WO2010101066A1 - Method for fabricating crystalline film and device for fabricating crystalline film - Google Patents

Method for fabricating crystalline film and device for fabricating crystalline film Download PDF

Info

Publication number
WO2010101066A1
WO2010101066A1 PCT/JP2010/052935 JP2010052935W WO2010101066A1 WO 2010101066 A1 WO2010101066 A1 WO 2010101066A1 JP 2010052935 W JP2010052935 W JP 2010052935W WO 2010101066 A1 WO2010101066 A1 WO 2010101066A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
laser beam
pulse
pulse laser
laser light
Prior art date
Application number
PCT/JP2010/052935
Other languages
French (fr)
Japanese (ja)
Inventor
陵太郎 富樫
亮介 佐藤
俊明 清野
俊夫 井波
秀晃 草間
Original Assignee
株式会社日本製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本製鋼所 filed Critical 株式会社日本製鋼所
Priority to CN201080002151.0A priority Critical patent/CN102099895B/en
Priority to KR1020107029391A priority patent/KR101323614B1/en
Priority to JP2011502729A priority patent/JP5594741B2/en
Priority to TW99106288A priority patent/TWI467659B/en
Publication of WO2010101066A1 publication Critical patent/WO2010101066A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot
    • B23K26/0732Shaping the laser spot into a rectangular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1285Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors

Definitions

  • the present invention relates to a crystalline film manufacturing method and a manufacturing apparatus for manufacturing a crystalline film by irradiating an amorphous film with pulsed laser light to finely crystallize the amorphous film.
  • the amorphous silicon film provided on the upper layer of the substrate is irradiated with pulsed laser light to be melted and recrystallized.
  • a solid phase growth method (SPC: SolidSoPhase Crystallization) in which the substrate having an amorphous silicon film as an upper layer is heated in a heating furnace and the silicon film is grown as a solid without melting. Two methods are commonly used.
  • the present inventors have confirmed that a fine polycrystalline film can be obtained by solid-phase growth by irradiating a pulsed laser beam while keeping the substrate temperature in a heated state, and propose this (patent) Reference 1).
  • polysilicon is a stable material and has a long life.
  • the characteristic variation of the TFT is large. This variation in TFT characteristics is more likely to occur due to variations in crystal grain size and the presence of crystalline silicon crystal grain interfaces (crystal grain boundaries) in the TFT channel formation region. Variations in TFT characteristics tend to depend mainly on the crystal grain size and the number of crystal grain boundaries existing between the channels.
  • the electron mobility generally increases.
  • the TFT channel length must be increased instead of those with high field electron mobility, and the size of each pixel of RGB (red, green, blue) depends on the TFT channel length. As a result, high resolution cannot be obtained. For this reason, the degree of demand for fine crystal films with small variations in crystal grain size is increasing.
  • the laser annealing method is a process in which amorphous silicon is once melted and recrystallized, and generally has a large crystal grain size and a large variation in crystal grain size.
  • the field electron mobility is high, the number of crystal grain sizes in the channel region of a plurality of TFTs varies, the random shape, and the difference in crystal orientation between adjacent crystals.
  • the characteristic variation of the TFT is greatly affected.
  • a difference in crystallinity is likely to appear in the laser overlapping portion, and this difference in crystallinity greatly affects the variation in TFT characteristics.
  • the crystal obtained by the solid phase growth method has the smallest particle size and little TFT variation, and is the most effective crystallization method for solving the above problems.
  • the crystallization time is long and it is difficult to adopt for mass production.
  • a batch type heat treatment apparatus that simultaneously treats a plurality of substrates is used. Since a large number of substrates are heated at the same time, it takes a long time to raise and lower the temperature, and the temperature in the substrate tends to be non-uniform.
  • the glass substrate when the glass substrate is heated for a long time at a temperature higher than the strain point temperature of the glass substrate, the glass substrate itself contracts and expands to damage the glass.
  • the crystallization temperature of SPC is higher than the glass transition point, the glass substrate is bent or contracted with a slight temperature distribution. As a result, even if crystallization is possible, a process such as an exposure process is hindered and it is difficult to manufacture a device. Higher processing temperatures require higher temperature uniformity. In general, the crystallization rate depends on the heating temperature, and a treatment time of 600 ° C. for 10 to 15 hours, 650 ° C. for 2 to 3 hours, and 700 ° C. for several tens of minutes is required. In order to perform processing without damaging the glass substrate, a long processing time is required, and this method is difficult to adopt for mass production.
  • the present invention has been made against the background of the above circumstances, and a crystalline film capable of efficiently producing a fine crystalline film with little variation in crystal grain size from an amorphous film without damaging the substrate. It aims at providing the manufacturing method of.
  • the first aspect of the present invention is that the amorphous film on the upper layer of the substrate has a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ / cm 2.
  • the amorphous film is irradiated with a pulse laser beam having a shot number of 1 to 10 times, and the amorphous film is heated to a temperature not exceeding the crystal melting point to be crystallized.
  • the crystalline film manufacturing apparatus of the present invention includes a pulse laser light source that outputs a pulse laser beam having a wavelength of 340 to 358 nm, an optical system that guides and irradiates the pulse laser beam to an amorphous film, and the laser beam is amorphous.
  • a scanning device that moves the laser light relative to the amorphous film so that the overlap irradiation is performed within a range of 1 to 10 shots.
  • a temperature at which the amorphous film does not exceed the crystalline melting point by irradiating the amorphous film with a pulsed laser beam in the ultraviolet wavelength region with an appropriate energy density and an appropriate number of shots and rapidly heating the amorphous film.
  • a uniform fine crystal having a small variation in particle size for example, a fine crystal having a size of 50 nm or less and having no protrusions can be obtained by a method different from the conventional melting / recrystallization method.
  • the crystal grain size becomes larger than 50 nm, and in the melt crystallization method and SPC (solid phase growth method) using a heating furnace, the variation in crystal grains becomes large and a fine crystal is obtained.
  • the film to be crystallized since the film is heated only to a temperature not exceeding the melting point of the crystal, the film to be crystallized does not change in phase any further, and for example, a pulse laser is used to change only amorphous silicon to crystalline silicon. Similar crystallinity can be obtained at the light overlapping position, and the uniformity is improved. Note that the amorphous film can be heated to a higher temperature as compared with a conventional solid phase growth method by irradiation with pulsed laser light according to the conditions of the present invention.
  • the underlying substrate is unlikely to be damaged.
  • heating of the substrate is not necessary.
  • the present invention does not exclude the heating of the substrate.
  • Wavelength range 340 to 358 nm Since the above wavelength range is a wavelength range with good absorption for an amorphous film, particularly an amorphous silicon film, the amorphous film can be directly heated with a pulsed laser beam in the wavelength range. Therefore, it is not necessary to provide a laser absorption layer indirectly on the amorphous film. In addition, since the laser beam is sufficiently absorbed by the amorphous film, the substrate can be prevented from being heated by the laser beam, and the substrate can be prevented from being bent and deformed, thereby preventing the substrate from being damaged.
  • the wavelength of the laser beam is absorbed by an amorphous film, particularly an amorphous silicon film, but is transmitted, the light on the irradiated portion of the amorphous film is caused by multiple reflection from the lower layer side. Is largely dependent on the deviation (variation) in the thickness of the amorphous film lower layer.
  • laser light can be completely absorbed by the surface layer of an amorphous film, particularly a silicon film, so that a polycrystalline film can be obtained without much consideration of variations in the film thickness of the lower layer.
  • the present invention can be applied to the case where an amorphous film is formed on a metal.
  • silicon of about 50 nm thickness absorbs light but there is also transmitted light. Therefore, the light from the silicon lower layer (buffer layer such as SiO 2 and SiN layer) If the thickness of the buffer layer under the silicon is not uniform due to the influence of multiple reflection, there is a problem that the light absorption rate of silicon also changes. There is a similar problem in the method of providing a capping layer such as SiO 2 on the upper layer of silicon. Further, when the wavelength region of the pulse laser light is in the infrared region, silicon having a thickness of about 50 nm hardly absorbs light. Therefore, it is general to provide a light absorption layer on the upper layer of silicon.
  • the wavelength range of the pulse laser beam is set to 340 to 358 nm in the ultraviolet range.
  • Energy density 130-240 mJ / cm 2
  • the amorphous film remains in the solid phase or exceeds the amorphous melting point and does not exceed the crystalline melting point. It can be heated and crystallized to produce microcrystals. If the energy density is low, the temperature of the amorphous film does not rise sufficiently and crystallization is not sufficiently performed, or crystallization becomes difficult. On the other hand, when the energy density is high, molten crystals are formed or ablation occurs. For this reason, the energy density of the pulse laser beam is limited to 130 to 240 mJ / cm 2 .
  • Number of shots 1 to 10 times
  • the number of shots is large, the amorphous film is heated to a temperature exceeding the crystalline melting point, and melting or ablation may occur. Further, the processing time becomes longer as the number of shots increases, resulting in poor efficiency.
  • Crystallization rate 60-95% It is desirable to set the crystallization rate during crystallization to 60 to 95% within the above conditions of wavelength, energy density, and number of shots.
  • the crystallization rate is less than 60%, it is difficult to obtain sufficient characteristics when used as a thin film transistor. If the energy given to the amorphous film is small, the crystallization rate cannot be increased to 60% or more. On the other hand, if the crystallization rate exceeds 95%, the crystal becomes coarse and it becomes difficult to obtain fine and uniform crystals. When the pulse laser beam is irradiated beyond the crystal melting point, the crystallization rate tends to exceed 95%.
  • the crystallization rate is specifically the ratio of the area of the crystal peak and the area of the amorphous peak obtained by Raman spectroscopy (area of the crystallized Si peak / (area of the amorphous Si peak + the area of the crystallized Si peak). Area).
  • the pulse width (half-value width) of the pulse laser beam is preferably 5 to 100 ns.
  • the pulse width is small, the peak power density increases, and it may be heated to a temperature exceeding the melting point to melt or ablate.
  • the pulse width is large, the peak power density decreases, and it may not be possible to heat to a temperature for solid-phase crystallization.
  • the pulse frequency of the pulse laser beam is desirably 6 to 10 kHz.
  • the pulse frequency of the pulse laser beam is increased to some extent (6 kHz or more), the time interval between shots is reduced, and the heat generated by the pulse laser beam irradiation is held in the amorphous film, which effectively acts on crystallization. .
  • the pulse frequency is too high, melting and ablation are likely to occur.
  • the short axis width of the pulse laser beam is preferably 1.0 mm or less.
  • the amorphous film By scanning the pulsed laser light relative to the amorphous film, the amorphous film can be crystallized along the surface direction.
  • the pulse laser beam side may be moved, the amorphous film side may be moved, or both may be moved.
  • the scanning is desirably performed at a speed of 50 to 1000 mm / second. When this scanning speed is low, the peak power density increases, and the amorphous film may be heated to a temperature exceeding the crystalline melting point to melt or ablate. In addition, when the scanning speed is high, the peak power density decreases, and it may not be possible to heat to a temperature for solid-phase crystallization.
  • the manufacturing apparatus of the present invention can output a pulse laser beam in a desired wavelength range using a solid-state laser light source that outputs a pulse laser beam in the ultraviolet region, and can produce microcrystals with a laser light source having good maintainability. It can be carried out.
  • the pulse laser beam can be irradiated to the amorphous film with the energy density adjusted appropriately by the energy adjusting unit.
  • the energy adjustment unit may adjust the output of the solid-state laser light source to obtain a predetermined energy density, or adjust the energy density by adjusting the attenuation factor of the pulsed laser light output from the solid-state laser light source. You may make it do.
  • the scanning device By scanning the pulse laser light relatively with respect to the amorphous film by a scanning device, a fine and uniform crystal can be obtained at an appropriate crystallization ratio in a large area of the amorphous film.
  • the frequency of the pulse, the short axis width of the pulse laser beam, and the scanning speed are set so that the number of shots in the same region with respect to the amorphous film becomes 1 to 10 by the scanning.
  • the scanning device may be a device that moves the optical system through which the pulse laser beam is guided to move the pulse laser beam, or a device that moves the base on which the amorphous film is disposed.
  • pulsed laser light having a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ / cm 2 is applied to the amorphous film on the upper layer of the substrate 1 to 10 times.
  • the amorphous film is heated to a temperature that does not exceed the crystal melting point and crystallized, so that the average grain shape is small so that a plurality of crystal grains may exist in the channel region of the TFT.
  • a crystalline film can be manufactured with exceptional uniformity, and the above-described problems can be solved.
  • the wiring width is reduced and the size of the channel formation region (channel length, channel width) of the TFT is also reduced, a stable crystalline film having a small average grain size can be uniformly produced over the entire substrate. Is required.
  • a crystallization technique that minimizes the difference in TFT characteristics between adjacent regions, and the present invention can be realized with certainty according to the present invention.
  • impurities adhering to the film surface can be removed.
  • the transition point of the substrate (glass or the like) is not exceeded, or even if the transition point is exceeded, only the amorphous film is heated to a high temperature with a laser so that the crystal can be processed. It can be made. At the same time, there is an effect that microcrystals of 50 nm or less can be formed in a short time. At the same time, there is an effect that the same crystallites of 50 nm or less can be formed in the overlapping portion (effective for crystallization of a large area). At the same time, it has the effect of minimizing substrate displacement (deflection, deformation, internal stress). At the same time, the substrate is heated to some extent, so that impurities existing in the amorphous film and contamination adhering to the surface are removed.
  • the substrate 8 used in the flat panel display TFT device is targeted, and an amorphous silicon thin film 8a is formed on the substrate 8 as an amorphous film.
  • the amorphous silicon thin film 8a is formed in the upper layer of the substrate 8 by a conventional method, and dehydrogenation treatment is omitted.
  • the type of the target substrate and the amorphous film formed thereon is not limited thereto.
  • FIG. 1 shows an ultraviolet solid laser annealing apparatus 1 used in a method for producing a crystalline film according to an embodiment of the present invention.
  • the ultraviolet solid annealing apparatus 1 is an apparatus for producing a crystalline film according to the present invention. It corresponds to.
  • an ultraviolet solid laser oscillator 2 having a wavelength of 340 to 358 nm and outputting a pulse laser beam having a pulse frequency of 6 to 10 kHz and a pulse width of 5 to 100 ns is installed on the vibration isolation table 6.
  • the ultraviolet solid laser oscillator 2 includes a control circuit 2a that generates a pulse signal.
  • An attenuator (attenuator) 3 is arranged on the output side of the ultraviolet solid laser oscillator 2, and an optical fiber 5 is connected to the output side of the attenuator 3 via a coupler 4.
  • An optical system 7 including condensing lenses 70a and 70b and beam homogenizers 71a and 71b disposed between the condensing lenses 70a and 70b is connected to the transmission destination of the optical fiber 5.
  • a substrate mounting table 9 on which the substrate 8 is mounted is installed in the emission direction of the optical system 7.
  • the optical system 7 is set so as to shape the pulse laser beam into a rectangular or line beam shape having a minor axis width of 1.0 mm or less.
  • the substrate mounting table 9 is movable along the surface direction (XY direction) of the substrate mounting table 9, and is provided with a scanning device 10 that moves the substrate mounting table 9 at high speed along the surface direction. ing.
  • the substrate 8 on which the amorphous silicon thin film 8a is formed as an upper layer is placed on the substrate platform 9.
  • the substrate 8 is not heated by a heater or the like.
  • a pulse signal is generated so that a pulse laser beam having a preset pulse frequency (6 to 10 kHz) and a pulse width of 5 to 100 ns is output.
  • a pulse laser beam having a wavelength of 358 nm is output.
  • the pulse laser beam output from the ultraviolet solid laser oscillator 2 reaches the attenuator 3 and is attenuated at a predetermined attenuation rate by passing through the attenuator 3.
  • the attenuation rate is set so that the pulse laser beam has an energy density defined by the present invention on the processed surface.
  • the attenuator 3 may vary the attenuation rate.
  • the pulsed laser light whose energy density is adjusted is transmitted through the optical fiber 5 and introduced into the optical system 7. In the optical system 7, as described above, it is shaped into a rectangular or line beam shape having a minor axis width of 1.0 mm or less by the condenser lenses 70a and 70b, the beam homogenizers 71a and 71b, etc. Irradiation with an energy density of ⁇ 240 mJ / cm 2 .
  • the substrate mounting table 9 is moved in the minor axis width direction of the line beam by the scanning device 10 along the surface of the amorphous silicon thin film 8a.
  • the pulse laser beam is relatively moved over a wide area of the surface of the amorphous silicon thin film 8a. Irradiated while being scanned.
  • the scanning speed of the pulse laser beam is set to 50 to 1000 mm / second by setting the moving speed by the scanning device, and the pulse laser beam overlaps the same region of the amorphous silicon thin film 8a with the number of shots of 1 to 10 times. Let it be irradiated.
  • the number of shots is determined based on the pulse frequency, the pulse width, the short axis width of the pulse laser beam, and the scanning speed of the pulse laser beam.
  • the heating temperature of the amorphous silicon thin film 8a does not exceed the crystal melting point (for example, about 1000 ° C. to about 1400 ° C.).
  • the heating temperature may be a temperature that does not exceed the amorphous melting point temperature, or a temperature that exceeds the amorphous melting point temperature and does not exceed the crystalline melting point.
  • the crystalline thin film obtained by the irradiation has a crystal grain size of 50 nm or less, no projections as seen in the conventional solid-phase crystal growth method, and uniform and fine high-quality crystallinity.
  • crystal grains can be measured by an atomic force microscope (AFM).
  • the crystallinity of the obtained crystal can be calculated based on the ratio between the area of the crystal peak and the area of the amorphous peak by Raman spectroscopy, and the crystallinity is preferably 60 to 95%.
  • the crystalline thin film can be suitably used for an organic EL display.
  • the use of the present invention is not limited to this, and the present invention can be used as other liquid crystal displays and electronic materials.
  • the pulse laser beam is relatively scanned by moving the substrate mounting table.
  • the pulse laser beam is relatively moved by moving the optical system to which the pulse laser beam is guided at high speed. It is good also as what scans.
  • the polycrystalline silicon thin film obtained by the method of the present invention has a small variation in crystal grain size, is uniformly polycrystallized over the entire surface, and obtains a high-quality polycrystalline silicon thin film. I was able to. At the same time, it was confirmed that the same uniform crystallites were formed in the overlapping portion. It has been found that since the crystal grains are as small as 50 nm or less and no protrusions are formed, and a crystalline silicon film can be obtained uniformly, a silicon film with little variation in TFT characteristics can be provided.
  • the pulsed laser beam was shaped by an optical system so as to be rectangular on the processed surface, and was irradiated to amorphous silicon on the substrate. Amorphous silicon is heated and converted to crystalline silicon.
  • the irradiated thin film was evaluated by SEM photographs shown in FIGS. 3 and 4 and Raman spectroscopic measurement as shown in FIG.
  • the crystallization rate was calculated by the calculation formula (1) based on the Raman spectroscopic measurement result, the area of crystallized Si peak / (area of amorphous Si peak + area of crystallized Si peak).
  • Example 2 In the case of a thin film irradiated with pulse laser light with an energy density of 130 mJ / cm 2 and a pulse frequency of 6 kHz, a microcrystal with a diameter of 10 to 20 nm is produced as shown in Photo 10 when the number of shots is six. did it. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 85%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 3 In the thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 140 mJ / cm 2 and the pulse frequency of 6 kHz, when the number of shots is six, as shown in Photo 11, 10 to 20 nm microcrystals can be produced. It was. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 88%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 4 In the thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 150 mJ / cm 2 and the pulse frequency of 6 kHz, when the number of shots is six, as shown in Photo 12, 10 to 20 nm microcrystals can be produced. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 90%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 5 With a thin film irradiated with pulse laser light with an energy density of 160 mJ / cm 2 and a pulse frequency of 6 kHz, 20-30 nm microcrystals can be produced when the number of shots is 6 as shown in Photo 13. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 90%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 6 With a thin film irradiated with pulsed laser light with an energy density of 180 mJ / cm 2 and a pulse frequency of 6 kHz, a crystallite of 20 to 30 nm can be produced when the number of shots is 6 as shown in Photo 14. It was. The crystallinity was evaluated by Raman spectroscopy to be 95%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 7 With a thin film irradiated with pulse laser light with an energy density of 200 mJ / cm 2 and a pulse frequency of 6 kHz, a crystallite of 40 to 50 nm can be produced when the number of shots is 6 as shown in Photo 15. It was. The crystallinity was evaluated by Raman spectroscopy to be 95%. Similar results were obtained when the pulse frequency was 8 kHz.
  • Example 8 With a thin film irradiated with the pulsed laser beam with a pulsed laser beam energy density of 160 mJ / cm 2 and a pulse frequency of 8 kHz, 10-20 nm microcrystals can be produced when the number of shots is 2 as shown in Photo 19. It was. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 75%.
  • Example 9 With a thin film irradiated with pulsed laser light with an energy density of 180 mJ / cm 2 and a pulse frequency of 8 kHz, 10-20 nm microcrystals can be produced when the number of shots is 2 as shown in Photo 20. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 78%.
  • Example 3 the average grain size was 15 nm and the standard deviation ⁇ was 7 nm, and in Comparative Example 1, the average crystal grain size was 72 nm and the standard deviation ⁇ was 42 nm.
  • the polycrystalline silicon thin film obtained by the present invention has a small variation in crystal grains and a high rate of crystallization rate. Furthermore, it was confirmed that the entire surface was uniformly polycrystallized, and the same crystal was produced in the laser overlapping portion. Since the crystal grains are as small as 50 nm or less and no protrusions are formed, and a crystalline silicon film can be obtained uniformly, a silicon film with little variation in TFT characteristics can be provided.
  • Ultraviolet solid state laser annealing treatment equipment 2 Ultraviolet solid state laser oscillator 3 Attenuator (attenuator) Reference Signs List 4 coupler 5 optical fiber 6 vibration isolation table 7 optical system 70a condenser lens 70b condenser lens 71a beam homogenizer 71b beam homogenizer 8 substrate 8a amorphous silicon thin film 9 substrate mounting table 10 scanning device

Abstract

An amorphous film is irradiated with pulse laser light having a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ/cm2, with a shot number of 1 to 10, and is thereby heated to a temperature not exceeding a crystalline melting point and crystallized. The pulse width, frequency, and minor axis width of the pulse laser light are preferably set to 5 to 100 ns, 6 to 10 kHz, and 1.0 mm or less, respectively, and the film is relatively scanned with the pulse laser light at a scanning speed of 50 to 1000 mm/s. As a result, a uniform and fine crystalline film having less variation in crystalline grain diameter can be effectively fabricated from the amorphous film, without damaging the substrate.

Description

結晶質膜の製造方法および結晶質膜製造装置Crystalline film manufacturing method and crystalline film manufacturing apparatus
 この発明は、非晶質膜にパルスレーザ光を照射して該非晶質膜を微細結晶化させて結晶質膜を作製する結晶質膜の製造方法および製造装置に関するものである。 The present invention relates to a crystalline film manufacturing method and a manufacturing apparatus for manufacturing a crystalline film by irradiating an amorphous film with pulsed laser light to finely crystallize the amorphous film.
 液晶表示装置などの薄型表示器フラットパネルディスプレイに用いられる薄膜トランジスタ(TFT)の結晶化シリコンの製造には、基板上層に設けられたアモルファスシリコン膜にパルスレーザ光を照射して溶融、再結晶化させる方法(レーザアニール法)やアモルファスシリコン膜を上層に有する前記基板を加熱炉で加熱して、前記シリコン膜を溶融せずに固体のまま結晶成長させる固相成長法(SPC:Solid Phase Crystallization)の2つの方法が一般的に用いられている。 In the manufacture of crystallized silicon for thin film transistors (TFTs) used in thin display flat panel displays such as liquid crystal display devices, the amorphous silicon film provided on the upper layer of the substrate is irradiated with pulsed laser light to be melted and recrystallized. A solid phase growth method (SPC: SolidSoPhase Crystallization) in which the substrate having an amorphous silicon film as an upper layer is heated in a heating furnace and the silicon film is grown as a solid without melting. Two methods are commonly used.
 また、本発明者らは、基板温度を加熱状態に保った状態でパルスレーザ光を照射することにより固相成長により微細な多結晶膜が得られることを確かめ、これを提案している(特許文献1参照)。 In addition, the present inventors have confirmed that a fine polycrystalline film can be obtained by solid-phase growth by irradiating a pulsed laser beam while keeping the substrate temperature in a heated state, and propose this (patent) Reference 1).
特開2008-147487号公報JP 2008-147487 A
 近年では、大型のTV用OLED(Organic light-emitting diode)パネルやLCD (Liquid Crystal Display) パネルを製造するに当たり、均一で大面積の微細な多結晶シリコン膜を安価に製造する方法が求められている。
 また、最近、液晶ディスプレイに変わって次世代ディスプレイとして有力視されている有機ELディスプレイでは、有機EL自体が発光することによってスクリーンの輝度を上げている。有機ELの発光材料はLCDのように電圧駆動ではなく電流駆動であるため、TFTへの要求が異なっている。アモルファスシリコンによるTFTでは経年変化の抑制が難しく、しきい値電圧(Vth)の大幅なドリフトが発生し、デバイスの寿命が制限される。一方、ポリシリコンは安定材料のため長寿命である。しかしながらポリシリコンによるTFTでは、TFTの特性ばらつきは大きい。このTFT特性のばらつきは、結晶粒径のばらつきや、結晶質シリコンの結晶粒の界面(結晶粒界)がTFTのチャネル形成領域に存在することによりより発生しやすくなる。TFTの特性ばらつきは、主にチャネル間に存在する結晶粒経と結晶粒界の数に左右されやすい。さらに、結晶粒径が大きいと一般に電子移動度が大きくなる。有機ELディスプレイ用途のTFTは電界電子移動度の高いものは却ってTFTのチャネル長を長くしなければならず、RGB(赤・緑・青)それぞれの1画素の大きさがTFTのチャネル長に依存してしまい高解像度が得られない。このため、結晶粒径のバラツキが小さく微細な結晶膜への要求度合いは益々高くなっている。
In recent years, in order to manufacture large OLED (Organic light-emitting diode) panels for TV and LCD (Liquid Crystal Display) panels, a method for manufacturing a uniform, large-area, fine polycrystalline silicon film at low cost has been demanded. Yes.
Further, recently, an organic EL display that is considered to be a promising next-generation display instead of a liquid crystal display increases the luminance of the screen by emitting light from the organic EL itself. Since the organic EL light emitting material is not voltage driven but current driven like LCD, the requirements for TFT are different. With TFTs made of amorphous silicon, it is difficult to suppress secular change, and a significant drift of the threshold voltage (Vth) occurs, limiting the lifetime of the device. On the other hand, polysilicon is a stable material and has a long life. However, in the TFT made of polysilicon, the characteristic variation of the TFT is large. This variation in TFT characteristics is more likely to occur due to variations in crystal grain size and the presence of crystalline silicon crystal grain interfaces (crystal grain boundaries) in the TFT channel formation region. Variations in TFT characteristics tend to depend mainly on the crystal grain size and the number of crystal grain boundaries existing between the channels. Furthermore, when the crystal grain size is large, the electron mobility generally increases. For TFTs for organic EL displays, the TFT channel length must be increased instead of those with high field electron mobility, and the size of each pixel of RGB (red, green, blue) depends on the TFT channel length. As a result, high resolution cannot be obtained. For this reason, the degree of demand for fine crystal films with small variations in crystal grain size is increasing.
 しかし、従来の結晶化方法では、これらの問題を解決することは困難である。
なぜなら、その一つのレーザアニール法は、アモルファスシリコンを一旦溶融させ再結晶化させるプロセスであり、一般に形成される結晶粒径が大きく、結晶粒径のバラツキも大きい。このため、先に述べたように電界電子移動度が高く、複数のTFTのチャネル領域内の結晶粒径の数にばらつきが生まれることや、ランダムな形状、隣り合う結晶の結晶配向性の違いが、結果TFTの特性ばらつきに大きく影響する。特にレーザ重ねあわせ部に結晶性の違いが現れやすく、この結晶性の違いがTFTの特性ばらつきに大きく影響する。また、表面のコンタミネーション(不純物)により、結晶に欠陥が生じるといった問題もある。
However, it is difficult to solve these problems by the conventional crystallization method.
This is because the laser annealing method is a process in which amorphous silicon is once melted and recrystallized, and generally has a large crystal grain size and a large variation in crystal grain size. For this reason, as described above, the field electron mobility is high, the number of crystal grain sizes in the channel region of a plurality of TFTs varies, the random shape, and the difference in crystal orientation between adjacent crystals. As a result, the characteristic variation of the TFT is greatly affected. In particular, a difference in crystallinity is likely to appear in the laser overlapping portion, and this difference in crystallinity greatly affects the variation in TFT characteristics. In addition, there is a problem that defects occur in the crystal due to surface contamination (impurities).
 また、固相成長法(SPC法)により得られる結晶は、粒径が小さくTFTばらつきは少なく、上記課題を解決する最も有効な結晶化方法である。しかしながら、結晶化時間が長く、量産用途としては採用されにくい。固相成長法(SPC)を可能にする熱処理工程では、複数枚の基板を同時に処理するバッチタイプの熱処理装置が使用される。大量の基板を同時に加熱することから、昇温および降温に長時間を要するとともに基板内の温度が不均一になりやすい。また、固相成長法はガラス基板の歪点温度よりも高い温度で長時間加熱すると、ガラス基板自体の収縮、膨張を引き起こしガラスにダメージを与える。SPCの結晶化温度は、ガラス転移点より高いので、少しの温度分布でガラス基板のたわみや収縮分布が発生する。その結果結晶化が可能であっても露光工程などのプロセスに支障が生じてデバイスの作製が困難になる。処理温度が高いほど温度均一性が要求される。一般に結晶化速度は加熱温度に依存し、600℃で10~15時間、650℃で2~3時間、700℃で数10分の処理時間が必要となる。ガラス基板にダメージを与えることなく処理するためには長時間の処理時間が必要となりこの方法は量産用途として採用し難い。 Further, the crystal obtained by the solid phase growth method (SPC method) has the smallest particle size and little TFT variation, and is the most effective crystallization method for solving the above problems. However, the crystallization time is long and it is difficult to adopt for mass production. In the heat treatment step that enables the solid phase growth method (SPC), a batch type heat treatment apparatus that simultaneously treats a plurality of substrates is used. Since a large number of substrates are heated at the same time, it takes a long time to raise and lower the temperature, and the temperature in the substrate tends to be non-uniform. In the solid phase growth method, when the glass substrate is heated for a long time at a temperature higher than the strain point temperature of the glass substrate, the glass substrate itself contracts and expands to damage the glass. Since the crystallization temperature of SPC is higher than the glass transition point, the glass substrate is bent or contracted with a slight temperature distribution. As a result, even if crystallization is possible, a process such as an exposure process is hindered and it is difficult to manufacture a device. Higher processing temperatures require higher temperature uniformity. In general, the crystallization rate depends on the heating temperature, and a treatment time of 600 ° C. for 10 to 15 hours, 650 ° C. for 2 to 3 hours, and 700 ° C. for several tens of minutes is required. In order to perform processing without damaging the glass substrate, a long processing time is required, and this method is difficult to adopt for mass production.
 本発明は、上記事情を背景としてなされたものであり、結晶粒径のバラツキが少ない微細な結晶質膜を基板にダメージを与えることなく非晶質膜から効率よく作製することができる結晶質膜の製造方法を提供することを目的とする。 The present invention has been made against the background of the above circumstances, and a crystalline film capable of efficiently producing a fine crystalline film with little variation in crystal grain size from an amorphous film without damaging the substrate. It aims at providing the manufacturing method of.
 すなわち、本発明の結晶質膜の製造方法のうち、第1の本発明は、基板の上層に有る非晶質膜に、340~358nmの波長からなり、130~240mJ/cmのエネルギー密度を有するパルスレーザ光を1~10回のショット数で照射して、前記非晶質膜を結晶融点を超えない温度に加熱して結晶化させることを特徴とする。 That is, of the crystalline film manufacturing methods of the present invention, the first aspect of the present invention is that the amorphous film on the upper layer of the substrate has a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ / cm 2. The amorphous film is irradiated with a pulse laser beam having a shot number of 1 to 10 times, and the amorphous film is heated to a temperature not exceeding the crystal melting point to be crystallized.
 本発明の結晶質膜製造装置は、波長340~358nmのパルスレーザ光を出力するパルスレーザ光源と、前記パルスレーザ光を非晶質膜に導いて照射する光学系と、前記レーザ光が非晶質膜上で130~240mJ/cmのエネルギー密度で照射されるように前記パルスレーザ光源から出力された前記パルスレーザ光の減衰率を調整するアッテネータと、前記パルスレーザ光が前記非晶質膜上で1~10ショットの範囲内でオーバラップ照射されるように前記レーザ光を前記非晶質膜に対し相対的に移動させる走査装置とを備えることを特徴とする。 The crystalline film manufacturing apparatus of the present invention includes a pulse laser light source that outputs a pulse laser beam having a wavelength of 340 to 358 nm, an optical system that guides and irradiates the pulse laser beam to an amorphous film, and the laser beam is amorphous. An attenuator for adjusting an attenuation factor of the pulsed laser light output from the pulsed laser light source so that the material film is irradiated with an energy density of 130 to 240 mJ / cm 2 , and the pulsed laser light is the amorphous film And a scanning device that moves the laser light relative to the amorphous film so that the overlap irradiation is performed within a range of 1 to 10 shots.
 本発明によれば、紫外波長域のパルスレーザ光を適度なエネルギー密度と適度なショット数で非晶質膜に照射して急速に加熱することで、非晶質膜が結晶融点を超えない温度に加熱され、従来の溶融・再結晶化法と異なる手法で粒径のバラツキの小さな均一な微細結晶、例えば 大きさが50nm以下で突起のない微細結晶を得ることできる。従来方式の溶融結晶化法では結晶粒径が50nmを越えて大きくなり、また、この溶融結晶化法や加熱炉によるSPC(固相成長法)では結晶粒のばらつきが大きくなり、微細結晶を得ることができない。
 また、本発明によれば、結晶の融点を超えない温度にまでしか加熱されないので、結晶化される膜自体はそれ以上は相変化せず、例えばアモルファスシリコンのみを結晶シリコンへ変化させるためパルスレーザ光の重ね合わせ箇所も同様の結晶性が得られ、均一性が向上する。なお、本発明条件によるパルスレーザ光の照射によって、非晶質膜を従来の固相成長法に比べて高温に加熱することができる。
According to the present invention, a temperature at which the amorphous film does not exceed the crystalline melting point by irradiating the amorphous film with a pulsed laser beam in the ultraviolet wavelength region with an appropriate energy density and an appropriate number of shots and rapidly heating the amorphous film. Thus, a uniform fine crystal having a small variation in particle size, for example, a fine crystal having a size of 50 nm or less and having no protrusions can be obtained by a method different from the conventional melting / recrystallization method. In the conventional melt crystallization method, the crystal grain size becomes larger than 50 nm, and in the melt crystallization method and SPC (solid phase growth method) using a heating furnace, the variation in crystal grains becomes large and a fine crystal is obtained. I can't.
In addition, according to the present invention, since the film is heated only to a temperature not exceeding the melting point of the crystal, the film to be crystallized does not change in phase any further, and for example, a pulse laser is used to change only amorphous silicon to crystalline silicon. Similar crystallinity can be obtained at the light overlapping position, and the uniformity is improved. Note that the amorphous film can be heated to a higher temperature as compared with a conventional solid phase growth method by irradiation with pulsed laser light according to the conditions of the present invention.
 また、連続発振ではなくパルスレーザ光を採用することで、下地の基板はダメージを受けるような温度になりにくい。なお、本発明においては基板の加熱は不要であるが、本発明として基板の加熱を行うものを排除するものではない。ただし、本発明としては、基板の加熱を行うことなく前記パルスレーザ光の照射を行うのが望ましい。 Also, by using pulsed laser light instead of continuous oscillation, the underlying substrate is unlikely to be damaged. In the present invention, heating of the substrate is not necessary. However, the present invention does not exclude the heating of the substrate. However, in the present invention, it is desirable to irradiate the pulsed laser light without heating the substrate.
 なお、基板上に設けられる非晶質膜は、水素含有量が多いと、溶融結晶化法のような高いエネルギーで照射する際に、Si-Hの分子結合が切れやすく、アブレーションしやすいため脱水素される場合があるが、本発明では、シリコンは固相のまま変化し、アブレーションは発生しにくいため脱水素していない非晶質膜を処理することが可能である。
 次に、本発明で規定する条件について以下に説明する。
Note that when the amorphous film provided on the substrate has a high hydrogen content, Si-H molecular bonds are easily broken and ablation is likely to occur when irradiated with high energy as in the melt crystallization method. However, in the present invention, it is possible to process an amorphous film that has not been dehydrogenated because silicon changes in a solid phase and ablation hardly occurs.
Next, conditions defined in the present invention will be described below.
波長域:340~358nm
 上記波長域は、非晶質膜、特にアモルファスシリコン膜に対し、吸収のよい波長域であるので、該波長域のパルスレーザ光で非晶質膜を直接加熱することができる。したがって、非晶質膜の上層に間接的にレーザ吸収層を設ける必要がない。また、レーザ光が非晶質膜で十分に吸収されるため、レーザ光によって基板が加熱されるのを防止でき、基板の撓みや変形が抑えられ基板のダメージを回避できる。
 なお、レーザ光の波長が、非晶質膜、特にアモルファスシリコン膜に対し吸収はあるが、透過するようなものであると、下層側からの多重反射により、非晶質膜の照射部分に対する光の吸収率が非晶質膜下層の厚みの偏差(ばらつき)に大きく依存してしまう。上記波長域であれば、レーザ光は非晶質膜、特にシリコン膜の表層で完全に光吸収させることができるため、下層の膜厚ばらつきをあまり考慮せずに多結晶膜を得ることができる。また、非晶質膜の透過を殆ど無視できるので、金属上に非晶質膜が形成されたものへの適用も可能である。
Wavelength range: 340 to 358 nm
Since the above wavelength range is a wavelength range with good absorption for an amorphous film, particularly an amorphous silicon film, the amorphous film can be directly heated with a pulsed laser beam in the wavelength range. Therefore, it is not necessary to provide a laser absorption layer indirectly on the amorphous film. In addition, since the laser beam is sufficiently absorbed by the amorphous film, the substrate can be prevented from being heated by the laser beam, and the substrate can be prevented from being bent and deformed, thereby preventing the substrate from being damaged.
Note that if the wavelength of the laser beam is absorbed by an amorphous film, particularly an amorphous silicon film, but is transmitted, the light on the irradiated portion of the amorphous film is caused by multiple reflection from the lower layer side. Is largely dependent on the deviation (variation) in the thickness of the amorphous film lower layer. In the above wavelength range, laser light can be completely absorbed by the surface layer of an amorphous film, particularly a silicon film, so that a polycrystalline film can be obtained without much consideration of variations in the film thickness of the lower layer. . Further, since the permeation of the amorphous film can be almost ignored, the present invention can be applied to the case where an amorphous film is formed on a metal.
 すなわち、結晶化に用いるレーザ光の波長域を可視域にすると、50nm厚程度のシリコンは光吸収するが透過する光も存在するため、シリコン下層(SiO、SiN層などのバッファー層)からの多重反射が影響し、シリコン下層のバッファー層の厚みを均一にしなければ、シリコンの光吸収率も変化してしまうといった問題がある。シリコンの上層にSiOなどのキャッピング層を設ける方式でも同様に問題がある。
 また、パルスレーザ光の波長域を赤外域にすると、50nm厚程度のシリコンには殆ど光吸収しないため、シリコンの上層部に光吸収層を設けることが一般的である。しかし本方式を用いると、光吸収層を塗布する工程と、パルスレーザ照射後に除去する工程が自ずと増えてしまうという問題がある。
 上記各観点から、本願発明ではパルスレーザ光の波長域を紫外域の340~358nmに定めている。
That is, when the wavelength range of the laser beam used for crystallization is made visible, silicon of about 50 nm thickness absorbs light but there is also transmitted light. Therefore, the light from the silicon lower layer (buffer layer such as SiO 2 and SiN layer) If the thickness of the buffer layer under the silicon is not uniform due to the influence of multiple reflection, there is a problem that the light absorption rate of silicon also changes. There is a similar problem in the method of providing a capping layer such as SiO 2 on the upper layer of silicon.
Further, when the wavelength region of the pulse laser light is in the infrared region, silicon having a thickness of about 50 nm hardly absorbs light. Therefore, it is general to provide a light absorption layer on the upper layer of silicon. However, when this method is used, there is a problem that the steps of applying the light absorption layer and the step of removing after the pulse laser irradiation are naturally increased.
From the above viewpoints, in the present invention, the wavelength range of the pulse laser beam is set to 340 to 358 nm in the ultraviolet range.
エネルギー密度:130~240mJ/cm
 非晶質膜に適度なエネルギー密度(非晶質膜上)のパルスレーザ光を照射することにより、非晶質膜は固相のまま、またはアモルファスの融点を超え、かつ結晶融点を越えない温度にまで加熱されて結晶化され、微結晶が作製できる。エネルギー密度が低いと非晶質膜の温度が十分に上がらずに結晶化が十分になされなかったり、結晶化が困難になる。一方、エネルギー密度が高いと、溶融結晶が生じたり、アブレーションが生じてしまう。このため、パルスレーザ光のエネルギー密度を130~240mJ/cmに限定する。
Energy density: 130-240 mJ / cm 2
By irradiating the amorphous film with pulsed laser light with an appropriate energy density (on the amorphous film), the amorphous film remains in the solid phase or exceeds the amorphous melting point and does not exceed the crystalline melting point. It can be heated and crystallized to produce microcrystals. If the energy density is low, the temperature of the amorphous film does not rise sufficiently and crystallization is not sufficiently performed, or crystallization becomes difficult. On the other hand, when the energy density is high, molten crystals are formed or ablation occurs. For this reason, the energy density of the pulse laser beam is limited to 130 to 240 mJ / cm 2 .
ショット数:1~10回
 非晶質膜にパルスレーザ光を照射する際に、同一領域に照射されるショット数を適切に定めることで、照射するビーム面積内でエネルギーばらつきがあっても、複数回照射することにより、結晶化される温度が均一化され、結果、均一な微結晶が作製できる。
 ショット数が多いと、非晶質膜は結晶融点を超える温度まで加熱され、溶融またはアブレーションが発生する場合がある。また、ショット数の増大に応じて処理時間が長くなり、効率が悪い。
Number of shots: 1 to 10 times When an amorphous film is irradiated with pulsed laser light, by appropriately determining the number of shots irradiated to the same region, even if there is energy variation within the irradiated beam area, By irradiating twice, the temperature for crystallization is made uniform, and as a result, uniform microcrystals can be produced.
When the number of shots is large, the amorphous film is heated to a temperature exceeding the crystalline melting point, and melting or ablation may occur. Further, the processing time becomes longer as the number of shots increases, resulting in poor efficiency.
結晶化率:60~95%
 上記波長、エネルギー密度、ショット数の条件内で、結晶化の際の結晶化率を60~95%に定めるのが望ましい。結晶化率が60%未満であると、薄膜トランジスタなどとして用いる際に十分な特性が得られ難くなる。非晶質膜に与えられるエネルギーが少ないと、結晶化率を60%以上にすることができない。また、結晶化率が95%を越えると、結晶の粗大化が進み、微細で均一な結晶を得ることが難しくなる。結晶融点を超えてパルスレーザ光を照射すると結晶化率95%超になりやすくなる。
 なお、結晶化率は、具体的には、ラマン分光によって得られる結晶ピークの面積および非結晶ピークの面積の比率(結晶化Siピークの面積/(非結晶Siピークの面積+結晶化Siピークの面積)によって決定することができる。
Crystallization rate: 60-95%
It is desirable to set the crystallization rate during crystallization to 60 to 95% within the above conditions of wavelength, energy density, and number of shots. When the crystallization rate is less than 60%, it is difficult to obtain sufficient characteristics when used as a thin film transistor. If the energy given to the amorphous film is small, the crystallization rate cannot be increased to 60% or more. On the other hand, if the crystallization rate exceeds 95%, the crystal becomes coarse and it becomes difficult to obtain fine and uniform crystals. When the pulse laser beam is irradiated beyond the crystal melting point, the crystallization rate tends to exceed 95%.
Note that the crystallization rate is specifically the ratio of the area of the crystal peak and the area of the amorphous peak obtained by Raman spectroscopy (area of the crystallized Si peak / (area of the amorphous Si peak + the area of the crystallized Si peak). Area).
 なお、パルスレーザ光のパルス幅(半値幅)は、5~100nsとするのが望ましい。パルス幅が小さいとピークパワー密度が増大し、融点を超える温度まで加熱され、溶融またはアブレーションする場合がある。パルス幅が大きいとピークパワー密度が減少し、固相結晶化させる温度まで加熱できない場合がある。 Note that the pulse width (half-value width) of the pulse laser beam is preferably 5 to 100 ns. When the pulse width is small, the peak power density increases, and it may be heated to a temperature exceeding the melting point to melt or ablate. When the pulse width is large, the peak power density decreases, and it may not be possible to heat to a temperature for solid-phase crystallization.
 さらに、パルスレーザ光のパルス周波数は6~10kHzが望ましい。
 パルスレーザ光のパルス周波数は、ある程度高くすることで(6kHz以上)、ショット間の時間間隔が小さくなりパルスレーザ光照射による熱が非晶質膜で保持されるため、結晶化に有効に作用する。一方、パルス周波数が高くなりすぎると、溶融、アブレーションが生じやすくなる。
Further, the pulse frequency of the pulse laser beam is desirably 6 to 10 kHz.
When the pulse frequency of the pulse laser beam is increased to some extent (6 kHz or more), the time interval between shots is reduced, and the heat generated by the pulse laser beam irradiation is held in the amorphous film, which effectively acts on crystallization. . On the other hand, if the pulse frequency is too high, melting and ablation are likely to occur.
 また、前記パルスレーザ光の短軸幅は1.0mm以下とするのが望ましい。
短軸幅方向にパルスレーザ光を相対的に走査することで、非晶質膜を部分的に照射・加熱しつつ大領域の結晶化処理が可能になる。但し、短軸幅が大きすぎると効率よく結晶化するために走査速度を大きくしなければならず、装置コストが増大してしまう。
The short axis width of the pulse laser beam is preferably 1.0 mm or less.
By relatively scanning the pulse laser beam in the short axis width direction, a large area crystallization process can be performed while partially irradiating and heating the amorphous film. However, if the minor axis width is too large, the scanning speed must be increased for efficient crystallization, resulting in an increase in apparatus cost.
 前記パルスレーザ光を非晶質膜に対し相対的に走査することで、前記非晶質膜を面方向に沿って結晶化させることが可能になる。該走査は、パルスレーザ光側を移動させてもよく、非晶質膜側を移動させてもよく、両方を移動させるようにしてもよい。上記走査は、50~1000mm/秒の速度で行うのが望ましい。
 この走査速度が小さいと、ピークパワー密度が増大し、非晶質膜が結晶融点を超える温度にまで加熱され、溶融またはアブレーションする場合がある。また、走査速度が大きいと、ピークパワー密度が減少し、固相結晶化させる温度まで加熱できない場合がある。
By scanning the pulsed laser light relative to the amorphous film, the amorphous film can be crystallized along the surface direction. In the scanning, the pulse laser beam side may be moved, the amorphous film side may be moved, or both may be moved. The scanning is desirably performed at a speed of 50 to 1000 mm / second.
When this scanning speed is low, the peak power density increases, and the amorphous film may be heated to a temperature exceeding the crystalline melting point to melt or ablate. In addition, when the scanning speed is high, the peak power density decreases, and it may not be possible to heat to a temperature for solid-phase crystallization.
 なお、本発明の製造装置は、紫外域のパルスレーザ光を出力する固体レーザ光源を使用して所望の波長域のパルスレーザ光を出力でき、メンテナンス性の良好なレーザ光源により微結晶の作製を行うことができる。パルスレーザ光は、均一な微細結晶を得るためにエネルギー調整部によってエネルギー密度が適切に調整されて非晶質膜に照射することができる。エネルギー調整部は、固体レーザ光源の出力を調整して所定のエネルギー密度が得られるようにしてもよく、固体レーザ光源から出力されたパルスレーザ光の減衰率を調整するなどしてエネルギー密度を調整するようにしてもよい。該パルスレーザ光は、走査装置によって非晶質膜に対し相対的に走査することで、非晶質膜の大領域で適正な結晶化率で微細で均一な結晶を得ることができる。該走査によって非晶質膜に対する同一領域へのショット数が1~10となるようにパルスの周波数、パルスレーザ光の短軸幅、走査速度が設定される。
 走査装置は、パルスレーザ光が導かれる光学系を移動させてパルスレーザ光を移動させるものでもよく、また、非晶質膜が配置される基台を移動させるものであってもよい。
The manufacturing apparatus of the present invention can output a pulse laser beam in a desired wavelength range using a solid-state laser light source that outputs a pulse laser beam in the ultraviolet region, and can produce microcrystals with a laser light source having good maintainability. It can be carried out. In order to obtain a uniform fine crystal, the pulse laser beam can be irradiated to the amorphous film with the energy density adjusted appropriately by the energy adjusting unit. The energy adjustment unit may adjust the output of the solid-state laser light source to obtain a predetermined energy density, or adjust the energy density by adjusting the attenuation factor of the pulsed laser light output from the solid-state laser light source. You may make it do. By scanning the pulse laser light relatively with respect to the amorphous film by a scanning device, a fine and uniform crystal can be obtained at an appropriate crystallization ratio in a large area of the amorphous film. The frequency of the pulse, the short axis width of the pulse laser beam, and the scanning speed are set so that the number of shots in the same region with respect to the amorphous film becomes 1 to 10 by the scanning.
The scanning device may be a device that moves the optical system through which the pulse laser beam is guided to move the pulse laser beam, or a device that moves the base on which the amorphous film is disposed.
 以上説明したように、本発明によれば、基板の上層に有る非晶質膜に、340~358nmの波長からなり、130~240mJ/cmのエネルギー密度を有するパルスレーザ光を1~10回のショット数で照射して、前記非晶質膜を結晶融点を超えない温度に加熱して結晶化させるので、TFTのチャネル領域に複数の結晶粒が存在し得るような、平均粒形の小さい結晶質膜を格別に優れた均一性を有して作製することができ、前記の課題を解決できる。最近では、配線幅が小さくなるとともに、TFTのチャネル形成領域のサイズ(チャネル長、チャネル幅)も小さくなっているため、平均粒径の小さい安定な結晶質膜を基板全域に均一に作製できる方法が求められている。特に隣接領域のTFT特性の差を最小にする結晶化技術が求められており、本発明によって前記要望を確実に実現することができる。同時に膜表面に付着する不純物をも除去することを可能となる。
 また、本発明によれば、装置の低コスト化およびメンテナンス費用の低減化が可能で、稼働率の高い処理が可能であり、よって生産性を高めることができる。
As described above, according to the present invention, pulsed laser light having a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ / cm 2 is applied to the amorphous film on the upper layer of the substrate 1 to 10 times. The amorphous film is heated to a temperature that does not exceed the crystal melting point and crystallized, so that the average grain shape is small so that a plurality of crystal grains may exist in the channel region of the TFT. A crystalline film can be manufactured with exceptional uniformity, and the above-described problems can be solved. Recently, since the wiring width is reduced and the size of the channel formation region (channel length, channel width) of the TFT is also reduced, a stable crystalline film having a small average grain size can be uniformly produced over the entire substrate. Is required. In particular, there is a need for a crystallization technique that minimizes the difference in TFT characteristics between adjacent regions, and the present invention can be realized with certainty according to the present invention. At the same time, impurities adhering to the film surface can be removed.
In addition, according to the present invention, it is possible to reduce the cost of the apparatus and reduce the maintenance cost, and it is possible to perform a process with a high operation rate, thereby improving productivity.
 また、本発明によれば、基板(ガラスなど)の転移点を越えない、または転移点を越えたとしても低温にて処理できるプロセスのため、非晶質膜のみをレーザで高温に加熱させ結晶化させることができる。同時に短時間で50nm以下の微結晶が生成できるという効果がある。同時に重ねあわせ部も同様の50nm以下の微結晶が生成できるという効果がある(大面積の結晶化に有効)。
 同時に基板の変位(たわみ・変形・内部応力)を最小限に抑える効果がある。同時に基板が多少加熱されることで非晶質膜内に内在する不純物や表面に付着しているコンタミネーションを除去する効果がある。
In addition, according to the present invention, since the transition point of the substrate (glass or the like) is not exceeded, or even if the transition point is exceeded, only the amorphous film is heated to a high temperature with a laser so that the crystal can be processed. It can be made. At the same time, there is an effect that microcrystals of 50 nm or less can be formed in a short time. At the same time, there is an effect that the same crystallites of 50 nm or less can be formed in the overlapping portion (effective for crystallization of a large area).
At the same time, it has the effect of minimizing substrate displacement (deflection, deformation, internal stress). At the same time, the substrate is heated to some extent, so that impurities existing in the amorphous film and contamination adhering to the surface are removed.
本発明の一実施形態の製造装置である紫外固体レーザアニール処理装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the ultraviolet solid laser annealing processing apparatus which is a manufacturing apparatus of one Embodiment of this invention. 同じく、実施例において製造条件を変えてパルスレーザを照射した後の薄膜を示すSEM写真である。Similarly, it is a SEM photograph which shows the thin film after changing a manufacturing condition and irradiating a pulse laser in an Example. 同じく、他の実施例において製造条件を変えてパルスレーザを照射した後の薄膜を示すSEM写真である。Similarly, it is a SEM photograph which shows the thin film after irradiating a pulse laser by changing manufacturing conditions in another Example. 同じく、他の実施例において製造条件を変えてパルスレーザを照射した後の薄膜を示すSEM写真である。Similarly, it is a SEM photograph which shows the thin film after irradiating a pulse laser by changing manufacturing conditions in another Example. 同じく、ラマン分光測定結果を示す図である。Similarly, it is a figure which shows a Raman spectroscopy measurement result.
 以下に、本発明の一実施形態を図1に基づき説明する。
 この実施形態の結晶質膜の製造方法では、フラットパネルディスプレイTFTデバイスに用いられる基板8を対象にし、該基板8上には非晶質膜としてアモルファスシリコン薄膜8aが形成されているものとする。アモルファスシリコン薄膜8aは、常法により基板8の上層に形成され、脱水素処理が省略されている。
 ただし、本発明としては、対象となる基板およびこれに形成された非晶質膜の種別がこれに限定されるものではない。
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
In the crystalline film manufacturing method of this embodiment, the substrate 8 used in the flat panel display TFT device is targeted, and an amorphous silicon thin film 8a is formed on the substrate 8 as an amorphous film. The amorphous silicon thin film 8a is formed in the upper layer of the substrate 8 by a conventional method, and dehydrogenation treatment is omitted.
However, in the present invention, the type of the target substrate and the amorphous film formed thereon is not limited thereto.
 図1は、本発明の一実施形態の結晶質膜の製造方法に用いられる紫外固体レーザアニール処理装置1を示すものであり、該紫外固体アニール処理装置1は、本発明の結晶質膜製造装置に相当する。
 紫外固体レーザアニール処理装置1では、340~358nmの波長を有しパルス周波数6~10kHz、パルス幅5~100nsのパルスレーザ光を出力する紫外固体レーザ発振器2が除振台6に設置されており、該紫外固体レーザ発振器2には、パルス信号を生成する制御回路2aが備えられている。
FIG. 1 shows an ultraviolet solid laser annealing apparatus 1 used in a method for producing a crystalline film according to an embodiment of the present invention. The ultraviolet solid annealing apparatus 1 is an apparatus for producing a crystalline film according to the present invention. It corresponds to.
In the ultraviolet solid laser annealing apparatus 1, an ultraviolet solid laser oscillator 2 having a wavelength of 340 to 358 nm and outputting a pulse laser beam having a pulse frequency of 6 to 10 kHz and a pulse width of 5 to 100 ns is installed on the vibration isolation table 6. The ultraviolet solid laser oscillator 2 includes a control circuit 2a that generates a pulse signal.
 紫外固体レーザ発振器2の出力側には、アテニュエータ(減衰器)3が配置されており、アテニュエータ3の出力側には、結合器4を介して光ファイバ5が接続されている。光ファイバ5の伝送先には、集光レンズ70a、70bと該集光レンズ70a、70b間に配置したビームホモジナイザ71a、71b等を備える光学系7が接続されている。光学系7の出射方向には、基板8を載置する基板載置台9が設置されている。光学系7は、パルスレーザ光を短軸幅が1.0mm以下の長方形またはラインビーム状に整形するように設定されている。
 上記基板載置台9は、該基板載置台9の面方向(XY方向)に沿って移動可能になっており、該基板載置台9を前記面方向に沿って高速移動させる走査装置10が備えられている。
An attenuator (attenuator) 3 is arranged on the output side of the ultraviolet solid laser oscillator 2, and an optical fiber 5 is connected to the output side of the attenuator 3 via a coupler 4. An optical system 7 including condensing lenses 70a and 70b and beam homogenizers 71a and 71b disposed between the condensing lenses 70a and 70b is connected to the transmission destination of the optical fiber 5. A substrate mounting table 9 on which the substrate 8 is mounted is installed in the emission direction of the optical system 7. The optical system 7 is set so as to shape the pulse laser beam into a rectangular or line beam shape having a minor axis width of 1.0 mm or less.
The substrate mounting table 9 is movable along the surface direction (XY direction) of the substrate mounting table 9, and is provided with a scanning device 10 that moves the substrate mounting table 9 at high speed along the surface direction. ing.
 次に、上記紫外固体レーザアニール処理装置1を用いたアモルファスシリコン薄膜の結晶化方法について説明する。
 先ず、基板載置台9上に、アモルファスシリコン薄膜8aが上層に形成された基板8を載置する。この実施形態では該基板8はヒータなどによる加熱は行われない。
 制御回路2aでは、予め設定されたパルス周波数(6~10kHz)、パルス幅5~100nsのパルスレーザ光が出力されるようにパルス信号が生成され、該パルス信号によって紫外固体レーザ発振器2より340~358nmの波長のパルスレーザ光が出力される。
Next, a method for crystallizing an amorphous silicon thin film using the ultraviolet solid laser annealing apparatus 1 will be described.
First, the substrate 8 on which the amorphous silicon thin film 8a is formed as an upper layer is placed on the substrate platform 9. In this embodiment, the substrate 8 is not heated by a heater or the like.
In the control circuit 2a, a pulse signal is generated so that a pulse laser beam having a preset pulse frequency (6 to 10 kHz) and a pulse width of 5 to 100 ns is output. A pulse laser beam having a wavelength of 358 nm is output.
 紫外固体レーザ発振器2から出力されたパルスレーザ光は、アテニュエータ3に至り、これを通過することで所定の減衰率で減衰される。該減衰率は、加工面でパルスレーザ光が本発明規定のエネルギー密度になるように設定される。アテニュエータ3は、減衰率を可変にしてもよい。
 エネルギー密度が調整されたパルスレーザ光は、光ファイバ5によって伝送されて光学系7に導入される。光学系7では、上記のように集光レンズ70a、70b、ビームホモジナイザ71a、71bなどによって短軸幅が1.0mm以下の長方形またはラインビーム状に整形され、基板8に向けて加工面において130~240mJ/cmのエネルギー密度で照射される。
The pulse laser beam output from the ultraviolet solid laser oscillator 2 reaches the attenuator 3 and is attenuated at a predetermined attenuation rate by passing through the attenuator 3. The attenuation rate is set so that the pulse laser beam has an energy density defined by the present invention on the processed surface. The attenuator 3 may vary the attenuation rate.
The pulsed laser light whose energy density is adjusted is transmitted through the optical fiber 5 and introduced into the optical system 7. In the optical system 7, as described above, it is shaped into a rectangular or line beam shape having a minor axis width of 1.0 mm or less by the condenser lenses 70a and 70b, the beam homogenizers 71a and 71b, etc. Irradiation with an energy density of ˜240 mJ / cm 2 .
 上記基板載置台9はアモルファスシリコン薄膜8a面に沿って走査装置10によって、前記ラインビームの短軸幅方向に移動され、この結果、該アモルファスシリコン薄膜8a面の広い領域で上記パルスレーザ光が相対的に走査されつつ照射される。なお、この際に走査装置による移動速度の設定によってパルスレーザ光の走査速度を50~1000mm/秒にして、アモルファスシリコン薄膜8aの同一領域にパルスレーザ光が1~10回のショット数でオーバーラップ照射されるようにする。該ショット数は、前記パルスの周波数、パルス幅、パルスレーザ光の短軸幅、パルスレーザ光の走査速度に基づいて決定される。 The substrate mounting table 9 is moved in the minor axis width direction of the line beam by the scanning device 10 along the surface of the amorphous silicon thin film 8a. As a result, the pulse laser beam is relatively moved over a wide area of the surface of the amorphous silicon thin film 8a. Irradiated while being scanned. At this time, the scanning speed of the pulse laser beam is set to 50 to 1000 mm / second by setting the moving speed by the scanning device, and the pulse laser beam overlaps the same region of the amorphous silicon thin film 8a with the number of shots of 1 to 10 times. Let it be irradiated. The number of shots is determined based on the pulse frequency, the pulse width, the short axis width of the pulse laser beam, and the scanning speed of the pulse laser beam.
 上記パルスレーザ光の照射により基板8上のアモルファスシリコン薄膜8aのみが加熱されて短時間で多結晶化される。この際に、アモルファスシリコン薄膜8aの加熱温度は、結晶融点を超えない温度となる(例えば1000℃超~1400℃程度)。なお、加熱温度は、アモルファス融点温度を超えない温度、もしくはアモルファス融点温度を超え、結晶融点を超えない温度とすることができる。
 上記照射により得られた結晶質薄膜は、結晶粒径が50nm以下で、従来の固相結晶成長法に見られるような突起もなく、均一かつ微細な良質な結晶性を有している。例えば、平均結晶粒が20nm以下で、標準偏差が10nm以下のものを好適に挙げることができる。結晶粒は、原子間力顕微鏡(AFM)によって測定することができる。また、得られた結晶は、ラマン分光による結晶ピークの面積と非結晶ピークの面積との比を基にして結晶化率を算出することができ、該結晶化率は60~95%が望ましい。
 上記結晶質薄膜は、有機ELディスプレイに好適に使用することができる。ただし、本発明としては、使用用途がこれに限定されるものではなく、その他の液晶ディスプレイや電子材料として利用することが可能である。
 なお、上記実施形態では、基板載置台を移動させることでパルスレーザ光を相対的に走査するものとしたが、パルスレーザ光が導かれる光学系を高速に移動させることでパルスレーザ光を相対的に走査するものとしてもよい。
By irradiation with the pulse laser beam, only the amorphous silicon thin film 8a on the substrate 8 is heated and polycrystallized in a short time. At this time, the heating temperature of the amorphous silicon thin film 8a does not exceed the crystal melting point (for example, about 1000 ° C. to about 1400 ° C.). The heating temperature may be a temperature that does not exceed the amorphous melting point temperature, or a temperature that exceeds the amorphous melting point temperature and does not exceed the crystalline melting point.
The crystalline thin film obtained by the irradiation has a crystal grain size of 50 nm or less, no projections as seen in the conventional solid-phase crystal growth method, and uniform and fine high-quality crystallinity. For example, those having an average crystal grain of 20 nm or less and a standard deviation of 10 nm or less can be preferably exemplified. Crystal grains can be measured by an atomic force microscope (AFM). In addition, the crystallinity of the obtained crystal can be calculated based on the ratio between the area of the crystal peak and the area of the amorphous peak by Raman spectroscopy, and the crystallinity is preferably 60 to 95%.
The crystalline thin film can be suitably used for an organic EL display. However, the use of the present invention is not limited to this, and the present invention can be used as other liquid crystal displays and electronic materials.
In the above embodiment, the pulse laser beam is relatively scanned by moving the substrate mounting table. However, the pulse laser beam is relatively moved by moving the optical system to which the pulse laser beam is guided at high speed. It is good also as what scans.
 次に、本発明の実施例を比較例と比較しつつ説明する。
 上記実施形態の紫外固体レーザアニール処理装置1を用いて、ガラス製の基板の表面に常法によって形成されたアモルファスシリコン薄膜にパルスレーザ光を照射する実験を行った。
 該実験では、パルスレーザ光の波長を355nmの紫外域光とし、パルス周波数を8kHz、パルス幅を80nsecとした。エネルギー密度は、アテニュエータ3によって対象エネルギー密度に調整した。
 パルスレーザ光は、光学系によって加工面で円形となるように整形し、加工面におけるエネルギー密度、ビームサイズ、ショット数を変えて、基板上のアモルファスシリコン膜にパルスレーザ光を照射した。アモルファスシリコンは加熱され、結晶シリコンへ変化させた。この照射を行った薄膜を図2に示すSEM写真により評価した。また、各条件および評価結果を表1に示した。
Next, examples of the present invention will be described in comparison with comparative examples.
Using the ultraviolet solid laser annealing apparatus 1 of the above embodiment, an experiment was performed in which pulsed laser light was irradiated onto an amorphous silicon thin film formed on a glass substrate surface by a conventional method.
In this experiment, the wavelength of the pulse laser beam was 355 nm ultraviolet light, the pulse frequency was 8 kHz, and the pulse width was 80 nsec. The energy density was adjusted to the target energy density by the attenuator 3.
The pulsed laser light was shaped so as to be circular on the processed surface by an optical system, and the amorphous silicon film on the substrate was irradiated with the pulsed laser light while changing the energy density, beam size, and number of shots on the processed surface. The amorphous silicon was heated and changed to crystalline silicon. The thin film which performed this irradiation was evaluated by the SEM photograph shown in FIG. Each condition and evaluation results are shown in Table 1.
 パルスレーザ光のエネルギー密度を70mJ/cmとして照射がされた薄膜では、ショット数を8000回にすると、写真1に示すように、10-20nmの微結晶が作製できた。しかし、ショット数が多くて処理時間に長時間を要するため、工業的ではなかった。
 また、エネルギー密度を70mJ/cmで、ショット数が800回のものでは、アモルファス薄膜は結晶化されなかった。これはエネルギー密度が低すぎてショット数を増やしても結晶化に至らなかったものである。
 次に、パルスレーザ光のエネルギー密度を140、160、180、200mJ/cmとした場合、写真2~6に示すように、均一な微細結晶が得られた。   
 次に、パルスレーザ光のエネルギー密度を250mJ/cmとした場合、写真7に示すように、結晶融点を超える温度まで加熱され、溶融されたため、溶融結晶となり、微細結晶が得られなかった。
 さらに、パルスレーザ光のエネルギー密度を260mJ/cmとした場合、写真8に示すようにアブレーションが生じてしまった。
 以上に示すように、パルスレーザ光のエネルギー密度、パルス幅、ショット数を適切な範囲に設定することにより初めて均一で微細な結晶化が可能になる。
In the thin film irradiated with the energy density of the pulse laser beam of 70 mJ / cm 2 , when the number of shots was 8000 times, as shown in Photo 1, 10-20 nm microcrystals could be produced. However, since the number of shots is large and processing time is long, it is not industrial.
Further, when the energy density was 70 mJ / cm 2 and the number of shots was 800, the amorphous thin film was not crystallized. This is because the energy density is too low to cause crystallization even when the number of shots is increased.
Next, when the energy density of the pulse laser beam was 140, 160, 180, or 200 mJ / cm 2 , uniform fine crystals were obtained as shown in Photos 2 to 6.
Next, when the energy density of the pulsed laser beam was 250 mJ / cm 2 , as shown in Photo 7, it was heated to a temperature exceeding the crystal melting point and melted, so that it became a molten crystal and a fine crystal was not obtained.
Further, when the energy density of the pulse laser beam was 260 mJ / cm 2 , ablation occurred as shown in Photo 8.
As described above, uniform and fine crystallization is possible only when the energy density, pulse width, and number of shots of the pulse laser beam are set within appropriate ranges.
 上記写真から明らかなように、本発明法により得られた多結晶シリコン薄膜は、結晶粒径のバラツキが少なく、面全体で均質に多結晶化されており、かつ良質の多結晶シリコン薄膜を得ることができた。また同時に重ねあわせ部も同様な均一な微結晶が生成していることが確認できた。結晶粒は50nm以下と小さく突起も生じておらず、結晶質シリコン膜が均一に得られるため、TFT特性のばらつきの少ないシリコン膜を提供できることが判明した。 As is clear from the above photograph, the polycrystalline silicon thin film obtained by the method of the present invention has a small variation in crystal grain size, is uniformly polycrystallized over the entire surface, and obtains a high-quality polycrystalline silicon thin film. I was able to. At the same time, it was confirmed that the same uniform crystallites were formed in the overlapping portion. It has been found that since the crystal grains are as small as 50 nm or less and no protrusions are formed, and a crystalline silicon film can be obtained uniformly, a silicon film with little variation in TFT characteristics can be provided.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に本発明の他の実施例と比較例とを比較しつつ説明する。
上記実施形態の紫外固体レーザアニール処理装置1を用いて、ガラス製の基板の表面に常法によって形成されたアモルファスシリコン薄膜に、パルスレーザ光を照射する実験を行なった。該実験では、パルスレーザ光の波長を355nmの紫外域光とし、パルス周波数を6~8kHz、パルス幅を80ns(nsec)とした。パルスエネルギー密度はアテニュエータ3によって対象エネルギー密度に調整を行なった。shot数は、ステージ速度によって対象shot数となるように調整を行なった。各供試材のエネルギー密度、shot数を表2に示した。また、以下で測定される結晶化率を同じく表2に示した。
 パルスレーザ光は、光学系によって加工面で長方形となるように整形し、基板上のアモルファスシリコンに照射した。アモルファスシリコンは加熱され、結晶シリコンへ変化する。この照射を行なった薄膜を図3、4に示すSEM写真と図5に例を示すラマン分光測定により評価した。結晶化率は、結晶化率は、ラマン分光測定結果に基づいて、結晶化Siピークの面積/(非結晶Siピークの面積+結晶化Siピークの面積)の計算式(1)によって算出した。
 以下の実施例および比較例では、具体的には、50nm厚の薄膜に対し、波長514.5nm、出力2mWのArイオンレーザ光を1mmφに集光して照射してラマン分光測定を行った。図5のラマン測定結果では、520cm-1付近に結晶Siの鋭いピークが存在し、480cm-1付近のアモルファスSiピークがほとんど無いことが分かる。
 さらに測定結果に基づいて最小二乗法を用いたガウシアンフィッティングにより、二つのピーク波形に分離し、それぞれのピーク波形から前記計算式(1)によって結晶化率を算出した。
 図5に示す例は下記実施例No.3のデータであり、上記算出の結果、結晶化率は約88%であった。
Next, another embodiment of the present invention will be described while comparing with a comparative example.
Using the ultraviolet solid-state laser annealing apparatus 1 of the above embodiment, an experiment was performed in which an amorphous silicon thin film formed on the surface of a glass substrate by a conventional method was irradiated with pulsed laser light. In this experiment, the wavelength of the pulse laser beam was 355 nm ultraviolet light, the pulse frequency was 6 to 8 kHz, and the pulse width was 80 ns (nsec). The pulse energy density was adjusted to the target energy density by the attenuator 3. The number of shots was adjusted so as to be the number of target shots depending on the stage speed. Table 2 shows the energy density and the shot number of each specimen. The crystallization rate measured below is also shown in Table 2.
The pulsed laser beam was shaped by an optical system so as to be rectangular on the processed surface, and was irradiated to amorphous silicon on the substrate. Amorphous silicon is heated and converted to crystalline silicon. The irradiated thin film was evaluated by SEM photographs shown in FIGS. 3 and 4 and Raman spectroscopic measurement as shown in FIG. The crystallization rate was calculated by the calculation formula (1) based on the Raman spectroscopic measurement result, the area of crystallized Si peak / (area of amorphous Si peak + area of crystallized Si peak).
In the following Examples and Comparative Examples, specifically, Raman spectroscopy measurement was performed by condensing and irradiating a 50 nm thick thin film with a wavelength of 514.5 nm and an Ar ion laser beam with an output of 2 mW to 1 mmφ. From the Raman measurement results in FIG. 5, it can be seen that there is a sharp peak of crystalline Si near 520 cm −1 and almost no amorphous Si peak near 480 cm −1 .
Furthermore, it separated into two peak waveforms by the Gaussian fitting which used the least square method based on the measurement result, and calculated the crystallization rate from each peak waveform by the said Formula (1).
The example shown in FIG. As a result of the above calculation, the crystallization rate was about 88%.
(実施例2)
 パルスレーザ光のエネルギー密度を130mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真10に示すように、10~20nm径の微結晶が作製できた。ラマン分光測定により結晶化率を評価すると85%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
(Example 2)
In the case of a thin film irradiated with pulse laser light with an energy density of 130 mJ / cm 2 and a pulse frequency of 6 kHz, a microcrystal with a diameter of 10 to 20 nm is produced as shown in Photo 10 when the number of shots is six. did it. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 85%. Similar results were obtained when the pulse frequency was 8 kHz.
(実施例3)
 パルスレーザ光のエネルギー密度を140mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真11に示すように、10~20nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると88%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
(Example 3)
In the thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 140 mJ / cm 2 and the pulse frequency of 6 kHz, when the number of shots is six, as shown in Photo 11, 10 to 20 nm microcrystals can be produced. It was. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 88%. Similar results were obtained when the pulse frequency was 8 kHz.
(実施例4)
パルスレーザ光のエネルギー密度を150mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真12に示すように、10~20nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると90%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
Example 4
In the thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 150 mJ / cm 2 and the pulse frequency of 6 kHz, when the number of shots is six, as shown in Photo 12, 10 to 20 nm microcrystals can be produced. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 90%. Similar results were obtained when the pulse frequency was 8 kHz.
(実施例5)
 パルスレーザ光のエネルギー密度を160mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真13に示すように、20~30nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると90%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
(Example 5)
With a thin film irradiated with pulse laser light with an energy density of 160 mJ / cm 2 and a pulse frequency of 6 kHz, 20-30 nm microcrystals can be produced when the number of shots is 6 as shown in Photo 13. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 90%. Similar results were obtained when the pulse frequency was 8 kHz.
(実施例6)
 パルスレーザ光のエネルギー密度を180mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真14に示すように、20~30nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると95%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
(Example 6)
With a thin film irradiated with pulsed laser light with an energy density of 180 mJ / cm 2 and a pulse frequency of 6 kHz, a crystallite of 20 to 30 nm can be produced when the number of shots is 6 as shown in Photo 14. It was. The crystallinity was evaluated by Raman spectroscopy to be 95%. Similar results were obtained when the pulse frequency was 8 kHz.
(実施例7)
 パルスレーザ光のエネルギー密度を200mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真15に示すように、40~50nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると95%であった。またパルス周波数を8kHzとしても同様の結果が得られた。
(Example 7)
With a thin film irradiated with pulse laser light with an energy density of 200 mJ / cm 2 and a pulse frequency of 6 kHz, a crystallite of 40 to 50 nm can be produced when the number of shots is 6 as shown in Photo 15. It was. The crystallinity was evaluated by Raman spectroscopy to be 95%. Similar results were obtained when the pulse frequency was 8 kHz.
(比較例1)
 パルスレーザ光のエネルギー密度を250mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真16に示すように、融点を超える温度まで加熱され溶融結晶となり、均一な結晶が得られなかった。ラマン分光測定により結晶化率を評価すると97%であった。またショット数を1回に減らしても同様の結果が得られた。
(Comparative Example 1)
The thin film irradiated with the pulse laser beam with a pulse laser beam energy density of 250 mJ / cm 2 and a pulse frequency of 6 kHz is heated to a temperature exceeding the melting point as shown in Photo 16 when the number of shots is six. Thus, uniform crystals could not be obtained. When the crystallization rate was evaluated by Raman spectroscopy, it was 97%. Similar results were obtained even when the number of shots was reduced to one.
(比較例2)
 パルスレーザ光のエネルギー密度を260mJ/cm、パルス周波数を6kHzとして該パルスレーザ光が照射された薄膜では、ショット数6回にすると写真17に示すように、アブレーションが生じてしまった。
(Comparative Example 2)
In the thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 260 mJ / cm 2 and the pulse frequency of 6 kHz, ablation occurred as shown in Photo 17 when the number of shots was six.
(比較例3)
 パルスレーザ光のエネルギー密度を120mJ/cm、パルス周波数を8kHzとして該パルスレーザ光が照射された薄膜では、ショット数8回にすると結晶化はしたが、Seccoエッチングを行なうと、写真18のように結晶の所々がエッチングされてしまった。ラマン分光測定により結晶化率を評価すると54%であった。
(Comparative Example 3)
The thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 120 mJ / cm 2 and the pulse frequency of 8 kHz was crystallized when the number of shots was eight, but when Secco etching was performed, as shown in Photo 18 Some parts of the crystal have been etched. The crystallinity was evaluated by Raman spectroscopy to be 54%.
(実施例8)
 パルスレーザ光のエネルギー密度を160mJ/cm、パルス周波数を8kHzとして該パルスレーザ光が照射された薄膜では、ショット数2回にすると写真19に示すように、10~20nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると75%であった。
(Example 8)
With a thin film irradiated with the pulsed laser beam with a pulsed laser beam energy density of 160 mJ / cm 2 and a pulse frequency of 8 kHz, 10-20 nm microcrystals can be produced when the number of shots is 2 as shown in Photo 19. It was. When the crystallization rate was evaluated by Raman spectroscopic measurement, it was 75%.
(実施例9)
 パルスレーザ光のエネルギー密度を180mJ/cm、パルス周波数を8kHzとして該パルスレーザ光が照射された薄膜では、ショット数2回にすると写真20に示すように、10~20nmの微結晶が作製できた。ラマン分光測定により結晶化率を評価すると78%であった。
Example 9
With a thin film irradiated with pulsed laser light with an energy density of 180 mJ / cm 2 and a pulse frequency of 8 kHz, 10-20 nm microcrystals can be produced when the number of shots is 2 as shown in Photo 20. It was. When the crystallization rate was evaluated by Raman spectroscopy, it was 78%.
(比較例4)
 上記実験とは異なる波長の308nm、パルス幅20nsecのXeClエキシマレーザを用いて同様の実験を行なった。パルスレーザ光のエネルギー密度を180mJ/cm、パルス周波数を300Hzとして該パルスレーザ光が照射された薄膜では、ショット数8回で結晶化後、SEM観察のためにSeccoエッチングを行なうと、結晶化部全てがエッチングされてしまった。ラマン分光測定により結晶化率を評価すると54%であった。これは波長が短いために表層面のみ結晶化したためと考えられる。
(Comparative Example 4)
A similar experiment was performed using a 308 nm XeCl excimer laser having a wavelength different from that of the above experiment and a pulse width of 20 nsec. The thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 180 mJ / cm 2 and the pulse frequency of 300 Hz is crystallized by Secco etching for SEM observation after crystallization with 8 shots. All parts have been etched. The crystallinity was evaluated by Raman spectroscopy to be 54%. This is presumably because only the surface layer was crystallized due to the short wavelength.
(比較例5)
 上記実験とは異なる波長の308nm,パルス幅20nsecのXeClエキシマレーザを用いて同様の実験を行なった。パルスレーザ光のエネルギー密度を200mJ/cm、パルス周波数を300Hzとして該パルスレーザ光が照射された薄膜では、ショット数8回にすると写真21に示すように、結晶融点を超える温度まで加熱され溶融結晶となり、均一な結晶が得られなかった。ラマン分光測定により結晶化率を評価すると97%であった。
(Comparative Example 5)
A similar experiment was performed using a 308 nm XeCl excimer laser having a wavelength different from that of the above experiment and a pulse width of 20 nsec. The thin film irradiated with the pulse laser beam with the energy density of the pulse laser beam of 200 mJ / cm 2 and the pulse frequency of 300 Hz is heated and melted to a temperature exceeding the crystal melting point as shown in Photo 21, when the number of shots is eight. Crystals were formed, and uniform crystals could not be obtained. When the crystallization rate was evaluated by Raman spectroscopy, it was 97%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 なお、実施例3では、平均粒径が15nm、標準偏差σが7nmであり、比較例1では、平均結晶粒径が72nm、標準偏差σが42nmであった。  In Example 3, the average grain size was 15 nm and the standard deviation σ was 7 nm, and in Comparative Example 1, the average crystal grain size was 72 nm and the standard deviation σ was 42 nm.
 図5と図3、4の写真から明らかなように、本発明で得られた多結晶シリコン薄膜は、結晶粒のばらつきも小さくかつ結晶化率の割合も高い。さらに面全体で均質に多結晶化されており、レーザの重ね合わせ部も同一の結晶が生成されていることも確認できた。結晶粒は50nm以下と小さく突起も生じておらず、結晶質シリコン膜が均一に得られるため、TFT特性のばらつきの少ないシリコン膜が提供できる。 As is clear from the photographs of FIGS. 5 and 3 and 4, the polycrystalline silicon thin film obtained by the present invention has a small variation in crystal grains and a high rate of crystallization rate. Furthermore, it was confirmed that the entire surface was uniformly polycrystallized, and the same crystal was produced in the laser overlapping portion. Since the crystal grains are as small as 50 nm or less and no protrusions are formed, and a crystalline silicon film can be obtained uniformly, a silicon film with little variation in TFT characteristics can be provided.
 以上、本発明について上記実施形態および実施例に基づいて説明を行ったが、本発明は上記説明の範囲に限定をされるものではなく、本発明の範囲を逸脱しない限りは当然に適宜の変更が可能である。 The present invention has been described based on the above-described embodiment and examples. However, the present invention is not limited to the scope of the above description, and it is a matter of course that appropriate modifications are made without departing from the scope of the present invention. Is possible.
 1  紫外固体レーザアニール処理装置
 2  紫外固体レーザ発振器
 3  アテニュエータ(減衰器)
 4  結合器
 5  光ファイバ
 6  除振台
 7  光学系
 70a集光レンズ
 70b集光レンズ
 71aビームホモジナイザ
 71bビームホモジナイザ
 8  基板
 8a アモルファスシリコン薄膜
 9  基板載置台
10  走査装置
1 Ultraviolet solid state laser annealing treatment equipment 2 Ultraviolet solid state laser oscillator 3 Attenuator (attenuator)
Reference Signs List 4 coupler 5 optical fiber 6 vibration isolation table 7 optical system 70a condenser lens 70b condenser lens 71a beam homogenizer 71b beam homogenizer 8 substrate 8a amorphous silicon thin film 9 substrate mounting table 10 scanning device

Claims (13)

  1.  基板の上層に有る非晶質膜に、340~358nmの波長からなり、130~240mJ/cmのエネルギー密度を有するパルスレーザ光を1~10回のショット数で照射して、前記非晶質膜を結晶融点を超えない温度に加熱して結晶化させることを特徴とする結晶質膜の製造方法。 The amorphous film on the upper layer of the substrate is irradiated with pulsed laser light having a wavelength of 340 to 358 nm and an energy density of 130 to 240 mJ / cm 2 at a shot number of 1 to 10 times. A method for producing a crystalline film, wherein the film is crystallized by heating to a temperature not exceeding the crystalline melting point.
  2.  前記パルスレーザ光は、前記非晶質膜をその融点を超えない温度または、前記融点を超えて結晶融点を超えない温度に加熱することを特徴とする請求項1記載の結晶質膜の製造方法。 2. The method for producing a crystalline film according to claim 1, wherein the pulsed laser light heats the amorphous film to a temperature not exceeding its melting point or a temperature exceeding the melting point and not exceeding the crystalline melting point. .
  3.  前記結晶化は、結晶化率60~95%の範囲で行うことを特徴とする請求項1または2に記載の結晶質膜の製造方法。 3. The method for producing a crystalline film according to claim 1, wherein the crystallization is performed in a crystallization ratio of 60 to 95%.
  4.  前記パルスレーザ光のパルス幅が5~100nsであることを特徴とする請求項1~3のいずれかに記載の結晶質膜の製造方法。 4. The method for producing a crystalline film according to claim 1, wherein the pulse width of the pulse laser beam is 5 to 100 ns.
  5.  前記パルスレーザ光のパルス周波数が6~10kHzであることを特徴とする請求項1~4のいずれかに記載の結晶質膜の製造方法。 The method for producing a crystalline film according to any one of claims 1 to 4, wherein a pulse frequency of the pulse laser beam is 6 to 10 kHz.
  6.  前記非晶質膜に照射されるパルスレーザ光の短軸幅が1.0mm以下であることを特徴とする請求項1~5のいずれかに記載の結晶質膜の製造方法。 6. The method for producing a crystalline film according to claim 1, wherein the minor axis width of the pulsed laser light applied to the amorphous film is 1.0 mm or less.
  7.  前記パルスレーザ光を前記非晶質膜に対し相対的に走査しつつ前記照射を行い、該走査速度を50~1000mm/秒とすることを特徴とする請求項1~6のいずれかに記載の結晶質膜の製造方法。 7. The irradiation according to claim 1, wherein the irradiation is performed while the pulsed laser beam is scanned relative to the amorphous film, and the scanning speed is set to 50 to 1000 mm / second. A method for producing a crystalline film.
  8.  前記パルスレーザ光を光学系にて長方形またはラインビーム状にビーム整形し、該光学系を高速に動かすことにより前記走査を行うことを特徴とする請求項7記載の結晶質膜の製造方法。 The method for producing a crystalline film according to claim 7, wherein the scanning is performed by shaping the pulse laser beam into a rectangular or line beam shape by an optical system and moving the optical system at high speed.
  9.  前記結晶化によって大きさが50nm以下で突起のない微結晶を得ることを特徴とする請求項1~8のいずれかに記載の結晶質膜の製造方法。 The method for producing a crystalline film according to any one of claims 1 to 8, wherein a microcrystal having a size of 50 nm or less and having no protrusion is obtained by the crystallization.
  10.  波長340~358nmのパルスレーザ光を出力するパルスレーザ光源と、前記パルスレーザ光を非晶質膜に導いて照射する光学系と、前記レーザ光が非晶質膜上で130~240mJ/cmのエネルギー密度で照射されるように前記パルスレーザ光源から出力された前記パルスレーザ光の減衰率を調整するアッテネータと、前記パルスレーザ光が前記非晶質膜上で1~10ショットの範囲内でオーバラップ照射されるように前記レーザ光を前記非晶質膜に対し相対的に移動させる走査装置とを備えることを特徴とする結晶質膜製造装置。 A pulse laser light source that outputs a pulse laser beam having a wavelength of 340 to 358 nm, an optical system that guides and irradiates the pulse laser beam to an amorphous film, and the laser beam is 130 to 240 mJ / cm 2 on the amorphous film. An attenuator for adjusting the attenuation rate of the pulsed laser beam output from the pulsed laser light source so that the pulsed laser beam is irradiated at an energy density of 1 to 10 shots on the amorphous film A crystalline film manufacturing apparatus, comprising: a scanning device that moves the laser light relative to the amorphous film so as to be irradiated with overlap.
  11.  前記パルスレーザ光源は、パルス周波数6~10kHzのパルスレーザ光を出力するものであることを特徴とする請求項10記載の結晶質膜製造装置。 11. The crystalline film manufacturing apparatus according to claim 10, wherein the pulse laser light source outputs a pulse laser beam having a pulse frequency of 6 to 10 kHz.
  12.  前記光学系は、前記パルスレーザ光を短軸幅1.0mm以下の長方形またはラインビーム状にビーム整形するものであることを特徴とする請求項10または11に記載の結晶質膜製造装置。 12. The crystalline film manufacturing apparatus according to claim 10, wherein the optical system is configured to beam-shape the pulsed laser light into a rectangular or line beam having a minor axis width of 1.0 mm or less.
  13.  前記パルスレーザ光源は、パルス幅5~100nsのパルスレーザ光を出力するものであることを特徴とする請求項10~12のいずれかに記載の結晶質膜製造装置。 13. The crystalline film manufacturing apparatus according to claim 10, wherein the pulse laser light source outputs pulse laser light having a pulse width of 5 to 100 ns.
PCT/JP2010/052935 2009-03-05 2010-02-25 Method for fabricating crystalline film and device for fabricating crystalline film WO2010101066A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080002151.0A CN102099895B (en) 2009-03-05 2010-02-25 The manufacture method of crystalline film and crystallization film manufacturing device
KR1020107029391A KR101323614B1 (en) 2009-03-05 2010-02-25 Method for fabricating crystalline film and device for fabricating crystalline film
JP2011502729A JP5594741B2 (en) 2009-03-05 2010-02-25 Crystalline film manufacturing method and crystalline film manufacturing apparatus
TW99106288A TWI467659B (en) 2009-03-05 2010-03-04 Fabricating method of crystalline film and fabricating apparatus of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009052404 2009-03-05
JP2009-052404 2009-03-05

Publications (1)

Publication Number Publication Date
WO2010101066A1 true WO2010101066A1 (en) 2010-09-10

Family

ID=42709625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052935 WO2010101066A1 (en) 2009-03-05 2010-02-25 Method for fabricating crystalline film and device for fabricating crystalline film

Country Status (5)

Country Link
JP (1) JP5594741B2 (en)
KR (1) KR101323614B1 (en)
CN (1) CN102099895B (en)
TW (1) TWI467659B (en)
WO (1) WO2010101066A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121829B2 (en) 2011-03-04 2015-09-01 Joled Inc. Crystallinity evaluation method, crystallinity evaluation device, and computer software thereof
CN109920809A (en) * 2019-03-14 2019-06-21 上海交通大学 A kind of X-ray flat panel detector and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10209069A (en) * 1997-01-17 1998-08-07 Sumitomo Heavy Ind Ltd Method and equipment for laser annealing
JP2003289046A (en) * 1995-12-14 2003-10-10 Seiko Epson Corp Semiconductor, method for manufacturing semiconductor, display and electronic apparatus
JP2004342785A (en) * 2003-05-15 2004-12-02 Sony Corp Method of manufacturing semiconductor, and semiconductor manufacturing equipment
JP2008147487A (en) * 2006-12-12 2008-06-26 Japan Steel Works Ltd:The Crystalline semiconductor film manufacturing method, semiconductor film heating control method, and semiconductor crystallizing device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3326654B2 (en) * 1994-05-02 2002-09-24 ソニー株式会社 Method of manufacturing semiconductor chip for display
TW305063B (en) 1995-02-02 1997-05-11 Handotai Energy Kenkyusho Kk
JP2000208416A (en) * 1999-01-14 2000-07-28 Sony Corp Crystallizing method for semiconductor thin film and laser irradiation apparatus
TWI456663B (en) * 2007-07-20 2014-10-11 Semiconductor Energy Lab Method for manufacturing display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003289046A (en) * 1995-12-14 2003-10-10 Seiko Epson Corp Semiconductor, method for manufacturing semiconductor, display and electronic apparatus
JPH10209069A (en) * 1997-01-17 1998-08-07 Sumitomo Heavy Ind Ltd Method and equipment for laser annealing
JP2004342785A (en) * 2003-05-15 2004-12-02 Sony Corp Method of manufacturing semiconductor, and semiconductor manufacturing equipment
JP2008147487A (en) * 2006-12-12 2008-06-26 Japan Steel Works Ltd:The Crystalline semiconductor film manufacturing method, semiconductor film heating control method, and semiconductor crystallizing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9121829B2 (en) 2011-03-04 2015-09-01 Joled Inc. Crystallinity evaluation method, crystallinity evaluation device, and computer software thereof
CN109920809A (en) * 2019-03-14 2019-06-21 上海交通大学 A kind of X-ray flat panel detector and preparation method thereof

Also Published As

Publication number Publication date
JPWO2010101066A1 (en) 2012-09-10
TWI467659B (en) 2015-01-01
TW201034082A (en) 2010-09-16
KR20110122787A (en) 2011-11-11
CN102099895B (en) 2016-10-12
KR101323614B1 (en) 2013-11-01
JP5594741B2 (en) 2014-09-24
CN102099895A (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP2007005508A (en) Method for manufacturing thin film transistor and for display device
US20080087895A1 (en) Polysilicon thin film transistor and method of fabricating the same
WO2012164626A1 (en) Thin film semiconductor device manufacturing method, thin film semiconductor array substrate manufacturing method, crystal silicon thin film forming method, and crystal silicon thin film forming device
JP5004160B2 (en) Crystalline semiconductor film manufacturing method, semiconductor film heating control method, and semiconductor crystallization apparatus
JP2011165717A (en) Display device and method of manufacturing the same
TWI521607B (en) Fabricating method of crystalline semiconductor and laser annealing apparatus
JP5594741B2 (en) Crystalline film manufacturing method and crystalline film manufacturing apparatus
JP2007281420A (en) Method for crystallizing semiconductor thin film
KR100782769B1 (en) Align key, method of forming align key and laser crystalization method using the same
US9218968B2 (en) Method for forming crystalline thin-film and method for manufacturing thin film transistor
JP5213192B2 (en) Crystalline film manufacturing method and manufacturing apparatus
JP2000216088A (en) Method of forming semiconductor thin film and laser irradiator
KR101009429B1 (en) Polycrystalline silicon layer, thin film transistor comprising the same, and fabricating method of the same
WO2013030885A1 (en) Thin-film-formation-substrate manufacturing method and thin-film substrate
JP3966923B2 (en) Semiconductor manufacturing method and semiconductor device manufacturing method
JP2004134773A (en) Method for manufacturing semiconductor device
JP2009004629A (en) Method and apparatus for forming polycrystalline semiconductor film
KR101411188B1 (en) Laser anneal method
US6607971B1 (en) Method for extending a laser annealing pulse
Morikawa et al. 33.3: Comparison of Poly‐Si TFT Characteristics Crystallized by a YAG2ω Laser and an Excimer Laser
KR101075261B1 (en) Fabricating method of polycrystalline silicon thin film
KR20090084237A (en) Apparatus and method for manufacturing poly-si thin film
JP2001319892A (en) Laser annealing apparatus and method for fabricating transistor
JP2010141040A (en) Substrate for display device and method of manufacturing the same, display device, laser annealing device, and method of manufacturing crystallized semiconductor film
KR20120119367A (en) Laser beam project device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080002151.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502729

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107029391

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748661

Country of ref document: EP

Kind code of ref document: A1