WO2010100922A1 - Organic el display panel and method for manufacturing same - Google Patents

Organic el display panel and method for manufacturing same Download PDF

Info

Publication number
WO2010100922A1
WO2010100922A1 PCT/JP2010/001471 JP2010001471W WO2010100922A1 WO 2010100922 A1 WO2010100922 A1 WO 2010100922A1 JP 2010001471 W JP2010001471 W JP 2010001471W WO 2010100922 A1 WO2010100922 A1 WO 2010100922A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
line
organic
region
ink
Prior art date
Application number
PCT/JP2010/001471
Other languages
French (fr)
Japanese (ja)
Inventor
北村嘉朗
高木清彦
錦織利樹
西山誠司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010542470A priority Critical patent/JP4755314B2/en
Publication of WO2010100922A1 publication Critical patent/WO2010100922A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present invention relates to an organic EL display panel and a manufacturing method thereof.
  • the organic EL display panel has an organic EL element including an anode and a cathode, and an organic light-emitting layer arranged between the electrodes and emitting electroluminescence.
  • the material of the organic light emitting layer that emits electroluminescence can be broadly classified into a combination of a low molecular organic compound (host material and dopant material) and a high molecular organic compound.
  • Examples of the polymer organic compound that emits electroluminescence include polyphenylene vinylene called PPV and derivatives thereof.
  • Organic light-emitting layers made of high molecular organic compounds can be driven at a relatively low voltage, consume less power, and are easy to deal with a large display panel.
  • An organic light emitting layer made of a high molecular organic compound can be produced by a coating method. Therefore, the productivity of the polymer organic EL display is significantly higher than that of the low molecular organic EL display using the vacuum process.
  • an ink containing the material of the organic light emitting layer is applied in a region defined by the barrier (bank) on the panel and dried.
  • the ink that is the material of the light emitting layer must be accurately applied in the region defined by the bank on the panel.
  • Examples of such a coating method include an inkjet method in which coating is performed by discharging ink.
  • an ink jet head having a plurality of nozzles for discharging ink is usually used.
  • the dried ink may adhere to the nozzle tip or inside. If dry ink adheres to the tip of the nozzle or the like, the nozzle is clogged, and even if the nozzle no longer ejects ink or the ink is ejected, the flying direction and the ejection amount are not stable, and the ink landing accuracy deteriorates. Therefore, immediately after the start of ink ejection, the ink landing accuracy is low, and a desired amount of ink cannot be accurately applied to a desired region.
  • Patent Document 1 and Patent Document 2 when preliminary ejection is performed outside the panel, after preliminary ejection, the inkjet head is moved to the panel while the ink jet head is moved to the front end or inside of the nozzle. The dried ink will adhere again. For this reason, before the ink is applied to the panel, the ink landing accuracy deteriorates, and there is a problem that the ink cannot be accurately applied to a desired position on the panel.
  • FIG. 1 is a plan view of a display panel disclosed in Patent Document 3.
  • FIG. 1 the display panel described in Patent Document 3 surrounds a bank 30 that defines a region 10 (hereinafter also referred to as “element array region 1”) in which pixels are disposed, and the element array region 10.
  • the spare area 20 is provided.
  • the spare area 20 is defined by the bank 40.
  • ink is ejected from the nozzles of the inkjet head on the preliminary region 20 to perform preliminary ejection. Thereafter, the ink ejection is temporarily stopped, and the ink jet head is moved to the element array region 10. Then, ink ejection is started again from the nozzles, and ink is applied to a desired region (element array region 1) while scanning the inkjet head. Further, the display panel shown in FIG. 1 is characterized in that the width of the bank 30 that defines the element arrangement area is wide in order to prevent ink from entering the element arrangement area 1 from the spare area 20.
  • FIG. 2 is a perspective view of the plasma display panel described in Patent Documents 4 and 5 before the light emitting layer is formed.
  • the plasma display panel described in Patent Document 4 and Patent Document 5 includes an element array region 10 in which subpixels 11 are arrayed and a spare region 20.
  • the spare area 20 has a plurality of spare ejection areas 23 defined by the banks 21.
  • the width of the preliminary ejection area 23 is the same as the width 11 of the sub-pixel.
  • a phosphor paste which is a dispersion solution of inorganic particles, is applied to the preliminary region 20, and the phosphor paste is discharged from each nozzle. Stabilize the amount. This makes it possible to apply a uniform amount of phosphor paste in each subpixel 11 of the element array region 10.
  • the time between the preliminary ejection and the ink application to the element array area can be shortened.
  • a display panel in which a non-light emitting area in which dummy pixels are arranged is provided around a light emitting area in which pixels are arranged (see, for example, Patent Documents 7 to 9).
  • the ratio of the spare area (non-light emitting area) in the entire panel increases, and the element array area (light emitting area) in the organic EL display panel. The ratio of will decrease.
  • the preliminary ejection area when the preliminary ejection area is finely defined by the banks, the number of banks included in the preliminary area increases. If there are many banks in the spare area, ink may land on the bank in the spare area and remain on the bank during preliminary ejection with low ink landing accuracy.
  • ink having a particularly high viscosity is ejected by the ink jet method, the flying direction of the ink tends to vary, and the ink tends to land on the bank. The ink remaining on the bank becomes particles when dried, which may cause display defects.
  • An object of the present invention is to provide a method for manufacturing an organic EL display panel capable of achieving both improvement in ink landing accuracy, improvement in the ratio of the light emitting region, and suppression of defects.
  • the first of the present invention relates to the following organic EL display panel.
  • a substrate having an element arrangement region in which organic EL elements are arranged in a matrix and a spare region composed of one or more preliminary ejection regions, and a substrate disposed on the substrate, the spare region,
  • An organic EL display panel comprising: a bank that divides an element array region; and a line bank that is disposed on the substrate and defines two or more parallel line regions in the element array region, The organic EL elements are arranged in a line in the line-shaped region, and the preliminary region is adjacent only to the end of the line-shaped region in the line direction and is perpendicular to the line direction of the preliminary discharge region.
  • the length of the direction is an organic EL display panel that is longer than the length of the linear region in the direction perpendicular to the line direction.
  • the organic EL elements are arranged in a row, and the preliminary region is adjacent to only the end of the line region in the line direction, and is perpendicular to the line direction of the line region of the preliminary discharge region.
  • the step of preparing the base panel is longer than the length of the linear region in the direction perpendicular to the line direction, and the ink having two or more nozzles and containing the organic layer material is supplied.
  • An inkjet head to be disposed on the spare area, a step of ejecting the ink from the nozzles on the spare area at regular intervals, and landing ink in the spare ejection area;
  • the ink jet head is moved from the spare area to the element array area while the discharge is maintained, and the ink jet head is moved along the line direction to apply the ink to the line area.
  • a method of manufacturing an organic EL display panel is used to be disposed on the spare area, a step of ejecting the ink from the nozzles on the spare area at regular intervals, and landing ink in the spare ejection area;
  • the ink jet head is moved from the spare area to the element array area while the discharge is maintained, and the ink jet head is moved along the line direction to apply the ink to the line
  • a substrate having an element arrangement area in which pixel electrodes are arranged in a matrix and a spare area composed of a preliminary ejection area, and a substrate disposed on the substrate, and dividing the spare area and the element arrangement area.
  • a base panel having a bank and a line bank that defines two or more parallel line regions in the element arrangement region and is disposed on the substrate, wherein the line region includes: The pixel electrodes are arranged in a row, the spare area is adjacent to only the side of the line area in the line direction, and the length of the spare discharge area in the direction perpendicular to the line direction is the line shape.
  • the ink is ejected from the nozzle on the spare area, the ink is landed in the spare area, and the ink jet head is disposed from the spare area.
  • a method of manufacturing an organic EL display panel comprising: moving to an element array region; and moving the inkjet head along a direction perpendicular to the line direction to apply the ink to the line region.
  • ink by providing an area for preliminary ejection (preliminary area) on the panel, ink can be applied to a desired area with high accuracy, and an organic EL display panel having no color mixture can be obtained.
  • the ratio of the light emitting area of the organic EL display panel can be improved by reducing the spare area which is a non-light emitting area to the minimum necessary.
  • the spare area does not have a bank, or the spare area has a small number of banks, and therefore, there is a low possibility that the ink ejected by the preliminary ejection will land on the bank. For this reason, there is a low possibility that particles generated by drying the ink remaining on the bank will be a defect of the organic EL display panel.
  • FIG. 3 The perspective view of the conventional organic electroluminescent display panel described in patent document 4 and 5 Plan view of base panel of Embodiment 1 Sectional drawing of the base panel of Embodiment 1
  • FIG. 3 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1.
  • FIG. 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1.
  • FIG. 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1.
  • FIG. 1 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1.
  • FIG. 1 Plan view of organic EL display panel of Embodiment 1 Plan view of organic EL display panel of Embodiment 1 Plan view of base panel of embodiment 2 Top view of base panel Plan view of base panel of Embodiment 3
  • FIG. Plan view of base panel according to Embodiment 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4.
  • FIG. 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4.
  • FIG. 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4.
  • FIG. 4 The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4.
  • FIG. Plan view of organic EL display panel of Embodiment 4 Plan view of organic EL display panel of Embodiment 4
  • the manufacturing method of the organic EL display panel according to the present invention includes: 1) preparing a base panel having a preliminary area composed of preliminary ejection areas and an element arrangement area having a plurality of line-shaped areas; 1 step, 2) a second step in which an ink jet head having two or more nozzles and supplied with ink containing the material of the organic layer is disposed on the preliminary area, and 3) from the nozzle in the preliminary ejection area A third step of ejecting ink (preliminary ejection), 4) a fourth step of moving the ink jet head from the preliminary region to the element array region, and 5) applying an ink to the linear region to form an organic layer. Steps.
  • the method of applying ink to the line-shaped region includes a method of moving the inkjet head along the line direction of the line-shaped region (hereinafter also referred to as “vertical coating”), a line direction of the line-shaped region, There is a method of moving along a vertical direction (hereinafter also referred to as “horizontal coating”).
  • vertical coating a method of moving along a vertical direction
  • horizontal coating a method of applying ink to the line-shaped region.
  • the present invention is characterized by preventing color mixing and defects while increasing the ratio of the light emitting region by devising the structure of the base panel prepared in the first step. Each step will be described below.
  • the base panel means an organic EL display panel before the organic layer is formed.
  • the base panel includes a substrate on which pixel electrodes are arranged and a bank.
  • the substrate has a spare area and an element arrangement area on its surface. Pixel electrodes are arranged in a matrix in the element array region.
  • the element arrangement region is a region that becomes a light emitting region in the organic EL display panel.
  • the pixel electrode is formed on the substrate by, for example, sputtering.
  • the preliminary area is an area for preliminary ejection described later, and is a non-light emitting area. Therefore, the spare area does not have a pixel electrode.
  • the present invention is characterized by the position and structure of the spare area. The position and structure of the spare area will be described later.
  • the bank is a barrier that is disposed on the substrate and defines a layer to be applied and formed.
  • the base panel has a bank (hereinafter also referred to as “boundary bank”) that is divided into an element array region and a spare region, and a line bank that is defined as two or more line regions in the element array region. It is preferable that the bank has low wettability because it defines a region where ink is applied.
  • the line bank defines a plurality of parallel line areas in the element array area (see FIG. 3). Therefore, the element array region has a plurality of line-shaped regions.
  • the line-shaped region is also referred to as an application region because it is a region where ink containing the organic layer material is applied. In each line-shaped region, a plurality of pixel electrodes are arranged in rows.
  • a liquid repellent self-assembled monolayer may be used instead of the bank (see Embodiment 3).
  • the self-assembled monolayer is a glass or silicon oxide (SiO 2 ) film, a metal film, a metal oxide film, or the like. It is preferable to be disposed on the top.
  • a material for the self-assembled monolayer a material having a silane coupling structure at the end of the organic material is preferable. Since the silane coupling bond can be cut by irradiation with light such as ultraviolet rays, the self-assembled monolayer can be patterned by irradiation with light using a photomask.
  • the spare area is composed of one or more preliminary ejection areas.
  • the preliminary ejection area is an area where ink ejected by preliminary ejection described later lands.
  • the arrangement position of the spare area is appropriately selected according to the ink application method (vertical coating or horizontal coating) employed in the present invention.
  • the arrangement position of the spare area will be described separately for a) when vertical coating is used and b) when horizontal coating is used.
  • the spare area is adjacent to only the end of the line-shaped area in the line direction, and is not adjacent to the side of the line-shaped area in the line direction (see FIG. 3).
  • the spare region has a major axis along a direction perpendicular to the line direction of the linear region (hereinafter also simply referred to as “line direction”) and a minor axis along the line direction.
  • the long axis of the spare region is longer than the length of the element array region in the direction perpendicular to the line direction (see FIG. 3).
  • the preliminary area may consist of one preliminary ejection area, or may consist of two or more preliminary ejection areas.
  • the spare area does not have a bank (Embodiment 1).
  • the spare area has a bank that defines the spare ejection area (see the second embodiment).
  • the bank included in the spare area has a long axis parallel to the line direction (see Embodiment 2). In any case, the number of banks included in the spare region is smaller than the number of line banks included in the element array region (see FIG. 11).
  • the spare area is adjacent to only the side portion of the line-shaped area in the line direction, and is not adjacent to the end of the line-shaped area in the line direction (see FIG. 15).
  • the spare region has a major axis along the line direction and a minor axis along a direction perpendicular to the line direction.
  • the preliminary area is composed of one preliminary ejection area.
  • the spare area is the same as that of the conventional display panel regardless of whether vertical coating or horizontal coating is employed (FIG. 1).
  • Reference) Does not enclose the element array region. Thereby, the ratio of the reserve area
  • the inkjet head is placed on the spare area.
  • the ink jet head has a plurality of nozzles.
  • Ink containing an organic layer material is supplied to the inkjet head.
  • the ink preferably contains a polymer organic EL material.
  • the polymer organic EL material is preferably selected as appropriate so that a desired color (R, G, B) is generated.
  • the position of the spare area differs depending on whether vertical coating or horizontal coating is used. For this reason, the position where the inkjet head is arranged on the spare area in the second step is also different between the case where the vertical coating is adopted and the case where the horizontal coating is adopted.
  • the number of inkjet heads arranged on the spare area may be one (see FIG. 5A), or two or more. By using two or more inkjet heads, a wider area can be applied at once. If three ink jet heads are stacked and R, G, or B ink is supplied to each ink jet head, it becomes possible to apply R, G, and B inks simultaneously. Ink can be applied to the line-shaped region.
  • ink is ejected from the nozzles (preliminary ejection) on the preliminary area, and the ink is landed in the preliminary ejection area.
  • the preliminary discharge is preferably continued until the clogging of the nozzle is eliminated and the meniscus vibration period is stabilized. Nozzle clogging is eliminated and the meniscus vibration cycle is stabilized, so that the ink ejection amount and flight direction are stabilized, and the ink landing accuracy is stabilized.
  • the meniscus vibration period obtained by the preliminary discharge is preferably maintained up to the fifth step.
  • the preliminary discharge time is usually 0.01 to 5 s.
  • the amount of ink ejected by one nozzle at a time is usually 3 pl to 20 pl.
  • the ink is landed on the preliminary ejection region while moving the ink jet head in the element array region direction (see FIG. 6A).
  • the inkjet moving speed in the fourth step and the fifth step described later is stabilized.
  • the moving direction of the inkjet head in the third step to the fifth step is the same. Therefore, when vertical coating is adopted, the inkjet head always moves along the line direction; when horizontal coating is adopted, the inkjet head always moves along a direction perpendicular to the line direction. By unifying the moving direction of the inkjet head in this way, the scanning of the inkjet head is stabilized.
  • the inkjet head itself may be moved, the base panel may be transported, or both may be moved.
  • the ink landing accuracy is improved, and the ink can be accurately applied to the line-shaped region in the fifth step described later.
  • “the landing accuracy is stable” means that the flying direction and the discharge amount of the ink are stabilized.
  • the inkjet head is moved from the spare area to the element array area.
  • the movement of the inkjet head from the preliminary region to the element array region is preferably performed while maintaining a stable meniscus vibration period obtained by the preliminary ejection.
  • the actuator of each nozzle may be driven even during the movement. In this way, the landing accuracy obtained in the preliminary region can be maintained by maintaining the stable meniscus vibration period obtained by the preliminary ejection even during the movement of the inkjet head from the preliminary region to the element array region. Can do.
  • the inkjet head itself may be moved, the base panel may be transported, or both may be moved.
  • the moving speed of the ink jet head relative to the base panel is preferably 1 mm / s to 100 mm / s.
  • the movement speed of the inkjet head in the fourth step is the same as the movement speed of the inkjet head in the third step.
  • ink is applied to the line-shaped region with an inkjet head.
  • the ink ejected from the nozzles may be landed on the line-shaped region while scanning the element array region with the inkjet head.
  • the scanning direction of the inkjet head differs depending on whether vertical coating or horizontal coating is employed.
  • the organic layer is formed by drying the applied ink.
  • the moving speed of the ink jet head in the fifth step is preferably the same as the moving speed of the ink jet head in the fourth step.
  • an organic EL display panel may be formed by forming a counter electrode on the organic layer by sputtering or the like.
  • ink can be accurately applied to the line-shaped region by preliminary ejection, and an organic EL display panel without color mixture can be obtained. Further, in the present invention, there is little possibility that ink remains on the bank in the spare area and causes particles. For this reason, according to the present invention, an organic EL display panel with few defects is provided.
  • the organic EL display panel of this invention includes a substrate, a bank disposed on the substrate, and organic EL elements disposed in a matrix on the substrate.
  • the organic EL display panel of the present invention may be a passive matrix type or an active matrix type. Furthermore, the organic EL display panel of the present invention may be a bottom emission type (a type in which light is extracted through a pixel electrode and a substrate) or a top emission type (a type in which light is extracted through a counter electrode and a sealing film). .
  • the substrate has an element array region and a spare region.
  • organic EL elements are arranged in a matrix.
  • the element array region is defined by a line bank described later and has a plurality of line regions parallel to each other.
  • Organic EL elements are arranged in a line in the line-shaped region.
  • the substrate may incorporate a driving TFT for driving the organic EL element.
  • the spare area is composed of one or more preliminary ejection areas.
  • no organic EL element is disposed, and residues of organic light emitting materials that emit red, green, and blue are mixed.
  • the material of the substrate differs depending on whether the organic EL display panel of the present invention is a bottom emission type or a top emission type. Since the substrate is required to be transparent when the organic EL display panel is a bottom emission type, examples of the substrate material include transparent materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PI (polyimide). Resin and glass are included. On the other hand, when the organic EL display panel is a top emission type, the substrate does not need to be transparent, and therefore the material of the substrate is arbitrary as long as it has insulating properties.
  • a bank is a barrier that defines a layer that is disposed on a substrate and applied.
  • the bank height (distance from the substrate surface to the top of the bank) is preferably 0.5 ⁇ m to 2 ⁇ m.
  • the organic EL display panel of the present invention has a bank that divides the substrate surface into a spare area and an element array area, and a line bank that defines two or more line-shaped areas in the element array area.
  • the line bank defines a plurality of line areas in the element array area (see FIG. 3). Therefore, the element array region has a plurality of line-shaped regions.
  • the width of the line bank is 10 ⁇ m to 50 ⁇ m, for example, about 30 ⁇ m.
  • the bank has low wettability because it defines a region where ink is applied.
  • the bank may be plasma-treated with fluorine gas, or the bank material may be a fluorine-containing resin.
  • Fluorine-containing resin should just have a fluorine atom in at least one part repeating unit among the polymer repeating units.
  • the bank material is preferably polyimide or acrylic resin.
  • the fluorine-containing resin include a fluorinated polyimide resin, a fluorinated polymethacrylic resin, and a fluorine-containing phenol / novolak resin.
  • the organic EL elements are arranged in a line in each linear region of the element arrangement region.
  • Each of the organic EL elements functions as a sub-pixel that emits light of any one color of red, green, and blue. All the organic EL elements arranged in the same linear region emit light of the same color.
  • the organic EL element has a pixel electrode disposed on a substrate, an organic layer disposed on the pixel electrode, and a counter electrode disposed on the organic layer.
  • the pixel electrode is a conductive member disposed on the substrate.
  • the pixel electrode normally functions as an anode, but may function as a cathode.
  • the pixel electrode is required to be transparent.
  • the material for the pixel electrode include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and tin oxide. included.
  • the material of the pixel electrode include APC alloy (silver, palladium, copper alloy) and ARA (silver, rubidium).
  • the thickness of the pixel electrode is typically 100 nm to 500 nm, and can be about 150 nm.
  • the organic EL display panel of the present invention when the organic EL display panel of the present invention is a passive matrix type, a plurality of organic EL elements share one line-shaped pixel electrode.
  • the pixel electrode has a line shape, the line direction of the line bank and the line direction of the pixel electrode are preferably orthogonal.
  • the organic EL display panel of the present invention when the organic EL display panel of the present invention is an active matrix type, the pixel electrode is disposed independently for each organic EL element (see FIG. 3) and connected to the driving TFT.
  • the organic layer is a layer including at least an organic light emitting layer formed on the pixel electrode by a coating method.
  • the organic layer may further include a hole injection layer, an intermediate layer, an electron transport layer, and the like.
  • the present invention is characterized in that the organic layer is formed by a coating method.
  • the organic layer is disposed in a region defined by the bank. That is, a line-shaped organic layer is formed in the line-shaped region. Therefore, the organic layers of the organic EL elements in the line region are connected.
  • the thickness of the organic layer is preferably about 50 nm to 100 nm (for example, 70 nm).
  • the organic light emitting layer is a layer containing an organic light emitting material.
  • the organic light emitting material contained in the organic light emitting layer may be a low molecular organic light emitting material or a polymer organic light emitting material, but is preferably a polymer organic light emitting material. This is because an organic light emitting layer containing a polymer organic light emitting material is easy to form by coating.
  • polymeric organic light-emitting material examples include polyphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof, polyparaphenylene ethylene and derivatives thereof, and poly-3-hexylthiophene ( Poly-3-hexylthiophene (P3HT)) and derivatives thereof, polyfluorene (PF) and derivatives thereof, and the like.
  • the organic light emitting material is appropriately selected so that a desired color (red, green or blue) is generated from each sub-pixel (organic EL element).
  • a green subpixel is arranged next to the red subpixel
  • a blue subpixel is arranged next to the green subpixel
  • a red subpixel is arranged next to the blue subpixel.
  • the counter electrode is a conductive member disposed on the organic layer.
  • the counter electrode normally functions as a cathode, but may function as an anode.
  • examples of the material of the counter electrode include light transmissive materials such as ITO, IZO, Ba, Al, and WOx.
  • the material of the counter electrode is not particularly limited, and examples thereof include Ba, BaO, and Al.
  • the organic EL display panel when the organic EL display panel is an active matrix type, all organic EL elements may share one counter electrode (see FIG. 3). This is because in the active matrix organic EL display panel, each subpixel is driven by an independent TFT.
  • the organic EL display panel when the organic EL display panel is a passive matrix type, a plurality of line-shaped counter electrodes are arranged on the panel. In this case, the line bank functions as a cathode separator.
  • the line direction of the line-shaped counter electrode is preferably orthogonal to the line direction of the line-shaped pixel electrode.
  • the spare area which is a non-light emitting area does not surround the element arrangement area which is a light emitting area unlike the conventional display panel (see FIG. 1).
  • region in an organic electroluminescent display panel can be made small, and the ratio of the element arrangement
  • region can be enlarged.
  • Embodiment 1 In the first embodiment, a method for manufacturing an organic EL display panel employing vertical coating will be described. Further, the organic EL display panel manufactured in the first embodiment is an active matrix type.
  • the manufacturing method of the organic EL display panel according to the first embodiment includes 1) a first step of preparing a base panel (see FIG. 3), and 2) a second step of arranging the inkjet head 120 on the spare area 107 (FIG. 5A), 3) a third step (see FIG. 6A) in which ink is ejected from the nozzle 121 on the preliminary area 107 at regular intervals, and ink is landed on the preliminary ejection area 108, and 4) at regular intervals.
  • a fourth step in which the inkjet head 120 is moved from the preliminary area 107 to the element array area 105 while maintaining the ejection, and 5) a fifth step in which ink is applied to the linear area (application area) 104 ( 8A).
  • the present embodiment is characterized in that the inkjet head 120 is moved from the preliminary region 107 to the element array region 105 while maintaining the discharge interval of the preliminary discharge in the fourth step.
  • the direction in which the inkjet head moves in the third step to the fifth step is the same. That is, in the present embodiment, the inkjet head is moved along the line direction.
  • FIG. 3 is a plan view of the base panel prepared in the first step.
  • the base panel 110 includes a substrate 101, a pixel electrode 102, and banks (a boundary bank 103 and a line bank 106).
  • the substrate 101 has an element array region 105 and a spare region 107 on its surface.
  • the pixel electrodes 102 are arranged in a matrix.
  • the line bank 106 defines a line area (application area) 104 in the element array area 105. Therefore, the element array region 105 has a plurality of line-shaped regions 104.
  • the width 106w of the line bank 106 is preferably 10 ⁇ m to 50 ⁇ m.
  • the line-shaped region 104 has a plurality of pixel electrodes 102 arranged in one row.
  • the boundary bank 103 divides the spare area 107 and the element array area 105.
  • the width 103w of the boundary bank 103 is narrow.
  • the “bank width” means the length of the bottom surface of the bank in the short direction (see FIG. 4B).
  • the width 103 w of the boundary bank 103 is preferably narrower than the width (80 ⁇ m to 200 ⁇ m) of the sub-pixel of the organic EL display panel or the width 106 w of the line bank 106. More specifically, the width 103w of the boundary bank 103 is preferably 10 ⁇ m to 300 ⁇ m, and more preferably 20 ⁇ m to 50 ⁇ m.
  • this embodiment is characterized in that the width 103w of the boundary bank 103 is relatively narrow.
  • FIG. 4A is a cross-sectional view taken along line AA of the base panel 110 shown in FIG. 4B is an enlarged view of the square X shown in FIG. 4A.
  • the shape of the boundary bank 103 is a forward tapered shape.
  • the taper angle ⁇ of the boundary bank 103 is preferably 20 ° to 50 °.
  • the cross section of the boundary bank 103 may be a triangle as shown in FIG. 4C or a semicircle as shown in FIG. 4D.
  • the boundary bank 103 preferably has liquid repellency.
  • the contact angle of anisole at the apex of the boundary bank 103 is preferably 30 ° to 70 °, and more preferably 40 ° to 50 °.
  • the spare area 107 includes one spare ejection area 108. Therefore, in the present embodiment, the spare area 107 does not have a bank that divides the spare ejection area.
  • the spare area 107 is adjacent to only one end (upward in the drawing) of the line area 104 in the line direction. Further, if the spare region 107 is not adjacent to the side of the linear region 104 in the line direction, the spare region 107 may be arranged on both sides of the element array region 105 so as to sandwich the element array region 105. . That is, the spare area 107 may be adjacent to both ends of the line area 104 in the line direction.
  • the spare region 107 does not surround the element array region 105 and is adjacent only to the end of the line-shaped region 104 in the line direction. Therefore, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel can be reduced, and the ratio of the light-emitting area (element array area) can be increased.
  • the long axis of the spare area 107 is perpendicular to the line direction.
  • the short axis of the spare area 107 is parallel to the line direction.
  • the length 107L of the spare area 107 in the direction perpendicular to the line direction is the length in the direction perpendicular to the line direction of the element array area 105 (hereinafter referred to as “the element array area 105
  • the width is preferably longer than 105L.
  • the length of the major axis of the preliminary discharge region 108 is preferably longer than the width 105L of the element array region 105.
  • the length 107S of the spare area 107 in the line direction (the length of the minor axis of the spare area 107) is preferably, for example, not less than the length of the major axis of the sub-pixel of the organic EL display panel (for example, 300 ⁇ m).
  • the length of the short axis of the preliminary discharge region 108 is preferably 300 ⁇ m or more. This is because, when the short axis length 107S of the preliminary area 107 is less than the length of the sub-pixel, the ink may land on an area other than the preliminary ejection area 108 in the preliminary ejection described later.
  • FIG. 5A is a diagram showing the second step using a plan view of the base panel
  • FIG. 5B is a diagram showing the second step using a cross-sectional view of the base panel taken along line AA in FIG. 5A. is there.
  • the inkjet head 120 having two or more nozzles 121 and supplied with ink containing the organic layer material is disposed on the preliminary region 107.
  • the arrangement direction of the nozzles 121 of the inkjet head 120 is arranged along a direction perpendicular to the line direction. Further, the arrangement direction of the nozzles 121 may be inclined with respect to the direction perpendicular to the line direction.
  • FIG. 6A shows the third step using a cross-sectional view of the base panel.
  • ink is ejected (preliminary ejection) from the nozzle 121 at regular intervals on the preliminary area 107, and ink is landed in the preliminary ejection area 108.
  • the discharge interval (time from one discharge to the next discharge) varies depending on the drive frequency, but is usually (range of drive frequency 1 kHz to 20 kHz) 0.05 ms to 1.0 ms.
  • the ink jet head 120 is moved in the direction of the element array region 105 during preliminary ejection.
  • the moving direction of the inkjet head is parallel to the line direction.
  • the moving speed of the inkjet head relative to the base panel is preferably 1 mm / s to 100 mm / s.
  • the spare area 107 does not have a bank that divides the spare ejection area. For this reason, even if the ink landing accuracy in the preliminary ejection is low, all of the ejected ink is landed in the preliminary ejection region 108. For this reason, there is no possibility that the ink landed on the bank becomes particles.
  • FIG. 6B shows the fourth step using a cross-sectional view of the base panel.
  • the inkjet head 120 is moved from the preliminary region 107 to the element array region 105 while maintaining the discharge at regular intervals in the preliminary discharge.
  • the ink jet head 120 While the ink jet head 120 is moved from the preliminary region 107 to the element array region 105, the discharge at a certain interval is maintained, so that the ink jet head 120 maintains the stable meniscus vibration period obtained by the preliminary discharge. The For this reason, it is possible to apply ink to the line-shaped region 104 while maintaining the landing accuracy of the ink obtained by the preliminary ejection (fifth step).
  • inkjet head 120 is moved from the spare area 107 to the element array area 105 while maintaining ejection at regular intervals, ink may remain on the top surface of the boundary bank 103.
  • the ink remaining on the top surface of the boundary bank 103 is dried to become particles, which may cause a display panel failure.
  • the inkjet head 120 is moved from the spare area 107 to the element array area 105 while maintaining ejection at regular intervals. Ink does not remain on the top surface of the boundary bank 103.
  • FIG. 7A is an enlarged cross-sectional view of the boundary bank 103 after the fourth step.
  • the ink 130 is also applied to the top surface of the boundary bank 103, and the top surface of the boundary bank 103 is Ink 130 may remain temporarily.
  • the boundary bank 103 has liquid repellency, a narrow width, and a tapered shape. Therefore, the ink 130 applied to the top surface of the boundary bank 103 is an arrow. It is pulled in the direction, and is torn to the line-shaped region 104 side and the preliminary ejection region 108 side, and is divided (FIG. 7B). The force pulling the ink 130 in the direction of the arrow is further strengthened by the forward taper shape of the bank. When the ink 130 applied to the top surface of the boundary bank 103 is torn off and divided, the ink 130 slides down to the side surface of the boundary bank 103, and finally either the line-shaped region 104 or the preliminary ejection region 108. (FIG. 7C).
  • the ink may remain on the top surface of the boundary bank 103. Further, when the width of the boundary bank 103 is 10 ⁇ m or less, the boundary bank 103 cannot completely divide the ink to be applied, and there is a possibility that ink is mixed in the line-shaped region 104 and the preliminary ejection region 108. .
  • the shape of the boundary bank is not a forward taper shape (for example, in the case of a reverse taper shape), the ink applied to the top surface of the boundary bank 103 is difficult to move to the side surface of the boundary bank 103 and There is a high risk of remaining.
  • FIG. 8A shows the fifth step using a plan view of the base panel
  • FIG. 8B shows the fifth step using a cross-sectional view of the base panel taken along line AA in FIG. 8A.
  • the inkjet head 120 is moved along the line direction to apply ink to the line-shaped region.
  • the organic layer is formed by drying the applied ink.
  • the organic EL display panel 100 of this Embodiment as shown in FIG. 9 is manufactured by forming a counter electrode on the formed organic layer by, for example, a sputtering method.
  • the moving direction of the inkjet head 120 is the same in the third step to the fifth step. For this reason, the scanning of the inkjet head 120 is stabilized, and the ink can be stably applied to the line-shaped region 104.
  • ink can be accurately applied to the line-shaped region, and an organic EL display panel having no color mixture can be obtained. Further, in the present invention, since no ink remains on the top surface of the boundary bank, an organic EL display panel with few defects can be provided.
  • FIG. 9 is a plan view of the organic EL display panel 100 of the first embodiment.
  • FIG. 10 is a plan view of the organic EL display panel 100 from which the counter electrode 109 is omitted.
  • the organic EL display panel 100 includes a substrate 101, a boundary bank 103, a line bank 106, and an organic EL element 140.
  • the substrate 101 has an element arrangement area 105 in which organic EL elements 140 are arranged in a matrix and a spare area 107 including a preliminary ejection area 108.
  • the spare region 107 does not surround the element array region 105 and is adjacent only to the end of the line-shaped region 104 in the line direction. Further, in the spare area 107, residues of R, G, and B organic light emitting materials are mixed.
  • the boundary bank 103 divides the element array area 105 and the spare area 107, and the line bank 106 defines a plurality of line-shaped line areas 104 in the element array area 105. In the line-shaped region 104, organic EL elements 140 are arranged in a line.
  • the organic EL element 140 includes an organic EL element 140R that emits red light, an organic EL element 140G that emits green light, and an organic EL element 140B that emits blue light.
  • the organic EL elements 140 arranged in one line-shaped region 104 emit the same light.
  • one pixel is comprised from the organic EL element 140R, the organic EL element 140G, and the organic EL element 140B.
  • the spare area 107 does not surround the element array area 105. Therefore, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel is reduced. The ratio of (element arrangement region) can be increased.
  • FIG. 11 is a plan view of the base panel 210 prepared by the method for manufacturing the organic EL display panel of the second embodiment.
  • the base panel 210 is the same as the base panel 110 of the first embodiment except that the preliminary area 207 includes a plurality of preliminary ejection areas 208. Therefore, the same components as those of the base panel 110 are denoted by the same reference numerals and description thereof is omitted.
  • the preliminary area 207 has a bank 203 that divides the preliminary ejection area 108.
  • the major axis of the bank 203 is parallel to the line direction of the line bank 106.
  • the number of banks 203 included in the spare area 207 is smaller than the number of line banks 106 included in the element array area 105.
  • the length 208L of each preliminary ejection region 208 in the direction perpendicular to the line direction is greater than the length 104w of the line-shaped region 104 in the direction perpendicular to the line direction (the length of the short axis of the line-shaped region 104). Also gets longer.
  • the spare area 207 has the bank 203. For this reason, the area of the preliminary ejection region 208 per unit area of the preliminary region 207 is reduced by the area occupied by the bank 203 as compared with the preliminary region 107 of the first embodiment having no bank.
  • the preliminary area 107 has a unit area per unit area of the preliminary discharge area 208 as compared with the first embodiment in which the bank does not have a bank.
  • the amount of ink increases.
  • the height of the ink surface in the preliminary ejection region 208 is increased.
  • the solvent vapor concentration in the vicinity of the spare area 107 in the element array area 105 can be leveled, and the drying speed in the vicinity of the spare area 107 in the element array area 105 can be prevented from being selectively increased.
  • drying speed of ink in the vicinity of the spare area 107 in the element array area 105 from being selectively increased, drying unevenness can be reduced, and an organic EL layer having a uniform film thickness can be obtained.
  • the number of banks 203 included in the spare area 207 is the same as the number of line banks 106 included in the element array area 105, and the length of the preliminary ejection area 208 in the direction perpendicular to the line direction is set.
  • the length 208L may be the same as the length 104w of the short axis of the line-shaped region 104.
  • ink may land on the top surface of the bank 203 during the preliminary ejection and remain. This is not preferable.
  • the method of manufacturing the organic EL display panel of the second embodiment may be the same as that of the organic EL display panel of the first embodiment after the base panel is prepared. As described above, according to the organic EL display panel of the second embodiment, drying unevenness can be reduced, and thus an organic EL display panel having a more uniform film thickness can be obtained.
  • Embodiment 3 In Embodiment 3, an example in which a self-assembled monolayer (SAM) is used instead of a bank will be described.
  • SAM self-assembled monolayer
  • FIG. 13 is a plan view of the base panel 310 prepared by the method of manufacturing the organic EL display panel according to the third embodiment.
  • the base panel 310 is the same as the base panel 110 of the first embodiment except that a SAM is used instead of a bank. Therefore, the same components as those of the base panel 110 are denoted by the same reference numerals and description thereof is omitted.
  • the base panel 310 has a spare area 107 and an element array area 105.
  • the spare area 107 and the element array area 105 are separated by a boundary SAM 303.
  • the width 303w of the boundary SAM 303 is preferably approximately the same as the width 103w of the boundary bank 103.
  • the element array region 105 has a line-shaped SAM 306, and the line-shaped SAM 306 defines the line-shaped region 104.
  • the inkjet head 120 is disposed on the spare area 107 (FIG. 14A), and 2) on the spare area 107. Ink is ejected from the nozzle 121 at regular intervals, and ink is landed on the preliminary ejection area 108 (FIG. 14B). 3) The ink jet head 120 is arranged from the preliminary area 107 while maintaining ejection at regular intervals. It moves to the area
  • the boundary SAM 303 that divides the spare area 107 and the element array area 105 has the same width as the boundary bank, but is not forward-tapered unlike the boundary bank 103. For this reason, the ink may remain on the boundary SAM 303. However, since the boundary SAM 303 has no step, the ink applied on the boundary SAM 303 is easily affected by the liquid repellency of the boundary SAM 303. For this reason, even if the boundary SAM 303 is not forwardly tapered, the ink applied on the boundary SAM 303 is torn off due to the liquid repellency of the boundary SAM 303 and is divided, so that no ink remains on the boundary SAM 303.
  • the structure of the organic EL display panel can be simplified in addition to the effects of the first embodiment.
  • the manufacturing method of the organic EL display panel according to the fourth embodiment includes 1) a first step for preparing a base panel (see FIG. 15), and 2) a second step for disposing the inkjet head 120 on the spare area 407 (FIG. 16A), 3) a third step (see FIG. 17A) in which ink is ejected from the nozzle 121 on the preliminary area 407, and the ink is landed on the preliminary ejection area 408, and 4) the inkjet head 120 is moved from the preliminary area 407 to the element.
  • the direction in which the inkjet head moves in the third step to the fifth step is the same. That is, in this embodiment, the ink jet head is moved along a direction perpendicular to the line direction.
  • FIG. 15 is a plan view of the base panel 410 prepared in the first step.
  • the same components as those of the base panel 110 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the base panel 410 includes a substrate 101, a pixel electrode 102, and banks (a boundary bank 403 and a line bank 106).
  • the substrate 101 has an element array region 105 and a spare region 407 on its surface.
  • the pixel electrodes 102 are arranged in a matrix.
  • the width of the boundary bank 403 may be the same as the width of the line bank 106.
  • the shape of the boundary bank 403 is not particularly limited as long as ink leakage from the preliminary ejection region 408 can be prevented.
  • the spare area 407 includes one preliminary discharge area 408. Therefore, in the present embodiment, the spare area 407 does not have a bank that divides the spare ejection area 408.
  • the spare area 407 is adjacent only to the side of the line area 104 on the left side of the drawing in the line direction. Further, if the spare area 407 is not adjacent to the end of the line-like area 104 in the line direction, the spare area 407 may be arranged on both sides of the element arrangement area 105 so as to sandwich the element arrangement area 105. As described above, in the present embodiment, the spare region does not surround the element arrangement region and is adjacent to only the side portion of the line-shaped region 104 in the line direction. Thereby, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel can be reduced, and the ratio of the light-emitting area (element array area) can be increased.
  • the long axis of the spare area 407 is parallel to the line direction.
  • the short axis of the spare area 107 is perpendicular to the line direction.
  • the length 407L of the spare area 407 in the line direction may be longer than the length of the line area 104 in the line direction (the length of the major axis of the line area 104).
  • the preliminary area 407 includes one preliminary ejection area 408, and therefore, the length of the major axis of the preliminary ejection area 408 is preferably longer than the major axis of the line-shaped area 104. This is because if the length 407L of the long axis of the preliminary area 407 is shorter than the long axis of the line-shaped area 104, the ink may land on an area other than the preliminary discharge area 408 in the preliminary discharge described later. .
  • the length 407S of the spare area 407 in the direction perpendicular to the line direction is, for example, the length of the line area 104 perpendicular to the line direction (the length of the line area 104).
  • (Length of the axis) is preferably twice or more, and particularly preferably the width of the pixel composed of three RGB sub-pixels (about 300 ⁇ m) or more.
  • the length of the short axis of the preliminary ejection region 408 is preferably equal to or greater than the pixel width (about 300 ⁇ m).
  • the ink may land on an area other than the preliminary discharge area 408 during the preliminary discharge.
  • the minor axis length 407S of the spare area 407 is equal to or larger than the pixel width, the preliminary ejection is performed even when three inkjet heads supplied with different R, B, or G inks are used in an overlapping manner. In this case, it is possible to prevent the ink ejected from the nozzles of the respective inkjet heads from landing on an area other than the preliminary ejection area 408.
  • FIG. 16A is a diagram showing the second step using a plan view of the base panel
  • FIG. 16B is a diagram showing the second step using a cross-sectional view of the base panel taken along line AA in FIG. 16A. is there.
  • the inkjet head 120 having two or more nozzles 121 and supplied with ink containing the organic layer material is disposed on the preliminary region 407.
  • the arrangement direction of the nozzles 121 of the inkjet head 120 is arranged along the line direction. Further, the arrangement direction of the nozzles 121 of the inkjet head 120 may be inclined with respect to the line direction.
  • the length of the inkjet head 120 in the arrangement direction of the nozzles is equal to or longer than the length of the major axis of the line-shaped region 104.
  • FIG. 17A shows the third step using a cross-sectional view of the base panel.
  • ink is ejected (preliminary ejection) from the nozzle 121 on the preliminary area 407, and ink is landed in the preliminary ejection area 408.
  • the ink ejection interval and the number of ejections in the preliminary ejection are preferably the same as the ink ejection interval and the number of ejections in the fifth step. In this way, by ejecting the ink the same number of times at the same interval as the fifth step in the spare area, the period of the meniscus vibration can be stabilized.
  • the ink jet head 120 is moved in the direction of the element array region 105 during preliminary ejection.
  • the moving direction of the inkjet head is perpendicular to the line direction.
  • FIG. 17B shows the fourth step using a cross-sectional view of the base panel.
  • the inkjet head 120 is moved from the spare area 407 to the element array area 105.
  • ink is not ejected from the nozzles 121 while the inkjet head 120 is moved from the spare area 407 to the element array area 105.
  • FIG. 18A shows the fifth step using the plan view of the base panel
  • FIG. 18B shows the fifth step using the cross-sectional view of the base panel taken along line AA in FIG. 8A.
  • the inkjet head 120 is moved along a direction perpendicular to the line direction, and ink is applied to the line-shaped region 104.
  • the nozzle 121 does not always eject ink, but alternately repeats a state in which ink is ejected at regular intervals and a state in which ink ejection is stopped. Specifically, only when the inkjet head 120 is positioned on a line-shaped region where a desired color is generated, the nozzle 121 ejects ink a predetermined number of times at regular intervals, and the inkjet head 120 is positioned on the other line-shaped region. Sometimes, the nozzle 121 is adjusted so as not to eject ink. Further, it is preferable to drive the nozzle actuator in order to maintain a stable meniscus vibration period even when ink is not ejected.
  • an organic EL display panel 400 as shown in FIG. 19 is manufactured by forming a counter electrode on the formed organic layer by sputtering, for example.
  • the moving direction of the inkjet head 120 is the same in the third step to the fifth step. For this reason, the scanning of the inkjet head 120 is stabilized, and the ink can be stably applied to the line-shaped region 104.
  • FIG. 19 is a plan view of the organic EL display panel 400 of the fourth embodiment.
  • FIG. 20 is a plan view of the organic EL display panel 400 in which the counter electrode 109 is omitted.
  • the same components as those of the organic EL display panel 100 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the organic EL display panel 400 includes a substrate 101, a boundary bank 103, a line bank 106, and an organic EL element 140.
  • the substrate 101 has an element array area 105 in which organic EL elements 140 are arranged in a matrix and a spare area 407 including a preliminary ejection area 408.
  • the spare region 407 does not surround the element array region 105 and is adjacent to only one of the side portions of the line-shaped region 104 in the line direction.
  • the spare area 407 does not surround the element array area 105. Therefore, the ratio of the non-light emitting area (preliminary area) in the organic EL display panel is reduced, and the light emitting area. The ratio of (element arrangement region) can be increased.
  • the organic EL display panel of the present invention can be applied to, for example, an organic EL display (such as a monitor of an information device terminal such as a large-screen TV or a mobile phone).
  • an organic EL display such as a monitor of an information device terminal such as a large-screen TV or a mobile phone.

Abstract

Provided is an organic EL display panel which has: a substrate having an element arrangement region wherein organic EL elements are arranged in matrix and an auxiliary region composed of one or more auxiliary jetting regions; a bank which is disposed on the substrate and partitions between the auxiliary region and the element arrangement region; and a linear bank which is disposed on the substrate and defines two or more linear regions parallel to each other in the element arrangement region. In the linear region, the organic EL elements are arranged in rows, the auxiliary region is adjacent only to the edge portion of the linear region in the line direction, the length of the auxiliary jetting region in the direction perpendicular to the line direction is longer than the length of the linear region in the direction perpendicular to the line direction.

Description

有機ELディスプレイパネルおよびその製造方法Organic EL display panel and manufacturing method thereof
 本発明は、有機ELディスプレイパネルおよびその製造方法に関する。 The present invention relates to an organic EL display panel and a manufacturing method thereof.
 有機ELディスプレイパネルは、陽極および陰極、ならびに両電極の間に配置された電界発光する有機発光層を含む有機EL素子を有する。電界発光する有機発光層の材料は、低分子有機化合物の組み合わせ(ホスト材料とドーパント材料)と、高分子有機化合物とに大別されうる。電界発光する高分子有機化合物の例には、PPVと称されるポリフェニレンビニレンやその誘導体などが含まれる。 The organic EL display panel has an organic EL element including an anode and a cathode, and an organic light-emitting layer arranged between the electrodes and emitting electroluminescence. The material of the organic light emitting layer that emits electroluminescence can be broadly classified into a combination of a low molecular organic compound (host material and dopant material) and a high molecular organic compound. Examples of the polymer organic compound that emits electroluminescence include polyphenylene vinylene called PPV and derivatives thereof.
 高分子有機化合物を材料とした有機発光層は、比較的低電圧で駆動でき、消費電力が少なく、ディスプレイパネルの大画面化に対応しやすいことから、現在積極的に研究がなされている。また、高分子有機化合物を材料とした有機発光層は、塗布法による作製が可能である。したがって、真空プロセスを使用する低分子有機ELディスプレイよりも、高分子有機ELディスプレイの生産性は顕著に高い。 Organic light-emitting layers made of high molecular organic compounds can be driven at a relatively low voltage, consume less power, and are easy to deal with a large display panel. An organic light emitting layer made of a high molecular organic compound can be produced by a coating method. Therefore, the productivity of the polymer organic EL display is significantly higher than that of the low molecular organic EL display using the vacuum process.
 有機発光層を塗布法で形成する場合、パネル上の障壁(バンク)によって規定された領域内に有機発光層の材料を含むインクを塗布し、乾燥させる。有機ELディスプレイパネルにおける混色を防ぐため、発光層の材料であるインクは、パネル上のバンクによって規定された領域内に正確に塗布されなければならない。このような塗布法の例には、インクを吐出することで塗布するインクジェット法が含まれる。インクジェット法では、通常、インクを吐出する複数のノズルを有するインクジェットヘッドを用いる。 When the organic light emitting layer is formed by a coating method, an ink containing the material of the organic light emitting layer is applied in a region defined by the barrier (bank) on the panel and dried. In order to prevent color mixing in the organic EL display panel, the ink that is the material of the light emitting layer must be accurately applied in the region defined by the bank on the panel. Examples of such a coating method include an inkjet method in which coating is performed by discharging ink. In the ink jet method, an ink jet head having a plurality of nozzles for discharging ink is usually used.
 インクジェットヘッドの不使用時には、ノズルの先端部や内部などには、乾燥したインクが付着してしまうことがある。ノズルの先端部などに乾燥したインクが付着すると、ノズルが詰まりノズルがインクを吐出しなくなったり、インクを吐出したとしても、飛翔方向や吐出量が安定せずインクの着弾精度が悪化する。よって、インクの吐出開始直後は、インクの着弾精度が低く、所望量のインクを所望の領域に正確に塗布できない。 When the inkjet head is not used, the dried ink may adhere to the nozzle tip or inside. If dry ink adheres to the tip of the nozzle or the like, the nozzle is clogged, and even if the nozzle no longer ejects ink or the ink is ejected, the flying direction and the ejection amount are not stable, and the ink landing accuracy deteriorates. Therefore, immediately after the start of ink ejection, the ink landing accuracy is low, and a desired amount of ink cannot be accurately applied to a desired region.
 このため、インクの着弾精度を向上させるために、インクを実際にパネルに塗布する前に、パネルの外部でインクを吐出(予備吐出)する方法が知られている(例えば特許文献1および特許文献2参照)。 For this reason, in order to improve the ink landing accuracy, a method is known in which ink is ejected (preliminary ejection) outside the panel before the ink is actually applied to the panel (for example, Patent Document 1 and Patent Document). 2).
 しかし、特許文献1および特許文献2に開示されたように、パネルの外部で予備吐出をする場合、予備吐出した後、インクジェットヘッドをパネルへと移動する間に、ノズルの先端部や内部等に再び乾燥したインクが付着してしまう。このため、パネルにインクを塗布する前に、インクの着弾精度が悪化し、インクをパネル上の所望の位置に正確に塗布できないという問題があった。 However, as disclosed in Patent Document 1 and Patent Document 2, when preliminary ejection is performed outside the panel, after preliminary ejection, the inkjet head is moved to the panel while the ink jet head is moved to the front end or inside of the nozzle. The dried ink will adhere again. For this reason, before the ink is applied to the panel, the ink landing accuracy deteriorates, and there is a problem that the ink cannot be accurately applied to a desired position on the panel.
 このような問題を解決するために、予備吐出のための領域をパネル上に設ける技術が知られている(例えば特許文献3~6参照)。図1は特許文献3のディスプレイパネルの平面図である。図1に示されるように、特許文献3に記載されたディスプレイパネルは、画素が配置される領域10(以下「素子配列領域1」とも称する)を規定するバンク30と、素子配列領域10を囲むように予備領域20が設けられる。予備領域20はバンク40によって規定されている。 In order to solve such a problem, a technique for providing an area for preliminary ejection on a panel is known (see, for example, Patent Documents 3 to 6). FIG. 1 is a plan view of a display panel disclosed in Patent Document 3. FIG. As shown in FIG. 1, the display panel described in Patent Document 3 surrounds a bank 30 that defines a region 10 (hereinafter also referred to as “element array region 1”) in which pixels are disposed, and the element array region 10. Thus, the spare area 20 is provided. The spare area 20 is defined by the bank 40.
 特許文献3に記載の方法では、まず予備領域20上でインクジェットヘッドのノズルからインクを吐出し、予備吐出を行う。その後、一旦インクの吐出を停止し、インクジェットヘッドを素子配列領域10に移動する。そして、再びノズルからインクの吐出を開始し、インクジェットヘッドを走査しながら所望の領域(素子配列領域1)にインクを塗布する。また、図1に示されるディスプレイパネルでは、予備領域20から素子配列領域1にインクが混入することを防止するため、素子配列領域を規定するバンク30の幅が広いことを特徴とする。 In the method described in Patent Document 3, first, ink is ejected from the nozzles of the inkjet head on the preliminary region 20 to perform preliminary ejection. Thereafter, the ink ejection is temporarily stopped, and the ink jet head is moved to the element array region 10. Then, ink ejection is started again from the nozzles, and ink is applied to a desired region (element array region 1) while scanning the inkjet head. Further, the display panel shown in FIG. 1 is characterized in that the width of the bank 30 that defines the element arrangement area is wide in order to prevent ink from entering the element arrangement area 1 from the spare area 20.
 また、図2は、発光層が形成される前の特許文献4および5に記載されたプラズマディスプレイパネルの斜視図である。図2に示されるように、特許文献4および特許文献5に記載されたプラズマディスプレイパネルは、副画素11が配列された素子配列領域10と、予備領域20とを有する。予備領域20は、バンク21によって規定された複数の予備吐出領域23を有する。予備吐出領域23の幅は、副画素の幅11と同じである。 FIG. 2 is a perspective view of the plasma display panel described in Patent Documents 4 and 5 before the light emitting layer is formed. As shown in FIG. 2, the plasma display panel described in Patent Document 4 and Patent Document 5 includes an element array region 10 in which subpixels 11 are arrayed and a spare region 20. The spare area 20 has a plurality of spare ejection areas 23 defined by the banks 21. The width of the preliminary ejection area 23 is the same as the width 11 of the sub-pixel.
 図2に示されるように、特許文献4および5のプラズマディスプレイパネルの製造工程では、予備領域20にまず無機粒子の分散溶液である蛍光体ペーストを塗布し、各ノズルからの蛍光体ペーストの吐出量を安定させる。これにより素子配列領域10の各副画素11内に均一量の蛍光体ペーストを塗布することが可能となる。 As shown in FIG. 2, in the manufacturing processes of the plasma display panels of Patent Documents 4 and 5, first, a phosphor paste, which is a dispersion solution of inorganic particles, is applied to the preliminary region 20, and the phosphor paste is discharged from each nozzle. Stabilize the amount. This makes it possible to apply a uniform amount of phosphor paste in each subpixel 11 of the element array region 10.
 このようにディスプレイパネルに予備吐出のための領域を設けたことで、予備吐出と素子配列領域へのインクの塗布との間の時間を短くすることができる。 Thus, by providing the area for preliminary ejection on the display panel, the time between the preliminary ejection and the ink application to the element array area can be shortened.
 また、画素が配列された発光領域の周りに、ダミーの画素が配置される非発光領域を設けたディスプレイパネルが知られている(例えば特許文献7~9参照)。発光領域内の画素だけでなく、ダミーの画素にもインクを塗布することで、発光領域内の画素に塗布されたインクの乾燥スピードのバラツキを緩和することができる。 In addition, a display panel is known in which a non-light emitting area in which dummy pixels are arranged is provided around a light emitting area in which pixels are arranged (see, for example, Patent Documents 7 to 9). By applying ink not only to the pixels in the light emitting region but also to the dummy pixels, it is possible to reduce variations in the drying speed of the ink applied to the pixels in the light emitting region.
特開2002-264366号公報JP 2002-264366 A 特開2008-108570号公報JP 2008-108570 A 特開2007-094312号公報JP 2007-09431 A 米国特許出願公開第2005/0116643号明細書US Patent Application Publication No. 2005/0116643 米国特許出願公開第2008/0003915号明細書US Patent Application Publication No. 2008/0003915 特開2008-153126号公報JP 2008-153126 A 米国特許出願公開第2002/0064966号明細書US Patent Application Publication No. 2002/0064966 特開2002-222695号公報JP 2002-222695 A 特開2003-233330号公報JP 2003-233330 A
 しかしながら、図1に示されるディスプレイパネルのように予備領域が素子配列領域を囲む場合、パネル全体における予備領域(非発光領域)の割合が増加し、有機ELディスプレイパネルにおける素子配列領域(発光領域)の割合が低下してしまう。 However, when the spare area surrounds the element array area as in the display panel shown in FIG. 1, the ratio of the spare area (non-light emitting area) in the entire panel increases, and the element array area (light emitting area) in the organic EL display panel. The ratio of will decrease.
 また、図2に開示されるように、予備吐出領域が細かくバンクによって規定されると、予備領域が有するバンクの数が多くなる。予備領域が有するバンクが多いと、インクの着弾精度が低い予備吐出の際にインクが予備領域内のバンク上に着弾し、バンク上に残留する恐れがある。特に高い粘度を有するインクをインクジェット法で吐出すると、インクの飛翔方向がばらつきやすく、インクがバンク上に着弾しやすい。バンク上に残留したインクは、乾燥するとパーティクルとなり、ディスプレイの欠陥を生じさせる恐れがある。 In addition, as disclosed in FIG. 2, when the preliminary ejection area is finely defined by the banks, the number of banks included in the preliminary area increases. If there are many banks in the spare area, ink may land on the bank in the spare area and remain on the bank during preliminary ejection with low ink landing accuracy. When ink having a particularly high viscosity is ejected by the ink jet method, the flying direction of the ink tends to vary, and the ink tends to land on the bank. The ink remaining on the bank becomes particles when dried, which may cause display defects.
 本発明の目的は、インクの着弾精度を上げることと、発光領域の割合の向上および欠陥の抑制と、を両立させることができる有機ELディスプレイパネルの製造方法を提供することである。 An object of the present invention is to provide a method for manufacturing an organic EL display panel capable of achieving both improvement in ink landing accuracy, improvement in the ratio of the light emitting region, and suppression of defects.
 本発明の第1は、以下に示す有機ELディスプレイパネルに関する。
 [1]有機EL素子がマトリクス状に配列された素子配列領域と、1または2以上の予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有する有機ELディスプレイパネルであって、前記ライン状領域内には、前記有機EL素子が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の端部のみに隣接し、前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さよりも長い、有機ELディスプレイパネル。
 [2]有機EL素子がマトリクス状に配列された素子配列領域と、予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有する有機ELディスプレイパネルであって、前記ライン状領域内には、前記有機EL素子が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の側部のみに隣接し、前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さの2倍以上である、有機ELディスプレイパネル。
The first of the present invention relates to the following organic EL display panel.
[1] A substrate having an element arrangement region in which organic EL elements are arranged in a matrix and a spare region composed of one or more preliminary ejection regions, and a substrate disposed on the substrate, the spare region, An organic EL display panel comprising: a bank that divides an element array region; and a line bank that is disposed on the substrate and defines two or more parallel line regions in the element array region, The organic EL elements are arranged in a line in the line-shaped region, and the preliminary region is adjacent only to the end of the line-shaped region in the line direction and is perpendicular to the line direction of the preliminary discharge region. The length of the direction is an organic EL display panel that is longer than the length of the linear region in the direction perpendicular to the line direction.
[2] A substrate having an element arrangement area in which organic EL elements are arranged in a matrix and a spare area composed of a preliminary ejection area; and a substrate disposed on the substrate, wherein the spare area and the element arrangement area are An organic EL display panel having a partitioning bank and a line bank disposed on the substrate and defining two or more parallel line regions in the element array region, wherein the organic EL display panel includes The organic EL elements are arranged in a line, the preliminary area is adjacent only to the side of the line area in the line direction, and the length of the preliminary discharge area in the direction perpendicular to the line direction is An organic EL display panel that is at least twice the length of the linear region in the direction perpendicular to the line direction.
 本発明の第2は、以下に示す有機ELディスプレイパネルの製造方法に関する。
 [3]画素電極がマトリクス状に配列された素子配列領域と、1または2以上の予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有するベースパネルであって、前記ライン状領域内には、前記有機EL素子が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の端部のみに隣接し、前記予備吐出領域の前記ライン領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さよりも長い、ベースパネルを準備するステップと、2以上のノズルを有し、有機層の材料を含有するインクが供給されるインクジェットヘッドを、前記予備領域上に配置するステップと、前記予備領域上で前記ノズルから前記インクを一定のインターバルごとに吐出し、前記予備吐出領域内にインクを着弾させるステップと、前記インターバルごとの吐出を維持したまま、前記インクジェットヘッドを、前記予備領域から、前記素子配列領域に移動するステップと、前記インクジェットヘッドを前記ライン方向に沿って移動し、前記ライン状領域に前記インクを塗布するステップと、を有する有機ELディスプレイパネルの製造方法。
 [4]画素電極がマトリクス状に配列された素子配列領域と、予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有するベースパネルであって、前記ライン状領域内には、前記画素電極が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の側部のみに隣接し、前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さの2倍以上である、ベースパネルを準備するステップと、2以上のノズルを有し、有機層の材料を含有するインクが供給されるインクジェットヘッドを、前記予備領域上に配置するステップと、前記予備領域上で前記ノズルから前記インクを吐出し、前記予備吐出領域内にインクを着弾させるステップと、前記インクジェットヘッドを、前記予備領域から、前記素子配列領域に移動するステップと、前記インクジェットヘッドを前記ライン方向と垂直な方向に沿って移動し、前記ライン状領域に前記インクを塗布するステップと、を有する有機ELディスプレイパネルの製造方法。
2nd of this invention is related with the manufacturing method of the organic electroluminescent display panel shown below.
[3] A substrate having an element arrangement area in which pixel electrodes are arranged in a matrix and a spare area composed of one or more preliminary ejection areas, and the spare area and the element arrangement area arranged on the substrate. And a bank that is arranged on the substrate and defines two or more parallel line-shaped areas in the element array area, the base panel comprising: The organic EL elements are arranged in a row, and the preliminary region is adjacent to only the end of the line region in the line direction, and is perpendicular to the line direction of the line region of the preliminary discharge region. The step of preparing the base panel is longer than the length of the linear region in the direction perpendicular to the line direction, and the ink having two or more nozzles and containing the organic layer material is supplied. An inkjet head to be disposed on the spare area, a step of ejecting the ink from the nozzles on the spare area at regular intervals, and landing ink in the spare ejection area; The ink jet head is moved from the spare area to the element array area while the discharge is maintained, and the ink jet head is moved along the line direction to apply the ink to the line area. And a method of manufacturing an organic EL display panel.
[4] A substrate having an element arrangement area in which pixel electrodes are arranged in a matrix and a spare area composed of a preliminary ejection area, and a substrate disposed on the substrate, and dividing the spare area and the element arrangement area. A base panel having a bank and a line bank that defines two or more parallel line regions in the element arrangement region and is disposed on the substrate, wherein the line region includes: The pixel electrodes are arranged in a row, the spare area is adjacent to only the side of the line area in the line direction, and the length of the spare discharge area in the direction perpendicular to the line direction is the line shape. A step of preparing a base panel that is at least twice the length of the region in the direction perpendicular to the line direction; and an inkjet head having two or more nozzles and supplied with ink containing an organic layer material. Are disposed on the spare area, the ink is ejected from the nozzle on the spare area, the ink is landed in the spare area, and the ink jet head is disposed from the spare area. A method of manufacturing an organic EL display panel, comprising: moving to an element array region; and moving the inkjet head along a direction perpendicular to the line direction to apply the ink to the line region.
 本発明によれば、パネルに予備吐出のための領域(予備領域)を設けることで、精度よく所望の領域にインクを塗布することができ、混色のない有機ELディスプレイパネルを得られる。 According to the present invention, by providing an area for preliminary ejection (preliminary area) on the panel, ink can be applied to a desired area with high accuracy, and an organic EL display panel having no color mixture can be obtained.
 また、本発明では、非発光領域である予備領域を必要最低限に小さくすることで、有機ELディスプレイパネルの発光面積の割合を向上させることができる。 Also, in the present invention, the ratio of the light emitting area of the organic EL display panel can be improved by reducing the spare area which is a non-light emitting area to the minimum necessary.
 また、本発明によれば、予備領域がバンクを有さないか、または予備領域が有するバンクが少ないので、予備吐出で吐出されたインクがバンク上に着弾する可能性は低い。このためバンク上に残留したインクが乾燥することで生じるパーティクルが、有機ELディスプレイパネルの欠陥となる恐れが低い。 Further, according to the present invention, the spare area does not have a bank, or the spare area has a small number of banks, and therefore, there is a low possibility that the ink ejected by the preliminary ejection will land on the bank. For this reason, there is a low possibility that particles generated by drying the ink remaining on the bank will be a defect of the organic EL display panel.
特許文献3に記載された従来の有機ELディスプレイパネルの平面図Plan view of a conventional organic EL display panel described in Patent Document 3 特許文献4および5に記載された従来の有機ELディスプレイパネルの斜視図The perspective view of the conventional organic electroluminescent display panel described in patent document 4 and 5 実施の形態1のベースパネルの平面図Plan view of base panel of Embodiment 1 実施の形態1のベースパネルの断面図Sectional drawing of the base panel of Embodiment 1 実施の形態1の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1. FIG. 実施の形態1の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1. FIG. 実施の形態1の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1. FIG. 実施の形態1の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 1. FIG. 実施の形態1の有機ELディスプレイパネルの平面図Plan view of organic EL display panel of Embodiment 1 実施の形態1の有機ELディスプレイパネルの平面図Plan view of organic EL display panel of Embodiment 1 実施の形態2のベースパネルの平面図Plan view of base panel of embodiment 2 ベースパネルの平面図Top view of base panel 実施の形態3のベースパネルの平面図Plan view of base panel of Embodiment 3 実施の形態3の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 3. FIG. 実施の形態4のベースパネルの平面図Plan view of base panel according to Embodiment 4 実施の形態4の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4. FIG. 実施の形態4の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4. FIG. 実施の形態4の有機ELディスプレイパネルの製造方法を示す図The figure which shows the manufacturing method of the organic electroluminescent display panel of Embodiment 4. FIG. 実施の形態4の有機ELディスプレイパネルの平面図Plan view of organic EL display panel of Embodiment 4 実施の形態4の有機ELディスプレイパネルの平面図Plan view of organic EL display panel of Embodiment 4
 1.有機ELディスプレイパネルの製造方法
 本発明の有機ELディスプレイパネルの製造方法は、1)予備吐出領域からなる予備領域と、複数のライン状領域を有する素子配列領域と、を有するベースパネルを準備する第1ステップと、2)2以上のノズルを有し、有機層の材料を含有するインクが供給されるインクジェットヘッドを、予備領域上に配置する第2ステップと、3)予備吐出領域内にノズルからインクを吐出(予備吐出)する第3ステップと、4)インクジェットヘッドを予備領域から素子配列領域に移動する第4ステップと、5)ライン状領域にインクを塗布し、有機層を形成する第5ステップと、を有する。
1. Manufacturing method of organic EL display panel The manufacturing method of the organic EL display panel according to the present invention includes: 1) preparing a base panel having a preliminary area composed of preliminary ejection areas and an element arrangement area having a plurality of line-shaped areas; 1 step, 2) a second step in which an ink jet head having two or more nozzles and supplied with ink containing the material of the organic layer is disposed on the preliminary area, and 3) from the nozzle in the preliminary ejection area A third step of ejecting ink (preliminary ejection), 4) a fourth step of moving the ink jet head from the preliminary region to the element array region, and 5) applying an ink to the linear region to form an organic layer. Steps.
 第5ステップで、ライン状領域にインクを塗布する方法には、インクジェットヘッドをライン状領域のライン方向に沿って移動する方法(以下「縦塗り」とも称する)と、ライン状領域のライン方向と垂直な方向に沿って移動する方法(以下「横塗り」とも称する)とがある。本発明では、ライン状領域にインクを塗布する方法として、縦塗りまたは横塗りのいずれを採用してよい。 In the fifth step, the method of applying ink to the line-shaped region includes a method of moving the inkjet head along the line direction of the line-shaped region (hereinafter also referred to as “vertical coating”), a line direction of the line-shaped region, There is a method of moving along a vertical direction (hereinafter also referred to as “horizontal coating”). In the present invention, either vertical coating or horizontal coating may be adopted as a method of applying ink to the line-shaped region.
 また、本発明は、第1ステップで準備するベースパネルの構造を工夫することで、発光領域の割合を高くしつつ、混色や欠陥を防止することを特徴とする。以下それぞれのステップについて説明する。 Further, the present invention is characterized by preventing color mixing and defects while increasing the ratio of the light emitting region by devising the structure of the base panel prepared in the first step. Each step will be described below.
 1)第1ステップでは、ベースパネルを準備する。ベースパネルとは、有機層が形成される前の有機ELディスプレイパネルを意味する。ベースパネルは、画素電極が配置された基板と、バンクと、を有する。 1) In the first step, prepare the base panel. The base panel means an organic EL display panel before the organic layer is formed. The base panel includes a substrate on which pixel electrodes are arranged and a bank.
 基板はその表面に予備領域と、素子配列領域とを有する。素子配列領域には、画素電極がマトリクス状に配置される。素子配列領域は有機ELディスプレイパネルにおいて発光領域となる領域である。画素電極は、例えばスパッタリングなどによって基板上に形成される。 The substrate has a spare area and an element arrangement area on its surface. Pixel electrodes are arranged in a matrix in the element array region. The element arrangement region is a region that becomes a light emitting region in the organic EL display panel. The pixel electrode is formed on the substrate by, for example, sputtering.
 予備領域とは、後述する予備吐出のための領域であり、非発光領域である。このため予備領域は画素電極を有さない。本発明は、予備領域の配置位置および構造に特徴を有する。予備領域の位置および構造については後述する。 The preliminary area is an area for preliminary ejection described later, and is a non-light emitting area. Therefore, the spare area does not have a pixel electrode. The present invention is characterized by the position and structure of the spare area. The position and structure of the spare area will be described later.
 バンクは、基板上に配置され、塗布形成される層を規定する障壁である。ベースパネルは、素子配列領域と予備領域とに区切るバンク(以下「境界バンク」とも称する)と、素子配列領域内に、2以上のライン状領域に規定するライン状バンクとを有する。バンクは、インクが塗布される領域を規定することから濡れ性が低いことが好ましい。 The bank is a barrier that is disposed on the substrate and defines a layer to be applied and formed. The base panel has a bank (hereinafter also referred to as “boundary bank”) that is divided into an element array region and a spare region, and a line bank that is defined as two or more line regions in the element array region. It is preferable that the bank has low wettability because it defines a region where ink is applied.
 ライン状バンクは、素子配列領域内に、複数の互いに平行なライン状領域を規定する(図3参照)。したがって素子配列領域は、複数のライン状領域を有する。ライン状領域は、有機層の材料を含むインクが塗布される領域でもあることから塗布領域とも称する。それぞれのライン状領域には、複数の画素電極が列状に配列される。 The line bank defines a plurality of parallel line areas in the element array area (see FIG. 3). Therefore, the element array region has a plurality of line-shaped regions. The line-shaped region is also referred to as an application region because it is a region where ink containing the organic layer material is applied. In each line-shaped region, a plurality of pixel electrodes are arranged in rows.
 また、バンクの代わりに、撥液性の自己組織化単分子膜(Self Assemble Monolayer:SAM)を用いてもよい(実施の形態3参照)。このように、バンクの代わりに撥液性の自己組織化単分子膜を用いる場合、自己組織化単分子膜は、ガラスやシリコン酸化物(SiO)の膜、金属膜、金属酸化物膜などの上に配置されることが好ましい。自己組織化単分子膜の材料としては、有機材料の末端にシランカップリング構造を有する材料が好ましい。シランカップリング結合は、紫外線等の光照射によって、切断できることから、自己組織化単分子膜は、フォトマスクを用いた光照射によって、パターニングされうる。 Further, a liquid repellent self-assembled monolayer (SAM) may be used instead of the bank (see Embodiment 3). Thus, when a liquid-repellent self-assembled monolayer is used instead of a bank, the self-assembled monolayer is a glass or silicon oxide (SiO 2 ) film, a metal film, a metal oxide film, or the like. It is preferable to be disposed on the top. As a material for the self-assembled monolayer, a material having a silane coupling structure at the end of the organic material is preferable. Since the silane coupling bond can be cut by irradiation with light such as ultraviolet rays, the self-assembled monolayer can be patterned by irradiation with light using a photomask.
 次に予備領域の構造および配置位置について説明する。予備領域は1または2以上の予備吐出領域からなる。予備吐出領域とは後述する予備吐出によって吐出されたインクが着弾する領域である。 Next, the structure and location of the spare area will be described. The spare area is composed of one or more preliminary ejection areas. The preliminary ejection area is an area where ink ejected by preliminary ejection described later lands.
 予備領域の配置位置は、本発明で採用するインクの塗布方法(縦塗りまたは横塗り)に応じて適宜選択される。以下、a)縦塗りが採用された場合とb)横塗りが採用された場合とに分けて、予備領域の配置位置について説明する。 The arrangement position of the spare area is appropriately selected according to the ink application method (vertical coating or horizontal coating) employed in the present invention. Hereinafter, the arrangement position of the spare area will be described separately for a) when vertical coating is used and b) when horizontal coating is used.
 a)縦塗りが採用された場合(実施の形態1参照)
 縦塗りが採用された場合、予備領域は、ライン状領域のライン方向の端部のみに隣接し、ライン状領域のライン方向の側部に隣接しない(図3参照)。この場合、予備領域は、ライン状領域のライン方向(以下単に「ライン方向」とも称する)と垂直な方向に沿った長軸を有し、ライン方向に沿った短軸を有する。予備領域の長軸は、素子配列領域のライン方向と垂直な方向の長さよりも長くなる(図3参照)。
a) When vertical coating is adopted (see Embodiment 1)
When the vertical coating is adopted, the spare area is adjacent to only the end of the line-shaped area in the line direction, and is not adjacent to the side of the line-shaped area in the line direction (see FIG. 3). In this case, the spare region has a major axis along a direction perpendicular to the line direction of the linear region (hereinafter also simply referred to as “line direction”) and a minor axis along the line direction. The long axis of the spare region is longer than the length of the element array region in the direction perpendicular to the line direction (see FIG. 3).
 また縦塗りが採用された場合、予備領域は1つの予備吐出領域からなってもよいし、2以上の予備吐出領域からなってもよい。予備領域が、1つの予備吐出領域からなる場合、予備領域はバンクを有さない(実施の形態1)。一方、予備領域が、2以上の予備吐出領域からなる場合、予備領域は予備吐出領域を規定するバンクを有する(実施の形態2参照)。予備領域が有するバンクは、ライン方向に平行な長軸を有する(実施の形態2参照)。いずれの場合であっても、予備領域が有するバンクの数は、素子配列領域が有するライン状バンクの数よりも少ない(図11参照)。 Further, when vertical coating is adopted, the preliminary area may consist of one preliminary ejection area, or may consist of two or more preliminary ejection areas. When the spare area includes one spare ejection area, the spare area does not have a bank (Embodiment 1). On the other hand, when the spare area includes two or more spare ejection areas, the spare area has a bank that defines the spare ejection area (see the second embodiment). The bank included in the spare area has a long axis parallel to the line direction (see Embodiment 2). In any case, the number of banks included in the spare region is smaller than the number of line banks included in the element array region (see FIG. 11).
 b)横塗りが採用された場合(実施の形態4参照)
 横塗りが採用された場合、予備領域は、ライン状領域のライン方向の側部のみに隣接し、ライン状領域のライン方向の端部に隣接しない(図15参照)。この場合、予備領域は、ライン方向に沿った長軸を有し、ライン方向と垂直な方向に沿った短軸を有する。また、横塗りが採用された場合、予備領域は1つの予備吐出領域からなることが好ましい。
b) When horizontal coating is adopted (see Embodiment 4)
When horizontal coating is adopted, the spare area is adjacent to only the side portion of the line-shaped area in the line direction, and is not adjacent to the end of the line-shaped area in the line direction (see FIG. 15). In this case, the spare region has a major axis along the line direction and a minor axis along a direction perpendicular to the line direction. Further, when horizontal coating is adopted, it is preferable that the preliminary area is composed of one preliminary ejection area.
 このように本発明の有機ELディスプレイパネルでは、縦塗りが採用された場合および横塗りが採用された場合のいずれの場合であっても、予備領域は、従来のディスプレイパネルのように(図1参照)素子配列領域を囲まない。これにより、有機ELディスプレイパネルにおける非発光領域である予備領域の割合を小さくし、発光領域である素子配列領域の割合を大きくすることができる。 As described above, in the organic EL display panel of the present invention, the spare area is the same as that of the conventional display panel regardless of whether vertical coating or horizontal coating is employed (FIG. 1). Reference) Does not enclose the element array region. Thereby, the ratio of the reserve area | region which is a non-light-emission area | region in an organic electroluminescent display panel can be made small, and the ratio of the element arrangement | sequence area | region which is a light emission area | region can be enlarged.
 2)第2ステップでは、インクジェットヘッドを予備領域上に配置する。インクジェットヘッドは、複数のノズルを有する。インクジェットヘッドには、有機層の材料を含むインクが供給される。インクは、高分子有機EL材料を含むことが好ましい。高分子有機EL材料は、所望の発色(R,G,B)が生じるように、適宜選択されることが好ましい。 2) In the second step, the inkjet head is placed on the spare area. The ink jet head has a plurality of nozzles. Ink containing an organic layer material is supplied to the inkjet head. The ink preferably contains a polymer organic EL material. The polymer organic EL material is preferably selected as appropriate so that a desired color (R, G, B) is generated.
 上述のように予備領域の位置は、縦塗りを採用する場合と、横塗りを採用する場合とで異なる。このため、第2ステップでインクジェットヘッドを予備領域上に配置する位置も縦塗りを採用する場合と、横塗りを採用する場合とで異なる。 As described above, the position of the spare area differs depending on whether vertical coating or horizontal coating is used. For this reason, the position where the inkjet head is arranged on the spare area in the second step is also different between the case where the vertical coating is adopted and the case where the horizontal coating is adopted.
 予備領域上に配置するインクジェットヘッドの数は1つであってもよいが(図5A参照)、2以上であってもよい。2以上のインクジェットヘッドを用いることで、より広い領域を一度に塗布することが可能になる。また、3つのインクジェットヘッドを重ね、それぞれのインクジェットヘッドに、R、GまたはBのインクを供給すれば、R、GおよびBのインクを同時に塗布することが可能になり、より短時間で全てのライン状領域にインクを塗布することができる。 The number of inkjet heads arranged on the spare area may be one (see FIG. 5A), or two or more. By using two or more inkjet heads, a wider area can be applied at once. If three ink jet heads are stacked and R, G, or B ink is supplied to each ink jet head, it becomes possible to apply R, G, and B inks simultaneously. Ink can be applied to the line-shaped region.
 3)第3ステップでは、予備領域上でノズルからインクを吐出(予備吐出)し、予備吐出領域内にインクを着弾させる。予備吐出は、ノズルの詰りが解消されかつ、メニスカス振動の周期が安定するまで続けることが好ましい。ノズルの詰りが解消されかつ、メニスカス振動の周期が安定することで、インクの吐出量および飛翔方向が安定し、インクの着弾精度が安定する。予備吐出で得られるメニスカス振動の周期は、第5ステップまで維持されることが好ましい。
 予備吐出の時間は通常、0.01s~5sである。また、1のノズルが1度に吐出するインクの量(ノズルが吐出するインク一滴の量)は、通常3pl~20plである。
3) In the third step, ink is ejected from the nozzles (preliminary ejection) on the preliminary area, and the ink is landed in the preliminary ejection area. The preliminary discharge is preferably continued until the clogging of the nozzle is eliminated and the meniscus vibration period is stabilized. Nozzle clogging is eliminated and the meniscus vibration cycle is stabilized, so that the ink ejection amount and flight direction are stabilized, and the ink landing accuracy is stabilized. The meniscus vibration period obtained by the preliminary discharge is preferably maintained up to the fifth step.
The preliminary discharge time is usually 0.01 to 5 s. In addition, the amount of ink ejected by one nozzle at a time (the amount of ink droplet ejected by the nozzle) is usually 3 pl to 20 pl.
 第3ステップでは、インクジェットヘッドを素子配列領域方向に移動しながら、予備吐出領域にインクを着弾させることが好ましい(図6A参照)。予備吐出をする間、インクジェットヘッドを素子配列領域方向へ移動することで、後述する第4ステップおよび第5ステップにおけるインクジェットの移動速度が安定する。 In the third step, it is preferable that the ink is landed on the preliminary ejection region while moving the ink jet head in the element array region direction (see FIG. 6A). By moving the inkjet head in the direction of the element arrangement region during the preliminary ejection, the inkjet moving speed in the fourth step and the fifth step described later is stabilized.
 また、本発明では、第3ステップ~第5ステップにおけるインクジェットヘッドが動く方向は同一である。したがって、縦塗りが採用された場合、インクジェットヘッドは、常にライン方向に沿って移動し;横塗りが採用された場合、インクジェットヘッドは、常にライン方向と垂直な方向に沿って移動する。このようにインクジェットヘッドの移動方向を統一することで、インクジェットヘッドの走査が安定する。 In the present invention, the moving direction of the inkjet head in the third step to the fifth step is the same. Therefore, when vertical coating is adopted, the inkjet head always moves along the line direction; when horizontal coating is adopted, the inkjet head always moves along a direction perpendicular to the line direction. By unifying the moving direction of the inkjet head in this way, the scanning of the inkjet head is stabilized.
 インクジェットヘッドを移動するには、インクジェットヘッド自体を移動させてもよいし、ベースパネルを搬送してもよいし、両方を移動させてもよい。 In order to move the inkjet head, the inkjet head itself may be moved, the base panel may be transported, or both may be moved.
 このように、インクの吐出量および飛翔方向が安定するまで、予備吐出を行うことで、インクの着弾精度が向上し、後述する第5ステップでライン状領域にインクを正確に塗布することができる。ここで「着弾精度が安定する」とは、インクの飛翔方向および吐出量が安定することを意味する。 Thus, by performing preliminary discharge until the ink discharge amount and the flight direction are stabilized, the ink landing accuracy is improved, and the ink can be accurately applied to the line-shaped region in the fifth step described later. . Here, “the landing accuracy is stable” means that the flying direction and the discharge amount of the ink are stabilized.
 また、上述のように予備領域が有するバンクの数が少ないため、インクの飛翔方向が不安定な予備吐出中に飛翔したインクが、バンク上に着弾し、バンク上に残存するおそれが少ない。これにより、有機ELディスプレイパネルの欠陥の原因となるパーティクルの発生を防止することができる。 Further, as described above, since the number of banks included in the spare area is small, there is little possibility that the ink flying during the preliminary ejection in which the ink flying direction is unstable will land on the bank and remain on the bank. Thereby, generation | occurrence | production of the particle | grains causing the defect of an organic electroluminescence display panel can be prevented.
 4)第4ステップでは、インクジェットヘッドを、予備領域から、素子配列領域に移動する。インクジェットヘッドの予備領域から、素子配列領域への移動は、予備吐出で得られた安定なメニスカス振動の周期を維持したまま行うことが好ましい。安定なメニスカス振動の周期を維持しながら、インクジェットヘッドを予備領域から、素子配列領域へ移動するには、移動中も、各ノズルのアクチュエータを駆動すればよい。このように、インクジェットヘッドの予備領域から、素子配列領域への移動中も、予備吐出で得られた安定なメニスカス振動の周期を維持することで、予備領域で得られた着弾精度を維持することができる。 4) In the fourth step, the inkjet head is moved from the spare area to the element array area. The movement of the inkjet head from the preliminary region to the element array region is preferably performed while maintaining a stable meniscus vibration period obtained by the preliminary ejection. In order to move the ink jet head from the spare area to the element array area while maintaining a stable meniscus vibration period, the actuator of each nozzle may be driven even during the movement. In this way, the landing accuracy obtained in the preliminary region can be maintained by maintaining the stable meniscus vibration period obtained by the preliminary ejection even during the movement of the inkjet head from the preliminary region to the element array region. Can do.
 インクジェットヘッドを移動するには、インクジェットヘッド自体を移動させてもよいし、ベースパネルを搬送してもよいし、両方を移動させてもよい。インクジェットヘッドのベースパネルに対する移動速度は、1mm/s~100mm/sであることが好ましい。 In order to move the inkjet head, the inkjet head itself may be moved, the base panel may be transported, or both may be moved. The moving speed of the ink jet head relative to the base panel is preferably 1 mm / s to 100 mm / s.
 また、第3ステップで、予備吐出をする間もインクジェットヘッドを移動する場合、第4ステップのインクジェットヘッドの移動速度は、第3ステップのインクジェットヘッドの移動速度と同じであることが好ましい。 Also, when the inkjet head is moved during preliminary ejection in the third step, it is preferable that the movement speed of the inkjet head in the fourth step is the same as the movement speed of the inkjet head in the third step.
 5)第5ステップでは、インクジェットヘッドで、ライン状領域にインクを塗布する。インクジェットヘッドで、ライン状領域にインクを塗布するには、インクジェットヘッドで素子配列領域を走査しながら、ノズルから吐出されたインクをライン状領域に着弾させればよい。インクジェットヘッドの走査方向は、縦塗りを採用するか、横塗りを採用するかで異なる。塗布されたインクを乾燥させることで、有機層が形成される。第5ステップのインクジェットヘッドの移動速度は、第4ステップのインクジェットヘッドの移動速度と同じであることが好ましい。 5) In the fifth step, ink is applied to the line-shaped region with an inkjet head. In order to apply ink to the line-shaped region with the inkjet head, the ink ejected from the nozzles may be landed on the line-shaped region while scanning the element array region with the inkjet head. The scanning direction of the inkjet head differs depending on whether vertical coating or horizontal coating is employed. The organic layer is formed by drying the applied ink. The moving speed of the ink jet head in the fifth step is preferably the same as the moving speed of the ink jet head in the fourth step.
 さらに、有機層上に対向電極をスパッタリングなどで形成し、有機ELディスプレイパネルを形成すればよい。 Furthermore, an organic EL display panel may be formed by forming a counter electrode on the organic layer by sputtering or the like.
 このように本発明によれば、予備吐出によって、ライン状領域にインクを正確に塗布することができ、混色のない有機ELディスプレイパネルが得られる。また、本発明では、予備領域内で、インクがバンク上に残留し、パーティクルの原因となる恐れが少ない。このため、本発明によれば欠陥が少ない有機ELディスプレイパネルが提供される。 As described above, according to the present invention, ink can be accurately applied to the line-shaped region by preliminary ejection, and an organic EL display panel without color mixture can be obtained. Further, in the present invention, there is little possibility that ink remains on the bank in the spare area and causes particles. For this reason, according to the present invention, an organic EL display panel with few defects is provided.
 2.本発明の有機ELディスプレイパネルについて
 次に上述した有機ELディスプレイパネルの製造方法によって製造された有機ELディスプレイについて説明する。本発明の有機ELディスプレイパネルは、基板と、基板上に配置されたバンクと、基板上にマトリクス状に配置された有機EL素子と、を有する。
2. About the organic EL display panel of this invention Next, the organic EL display manufactured by the manufacturing method of the organic EL display panel mentioned above is demonstrated. The organic EL display panel of the present invention includes a substrate, a bank disposed on the substrate, and organic EL elements disposed in a matrix on the substrate.
 本発明の有機ELディスプレイパネルは、パッシブマトリックス型であっても、アクティブマトリックス型であってもよい。さらに本発明の有機ELディスプレイパネルは、ボトムエミッション型(光を画素電極および基板を通して取り出すタイプ)であっても、トップエミッション型(光を対向電極および封止膜を通して取り出すタイプ)であってもよい。 The organic EL display panel of the present invention may be a passive matrix type or an active matrix type. Furthermore, the organic EL display panel of the present invention may be a bottom emission type (a type in which light is extracted through a pixel electrode and a substrate) or a top emission type (a type in which light is extracted through a counter electrode and a sealing film). .
 基板について
 基板は、素子配列領域と予備領域とを有する。素子配列領域では有機EL素子がマトリクス状に配置されている。素子配列領域は後述のライン状バンクによって規定され、かつ互いに平行な複数のライン状領域を有する。ライン状領域内には有機EL素子が列状に配列されている。また、素子配列領域内では、基板は有機EL素子を駆動するための駆動TFTを内蔵していてもよい。
About the substrate The substrate has an element array region and a spare region. In the element array region, organic EL elements are arranged in a matrix. The element array region is defined by a line bank described later and has a plurality of line regions parallel to each other. Organic EL elements are arranged in a line in the line-shaped region. Further, in the element arrangement region, the substrate may incorporate a driving TFT for driving the organic EL element.
 予備領域は、1または2以上の予備吐出領域からなる。予備吐出領域内には、有機EL素子が配置されず、レッド、グリーンおよびブルーに発光する有機発光材料の残渣が混在している。 The spare area is composed of one or more preliminary ejection areas. In the preliminary ejection region, no organic EL element is disposed, and residues of organic light emitting materials that emit red, green, and blue are mixed.
 基板の材料は、本発明の有機ELディスプレイパネルが、ボトムエミッション型であるか、トップエミッション型かあるかによって異なる。有機ELディスプレイパネルがボトムエミッション型の場合、基板が透明であることが求められるので、基板の材料の例には、PET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)、PI(ポリイミド)などの透明樹脂やガラスなどが含まれる。一方、有機ELディスプレイパネルがトップエミッション型の場合、基板が透明である必要はないので、基板の材料は絶縁性を有するものであれば任意である。 The material of the substrate differs depending on whether the organic EL display panel of the present invention is a bottom emission type or a top emission type. Since the substrate is required to be transparent when the organic EL display panel is a bottom emission type, examples of the substrate material include transparent materials such as PET (polyethylene terephthalate), PEN (polyethylene naphthalate), and PI (polyimide). Resin and glass are included. On the other hand, when the organic EL display panel is a top emission type, the substrate does not need to be transparent, and therefore the material of the substrate is arbitrary as long as it has insulating properties.
 バンクについて
 バンクは、基板上に配置され、塗布形成される層を規定する障壁である。バンクの高さ(基板面からバンクの頂点までの距離)は0.5μm~2μmであることが好ましい。
About Banks A bank is a barrier that defines a layer that is disposed on a substrate and applied. The bank height (distance from the substrate surface to the top of the bank) is preferably 0.5 μm to 2 μm.
 本発明の有機ELディスプレイパネルは、基板表面を予備領域と素子配列領域とに区切るバンクと、素子配列領域内に、2以上のライン状領域に規定するライン状バンクとを有する。 The organic EL display panel of the present invention has a bank that divides the substrate surface into a spare area and an element array area, and a line bank that defines two or more line-shaped areas in the element array area.
 ライン状バンクは、素子配列領域内に複数のライン状領域を規定する(図3参照)。したがって素子配列領域は、複数のライン状領域を有する。ライン状バンクの幅は10μm~50μmであり、例えば、約30μmである。 The line bank defines a plurality of line areas in the element array area (see FIG. 3). Therefore, the element array region has a plurality of line-shaped regions. The width of the line bank is 10 μm to 50 μm, for example, about 30 μm.
 上述のようにバンクは、インクが塗布される領域を規定することから濡れ性が低いことが好ましい。バンクの濡れ性を低くするには、バンクをフッ素ガスでプラズマ処理してもよいし、バンクの材料をフッ素含有樹脂としてもよい。フッ素含有樹脂は、その高分子繰り返し単位のうち、少なくとも一部の繰り返し単位にフッ素原子を有するものであればよい。 As described above, it is preferable that the bank has low wettability because it defines a region where ink is applied. In order to reduce the wettability of the bank, the bank may be plasma-treated with fluorine gas, or the bank material may be a fluorine-containing resin. Fluorine-containing resin should just have a fluorine atom in at least one part repeating unit among the polymer repeating units.
 バンクをフッ素ガスでプラズマ処理する場合、バンクの材料は、ポリイミドまたはアクリル樹脂であることが好ましい。また、フッ素含有樹脂の例には、フッ素化ポリイミド樹脂、フッ素化ポリメタアクリル樹脂、含フッ素フェノール・ノボラック系樹脂などが含まれる。 When the bank is plasma-treated with fluorine gas, the bank material is preferably polyimide or acrylic resin. Examples of the fluorine-containing resin include a fluorinated polyimide resin, a fluorinated polymethacrylic resin, and a fluorine-containing phenol / novolak resin.
 有機EL素子について
 上述のように有機EL素子は、素子配列領域のそれぞれのライン状領域内に列状に配列される。それぞれ有機EL素子は、レッド、グリーンまたはブルーのいずれかの色の光を発する副画素として機能する。同一のライン状領域内に配置された有機EL素子は全て同色の光を発する。有機EL素子は、基板上に配置された画素電極、画素電極上に配置された有機層、および有機層上に配置された対向電極を有する。
Regarding the organic EL elements As described above, the organic EL elements are arranged in a line in each linear region of the element arrangement region. Each of the organic EL elements functions as a sub-pixel that emits light of any one color of red, green, and blue. All the organic EL elements arranged in the same linear region emit light of the same color. The organic EL element has a pixel electrode disposed on a substrate, an organic layer disposed on the pixel electrode, and a counter electrode disposed on the organic layer.
 画素電極は、基板上に配置される導電性の部材である。画素電極は通常陽極として機能するが陰極として機能してもよい。有機ELディスプレイパネルがボトムエミッション型の場合、画素電極が透明であることが求められるので、画素電極の材料の例には、ITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)、酸化スズなどが含まれる。一方、有機ELディスプレイパネルがトップエミッション型の場合、画素電極に光反射性が求められるので、画素電極の材料の例には、APC合金(銀、パラジウム、銅の合金)やARA(銀、ルビジウム、金の合金)、MoCr(モリブデンとクロムの合金)、NiCr(ニッケルとクロムの合金)などが含まれる。画素電極の厚さは、通常、100nm~500nmであり、約150nmでありうる。 The pixel electrode is a conductive member disposed on the substrate. The pixel electrode normally functions as an anode, but may function as a cathode. When the organic EL display panel is a bottom emission type, the pixel electrode is required to be transparent. Examples of the material for the pixel electrode include ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), and tin oxide. included. On the other hand, when the organic EL display panel is a top emission type, since the pixel electrode is required to have light reflectivity, examples of the material of the pixel electrode include APC alloy (silver, palladium, copper alloy) and ARA (silver, rubidium). , Gold alloy), MoCr (molybdenum and chromium alloy), NiCr (nickel and chromium alloy), and the like. The thickness of the pixel electrode is typically 100 nm to 500 nm, and can be about 150 nm.
 また、本発明の有機ELディスプレイパネルが、パッシブマトリクス型である場合、複数の有機EL素子が1のライン状の画素電極を共有する。画素電極がライン状である場合、ライン状バンクのラインの方向と、画素電極のラインの方向とは直交することが好ましい。一方、本発明の有機ELディスプレイパネルがアクティブマトリクス型である場合、画素電極は有機EL素子ごとに独立して配置され(図3参照)、駆動TFTと接続される。 Further, when the organic EL display panel of the present invention is a passive matrix type, a plurality of organic EL elements share one line-shaped pixel electrode. When the pixel electrode has a line shape, the line direction of the line bank and the line direction of the pixel electrode are preferably orthogonal. On the other hand, when the organic EL display panel of the present invention is an active matrix type, the pixel electrode is disposed independently for each organic EL element (see FIG. 3) and connected to the driving TFT.
 有機層は、画素電極上に塗布法によって形成された、少なくとも有機発光層を含む層である。有機層は、さらに正孔注入層、中間層、電子輸送層などを含んでいてもよい。このように本発明では、有機層は塗布法によって形成されることを特徴とする。有機層は、バンクによって規定された領域内に配置される。すなわち、ライン状の有機層が、ライン状領域内に形成される。したがって、ライン状領域内の有機EL素子の有機層は連結している。有機層の厚さは、約50nm~100nm(例えば70nm)であることが好ましい。 The organic layer is a layer including at least an organic light emitting layer formed on the pixel electrode by a coating method. The organic layer may further include a hole injection layer, an intermediate layer, an electron transport layer, and the like. As described above, the present invention is characterized in that the organic layer is formed by a coating method. The organic layer is disposed in a region defined by the bank. That is, a line-shaped organic layer is formed in the line-shaped region. Therefore, the organic layers of the organic EL elements in the line region are connected. The thickness of the organic layer is preferably about 50 nm to 100 nm (for example, 70 nm).
 有機発光層は、有機発光材料を含む層である。有機発光層に含まれる有機発光材料は低分子有機発光材料であっても、高分子有機発光材料であってもよいが、高分子有機発光材料であることが好ましい。高分子有機発光材料を含む有機発光層は、塗布形成しやすいからである。高分子有機発光材料の例には、ポリフェニレンビニレンおよびその誘導体、ポリアセチレン(Polyacetylene)およびその誘導体、ポリフェニレン(Polyphenylene)およびその誘導体、ポリパラフェニレンエチレン(Polyparaphenylene ethylene)およびその誘導体、ポリ3-ヘキシルチオフェン(Poly-3-hexylthiophene(P3HT))およびその誘導体、ポリフルオレン(Polyfluorene(PF))およびその誘導体などが含まれる。 The organic light emitting layer is a layer containing an organic light emitting material. The organic light emitting material contained in the organic light emitting layer may be a low molecular organic light emitting material or a polymer organic light emitting material, but is preferably a polymer organic light emitting material. This is because an organic light emitting layer containing a polymer organic light emitting material is easy to form by coating. Examples of the polymeric organic light-emitting material include polyphenylene vinylene and derivatives thereof, polyacetylene and derivatives thereof, polyphenylene and derivatives thereof, polyparaphenylene ethylene and derivatives thereof, and poly-3-hexylthiophene ( Poly-3-hexylthiophene (P3HT)) and derivatives thereof, polyfluorene (PF) and derivatives thereof, and the like.
 有機発光材料は各副画素(有機EL素子)から所望の発色(レッド、グリーンまたはブルー)が生じるように、適宜選択される。例えば、レッド副画素の隣にグリーン副画素を配置し、グリーン副画素の隣にブルー副画素を配置し、ブルー副画素の隣にレッド副画素を配置する。 The organic light emitting material is appropriately selected so that a desired color (red, green or blue) is generated from each sub-pixel (organic EL element). For example, a green subpixel is arranged next to the red subpixel, a blue subpixel is arranged next to the green subpixel, and a red subpixel is arranged next to the blue subpixel.
 対向電極は有機層上に配置された導電性部材である。対向電極は通常陰極として機能するが陽極として機能してもよい。本発明の有機ELディスプレイパネルがトップエミッション型の場合、対向電極の材料の例には、ITOやIZO、Ba、Al、WOxなどが光透過性の材料が含まれる。一方、本発明の有機ELディスプレイパネルがボトムエミッション型の場合、対向電極の材料は特に限定されないが、例えば、BaやBaO、Alなどである。 The counter electrode is a conductive member disposed on the organic layer. The counter electrode normally functions as a cathode, but may function as an anode. When the organic EL display panel of the present invention is a top emission type, examples of the material of the counter electrode include light transmissive materials such as ITO, IZO, Ba, Al, and WOx. On the other hand, when the organic EL display panel of the present invention is a bottom emission type, the material of the counter electrode is not particularly limited, and examples thereof include Ba, BaO, and Al.
 また、有機ELディスプレイパネルがアクティブマトリクス型の場合、全ての有機EL素子が1つの対向電極を共有していてもよい(図3参照)。アクティブマトリクス型の有機ELディスプレイパネルでは、各副画素は独立したTFTによって駆動されるからである。一方、有機ELディスプレイパネルがパッシブマトリクス型の場合、複数のライン状の対向電極がパネル上に配置される。この場合、ライン状バンクがカソードセパレータとして機能する。またライン状の対向電極のライン方向は、ライン状の画素電極のライン方向と直交することが好ましい。 Further, when the organic EL display panel is an active matrix type, all organic EL elements may share one counter electrode (see FIG. 3). This is because in the active matrix organic EL display panel, each subpixel is driven by an independent TFT. On the other hand, when the organic EL display panel is a passive matrix type, a plurality of line-shaped counter electrodes are arranged on the panel. In this case, the line bank functions as a cathode separator. The line direction of the line-shaped counter electrode is preferably orthogonal to the line direction of the line-shaped pixel electrode.
 このように本発明の有機ELディスプレイパネルでは、非発光領域である予備領域が、従来のディスプレイパネルのように(図1参照)発光領域である素子配列領域を囲まない。これにより、有機ELディスプレイパネルにおける非発光領域である予備領域の割合を小さくし、発光領域である素子配列領域の割合を大きくすることができる。 As described above, in the organic EL display panel of the present invention, the spare area which is a non-light emitting area does not surround the element arrangement area which is a light emitting area unlike the conventional display panel (see FIG. 1). Thereby, the ratio of the reserve area | region which is a non-light-emission area | region in an organic electroluminescent display panel can be made small, and the ratio of the element arrangement | sequence area | region which is a light emission area | region can be enlarged.
 以下図面を参照して本発明の有機ELディスプレイパネルの実施の形態について説明する。 Embodiments of an organic EL display panel according to the present invention will be described below with reference to the drawings.
 [実施の形態1]
 実施の形態1では、縦塗りを採用した有機ELディスプレイパネルの製造方法について説明する。また、実施の形態1で製造される有機ELディスプレイパネルは、アクティブマトリクス型である。
[Embodiment 1]
In the first embodiment, a method for manufacturing an organic EL display panel employing vertical coating will be described. Further, the organic EL display panel manufactured in the first embodiment is an active matrix type.
 実施の形態1の有機ELディスプレイパネルの製造方法は、1)ベースパネルを準備する第1ステップ(図3参照)と、2)インクジェットヘッド120を、予備領域107上に配置する第2ステップ(図5A参照)と、3)予備領域107上でノズル121からインクを一定インターバルごとに吐出し、インクを予備吐出領域108に着弾させる第3ステップ(図6A参照)と、4)一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を予備領域107から素子配列領域105に移動する第4ステップ(図6B参照)と、5)ライン状領域(塗布領域)104にインクを塗布する第5ステップ(図8A参照)と、を有する。 The manufacturing method of the organic EL display panel according to the first embodiment includes 1) a first step of preparing a base panel (see FIG. 3), and 2) a second step of arranging the inkjet head 120 on the spare area 107 (FIG. 5A), 3) a third step (see FIG. 6A) in which ink is ejected from the nozzle 121 on the preliminary area 107 at regular intervals, and ink is landed on the preliminary ejection area 108, and 4) at regular intervals. A fourth step (see FIG. 6B) in which the inkjet head 120 is moved from the preliminary area 107 to the element array area 105 while maintaining the ejection, and 5) a fifth step in which ink is applied to the linear area (application area) 104 ( 8A).
 本実施の形態は、第4ステップで予備吐出の吐出インターバルを維持したままインクジェットヘッド120を予備領域107から素子配列領域105に移動することを特徴とする。 The present embodiment is characterized in that the inkjet head 120 is moved from the preliminary region 107 to the element array region 105 while maintaining the discharge interval of the preliminary discharge in the fourth step.
 また、本実施の形態では、第3ステップから第5ステップにおいてインクジェットヘッドが移動する方向が同一である。すなわち本実施の形態では、インクジェットヘッドをライン方向に沿って移動する。以下それぞれのステップについて説明する。 Further, in the present embodiment, the direction in which the inkjet head moves in the third step to the fifth step is the same. That is, in the present embodiment, the inkjet head is moved along the line direction. Each step will be described below.
 1)第1ステップでは、ベースパネルを準備する。図3は、第1ステップで準備するベースパネルの平面図である。図3に示されるように、ベースパネル110は、基板101と、画素電極102と、バンク(境界バンク103およびライン状バンク106)とを有する。 1) In the first step, prepare the base panel. FIG. 3 is a plan view of the base panel prepared in the first step. As shown in FIG. 3, the base panel 110 includes a substrate 101, a pixel electrode 102, and banks (a boundary bank 103 and a line bank 106).
 基板101は、その表面に素子配列領域105と、予備領域107とを有する。素子配列領域105内には、画素電極102がマトリクス状に配列されている。 The substrate 101 has an element array region 105 and a spare region 107 on its surface. In the element array region 105, the pixel electrodes 102 are arranged in a matrix.
 ライン状バンク106は、素子配列領域105内に、ライン状領域(塗布領域)104を規定する。したがって素子配列領域105は複数のライン状領域104を有する。ライン状バンク106の幅106wは10μm~50μmであることが好ましい。ライン状領域104は1列に配列された複数の画素電極102を有する。 The line bank 106 defines a line area (application area) 104 in the element array area 105. Therefore, the element array region 105 has a plurality of line-shaped regions 104. The width 106w of the line bank 106 is preferably 10 μm to 50 μm. The line-shaped region 104 has a plurality of pixel electrodes 102 arranged in one row.
 境界バンク103は、予備領域107と素子配列領域105とを区切る。本実施の形態では、境界バンク103の幅103wが狭いことが好ましい。ここで「バンクの幅」とはバンクの底面の短手方向の長さを意味する(図4B参照)。例えば、境界バンク103の幅103wは、有機ELディスプレイパネルの副画素の幅(80μm~200μm)やライン状バンク106の幅106wよりも狭いことが好ましい。より具体的には、境界バンク103の幅103wは、10μm~300μmであることが好ましく、20μm~50μmであることがさらに好ましい。このように本実施の形態では、境界バンク103の幅103wが、比較的狭いことを特徴とする。 The boundary bank 103 divides the spare area 107 and the element array area 105. In the present embodiment, it is preferable that the width 103w of the boundary bank 103 is narrow. Here, the “bank width” means the length of the bottom surface of the bank in the short direction (see FIG. 4B). For example, the width 103 w of the boundary bank 103 is preferably narrower than the width (80 μm to 200 μm) of the sub-pixel of the organic EL display panel or the width 106 w of the line bank 106. More specifically, the width 103w of the boundary bank 103 is preferably 10 μm to 300 μm, and more preferably 20 μm to 50 μm. Thus, this embodiment is characterized in that the width 103w of the boundary bank 103 is relatively narrow.
 図4Aは図3に示したベースパネル110のAA線による断面図である。図4Bは、図4Aに示した四角Xの拡大図である。図4Bに示されるように境界バンク103の形状は、順テーパ状である。境界バンク103のテーパ角αは20°~50°であることが好ましい。また、境界バンク103の断面は、図4Cに示されるように三角形であってもよいし、図4Dに示されるように半円であってもよい。また、境界バンク103は撥液性を有することが好ましい。具体的には、境界バンク103の頂点におけるアニソールの接触角は30°~70°であることが好ましく、40°~50°であることがより好ましい。 4A is a cross-sectional view taken along line AA of the base panel 110 shown in FIG. 4B is an enlarged view of the square X shown in FIG. 4A. As shown in FIG. 4B, the shape of the boundary bank 103 is a forward tapered shape. The taper angle α of the boundary bank 103 is preferably 20 ° to 50 °. Further, the cross section of the boundary bank 103 may be a triangle as shown in FIG. 4C or a semicircle as shown in FIG. 4D. The boundary bank 103 preferably has liquid repellency. Specifically, the contact angle of anisole at the apex of the boundary bank 103 is preferably 30 ° to 70 °, and more preferably 40 ° to 50 °.
 次に、図3を参照しながら予備領域107の構造および配置位置について説明する。予備領域107は、1つの予備吐出領域108からなる。このため本実施の形態では、予備領域107は、予備吐出領域を区切るバンクを有さない。 Next, the structure and arrangement position of the spare area 107 will be described with reference to FIG. The spare area 107 includes one spare ejection area 108. Therefore, in the present embodiment, the spare area 107 does not have a bank that divides the spare ejection area.
 予備領域107は、ライン状領域104のライン方向の一方の(図面上方の)端部のみに隣接する。また、予備領域107が、ライン状領域104のライン方向の側部に隣接しないのであれば、予備領域107は、素子配列領域105を挟むように、素子配列領域105の両側に配置されてもよい。すなわち予備領域107は、ライン状領域104のライン方向の端部の両方に隣接していてもよい。 The spare area 107 is adjacent to only one end (upward in the drawing) of the line area 104 in the line direction. Further, if the spare region 107 is not adjacent to the side of the linear region 104 in the line direction, the spare region 107 may be arranged on both sides of the element array region 105 so as to sandwich the element array region 105. . That is, the spare area 107 may be adjacent to both ends of the line area 104 in the line direction.
 このように、本実施の形態では、予備領域107は、素子配列領域105を囲まず、ライン状領域104のライン方向の端部にのみ隣接する。これにより、有機ELディスプレイパネルにおける非発光領域(予備領域)の割合を小さくし、発光領域(素子配列領域)の割合を大きくすることができる。 Thus, in the present embodiment, the spare region 107 does not surround the element array region 105 and is adjacent only to the end of the line-shaped region 104 in the line direction. Thereby, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel can be reduced, and the ratio of the light-emitting area (element array area) can be increased.
 予備領域107の長軸は、ライン方向と垂直である。予備領域107の短軸は、ライン方向と平行である。 The long axis of the spare area 107 is perpendicular to the line direction. The short axis of the spare area 107 is parallel to the line direction.
 予備領域107のライン方向と垂直な方向の長さ107L(予備領域107の長軸の長さ)は、素子配列領域105のライン方向と垂直な方向の長さ(以下、「素子配列領域105の幅」とも称する)105Lよりも長いことが好ましい。本実施の形態では予備領域107は、1つの予備吐出領域108からなるので、予備吐出領域108の長軸の長さも、素子配列領域105の幅105Lよりも長いことが好ましい。予備領域107の長軸の長さ107Lが、素子配列領域105の幅105Lよりも短い場合、後述する予備吐出の際に、インクが予備吐出領域108以外の領域に着弾するおそれがあるからである。 The length 107L of the spare area 107 in the direction perpendicular to the line direction (the length of the major axis of the spare area 107) is the length in the direction perpendicular to the line direction of the element array area 105 (hereinafter referred to as “the element array area 105 The width is preferably longer than 105L. In this embodiment, since the preliminary region 107 is composed of one preliminary discharge region 108, the length of the major axis of the preliminary discharge region 108 is preferably longer than the width 105L of the element array region 105. This is because, when the length 107L of the long axis of the preliminary area 107 is shorter than the width 105L of the element array area 105, there is a possibility that the ink may land on an area other than the preliminary discharge area 108 in the preliminary discharge described later. .
 予備領域107のライン方向の長さ107S(予備領域107の短軸の長さ)は、例えば、有機ELディスプレイパネルの副画素の長軸の長さ(例えば300μm)以上であることが好ましい。同様に予備吐出領域108の短軸の長さも、300μm以上であることが好ましい。予備領域107の短軸の長さ107Sが副画素の長さ未満である場合、後述する予備吐出の際に、インクが予備吐出領域108以外の領域に着弾するおそれがあるからである。 The length 107S of the spare area 107 in the line direction (the length of the minor axis of the spare area 107) is preferably, for example, not less than the length of the major axis of the sub-pixel of the organic EL display panel (for example, 300 μm). Similarly, the length of the short axis of the preliminary discharge region 108 is preferably 300 μm or more. This is because, when the short axis length 107S of the preliminary area 107 is less than the length of the sub-pixel, the ink may land on an area other than the preliminary ejection area 108 in the preliminary ejection described later.
 2)図5Aは、ベースパネルの平面図を用いて第2ステップを示した図であり、図5Bは、図5AのベースパネルのAA線による断面図を用いて第2ステップを示した図である。図5Aおよび図5Bに示されるように、第2ステップでは、2以上のノズル121を有し、有機層の材料を含有するインクが供給されるインクジェットヘッド120を予備領域107上に配置する。 2) FIG. 5A is a diagram showing the second step using a plan view of the base panel, and FIG. 5B is a diagram showing the second step using a cross-sectional view of the base panel taken along line AA in FIG. 5A. is there. As shown in FIGS. 5A and 5B, in the second step, the inkjet head 120 having two or more nozzles 121 and supplied with ink containing the organic layer material is disposed on the preliminary region 107.
 図5Aに示されるように、第2ステップでは、インクジェットヘッド120のノズル121の配列方向が、ライン方向と垂直な方向に沿うように配置される。また、ライン方向と垂直な方向に対して、ノズル121の配列方向を傾けてもよい。 As shown in FIG. 5A, in the second step, the arrangement direction of the nozzles 121 of the inkjet head 120 is arranged along a direction perpendicular to the line direction. Further, the arrangement direction of the nozzles 121 may be inclined with respect to the direction perpendicular to the line direction.
 3)図6Aは、ベースパネルの断面図を用いて第3ステップを示す。図6Aに示されるように、第3ステップでは、予備領域107上で、ノズル121からインクを一定インターバルごとに吐出(予備吐出)し、予備吐出領域108内にインクを着弾させる。 3) FIG. 6A shows the third step using a cross-sectional view of the base panel. As shown in FIG. 6A, in the third step, ink is ejected (preliminary ejection) from the nozzle 121 at regular intervals on the preliminary area 107, and ink is landed in the preliminary ejection area 108.
 吐出のインターバル(1の吐出から次の吐出までの時間)は、駆動周波数によって異なるが、通常は(駆動周波数1kHz~20kHzの範囲)0.05ms~1.0msである。 The discharge interval (time from one discharge to the next discharge) varies depending on the drive frequency, but is usually (range of drive frequency 1 kHz to 20 kHz) 0.05 ms to 1.0 ms.
 また、予備吐出の際、インクジェットヘッド120を素子配列領域105方向に移動する。インクジェットヘッドの移動方向は、ライン方向と平行である。予備吐出をする間、インクジェットヘッドを素子配列領域方向へ移動することで、後述する第4ステップおよび第5ステップにおけるインクジェットの移動速度が安定する。 Also, the ink jet head 120 is moved in the direction of the element array region 105 during preliminary ejection. The moving direction of the inkjet head is parallel to the line direction. By moving the inkjet head in the direction of the element arrangement region during the preliminary ejection, the inkjet moving speed in the fourth step and the fifth step described later is stabilized.
 インクジェットヘッドのベースパネルに対する移動速度は、1mm/s~100mm/sであることが好ましい。 The moving speed of the inkjet head relative to the base panel is preferably 1 mm / s to 100 mm / s.
 このようにライン状領域にインクを塗布する前に予備領域上で予備吐出を行うことで、ノズル詰りが解消され、かつメニスカス振動の周期が安定し、インクの飛翔方向および吐出量が安定する。これにより、着弾精度が向上し、後述する第5ステップでライン状領域にインクを正確に塗布することができる。また、上述のように予備領域107は予備吐出領域を区切るバンクを有さない。このため、予備吐出におけるインクの着弾精度が低くても、吐出されたインクは全て予備吐出領域108内に着弾する。このため、バンク上に着弾したインクが、パーティクルとなる恐れはない。 Thus, by performing preliminary ejection on the preliminary area before applying ink to the line-shaped area, nozzle clogging is eliminated, the meniscus vibration period is stabilized, and the flying direction and ejection amount of ink are stabilized. Thereby, the landing accuracy is improved, and the ink can be accurately applied to the line-shaped region in the fifth step described later. Further, as described above, the spare area 107 does not have a bank that divides the spare ejection area. For this reason, even if the ink landing accuracy in the preliminary ejection is low, all of the ejected ink is landed in the preliminary ejection region 108. For this reason, there is no possibility that the ink landed on the bank becomes particles.
 4)図6Bは、べースパネルの断面図を用いて第4ステップを示す。図6Bに示されるように、第4ステップでは、予備吐出における一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を、予備領域107から、素子配列領域105に移動する。 4) FIG. 6B shows the fourth step using a cross-sectional view of the base panel. As shown in FIG. 6B, in the fourth step, the inkjet head 120 is moved from the preliminary region 107 to the element array region 105 while maintaining the discharge at regular intervals in the preliminary discharge.
 インクジェットヘッド120を予備領域107から素子配列領域105へ移動する間も、一定のインターバルごとの吐出が維持されることから、インクジェットヘッド120は予備吐出によって得られた安定なメニスカス振動の周期が維持される。このため、予備吐出によって得られたインクの着弾精度を保ったまま、ライン状領域104にインクを塗布することができる(第5ステップ)。 While the ink jet head 120 is moved from the preliminary region 107 to the element array region 105, the discharge at a certain interval is maintained, so that the ink jet head 120 maintains the stable meniscus vibration period obtained by the preliminary discharge. The For this reason, it is possible to apply ink to the line-shaped region 104 while maintaining the landing accuracy of the ink obtained by the preliminary ejection (fifth step).
 一方、一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を予備領域107から素子配列領域105に移動した場合、インクが境界バンク103の頂面に残留することも考えられる。境界バンク103の頂面に残留したインクは、乾燥してパーティクルとなりディスプレイパネルの不良の原因ともなりうる。 On the other hand, if the inkjet head 120 is moved from the spare area 107 to the element array area 105 while maintaining ejection at regular intervals, ink may remain on the top surface of the boundary bank 103. The ink remaining on the top surface of the boundary bank 103 is dried to become particles, which may cause a display panel failure.
 しかし本実施の形態では、上述のように境界バンク103の形状を工夫しているため、一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を予備領域107から素子配列領域105に移動したとしても境界バンク103の頂面にインクが残留しない。 However, in the present embodiment, since the shape of the boundary bank 103 is devised as described above, it is assumed that the inkjet head 120 is moved from the spare area 107 to the element array area 105 while maintaining ejection at regular intervals. Ink does not remain on the top surface of the boundary bank 103.
 図7Aは、第4ステップ後の境界バンク103の拡大断面図である。図7Aに示されるように、一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を移動させた場合、境界バンク103の頂面にもインク130が塗布され、境界バンク103の頂面に、一時的にインク130が残留することがある。 FIG. 7A is an enlarged cross-sectional view of the boundary bank 103 after the fourth step. As shown in FIG. 7A, when the inkjet head 120 is moved while maintaining ejection at regular intervals, the ink 130 is also applied to the top surface of the boundary bank 103, and the top surface of the boundary bank 103 is Ink 130 may remain temporarily.
 しかし上述したように本実施の形態では、境界バンク103は、撥液性を有し、幅が狭く、かつテーパ状であることから、境界バンク103の頂面に塗布されたインク130は、矢印方向に引っ張られ、ライン状領域104側と、予備吐出領域108側とに引きちぎられて、分断される(図7B)。矢印方向にインク130を引っ張る力は、バンクが順テーパ状であることによってさらに強められる。境界バンク103の頂面に塗布されたインク130が引きちぎられて、分断されると、インク130は、境界バンク103の側面に滑り落ち、最終的にライン状領域104または予備吐出領域108のいずれかに滑り落ちる(図7C)。 However, as described above, in the present embodiment, the boundary bank 103 has liquid repellency, a narrow width, and a tapered shape. Therefore, the ink 130 applied to the top surface of the boundary bank 103 is an arrow. It is pulled in the direction, and is torn to the line-shaped region 104 side and the preliminary ejection region 108 side, and is divided (FIG. 7B). The force pulling the ink 130 in the direction of the arrow is further strengthened by the forward taper shape of the bank. When the ink 130 applied to the top surface of the boundary bank 103 is torn off and divided, the ink 130 slides down to the side surface of the boundary bank 103, and finally either the line-shaped region 104 or the preliminary ejection region 108. (FIG. 7C).
 このように、境界バンク103の形状や撥液性を調整することで、一定のインターバルごとの吐出を維持したまま、インクジェットヘッドを移動させた場合であっても境界バンク103の頂面にインクが残留しない。 In this way, by adjusting the shape and liquid repellency of the boundary bank 103, even when the inkjet head is moved while maintaining the discharge at regular intervals, the ink is applied to the top surface of the boundary bank 103. Does not remain.
 一方、境界バンクの幅が300μm以上であった場合、境界バンク103の頂面にインクが残留するおそれがある。また、境界バンク103の幅が10μm以下であった場合、境界バンク103は塗布されるインクを完全に区切ることができず、ライン状領域104と予備吐出領域108とでインクが混ざり合うおそれがある。また、境界バンクの形状が順テーパ状でない場合(例えば逆テーパ状の場合)境界バンク103の頂面に塗布されたインクは、境界バンク103の側面に移動しにくく、境界バンク103の頂面に残留するおそれが高い。 On the other hand, if the width of the boundary bank is 300 μm or more, the ink may remain on the top surface of the boundary bank 103. Further, when the width of the boundary bank 103 is 10 μm or less, the boundary bank 103 cannot completely divide the ink to be applied, and there is a possibility that ink is mixed in the line-shaped region 104 and the preliminary ejection region 108. . In addition, when the shape of the boundary bank is not a forward taper shape (for example, in the case of a reverse taper shape), the ink applied to the top surface of the boundary bank 103 is difficult to move to the side surface of the boundary bank 103 and There is a high risk of remaining.
 5)図8Aは、ベースパネルの平面図を用いて第5ステップを示し;図8Bは、図8AのベースパネルのAA線による断面図を用いて第5ステップを示す。図8Aおよび図8Bに示されるように第5ステップでは、インクジェットヘッド120をライン方向に沿って移動し、ライン状領域にインクを塗布する。塗布されたインクを乾燥させることで、有機層が形成される。 5) FIG. 8A shows the fifth step using a plan view of the base panel; FIG. 8B shows the fifth step using a cross-sectional view of the base panel taken along line AA in FIG. 8A. As shown in FIGS. 8A and 8B, in the fifth step, the inkjet head 120 is moved along the line direction to apply ink to the line-shaped region. The organic layer is formed by drying the applied ink.
 第3ステップ~第5ステップを繰り返すことで、全てのライン状領域を塗布し、有機層が形成される。さらに、形成された有機層上に、例えばスパッタリング法で対向電極を形成することで、図9に示されたような本実施の形態の有機ELディスプレイパネル100が製造される。 By repeating the third step to the fifth step, all the line-shaped regions are applied, and an organic layer is formed. Furthermore, the organic EL display panel 100 of this Embodiment as shown in FIG. 9 is manufactured by forming a counter electrode on the formed organic layer by, for example, a sputtering method.
 上述のように、本実施の形態では、第3ステップから第5ステップにおいてインクジェットヘッド120の移動方向が同一である。このため、インクジェットヘッド120の走査が安定し、安定してインクをライン状領域104に塗布することができる。 As described above, in the present embodiment, the moving direction of the inkjet head 120 is the same in the third step to the fifth step. For this reason, the scanning of the inkjet head 120 is stabilized, and the ink can be stably applied to the line-shaped region 104.
 このように、本実施の形態によれば、ライン状領域にインクを正確に塗布することができ、混色のない有機ELディスプレイパネルが得られる。また、本発明では、境界バンクの頂面にインクが残留しないことから、不良の少ない有機ELディスプレイパネルを提供することができる。 Thus, according to the present embodiment, ink can be accurately applied to the line-shaped region, and an organic EL display panel having no color mixture can be obtained. Further, in the present invention, since no ink remains on the top surface of the boundary bank, an organic EL display panel with few defects can be provided.
 次に本実施の形態の有機ELディスプレイパネルの製造方法によって製造された有機ELディスプレイパネルについて説明する。 Next, the organic EL display panel manufactured by the method for manufacturing the organic EL display panel of the present embodiment will be described.
 図9は、実施の形態1の有機ELディスプレイパネル100の平面図である。図10は、対向電極109を省略した有機ELディスプレイパネル100の平面図である。 FIG. 9 is a plan view of the organic EL display panel 100 of the first embodiment. FIG. 10 is a plan view of the organic EL display panel 100 from which the counter electrode 109 is omitted.
 図10に示されるように、有機ELディスプレイパネル100は、基板101と、境界バンク103と、ライン状バンク106と、有機EL素子140とを有する。 As shown in FIG. 10, the organic EL display panel 100 includes a substrate 101, a boundary bank 103, a line bank 106, and an organic EL element 140.
 基板101は、有機EL素子140がマトリクス状に配列された素子配列領域105と、予備吐出領域108からなる予備領域107とを有する。予備領域107は、素子配列領域105を囲まず、ライン状領域104のライン方向の端部にのみ隣接する。また予備領域107内には、R、GおよびBの有機発光材料の残渣が混在している。 The substrate 101 has an element arrangement area 105 in which organic EL elements 140 are arranged in a matrix and a spare area 107 including a preliminary ejection area 108. The spare region 107 does not surround the element array region 105 and is adjacent only to the end of the line-shaped region 104 in the line direction. Further, in the spare area 107, residues of R, G, and B organic light emitting materials are mixed.
 境界バンク103は、素子配列領域105と予備領域107とを区切り、ライン状バンク106は、素子配列領域105内に、複数のライン状のライン状領域104を規定する。ライン状領域104内には、有機EL素子140が列状に配列されている。 The boundary bank 103 divides the element array area 105 and the spare area 107, and the line bank 106 defines a plurality of line-shaped line areas 104 in the element array area 105. In the line-shaped region 104, organic EL elements 140 are arranged in a line.
 有機EL素子140には、赤色の光を発する有機EL素子140Rと、緑色の光を発する有機EL素子140Gと、青色の光を発する有機EL素子140Bと、が含まれる。1つのライン状領域104内に配列された有機EL素子140は、同一の光を発する。また、有機EL素子140Rと、有機EL素子140Gと、有機EL素子140Bとから1つの画素が構成される。 The organic EL element 140 includes an organic EL element 140R that emits red light, an organic EL element 140G that emits green light, and an organic EL element 140B that emits blue light. The organic EL elements 140 arranged in one line-shaped region 104 emit the same light. Moreover, one pixel is comprised from the organic EL element 140R, the organic EL element 140G, and the organic EL element 140B.
 このように、本実施の形態の有機ELディスプレイパネル100では、予備領域107は、素子配列領域105を囲まないので、有機ELディスプレイパネルにおける非発光領域(予備領域)の割合を小さくし、発光領域(素子配列領域)の割合を大きくすることができる。 As described above, in the organic EL display panel 100 according to the present embodiment, the spare area 107 does not surround the element array area 105. Therefore, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel is reduced. The ratio of (element arrangement region) can be increased.
 [実施の形態2]
 実施の形態1では、予備領域が1つの予備吐出領域からなる形態について説明した。実施の形態2では、予備領域が複数の予備吐出領域からなる形態について説明する。
[Embodiment 2]
In the first embodiment, a description has been given of a mode in which the spare area is composed of one preliminary ejection area. In the second embodiment, a mode in which the preliminary area is composed of a plurality of preliminary ejection areas will be described.
 図11は、実施の形態2の有機ELディスプレイパネルの製造方法で準備されるベースパネル210の平面図である。ベースパネル210は、予備領域207が複数の予備吐出領域208からなる以外は、実施の形態1のベースパネル110と同じである。したがって、ベースパネル110と同一の構成要素については、同一の符号を付し説明を省略する。 FIG. 11 is a plan view of the base panel 210 prepared by the method for manufacturing the organic EL display panel of the second embodiment. The base panel 210 is the same as the base panel 110 of the first embodiment except that the preliminary area 207 includes a plurality of preliminary ejection areas 208. Therefore, the same components as those of the base panel 110 are denoted by the same reference numerals and description thereof is omitted.
 図11に示されるように、ベースパネル210では、予備領域207が予備吐出領域108を区切るバンク203を有する。バンク203の長軸は、ライン状バンク106のライン方向と平行である。 As shown in FIG. 11, in the base panel 210, the preliminary area 207 has a bank 203 that divides the preliminary ejection area 108. The major axis of the bank 203 is parallel to the line direction of the line bank 106.
 予備領域207が有するバンク203の数は、素子配列領域105が有するライン状バンク106の数よりも少ない。この結果、それぞれの予備吐出領域208のライン方向と垂直な方向の長さ208Lは、ライン状領域104のライン方向と垂直な方向の長さ104w(ライン状領域104の短軸の長さ)よりも長くなる。 The number of banks 203 included in the spare area 207 is smaller than the number of line banks 106 included in the element array area 105. As a result, the length 208L of each preliminary ejection region 208 in the direction perpendicular to the line direction is greater than the length 104w of the line-shaped region 104 in the direction perpendicular to the line direction (the length of the short axis of the line-shaped region 104). Also gets longer.
 このように、本実施の形態では予備領域207がバンク203を有する。このため、バンクを有さない実施の形態1の予備領域107と比較して、バンク203が占める面積の分、予備領域207の単位面積辺りの予備吐出領域208の面積が、小さくなる。 As described above, in this embodiment, the spare area 207 has the bank 203. For this reason, the area of the preliminary ejection region 208 per unit area of the preliminary region 207 is reduced by the area occupied by the bank 203 as compared with the preliminary region 107 of the first embodiment having no bank.
 このため、予備吐出で予備吐出領域に着弾するインク量が一定であると仮定すると、予備領域107がバンクを有さない実施の形態1と比較して、予備吐出領域208の単位面積辺りの、インク量が増加する。このため予備吐出領域208内のインク表面の高さが高くなる。これにより、素子配列領域105の予備領域107付近の溶媒蒸気濃度を平準化することができ、素子配列領域105の予備領域107付近の乾燥スピードが選択的に高くなることを防止することができる。素子配列領域105の予備領域107付近のインクの乾燥スピードが選択的に高くなることを防止することで、乾燥ムラを低減することができ、均一な膜厚を有する有機EL層が得られる。 For this reason, assuming that the amount of ink landed on the preliminary discharge area in the preliminary discharge is constant, the preliminary area 107 has a unit area per unit area of the preliminary discharge area 208 as compared with the first embodiment in which the bank does not have a bank. The amount of ink increases. For this reason, the height of the ink surface in the preliminary ejection region 208 is increased. As a result, the solvent vapor concentration in the vicinity of the spare area 107 in the element array area 105 can be leveled, and the drying speed in the vicinity of the spare area 107 in the element array area 105 can be prevented from being selectively increased. By preventing the drying speed of ink in the vicinity of the spare area 107 in the element array area 105 from being selectively increased, drying unevenness can be reduced, and an organic EL layer having a uniform film thickness can be obtained.
 一方、図12に示されるように、予備領域207が有するバンク203の数を、素子配列領域105が有するライン状バンク106の数と同じにし、予備吐出領域208のライン方向と垂直な方向の長さ208Lを、ライン状領域104の短軸の長さ104wと同じにすることも考えられる。しかし、予備領域207が有するバンク203の数を、素子配列領域105が有するライン状バンク106の数と同じにすると、予備吐出の際にインクがバンク203の頂面に着弾し、残留するおそれがあるので好ましくない。 On the other hand, as shown in FIG. 12, the number of banks 203 included in the spare area 207 is the same as the number of line banks 106 included in the element array area 105, and the length of the preliminary ejection area 208 in the direction perpendicular to the line direction is set. The length 208L may be the same as the length 104w of the short axis of the line-shaped region 104. However, if the number of banks 203 included in the spare area 207 is the same as the number of line banks 106 included in the element array area 105, ink may land on the top surface of the bank 203 during the preliminary ejection and remain. This is not preferable.
 実施の形態2の有機ELディスプレイパネルの製造方法は、ベースパネルの準備後は、実施の形態1の有機ELディスプレイパネルと同じであってよい。
 このように実施の形態2の有機ELディスプレイパネルによれば、乾燥ムラを低減することができることから、より均一な膜厚を有する有機ELディスプレイパネルが得られる。
The method of manufacturing the organic EL display panel of the second embodiment may be the same as that of the organic EL display panel of the first embodiment after the base panel is prepared.
As described above, according to the organic EL display panel of the second embodiment, drying unevenness can be reduced, and thus an organic EL display panel having a more uniform film thickness can be obtained.
 [実施の形態3]
 実施の形態3では、バンクの代わりに自己組織化単分子膜(SAM)を用いた例について説明する。
[Embodiment 3]
In Embodiment 3, an example in which a self-assembled monolayer (SAM) is used instead of a bank will be described.
 図13は、実施の形態3の有機ELディスプレイパネルの製造方法で準備されるベースパネル310の平面図である。ベースパネル310は、バンクの代わりにSAMを用いる以外は、実施の形態1のベースパネル110と同じである。したがって、ベースパネル110と同一の構成要素については、同一の符号を付し説明を省略する。 FIG. 13 is a plan view of the base panel 310 prepared by the method of manufacturing the organic EL display panel according to the third embodiment. The base panel 310 is the same as the base panel 110 of the first embodiment except that a SAM is used instead of a bank. Therefore, the same components as those of the base panel 110 are denoted by the same reference numerals and description thereof is omitted.
 図13に示されるようにベースパネル310は、予備領域107と素子配列領域105を有する。予備領域107と素子配列領域105とは境界SAM303によって区切られている。 As shown in FIG. 13, the base panel 310 has a spare area 107 and an element array area 105. The spare area 107 and the element array area 105 are separated by a boundary SAM 303.
 境界SAM303の幅303wは、境界バンク103の幅103wと同程度であることが好ましい。素子配列領域105は、ライン状SAM306を有し、ライン状SAM306はライン状領域104を規定する。 The width 303w of the boundary SAM 303 is preferably approximately the same as the width 103w of the boundary bank 103. The element array region 105 has a line-shaped SAM 306, and the line-shaped SAM 306 defines the line-shaped region 104.
 ベースパネル310の準備後は、実施の形態1の有機ELディスプレイパネルの製造方法と同様に、1)インクジェットヘッド120を、予備領域107上に配置し(図14A)、2)予備領域107上で、ノズル121からインクを一定インターバルごとに吐出し、予備吐出領域108にインクを着弾させ(図14B)、3)一定のインターバルごとの吐出を維持したまま、インクジェットヘッド120を予備領域107から素子配列領域105に移動し(図14C)、4)インクジェットヘッド120をライン方向に沿って移動させ、ライン状領域104にインクを塗布すればよい。 After the base panel 310 is prepared, similarly to the method for manufacturing the organic EL display panel of the first embodiment, 1) the inkjet head 120 is disposed on the spare area 107 (FIG. 14A), and 2) on the spare area 107. Ink is ejected from the nozzle 121 at regular intervals, and ink is landed on the preliminary ejection area 108 (FIG. 14B). 3) The ink jet head 120 is arranged from the preliminary area 107 while maintaining ejection at regular intervals. It moves to the area | region 105 (FIG. 14C), 4) The inkjet head 120 may be moved along a line direction, and the ink may be apply | coated to the linear area | region 104. FIG.
 また、本実施の形態では予備領域107と素子配列領域105とを区切る境界SAM303は、境界バンクと同等の幅を有するが、境界バンク103と異なり順テーパ状でない。このため、境界SAM303上にインクが残留することも考えられる。しかし、境界SAM303は段差を有さないことから、境界SAM303上に塗布されたインクは、境界SAM303の撥液性の影響を受けやすい。このため、境界SAM303が順テーパ状でなくとも、境界SAM303上に塗布されたインクは、境界SAM303の撥液性によって引きちぎられて、分断し、境界SAM303上にインクは残留しない。 In this embodiment, the boundary SAM 303 that divides the spare area 107 and the element array area 105 has the same width as the boundary bank, but is not forward-tapered unlike the boundary bank 103. For this reason, the ink may remain on the boundary SAM 303. However, since the boundary SAM 303 has no step, the ink applied on the boundary SAM 303 is easily affected by the liquid repellency of the boundary SAM 303. For this reason, even if the boundary SAM 303 is not forwardly tapered, the ink applied on the boundary SAM 303 is torn off due to the liquid repellency of the boundary SAM 303 and is divided, so that no ink remains on the boundary SAM 303.
 このように、本実施の形態によればバンクの代わりにSAMを用いることで、実施の形態1の効果に加えて有機ELディスプレイパネルの構造を単純化することができる。 As described above, according to the present embodiment, by using the SAM instead of the bank, the structure of the organic EL display panel can be simplified in addition to the effects of the first embodiment.
 [実施の形態4]
 実施の形態1~3では、縦塗りを採用した形態について説明した。実施の形態4では、横塗りを採用した有機ELディスプレイパネルの製造方法について説明する。
[Embodiment 4]
In the first to third embodiments, a mode in which vertical coating is adopted has been described. In the fourth embodiment, a method for manufacturing an organic EL display panel employing horizontal coating will be described.
 実施の形態4の有機ELディスプレイパネルの製造方法は、1)ベースパネルを準備する第1ステップ(図15参照)と、2)インクジェットヘッド120を、予備領域407上に配置する第2ステップ(図16A参照)と、3)予備領域407上でノズル121からインクを吐出し、インクを予備吐出領域408に着弾させる第3ステップ(図17A参照)と、4)インクジェットヘッド120を予備領域407から素子配列領域105に移動する第4ステップ(図17B参照)と、5)ライン状領域104にインクを塗布する第5ステップ(図18A)と、を有する。 The manufacturing method of the organic EL display panel according to the fourth embodiment includes 1) a first step for preparing a base panel (see FIG. 15), and 2) a second step for disposing the inkjet head 120 on the spare area 407 (FIG. 16A), 3) a third step (see FIG. 17A) in which ink is ejected from the nozzle 121 on the preliminary area 407, and the ink is landed on the preliminary ejection area 408, and 4) the inkjet head 120 is moved from the preliminary area 407 to the element. There is a fourth step (see FIG. 17B) that moves to the array region 105, and 5) a fifth step (FIG. 18A) that applies ink to the linear region 104.
 本実施の形態では、第3ステップから第5ステップにおいてインクジェットヘッドが移動する方向が同一である。すなわち本実施の形態では、インクジェットヘッドがライン方向と垂直な方向に沿って移動される。 In the present embodiment, the direction in which the inkjet head moves in the third step to the fifth step is the same. That is, in this embodiment, the ink jet head is moved along a direction perpendicular to the line direction.
 1)第1ステップでは、ベースパネルを準備する。図15は、第1ステップで準備するベースパネル410の平面図である。実施の形態1のベースパネル110と同一の構成要素については、同一の符号を付し説明を省略する。 1) In the first step, prepare the base panel. FIG. 15 is a plan view of the base panel 410 prepared in the first step. The same components as those of the base panel 110 of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
 図15示されるようにベースパネル410は、基板101と、画素電極102と、バンク(境界バンク403およびライン状バンク106)とを有する。 As shown in FIG. 15, the base panel 410 includes a substrate 101, a pixel electrode 102, and banks (a boundary bank 403 and a line bank 106).
 基板101は、その表面に素子配列領域105と、予備領域407とを有する。素子配列領域105内には、画素電極102がマトリクス状に配列されている。 The substrate 101 has an element array region 105 and a spare region 407 on its surface. In the element array region 105, the pixel electrodes 102 are arranged in a matrix.
 境界バンク403の幅は、ライン状バンク106の幅と同じであってよい。境界バンク403の形状は、予備吐出領域408内からのインクの漏れを防止できるのであれば特に限定されない。 The width of the boundary bank 403 may be the same as the width of the line bank 106. The shape of the boundary bank 403 is not particularly limited as long as ink leakage from the preliminary ejection region 408 can be prevented.
 予備領域407は、1つの予備吐出領域408からなる。このため本実施の形態では、予備領域407は、予備吐出領域408を区切るバンクを有さない。 The spare area 407 includes one preliminary discharge area 408. Therefore, in the present embodiment, the spare area 407 does not have a bank that divides the spare ejection area 408.
 予備領域407は、図面左側のライン状領域104のライン方向の側部にのみ隣接する。また、予備領域407が、ライン状領域104のライン方向の端部に隣接しないのであれば、予備領域407は、素子配列領域105を挟むように素子配列領域105の両側に配置されてもよい。このように、本実施の形態では、予備領域は、素子配列領域を囲まず、ライン状領域104のライン方向の側部にのみ隣接する。これにより、有機ELディスプレイパネルにおける非発光領域(予備領域)の割合を小さくし、発光領域(素子配列領域)の割合を大きくすることができる。 The spare area 407 is adjacent only to the side of the line area 104 on the left side of the drawing in the line direction. Further, if the spare area 407 is not adjacent to the end of the line-like area 104 in the line direction, the spare area 407 may be arranged on both sides of the element arrangement area 105 so as to sandwich the element arrangement area 105. As described above, in the present embodiment, the spare region does not surround the element arrangement region and is adjacent to only the side portion of the line-shaped region 104 in the line direction. Thereby, the ratio of the non-light-emitting area (preliminary area) in the organic EL display panel can be reduced, and the ratio of the light-emitting area (element array area) can be increased.
 予備領域407の長軸は、ライン方向と平行である。予備領域107の短軸は、ライン方向と垂直である。 The long axis of the spare area 407 is parallel to the line direction. The short axis of the spare area 107 is perpendicular to the line direction.
 予備領域407のライン方向の長さ407L(予備領域407の長軸の長さ)は、ライン状領域104のライン方向の長さ(ライン状領域104の長軸の長さ)よりも長いことが好ましい。本実施の形態では予備領域407は、1つの予備吐出領域408からなるので、予備吐出領域408の長軸の長さも、ライン状領域104の長軸より長いことが好ましい。予備領域407の長軸の長さ407Lが、ライン状領域104の長軸よりも短い場合、後述する予備吐出の際に、インクが予備吐出領域408以外の領域に着弾するおそれがあるからである。 The length 407L of the spare area 407 in the line direction (the length of the major axis of the spare area 407) may be longer than the length of the line area 104 in the line direction (the length of the major axis of the line area 104). preferable. In the present embodiment, the preliminary area 407 includes one preliminary ejection area 408, and therefore, the length of the major axis of the preliminary ejection area 408 is preferably longer than the major axis of the line-shaped area 104. This is because if the length 407L of the long axis of the preliminary area 407 is shorter than the long axis of the line-shaped area 104, the ink may land on an area other than the preliminary discharge area 408 in the preliminary discharge described later. .
 予備領域407のライン方向と垂直な方向の長さ407S(予備領域407の短軸の長さ)は、例えば、ライン状領域104のライン方向と垂直な方向の長さ(ライン状領域104の短軸の長さ)の2倍以上であることが好ましく、RGB3つの副画素からなる画素の幅(約300μm)以上であることが特に好ましい。同様に予備吐出領域408の短軸の長さも、画素の幅(約300μm)以上であることが好ましい。 The length 407S of the spare area 407 in the direction perpendicular to the line direction (the length of the short axis of the spare area 407) is, for example, the length of the line area 104 perpendicular to the line direction (the length of the line area 104). (Length of the axis) is preferably twice or more, and particularly preferably the width of the pixel composed of three RGB sub-pixels (about 300 μm) or more. Similarly, the length of the short axis of the preliminary ejection region 408 is preferably equal to or greater than the pixel width (about 300 μm).
 予備領域407の短軸の長さ407Sがライン状領域104の短軸の2倍未満である場合、予備吐出の際に、インクが予備吐出領域408以外の領域に着弾するおそれがある。 When the length 407S of the short axis of the preliminary area 407 is less than twice the short axis of the line-shaped area 104, there is a possibility that the ink may land on an area other than the preliminary discharge area 408 during the preliminary discharge.
 また、予備領域407の短軸の長さ407Sが、画素の幅以上であると、R、BまたはGの異なるインクを供給された3つのインクジェットヘッドを重ねて用いる場合であっても、予備吐出の際にそれぞれのインクジェットヘッドのノズルから吐出されたインクが予備吐出領域408以外の領域に着弾することを防止することができる。 Further, if the minor axis length 407S of the spare area 407 is equal to or larger than the pixel width, the preliminary ejection is performed even when three inkjet heads supplied with different R, B, or G inks are used in an overlapping manner. In this case, it is possible to prevent the ink ejected from the nozzles of the respective inkjet heads from landing on an area other than the preliminary ejection area 408.
 2)図16Aは、ベースパネルの平面図を用いて第2ステップを示した図であり、図16Bは、図16AのベースパネルのAA線による断面図を用いて第2ステップを示した図である。図16Aおよび図16Bに示されるように、第2ステップでは、2以上のノズル121を有し、有機層の材料を含有するインクが供給されるインクジェットヘッド120を予備領域407上に配置する。 2) FIG. 16A is a diagram showing the second step using a plan view of the base panel, and FIG. 16B is a diagram showing the second step using a cross-sectional view of the base panel taken along line AA in FIG. 16A. is there. As shown in FIGS. 16A and 16B, in the second step, the inkjet head 120 having two or more nozzles 121 and supplied with ink containing the organic layer material is disposed on the preliminary region 407.
 図16Aに示されるように、第2ステップでは、インクジェットヘッド120のノズル121の配列方向が、ライン方向に沿うように配置される。また、ライン方向に対して、インクジェットヘッド120のノズル121の配列方向を傾けてもよい。また、インクジェットヘッド120のノズルの配列方向の長さは、ライン状領域104の長軸の長さ以上である。 As shown in FIG. 16A, in the second step, the arrangement direction of the nozzles 121 of the inkjet head 120 is arranged along the line direction. Further, the arrangement direction of the nozzles 121 of the inkjet head 120 may be inclined with respect to the line direction. The length of the inkjet head 120 in the arrangement direction of the nozzles is equal to or longer than the length of the major axis of the line-shaped region 104.
 3)図17Aは、ベースパネルの断面図を用いて第3ステップを示す。図17Aに示されるように第3ステップでは、予備領域407上で、ノズル121からインクを吐出(予備吐出)し、予備吐出領域408内にインクを着弾させる。予備吐出におけるインクの吐出インターバルおよび吐出回数は、第5ステップにおけるインクの吐出インターバルおよび吐出回数と同じであることが好ましい。このように、予備領域で第5ステップと同じインターバルで同じ回数インクを吐出することで、メニスカス振動の周期を安定させることができる。 3) FIG. 17A shows the third step using a cross-sectional view of the base panel. As shown in FIG. 17A, in the third step, ink is ejected (preliminary ejection) from the nozzle 121 on the preliminary area 407, and ink is landed in the preliminary ejection area 408. The ink ejection interval and the number of ejections in the preliminary ejection are preferably the same as the ink ejection interval and the number of ejections in the fifth step. In this way, by ejecting the ink the same number of times at the same interval as the fifth step in the spare area, the period of the meniscus vibration can be stabilized.
 また、予備吐出の際、インクジェットヘッド120を素子配列領域105方向に移動する。インクジェットヘッドの移動方向は、ライン方向と垂直である。予備吐出をする間、インクジェットヘッド120を素子配列領域105方向へ移動することで、後述する第4ステップおよび第5ステップにおけるインクジェットの移動速度が安定する。 Also, the ink jet head 120 is moved in the direction of the element array region 105 during preliminary ejection. The moving direction of the inkjet head is perpendicular to the line direction. By moving the inkjet head 120 toward the element array region 105 during the preliminary ejection, the inkjet moving speed in the fourth step and the fifth step described later is stabilized.
 このようにライン状領域にインクを塗布する前に予備領域上で予備吐出を行うことで、ノズルによるインクの着弾精度を向上させることができ、後述する第5ステップでライン状領域にインクを正確に塗布することができる。また、上述のように予備領域407は予備吐出領域を区切るバンクを有さないことから、予備吐出されたインクは全て予備吐出領域408内に着弾する。このため、バンク上にインクが着弾する恐れがない。 In this way, by performing preliminary ejection on the preliminary area before applying ink to the linear area, it is possible to improve the ink landing accuracy by the nozzle, and the ink is accurately applied to the linear area in the fifth step described later. Can be applied. Further, as described above, since the preliminary area 407 does not have a bank that divides the preliminary ejection area, all of the preliminary ejected ink lands in the preliminary ejection area 408. For this reason, there is no possibility of ink landing on the bank.
 4)図17Bは、べースパネルの断面図を用いて第4ステップを示す。図17Bに示されるように、第4ステップでは、インクジェットヘッド120を、予備領域407から、素子配列領域105に移動する。インクジェットヘッド120を、予備領域407から、素子配列領域105に移動する際、予備吐出で得られた安定なメニスカス振動の周期を維持するために、ノズルのアクチュエータを駆動し続けることが好ましい。一方、実施の形態1と異なり、本実施の形態では、インクジェットヘッド120を、予備領域407から、素子配列領域105に移動する間は、ノズル121からインクを吐出させない。 4) FIG. 17B shows the fourth step using a cross-sectional view of the base panel. As shown in FIG. 17B, in the fourth step, the inkjet head 120 is moved from the spare area 407 to the element array area 105. When the inkjet head 120 is moved from the preliminary region 407 to the element array region 105, it is preferable to continue driving the nozzle actuator in order to maintain a stable meniscus vibration period obtained by preliminary ejection. On the other hand, unlike the first embodiment, in the present embodiment, ink is not ejected from the nozzles 121 while the inkjet head 120 is moved from the spare area 407 to the element array area 105.
 5)図18Aは、ベースパネルの平面図を用いて第5ステップを示し;図18Bは、図8AのベースパネルのAA線による断面図を用いて第5ステップを示す。図18Aおよび図18Bに示されるように第5ステップでは、インクジェットヘッド120をライン方向と垂直な方向に沿って移動し、ライン状領域104にインクを塗布する。 5) FIG. 18A shows the fifth step using the plan view of the base panel; FIG. 18B shows the fifth step using the cross-sectional view of the base panel taken along line AA in FIG. 8A. As shown in FIGS. 18A and 18B, in the fifth step, the inkjet head 120 is moved along a direction perpendicular to the line direction, and ink is applied to the line-shaped region 104.
 図18Bに示されるように、横塗りの場合、ノズル121は、常時インクを吐出するのではなく、一定インターバルでインクを吐出する状態と、インクの吐出を停止する状態とが交互に繰り返される。具体的には、インクジェットヘッド120が所望の発色をするライン状領域上に位置するときのみ、ノズル121は一定インターバルでインクを所定回数吐出し、インクジェットヘッド120がその他のライン状領域上に位置するときには、ノズル121はインクを吐出しないように調整される。また、インクを吐出しないときであっても、安定なメニスカス振動の周期を維持するために、ノズルのアクチュエータを駆動することが好ましい。 As shown in FIG. 18B, in the case of horizontal coating, the nozzle 121 does not always eject ink, but alternately repeats a state in which ink is ejected at regular intervals and a state in which ink ejection is stopped. Specifically, only when the inkjet head 120 is positioned on a line-shaped region where a desired color is generated, the nozzle 121 ejects ink a predetermined number of times at regular intervals, and the inkjet head 120 is positioned on the other line-shaped region. Sometimes, the nozzle 121 is adjusted so as not to eject ink. Further, it is preferable to drive the nozzle actuator in order to maintain a stable meniscus vibration period even when ink is not ejected.
 横塗りの場合、複数のノズル121から吐出されたインクで、1つのライン状領域が塗布されることから、ノズルごとのインクの吐出量の差によって生じる、ライン状領域間の有機層の膜厚ムラが防止される。 In the case of horizontal coating, since one line-shaped region is applied with ink ejected from a plurality of nozzles 121, the film thickness of the organic layer between the line-shaped regions caused by a difference in the amount of ink discharged from each nozzle. Unevenness is prevented.
 第3ステップ~第5ステップを繰り返すことで、全てのライン状領域を塗布し、有機層が形成される。さらに、形成された有機層上に、例えばスパッタリング法で対向電極を形成することで、図19に示されるような有機ELディスプレイパネル400が製造される。 By repeating the third step to the fifth step, all the line-shaped regions are applied, and an organic layer is formed. Furthermore, an organic EL display panel 400 as shown in FIG. 19 is manufactured by forming a counter electrode on the formed organic layer by sputtering, for example.
 上述のように、本実施の形態では、第3ステップから第5ステップにおいてインクジェットヘッド120の移動方向が同一である。このため、インクジェットヘッド120の走査が安定し、安定してインクをライン状領域104に塗布することができる。 As described above, in the present embodiment, the moving direction of the inkjet head 120 is the same in the third step to the fifth step. For this reason, the scanning of the inkjet head 120 is stabilized, and the ink can be stably applied to the line-shaped region 104.
 次に本実施の形態の有機ELディスプレイパネルの製造方法によって製造された有機ELディスプレイパネルについて説明する。 Next, the organic EL display panel manufactured by the method for manufacturing the organic EL display panel of the present embodiment will be described.
 図19は、実施の形態4の有機ELディスプレイパネル400の平面図である。図20は、対向電極109を省略した有機ELディスプレイパネル400の平面図である。実施の形態1の有機ELディスプレイパネル100と同一の構成要素については同一の符号を付し、説明を省略する。 FIG. 19 is a plan view of the organic EL display panel 400 of the fourth embodiment. FIG. 20 is a plan view of the organic EL display panel 400 in which the counter electrode 109 is omitted. The same components as those of the organic EL display panel 100 of the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
 図20に示されるように、有機ELディスプレイパネル400は、基板101と、境界バンク103と、ライン状バンク106と、有機EL素子140とを有する。 As shown in FIG. 20, the organic EL display panel 400 includes a substrate 101, a boundary bank 103, a line bank 106, and an organic EL element 140.
 基板101は、有機EL素子140がマトリクス状に配列された素子配列領域105と、予備吐出領域408からなる予備領域407とを有する。予備領域407は、素子配列領域105を囲まず、ライン状領域104のライン方向の側部のうち、一方にのみ隣接する。 The substrate 101 has an element array area 105 in which organic EL elements 140 are arranged in a matrix and a spare area 407 including a preliminary ejection area 408. The spare region 407 does not surround the element array region 105 and is adjacent to only one of the side portions of the line-shaped region 104 in the line direction.
 このように、本実施の形態の有機ELディスプレイパネル400では、予備領域407は、素子配列領域105を囲まないので、有機ELディスプレイパネルにおける非発光領域(予備領域)の割合を小さくし、発光領域(素子配列領域)の割合を大きくすることができる。 As described above, in the organic EL display panel 400 of the present embodiment, the spare area 407 does not surround the element array area 105. Therefore, the ratio of the non-light emitting area (preliminary area) in the organic EL display panel is reduced, and the light emitting area. The ratio of (element arrangement region) can be increased.
 本出願は、2009年3月6日出願の特願2009-053520に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2009-053520 filed on Mar. 6, 2009. All the contents described in the application specification are incorporated herein by reference.
 本発明の有機ELディスプレイパネルは、例えば、有機ELディスプレイ(大画面テレビ、携帯電話などの情報機器端末のモニタなど)に適用可能である。 The organic EL display panel of the present invention can be applied to, for example, an organic EL display (such as a monitor of an information device terminal such as a large-screen TV or a mobile phone).
 100、400 有機ELディスプレイパネル
 ベースパネル110、210、310、410
 101 基板
 102 画素電極
 103 境界バンク
 104 ライン状領域
 105 素子配列領域
 106 ライン状バンク
 107、207 予備領域
 108、208、 予備吐出領域
 109 対向電極
 120 インクジェットヘッド
 121 ノズル
 130 インク
 140 有機EL素子
 203 予備吐出領域を規定するバンク
 303、306 SAM
 
100, 400 Organic EL display panel Base panel 110, 210, 310, 410
DESCRIPTION OF SYMBOLS 101 Substrate 102 Pixel electrode 103 Boundary bank 104 Line area 105 Element arrangement area 106 Line bank 107, 207 Preliminary area 108, 208, Preliminary ejection area 109 Counter electrode 120 Inkjet head 121 Nozzle 130 Ink 140 Organic EL element 203 Preliminary ejection area Banks 303, 306 SAM

Claims (14)

  1.  有機EL素子がマトリクス状に配列された素子配列領域と、1または2以上の予備吐出領域からなる予備領域と、を有する基板と、
     前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、
     前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有する有機ELディスプレイパネルであって、
     前記ライン状領域内には、前記有機EL素子が列状に配列され、
     前記予備領域は、前記ライン状領域のライン方向の端部のみに隣接し、
     前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さよりも長い、有機ELディスプレイパネル。
    A substrate having an element arrangement area in which organic EL elements are arranged in a matrix and a spare area composed of one or more preliminary ejection areas;
    A bank disposed on the substrate and separating the spare region and the element array region;
    An organic EL display panel having a line bank disposed on the substrate and defining two or more parallel line areas in the element arrangement area;
    In the line-shaped region, the organic EL elements are arranged in a row,
    The preliminary area is adjacent only to the end of the line-shaped area in the line direction,
    The organic EL display panel, wherein a length of the preliminary ejection region in a direction perpendicular to the line direction is longer than a length of the linear region in a direction perpendicular to the line direction.
  2.  前記予備領域と前記素子配列領域とを区切るバンクの幅は、10μm~300μmであり、
     前記予備領域と前記素子配列領域とを区切るバンクの形状は、順テーパ状である、請求項1に記載の有機ELディスプレイパネル。
    The width of the bank separating the spare area and the element array area is 10 μm to 300 μm,
    The organic EL display panel according to claim 1, wherein a shape of a bank that divides the spare region and the element array region is a forward tapered shape.
  3.  前記予備領域と前記素子配列領域とを区切るバンクの幅は、20μm~50μmである、請求項2に記載の有機ELディスプレイパネル。 3. The organic EL display panel according to claim 2, wherein a width of a bank separating the spare area and the element array area is 20 μm to 50 μm.
  4.  前記予備領域と前記素子配列領域とを区切るバンクのテーパ角度は、20°~50°である、請求項2に記載の有機ELディスプレイパネル。 3. The organic EL display panel according to claim 2, wherein a taper angle of a bank separating the spare area and the element arrangement area is 20 ° to 50 °.
  5.  前記予備領域と前記素子配列領域とを区切るバンクの頂面におけるアニソールの接触角は、30°~70°である、請求項1に記載の有機ELディスプレイパネル。 2. The organic EL display panel according to claim 1, wherein a contact angle of anisole on a top surface of a bank separating the spare area and the element arrangement area is 30 ° to 70 °.
  6.  前記予備領域は、1の前記予備吐出領域からなる請求項1に記載の有機ELディスプレイパネル。 The organic EL display panel according to claim 1, wherein the spare area is composed of one preliminary ejection area.
  7.  前記予備領域は、2以上の前記予備吐出領域からなる請求項1に記載の有機ELディスプレイパネル。 The organic EL display panel according to claim 1, wherein the spare area includes two or more spare ejection areas.
  8.  有機EL素子がマトリクス状に配列された素子配列領域と、予備吐出領域からなる予備領域と、を有する基板と、
     前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、
     前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有する有機ELディスプレイパネルであって、
     前記ライン状領域内には、前記有機EL素子が列状に配列され、
     前記予備領域は、前記ライン状領域のライン方向の側部のみに隣接し、
     前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さの2倍以上である、有機ELディスプレイパネル。
    A substrate having an element arrangement area in which organic EL elements are arranged in a matrix and a preliminary area composed of a preliminary ejection area;
    A bank disposed on the substrate and separating the spare region and the element array region;
    An organic EL display panel having a line bank disposed on the substrate and defining two or more parallel line areas in the element arrangement area;
    In the line-shaped region, the organic EL elements are arranged in a row,
    The spare area is adjacent only to the side of the line area in the line direction,
    The length of the preliminary ejection region in the direction perpendicular to the line direction is at least twice as long as the length of the linear region in the direction perpendicular to the line direction.
  9.  画素電極がマトリクス状に配列された素子配列領域と、1または2以上の予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有するベースパネルであって、前記ライン状領域内には、前記有機EL素子が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の端部のみに隣接し、前記予備吐出領域の前記ライン領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さよりも長い、ベースパネルを準備するステップと、
     2以上のノズルを有し、有機層の材料を含有するインクが供給されるインクジェットヘッドを、前記予備領域上に配置するステップと、
     前記予備領域上で前記ノズルから前記インクを一定のインターバルごとに吐出し、前記予備吐出領域内にインクを着弾させるステップと、
     前記インターバルごとの吐出を維持したまま、前記インクジェットヘッドを、前記予備領域から、前記素子配列領域に移動するステップと、
     前記インクジェットヘッドを前記ライン方向に沿って移動し、前記ライン状領域に前記インクを塗布するステップと、を有する有機ELディスプレイパネルの製造方法。
    A substrate having an element arrangement area in which pixel electrodes are arranged in a matrix and a spare area composed of one or more preliminary ejection areas, and a substrate arranged on the substrate, and separating the spare area from the element arrangement area A base panel having a bank and a line-shaped bank that is arranged on the substrate and defines two or more parallel line-shaped regions in the element array region, wherein the line-shaped region includes: The organic EL elements are arranged in a row, and the preliminary region is adjacent to only the end portion of the line region in the line direction, and the length of the preliminary discharge region in the direction perpendicular to the line direction. Providing a base panel longer than the length of the linear region in a direction perpendicular to the line direction;
    Disposing an inkjet head having two or more nozzles to which ink containing an organic layer material is supplied on the spare area;
    Discharging the ink from the nozzles at regular intervals on the preliminary area, and landing the ink in the preliminary discharge area;
    Moving the inkjet head from the spare region to the element array region while maintaining ejection at each interval;
    Moving the inkjet head along the line direction, and applying the ink to the line-shaped region.
  10.  前記インターバルは、0.05ms~1msである、請求項9に記載の有機ELディスプレイパネルの製造方法。 10. The method of manufacturing an organic EL display panel according to claim 9, wherein the interval is 0.05 ms to 1 ms.
  11.  前記インクジェットヘッドを、前記素子配列領域方向に移動しながら、前記インクを前記予備領域上で吐出する、請求項9に記載の有機ELディスプレイパネルの製造方法。 10. The method of manufacturing an organic EL display panel according to claim 9, wherein the ink is ejected on the spare area while moving the ink jet head in the element array area direction.
  12.  前記ノズルの1つが一度に吐出するインクの量は、3pl~20plである、請求項9に記載の有機ELディスプレイパネルの製造方法。 10. The method of manufacturing an organic EL display panel according to claim 9, wherein the amount of ink ejected at one time by one of the nozzles is 3 pl to 20 pl.
  13.  前記インクジェットヘッドのベースパネルに対する移動速度は、1mm/s~100mm/sである、請求項9に記載の有機ELディスプレイパネルの製造方法。 10. The method of manufacturing an organic EL display panel according to claim 9, wherein the moving speed of the inkjet head relative to the base panel is 1 mm / s to 100 mm / s.
  14.  画素電極がマトリクス状に配列された素子配列領域と、予備吐出領域からなる予備領域と、を有する基板と、前記基板上に配置され、前記予備領域と、前記素子配列領域とを区切るバンクと、前記基板上に配置され、前記素子配列領域内に、2以上の互いに平行なライン状領域を規定するライン状バンクと、を有するベースパネルであって、前記ライン状領域内には、前記画素電極が列状に配列され、前記予備領域は、前記ライン状領域のライン方向の側部のみに隣接し、前記予備吐出領域の前記ライン方向と垂直な方向の長さは、前記ライン状領域の前記ライン方向と垂直な方向の長さの2倍以上である、ベースパネルを準備するステップと、
     2以上のノズルを有し、有機層の材料を含有するインクが供給されるインクジェットヘッドを、前記予備領域上に配置するステップと、
     前記予備領域上で前記ノズルから前記インクを吐出し、前記予備吐出領域内にインクを着弾させるステップと、
     前記インクジェットヘッドを、前記予備領域から、前記素子配列領域に移動するステップと、
     前記インクジェットヘッドを前記ライン方向と垂直な方向に沿って移動し、前記ライン状領域に前記インクを塗布するステップと、を有する有機ELディスプレイパネルの製造方法。
     
     
    A substrate having an element arrangement area in which pixel electrodes are arranged in a matrix and a spare area composed of a preliminary ejection area, a bank disposed on the substrate and separating the spare area and the element arrangement area; A base panel disposed on the substrate and having two or more line-shaped banks that define two or more parallel line-shaped regions in the element array region, wherein the pixel electrode is disposed in the line-shaped region. Are arranged in a row, the preliminary area is adjacent only to the side of the line area in the line direction, and the length of the preliminary discharge area in the direction perpendicular to the line direction is the length of the line area. Providing a base panel that is at least twice the length in a direction perpendicular to the line direction;
    Disposing an inkjet head having two or more nozzles to which ink containing an organic layer material is supplied on the spare area;
    Discharging the ink from the nozzles on the preliminary area and landing the ink in the preliminary discharge area;
    Moving the inkjet head from the spare area to the element array area;
    Moving the inkjet head along a direction perpendicular to the line direction, and applying the ink to the line-shaped region.

PCT/JP2010/001471 2009-03-06 2010-03-03 Organic el display panel and method for manufacturing same WO2010100922A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542470A JP4755314B2 (en) 2009-03-06 2010-03-03 Organic EL display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-053520 2009-03-06
JP2009053520 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010100922A1 true WO2010100922A1 (en) 2010-09-10

Family

ID=42709488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001471 WO2010100922A1 (en) 2009-03-06 2010-03-03 Organic el display panel and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP4755314B2 (en)
WO (1) WO2010100922A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069042A1 (en) * 2011-11-07 2013-05-16 パナソニック株式会社 Organic el display panel and organic el display device
WO2013069041A1 (en) * 2011-11-07 2013-05-16 パナソニック株式会社 Organic el display panel and organic el display device
JP2017054723A (en) * 2015-09-10 2017-03-16 住友化学株式会社 Substrate with bank
US10553816B2 (en) 2017-04-27 2020-02-04 Joled Inc. Display device
US11758768B2 (en) 2017-03-13 2023-09-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus comprising self-assembled layer containing fluorine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022924A (en) * 2000-07-10 2002-01-23 Canon Inc Color filter, method and device for manufacturing color filter, display device equipped with color filter, method for manufacturing that display device, device equipped with that display device, method for manufacturing that device, panel for display device, and method and device for manufacturing panel for display device
JP2003246053A (en) * 2002-02-26 2003-09-02 Seiko Epson Corp Film forming system, its coating liquid ejecting method, system for fabricating device, method for fabricating device, and device
JP2004071222A (en) * 2002-08-02 2004-03-04 Seiko Epson Corp Disposition method of material, film formation device, electronic device and its manufacturing method, electro-optical device and its manufacturing method, and electronic equipment
JP2005157067A (en) * 2003-11-27 2005-06-16 Sharp Corp Method for manufacturing color filter and display device having color filter manufactured by the same manufacturing method
JP2008058587A (en) * 2006-08-31 2008-03-13 Toppan Printing Co Ltd Method of manufacturing optical device, method of manufacturing color filter and method of manufacturing organic electroluminescence element
WO2008149499A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Organic el display panel and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022924A (en) * 2000-07-10 2002-01-23 Canon Inc Color filter, method and device for manufacturing color filter, display device equipped with color filter, method for manufacturing that display device, device equipped with that display device, method for manufacturing that device, panel for display device, and method and device for manufacturing panel for display device
JP2003246053A (en) * 2002-02-26 2003-09-02 Seiko Epson Corp Film forming system, its coating liquid ejecting method, system for fabricating device, method for fabricating device, and device
JP2004071222A (en) * 2002-08-02 2004-03-04 Seiko Epson Corp Disposition method of material, film formation device, electronic device and its manufacturing method, electro-optical device and its manufacturing method, and electronic equipment
JP2005157067A (en) * 2003-11-27 2005-06-16 Sharp Corp Method for manufacturing color filter and display device having color filter manufactured by the same manufacturing method
JP2008058587A (en) * 2006-08-31 2008-03-13 Toppan Printing Co Ltd Method of manufacturing optical device, method of manufacturing color filter and method of manufacturing organic electroluminescence element
WO2008149499A1 (en) * 2007-05-30 2008-12-11 Panasonic Corporation Organic el display panel and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013069042A1 (en) * 2011-11-07 2013-05-16 パナソニック株式会社 Organic el display panel and organic el display device
WO2013069041A1 (en) * 2011-11-07 2013-05-16 パナソニック株式会社 Organic el display panel and organic el display device
CN103907397A (en) * 2011-11-07 2014-07-02 松下电器产业株式会社 Organic el display panel and organic el display device
CN104025707A (en) * 2011-11-07 2014-09-03 松下电器产业株式会社 Organic el display panel and organic el display device
JPWO2013069041A1 (en) * 2011-11-07 2015-04-02 パナソニック株式会社 Organic EL display panel and organic EL display device
JPWO2013069042A1 (en) * 2011-11-07 2015-04-02 パナソニック株式会社 Organic EL display panel and organic EL display device
US9245939B2 (en) 2011-11-07 2016-01-26 Joled Inc. Organic electroluminescence display panel and organic electroluminescence display apparatus
US9472606B2 (en) 2011-11-07 2016-10-18 Joled Inc. Organic electroluminescence display panel and organic electroluminescence display apparatus
JP2017054723A (en) * 2015-09-10 2017-03-16 住友化学株式会社 Substrate with bank
US11758768B2 (en) 2017-03-13 2023-09-12 Samsung Display Co., Ltd. Organic light-emitting display apparatus comprising self-assembled layer containing fluorine
US10553816B2 (en) 2017-04-27 2020-02-04 Joled Inc. Display device

Also Published As

Publication number Publication date
JP4755314B2 (en) 2011-08-24
JPWO2010100922A1 (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP4604131B2 (en) Organic EL display and manufacturing method thereof
US7503823B2 (en) Method of producing an organic EL light-emitting device
KR101921374B1 (en) High resolution organic light-emitting diode devices
JP4612741B2 (en) Organic EL display panel and manufacturing method thereof
CN111435676B (en) Organic EL display panel and method of manufacturing the same
JP2010277944A (en) Organic el display panel and method for manufacturing the same
KR20070069066A (en) Manufacturing equipment of display device and manufacturing method of display device
JP4755314B2 (en) Organic EL display panel and manufacturing method thereof
JP4311084B2 (en) Thin film pattern manufacturing method, organic electroluminescent device manufacturing method, color filter manufacturing method, plasma display panel manufacturing method, liquid crystal display panel manufacturing method
JP4894150B2 (en) Electro-optical device manufacturing method, droplet discharge device
CN111192979B (en) Method for manufacturing display panel and functional layer forming apparatus
JP6539848B2 (en) Display panel manufacturing method
JP4864041B2 (en) Organic device manufacturing equipment
JP2008066054A (en) Electro-optical device and its manufacturing method
JP4321059B2 (en) Image display element and manufacturing method thereof
JP5317873B2 (en) SUBSTRATE FOR ORGANIC EL ELEMENT, PROCESS FOR PRODUCING ORGANIC EL LAYER, AND APPARATUS PROVIDED WITH ORGANIC EL ELEMENT MOUNTED ON SUBSTRATE FOR ORGANIC EL ELEMENT
JP2015207527A (en) Method of forming functional layer of organic light emission device and method of manufacturing organic light emission device
JP2009163931A (en) Device and method for manufacturing display panel
CN113871440B (en) Organic light-emitting diode substrate and method for manufacturing same
JP2006269325A (en) Droplet discharging head, manufacturing method of electro-optic device, and electro-optic device
WO2013111300A1 (en) Organic el panel and method for manufacturing same
GB2463670A (en) A method for inkjet printing organic electronic devices
JP2006202587A (en) Manufacturing method of electro-optical device, electro-optical device, and electronic apparatus
JP4918470B2 (en) Organic device and manufacturing method thereof
JP2020113529A (en) Organic el display panel, and manufacturing method of organic el display panel

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010542470

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10748521

Country of ref document: EP

Kind code of ref document: A1