p-type semiconductor mainly composed of Ge has been described as an example of the substrate, it may be an n-type semiconductor or another semiconductor such as a compound semiconductor. What becomes an n-type impurity for the semiconductor is paired with a vacancy and, if it is charged, cancels the charge, similarly to the diffusion mechanism of the n-type impurity in Ge described in the present invention If p-type impurities are used in the same manner as in the present invention, the same effects as in the present invention can be obtained, diffusion of n-type impurities can be suppressed, and extremely shallow n-type impurity regions with high carrier concentration can be formed.
 また半導体として、Ge主成分とする半導体を例に取り示したが、化合物半導体でも構わない。化合物半導体としては、例えば、III-V族半導体があり、GaAs、InP,InSb,GaN,InGaAsなどがある。GaAsにおいてp型ドーパントは、例えばZn、n型ドーパントは、例えばSiが用いられる。GaAs中でのZnの拡散は、次の化学平衡で表されるキックアウト(kick-out)メカニズムによって説明される(例えば、H. Bracht et al., Physica B, 308, 831 (2001)参照)。 Further, as a semiconductor, a semiconductor containing Ge as a main component is exemplified, but a compound semiconductor may be used. Examples of compound semiconductors include III-V semiconductors, such as GaAs, InP, InSb, GaN, and InGaAs. In GaAs, for example, Zn is used as a p-type dopant, and Si is used as an n-type dopant. The diffusion of Zn in GaAs is explained by the kick-out mechanism represented by the following chemical equilibrium (see, for example, H. Bracht et al., Physica B, 308, 831 (2001)) .
    Zn  ⇔ Zn Ga+I2+ Ga   (7)
 ここで、Zn  は格子間 (interstitial)のZn、Zn GaはGaのサイトを占めるZn、I2+ Gaはセルフインタースティシャル(self-interstitial)のGaである。Zn は格子間を拡散し、Gaが格子間にキックアウトされて(I2+ Ga)、Gaのサイトが空いたところにZnが入り込む(Zn Ga)。Znが1020cm-3を超える高濃度では、キンクアンドテイル(kink-and-tail)メカニズムに従うという報告もあるが、いずれにしても、p型ドーパントとして働くZnの拡散を防ぐためには、電荷を補償、つまり打ち消すように、n型ドーパントとして働くSiを導入してやればよい。Znの拡散係数は大きいので、拡散係数の小さいSiと組み合わせれば、本発明の効果によって、最初はZnの拡散をSiによって抑え、最終的には浅くて高キャリア濃度のpGaAsが形成できる。
Zn + i Zn Zn Ga + I 2 + Ga (7)
Where Zn + i   Is an interstitial Zn, Zn - Ga is a Zn occupying Ga site, and I 2 + Ga is a self-interstitial Ga. Zn + i is diffused between the lattice, Ga is kick out between the lattice (I 2+ Ga), Zn enters into the place vacated the site of Ga (Zn - Ga). At high concentrations of Zn> 10 20 cm -3 it has been reported that the kink-and-tail mechanism is followed, but in any case, to prevent the diffusion of Zn acting as a p-type dopant, In order to compensate, that is, cancel, Si acting as an n-type dopant may be introduced. Since the diffusion coefficient of Zn is large, when combined with Si having a small diffusion coefficient, the effect of the present invention can initially suppress the diffusion of Zn by Si and finally form shallow and high carrier concentration p + GaAs .
 また、p型不純物層はGe基板の内奥側に形成した場合を述べたが、p型半導体基板の表面側にp型不純物層を形成して、熱処理の際におけるn型不純物の外方拡散、すなわち表面から外側への拡散を抑制するバリア層としても用いることができる。このとき、p型不純物層は、p型不純物を含むGeでも良いし、Siでもよく、あるいはSiOなどでも構わない。熱処理後、p型不純物層は除去しても良い。 Although the p-type impurity layer is formed on the inner side of the Ge substrate, the p-type impurity layer is formed on the surface side of the p-type semiconductor substrate, and the outward diffusion of the n-type impurity occurs during heat treatment. That is, it can also be used as a barrier layer which suppresses the diffusion from the surface to the outside. At this time, the p-type impurity layer may be Ge containing p-type impurities, may be Si, or may be SiO 2 or the like. After the heat treatment, the p-type impurity layer may be removed.
 さらにp型不純物層は、n型不純物の基板内奥側への拡散抑制だけでなく、チャネルのある横方向への拡散を抑えるように形成しても良い。その場合には、n型不純物拡散層のチャネル側にp型不純物が含まれることになる。また素子分離の方向へn型不純物が抜けて不純物濃度が低下するのを防ぐようにp型不純物を用いても良い。その場合には、n型不純物拡散層は、素子分離側にp型不純物を含む構造になる。このようにp型不純物は、n型不純物の拡散を防ぐ方向に形成し、拡散を抑制した後、n型不純物に補償させて、nGeだけが形成されるように用いることができる。 Furthermore, the p-type impurity layer may be formed not only to suppress the diffusion of the n-type impurity to the deep side in the substrate but also to suppress the diffusion in the lateral direction with the channel. In that case, the p-type impurity is contained on the channel side of the n-type impurity diffusion layer. In addition, a p-type impurity may be used to prevent the n-type impurity from escaping in the direction of element isolation to reduce the impurity concentration. In that case, the n-type impurity diffusion layer has a structure including the p-type impurity on the element isolation side. As described above, the p-type impurity can be formed in the direction to prevent the diffusion of the n-type impurity, and after suppressing the diffusion, can be used to compensate for the n-type impurity to form only n + Ge.
 また、今までの説明を、nとpとを反対に置き換え、正負の符号を逆に取れば、n層形成に限らず、p層形成にも適用できる。n型不純物がp型不純物よりも拡散が速ければ、p型不純物はn型不純物の拡散抑制に利用できるし、反対にp型不純物がn型不純物よりも拡散が速ければ、n型不純物はp型不純物の拡散抑制に利用できるからである。つまり、拡散の遅い不純物を利用して、拡散の速い不純物の拡散を抑制することで、拡散の速い不純物からなる浅くて高キャリア濃度の不純物拡散層の形成が可能になる。 Further, if n and p are replaced with each other and the positive and negative signs are reversed, the above description can be applied not only to the formation of n + layer but also to the formation of p + layer. If the n-type impurity diffuses faster than the p-type impurity, the p-type impurity can be used to suppress the diffusion of the n-type impurity. Conversely, if the p-type impurity diffuses faster than the n-type impurity, the n-type impurity It is because it can be utilized for the diffusion suppression of the type impurity. That is, by suppressing the diffusion of the fast diffusion impurity using the slow diffusion impurity, it is possible to form a shallow, high carrier concentration impurity diffusion layer made of the fast diffusion impurity.
 以上、具体例を参照しつつ本発明の実施形態について説明した。しかし、本発明はこれらの具体例に限定されるものではない。すなわち、これら具体例に、当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。例えば、前述した各具体例が備える各要素およびその配置、材料、条件、形状、サイズなどは、例示したものに限定されるわけではなく適宜変更することができる。 The embodiments of the present invention have been described above with reference to specific examples. However, the present invention is not limited to these specific examples. That is, those to which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present invention as long as they have the features of the present invention. For example, each element included in each specific example described above and its arrangement, material, conditions, shape, size, and the like are not limited to those illustrated, and can be appropriately changed.
 また、前述した実施形態は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも本発明の特徴を含む限り本発明の範囲に包含される。 Also, the embodiments described above can be combined as far as technically possible, and combinations of these are included in the scope of the present invention as long as they include the features of the present invention.
1…p型Ge基板、2…高濃度のBが存在するGe層、3…高濃度のPが存在するGe層
4…高濃度のPとBが共存するGe層、5…p型不純物を含むnGe層、6…pGe層、
7…nGe層、8…p型不純物を含むnGe層、10…p型半導体層、12…ゲート絶縁層、14…ゲート電極、16…コンタクト電極、18…n型不純物拡散領域、20…SiOx薄膜、22…GeOx薄膜、24…Ni層、26…NiGe層、100…基板、102…p型ウェル領域、104…n型ウェル領域、106…素子分離層、108…n型エクステンション領域、110…n型ディープ領域、112…p型エクステンション領域、114…p型ディープ領域、116…ゲート絶縁膜、118…ゲート電極、120…ゲート絶縁膜、122…ゲート電極、124、126…ゲート側壁絶縁膜、130…層間絶縁膜、202…素子(半導体)領域、203…ゲート絶縁膜、204…ゲート電極、205…ソース・ドレイン領域、208…支持基板、209…埋め込み絶縁層、210…Ge層、211…GOI基板、212…HfO
DESCRIPTION OF SYMBOLS 1 ... p-type Ge board | substrate, 2 ... Ge layer in which B of high concentration exists, 3 ... Ge layer in which P of high concentration exists 4 ... Ge layer in which P and B of high concentration coexist, 5 ... p-type impurity N + Ge layer, 6 ... p + Ge layer, including
7 n + Ge layer, 8 n + Ge layer containing p-type impurity, 10 p-type semiconductor layer, 12 gate insulating layer, 14 gate electrode, 16 contact electrode, 18 n-type impurity diffusion region DESCRIPTION OF SYMBOLS 20 ... SiOx thin film, 22 ... GeOx thin film, 24 ... Ni layer, 26 ... NiGe layer, 100 ... board | substrate, 102 ... p-type well area, 104 ... n-type well area, 106 ... element separation layer, 108 ... n-type extension area 110 ... n-type deep region, 112 ... p-type extension region, 114 ... p-type deep region, 116 ... gate insulating film, 118 ... gate electrode, 120 ... gate insulating film, 122 ... gate electrode, 124, 126 ... gate sidewall Insulating film 130: interlayer insulating film 202: element (semiconductor) region 203: gate insulating film 204: gate electrode 205: source / drain region , 208: supporting substrate, 209: embedded insulating layer, 210: Ge layer, 211: GOI substrate, 212: HfO 2 film

Claims (10)

  1.  n型とp型のうちの一方の導電型の半導体基板と、
     前記半導体基板表面に選択的に設けられ、他方の導電型の一対の不純物拡散領域と、
     前記一対の不純物拡散領域により挟まれた前記半導体基板上に設けられたゲート絶縁層と、
     前記ゲート絶縁層の上に設けられたゲート電極と、
    を備え、前記不純物拡散領域の少なくとも一部は、前記一方の導電型を有し、かつ前記基板の不純物濃度より高い不純物濃度を有していることを特徴とする半導体装置。
    a semiconductor substrate of one of n-type and p-type conductivity type;
    A pair of impurity diffusion regions of the other conductivity type selectively provided on the surface of the semiconductor substrate;
    A gate insulating layer provided on the semiconductor substrate sandwiched between the pair of impurity diffusion regions;
    A gate electrode provided on the gate insulating layer;
    And at least a part of the impurity diffusion region has the one conductivity type and has an impurity concentration higher than the impurity concentration of the substrate.
  2.  前記半導体基板はGeを主成分とするp型半導体からなる半導体層を前記表面に有し、前記一対の不純物拡散領域は前記半導体層に設けられたn型不純物拡散領域であり、前記n型不純物拡散領域の少なくとも一部は、前記p型半導体のp型不純物濃度よりも高いp型不純物濃度を有していることを特徴とする請求項1に記載の半導体装置。 The semiconductor substrate has a semiconductor layer made of a p-type semiconductor mainly composed of Ge on the surface, and the pair of impurity diffusion regions are n-type impurity diffusion regions provided in the semiconductor layer, and the n-type impurity The semiconductor device according to claim 1, wherein at least a part of the diffusion region has a p-type impurity concentration higher than the p-type impurity concentration of the p-type semiconductor.
  3.  前記n型不純物拡散領域に含有される前記p型不純物濃度は、前記n型拡散領域の表面側よりも内奥側において高いことを特徴とする請求項2に記載の半導体装置。 3. The semiconductor device according to claim 2, wherein the concentration of the p-type impurity contained in the n-type impurity diffusion region is higher on the inner side than on the surface side of the n-type diffusion region.
  4.  Geを主成分とする半導体層の表面に、高濃度の不純物拡散領域を形成する方法であって、
     前記半導体層の表面に、n型不純物およびp型不純物を導入する工程と、
     前記n型不純物とp型不純物を導入後、熱処理して、前記半導体層内にn型不純物拡散領域を形成する工程と、
    を含むことを特徴とする半導体装置の製造方法。
    A method of forming a high concentration impurity diffusion region on the surface of a semiconductor layer containing Ge as a main component,
    Introducing an n-type impurity and a p-type impurity to the surface of the semiconductor layer;
    Heat treatment after introducing the n-type impurity and the p-type impurity to form an n-type impurity diffusion region in the semiconductor layer;
    A method of manufacturing a semiconductor device, comprising:
  5.  前記n型不純物およびp型不純物を導入する工程において、前記n型不純物は、前記p型不純物に比して、前記半導体層の表面側に形成することを特徴とする請求項4に記載の半導体装置の製造方法。 5. The semiconductor according to claim 4, wherein, in the step of introducing the n-type impurity and the p-type impurity, the n-type impurity is formed on the surface side of the semiconductor layer as compared to the p-type impurity. Device manufacturing method.
  6.  前記n型不純物およびp型不純物を導入する工程において、前記n型不純物を導入した後に、前記p型不純物を導入することを特徴とする請求項4に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein in the step of introducing the n-type impurity and the p-type impurity, the p-type impurity is introduced after the n-type impurity is introduced.
  7.  前記n型不純物拡散領域に含有される前記p型不純物は、前記熱処理の温度における真性キャリア濃度よりも高いことを特徴とする請求項4に記載の半導体装置の製造方法。 5. The method for manufacturing a semiconductor device according to claim 4, wherein the p-type impurity contained in the n-type impurity diffusion region is higher than the intrinsic carrier concentration at the temperature of the heat treatment.
  8.  前記半導体層はp型不純物を含有し、前記n型不純物拡散領域の少なくとも一部は、前記半導体層のp型不純物濃度よりも高いp型不純物濃度を有することを特徴とする請求項4に記載の半導体装置の製造方法。 5. The semiconductor device according to claim 4, wherein the semiconductor layer contains a p-type impurity, and at least a part of the n-type impurity diffusion region has a p-type impurity concentration higher than the p-type impurity concentration of the semiconductor layer. Semiconductor device manufacturing method.
  9.  前記熱処理において、前記n型不純物が前記半導体層の外方に拡散することを特徴とする請求項4に記載の半導体装置の製造方法。 5. The method of manufacturing a semiconductor device according to claim 4, wherein in the heat treatment, the n-type impurity is diffused outward of the semiconductor layer.
  10.  前記熱処理時に、前記半導体層の表面にSi,SiGeおよびGeの何れかから選ばれた半導体、GeO,SiO,SiON,SiGeO,GeON,HfOx,LaOx,AlOx,TiOx,TaOxおよびZrOxの何れかから選ばれた絶縁体、Ni,Fe,Co,Pd,PtおよびCuの何れかから選ばれた導電体のいずれかの薄膜が形成されていることを特徴とする請求項4に記載の半導体装置の製造方法。 At the time of the heat treatment, the surface of the semiconductor layer is selected from any of Si, SiGe and Ge, GeO, SiO, SiON, SiGeO, GeON, HfOx, LaOx, AlOx, TiOx, TaOx and ZrOx. 5. A semiconductor device according to claim 4, wherein a thin film of any one of a conductive material selected from any of an insulating material, Ni, Fe, Co, Pd, Pt and Cu is formed. Method.
PCT/JP2009/067423 2009-03-09 2009-10-06 Semiconductor device and method for manufacturing same WO2010103687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009055267A JP2012099510A (en) 2009-03-09 2009-03-09 Semiconductor device and method of manufacturing the same
JP2009-055267 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103687A1 true WO2010103687A1 (en) 2010-09-16

Family

ID=42727988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067423 WO2010103687A1 (en) 2009-03-09 2009-10-06 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012099510A (en)
WO (1) WO2010103687A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166521A (en) * 1987-12-23 1989-06-30 Hitachi Ltd Compound semiconductor device
JPH0499037A (en) * 1990-08-06 1992-03-31 Fujitsu Ltd Manufacture of semiconductor device
JP2004289154A (en) * 2003-03-21 2004-10-14 Texas Instruments Inc Complementary implant for narrowing junction for ultra-shallow junction
JP2005347731A (en) * 2004-05-07 2005-12-15 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2007335606A (en) * 2006-06-14 2007-12-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2008041988A (en) * 2006-08-08 2008-02-21 Hiroshima Univ Germanium semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166521A (en) * 1987-12-23 1989-06-30 Hitachi Ltd Compound semiconductor device
JPH0499037A (en) * 1990-08-06 1992-03-31 Fujitsu Ltd Manufacture of semiconductor device
JP2004289154A (en) * 2003-03-21 2004-10-14 Texas Instruments Inc Complementary implant for narrowing junction for ultra-shallow junction
JP2005347731A (en) * 2004-05-07 2005-12-15 Matsushita Electric Ind Co Ltd Semiconductor device and manufacturing method therefor
JP2007335606A (en) * 2006-06-14 2007-12-27 Fujitsu Ltd Semiconductor device and manufacturing method thereof
JP2008041988A (en) * 2006-08-08 2008-02-21 Hiroshima Univ Germanium semiconductor device manufacturing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A.CHRONEOS ET AL.: "Enginnering the free vacancy and active donor concentrations in phosphorus and arsenic double donor-doped germanium", JOUNAL OF APPLIED PHYSICS, vol. 104, 2008, pages 113724-1 - 113724-4 *
S.CHAKRAVARTHI ET AL.: "Dopant diffusion modeling for heteroepitaxial SiGe/Si Devices", J. VAC. SCI. TECHNOL. B, vol. 24, no. 2, 2006, pages 608 - 612, XP012091369, DOI: doi:10.1116/1.2170095 *

Also Published As

Publication number Publication date
JP2012099510A (en) 2012-05-24

Similar Documents

Publication Publication Date Title
US7888747B2 (en) Semiconductor device and method of fabricating the same
US5972783A (en) Method for fabricating a semiconductor device having a nitrogen diffusion layer
CN102931222B (en) Semiconductor device and method for manufacturing the same
TWI321832B (en) Semiconductor device, and method for manufacturing the same
US6436747B1 (en) Method of fabricating semiconductor device
US6806534B2 (en) Damascene method for improved MOS transistor
JP3616514B2 (en) Semiconductor integrated circuit and manufacturing method thereof
US7985985B2 (en) Semiconductor device and method of fabricating the same
US6743704B2 (en) Method of manufacturing a semiconductor device
CA2660885A1 (en) Silicon-on-insulator (soi) junction field effect transistor and method of manufacture
WO2006007394A2 (en) Strained tri-channel layer for semiconductor-based electronic devices
US8362522B2 (en) Semiconductor device and method for manufacturing the same
US6734109B2 (en) Method of building a CMOS structure on thin SOI with source/drain electrodes formed by in situ doped selective amorphous silicon
US8816448B2 (en) Semiconductor device and manufacturing method thereof
US6432802B1 (en) Method for fabricating semiconductor device
US5296387A (en) Method of providing lower contact resistance in MOS transistor structures
JP4299866B2 (en) Manufacturing method of semiconductor device
KR101028982B1 (en) Semiconductor device and method for manufacturing the same
WO2006053338A2 (en) System and method for improved dopant profiles in cmos transistors
JP2009182109A (en) Semiconductor device
WO2010103687A1 (en) Semiconductor device and method for manufacturing same
WO2009084376A1 (en) Semiconductor device and process for producing the semiconductor device
JP3946910B2 (en) Manufacturing method of semiconductor device
KR100336572B1 (en) Method for forming semiconductor device with gate electrode using poly silicon-germanium
JP2000349039A (en) Manufacture of semiconductor device having shallow diffusion layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP