WO2010103136A1 - Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos - Google Patents

Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos Download PDF

Info

Publication number
WO2010103136A1
WO2010103136A1 PCT/ES2009/070061 ES2009070061W WO2010103136A1 WO 2010103136 A1 WO2010103136 A1 WO 2010103136A1 ES 2009070061 W ES2009070061 W ES 2009070061W WO 2010103136 A1 WO2010103136 A1 WO 2010103136A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
larvae
insect
larva
infection
Prior art date
Application number
PCT/ES2009/070061
Other languages
English (en)
French (fr)
Inventor
Manuel Infante Viñolo Victor
Maria Osuna Aguilar Rosa
Jose Infante Viñolo Juan
Original Assignee
Bioorganic Research And Services S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bioorganic Research And Services S.L. filed Critical Bioorganic Research And Services S.L.
Priority to PCT/ES2009/070061 priority Critical patent/WO2010103136A1/es
Publication of WO2010103136A1 publication Critical patent/WO2010103136A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/14011Baculoviridae
    • C12N2710/14041Use of virus, viral particle or viral elements as a vector
    • C12N2710/14043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vectore

Definitions

  • the present invention relates to the process of producing recombinant proteins using insect larvae; particularly Spodoptera littoralis, applying the NIRS technology for the detection of the optimum collection time.
  • Naturally expressed proteins are frequently subjected to post-translational modifications such as glycosylation, phosphorylation, acylation or other chemical modifications that take place in the cell after the translation and formation process of the new polypeptide.
  • Posttranslational modifications especially the addition of sugars or
  • SUBSTITUTE SHEET (RULE 26) glycosylation, are considered essential for the biological activity of the resulting protein.
  • Systems based on mammalian or insect cell cultures can be used for the production of glycosylated proteins in a manner similar to human proteins.
  • complex and high-cost platforms are necessary for its application, including the maintenance of large fermenters in sterile conditions, adequate oxygenation, temperature, nutrient supply. etc. (Hunt, I. et al., 2009. cited supra).
  • bioreactors in which cells grow must function for long periods of time, running the risk of cell culture contamination.
  • Virus originally isolated in caliphic Autographa larvae and having a broad spectrum of infection, being able to infect more than thirty species of lepidoptera.
  • the other virus infects B. mor ⁇ and is called BmNPV (Deng, J. et al. 1995, cited supra).
  • the expression of the protein of interest in the present invention is carried out through the infection of lepidopteran larvae with AcMNPV baculovirus carrying the coding sequence for said protein.
  • Baculoviruses have a circular double-stranded genome of DNA contained in a virion.
  • the viral DNA can be manipulated to incorporate the gene that encodes the protein of interest. In this way it is possible to express the protein in the cells of a host organism, in this case insect larvae, by means of its infection with the genetically modified virus.
  • OB occlusion bodies
  • BV budding virus
  • Obtaining AcMNPV recombinant viruses carrying the coding sequence of the protein of interest is performed by in vitro recombination techniques or in insect cells.
  • a transfer vector carrying the gene of interest recombines with the
  • the transfer vector is prepared to leave the coding sequence of the protein of interest under the control of a viral promoter that induces high levels of transcription, such as the promoter of the polyhedrin itself or of the p10 protein (Griffiths CM. And Page MJ. , 1998, Methods Mol Biol.
  • the recombinant viruses selected for expression following this methodology which are replicated in insect cell cultures, are not capable of expressing polyhedrine by which they have significantly lost the ability to infect naturally, since they cannot form true occlusion bodies.
  • polyhedrin-less recombinant baculovirus larvae can be performed by intrahemocelic injection of BV virus obtained from insect cell cultures (Barderas M. G. et al., 2000, J. Virol. Mehods 89: 129-36). This method requires a lot of time and labor. Which is a great inconvenience for the production of protein in larval systems at the industrial level. Alternatively, baculovirus suspensions can be obtained in which a significant amount of these would have ceased to be in BV form and began to cluster to form occlusion bodies. If polyhedrin-less baculoviruses
  • POV baculovirus unlike BV, can infect the larvae through dietary intake (Hughes PR and Wood HA, 1996, Appl. Environ. Microbiol. 62 (1): 105-8), which It facilitates the infection of the high number of larvae required for large-scale production of proteins in these systems.
  • Wu et al. (US7261886), disclosed the larval infection by aerosol using baculovirus with insecticide application. To do this, they used T. larvae or based on previous results published in Kirkpatrick et al (1994) (Kirkpatrick BA et al., 1994, Virology 203 (1): 184-6).
  • T. is not the species that is presented as an ideal candidate for this type of infection (US7261886)
  • Spodoptera iittoralis (S. littoralis) lepidoptera is used as a species.
  • the choice of S. littoralis is based on a series of biological characteristics of this species that would lead to a significant increase in the yield of the recombinant protein production process.
  • the larval cycle of S. littoralis (average duration of 19.5 days, Amate. J. et al., 2000. Bol. San. Veg. Plagues, 26: 193-201) is more durable than that of T. n / (13.7 days;).
  • S. littoralis presents an increase in body mass in the last stages of the larval cycle, when the larvae are infected with recombinant baculovirus for production, greater than that of T. ni, as well as a greater weight at the time of collection.
  • the average weight of T. larvae or at the optimal time of collection after infection is 161 mg per individual, while the average weight of S. littoralis larvae observed in the example of this invention at the optimal time of collection. It is more than 500 mg.
  • S. littoralis has a fecundity much higher than the rest of noctuids used in studies of this type. While T. does not have an average value of 300-600 eggs / female, S. littoralis has an average of 3000 eggs / female (Amate, J. et al., 2000, cited above).
  • slaughter and analysis of individual larvae of the production population in progress could be a method to determine at what time the majority of the larvae could have reached the optimum level of expression of the protein of interest.
  • the selected individuals would not be representative of the entire population.
  • NIRS near infrared spectrum measurement technology
  • NIRS technology is a fast and non-destructive method that can be applied for the analysis of parameters of different products.
  • the problem sample is bombarded with NIR radiation of different wavelengths ( ⁇ ).
  • the wavelengths
  • part of this radiation will be absorbed, reflected or transmitted, causing a characteristic NIR spectrum.
  • the scattered, reflected and / or transmitted rays of each ⁇ are concentrated within a measuring cell and analyzed by a microprocessor.
  • standards and standard calibration allows the qualitative and quantitative measurement of the test analyte (Xuxin, L. et al., 2008, Applied Spectroscopy, 62: 784-90).
  • the calibration and obtaining of measurement equations requires the application of multivariate statistical analysis.
  • infrared spectroscopy is the measurement of the average IR, successfully used for the characterization of yeasts (Wenning M. et al., 2002, Appl. Environ. Microbiol. 68 (10): 4717-21), Ia NIR technique has the advantage of greater penetration power.
  • the instruments of the NIRS technology are faster than those used in the average IR spectroscopy since the energy of the lamp is more intense and the detector more sensitive.
  • the present invention presents for the first time a monitoring system of whole organisms, in in this case larvae of S. littoralis, by means of the NIRS technology, as a significant improvement of the recombinant protein production system.
  • This system allows to control the state of the larvae infection by the recombinant baculovirus and the optimized selection of individual larvae to proceed to their collection at the optimal moment of protein expression without requiring a synchronization of the population of each production batch in its infection and collection.
  • a method for the optimized production of recombinant proteins in insect larvae, specifically of the Spodoptera littoralis species, is described, applying the NIRS technology to monitor the optimal collection time.
  • the characteristics of the present system for the production of recombinant protein comprises different stages: the obtaining of a suspension of recombinant gelation baculovirus (BV) capable of expressing at least one gene coding for a protein of interest; Ia infection of insect larvae using said suspension of recombinant baculovirus; monitoring the evolution of the larval infection to detect the maximum production of the protein of interest, using a detection system based on NIRS technology; The purification of the expressed protein.
  • BV gelation baculovirus
  • the steps comprising the monitoring of the degree of infection and amount of protein produced are: (a) direct NIR radiation on the insect larva, (b) measurement of the spectral response of the insect larva by means of an NIRS detector, (c) application of a quantitative NIRS model to determine if the degree of infection or the amount of protein associated by the model has exceeded the threshold set in advance that will indicate whether the larva should be harvested or should continue in the production process.
  • An advantage and object of the present invention is a simple detection process and without additional genetic manipulation, for the monitoring of the production of recombinant protein in complex matrices.
  • a protein of interest does not need to be extracted and purified from all the larvae of a population constituting a production lot to determine if the production evolves correctly.
  • an optimized method is presented for the production of recombinant proteins in insect larvae, providing as very significant improvements the use of the Spodoptera littoralis species, as a producing organism, and the NIRS technology, as a platform to monitor the level expression.
  • a method of baculoviral expression in larval systems refers to a process by which a certain protein of interest is produced in insect larvae after being infected with a vector.
  • SUBSTITUTE SHEET (RULE 26) Recombinant baculovirus designed for this purpose, as described by Patterson et al. (Patterson, RM et al., 1995, Environ Health Perspect, 103: 756-9).
  • an optimized method contains the following steps: construction of the baculovirus that contains the information to express with high performance the protein of interest using Baculovirus of the AcMNPV type (Caliphoria Autographa (Multiple) Nuclear Polyhedrosis Virus): Obtaining a suspension of recombinant viruses in the state of budding by means of the replication of the virus in insect cell cultures, specifically Spodoptera frugiperda ovarian Sf21 cells and subsequent purification: infection of insect larvae of the species S. littoralis by The application of an aerosol of the virus suspension; incubation of infected larvae and expression level monitoring using NIRS technology; purification of the protein expressed by conventional methods.
  • Baculovirus of the AcMNPV type Caliphoria Autographa (Multiple) Nuclear Polyhedrosis Virus
  • T. is not the species that is presented as an ideal candidate for this type of infection (US7261886)
  • Spodoptera littoralis S. littoralis
  • the choice of S. littoralis is based on a series of biological characteristics of this species that would lead to a significant increase in the yield of the recombinant protein production process.
  • the larval cycle of S. littoralis (average duration of 19.5 days) is more durable than that of 7. ni (13.7 days; Amate, J. et al., 2000, cited above).
  • S. littoralis presents an increase in body mass in the last stages of the larval cycle, when the larvae are infected with recombinant baculovirus for production, greater than that of T. ni, as well as a greater weight at the time of collection.
  • the average weight of T. larvae or at the optimal time of collection after infection is 161 mg per individual, while the average weight of S. littoralis larvae observed in the example of this invention at the optimal time of collection. It is more than 500 mg.
  • S. littoralis has a fecundity much higher than the rest of noctuids used in studies of this type. While T. does not have an average value of 300-600 eggs / female, S. littoralis has an average of 3000 eggs / female (Amate, J. et al., 2000, cited above).
  • NIRS technology is proposed as a non-invasive method for monitoring the level of infection and the amount of protein expressed in individual larvae, without the need to introduce any type of extra genetic marker into the sequences neither of the larva itself nor of the recombinant baculovirus used for the expression of the protein of interest, which could affect the production yield.
  • genetic markers such as the green fluorescent protein for the monitoring of the amount of protein expressed (Kramer SF et al., 2003, Biotechnol. Bioeng.
  • NIRS that can be of the monochromator type, of diode networks or any detector applicable to this technology, located at a certain focal length that depends on the chosen instrument.
  • the selected larvae are subjected to conventional extraction and purification processes such as solid-liquid extraction and clarification by filtration, centrifugation and decantation, affinity chromatography, ion exchange chromatography or gel filtration. this stage not being the object of the present invention.
  • any protein that is expressed in insect larvae is considered.
  • This example describes the application of the method proposed in the present invention for the optimized production of the green fluorescent protein of coral reef ZsGreen (ID: zFP560, access code in GeneBank: AF168422).
  • the ZsGreen protein together with others such as DsRed, AmCyan, ZsYellow or AsRed, form a family of fluorescent proteins isolated from non-bioluminescent species of coral reefs (Matz et al., 1999, Nature Biotech., 17: 969-73).
  • a sequence including the ZsGreen cDNA was cloned into the baculovirus transfer vector pVL1392 (BD Biosciences, San Diego, CA, USA), so that the coding sequence (ORF) of ZsGreen followed by a tail of 6 histidines at the 3-terminus 'preceded by the TEV protease recognition sequence was under the control of the AcMNPV polyhedrin promoter.
  • the vector with the corresponding insert and linearized DNA of the AcMNPV virus were used for the cotransfection of Sf21 ovarian cells of Spodoptera frugiperda following the instructions of the manufacturer of the BD BaculoGold Transfection Kit (BD Biosciences)
  • SUBSTITUTE SHEET (RULE 26) for the selection of recombinant viruses in which said insert replaced homologous recombination with the AcMNPV polyhedrin locus.
  • the Isolated plaques were selected according to the level of Zs-Green expression determined by Western blotting in crude extracts of Sf21 cells infected with different virus clones.
  • baculovirus suspension was titrated by the BaculoELISA Titer kit according to the manufacturer's instructions (Clontech). In this way, a suspension of recombinant viruses in the state of germination capable of expressing Zs-Green at a titration of 5-10 7 plaque forming units per mL was obtained.
  • Infected larvae were incubated in insectarial conditions with photoperiod of 14 hours of light / day, 26 0 C and 60% constant relative humidity in individual cells
  • the analysis of the Zs-Green protein expressed in larvae was carried out by means of SDS-PAGE and measurement of the fluorescence intensity of crude extracts following the method described in Cha et al., 1997, Biotechnol. Bioeng 56 (3): 239-47 for the measurement of GFP fluorescence using values of excitation wavelengths of 493 nm and emission of 505 nm. Quantification was performed using Zs-Green from a stable cell line HEK293 (Clonetech) as calibration standards in Western blots following the quantitative method described in Cha et al., 1997 with a polyclonal anti-Zs Green antibody (Clonetech, ref. 632474). The maximum expression of Zs-Green in larvae of S.
  • littoralis was recorded at 108 hpi while in larvae of T. nor was it recorded at 72 hpi.
  • the average yield of lot 1 of S. littoralis harvested at 108 hpi was 1.2 mg Zs-Green / larva while the average yield of lot 1 of T. nor harvested at 72 hpi was 0.7 mg Zs-Green / larva .
  • the yield was significantly higher using the S. littoralis species. This data together with a reproduction capacity 10 times higher than that of T. ni (Amate, J. et al., 2000, cited supra: Minkenberg, O. PJ. M. et al., 1992, Ann. Review Environment! ., Four. Five:
  • NIRS spectral measurements were made every 8h in groups of 30 larvae chosen at random.
  • a FOSS NIRSystems model 6500 SY-II monochromator was used (Silver Spring, MD, USA).
  • the reflectance spectrum was recorded in the wavelength range from 400 to 2498 nm every 2 nm.
  • the absorbance values were recorded as log (1 / R), where R is the reflectance measured in each larva individually.
  • the development of NIRS calibrations was carried out following the methodology described in Fernández-Ahumada et al (2008) (Fernandez-Ahumada, E. et al., 2008, J. Agrie.
  • the parameter to be determined in this case was the amount of protein expressed, using Zs-Green expression as reference values.
  • the NIR equations for the estimation of the expressed protein level were obtained as described in Fernández-Ahumada et al., 2008. Both the data processing and the corresponding calibrations were performed using the WINSI Il version 1.5 software (Infrasoft International, Port Matilda , PA, USA).
  • the threshold values for estimating the amount of protein expressed indicative that the larva analyzed was in the period of maximum expression that were initially fixed were 1.2 mg Zs-Green / larva for S. littoralis and 0.7 mg Zs-Green / larva for T . neither.
  • the average weight obtained at the time of collection was 534 ⁇ 11.1 mg / larva for S. littoralis and 161 ⁇ 8.3 mg / larva for T. ni.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Peptides Or Proteins (AREA)

Abstract

La presente invención proporciona un proceso optimizado para la fabricación de proteínas recombinantes empleando larvas de insecto como biofactorías, pudiendo deducirse de forma directa su aplicación a la fabricación de cualquier otro tipo de material biológico como péptidos, anticuerpos, azúcares, ácidos grasos, ácidos nucleicos y metabolitos secundarios, resultante de la aplicación de la tecnología del ADN recombinante en el sistema baculovírico acoplado a larvas de insecto. La invención además proporciona un método innovador para la selección individual de larvas en el momento óptimo de expresión de la proteína de interés basado en la tecnología de espectroscopía en el infrarrojo cercano (NIRS).

Description

PROCESO OPTIMIZADO DE EXPRESIÓN DE PROTEÍNAS RECOMBINANTES EN LARVAS DE INSECTOS
Descripción
Campo de Ia invención
La presente invención se refiere al proceso de producción de proteínas recombinantes utilizando larvas de insecto; particularmente Spodoptera littoralis, aplicando Ia tecnología NIRS para Ia detección del momento óptimo de recolección.
Antecedentes de Ia invención
La posibilidad de expresar una proteína de interés en otro organismo supuso un enorme avance para Ia bioquímica y pronto se desarrollaron vectores de expresión y técnicas que permitieron un aumento tanto en Ia cantidad de proteína recombinante generada como en Ia diversidad de organismos utilizados como biofactoría (Maeda. S. y col., 1985, Nature, 315:592-4). Tras Ia puesta a punto en el laboratorio, las plataformas tecnológicas desarrolladas para Ia producción de proteínas de interés industrial se deben basar en métodos que aseguren una producción controlable, segura, de alto rendimiento al menor coste posible y facilidad en Ia purificación de Ia proteína evitando problemas de degradación.
Los sistemas de expresión más utilizados para Ia producción industrial son bacterias, levaduras, hongos, y células de mamíferos cultivadas en monocapa o en suspensión (Dyson, M. R. y col., 2006, BMC Biotechnol., 6:49). A éstos sistemas Ie siguen Ia producción en cultivos celulares de insecto (Hunt, I. y col., 2009, Methods Mol Biol.. 498:199-227) y, recientemente, Ia producción en plantas y animales transgénicos (Champey, Y. y col., 2008, Med. Sci (París), 24:939-45).
Las proteínas expresadas de forma natural, especialmente en células de organismos superiores frecuentemente son sometidas a modificaciones posttraduccionales tales como glicosilación, fosforilación, acilación u otras modificaciones químicas que tienen lugar en Ia célula tras el proceso de traducción y formación del nuevo polipéptido. Las modificaciones posttraduccionales, especialmente Ia adición de azúcares o
HOJA DE SUSTITUCIÓN (REGLA 26) glicosilación, se consideran fundamentales para Ia actividad biológica de Ia proteína resultante.
Los sistemas basados en cultivos de células de mamíferos o insecto pueden ser utilizados para Ia producción de proteínas glicosiladas de una manera similar a las proteínas humanas. Sin embargo, para su aplicación son necesarias plataformas complejas y de alto coste que incluyen el mantenimiento de grandes fermentadores en condiciones de esterilidad, adecuada oxigenación, temperatura, aporte de nutrientes. etc. (Hunt, I. y col., 2009. citado supra). Además, los biorreactores en los que crecen las células deben funcionar durante largos períodos de tiempo corriendo el riesgo de contaminación del cultivo celular.
El éxito en Ia producción de proteínas funcionales de mamífero, incluyendo humanas, mediante Ia infección de cultivos celulares de insecto con baculovirus recombinantes portando el gen de interés, ha provocado que se busquen alternativas para poder expresar las proteínas recombinantes en este sistema solventando inconvenientes como el elevado coste de producción y los problemas de escalado. La alternativa ha sido conservar el sistema de expresión baculovírico pero utilizando larvas de insecto como biofactorías no fermentativas. El sistema de expresión baculovírico se ha convertido en el sistema de elección para Ia producción de gran número de proteínas que requieren modificaciones posttraduccionales que no son posibles de obtener en los sistemas de expresión microbianos (Ailor, E. y col.. 1999, Current Opinión Biotechnology, 10(2):142-5). La funcionalidad de este tipo de proteínas que requieren modificaciones posttraduccionales tras su expresión mediante Ia infección de células de insecto con baculovirus recombinantes ha sido ampliamente demostrada (Kawar, Z. y col., 1997, G/ycob/o/ogy,7(3):433-43.; O'Reilly, D. R. y col., 1994, Oxford University Press, New York). Existen numerosos ejemplos de proteínas que se han podido expresar con éxito mediante sistemas baculovíricos e incluso se ha comprobado que los bacuiovirus presentan potencial para ser portadores de genes en Ia terapia génica humana (Boyce y Bucher, 1996, Proc. Nal Acad. Sci. USA, 93:2348-52).
La utilización del sistema de expresión baculovírico en larvas de insecto para Ia producción de biofármacos comenzó con el trabajo de Maeda y col (1985) que expresaron Interferón α humano funcional en larvas del gusano de seda Bombyx morí (B. morí) (Maeda, S. y col., 1985, citado supra).AIgunos ejemplos de proteínas recombinantes expresadas con éxito en larvas de insecto son: hemaglutinina del virus
2 HOJA DE SUSTITUCIÓN (REGLA 26) de Ia gripe (Kuroda y col., 1989, Journal of Virology, 63:1677-85) en Heliothis virescens: adenosina-deaminasa humana (Medin, J.A. y col., 1990, Proc. Nati. Acad. Sci., 2760- 64), activina C humana (Kron, R. y col., 1998, J. Virol. Methods. 72:9-14). proteína p30 del virus de Ia peste porcina africana (Barderas, M. G. y col., 2000. J. Virol. Methods, 89:129-36). fragmento de anticuerpo contra Ia toxina botulinica (O'Connell. KP. y col., 2007, Mol. Biotechnol., 36:44-51 ) en Trichoplusia ni; antígeno de superficie del virus de Ia hepatitis B (Higashihashi, N. y col.. 1991 , Journal of Virology Methods. 35:159-67). interferón beta humano (Deng, J. y col., 1995, Clin. J. Biotechnol., 11 :109-17), factor estimulador de granulocitos (Shiy col. 1996), hormona de crecimiento (Sumathy, S. y col., 1996, Protein Expr. Purif., 7:262-68), butiril-colinesterasa humana (Wei. W.L. y col.. 2000, Biochem. Pharmacol., 60:121-26), inhibidor de tripsina Il de Momordica charanti (Sato, S. y col.. 2000, Biosc. Biotechnol. Biochem., 64:393-98), parvovirus canino VP2 (Choi, J.Y. y col., 2000. Arch. Virol., 145:171-77). factor de crecimiento de fibroblastos humanos (Wu, X. y col.. 2001. Protein Expr. Purif., 21 :192-200) o interferón C bovino (Murakami, K. y col., 2001. Cytokine, 13:18-24) en β. morí; triacilglicerol-lipasa fosforilable (Arrese y Wells 1994) en Manduca sexta o antígeno de superficie del virus de Ia Hepatitis E en Spodoptera litura (Sehgal, D. y col., 2003, Protein Expr. Puríf., 27:27-34).
En Ia producción de proteínas recombinantes en larvas de insecto se emplean mayoritariamente dos tipos de baculovirus modificados como vectores de expresión. En primer lugar el virus AcMNPV (Autographa califómica (Múltiple) Nuclear Polyhedrosis
Virus), aislado originalmente en larvas de Autographa califómica y que tiene un amplio espectro de infección, pudiendo infectar a más de treinta especies de lepidópteros. El otro virus infecta a B. morí y se denomina BmNPV (Deng, J. y col.. 1995, citado supra). La expresión de Ia proteína de interés en Ia presente invención se realiza a través de Ia infección de larvas de lepidóptero con baculovirus AcMNPV que portan Ia secuencia codificante para dicha proteína.
Los baculovirus presentan un genoma circular de doble cadena de ADN contenido en un virión. El ADN vírico puede ser manipulado para incorporar el gen que codifica Ia proteína de interés. De esta manera se consigue expresar Ia proteína en las células de un organismo hospedador, en este caso larvas de insectos, mediante su infección con el virus genéticamente modificado.
3 HOJA DE SUSTITUCIÓN (REGLA 26) Los baculovirus presentan dos formas distintas durante su ciclo de replicación en el organismo hospedador. Los cuerpos de oclusión (OB) son responsables de Ia infección primaria del hospedador y consisten en viriones o asociaciones de viriones envueltos por una matriz proteica de polihedrina o granulina producida por el propio virus en Ia fase tardía de Ia infección. Típicamente Ia infección inicial se produce cuando una larva de un insecto susceptible se alimenta de las plantas que están contaminadas con Ia forma de oclusión del virus. Una vez que Ia matriz de granulina o polihedrina ha sido disuelta en el intestino de Ia larva, los viriones son capaces de penetrar en las células del mesenterón. En éstas se producen los virus de gemación (BV). La transcripción y replicación viral se produce en el núcleo de Ia célula y nuevas partículas BV se desprenden por gemación desde el lado basolateral. propagando Ia infección de forma sistémica. Durante Ia gemación, las partículas BV adquieren partes de Ia membrana de Ia célula hospedadora.
La obtención de virus recombinantes AcMNPV portando Ia secuencia codificante de Ia proteína de interés se realiza mediante técnicas de recombinación in vitro o en células de insecto. Un vector de transferencia portando el gen de interés se recombina con el
ADN genómico de AcMNPV de modo que Ia secuencia de interés sustituye al locus de
Ia polihedrina en el genoma de los virus recombinantes seleccionados para Ia expresión de Ia proteína recombinante. El vector de transferencia se prepara para dejar Ia secuencia codificante de Ia proteína de interés bajo el control de un promotor vírico que induce altos niveles de transcripción, como el promotor de Ia propia polihedrina o de Ia proteína p10 (Griffiths CM. y Page MJ. , 1998, Methods Mol Biol.
75:427-40). Los virus recombinantes seleccionados para Ia expresión siguiendo esta metodología, que se replican en cultivos celulares de insecto, no son capaces de expresar polihedrina por Io que han perdido significativamente Ia capacidad de infección de manera natural, ya que no pueden formar verdaderos cuerpos de oclusión.
La infección de larvas con baculovirus recombinantes polihedrina-menos se puede realizar mediante Ia inyección intrahemocélica de virus BV obtenidos de cultivos celulares de insecto (Barderas M. G. y col., 2000, J. Virol. Mehods 89: 129-36). Este método requiere una gran cantidad de tiempo y mano de obra. Io que supone un gran inconveniente para Ia producción de proteína en sistemas larvarios a nivel industrial. De forma alternativa se pueden obtener suspensiones de baculovirus en los que una cantidad significativa de éstos hubieran dejado de estar en forma BV y comenzado a agruparse para formar cuerpos de oclusión. Si los baculovirus polihedrina-menos
4
HOJA DE SUSTITUCIÓN (REGLA 26) alcanzan este estado se les denomina baculovirus preocluídos (POV). Los baculovirus POV, al contrario que los BV, pueden infectar a las larvas a través de Ia ingestión con Ia dieta (Hughes P.R. y Wood H.A., 1996, Appl. Environ. Microbiol. 62(1): 105-8), Io que facilita Ia infección del elevado número de larvas requerido para Ia producción a gran escala de proteínas en estos sistemas. Sin embargo, requiere desarrollar métodos, a veces complejos, para Ia obtención de suspensiones víricas con una cantidad significativa de baculovirus POV, normalmente a partir de virus BV obtenidos de células de insecto.
Dado que los baculovirus han sido considerados como uno de los bioinsecticidas con mayor potencial entre los nuevos sistemas de control biológico, Wu y col. (US7261886), divulgaron Ia infección de larvas mediante aerosol empleando baculovirus con aplicación insecticida. Para ello, emplearon larvas de T. ni basándose en resultados anteriores publicados en Kirkpatrick y col (1994) (Kirkpatrick BA y col., 1994, Virology 203(1):184-6).
Aunque T. ni es Ia especie que se presenta como candidata ideal para este tipo de infección (US7261886), en Ia presente invención se emplea como especie el lepidóptero Spodoptera iittoralis (S. littoralis). La elección de S. littoralis se basa en una serie de características biológicas de esta especie que darían lugar a un incremento significativo del rendimiento del proceso de producción de proteína recombinante.
El ciclo larvario de S. littoralis (duración media de 19.5 días, Amate. J. y col., 2000. Bol. San. Veg. Plagas, 26:193-201 ) es más duradero que el de T. n/ (13.7 días;). S. littoralis presenta un incremento de masa corporal en los últimos estadios del ciclo larvario, cuando se infectan las larvas con baculovirus recombinantes para Ia producción, mayor que el de T. ni, al igual que un mayor peso en el momento de Ia recolección. El peso medio de larvas de T. ni en el momento óptimo de Ia recolección tras Ia infección es de 161 mg por individuo mientras que el peso medio de larvas de S. littoralis observado en el ejemplo de esta invención en el momento óptimo de Ia recolección es de más de 500 mg.
Además, S. littoralis presenta una fecundidad muy superior al resto de noctuidos empleados en estudios de este tipo. Mientras que T. ni presenta un valor medio de 300- 600 huevos/hembra, S. littoralis presenta una media de 3000 huevos/hembra (Amate, J. y col., 2000, citado supra).
5 HOJA DE SUSTITUCIÓN (REGLA 26) La recolección de larvas debe ser sincronizada con su ciclo de vida y con el ciclo de infección viral para conseguir una producción óptima. Sin embargo, todas las larvas de una misma población no presentan Ia misma tasa de crecimiento ni parámetros similares de evolución de Ia infección viral. Consecuentemente, no lograrán alcanzar el nivel óptimo de expresión de proteína simultáneamente.
El sacrificio y análisis de larvas individuales de Ia población de producción en marcha podría ser un método para determinar en qué momento Ia mayoría de las larvas podrían haber alcanzado el nivel óptimo de expresión de Ia proteína de interés. Sin embargo, debido a Ia variabilidad de las características individuales en una población, los individuos seleccionados no serían representativos de Ia población al completo.
Por este motivo, en Ia presente invención se plantea un método rápido, fiable y no invasivo para monitorizar Ia población de larvas de S. littoralis y recolectarlas en el momento de máxima expresión de Ia proteína. El método se basa en Ia tecnología de medida del espectro en el infrarrojo cercano (NIRS).
La tecnología NIRS es un método rápido y no destructivo que se puede aplicar para el análisis de parámetros de diferentes productos. En esencia, Ia muestra problema es bombardeada con radiación NIR de diferentes longitudes de onda (λ). Según Ia naturaleza de Ia muestra, parte de esta radiación será absorbida, reflejada o transmitida, originando un espectro NIR característico. Los rayos esparcidos, reflejados y/o transmitidos de cada λ son concentrados dentro de una célula de medición y analizados mediante un microprocesador. De este modo, el uso de patrones y calibración estándar permite Ia medida cualitativa y cuantitativa del analito problema (Xuxin, L. y col., 2008, Applied Spectroscopy, 62:784-90). Dada Ia complejidad de Ia respuesta espectral de Ia muestra, Ia calibración y obtención de ecuaciones de medida requiere de Ia aplicación de análisis estadístico multivariante.
Respecto a otras técnicas basadas es espectroscopia infrarroja como Ia medida del IR medio, empleada con éxito para Ia caracterización de levaduras (Wenning M. y col., 2002, Appl. Environ. Microbiol. 68 (10):4717-21), Ia técnica NIR presenta Ia ventaja de un mayor poder de penetración. Además, los instrumentos de Ia tecnología NIRS son más rápidos que los empleados en Ia espectroscopia IR media ya que Ia energía de Ia lámpara es más intensa y el detector más sensible.
6 HOJA DE SUSTITUCIÓN (REGLA 26) En el campo de Ia medicina humana Ia técnica NIR se ha utilizado, entre otras aplicaciones cada vez más numerosas, para determinar cambios en las concentraciones de hemoglobina (Schenkman, K.A. y col., 1999, Crit Care Med., 27:2046-7). En los últimos años, Ia espectroscopia NIR se ha ido instalando en controles de calidad farmacéutico (Kolomiets, O. y col., 2008, Appl. Spectroscopy. , 62:1200-8) y se han desarrollado métodos NIRS para Ia determinación de Ia concentración de proteina en suspensiones (Xuxin, L. y col., citado supra).
Actualmente existen aplicaciones de Ia tecnología NIRS para Ia medida de compuestos biológicos en partes de sujetos, humanos o animales, tales como muestras de sangre, huesos o cartílagos, Sin embargo Ia presente invención presenta por primera vez un sistema de monitorización de organismos completos, en este caso larvas de S. littoralis, mediante Ia tecnología NIRS, como mejora significativa del sistema de producción de proteína recombinante. Este sistema permite controlar el estado de Ia infección de Ia larva por el baculovirus recombinante y Ia selección optimizada de larvas individuales para proceder a su recolección en el momento óptimo de expresión de proteína sin requerir una sincronización de Ia población de cada lote de producción en su infección y recolección.
Sumario de Ia invención
Se describe un método para Ia producción optimizada de proteínas recombinantes en larvas de insecto, de manera concreta de Ia especie Spodoptera littoralis, aplicando Ia tecnología NIRS para monitorear el momento óptimo de recolección. Las características del presente sistema para Ia producción de proteína recombinante comprende diferentes etapas: Ia obtención de una suspensión de baculovirus recombinantes de gemación (BV) capaces de expresar al menos un gen codificante para una proteina de interés; Ia infección de larvas de insecto utilizando dicha suspensión de baculovirus recombinantes; el seguimiento de Ia evolución de Ia infección en las larvas para detectar Ia máxima producción de Ia proteína de interés, empleando un sistema de detección basado en Ia tecnología NIRS; Ia purificación de Ia proteína expresada.
Es una ventaja y objeto de Ia presente invención proveer de un método para Ia producción de una proteína de interés en larvas de insecto de Ia especie Spodoptera i HOJA DE SUSTITUCIÓN (REGLA 26) littoralis, Ia cual presenta características biológicas que aumentan el rendimiento del proceso.
Es una ventaja y objeto de Ia presente invención emplear un sistema de monitorización de Ia infección de Ia larva y producción de proteína recombinantes por parte del baculovirus rápido y no destructivo en el que Ia cantidad producida de una proteína de interés, expresada en las larvas, se determina mediante Ia aplicación de un modelo cuantitativo de análisis del espectro NIR obtenido de cada larva individual. Las etapas que comprende Ia monítorización del grado de infección y cantidad de proteína producida son: (a) radiación directa NIR sobre Ia larva de insecto, (b) medida de Ia respuesta espectral de Ia larva de insecto mediante un detector NIRS, (c) aplicación de un modelo cuantitativo NIRS para determinar si el grado de infección o Ia cantidad de proteína asociada por el modelo ha superado el umbral fijado con antelación que indicará si Ia larva debe ser cosechada o debe continuar en el proceso de producción.
Es una ventaja y objeto de Ia presente invención un proceso de detección sencillo y sin manipulación genética adicional, para Ia monitorización de Ia producción de proteína recombinante en matrices complejas.
Es una ventaja y objeto de Ia presente invención que una proteína de interés no necesite ser extraída y purificada de todas las larvas de una población constituyente de un lote de producción para determinar si Ia producción evoluciona correctamente.
Otras ventajas y objetos de Ia presente invención serán evidentes para especialistas en Ia técnica tras Ia revisión de este documento o por Ia puesta en práctica de Ia invención.
Descripción detallada de Ia invención
En Ia invención que se describe se presenta un método optimizado para Ia producción de proteínas recombinantes en larvas de insecto, aportando como mejoras muy significativas el uso de Ia especie Spodoptera littoralis, como organismo productor, y Ia tecnología NIRS, como plataforma para monitorear el nivel de expresión.
En el contexto de Ia presente invención un método de expresión baculovírico en sistemas larvarios se refiere a un proceso mediante el cual una determinada proteína de interés es producida en larvas de insectos tras haber sido infectada con un vector
8
HOJA DE SUSTITUCIÓN (REGLA 26) baculovírico recombinante diseñado para tal efecto, tal como describe Patterson y col. (Patterson, R. M. y col., 1995, Environ Health Perspect, 103:756-9).
Dentro de las posibilidades disponibles, en Ia siguiente invención se propone un método optimizado que contiene las siguientes etapas: construcción del baculovirus que contiene Ia información para expresar con alto rendimiento Ia proteína de interés utilizando baculovirus del tipo AcMNPV (Autographa califórnica (Múltiple) Nuclear Polyhedrosis Virus): obtención de una suspensión de virus recombinantes en estado de gemación mediante Ia replicación del virus en cultivos celulares de insecto, en concreto células Sf21 de ovario de Spodoptera frugiperda y posterior purificación: infección de larvas de insecto de Ia especie S. littoralis mediante Ia aplicación de un aerosol de Ia suspensión de virus; incubación de las larvas infectadas y monitorización del nivel de expresión mediante tecnología NIRS; purificación de Ia proteína expresada por métodos convencionales.
En Io que respecta a las técnicas convencionales, para el objeto de Ia presente invención no se considera crítico el uso de un método u otro de expresión baculovírico en sistemas larvarios de los ya recogidos en Ia bibliografía, aunque se propone el uso de condiciones adecuadas.
Aunque T. ni es Ia especie que se presenta como candidata ideal para este tipo de infección (US7261886), en Ia presente invención se emplea como especie el lepidóptero Spodoptera littoralis (S. littoralis). La elección de S. littoralis se basa en una serie de características biológicas de esta especie que darían lugar a un incremento significativo del rendimiento del proceso de producción de proteína recombinante.
El ciclo larvario de S. littoralis (duración media de 19.5 días) es más duradero que el de 7. ni (13.7 días; Amate, J. y col., 2000, citado supra). S. littoralis presenta un incremento de masa corporal en los últimos estadios del ciclo larvario, cuando se infectan las larvas con baculovirus recombinantes para Ia producción, mayor que el de T. ni, al igual que un mayor peso en el momento de Ia recolección. El peso medio de larvas de T. ni en el momento óptimo de Ia recolección tras Ia infección es de 161 mg por individuo mientras que el peso medio de larvas de S. littoralis observado en el ejemplo de esta invención en el momento óptimo de Ia recolección es de más de 500 mg.
HOJA DE SUSTITUCIÓN (REGLA 26) Además, S. littoralis presenta una fecundidad muy superior al resto de noctuidos empleados en estudios de este tipo. Mientras que T. ni presenta un valor medio de 300- 600 huevos/hembra, S. littoralis presenta una media de 3000 huevos/hembra (Amate, J. y col., 2000, citado supra).
Como otra mejora significativa en Ia presente invención se propone el uso de Ia tecnología NIRS como método no invasivo para Ia monitorización del nivel de infección y de Ia cantidad de proteína expresada en larvas individuales, sin necesidad de introducir ningún tipo de marcador genético extra en las secuencias ni de Ia propia larva ni del baculovirus recombinante utilizado para Ia expresión de Ia proteína de interés, Io que podría afectar al rendimiento de producción. Además, el uso de marcadores genéticos como Ia proteína verde fluorescente para Ia monitorización de Ia cantidad de proteína expresada (Kramer S. F. y col., 2003, Biotechnol. Bioeng. 83(2): 241-47) añade problemas asociados al uso de secuencias génicas recombinantes como Ia preparación, el control de Ia estabilidad en los diferentes lotes de baculovirus preparados para Ia infección o el control de Ia estabilidad durante el ciclo de infección en un lote específico de larvas. Todos estos problemas son eliminados por el método basado en Ia tecnología NIRS propuesto en esta invención. Este método está basado en las siguientes etapas:
(a) Emisión de radiación NIR sobre larvas individuales de insecto. (b) Medida de Ia respuesta espectral de cada larva de insecto mediante un detector
NIRS que puede ser del tipo monocromador, de redes de diodos o cualquier detector aplicable a esta tecnología, situado a una distancia focal determinada que depende del instrumento elegido.
(c) Aplicación de un modelo de análisis cuantitativo de espectros NIR para Ia calibración y determinación del nivel de referencia de las variables elegidas, como el nivel de infección de Ia larva por parte del baculovirus o Ia cantidad de proteína recombinante producida. La medida de dichas variables deriva del tratamiento multivariante de los espectros NIRS asociados a los acusados cambios en Ia matriz, en este caso, Ia larva, debido al progreso de Ia infección vírica y Ia sobreexpresión de Ia proteína de interés
(d) Determinación del nivel de infección ó cantidad de proteína asociada y comparación con los valores de referencia para determinar si Ia infección o Ia cantidad de proteína producida han alcanzado cierto nivel umbral a partir del cual se considera que Ia larva debe ser recolectada.
10 HOJA DE SUSTITUCIÓN (REGLA 26) (e) Recolección de larvas y purificación de Ia proteína de interés.
La aplicación de esta técnica, además de evitar Ia introducción de marcadores en Ia secuencia de Ia proteína y su posterior eliminación, permite una recolección selectiva de larvas infectadas con un nivel homogéneo de expresión. Introduciendo los sistemas de selección adecuados este método permitiría su aplicación en procesos de producción continuos y semicontinuos.
Las larvas seleccionadas son sometidas a procesos de extracción y purificación convencionales como extracción sólido-líquido y clarificación mediante filtración, centrifugación y decantación, cromatografía de afinidad, cromatografía de intercambio iónico o filtración en gel. no siendo esta etapa objeto de Ia presente invención.
Como proteína objeto de Ia presente invención se considera cualquier proteína que se exprese en larvas de insecto.
Es obvio que expertos en Ia materia consideren variaciones y modificaciones sin alterar el alcance de Ia invención según Io que se describe.
Ejemplo 1
Este ejemplo describe Ia aplicación del método propuesto en Ia presente invención para Ia producción optimizada de Ia proteína verde fluorescente de arrecife de coral ZsGreen (ID: zFP560, código acceso en GeneBank: AF168422).
La proteína ZsGreen junto otras como DsRed, AmCyan, ZsYellow o AsRed, conforman una familia de proteínas fluorescentes aisladas de especies no bioluminiscentes de arrecifes de coral (Matz y col., 1999, Nature Biotech., 17:969-73).
Una secuencia incluyendo el cDNA de ZsGreen se clonó en el vector de transferencia baculovírico pVL1392 (BD Biosciences, San Diego, CA, EEUU), de modo que Ia secuencia codificante (ORF) de ZsGreen seguida de una cola de 6 histidinas en el extremo 3' precedida de Ia secuencia de reconocimiento de Ia proteasa TEV quedó bajo el control del promotor de Ia polihedrina de AcMNPV. El vector con el inserto correspondiente y ADN linearizado del virus AcMNPV se utilizaron para Ia cotransfección de células Sf21 de ovario de Spodoptera frugiperda siguiendo las instrucciones del fabricante del kit BD BaculoGold Transfection Kit (BD Biosciences)
11 HOJA DE SUSTITUCIÓN (REGLA 26) para la selección de virus recombinantes en los que el citado inserto sustituyó por recombinación homologa al locus de Ia polihedrina de AcMNPV. Los baculovirus AcMNPV-ZsGreen se amplificaron en cultivos de células Sf21 en medio Sf-900 Il (Invitrogen, Carlsbad, CA, EEUU) tal como se describe en O'Reilly y col., 1994, Oxford Univ Press, ISBN: 0195091310. Las placas aisladas se seleccionaron según el nivel de expresión de Zs-Green determinado mediante Western blot en extractos crudos de células Sf21 infectadas con distintos clones del virus. Uno de estos clones fue seleccionado, amplificado y Ia suspensión de baculovirus resultante fue titulada mediante el kit BaculoELISA Titer kit siguiendo las instrucciones del fabricante (Clontech). De esta manera se obtuvo una suspensión de virus recombinantes en estado de gemación capaces de expresar Zs-Green a una titulación de 5-107 unidades formadoras de placa por mL.
Mediante un sistema de dispersión por aerosol basado en una torre Potter de las utilizadas para experimentos de rocío de insectos con insecticidas según condiciones anteriormente descritas (US7261886) se infectaron 210 larvas de S. littoralis en estado L5 y 210 larvas de T. ni en estado L4, obtenidas por técnicas de cría convencionales (lote 1). Para Ia infección se utilizó 1 mL de Ia suspensión de de baculovirus recombinantes para cada grupo de 30a individuos siguiendo Ia metodología descrita en US7261886.
En el momento de Ia infección el peso medio de cada larva de S. littoralis era de 87.6 ± 2.8 mg. siendo de 43.8 ± 5.2 mg para T. ni. La eficiencia de Ia infección, medida en grupos control de 30 individuos de ambas especies se describe en Ia Tabla 1 :
Figure imgf000013_0001
Las larvas infectadas se incubaron en condiciones de insectario con fotoperiodo de 14 horas de luz/día, 26 0C y humedad relativa constante del 60% en celdas individuales
12 HOJA DE SUSTITUCIÓN (REGLA 26) de incubación de 25 rnL de polipropileno con 10 mL de dieta artificial preparada según el método de Vargas-Osuna E. y col., 1988, Boletín de sanidad vegetal. Plagas, ISSN 0213-6910, Los grupos control compuestos por 30 larvas de cada especie fueron incubados hasta Ia pupación o muerte por infección. El resto de las larvas se utilizaron para Ia calibración de Ia medida del nivel de infección y producción de ZsGreen mediante tecnología NIRS. Tras los datos obtenidos mediante NIRS se procedió a Ia infección de 8 lotes independientes de 30 larvas de cada especie en los que se aplicó Ia recolección guiada por NIRS (lotes 2.1 a 2.8).
Producción de Zs-Green en larvas sin monitorización de Ia expresión mediante NIRS
Tras Ia infección del primer lote de larvas de cada especie se seleccionaron grupos de 20 larvas para Ia purificación y cuantificación de Zs-Green a las 0, 24: 48, 72, 84. 96, 108, 120 y 144 horas tras Ia infección (hpi) para larvas de S. littoralis y 0. 24, 48, 72, 84 y 96 hpi para larvas de T. ni. Tras Ia congelación de las larvas seleccionadas, homogeneizado y extracción Ia purificación de Ia proteína ZsGreen se realizó mediante cromatografía de afinidad siguiendo el método descrito en US6153409.
El análisis de Ia proteína Zs-Green expresada en larvas se realizó mediante SDS- PAGE y medida de Ia intensidad de fluorescencia de extractos crudos siguiendo el método descrito en Cha y col., 1997, Biotechnol. Bioeng. 56(3): 239-47 para Ia medida de fluorescencia de GFP utilizando valores de longitudes de onda de excitación de 493 nm y de emisión de 505 nm. La cuantificación se realizó utilizando Zs-Green procedente de una línea celular estable HEK293 (Clonetech) como estándares de calibración en Western blots siguiendo el método cuantitativo descrito en Cha y col., 1997 con un anticuerpo policlonal anti-Zs Green (Clonetech, ref. 632474). El máximo de expresión de Zs-Green en larvas de S. littoralis se registró a las 108 hpi mientras que en larvas de T. ni se registró a las 72 hpi. El rendimiento medio del lote 1 de S. littoralis cosechado a las 108 hpi fue de 1.2 mg Zs-Green/larva mientras que el rendimiento medio del lote 1 de T. ni cosechado a las 72 hpi fue de 0.7 mg Zs-Green/larva. El rendimiento fue significativamente mayor utilizando Ia especie S. littoralis. Este dato unido a una capacidad de reproducción 10 veces superior a Ia de T. ni (Amate, J. y col., 2000, citado supra: Minkenberg, O. PJ. M. y col., 1992, Ann. Review Entorno!., 45:
423-48), convierten a Ia especie S. littoralis en un candidato idóneo para este cometido.
13
HOJA DE SUSTITUCIÓN (REGLA 26) Producción de Zs-Green con monitorización de Ia expresión mediante NIRS
En las larvas del lote 1 se realizaron medidas espectrales NIRS cada 8h en grupos de 30 larvas escogidas al azar. Para las medidas se utilizó un equipo monocromador FOSS NIRSystems modelo 6500 SY-II (Silver Spring, MD, EE.UU.). Se registró el espectro de reflectancia en el rango de longitudes de onda de 400 a 2498 nm cada 2 nm. Los valores de absorbancia se registraron como log (1/R), donde R es Ia reflectancia medida en cada larva de forma individual. El desarrollo de las calibraciones NIRS se realizó siguiendo Ia metodología descrita en Fernández-Ahumada y col (2008) (Fernandez-Ahumada, E. y col., 2008, J. Agrie. Food Chem., 56:10135-141), con las siguientes variaciones: el parámetro a determinar en este caso fue Ia cantidad de proteína expresada, utilizándose como valores de referencia Ia expresión de Zs-Green. Las ecuaciones NIR para Ia estimación del nivel de proteína expresada se obtuvieron como se describe en Fernández-Ahumada y col., 2008. Tanto el tratamiento de datos como las calibraciones correspondientes se realizaron utilizando el software WINSI Il versión 1.5 (Infrasoft International, Port Matilda, PA, EE.UU.). Los valores umbral de estimación de Ia cantidad de proteína expresada indicativos de que Ia larva analizada estaba en el periodo de máxima expresión que se fijaron inicialmente fueron 1.2 mg Zs- Green/larva para S. littoralis y 0.7 mg Zs-Green/larva para T. ni.
Tras Ia infección de los lotes de producción 2.1 a 2.8 de ambas especies, se comenzó a evaluar Ia respuesta espectral NIR de cada larva a partir de las 60 hpi en intervalos de 8h para cada lote de 30 larvas/especie. Los lotes 2.1 , 2.2 y 2.3 quedaron como grupos control en los que las larvas se cosecharon a las 108 hpi en S. littoralis y a las 72 hpi en T. ni. En los lotes 2.4 a 2.8, monitorizados mediante NIRS, aquellos individuos que al ser analizados no alcanzaban los valores umbral se mantuvieron en condiciones de incubación. Aquellos individuos que alcanzaron el valor umbral se sometieron a los procesos de recolección, extracción y purificación idénticos a los descritos para el primer lote de producción. El 4% de las larvas de S. littoralis y el 3% de las larvas de T. ni se desecharon al no alcanzar los valores umbrales para Ia recolección antes de Ia iniciación del proceso de melanización.
El peso medio obtenido en el momento de Ia recolección fue de 534±11.1 mg/ larva para S. littoralis y de 161 ±8.3 mg/larva para T. ni.
14 HOJA DE SUSTITUCIÓN (REGLA 26) En Ia siguiente tabla (Tabla 2) se muestran los valores comparativos de Ia aplicación o no del proceso de monitorización NIRS en los distintos lotes procesados.
Figure imgf000016_0001
Es evidente que los experimentos realizados con los lotes 2.1 a 2.8 confirmaron el mayor rendimiento de producción de proteína en larvas de Ia especie S. littoralis con respecto a Ia especie T. ni. Además, los datos avalan el uso de Ia tecnología NIRS para controlar Ia cosecha de larvas con objeto de optimizar el rendimiento en Ia producción de proteína. Con los medios necesarios esta metodología se podría aplicar para el desarrollo de procesos industriales en continuo y semicontinuo.
Mientras que ciertas particularidades de Ia presente invención han sido descritas en detalle, será evidente para expertos en Ia materia el efecto clarificador y no limitante de los citados ejemplos. Numerosas modificaciones y variaciones de Ia presente invención serán evidentes en base a los datos mostrados y por consiguiente quedarán incluidas dentro del alcance de las siguientes reivindicaciones.
15
HOJA DE SUSTITUCIÓN (REGLA 26)

Claims

ReivindicacionesLo que se reivindica es:
1 . Un proceso para Ia mejora de producción de proteínas recombinantes en larvas de insecto que comprende los pasos: a) Infección de una población de larvas de insecto de Ia especie Spodoptera littoralis mediante una suspensión de baculovirus recombinantes que portan al menos una secuencia codificante para una proteína recombinante que es expresada en Ia larva de insecto; b) monitorización del nivel de expresión de Ia proteína de interés mediante el análisis espectral en el infrarrojo cercano (NIRS): c) recolección homogénea de larvas de insecto infectadas que expresen de una manera suficiente Ia proteína de interés; d) recuperación de Ia proteína de interés de Ia larva de insecto recolectada.
2. El proceso de Ia reivindicación 1 donde Ia larva de insecto es de Ia especie Plutella xylostella, Idalima leonora, Períscepta polysticta, Laspeyresia pomonella,
Manduca sexta, Spodoptera exigua, Lymantría dispar, Heliothis virescenses. Helicoverpa zeas o Trichoplusia ni.
3. El proceso de Ia reivindicación 1 donde Ia proteína objeto de expresión es cualquier proteína que se exprese en sistemas larvarios.
4. El proceso de Ia reivindicación 1 donde en Ia etapa de monitorización el espectro
NIR que se registra es el de absorbencia.
5. El proceso de Ia reivindicación 1 donde en Ia etapa de monitorización el espectro NIR que se registra es el de reflectancia.
6. El proceso de Ia reivindicación 1 donde Ia medida del espectro NIR se realiza sobre Ia larva infectada, parte de ella o extracto derivado de Ia larva tras Ia infección.
7. El proceso de Ia reivindicación 1 donde Ia medida del espectro NIR se realiza con un detector del tipo monocromador o del tipo redes de diodos.
16 HOJA DE SUSTITUCIÓN (REGLA 26)
PCT/ES2009/070061 2009-03-13 2009-03-13 Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos WO2010103136A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070061 WO2010103136A1 (es) 2009-03-13 2009-03-13 Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2009/070061 WO2010103136A1 (es) 2009-03-13 2009-03-13 Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos

Publications (1)

Publication Number Publication Date
WO2010103136A1 true WO2010103136A1 (es) 2010-09-16

Family

ID=42727823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070061 WO2010103136A1 (es) 2009-03-13 2009-03-13 Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos

Country Status (1)

Country Link
WO (1) WO2010103136A1 (es)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132538A (en) * 1991-05-24 1992-07-21 Nirsystems Incorporated Measuring percentage of protein in whole grain samples
WO2003012438A2 (en) * 2001-07-27 2003-02-13 The Royal Holloway And Bedford College Method and means for detecting internal larval infestation in granular material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5132538A (en) * 1991-05-24 1992-07-21 Nirsystems Incorporated Measuring percentage of protein in whole grain samples
WO2003012438A2 (en) * 2001-07-27 2003-02-13 The Royal Holloway And Bedford College Method and means for detecting internal larval infestation in granular material

Similar Documents

Publication Publication Date Title
Barrera et al. Spodoptera frugiperda multiple nucleopolyhedrovirus as a potential biological insecticide: genetic and phenotypic comparison of field isolates from Colombia
ES2922081T3 (es) Líneas celulares libres de virus y métodos para su obtención
JP7266306B2 (ja) トリコプルシア・ニの蛹における組み換えタンパク質の発現
CN104788554B (zh) 猫ω干扰素突变体及其制备方法和应用
EP3187589A2 (en) Baculovirus-based production of biopharmaceuticals free of contaminating baculoviral virions
Wang et al. Cloning of biologically active genomes from a Helicoverpa armigera single-nucleocapsid nucleopolyhedrovirus isolate by using a bacterial artificial chromosome
EP2858490B1 (en) Recombinant dna elements for the expression of recombinant proteins in insects
TWI428449B (zh) 用於產生蛋白質之昆蟲感染方法
KR100689932B1 (ko) 유전자 재조합 누에를 이용한 생리 활성 단백질 생산법
CN106987603B (zh) 一种重组腺相关病毒的制备方法
Brito et al. The pangenome of the Anticarsia gemmatalis multiple nucleopolyhedrovirus (AgMNPV)
Petrik et al. Improving baculovirus resistance to UV inactivation: increased virulence resulting from expression of a DNA repair enzyme
McNitt et al. Assessing the safety of toxin-producing baculovirus biopesticides to a nontarget predator, the social wasp Polistes metricus Say
US9701983B2 (en) Baculoviral DNA elements for the expression of recombinant proteins in a host insect
WO2014086973A1 (en) Enhanced production of the porcine circovirus capsid protein by a baculovirus vector expression system
WO2010103136A1 (es) Proceso optimizado de expresión de proteínas recombinantes en larvas de insectos
Romero et al. Rachiplusia nu larva as a biofactory to achieve high level expression of horseradish peroxidase
CN101285072A (zh) 一种提高杆状病毒表达载体表达目的基因水平的方法
Wei et al. Autographa californica multiple nucleopolyhedrovirus orf114 is not essential for virus replication in vitro, but its knockout reduces per os infectivity in vivo
CN110272479A (zh) 牛λ3干扰素突变体及其制备方法和应用
Inglis et al. Mosaic genome evolution and phylogenetics of Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) and virulence of seven new isolates from the Brazilian states of Minas Gerais and Mato Grosso
Park et al. Enhanced production of secretory β1, 3-N-acetylglucosaminyltransferase 2 fusion protein into hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal sequence
CN110295196B (zh) 一种延长家蚕感染核型多角体病毒死亡时间的方法及其重组杆状病毒和应用
CN108823176B (zh) 一种重组杆状病毒及其构建方法和应用
Rodriguez et al. Isolation and characterization of a Nucleopolyhedrovirus from Rachiplusia nu (Guenée)(Lepidoptera: Noctuidae)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (30.12.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 09841381

Country of ref document: EP

Kind code of ref document: A1