WO2010101057A1 - Photoelectric conversion device and dye - Google Patents

Photoelectric conversion device and dye Download PDF

Info

Publication number
WO2010101057A1
WO2010101057A1 PCT/JP2010/052869 JP2010052869W WO2010101057A1 WO 2010101057 A1 WO2010101057 A1 WO 2010101057A1 JP 2010052869 W JP2010052869 W JP 2010052869W WO 2010101057 A1 WO2010101057 A1 WO 2010101057A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
dye
group
conversion device
light
Prior art date
Application number
PCT/JP2010/052869
Other languages
French (fr)
Japanese (ja)
Inventor
浩司 瀬川
城太郎 中崎
聡 内田
久 坂井
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2010529968A priority Critical patent/JP5240740B2/en
Publication of WO2010101057A1 publication Critical patent/WO2010101057A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • C09B47/04Phthalocyanines abbreviation: Pc
    • C09B47/045Special non-pigmentary uses, e.g. catalyst, photosensitisers of phthalocyanine dyes or pigments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion device and a dye that can be suitably used for the photoelectric conversion device.
  • a dye-sensitized solar cell which is one of photoelectric conversion devices, does not require high-temperature processing or a vacuum device in the manufacturing process. For this reason, it is considered advantageous for cost reduction, and research and development have been promoted rapidly in recent years.
  • a general dye-sensitized solar cell includes a light working electrode and a conductive glass counter electrode.
  • the optical working electrode is provided with a porous titanium oxide layer obtained by sintering fine particles having a particle size of about 20 nm on a conductive glass substrate, and a single molecule of dye is formed on the particle surface of the porous titanium oxide layer. It is constituted by making it adsorb.
  • the conductive glass counter electrode is configured, for example, by depositing platinum on the glass surface by sputtering.
  • the space between the conductive glass counter electrode and the photoactive electrode is filled with an electrolyte solution having a charge transport function including an iodine / iodide redox pair, and the electrolyte solution is sealed to form a dye-sensitized solar cell. Is done.
  • organic dyes are used as the dyes adsorbed on the light working electrode of such dye-sensitized solar cells.
  • organic dye one having a porphyrin skeleton has been proposed (see, for example, Patent Documents 1 and 2).
  • a photoelectric conversion device includes an electron transport material, a dye containing pentavalent phosphorus porphyrin represented by the following general formula 1 located on the electron transport material, and a positive electrode located on the dye.
  • the dye according to one embodiment of the present invention includes pentavalent phosphorus porphyrin represented by the above general formula 1, wherein at least one of R1 to R4 is a phenyl group having an electron donating substituent.
  • FIG. 1 is a cross-sectional view showing a photoelectric conversion device according to the first embodiment of the present invention.
  • the photoelectric conversion device X1 according to the first embodiment of the present invention includes a conductive substrate 11, a metal oxide 14, a dye 13, an electrolyte 15, a transparent electrode 16, and a translucent covering body 17. I have.
  • the electron transport material is the metal oxide 14
  • the hole transport material is the electrolyte 15.
  • the dye 13 is attached to the metal oxide 14 and is disposed between the metal oxide 14 that is an electron transport material and the electrolyte 15 that is a hole transport material.
  • the first photoelectric converter 12 is composed of the metal oxide 14, which is an electron transport material, the dye 13, and the electrolyte 15 which is a hole transport material.
  • the electron transport material has a function of receiving electrons from the dye 13 and transporting the electrons to an external circuit.
  • the hole transport material has a function of receiving holes from the dye 13 and transporting holes to the external circuit (or a function of injecting electrons from the external circuit into the dye 13).
  • the photoelectric conversion action of the photoelectric conversion device X1 when light is incident from the arrow L in FIG. 1, the dye 13 absorbs light, the dye 13 is excited, and the electrons are LUMO (Lowest Unoccupied Molecular Orbital: lowest sky) Excited to orbital level. Then, the electrons excited to the LUMO level move at high speed to the conduction band (conduction band) level of the metal oxide 14 such as titanium oxide. The electrons moved to the conduction band level of the metal oxide 14 efficiently move between the metal oxide particles and reach the conductive substrate 11.
  • the conduction band conduction band
  • the electrons that have reached the conductive substrate 11 move to the transparent electrode 16 via a load (not shown) that is electrically connected between the conductive substrate 11 and the transparent electrode 16.
  • the electrons that have moved to the first transparent electrode 16 reduce a part of the electrolyte 15 in a catalyst (not shown) formed on the transparent electrode 16.
  • the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT).
  • PEDOT polyethylenedioxythiophene
  • the conductive substrate 11 is a support for the first photoelectric converter 12 and has a function of taking out current from the first photoelectric converter 12.
  • Examples of the conductive substrate 11 include a metal substrate, a substrate in which a conductive member is contained in a base material, or a substrate in which a conductive film 11b is formed on the upper surface of an insulating substrate 11a.
  • Examples of the material of the metal substrate include metals such as titanium, stainless steel, aluminum, silver, copper, and nickel, or alloys of these metals.
  • An insulating material is used as the base material used for the above-described substrate containing a conductive member in the base material.
  • organic resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, and polycarbonate are used.
  • inorganic materials such as blue plate glass, soda glass, borosilicate glass, and ceramics.
  • the conductive member contained in such a base material include metal fine particles and fine lines made of the above-described metal substrate material, or carbon (carbon) fine particles and fine lines.
  • the conductive film 11b is formed on the insulating substrate 11a made of the same material as the base material described above by, for example, the CVD method.
  • the conductive film 11b include a metal thin film, a transparent conductive film, or a laminated conductive film in which an ITO layer is sandwiched between a pair of titanium layers.
  • the metal thin film include titanium, stainless steel, aluminum, silver, copper, and nickel.
  • the transparent conductive film include ITO (tin-doped indium oxide, FTO (fluorine-doped tin oxide), and zinc oxide doped with aluminum.
  • the conductive substrate 11 has a characteristic of reflecting light incident on the photoelectric conversion device X1, light can be incident again on the first photoelectric conversion body 12 that contributes to photoelectric conversion.
  • the photoelectric conversion efficiency can be increased.
  • the conductive substrate 11 having such light reflection characteristics include a silver or aluminum metal substrate.
  • the conductive substrate 11 having the conductive film 11b is preferably a laminated conductive film in which a silver layer is sandwiched between silver or a pair of titanium layers, and such a conductive film 11b can be formed by, for example, vacuum deposition or ion plating. It can be formed by a method, a sputtering method, an electrolytic deposition method, or the like.
  • the thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm.
  • the thickness of the conductive film 11b is 0.001 ⁇ m to 10 ⁇ m, preferably 0.05 ⁇ m to 2 ⁇ m.
  • the conductive substrate 11 when the conductive substrate 11 is made of a light-transmitting material, light that enters from a direction opposite to the direction indicated by the arrow L in FIG. 1 can also enter, and the photoelectric conversion device X1.
  • the light receiving area can be expanded.
  • the conductive substrate 11 when the conductive substrate 11 is made of a light-transmitting material, aluminum, silver or the like having high light reflection characteristics is applied to the back surface of the conductive substrate 11 (the lower surface of the conductive substrate in FIG. 1).
  • the light reflection property is increased by forming a film, light can be re-incident on the first photoelectric conversion body 12 that contributes to photoelectric conversion, so that the photoelectric conversion efficiency can be increased.
  • the electron transport material has a function of transporting charges (electrons) from the dye, and a conductor, a semiconductor, an electrolyte, or the like is used.
  • the metal oxide 14 made of a semiconductor material functions as an electron transport material.
  • the dye 13 is attached to the porous surface of the metal oxide 14 made of a semiconductor material. And the pigment
  • the thickness of the metal oxide 14 is preferably 0.1 ⁇ m to 50 ⁇ m, for example. Further, the thickness of the metal oxide 14 is more preferably 1 ⁇ m to 20 ⁇ m from the viewpoint of increasing the photoelectric conversion efficiency without excessively reducing the light transmittance.
  • the metal oxide 14 includes titanium oxide (TiO 2 ) that is an oxide of titanium (Ti), tin oxide (SnO 2 ) that is an oxide of tin (Sn), or zinc oxide (ZnO) that is an oxide of zinc. It consists of an n-type semiconductor. An oxide having such semiconductor properties has a conduction band lower than the LUMO energy level of the dye 13 described later in detail, and has relatively few lattice defects, so that electrons are not easily trapped in the defects. Therefore, the photoelectric conversion efficiency of the photoelectric conversion device X1 can be increased.
  • titanium oxide (TiO 2 ) is most preferable from the viewpoint of having fewer lattice defects than other metal oxides (SnO 2 , ZnO).
  • the metal oxide 14 is preferably composed of a porous material from the viewpoint of increasing the surface area to which the dye 13 is attached and attaching more dye.
  • a porous body has a porosity of 20% to 80%, more preferably 40% to 60%.
  • the metal oxide 14 is formed of, for example, fine particles or an aggregate of fine linear bodies such as needle-like bodies, tubular bodies, or columnar bodies, and has an average particle diameter or average wire diameter of 5 nm to The thickness is preferably 500 nm, and more preferably 10 nm to 200 nm from the viewpoint of increasing the bonding area between the fine particles or the linear bodies and simplifying the material production. Furthermore, if the metal oxide 14 is formed of such a porous body, the surface becomes uneven, so that the light confinement effect can be enhanced.
  • the metal oxide 14 formed of titanium oxide will be described.
  • acetylacetone is added to an anatase powder of titanium oxide, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant.
  • this paste is applied onto the conductive substrate 11 by, for example, a doctor blade method, and is heat-treated in the atmosphere at a temperature of 300 ° C. to 600 ° C. for 10 minutes to 60 minutes, whereby the metal oxide 14 Can be formed.
  • the metal oxide 14 is formed at a relatively low temperature such as an electrodeposition method, an electrophoretic electrodeposition method, or a hydrothermal synthesis method.
  • a possible method is preferably used, and in addition, microwave treatment, CVD / UV treatment, or the like may be performed as post-processing.
  • the dye 13 absorbs light incident on the photoelectric conversion device X1, and the electron located in the HOMO of the dye is excited to the position of the LUMO of the dye and moves the electron to the metal oxide 14 from the LUMO. Have.
  • the dye 13 contains pentavalent phosphorus porphyrin represented by the following general formula 1.
  • R1 to R14 are arbitrary substituents.
  • the pentavalent phosphoporphyrin represented by the general formula 1 has a stronger cationic property than porphyrins having the same shape and different central metals, and therefore the HOMO-LUMO energy level gap is narrowed, and even in a longer wavelength region. Shows light absorption.
  • the pentavalent phosphorus porphyrin represented by the general formula 1 the long wavelength sensitivity of the photoelectric conversion device can be increased. Moreover, the cost reduction of material is implement
  • At least one of R1 to R4 is preferably a phenyl group having an electron-donating substituent.
  • the phenyl group having such an electron-donating substituent is preferably a (dialkylamino) phenyl group, an aminophenyl group, or a hydroxyphenyl group.
  • the photoelectric conversion efficiency of the photoelectric conversion device X1 can be further increased.
  • the dye 13 has an arbitrary anion such as a chloride ion or an iodide ion as a counter ion.
  • the conduction band of the metal oxide 14 is ⁇ 4.2 eV for TiO 2 , ⁇ 4.4 eV for ZnO, and ⁇ 4.8 eV for SnO 2 .
  • the LUMO level of the dye 13 has an energy level higher than that of the above-described conduction band of the metal oxide 14, so that the electrons of the LUMO level easily move to the conduction band of the metal oxide 14. .
  • the HOMO level ( ⁇ 5.59 eV) of the dye 13 is lower than the oxidation-reduction potential of the electrolyte 15, electrons easily move from the electrolyte 15 to the HOMO level of the dye 13.
  • the redox potential of the electrolyte 15 is, for example, ⁇ 5.1 eV in the case of iodine redox obtained by dissolving tetrapropylammonium iodide, lithium iodide, and iodine in methoxypropionitrile.
  • the substituents R1 to R14 in the general formula 1 are hydrogen, halogen, di-tert-butylphenyl group, alkyl group, phenyl group, carboxyl group, carboxyphenyl group, carbomethoxyphenyl group, styrylcarboxyl group, thiocyanate group, cyano group.
  • At least one of the substituents R1 to R4 exhibits a strong electron donating property so that the dye 13 exhibits absorption at a long wavelength due to the contribution of the charge transfer transition.
  • electron donating substituents include (dialkylamino) phenyl groups such as (dimethylamino) phenyl group and (diethylamino) phenyl group, aminophenyl group, and hydroxyphenyl group.
  • At least one of the substituents R1 to R14 is a highly adhesive substituent so that the dye 13 is efficiently attached to the metal oxide 14.
  • a highly adhesive substituent include a carboxyl group, a carboxyphenyl group, a sulfo group, a sulfophenyl group, a hydroxyl group, an alkoxyl group, an aryl group, and a phosphoryl group.
  • the highly adhesive substituent is preferably a carboxyphenyl group from the viewpoint of efficient electron transfer from the dye 13 to the metal oxide 14.
  • At least one of R5 and R6 in the general formula 1 preferably has a carboxyl group.
  • the distance between the resonance site of the porphyrin ring and the metal oxide 14 can be further shortened, the electron transfer from the dye 13 to the metal oxide 14 can be further increased.
  • This tetrakis [para (dimethylamino) phenyl] porphyrin and phosphorus trichloride are dispersed in dry pyridine, and after heating, the liquid is distilled off under reduced pressure and separated and purified by column chromatography to obtain a pentavalent phosphoporphyrin dichloroate. .
  • a method for attaching the dye 13 to the metal oxide 14 will be described.
  • a method for attaching the dye 13 for example, a method in which the conductive substrate 11 on which the metal oxide 14 is formed is immersed in a solution in which the dye 13 is dissolved, or the conductive substrate 11 on which the metal oxide 14 is formed is used as a sealing agent. After the periphery is sealed by, for example, a method in which a solution in which the dye 13 is dissolved is injected from an injection port of the sealing agent, and the solution is circulated in the sealed interior to attach the dye 13 to the metal oxide 14. It is done. Further, when the former is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited.
  • the atmosphere may be at atmospheric pressure, and the temperature may be room temperature.
  • the solvent used to dissolve the dye 13 is 1 aromatic hydrocarbon such as toluene, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, and the like.
  • species or what mixed 2 or more types is mentioned.
  • the concentration of the dye 13 in the solution is preferably about 5 ⁇ 10 ⁇ 5 to 1 ⁇ 10 ⁇ 3 mol / l.
  • this solution may contain, as an additive, tertiary butyl pyridine, which is a weakly basic compound, or deoxycholic acid, which is a weakly acidic compound, in order to suppress aggregation of the dye 13.
  • the hole transport material has a function of transporting charges (holes) from the dye, and a conductor, a semiconductor, an electrolyte, or the like is used.
  • the electrolyte 15 functions as a hole transport material. Examples of the electrolyte 15 include a liquid electrolyte, a solid electrolyte, a gel electrolyte, and a molten salt.
  • liquid electrolyte for example, a quaternary ammonium salt, a Li salt or the like dissolved in a solvent such as propylene carbonate or acetonitrile can be used. Further, tetrapropylammonium iodide, lithium iodide, or iodine dissolved in a solvent such as methoxypropionitrile can be used.
  • solid electrolytes include those having a sulfonimidazolium salt, a tetracyanoquinodimethane salt, a dicyanoquinodiimine salt, etc. in a polymer chain such as polyethylene oxide, polyethyleneimine or polyethylene.
  • Gel electrolytes are roughly classified into chemical gels and physical gels.
  • a chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction.
  • the gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid or polyacrylamide with acetonitrile, ethylene carbonate, propylene carbonate or a mixture thereof. An electrolyte is preferred.
  • a low-viscosity precursor is contained in the nanoparticles, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.
  • a molten salt of iodide for example, a molten salt of iodide can be used.
  • the molten salt of iodide include iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt and the like.
  • Specific examples of the above-mentioned molten salt of iodide include, for example, 1,1-dimethylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide.
  • Examples of the conductor or semiconductor used as the hole transport material include a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3 and the like.
  • a semiconductor containing monovalent copper is preferable.
  • Examples of the compound semiconductor containing monovalent copper include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and CuI is preferable from the viewpoint of easy manufacture.
  • the transparent electrode 16 has conductivity capable of exchanging charges with the electrolyte 15 and also has translucency capable of transmitting light contributing to photoelectric conversion.
  • Examples of the transparent electrode 16 include a tin-doped indium oxide (ITO) film, an impurity-doped indium oxide (In 2 O 3 ) film, an impurity-doped zinc oxide (ZnO) film, a fluorine-doped tin dioxide film, and the like. And a laminated film formed by laminating the layers.
  • the film forming method of the transparent electrode 16 described above can be variously selected according to the material to be formed, for example, a low temperature growth sputtering method, a low temperature spray pyrolysis method, a thermal CVD method, a solution growth method, a vacuum evaporation method. , Ion plating method, dip coating method, sol-gel method and the like.
  • the transparent electrode 16 can have a light confinement effect by forming irregularities in the wavelength order of incident light on the surface thereof.
  • the transparent electrode 16 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method, a sputtering method, or the like.
  • a catalyst (not shown) is formed on the transparent electrode 16.
  • the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT).
  • PEDOT polyethylenedioxythiophene
  • the translucent covering 17 has a translucency through which light contributing to photoelectric conversion can be transmitted, and has a function of protecting the transparent electrode 16 and the like from the outside.
  • Examples of such a translucent covering 17 include a fluororesin, a polyester resin, a silicon polyester resin, a polyvinyl chloride resin, a PET (polyethylene terephthalate), PEN (polyethylene naphthalate), a resin sheet such as polyimide and polycarbonate, and a white plate.
  • examples thereof include inorganic sheets such as glass, soda glass, borosilicate glass and ceramics, or hybrid sheets formed by combining organic and inorganic materials.
  • the thickness of the translucent covering 17 is 0.1 ⁇ m to 6 mm, preferably 1 ⁇ m to 4 mm.
  • the photoelectric conversion device X1 may use a plurality of types of dyes 13 having different wavelengths of light to be absorbed. With such a form, it becomes possible to photoelectrically convert light in a wider wavelength region, and the photoelectric conversion efficiency is improved. Moreover, even if the plurality of photoelectric conversion devices X1 are stacked and the dye 13 used in each photoelectric conversion device X1 has a relationship in which the photoelectric conversion devices X1 have different absorption characteristics, a wider range It becomes possible to photoelectrically convert light in a wide wavelength region, and the photoelectric conversion efficiency is improved.
  • Such a photoelectric conversion device X1 can be a photovoltaic device by using the photoelectric conversion device X1 as a power generation means and supplying the generated power from the power generation means to a load.
  • This photovoltaic power generation device uses, for example, one or more photoelectric conversion devices X1 connected in series (in series, parallel, or series-parallel if there are a plurality) as power generation means, and the generated power directly from this power generation means to a DC load. It has a mechanism which supplies.
  • the photovoltaic power generation device converts the direct current power output from the photoelectric conversion device X1 into appropriate alternating current power through power conversion means such as an inverter, and then converts this generated power to a commercial power supply system or various electric devices. You may have the mechanism supplied to alternating current load.
  • such a photovoltaic power generation device can be used as a photovoltaic power generation system of various modes by being installed in a building with good sunlight.
  • FIG. 2 is a sectional view showing a photoelectric conversion device according to the second embodiment of the present invention.
  • the photoelectric conversion device X2 according to the second embodiment of the present invention has a second photoelectric conversion body 18 having a semiconductor layer on the electrolyte 15 side of the first photoelectric conversion body 12 in that the first photoelectric conversion apparatus X2 has the first photoelectric conversion body X2 of the present invention. This is different from the photoelectric conversion device X1 according to the embodiment.
  • the second photoelectric converter 18 is arranged in a state of being interposed between the transparent electrode 16 and the intermediate layer 19. In the second embodiment of FIG. 2, the same components as those of the first embodiment of FIG.
  • the second photoelectric conversion body 18 has a photoelectric conversion function of converting incident light after absorbing incident light, and in particular, the light photoelectrically converted by the first photoelectric conversion body 12 What is excellent in the photoelectric conversion effect
  • action in the light of a different wavelength is preferable.
  • the semiconductor layer of the second photoelectric conversion body 18 include a silicon-based thin film semiconductor layer, a compound semiconductor system such as CIGS (CuInGaSe), and an organic thin film semiconductor film.
  • the silicon system for example, an amorphous silicon system, an amorphous silicon system including a nanosize crystal, a microcrystalline silicon system, and the like are preferable, and an amorphous silicon system is preferable from the viewpoint of having a short wavelength sensitivity and a small light deterioration.
  • the amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride. Further, when these thin film semiconductor layers are composed of a plurality of layers, the junction layer may generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, or a hetero junction type. Good.
  • the intermediate layer 19 has a function of electrically connecting the first photoelectric converter 12 and the second photoelectric converter 18 and is made of a translucent conductive material.
  • the material of the intermediate layer 19 may include at least one of a metal, a conductive oxide, and a conductive polymer.
  • the intermediate layer 19 is made of metal, it is preferable that the intermediate layer 19 is made of an island-shaped portion made of a large number of metals in order to improve translucency.
  • the metal material is made of a platinum group element such as platinum or palladium, or a metal such as silver, aluminum, titanium, iron, copper, indium, chromium, or iridium.
  • the materials thereof are tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, zinc oxide, indium oxide, tin oxide, oxidation
  • the material is preferably polyethylene dioxythiophene (PEDOT) (may be doped with polystyrene sulfonate or toluene sulfonate), polyvinyl carbazole, thiophene, or the like.
  • PEDOT polyethylene dioxythiophene
  • the amorphous silicon-based thin film semiconductor layer for example, a pin junction hydrogenated amorphous silicon based semiconductor film continuously deposited by plasma CVD is suitable.
  • the semiconductor film may be a pin junction in which a p-type semiconductor film is provided on the transparent electrode 16 side, but may be a reverse junction nip junction.
  • the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a layer composed of a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively.
  • a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor.
  • the i-type semiconductor film is amorphous (amorphous)
  • at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H)
  • An alloy film may be used.
  • the thin film semiconductor layer may be formed using a catalytic CVD method as a film forming method other than the plasma CVD method.
  • the plasma CVD method and the catalytic CVD method are combined, light deterioration in the formed semiconductor film can be suppressed, so that reliability can be improved.
  • the p-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas as source gases, and the flow rates of these gases are Each film is optimized.
  • This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field.
  • the i-type hydrogenated amorphous silicon (a-Si: H) film is formed by using SiH 4 + H 2 gas as a source gas and optimizing the flow rate of these gases.
  • This film thickness is preferably 500 to 5000 mm (0.05 ⁇ m to 0.5 ⁇ m) from the viewpoints of obtaining a sufficient photocurrent and transmitting light that contributes to power generation of the first photoelectric converter 12.
  • the n-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas as source gases, and the flow rates of these gases Each of these is optimized to form a film.
  • This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field.
  • the temperature of the translucent covering 17 and the transparent electrode 16 during film formation is preferably in the range of 150 ° C.
  • the second photoelectric conversion body 18 including such a thin film semiconductor layer easily absorbs light having a wavelength of 300 nm to 700 nm, and has a wavelength range of 700 nm to 1100 nm that is easily absorbed by the dye 13. Photoelectric conversion is performed with light on the short wavelength side.
  • the photoelectric conversion device X ⁇ b> 2 has a structure in which the second photoelectric conversion body 18 is disposed on the light incident side, and the first photoelectric conversion body 12 is provided below the second photoelectric conversion body 18. Therefore, after the light in the wavelength region on the short wavelength side described above is absorbed by the second photoelectric converter 18, the light in the wavelength region on the long wavelength side that transmits the second photoelectric converter 18 is first The photoelectric conversion body 12 absorbs. Therefore, the photoelectric conversion device X2 can perform photoelectric conversion in a wider wavelength range, and thus can improve the photoelectric conversion efficiency. In addition, in the photoelectric conversion device X2, since the second photoelectric conversion body 18 that absorbs light having a wavelength close to ultraviolet light is disposed on the light incident side, deterioration of the dye 13 due to ultraviolet light can be reduced. .
  • the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
  • the materials shown as the electron transport material and the hole transport material are only shown as materials that transport electrons and holes as an example of the charge transport material, respectively, and each transports opposite charges. It doesn't matter.
  • the conductive substrate 11 is transparent, light may be incident from the conductive substrate 11.
  • the second photoelectric conversion body 18 is provided on the electrolyte 15 of the first photoelectric conversion body 12, that is, the dye 13 in the hole transport material.
  • the photoelectric conversion device of the present invention is not limited to a so-called dye-sensitized solar cell, and can also be applied as a so-called organic thin film solar cell.
  • the dye of the present invention is suitable for application to a photoelectric conversion device, but is not limited thereto, and its broadband light absorption and acid / base response (charge transfer).
  • the complex can be applied to a light shielding material, an indicator, and the like.
  • This tetrakis [para (dimethylamino) phenyl] porphyrin and phosphorus trichloride are dispersed in dry pyridine, and after heating, the liquid is distilled off under reduced pressure and separated and purified by column chromatography to obtain a pentavalent phosphoporphyrin dichloroate. It was.
  • the pentavalent phosphoporphyrin dichloro product was mixed and heated with parahydroxybenzoic acid and dry pyridine, and then separated and purified by column chromatography to prepare the dye 13 represented by the general formula 1.
  • the counter ion is a chloride ion.
  • the absorption spectrum of the resulting dye solution is shown in FIG.
  • a glass substrate with a fluorine-doped tin oxide film having a surface resistance value of 10 ⁇ / ⁇ (square) and a size of 15 mm ⁇ 25 mm was prepared.
  • a porous titanium oxide film that is the metal oxide 14 was formed on the conductive substrate 11.
  • a porous titanium oxide film was manufactured by applying a titania paste Ti-Nanoxide T / SP made by SOLARONIXS on a conductive substrate 11 by a screen printing method using a screen of 4 mm ⁇ 4 mm size and 300 mesh, and 120 ° C. The operation of drying for 3 minutes was repeated 10 times, and then the conductive substrate 11 was baked at 500 ° C. for 30 minutes to form a porous titanium oxide film.
  • the film thickness of the porous titanium oxide film was 18 ⁇ m as measured with a stylus type film thickness meter.
  • the dye 13 synthesized as described above was dissolved in methanol to prepare 0.3 mM.
  • the conductive substrate 11 is washed with methanol at room temperature, whereby the dye is obtained.
  • a metal oxide 14 having 13 attached thereto was produced.
  • a transparent electrode 16 was produced in which platinum having a film thickness of about 1 nm was formed on a glass substrate with a fluorine-doped tin oxide film having two electrolyte solution injection holes having a diameter of about 0.7 mm.
  • an ionomer resin having a thickness of about 30 ⁇ m was pasted around the counter electrode 16, and the metal oxide 14 having the dye 13 attached thereto was adhered to the transparent electrode 16 through the ionomer resin. This ionomer resin seals a region sandwiched between the metal oxide 14 and the transparent electrode 16 from the outside.
  • an electrolyte solution prepared by dissolving 2.0 M lithium iodide and 0.025 M iodine in benzonitrile as an electrolyte is prepared, and the electrolyte solution is injected into the inside through the electrolyte solution injection hole. A conversion cell was produced.
  • the produced photoelectric conversion cell was irradiated with a pseudo solar light source (AM1.5, 100 mW / cm 2 ) using a solar simulator YSS-80 manufactured by Yamashita Denso Co., Ltd., and the current-voltage characteristics of the photoelectric conversion cell were measured. Moreover, the result of spectral sensitivity characteristic evaluation computed from the electric current value measured with Keithley Picoammeter using the hyper monolite SM250E system by a spectrometer company was shown in FIG.
  • the photoelectric conversion cell of the example showed a spectral sensitivity that spreads over a wide wavelength region, particularly 1000 nm or more.
  • X1, X2 photoelectric conversion device 11: conductive substrate 11a: insulating substrate 11b: conductive film 12: first photoelectric conversion body 13: dye 14: metal oxide (electron transport material) 15: Electrolyte (hole transport material) 16: Transparent electrode 17: Translucent covering 18: Second photoelectric conversion body 19: Intermediate layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Disclosed is a photoelectric conversion device (X1) which comprises a first photoelectric conversion body that contains an electron transport material (14), a dye (13) that is positioned on top of the electron transport material (14) and contains a pentavalent phosphorus porphyrin represented by general formula 1, and a hole transport material (15) that is positioned on top of the dye (13).

Description

光電変換装置および色素Photoelectric conversion device and dye
 本発明は、光電変換装置およびそれに好適に用いることが可能な色素に関するものである。 The present invention relates to a photoelectric conversion device and a dye that can be suitably used for the photoelectric conversion device.
 光電変換装置の一つである色素増感太陽電池は、製造過程において高温処理や真空装置を必要としない。そのため、低コスト化に有利であると考えられ、近年急速に研究開発が進められている。 A dye-sensitized solar cell, which is one of photoelectric conversion devices, does not require high-temperature processing or a vacuum device in the manufacturing process. For this reason, it is considered advantageous for cost reduction, and research and development have been promoted rapidly in recent years.
 一般的な色素増感太陽電池は、光作用極と導電性ガラス対極とを具備する。光作用極は、例えば、導電性ガラス基板上に、20nm程度の粒径の微粒子を焼結して得られる多孔質酸化チタン層を設け、この多孔質酸化チタン層の粒子表面に色素を単分子吸着させることによって構成される。また、導電性ガラス対極は、例えば、白金をガラス表面にスパッタで被着することにより構成される。そして、導電性ガラス対極と光作用極との間を、ヨウ素/ヨウ化物レドックス対を含む電荷輸送機能を有する電解質溶液で満たし、この電解質溶液を封止することによって、色素増感太陽電池が構成される。 A general dye-sensitized solar cell includes a light working electrode and a conductive glass counter electrode. For example, the optical working electrode is provided with a porous titanium oxide layer obtained by sintering fine particles having a particle size of about 20 nm on a conductive glass substrate, and a single molecule of dye is formed on the particle surface of the porous titanium oxide layer. It is constituted by making it adsorb. In addition, the conductive glass counter electrode is configured, for example, by depositing platinum on the glass surface by sputtering. The space between the conductive glass counter electrode and the photoactive electrode is filled with an electrolyte solution having a charge transport function including an iodine / iodide redox pair, and the electrolyte solution is sealed to form a dye-sensitized solar cell. Is done.
 このような色素増感太陽電池の光作用極に吸着される色素には、例えば有機色素が用いられている。有機色素としては、ポルフィリン骨格を有するものが提案されている(例えば特許文献1、2参照)。 For example, organic dyes are used as the dyes adsorbed on the light working electrode of such dye-sensitized solar cells. As the organic dye, one having a porphyrin skeleton has been proposed (see, for example, Patent Documents 1 and 2).
 しかしながら色素増感太陽電池は、光電変換効率をさらに向上させることが求められている。 However, dye-sensitized solar cells are required to further improve the photoelectric conversion efficiency.
特開2006-100047号公報Japanese Patent Laid-Open No. 2006-100047 特許第2917471号公報Japanese Patent No. 2917471
 本発明の一実施形態にかかる光電変換装置は、電子輸送材料と、前記電子輸送材料上に位置する下記一般式1で表される5価リンポルフィリンを含む色素と、前記色素上に位置する正孔輸送材料と、を有する第1の光電変換体を備える。(式中、R1~R14は任意の置換基である。) A photoelectric conversion device according to an embodiment of the present invention includes an electron transport material, a dye containing pentavalent phosphorus porphyrin represented by the following general formula 1 located on the electron transport material, and a positive electrode located on the dye. A first photoelectric conversion body having a hole transport material. (In the formula, R1 to R14 are optional substituents.)
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 本発明の一実施形態にかかる色素は、上記一般式1で表され、R1~R4の少なくとも1つが電子供与性の置換基を有するフェニル基である5価リンポルフィリンを含む。 The dye according to one embodiment of the present invention includes pentavalent phosphorus porphyrin represented by the above general formula 1, wherein at least one of R1 to R4 is a phenyl group having an electron donating substituent.
本発明の第1の実施形態に係る光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る光電変換装置を示す断面図である。It is sectional drawing which shows the photoelectric conversion apparatus which concerns on the 2nd Embodiment of this invention. 本発明の実施例に係る色素の吸収スペクトルを示す特性図である。It is a characteristic view which shows the absorption spectrum of the pigment | dye which concerns on the Example of this invention. 本発明の実施例に係る光電変換装置のIPCEスペクトルである。It is an IPCE spectrum of the photoelectric conversion apparatus which concerns on the Example of this invention.
 以下、本発明の実施の形態について図面を参照しつつ詳細に説明する。なお、図面において同一部材には同一符号を付すものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same members are denoted by the same reference numerals.
 ≪第1の実施形態≫
 図1は、本発明の第1の実施形態に係る光電変換装置を示す断面図である。本発明の第1の実施形態に係る光電変換装置X1は、導電性基板11と、金属酸化物14と、色素13と、電解質15と、透明電極16と、透光性被覆体17と、を備えている。この構成において、電子輸送材料は金属酸化物14であり、正孔輸送材料は電解質15である。そして、色素13は、金属酸化物14に付着されており、電子輸送材料である金属酸化物14と正孔輸送材料である電解質15との間に配されている。この電子輸送材料である金属酸化物14と色素13と正孔輸送材料である電解質15とで第1の光電変換体12を構成している。なお、電子輸送材料とは、色素13からの電子を受け取り、外部回路へ電子を輸送する機能を有するものである。また、正孔輸送材料とは、色素13からの正孔を受け取り、外部回路へ正孔を輸送する機能(または、外部回路からの電子を色素13へ注入する機能)を有するものである。
<< First Embodiment >>
FIG. 1 is a cross-sectional view showing a photoelectric conversion device according to the first embodiment of the present invention. The photoelectric conversion device X1 according to the first embodiment of the present invention includes a conductive substrate 11, a metal oxide 14, a dye 13, an electrolyte 15, a transparent electrode 16, and a translucent covering body 17. I have. In this configuration, the electron transport material is the metal oxide 14 and the hole transport material is the electrolyte 15. The dye 13 is attached to the metal oxide 14 and is disposed between the metal oxide 14 that is an electron transport material and the electrolyte 15 that is a hole transport material. The first photoelectric converter 12 is composed of the metal oxide 14, which is an electron transport material, the dye 13, and the electrolyte 15 which is a hole transport material. The electron transport material has a function of receiving electrons from the dye 13 and transporting the electrons to an external circuit. The hole transport material has a function of receiving holes from the dye 13 and transporting holes to the external circuit (or a function of injecting electrons from the external circuit into the dye 13).
 次に、本実施の形態に係る光電変換装置X1の光電変換作用について説明する。光電変換装置X1は、図1中、矢印Lより光が入射されると、色素13が光を吸収し、色素13が励起状態になり、電子が色素13のLUMO(Lowest Unoccupied Molecular Orbital:最低空軌道)準位まで励起される。そして、LUMO準位に励起された電子は、酸化チタン等の金属酸化物14の伝導帯(コンダクションバンド)準位に高速に移動する。金属酸化物14の伝導帯準位に移動した電子は、金属酸化物の粒子間を効率よく移動し、導電性基板11に到達する。次に、導電性基板11に到達した電子は、導電性基板11と透明電極16との間に電気的に接続されている負荷(図示なし)を介して、透明電極16に移動する。次いで、第1の透明電極16に移動した電子は、透明電極16上に形成された触媒(図示なし)において電解質15の一部を還元する。触媒の材質としては、例えば、プラチナ、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム等の貴金属やカーボン、ポリエチレンジオキシチオフェン(PEDOT)等の有機導電材料が挙げられる。そして、還元された電解質15は、色素13近傍まで拡散すると、色素上で酸化反応が起こり、色素のHOMO準位に電子移動を起こす。上記したような電子が循環することにより、光電変換が起きる。 Next, the photoelectric conversion action of the photoelectric conversion device X1 according to this embodiment will be described. In the photoelectric conversion device X1, when light is incident from the arrow L in FIG. 1, the dye 13 absorbs light, the dye 13 is excited, and the electrons are LUMO (Lowest Unoccupied Molecular Orbital: lowest sky) Excited to orbital level. Then, the electrons excited to the LUMO level move at high speed to the conduction band (conduction band) level of the metal oxide 14 such as titanium oxide. The electrons moved to the conduction band level of the metal oxide 14 efficiently move between the metal oxide particles and reach the conductive substrate 11. Next, the electrons that have reached the conductive substrate 11 move to the transparent electrode 16 via a load (not shown) that is electrically connected between the conductive substrate 11 and the transparent electrode 16. Next, the electrons that have moved to the first transparent electrode 16 reduce a part of the electrolyte 15 in a catalyst (not shown) formed on the transparent electrode 16. Examples of the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT). When the reduced electrolyte 15 diffuses to the vicinity of the dye 13, an oxidation reaction occurs on the dye and causes an electron transfer to the HOMO level of the dye. Photoelectric conversion occurs as the electrons circulate as described above.
 本実施の形態に係る光電変換装置X1の各部材について詳細に説明する。 Each member of the photoelectric conversion device X1 according to the present embodiment will be described in detail.
 <導電性基板>
 導電性基板11は、第1の光電変換体12の支持体であるとともに、第1の光電変換体12より電流を取り出す機能を有している。導電性基板11としては、例えば、金属基板、基材に導電性部材を含有させた基板、または絶縁基板11aの上面に導電膜11bを形成した基板等が挙げられる。
<Conductive substrate>
The conductive substrate 11 is a support for the first photoelectric converter 12 and has a function of taking out current from the first photoelectric converter 12. Examples of the conductive substrate 11 include a metal substrate, a substrate in which a conductive member is contained in a base material, or a substrate in which a conductive film 11b is formed on the upper surface of an insulating substrate 11a.
 上記の金属基板の材質としては、例えば、チタン、ステンレス、アルミニウム、銀、銅、ニッケル等の金属、またはこれら金属の合金が挙げられる。 Examples of the material of the metal substrate include metals such as titanium, stainless steel, aluminum, silver, copper, and nickel, or alloys of these metals.
 上記の、基材に導電性部材を含有させた基板に用いられる基材としては絶縁材料が用いられ、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネート等の有機樹脂材料、または、青板ガラス、ソーダガラス、硼珪酸ガラス、セラミックス等の無機材料等が挙げられる。また、このような基材に含有される導電性部材としては、例えば、上記した金属基板の材質からなる金属の微粒子や微細線等、またはカーボン(炭素)の微粒子や微細線等が挙げられる。 An insulating material is used as the base material used for the above-described substrate containing a conductive member in the base material. For example, organic resin materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), polyimide, and polycarbonate are used. Or inorganic materials such as blue plate glass, soda glass, borosilicate glass, and ceramics. Examples of the conductive member contained in such a base material include metal fine particles and fine lines made of the above-described metal substrate material, or carbon (carbon) fine particles and fine lines.
 上記の、絶縁基板11aの上面に導電膜11bが形成された基板としては、上述した基材と同等の材質で構成された絶縁基板11a上に、導電膜11bを、例えばCVD法により形成したものが挙げられる。このような導電膜11bとしては、金属薄膜、透明導電膜、または一対のチタン層間にITO層を挟んでなる積層導電膜等がある。上記の金属薄膜としては、例えば、チタン、ステンレス、アルミニウム、銀、銅およびニッケル等がある。また、上記の透明導電膜としては、例えば、ITO(錫ドープ酸化インジウム、FTO(フッ素ドープ酸化錫)、および、アルミニウムがドープされた酸化亜鉛等がある。 As the above-mentioned substrate in which the conductive film 11b is formed on the upper surface of the insulating substrate 11a, the conductive film 11b is formed on the insulating substrate 11a made of the same material as the base material described above by, for example, the CVD method. Is mentioned. Examples of the conductive film 11b include a metal thin film, a transparent conductive film, or a laminated conductive film in which an ITO layer is sandwiched between a pair of titanium layers. Examples of the metal thin film include titanium, stainless steel, aluminum, silver, copper, and nickel. Examples of the transparent conductive film include ITO (tin-doped indium oxide, FTO (fluorine-doped tin oxide), and zinc oxide doped with aluminum.
 また、導電性基板11は、光電変換装置X1に入射される光を反射する特性を有する構成とすれば、光電変換に寄与する第1の光電変換体12に光を再入射させることができるため、光電変換効率を高めることができる。このような光の反射特性を有する導電性基板11としては、例えば、銀またはアルミニウムの金属基板が挙げられる。また、導電膜11bを有する導電性基板11では、銀または一対のチタン層間に銀層を挟んでなる積層導電膜等がよく、このような導電膜11bは、例えば、真空蒸着法、イオンプレーティング法、スパッタリング法、または電解析出法等で形成できる。 In addition, if the conductive substrate 11 has a characteristic of reflecting light incident on the photoelectric conversion device X1, light can be incident again on the first photoelectric conversion body 12 that contributes to photoelectric conversion. The photoelectric conversion efficiency can be increased. Examples of the conductive substrate 11 having such light reflection characteristics include a silver or aluminum metal substrate. In addition, the conductive substrate 11 having the conductive film 11b is preferably a laminated conductive film in which a silver layer is sandwiched between silver or a pair of titanium layers, and such a conductive film 11b can be formed by, for example, vacuum deposition or ion plating. It can be formed by a method, a sputtering method, an electrolytic deposition method, or the like.
 導電性基板11の厚みは0.01mm~5mm、好ましくは0.02mm~3mmがよい。また、導電膜11bの厚みは0.001μm~10μm、好ましくは0.05μm~2μmがよい。 The thickness of the conductive substrate 11 is 0.01 mm to 5 mm, preferably 0.02 mm to 3 mm. The thickness of the conductive film 11b is 0.001 μm to 10 μm, preferably 0.05 μm to 2 μm.
 一方、導電性基板11が透光性を有する材質で構成されている場合は、図1中の矢印Lで示した方向とは反対の方向から入射される光も入射可能となり、光電変換装置X1の受光領域を広げることができる。他方、導電性基板11が透光性を有する材質で構成されている場合は、導電性基板11の裏面(図1中の導電性基板の下面)に光の反射特性が高いアルミニウムや銀等を成膜して光の反射特性を高めると、光電変換に寄与する第1の光電変換体12に光を再入射させることができるため、光電変換効率を高めることができる。 On the other hand, when the conductive substrate 11 is made of a light-transmitting material, light that enters from a direction opposite to the direction indicated by the arrow L in FIG. 1 can also enter, and the photoelectric conversion device X1. The light receiving area can be expanded. On the other hand, when the conductive substrate 11 is made of a light-transmitting material, aluminum, silver or the like having high light reflection characteristics is applied to the back surface of the conductive substrate 11 (the lower surface of the conductive substrate in FIG. 1). When the light reflection property is increased by forming a film, light can be re-incident on the first photoelectric conversion body 12 that contributes to photoelectric conversion, so that the photoelectric conversion efficiency can be increased.
 また、導電性基板11の光が入射される上面(第1の光電変換体12が配されている表面)に入射される光の波長オーダーの凹凸を設ければ、光閉じ込め効果を付与することができるため、光電変換効率を高めることができる。 Further, if concavities and convexities in the wavelength order of light incident on the upper surface (surface on which the first photoelectric conversion body 12 is disposed) on which light of the conductive substrate 11 is incident are provided, a light confinement effect is provided. Therefore, the photoelectric conversion efficiency can be increased.
 <電子輸送材料>
 電子輸送材料は、色素からの電荷(電子)を輸送する機能を有し、導電体、半導体、電解質等が用いられる。本実施の形態では半導体材料からなる金属酸化物14が電子輸送材料として機能する。
<Electron transport material>
The electron transport material has a function of transporting charges (electrons) from the dye, and a conductor, a semiconductor, an electrolyte, or the like is used. In the present embodiment, the metal oxide 14 made of a semiconductor material functions as an electron transport material.
 半導体材料からなる金属酸化物14の多孔性表面に色素13が付着されている。そして、色素13が光を吸収して励起された電子を金属酸化物14に移動させることにより、光電変換が効率よく行われる。金属酸化物14の厚みは、例えば、0.1μm~50μmがよい。さらに、この金属酸化物14の厚みは、光の透過率を過度に低減することなく、光電変換効率を高めるという観点から、1μm~20μmがより好適である。 The dye 13 is attached to the porous surface of the metal oxide 14 made of a semiconductor material. And the pigment | dye 13 absorbs light and moves the excited electron to the metal oxide 14, and photoelectric conversion is performed efficiently. The thickness of the metal oxide 14 is preferably 0.1 μm to 50 μm, for example. Further, the thickness of the metal oxide 14 is more preferably 1 μm to 20 μm from the viewpoint of increasing the photoelectric conversion efficiency without excessively reducing the light transmittance.
 金属酸化物14は、チタン(Ti)の酸化物である酸化チタン(TiO)、錫(Sn)の酸化物である酸化錫(SnO)、または亜鉛の酸化物である酸化亜鉛(ZnO)より成るn型半導体で構成されている。このような半導体の性質を有する酸化物は、後に詳述する色素13のLUMOのエネルギー準位より低い伝導帯を有し、かつ比較的格子欠陥が少ないことから、該欠陥において電子がトラップされにくいため、光電変換装置X1の光電変換効率を高めることができる。とりわけ、酸化チタン(TiO)は、格子欠陥が他の金属酸化物(SnO、ZnO)に比べ少ないという観点から最も好適である。 The metal oxide 14 includes titanium oxide (TiO 2 ) that is an oxide of titanium (Ti), tin oxide (SnO 2 ) that is an oxide of tin (Sn), or zinc oxide (ZnO) that is an oxide of zinc. It consists of an n-type semiconductor. An oxide having such semiconductor properties has a conduction band lower than the LUMO energy level of the dye 13 described later in detail, and has relatively few lattice defects, so that electrons are not easily trapped in the defects. Therefore, the photoelectric conversion efficiency of the photoelectric conversion device X1 can be increased. In particular, titanium oxide (TiO 2 ) is most preferable from the viewpoint of having fewer lattice defects than other metal oxides (SnO 2 , ZnO).
 金属酸化物14は、色素13が付着される表面積を広げて、より多くの色素を付着するという観点から、多孔質体で構成されるのが好ましい。このような多孔質体は、気孔率が20%~80%、より好適には40%~60%がよい。また、金属酸化物14は、例えば、微粒子もしくは針状体、管状体、または柱状体のような微細な線状体の集合体で形成されており、その平均粒径もしくは平均線径は5nm~500nmとするのがよく、さらに、微粒子または線上体同士の接合面積の増大および材料作製の簡易化という観点から、10nm~200nmが好適である。さらに、金属酸化物14をこのような多孔質体で構成すれば、表面が凹凸形状になるため、光閉じ込め効果を高めることができる。 The metal oxide 14 is preferably composed of a porous material from the viewpoint of increasing the surface area to which the dye 13 is attached and attaching more dye. Such a porous body has a porosity of 20% to 80%, more preferably 40% to 60%. Further, the metal oxide 14 is formed of, for example, fine particles or an aggregate of fine linear bodies such as needle-like bodies, tubular bodies, or columnar bodies, and has an average particle diameter or average wire diameter of 5 nm to The thickness is preferably 500 nm, and more preferably 10 nm to 200 nm from the viewpoint of increasing the bonding area between the fine particles or the linear bodies and simplifying the material production. Furthermore, if the metal oxide 14 is formed of such a porous body, the surface becomes uneven, so that the light confinement effect can be enhanced.
 次に、金属酸化物14の形成方法の一例について説明する。なお、以下では、酸化チタンで形成される金属酸化物14について説明する。まず、酸化チタンのアナターゼ粉末にアセチルアセトンを添加した後、脱イオン水とともに混練し、界面活性剤で安定化させた酸化チタンのペーストを作製する。次に、このペーストを、例えば、ドクターブレード法によって、導電性基板11上に塗布し、大気中において300℃~600℃の温度で、10分~60分加熱処理することにより、金属酸化物14を形成することができる。 Next, an example of a method for forming the metal oxide 14 will be described. Hereinafter, the metal oxide 14 formed of titanium oxide will be described. First, acetylacetone is added to an anatase powder of titanium oxide, and then kneaded with deionized water to prepare a titanium oxide paste stabilized with a surfactant. Next, this paste is applied onto the conductive substrate 11 by, for example, a doctor blade method, and is heat-treated in the atmosphere at a temperature of 300 ° C. to 600 ° C. for 10 minutes to 60 minutes, whereby the metal oxide 14 Can be formed.
 また、導電性基板11が耐熱性の低い材質、例えば有機樹脂材料で構成する場合、金属酸化物14は、例えば、電析法、泳動電着法、水熱合成法等の比較的低温で形成可能な方法を用いるのがよく、加えて、後処理としてマイクロ波処理、CVD/UV処理等を行なうとよい。 When the conductive substrate 11 is made of a material having low heat resistance, such as an organic resin material, the metal oxide 14 is formed at a relatively low temperature such as an electrodeposition method, an electrophoretic electrodeposition method, or a hydrothermal synthesis method. A possible method is preferably used, and in addition, microwave treatment, CVD / UV treatment, or the like may be performed as post-processing.
 <色素>
 色素13は、光電変換装置X1に入射される光を吸収し、色素のHOMOに位置する電子が、色素のLUMOの位置に励起され、該LUMOより金属酸化物14に当該電子を移動させる機能を有している。
<Dye>
The dye 13 absorbs light incident on the photoelectric conversion device X1, and the electron located in the HOMO of the dye is excited to the position of the LUMO of the dye and moves the electron to the metal oxide 14 from the LUMO. Have.
 色素13は、下記一般式1に示す5価リンポルフィリンを含む。 The dye 13 contains pentavalent phosphorus porphyrin represented by the following general formula 1.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
なお、一般式1において、R1~R14は任意の置換基である。一般式1に示す5価リンポルフィリンは、同形で中心金属が異なるポルフィリンに比べ、より強いカチオン性を有するため、HOMO-LUMOエネルギー準位ギャップが狭くなり、より長波長の波長領域に対しても光吸収を示す。その結果、一般式1に示す5価リンポルフィリンを用いることにより、光電変換装置の長波長感度を高めることができる。また、貴金属を含んでいないことにより、材料の低コスト化が実現する。 In the general formula 1, R1 to R14 are arbitrary substituents. The pentavalent phosphoporphyrin represented by the general formula 1 has a stronger cationic property than porphyrins having the same shape and different central metals, and therefore the HOMO-LUMO energy level gap is narrowed, and even in a longer wavelength region. Shows light absorption. As a result, by using the pentavalent phosphorus porphyrin represented by the general formula 1, the long wavelength sensitivity of the photoelectric conversion device can be increased. Moreover, the cost reduction of material is implement | achieved by not containing a noble metal.
 一般式1において、R1~R4の少なくとも1つが、電子供与性の置換基を有するフェニル基であることが好ましい。この場合、これらの置換基からリンポルフィリン中心への電荷移動遷移の寄与がある。そのため、400~700nmに吸収波長領域を有していた従来のポルフィリン誘導体を有する色素に比べ、より長波長領域の光をも吸収することができ、光電変換装置X1の光電変換効率を高めることができる。 In the general formula 1, at least one of R1 to R4 is preferably a phenyl group having an electron-donating substituent. In this case, there is a contribution of charge transfer transition from these substituents to the center of the phosphorus porphyrin. Therefore, compared to a conventional dye having a porphyrin derivative having an absorption wavelength region of 400 to 700 nm, light in a longer wavelength region can be absorbed, and the photoelectric conversion efficiency of the photoelectric conversion device X1 can be improved. it can.
 特に、このような電子供与性の置換基を有するフェニル基は、(ジアルキルアミノ)フェニル基、アミノフェニル基またはヒドロキシフェニル基であることが好ましい。この場合、吸収波長範囲が800nm以上まで拡大した光吸収を示し、光電変換装置X1の光電変換効率をより高めることができる。 In particular, the phenyl group having such an electron-donating substituent is preferably a (dialkylamino) phenyl group, an aminophenyl group, or a hydroxyphenyl group. In this case, light absorption in which the absorption wavelength range is expanded to 800 nm or more is shown, and the photoelectric conversion efficiency of the photoelectric conversion device X1 can be further increased.
 なお、一般式1はカチオンであるため、色素13は対イオンとして、例えば、塩化物イオンやヨウ化物イオン等の任意のアニオンを有する。 In addition, since the general formula 1 is a cation, the dye 13 has an arbitrary anion such as a chloride ion or an iodide ion as a counter ion.
 次に、色素13と金属酸化物14と電解質15の組み合わせによる光電変換作用について説明する。なお、色素13は、一般式1において、R1=R2=R3=R4=パラ(ジメチルアミノ)フェニル基、R5=R6=カルボキシフェニルオキシ基、R7=R8=R9=R10=R11=R12=R13=R14=Hで説明する。光を吸収した色素13は、電子をHOMO準位(-5.59eV)からLUMO準位(-4.11eV)に励起させる。金属酸化物14の伝導帯(コンダクションバンド)は、TiOが-4.2eV、ZnOが-4.4eV、SnOが-4.8eVである。このように、色素13のLUMO準位は、上述した金属酸化物14の伝導帯よりもエネルギー準位が高いため、上記LUMO準位の電子が上記金属酸化物14の伝導帯に移動しやすくなる。加えて、色素13のHOMO準位(-5.59eV)が、電解質15の酸化還元電位よりも低ければ、電解質15から色素13のHOMO準位に電子移動しやすくなる。なお、電解質15の酸化還元電位は、例えば、ヨウ化テトラプロピルアンモニウム、ヨウ化リチウム、およびヨウ素をメトキシプロピオニトリルに溶解してなるヨウ素レドックスの場合、-5.1eVである。 Next, the photoelectric conversion effect | action by the combination of the pigment | dye 13, the metal oxide 14, and the electrolyte 15 is demonstrated. The dye 13 is represented by the general formula 1 in which R1 = R2 = R3 = R4 = para (dimethylamino) phenyl group, R5 = R6 = carboxyphenyloxy group, R7 = R8 = R9 = R10 = R11 = R12 = R13 = The description will be made with R14 = H. The dye 13 that has absorbed the light excites electrons from the HOMO level (−5.59 eV) to the LUMO level (−4.11 eV). The conduction band of the metal oxide 14 is −4.2 eV for TiO 2 , −4.4 eV for ZnO, and −4.8 eV for SnO 2 . Thus, the LUMO level of the dye 13 has an energy level higher than that of the above-described conduction band of the metal oxide 14, so that the electrons of the LUMO level easily move to the conduction band of the metal oxide 14. . In addition, if the HOMO level (−5.59 eV) of the dye 13 is lower than the oxidation-reduction potential of the electrolyte 15, electrons easily move from the electrolyte 15 to the HOMO level of the dye 13. The redox potential of the electrolyte 15 is, for example, −5.1 eV in the case of iodine redox obtained by dissolving tetrapropylammonium iodide, lithium iodide, and iodine in methoxypropionitrile.
 また、一般式1における置換基R1~R14は、水素、ハロゲン、ジターシャルブチルフェニル基、アルキル基、フェニル基、カルボキシル基、カルボキシフェニル基、カルボメトキシフェニル基、スチリルカルボキシル基、チオシアナート基、シアノ基、シアノアクリレート基、スルホン酸基、スルホニル基、ヒドロキサム酸基、水酸基、ニトロ基、アミノ基、メルカプト基、アリール基、アルコキシル基、アリールオキシ基、アルキルチオ基、アリールチオ基、アルキルアミノ基、アリールアミノ基、スルホン酸エステル基、スルホン酸アミド基、カルボン酸エステル基、カルボン酸アミド基、カルボニル基、シリル基、シロキシ基、ターシャルブチル基、ホスホリル基等の任意の置換基である。 The substituents R1 to R14 in the general formula 1 are hydrogen, halogen, di-tert-butylphenyl group, alkyl group, phenyl group, carboxyl group, carboxyphenyl group, carbomethoxyphenyl group, styrylcarboxyl group, thiocyanate group, cyano group. , Cyanoacrylate group, sulfonic acid group, sulfonyl group, hydroxamic acid group, hydroxyl group, nitro group, amino group, mercapto group, aryl group, alkoxyl group, aryloxy group, alkylthio group, arylthio group, alkylamino group, arylamino group , Sulfonic acid ester group, sulfonic acid amide group, carboxylic acid ester group, carboxylic acid amide group, carbonyl group, silyl group, siloxy group, tertiary butyl group, phosphoryl group and the like.
 また、色素13は、電荷移動遷移の寄与により長波長に吸収を示すように、置換基R1~R4の少なくとも1つが強い電子供与性を示すものであることが好ましい。このような電子供与性置換基としては、例えば、(ジメチルアミノ)フェニル基、(ジエチルアミノ)フェニル基などの(ジアルキルアミノ)フェニル基、アミノフェニル基、ヒドロキシフェニル基等が挙げられる。 In addition, it is preferable that at least one of the substituents R1 to R4 exhibits a strong electron donating property so that the dye 13 exhibits absorption at a long wavelength due to the contribution of the charge transfer transition. Examples of such electron donating substituents include (dialkylamino) phenyl groups such as (dimethylamino) phenyl group and (diethylamino) phenyl group, aminophenyl group, and hydroxyphenyl group.
 また、色素13は、金属酸化物14に効率良く付着されるように、置換基R1~R14の少なくとも1つが付着性の高い置換基であることが好ましい。このような付着性の高い置換基としては、例えば、カルボキシル基、カルボキシフェニル基、スルホ基、スルホフェニル基、ヒドロキシル基、アルコキシル基、アリール基、ホスホリル基等が挙げられる。また、付着性の高い置換基は、色素13から金属酸化物14への電子移動が効率良く進むという観点から、カルボキシフェニル基が好適である。 In addition, it is preferable that at least one of the substituents R1 to R14 is a highly adhesive substituent so that the dye 13 is efficiently attached to the metal oxide 14. Examples of such a highly adhesive substituent include a carboxyl group, a carboxyphenyl group, a sulfo group, a sulfophenyl group, a hydroxyl group, an alkoxyl group, an aryl group, and a phosphoryl group. In addition, the highly adhesive substituent is preferably a carboxyphenyl group from the viewpoint of efficient electron transfer from the dye 13 to the metal oxide 14.
 特に一般式1のR5およびR6の少なくとも1つがカルボキシル基を有することが好ましい。この場合、ポルフィリン環の共鳴部位と金属酸化物14との距離をより短くする事ができるため、色素13から金属酸化物14への電子移動をより高めることができる。 In particular, at least one of R5 and R6 in the general formula 1 preferably has a carboxyl group. In this case, since the distance between the resonance site of the porphyrin ring and the metal oxide 14 can be further shortened, the electron transfer from the dye 13 to the metal oxide 14 can be further increased.
 次に、一般式1で示される色素13の合成方法の一例について説明する。プロピオン酸とオクタン酸が1:1の比で混合された溶媒に、パラ(ジメチルアミノ)ベンズアルデヒドとピロールを加えて2時間加熱し、冷却後に生成した沈殿物を洗浄してテトラキス[パラ(ジメチルアミノ)フェニル]ポルフィリンを得る。このテトラキス[パラ(ジメチルアミノ)フェニル]ポルフィリンと三塩化リンを乾燥ピリジンに分散させ、加熱後、液体を減圧留去し、カラムクロマトグラフィで分離精製することにより、5価リンポルフィリン・ジクロロ化物を得る。この5価リンポルフィリン・ジクロロ化物をパラヒドロキシ安息香酸と乾燥ピリジンと混合し、加熱した後、カラムクロマトグラフィで分離精製することにより、一般式1でR1=R2=R3=R4=パラ(ジメチルアミノ)フェニル基、R5=R6=カルボキシフェニルオキシ基、R7=R8=R9=R10=R11=R12=R13=R14=Hの色素13を得ることができる。 Next, an example of a method for synthesizing the dye 13 represented by the general formula 1 will be described. Para (dimethylamino) benzaldehyde and pyrrole were added to a solvent in which propionic acid and octanoic acid were mixed at a ratio of 1: 1 and heated for 2 hours. After cooling, the precipitate formed was washed with tetrakis [para (dimethylamino ) Phenyl] porphyrin. This tetrakis [para (dimethylamino) phenyl] porphyrin and phosphorus trichloride are dispersed in dry pyridine, and after heating, the liquid is distilled off under reduced pressure and separated and purified by column chromatography to obtain a pentavalent phosphoporphyrin dichloroate. . The pentavalent phosphoporphyrin dichloroate is mixed with parahydroxybenzoic acid and dry pyridine, heated, and separated and purified by column chromatography to obtain R1 = R2 = R3 = R4 = para (dimethylamino) in the general formula 1. A dye 13 having a phenyl group, R5 = R6 = carboxyphenyloxy group, R7 = R8 = R9 = R10 = R11 = R12 = R13 = R14 = H can be obtained.
 次に、色素13を金属酸化物14に付着させる方法を説明する。色素13の付着方法としては、例えば、金属酸化物14を形成した導電性基板11を色素13が溶解された溶液に浸漬する方法、あるいは金属酸化物14を形成した導電性基板11を封止剤等により周囲を封止した後、封止剤の注入口より色素13を溶解した溶液を注入して該溶液を封止された内部で循環させ金属酸化物14に色素13を付着させる方法が挙げられる。また、前者において、色素13を溶解した溶液に浸漬する際は、溶液および雰囲気の温度は特に限定されるものではなく、例えば、雰囲気は大気圧下とし、温度は室温とすればよく、浸漬時間は色素13の種類、溶媒の種類、溶液の濃度、温度等により適宜調整することができる。なお、色素13を溶解させるために用いる溶媒は、トルエン等の芳香族炭化水素、エタノールなどのアルコール類、アセトン等のケトン類、ジエチルエーテル、テトラヒドロフラン等のエーテル類、アセトニトリル等の窒素化合物等を1種または2種以上混合したものが挙げられる。このとき、溶液中の色素13の濃度は5×10-5~1×10-3mol/l程度が好ましい。また、この溶液は、色素13の凝集を抑制すべく、添加剤として弱塩基性化合物であるターシャルブチルピリジン等、あるいは弱酸性化合物であるデオキシコール酸等を含んでいてもよい。 Next, a method for attaching the dye 13 to the metal oxide 14 will be described. As a method for attaching the dye 13, for example, a method in which the conductive substrate 11 on which the metal oxide 14 is formed is immersed in a solution in which the dye 13 is dissolved, or the conductive substrate 11 on which the metal oxide 14 is formed is used as a sealing agent. After the periphery is sealed by, for example, a method in which a solution in which the dye 13 is dissolved is injected from an injection port of the sealing agent, and the solution is circulated in the sealed interior to attach the dye 13 to the metal oxide 14. It is done. Further, when the former is immersed in a solution in which the dye 13 is dissolved, the temperature of the solution and the atmosphere is not particularly limited. For example, the atmosphere may be at atmospheric pressure, and the temperature may be room temperature. Can be appropriately adjusted depending on the type of the dye 13, the type of the solvent, the concentration of the solution, the temperature, and the like. The solvent used to dissolve the dye 13 is 1 aromatic hydrocarbon such as toluene, alcohols such as ethanol, ketones such as acetone, ethers such as diethyl ether and tetrahydrofuran, nitrogen compounds such as acetonitrile, and the like. The seed | species or what mixed 2 or more types is mentioned. At this time, the concentration of the dye 13 in the solution is preferably about 5 × 10 −5 to 1 × 10 −3 mol / l. Further, this solution may contain, as an additive, tertiary butyl pyridine, which is a weakly basic compound, or deoxycholic acid, which is a weakly acidic compound, in order to suppress aggregation of the dye 13.
 <正孔輸送材料>
 正孔輸送材料は、色素からの電荷(正孔)を輸送する機能を有し、導電体、半導体、電解質等が用いられる。本実施の形態では電解質15が正孔輸送材料として機能する。電解質15としては、例えば、液体電解質、固体電解質、ゲル電解質、溶融塩等が挙げられる。
<Hole transport material>
The hole transport material has a function of transporting charges (holes) from the dye, and a conductor, a semiconductor, an electrolyte, or the like is used. In the present embodiment, the electrolyte 15 functions as a hole transport material. Examples of the electrolyte 15 include a liquid electrolyte, a solid electrolyte, a gel electrolyte, and a molten salt.
 液体電解質としては、例えば、第四級アンモニウム塩およびLi塩等を炭酸プロピレン、アセトニトリル等の溶媒に溶解させたものを用いることができる。また、ヨウ化テトラプロピルアンモニウム、ヨウ化リチウム、ヨウ素をメトキシプロピオニトリル等の溶媒に溶解させたものを用いることができる。 As the liquid electrolyte, for example, a quaternary ammonium salt, a Li salt or the like dissolved in a solvent such as propylene carbonate or acetonitrile can be used. Further, tetrapropylammonium iodide, lithium iodide, or iodine dissolved in a solvent such as methoxypropionitrile can be used.
 固体電解質としては、例えば、ポリエチレンオキサイド、ポリエチレンイミンもしくはポリエチレン等の高分子鎖に、スルホンイミダゾリウム塩、テトラシアノキノジメタン塩、ジシアノキノジイミン塩等を有するものが挙げられる。 Examples of solid electrolytes include those having a sulfonimidazolium salt, a tetracyanoquinodimethane salt, a dicyanoquinodiimine salt, etc. in a polymer chain such as polyethylene oxide, polyethyleneimine or polyethylene.
 ゲル電解質は、大別して化学ゲルと物理ゲルとに分けられる。化学ゲルは架橋反応等により化学結合でゲルを形成しているものであり、物理ゲルは、物理的な相互作用により室温付近でゲル化しているものである。ゲル電解質としては、アセトニトリル、エチレンカーボネート、プロピレンカーボネートまたはそれらの混合物に対し、ポリエチレンオキサイド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリビニルアルコール、ポリアクリル酸、ポリアクリルアミド等のホストポリマーを混入して重合させたゲル電解質が好ましい。なお、ゲル電解質や固体電解質を使用する場合には、低粘度の前駆体をナノ粒子に含有させ、加熱、紫外線照射、電子線照射等の手段で二次元、三次元の架橋反応を起こさせることによってゲル化または固体化させることができる。 Gel electrolytes are roughly classified into chemical gels and physical gels. A chemical gel is a gel formed by a chemical bond by a cross-linking reaction or the like, and a physical gel is gelled near room temperature due to a physical interaction. The gel electrolyte is a gel obtained by mixing a host polymer such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polyvinyl alcohol, polyacrylic acid or polyacrylamide with acetonitrile, ethylene carbonate, propylene carbonate or a mixture thereof. An electrolyte is preferred. When using a gel electrolyte or solid electrolyte, a low-viscosity precursor is contained in the nanoparticles, and a two-dimensional or three-dimensional crosslinking reaction is caused by means such as heating, ultraviolet irradiation, or electron beam irradiation. Can be gelled or solidified.
 溶融塩としては、例えば、ヨウ化物の溶融塩を用いることができる。ヨウ化物の溶融塩としては、イミダゾリウム塩、第4級アンモニウム塩、イソオキサゾリジニウム塩、イソチアゾリジニウム塩、ピラゾリジウム塩、ピロリジニウム塩、ピリジニウム塩等のヨウ化物が挙げられる。また、上述のヨウ化物の溶融塩の具体例としては、例えば、1,1-ジメチルイミダゾリウムアイオダイド、1-メチル-3-エチルイミダゾリウムアイオダイド、1-メチル-3-ペンチルイミダゾリウムアイオダイド、1-メチル-3-イソペンチルイミダゾリウムアイオダイド、1-メチル-3-ヘキシルイミダゾリウムアイオダイド、1-メチル-3-エチルイミダゾリウムアイオダイド、1,2-ジメチル-3-プロピルイミダゾールアイオダイド、1-エチル-3-イソプロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。 As the molten salt, for example, a molten salt of iodide can be used. Examples of the molten salt of iodide include iodides such as imidazolium salt, quaternary ammonium salt, isoxazolidinium salt, isothiazolidinium salt, pyrazolidium salt, pyrrolidinium salt, pyridinium salt and the like. Specific examples of the above-mentioned molten salt of iodide include, for example, 1,1-dimethylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1-methyl-3-pentylimidazolium iodide. 1-methyl-3-isopentylimidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-ethylimidazolium iodide, 1,2-dimethyl-3-propylimidazole iodide 1-ethyl-3-isopropylimidazolium iodide, pyrrolidinium iodide and the like.
 また、正孔輸送材料として用いられる導電体や半導体としては、例えば、一価の銅を含む化合物半導体、GaP、NiO、CoO、FeO、Bi、MoO、Cr等が挙げられ、とりわけ、一価の銅を含む半導体がよい。一価の銅を含む化合物半導体としては、例えば、CuI、CuInSe、CuO、CuSCN、CuS、CuInS、CuAlSeが挙げられ、製造が簡便という観点から、CuIが好適である。 Examples of the conductor or semiconductor used as the hole transport material include a compound semiconductor containing monovalent copper, GaP, NiO, CoO, FeO, Bi 2 O 3 , MoO 2 , Cr 2 O 3 and the like. In particular, a semiconductor containing monovalent copper is preferable. Examples of the compound semiconductor containing monovalent copper include CuI, CuInSe 2 , Cu 2 O, CuSCN, CuS, CuInS 2 , and CuAlSe 2 , and CuI is preferable from the viewpoint of easy manufacture.
 <透明電極>
 透明電極16は、電解質15と電荷のやりとりが可能な導電性を有するとともに、光電変換に寄与する光が透過可能な透光性を有している。透明電極16としては、例えば、錫ドープ酸化インジウム(ITO)膜、不純物ドープの酸化インジウム(In)膜、不純物ドープの酸化亜鉛(ZnO)膜、フッ素ドープの二酸化錫膜等、あるいはこれらを積層してなる積層膜が挙げられる。上述した透明電極16の成膜方法は、成膜する材料に応じて種々選択できるものであり、例えば、低温成長のスパッタリング法、低温スプレー熱分解法、熱CVD法、溶液成長法、真空蒸着法、イオンプレーティング法、ディップコート法、ゾル・ゲル法等がある。なお、透明電極16は、その表面に入射光の波長オーダーの凹凸を形成すると、光閉じ込め効果を持たせることができる。また、透明電極16では、真空蒸着法やスパッタリング法等で形成したAu、Pd、Al等の薄い金属膜でもよい。電解質15と電荷のやりとりを効率良く行うために、透明電極16上に触媒(図示なし)を形成する。触媒の材質としては、例えば、プラチナ、パラジウム、イリジウム、オスミウム、ルテニウム、ロジウム等の貴金属やカーボン、ポリエチレンジオキシチオフェン(PEDOT)等の有機導電材料が挙げられる。
<Transparent electrode>
The transparent electrode 16 has conductivity capable of exchanging charges with the electrolyte 15 and also has translucency capable of transmitting light contributing to photoelectric conversion. Examples of the transparent electrode 16 include a tin-doped indium oxide (ITO) film, an impurity-doped indium oxide (In 2 O 3 ) film, an impurity-doped zinc oxide (ZnO) film, a fluorine-doped tin dioxide film, and the like. And a laminated film formed by laminating the layers. The film forming method of the transparent electrode 16 described above can be variously selected according to the material to be formed, for example, a low temperature growth sputtering method, a low temperature spray pyrolysis method, a thermal CVD method, a solution growth method, a vacuum evaporation method. , Ion plating method, dip coating method, sol-gel method and the like. The transparent electrode 16 can have a light confinement effect by forming irregularities in the wavelength order of incident light on the surface thereof. Further, the transparent electrode 16 may be a thin metal film such as Au, Pd, or Al formed by a vacuum deposition method, a sputtering method, or the like. In order to efficiently exchange charges with the electrolyte 15, a catalyst (not shown) is formed on the transparent electrode 16. Examples of the material of the catalyst include noble metals such as platinum, palladium, iridium, osmium, ruthenium, and rhodium, carbon, and organic conductive materials such as polyethylenedioxythiophene (PEDOT).
 <透光性被覆体>
 透光性被覆体17は、光電変換に寄与する光が透過可能な透光性を有して成り、透明電極16等を外部から保護する機能を有する。このような透光性被覆体17としては、例えば、フッ素樹脂、ポリエステル樹脂シリコンポリエステル樹脂、ポリ塩化ビニル樹脂、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、ポリイミド、ポリカーボネート等の樹脂シート、白板ガラス、ソーダガラス、硼珪酸ガラス、セラミックス等の無機質シート、または有機および無機素材を組み合わせてなるハイブリッドシート等が挙げられる。この透光性被覆体17の厚みは0.1μm~6mm、好ましくは1μm~4mmがよい。
<Translucent covering>
The translucent covering 17 has a translucency through which light contributing to photoelectric conversion can be transmitted, and has a function of protecting the transparent electrode 16 and the like from the outside. Examples of such a translucent covering 17 include a fluororesin, a polyester resin, a silicon polyester resin, a polyvinyl chloride resin, a PET (polyethylene terephthalate), PEN (polyethylene naphthalate), a resin sheet such as polyimide and polycarbonate, and a white plate. Examples thereof include inorganic sheets such as glass, soda glass, borosilicate glass and ceramics, or hybrid sheets formed by combining organic and inorganic materials. The thickness of the translucent covering 17 is 0.1 μm to 6 mm, preferably 1 μm to 4 mm.
 なお、光電変換装置X1は、吸収する光の波長が異なる複数種の色素13を用いてよい。このような形態であれば、より広範囲な波長領域における光を光電変換することが可能となり、光電変換効率が向上する。また、複数の光電変換装置X1を積層させ、それぞれの光電変換装置X1に用いられている色素13を、光電変換装置X1同士で互いに異なる吸収特性を有する関係とした形態であっても、より広範囲な波長領域における光を光電変換することが可能となり、光電変換効率が向上する。 Note that the photoelectric conversion device X1 may use a plurality of types of dyes 13 having different wavelengths of light to be absorbed. With such a form, it becomes possible to photoelectrically convert light in a wider wavelength region, and the photoelectric conversion efficiency is improved. Moreover, even if the plurality of photoelectric conversion devices X1 are stacked and the dye 13 used in each photoelectric conversion device X1 has a relationship in which the photoelectric conversion devices X1 have different absorption characteristics, a wider range It becomes possible to photoelectrically convert light in a wide wavelength region, and the photoelectric conversion efficiency is improved.
 このような光電変換装置X1は、該光電変換装置X1を発電手段として用い、この発電手段からの発電電力を負荷へ供給するように成すことによって、光発電装置とすることができる。この光発電装置は、例えば、光電変換装置X1を1つ以上(複数であれば、直列、並列または直並列に)接続したものを発電手段として用い、この発電手段から直接に直流負荷へ発電電力を供給する機構を有するものである。また、光発電装置は、光電変換装置X1から出力された直流電力をインバータ等の電力変換手段を介して適当な交流電力に変換した後、この発電電力を商用電源系統や各種の電気機器等の交流負荷に供給する機構を有していてもよい。さらに、このような光発電装置は、日当たりのよい建物に設置することにより、各種態様の太陽光発電システムとして利用することも可能である。 Such a photoelectric conversion device X1 can be a photovoltaic device by using the photoelectric conversion device X1 as a power generation means and supplying the generated power from the power generation means to a load. This photovoltaic power generation device uses, for example, one or more photoelectric conversion devices X1 connected in series (in series, parallel, or series-parallel if there are a plurality) as power generation means, and the generated power directly from this power generation means to a DC load. It has a mechanism which supplies. In addition, the photovoltaic power generation device converts the direct current power output from the photoelectric conversion device X1 into appropriate alternating current power through power conversion means such as an inverter, and then converts this generated power to a commercial power supply system or various electric devices. You may have the mechanism supplied to alternating current load. Furthermore, such a photovoltaic power generation device can be used as a photovoltaic power generation system of various modes by being installed in a building with good sunlight.
 ≪第2の実施形態≫
 図2は、本発明の第2の実施形態に係る光電変換装置を示す断面図である。本発明の第2の実施形態に係る光電変換装置X2は、第1の光電変換体12の電解質15側に、半導体層を有する第2の光電変換体18を有する点で、本発明の第1の実施形態に係る光電変換装置X1と相違する。また、この第2の光電変換体18は、透明電極16と中間層19との間に介在した状態で配されている。図2の第2の実施形態において、図1の第1の実施形態と同じ構成要素には同じ符号を付している。
<< Second Embodiment >>
FIG. 2 is a sectional view showing a photoelectric conversion device according to the second embodiment of the present invention. The photoelectric conversion device X2 according to the second embodiment of the present invention has a second photoelectric conversion body 18 having a semiconductor layer on the electrolyte 15 side of the first photoelectric conversion body 12 in that the first photoelectric conversion apparatus X2 has the first photoelectric conversion body X2 of the present invention. This is different from the photoelectric conversion device X1 according to the embodiment. The second photoelectric converter 18 is arranged in a state of being interposed between the transparent electrode 16 and the intermediate layer 19. In the second embodiment of FIG. 2, the same components as those of the first embodiment of FIG.
 第2の光電変換体18は、入射される光を吸収した後、当該光を電気に変換する光電変換機能を有しており、特に、第1の光電変換体12で光電変換される光と異なる波長の光における光電変換作用に優れているものが好ましい。第2の光電変換体18の半導体層としては、例えば、シリコン系の薄膜半導体層、CIGS(CuInGaSe)等の化合物半導体系、有機薄膜系の薄膜半導体層等が挙げられる。シリコン系としては、例えば、アモルファスシリコン系、ナノサイズ結晶を含むアモルファスシリコン系、微結晶シリコン系などがよく、特に短波長感度を有し、かつ光劣化が小さいという観点から、アモルファスシリコン系が好ましい。なお、アモルファスシリコン系とは、アモルファスシリコンカーバイト、アモルファスシリコンナイトライド等の合金系も含む。また、これら薄膜半導体層を複数層で構成した場合、その接合層は、例えば、pin接合型、pn接合型、ショットキー接合型、ヘテロ接合型等で構成されるような内部電界を生じるものがよい。 The second photoelectric conversion body 18 has a photoelectric conversion function of converting incident light after absorbing incident light, and in particular, the light photoelectrically converted by the first photoelectric conversion body 12 What is excellent in the photoelectric conversion effect | action in the light of a different wavelength is preferable. Examples of the semiconductor layer of the second photoelectric conversion body 18 include a silicon-based thin film semiconductor layer, a compound semiconductor system such as CIGS (CuInGaSe), and an organic thin film semiconductor film. As the silicon system, for example, an amorphous silicon system, an amorphous silicon system including a nanosize crystal, a microcrystalline silicon system, and the like are preferable, and an amorphous silicon system is preferable from the viewpoint of having a short wavelength sensitivity and a small light deterioration. . The amorphous silicon system includes alloy systems such as amorphous silicon carbide and amorphous silicon nitride. Further, when these thin film semiconductor layers are composed of a plurality of layers, the junction layer may generate an internal electric field such as a pin junction type, a pn junction type, a Schottky junction type, or a hetero junction type. Good.
 中間層19は第1の光電変換体12と第2の光電変換体18とを電気的に接続する機能を有し、透光性の導電性材料から成る。中間層19の材料としては、金属、導電性酸化物及び導電性ポリマーのうちの少なくとも一つを含むことがよい。 The intermediate layer 19 has a function of electrically connecting the first photoelectric converter 12 and the second photoelectric converter 18 and is made of a translucent conductive material. The material of the intermediate layer 19 may include at least one of a metal, a conductive oxide, and a conductive polymer.
 中間層19が金属の場合、透光性を高めるため、多数の金属から成る島状部から構成されていることが好ましい。このような金属の材質としては、白金,パラジウムなどの白金族元素、または銀,アルミニウム,チタン,鉄,銅,インジウム,クロム,イリジウムなどの金属から成る。 In the case where the intermediate layer 19 is made of metal, it is preferable that the intermediate layer 19 is made of an island-shaped portion made of a large number of metals in order to improve translucency. The metal material is made of a platinum group element such as platinum or palladium, or a metal such as silver, aluminum, titanium, iron, copper, indium, chromium, or iridium.
 中間層19が導電性酸化物の場合、その材質としては、スズドープ酸化インジウム,フッ素ドープ酸化スズ,アンチモンドープ酸化スズ,アルミニウムドープ酸化亜鉛,ガリウムドープ酸化亜鉛,酸化亜鉛,酸化インジウム,酸化スズ,酸化チタン,ニオブドープ酸化チタンなど、透明電極としての機能を有することができる酸化物がよい。 When the intermediate layer 19 is a conductive oxide, the materials thereof are tin-doped indium oxide, fluorine-doped tin oxide, antimony-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, zinc oxide, indium oxide, tin oxide, oxidation An oxide that can function as a transparent electrode, such as titanium or niobium-doped titanium oxide, is preferable.
 中間層19が導電性ポリマーの場合、その材質は、ポリエチレンジオキシチオフェン(PEDOT)(ポリスチレンスルホナートやトルエンスルホネート等をドーピングしてもよい),ポリビニルカルバゾール,チオフェンなどがよい。 When the intermediate layer 19 is a conductive polymer, the material is preferably polyethylene dioxythiophene (PEDOT) (may be doped with polystyrene sulfonate or toluene sulfonate), polyvinyl carbazole, thiophene, or the like.
 次に、アモルファスシリコン系の薄膜半導体層について詳述する。薄膜半導体層は、例えば、プラズマCVD法によって連続堆積したpin接合の水素化アモルファスシリコン系半導体膜が好適である。この半導体膜は、透明電極16側にp型半導体膜を設けたpin接合とするとよいが、逆接合のnip接合でも構わない。なお、一導電型シリコン系半導体層と逆導電型シリコン系半導体層とは、それぞれp型半導体とn型半導体と、もしくはn型半導体とp型半導体とからなるものを意味する。また実質的に真性であるシリコン系半導体層はi型半導体を意味する。ここで、i型半導体膜がアモルファス(非晶質)であれば、p型半導体膜およびn型半導体膜は少なくともいずれかが微結晶を有するもの、または水素化アモルファスシリコン(a-Si:H)合金系の膜を用いるとよい。また、薄膜半導体層は、光入射側のp型半導体膜に水素化アモルファスシリコンカーバイドを用いると、透光性を高めて光の侵入ロスが少なくなるので、より好ましい。また、薄膜半導体層は、プラズマCVD法以外の他の成膜法として触媒CVD法を用いて成膜してもよい。また、プラズマCVD法と触媒CVD法とを組み合わせると、成膜した半導体膜における光劣化が抑制できるため、信頼性を高めることができる。 Next, the amorphous silicon-based thin film semiconductor layer will be described in detail. As the thin film semiconductor layer, for example, a pin junction hydrogenated amorphous silicon based semiconductor film continuously deposited by plasma CVD is suitable. The semiconductor film may be a pin junction in which a p-type semiconductor film is provided on the transparent electrode 16 side, but may be a reverse junction nip junction. Note that the one-conductivity-type silicon-based semiconductor layer and the reverse-conductivity-type silicon-based semiconductor layer mean a layer composed of a p-type semiconductor and an n-type semiconductor, or an n-type semiconductor and a p-type semiconductor, respectively. Further, a silicon semiconductor layer that is substantially intrinsic means an i-type semiconductor. Here, if the i-type semiconductor film is amorphous (amorphous), at least one of the p-type semiconductor film and the n-type semiconductor film has microcrystals, or hydrogenated amorphous silicon (a-Si: H) An alloy film may be used. In addition, it is more preferable for the thin-film semiconductor layer to use hydrogenated amorphous silicon carbide for the p-type semiconductor film on the light incident side, because it increases translucency and reduces light penetration loss. Further, the thin film semiconductor layer may be formed using a catalytic CVD method as a film forming method other than the plasma CVD method. In addition, when the plasma CVD method and the catalytic CVD method are combined, light deterioration in the formed semiconductor film can be suppressed, so that reliability can be improved.
 次に、第2の光電変換体18の製造方法の一例について説明する。p型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+HガスおよびB(Hで500ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。この膜厚は、十分な内部電界を形成しつつ、光の損失を低減するという観点から50Å~200Åの範囲がよい。i型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+Hガスを用い、これらのガスの流量を最適化して成膜する。この膜厚は、十分な光電流を得るとともに、第1の光電変換体12の発電に寄与する光を透過させるという観点から、500Å~5000Å(0.05μm~0.5μm)が好適である。続いて、n型の水素化アモルファスシリコン(a-Si:H)膜は、原料ガスとしてSiH+HガスおよびPH(Hで1000ppmに希釈したもの)ガスを用い、これらのガスの流量をそれぞれ最適化して成膜する。この膜厚は、十分な内部電界を形成しつつ、光の損失を低減するという観点から50Å~200Åの範囲がよい。なお、成膜時の透光性被覆体17および透明電極16の温度は、p型、i型、およびn型膜のいずれも150℃~300℃の範囲がよい。また、このような薄膜半導体層を含んでなる第2の光電変換体18は、300nm~700nmの波長の光を吸収しやすく、色素13が吸収しやすい光の波長領域700nm~1100nmに比べて、短波長側の光でもって光電変換を行う。 Next, an example of the manufacturing method of the 2nd photoelectric conversion body 18 is demonstrated. The p-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and B 2 H 6 (diluted to 500 ppm with H 2 ) gas as source gases, and the flow rates of these gases are Each film is optimized. This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field. The i-type hydrogenated amorphous silicon (a-Si: H) film is formed by using SiH 4 + H 2 gas as a source gas and optimizing the flow rate of these gases. This film thickness is preferably 500 to 5000 mm (0.05 μm to 0.5 μm) from the viewpoints of obtaining a sufficient photocurrent and transmitting light that contributes to power generation of the first photoelectric converter 12. Subsequently, the n-type hydrogenated amorphous silicon (a-Si: H) film uses SiH 4 + H 2 gas and PH 3 (diluted to 1000 ppm with H 2 ) gas as source gases, and the flow rates of these gases Each of these is optimized to form a film. This film thickness is preferably in the range of 50 to 200 mm from the viewpoint of reducing light loss while forming a sufficient internal electric field. The temperature of the translucent covering 17 and the transparent electrode 16 during film formation is preferably in the range of 150 ° C. to 300 ° C. for any of the p-type, i-type, and n-type films. In addition, the second photoelectric conversion body 18 including such a thin film semiconductor layer easily absorbs light having a wavelength of 300 nm to 700 nm, and has a wavelength range of 700 nm to 1100 nm that is easily absorbed by the dye 13. Photoelectric conversion is performed with light on the short wavelength side.
 このように、光電変換装置X2では、光の入射側に第2の光電変換体18が配置され、この第2の光電変換体18の下方に第1の光電変換体12を有した構造であるため、まず、上述した短波長側の波長領域の光を第2の光電変換体18で吸収した後に、この第2の光電変換体18を透過する長波長側の波長領域の光を第1の光電変換体12が吸収する。それゆえ、光電変換装置X2では、より広範囲な波長領域における光電変換が可能となるため、光電変換効率を高めることができる。加えて、光電変換装置X2では、紫外に近い波長の光を吸収する第2の光電変換体18を光の入射側に配置しているため、紫外光による色素13の劣化を低減することができる。 As described above, the photoelectric conversion device X <b> 2 has a structure in which the second photoelectric conversion body 18 is disposed on the light incident side, and the first photoelectric conversion body 12 is provided below the second photoelectric conversion body 18. Therefore, after the light in the wavelength region on the short wavelength side described above is absorbed by the second photoelectric converter 18, the light in the wavelength region on the long wavelength side that transmits the second photoelectric converter 18 is first The photoelectric conversion body 12 absorbs. Therefore, the photoelectric conversion device X2 can perform photoelectric conversion in a wider wavelength range, and thus can improve the photoelectric conversion efficiency. In addition, in the photoelectric conversion device X2, since the second photoelectric conversion body 18 that absorbs light having a wavelength close to ultraviolet light is disposed on the light incident side, deterioration of the dye 13 due to ultraviolet light can be reduced. .
 なお、本発明は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を施すことは何等差し支えない。例えば、本実施形態において、電子輸送材料および正孔輸送材料として示した材料は、それぞれ電荷輸送材料の一例として電子および正孔を輸送する材料として示したにすぎず、それぞれ逆の電荷を輸送するものであっても構わない。また、導電性基板11が透明な場合、導電性基板11から光を入射させても構わない。また、第2の実施形態に係る光電変換装置X2では、第1の光電変換体12の電解質15上に、第2の光電変換体18を有する例、すなわち、正孔輸送材料における色素13とは反対側の位置に第2の光電変換体18を積層した例を示したが、電子輸送材料における色素13とは反対側の位置に第2の光電変換体18を積層してもよい。また、本発明の光電変換装置は、いわゆる色素増感太陽電池に限定されるものではなく、いわゆる有機薄膜太陽電池としても適用できる。また、本発明の色素は、本実施形態で示したように、光電変換装置への応用に適しているが、それに限定されず、その広帯域の光吸収性および酸・塩基に対する応答性(電荷移動錯体)を利用して、遮光材料、指示薬などに適用することができる。 Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention. For example, in the present embodiment, the materials shown as the electron transport material and the hole transport material are only shown as materials that transport electrons and holes as an example of the charge transport material, respectively, and each transports opposite charges. It doesn't matter. Further, when the conductive substrate 11 is transparent, light may be incident from the conductive substrate 11. Moreover, in the photoelectric conversion device X2 according to the second embodiment, an example in which the second photoelectric conversion body 18 is provided on the electrolyte 15 of the first photoelectric conversion body 12, that is, the dye 13 in the hole transport material. Although the example which laminated | stacked the 2nd photoelectric conversion body 18 in the position on the opposite side was shown, you may laminate | stack the 2nd photoelectric conversion body 18 in the position on the opposite side to the pigment | dye 13 in an electron transport material. Moreover, the photoelectric conversion device of the present invention is not limited to a so-called dye-sensitized solar cell, and can also be applied as a so-called organic thin film solar cell. In addition, as shown in the present embodiment, the dye of the present invention is suitable for application to a photoelectric conversion device, but is not limited thereto, and its broadband light absorption and acid / base response (charge transfer). The complex can be applied to a light shielding material, an indicator, and the like.
 以下、本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described.
  (色素の作製)
 プロピオン酸とオクタン酸が1:1の比で混合された溶媒に、パラ(ジメチルアミノ)ベンズアルデヒドとピロールを加えて2時間加熱し、冷却後に生成した沈殿物を洗浄してテトラキス[パラ(ジメチルアミノ)フェニル]ポルフィリンを得た。このテトラキス[パラ(ジメチルアミノ)フェニル]ポルフィリンと三塩化リンを乾燥ピリジンに分散させ、加熱後、液体を減圧留去し、カラムクロマトグラフィで分離精製することにより、5価リンポルフィリン・ジクロロ化物を得た。この5価リンポルフィリン・ジクロロ化物をパラヒドロキシ安息香酸と乾燥ピリジンと混合・加熱した後、カラムクロマトグラフィで分離精製することにより、一般式1で示された色素13を作製した。なお、本実施例においては、一般式1において、R1=R2=R3=R4=パラ(ジメチルアミノ)フェニル基、R5=R6=カルボキシフェニルオキシ基、R7=R8=R9=R10=R11=R12=R13=R14=Hの構造を有している。また、対イオンは塩化物イオンである。得られた色素の溶液の吸収スペクトルを図3に示す。
(Preparation of pigment)
Para (dimethylamino) benzaldehyde and pyrrole were added to a solvent in which propionic acid and octanoic acid were mixed at a ratio of 1: 1 and heated for 2 hours. After cooling, the precipitate formed was washed with tetrakis [para (dimethylamino ) Phenyl] porphyrin was obtained. This tetrakis [para (dimethylamino) phenyl] porphyrin and phosphorus trichloride are dispersed in dry pyridine, and after heating, the liquid is distilled off under reduced pressure and separated and purified by column chromatography to obtain a pentavalent phosphoporphyrin dichloroate. It was. The pentavalent phosphoporphyrin dichloro product was mixed and heated with parahydroxybenzoic acid and dry pyridine, and then separated and purified by column chromatography to prepare the dye 13 represented by the general formula 1. In this example, in the general formula 1, R1 = R2 = R3 = R4 = para (dimethylamino) phenyl group, R5 = R6 = carboxyphenyloxy group, R7 = R8 = R9 = R10 = R11 = R12 = It has a structure of R13 = R14 = H. The counter ion is a chloride ion. The absorption spectrum of the resulting dye solution is shown in FIG.
 (金属酸化物の作製)
 まず、導電性基板11として、表面抵抗値が10Ω/□(スクエア)の15mm×25mmサイズのフッ素ドープ酸化錫膜付ガラス基板を準備した。次いで、この導電性基板11上に金属酸化物14である多孔質酸化チタン膜を形成した。多孔質酸化チタン膜の製造方法は、SOLARONIXS社製チタニアペーストTi-Nanoxide T/SPを、4mm×4mmサイズかつ300メッシュのスクリーンを用い、スクリーン印刷法で導電性基板11上に塗布し、120℃で3分間乾燥させる操作を10回繰り返した後、導電性基板11を500℃で30分間焼成し、多孔質酸化チタン膜を形成した。なお、多孔質酸化チタン膜の膜厚は、触針式膜厚計で計測したところ18μmであった。
(Production of metal oxide)
First, as the conductive substrate 11, a glass substrate with a fluorine-doped tin oxide film having a surface resistance value of 10Ω / □ (square) and a size of 15 mm × 25 mm was prepared. Next, a porous titanium oxide film that is the metal oxide 14 was formed on the conductive substrate 11. A porous titanium oxide film was manufactured by applying a titania paste Ti-Nanoxide T / SP made by SOLARONIXS on a conductive substrate 11 by a screen printing method using a screen of 4 mm × 4 mm size and 300 mesh, and 120 ° C. The operation of drying for 3 minutes was repeated 10 times, and then the conductive substrate 11 was baked at 500 ° C. for 30 minutes to form a porous titanium oxide film. The film thickness of the porous titanium oxide film was 18 μm as measured with a stylus type film thickness meter.
 次に、上述したように合成した色素13をメタノールに溶解させて0.3mMに調製した。次いで、この色素13を含有する溶液に、多孔質酸化チタン膜を形成した導電性基板11を50℃で60分間浸漬した後、該導電性基板11を室温でメタノールにて洗浄することで、色素13が付着した金属酸化物14を作製した。 Next, the dye 13 synthesized as described above was dissolved in methanol to prepare 0.3 mM. Next, after immersing the conductive substrate 11 on which the porous titanium oxide film is formed in the solution containing the dye 13 at 50 ° C. for 60 minutes, the conductive substrate 11 is washed with methanol at room temperature, whereby the dye is obtained. A metal oxide 14 having 13 attached thereto was produced.
 (光電変換セルの作製)
 まず、直径が約0.7mmの電解液注入孔を2つ有するフッ素ドープ酸化錫膜付きガラス基板上に膜厚が約1nmの白金を成膜した透明電極16を作製した。次いで、この対向電極16の周囲に厚みが約30μmのアイオノマー樹脂を貼付け、該アイオノマー樹脂を介して透明電極16に色素13が付着した金属酸化物14を接着した。このアイオノマー樹脂は、金属酸化物14と透明電極16とで挟まれた領域を外部から封止するものである。次いで、電解質として、2.0Mのヨウ化リチウム、0.025Mのヨウ素をベンゾニトリルに溶解してなる電解質溶液を作製し、該電解質溶液を上記電解液注入孔より内部に注入することによって、光電変換セルを作製した。
(Production of photoelectric conversion cell)
First, a transparent electrode 16 was produced in which platinum having a film thickness of about 1 nm was formed on a glass substrate with a fluorine-doped tin oxide film having two electrolyte solution injection holes having a diameter of about 0.7 mm. Next, an ionomer resin having a thickness of about 30 μm was pasted around the counter electrode 16, and the metal oxide 14 having the dye 13 attached thereto was adhered to the transparent electrode 16 through the ionomer resin. This ionomer resin seals a region sandwiched between the metal oxide 14 and the transparent electrode 16 from the outside. Next, an electrolyte solution prepared by dissolving 2.0 M lithium iodide and 0.025 M iodine in benzonitrile as an electrolyte is prepared, and the electrolyte solution is injected into the inside through the electrolyte solution injection hole. A conversion cell was produced.
 (光電変換セルの特性評価)
 作製した光電変換セルに対し、山下電装社製ソーラーシミュレーターYSS-80を用いて、擬似太陽光源(AM1.5、 100mW/cm)を照射し、光電変換セルの電流電圧特性を測定した。また、分光計器社製ハイパーモノライトSM250Eシステムを用い、ケースレー社ピコアンメータで計測された電流値から算出した分光感度特性評価の結果を図4に示した。
(Characteristic evaluation of photoelectric conversion cell)
The produced photoelectric conversion cell was irradiated with a pseudo solar light source (AM1.5, 100 mW / cm 2 ) using a solar simulator YSS-80 manufactured by Yamashita Denso Co., Ltd., and the current-voltage characteristics of the photoelectric conversion cell were measured. Moreover, the result of spectral sensitivity characteristic evaluation computed from the electric current value measured with Keithley Picoammeter using the hyper monolite SM250E system by a spectrometer company was shown in FIG.
 図4に示す結果から、実施例の光電変換セルは、広い波長領域、特に1000nm以上まで広がる分光感度を示した。 From the results shown in FIG. 4, the photoelectric conversion cell of the example showed a spectral sensitivity that spreads over a wide wavelength region, particularly 1000 nm or more.
X1、X2:光電変換装置
11:導電性基板
11a:絶縁基板
11b:導電膜
12:第1の光電変換体
13:色素
14:金属酸化物(電子輸送材料)
15:電解質(正孔輸送材料)
16:透明電極
17:透光性被覆体
18:第2の光電変換体
19:中間層
X1, X2: photoelectric conversion device 11: conductive substrate 11a: insulating substrate 11b: conductive film 12: first photoelectric conversion body 13: dye 14: metal oxide (electron transport material)
15: Electrolyte (hole transport material)
16: Transparent electrode 17: Translucent covering 18: Second photoelectric conversion body 19: Intermediate layer

Claims (10)

  1.  電子輸送材料と、
     前記電子輸送材料上に位置し、下記一般式1で表される5価リンポルフィリンを有する、色素と、
     前記色素上に位置する正孔輸送材料と、
    を有する第1の光電変換体、を備える光電変換装置。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R14は任意の置換基である。)
    An electron transport material;
    A dye located on the electron transport material and having a pentavalent phosphoporphyrin represented by the following general formula 1:
    A hole transport material located on the dye;
    A photoelectric conversion device comprising: a first photoelectric conversion body having:
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R1 to R14 are optional substituents.)
  2.  前記一般式1のR1~R4の少なくとも1つが電子供与性の置換基を有するフェニル基である、請求項1に記載の光電変換装置。 2. The photoelectric conversion device according to claim 1, wherein at least one of R1 to R4 in the general formula 1 is a phenyl group having an electron-donating substituent.
  3.  前記フェニル基は、(ジアルキルアミノ)フェニル基、アミノフェニル基またはヒドロキシフェニル基である、請求項2に記載の光電変換装置。 The photoelectric conversion device according to claim 2, wherein the phenyl group is a (dialkylamino) phenyl group, an aminophenyl group, or a hydroxyphenyl group.
  4.  前記電子輸送材料は酸化物半導体を有し、前記色素が前記酸化物半導体に付着している、請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, wherein the electron transport material includes an oxide semiconductor, and the dye is attached to the oxide semiconductor.
  5.  前記一般式1のR5およびR6の少なくとも1つがカルボキシル基を有する、請求項4に記載の光電変換装置。 The photoelectric conversion device according to claim 4, wherein at least one of R5 and R6 of the general formula 1 has a carboxyl group.
  6.  前記第1の光電変換体上に位置し、半導体層を有する第2の光電変換体、をさらに備える請求項1に記載の光電変換装置。 The photoelectric conversion device according to claim 1, further comprising a second photoelectric conversion body positioned on the first photoelectric conversion body and having a semiconductor layer.
  7.  前記第2の光電変換体はアモルファスシリコン層を有する、請求項6に記載の光電変換装置。 The photoelectric conversion device according to claim 6, wherein the second photoelectric conversion body has an amorphous silicon layer.
  8.  下記一般式1で表される5価リンポルフィリンを含む有する、色素であって、
     R1~R4の少なくとも1つが電子供与性の置換基を有するフェニル基である、色素。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1~R14は任意の置換基である。)
    A dye containing pentavalent phosphorus porphyrin represented by the following general formula 1,
    A dye, wherein at least one of R1 to R4 is a phenyl group having an electron-donating substituent.
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R1 to R14 are optional substituents.)
  9.  前記フェニル基は、(ジアルキルアミノ)フェニル基、アミノフェニル基またはヒドロキシフェニル基である、請求項8に記載の色素。 The dye according to claim 8, wherein the phenyl group is a (dialkylamino) phenyl group, an aminophenyl group, or a hydroxyphenyl group.
  10.  前記一般式1のR5およびR6の少なくとも1つがカルボキシル基を有する、請求項8に記載の色素。
     
    The dye according to claim 8, wherein at least one of R5 and R6 of the general formula 1 has a carboxyl group.
PCT/JP2010/052869 2009-03-06 2010-02-24 Photoelectric conversion device and dye WO2010101057A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529968A JP5240740B2 (en) 2009-03-06 2010-02-24 Photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-052887 2009-03-06
JP2009052887 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010101057A1 true WO2010101057A1 (en) 2010-09-10

Family

ID=42709616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052869 WO2010101057A1 (en) 2009-03-06 2010-02-24 Photoelectric conversion device and dye

Country Status (2)

Country Link
JP (1) JP5240740B2 (en)
WO (1) WO2010101057A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505146A (en) * 2022-10-19 2022-12-23 江西省科学院微生物研究所(江西省流域生态研究所) Aggregation-induced emission fluorescent microsphere based on fluorescence resonance energy transfer and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247073A (en) * 1992-03-09 1993-09-24 Takeo Shimizu Porphyrin derivative and its production
JPH09296166A (en) * 1996-05-02 1997-11-18 Idemitsu Kosan Co Ltd Organic electroluminescet element containing porphyrin derivative
JP2002063949A (en) * 2000-08-16 2002-02-28 National Institute Of Advanced Industrial & Technology Dye sensitized solar battery
JP2007055978A (en) * 2005-08-26 2007-03-08 Gunma Univ Trimethylsilyl group-containing porphyrin dye, photoelectric transducer and dye-sensitized solar cell using the same
JP2009132657A (en) * 2007-11-30 2009-06-18 Sharp Corp Porphyrin compound, phorphyrin complex and photoelectric transducer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356865B2 (en) * 2002-09-10 2009-11-04 富士フイルム株式会社 Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
JP3923447B2 (en) * 2003-06-05 2007-05-30 住友チタニウム株式会社 Jig for etching plate material and etching method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247073A (en) * 1992-03-09 1993-09-24 Takeo Shimizu Porphyrin derivative and its production
JPH09296166A (en) * 1996-05-02 1997-11-18 Idemitsu Kosan Co Ltd Organic electroluminescet element containing porphyrin derivative
JP2002063949A (en) * 2000-08-16 2002-02-28 National Institute Of Advanced Industrial & Technology Dye sensitized solar battery
JP2007055978A (en) * 2005-08-26 2007-03-08 Gunma Univ Trimethylsilyl group-containing porphyrin dye, photoelectric transducer and dye-sensitized solar cell using the same
JP2009132657A (en) * 2007-11-30 2009-06-18 Sharp Corp Porphyrin compound, phorphyrin complex and photoelectric transducer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115505146A (en) * 2022-10-19 2022-12-23 江西省科学院微生物研究所(江西省流域生态研究所) Aggregation-induced emission fluorescent microsphere based on fluorescence resonance energy transfer and preparation method and application thereof
CN115505146B (en) * 2022-10-19 2024-05-14 江西省科学院微生物研究所(江西省流域生态研究所) Aggregation-induced emission fluorescent microsphere based on fluorescence resonance energy transfer and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2010101057A1 (en) 2012-09-10
JP5240740B2 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP4637523B2 (en) Photoelectric conversion device and photovoltaic device using the same
Sharifi et al. Recent Developments in Dye‐Sensitized Solar Cells
US20030230335A1 (en) Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device
KR20080094021A (en) Dye sensitization photoelectric converter
KR20100038077A (en) Coloring matter-sensitized photoelectric conversion element, process for producing the coloring matter-sensitized photoelectric conversion element, electronic equipment, semiconductor electrode, and process for rpoducing the semiconductor electrode
Nwanya et al. Dyed sensitized solar cells: A technically and economically alternative concept to pn junction photovoltaic devices.
KR20070117561A (en) Dye-sensitized photoelectric transducer and process for producing the same, eletronic apparatus and process for producing the same, and electronic equipment
WO2010029961A1 (en) Photoelectric converter
JP4969046B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP4925605B2 (en) Photoelectric conversion device and photovoltaic device using the same
EP2879229B1 (en) Photoelectric conversion layer composition and photoelectric conversion element
Santos et al. The renaissance of monolithic dye-sensitized solar cells
JP2004241378A (en) Dye sensitized solar cell
Stathatos Dye sensitized solar cells as an alternative approach to the conventional photovoltaic technology based on silicon-recent developments in the field and large scale applications
KR101794988B1 (en) Preparation method of perovskite absorber layer and preparation method of solarcell applied thereby
EP1375428A1 (en) Methods for producing titanium oxide sol and fine titanium oxide particles, and photoelectric conversion device
JP2005158379A (en) Photoelectric conversion element, its manufacturing method, electronic device and its manufacturing method
JP4678125B2 (en) PHOTOELECTRIC CONVERSION ELEMENT AND ITS MANUFACTURING METHOD, ELECTRONIC DEVICE AND ITS MANUFACTURING METHOD
JP4841128B2 (en) Photoelectric conversion device and photovoltaic device using the same
JP5153215B2 (en) Photoelectric conversion device
JP4892186B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module
JP2008277422A (en) Laminated photoelectric converter
JP2005191137A (en) Stacked photoelectric converter
JP4637473B2 (en) Stacked photoelectric conversion device
JP4377627B2 (en) Dye-sensitized solar cell and dye-sensitized solar cell module

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010529968

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748652

Country of ref document: EP

Kind code of ref document: A1