WO2010100676A1 - コンタクトレンズパッケージの製造方法 - Google Patents

コンタクトレンズパッケージの製造方法 Download PDF

Info

Publication number
WO2010100676A1
WO2010100676A1 PCT/JP2009/001009 JP2009001009W WO2010100676A1 WO 2010100676 A1 WO2010100676 A1 WO 2010100676A1 JP 2009001009 W JP2009001009 W JP 2009001009W WO 2010100676 A1 WO2010100676 A1 WO 2010100676A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact lens
lens package
packaging solution
solution
storage tank
Prior art date
Application number
PCT/JP2009/001009
Other languages
English (en)
French (fr)
Inventor
山本貴志
菱川有里
川▲瀬▼泰弘
Original Assignee
株式会社メニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社メニコン filed Critical 株式会社メニコン
Priority to PCT/JP2009/001009 priority Critical patent/WO2010100676A1/ja
Publication of WO2010100676A1 publication Critical patent/WO2010100676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • AHUMAN NECESSITIES
    • A45HAND OR TRAVELLING ARTICLES
    • A45CPURSES; LUGGAGE; HAND CARRIED BAGS
    • A45C11/00Receptacles for purposes not provided for in groups A45C1/00-A45C9/00
    • A45C11/005Contact lens cases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B25/00Packaging other articles presenting special problems
    • B65B25/008Packaging other articles presenting special problems packaging of contact lenses
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/04Detergent materials or soaps characterised by their shape or physical properties combined with or containing other objects
    • C11D17/041Compositions releasably affixed on a substrate or incorporated into a dispensing means
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0078Compositions for cleaning contact lenses, spectacles or lenses

Definitions

  • the present invention relates to a novel method for manufacturing a contact lens package in which a contact lens and a packaging solution are contained in a sealed state and used to provide a contact lens to a user from a manufacturer.
  • contact lenses are shipped to the market in a state of being enclosed in a contact lens package together with a packaging solution and supplied to users. And since such a contact lens is used (wearing
  • microorganisms can be sterilized only by such high-pressure steam sterilization, it is difficult to completely detoxify microorganism-derived toxins such as endotoxin. Therefore, it is not desirable that microorganisms exist not only after sterilization by high-pressure steam sterilization but also in each process before the sterilization process, and the number of microorganisms attached to the product at the stage before sterilization (bio Baden) needs to be kept low. In other words, in order to prevent adverse effects on the user's eyes, it is desirable that the production line is kept in a highly sterilized state even in the production process prior to the sterilization process such as high-pressure steam sterilization. .
  • a packaging solution used in a general contact lens package manufacturing process is stored in a storage tank from a manufacturing tank, and then a necessary amount is supplied to a manufacturing line as needed to be used for packaging. Become. For this reason, at the time of manufacturing the contact lens package, it is desirable to keep the packaging solution manufacturing tank and the storage tank surface and the packaging solution itself in a highly sterile state together with the packaging production line itself.
  • contact lens packages have been manufactured in batch processing in units of a certain period, such as one day.
  • a certain period such as one day.
  • one day's worth of aseptic packaging solution required for the production period is newly prepared and used for production.
  • the packaging solution was discarded.
  • the production tank and storage tank for storing the packaging solution are emptied and cleaned after the production of the day or when a predetermined amount is used up, and subjected to heat disinfection, etc.
  • the sterility of the production line and packaging solution has been maintained.
  • high-pressure steam sterilization is conventionally performed as a sterilization process after a contact lens and a packaging solution are accommodated in a container and sealed.
  • the physical property value of the packaging solution in the contact lens package particularly the pH
  • Variations in the pH of the packaging solution not only adversely affect the storage state of the contact lens itself, but also may cause adverse effects such as irritation on the user's eye tissue when the contact lens is worn.
  • the contact lens package manufacturing site can maintain the sterility of the packaging solution at the time of manufacture, while minimizing the impact on the user's eye tissue when wearing the contact lens. Therefore, a new method for manufacturing a contact lens package has been desired.
  • the present invention has been made in the background as described above, and the problem to be solved is that it does not require frequent washing and disinfecting treatment in the storage tank and supply path of the packaging solution.
  • a bactericidal agent without the use of a bactericidal agent, it is possible to suppress the growth of bacteria and maintain a substantially aseptic condition, thereby producing a contact lens package that is highly safe at the time of wearing continuously and efficiently with little effort.
  • An object of the present invention is to provide a novel method for manufacturing a contact lens package.
  • a feature of the present invention is a method of manufacturing a contact lens package, wherein the contact lens package is sealed in a contact lens package in a state where the soft contact lens is immersed in a packaging solution, and then the contact lens package is autoclaved.
  • a packaging solution is prepared in advance, and the packaging solution is stored in a storage tank. The required amount is taken out from the storage tank and injected into the contact lens package, and the chelating agent is used as the packaging solution. And a solution containing a buffering agent is employed.
  • a solution containing a chelating agent is employed as a packaging solution, so that the packaging solution can be stored even if it is retained in the storage tank for a long time in a non-sterile state.
  • the propagation of microorganisms on the surface of the tank or in the packaging solution can be suppressed.
  • This makes it possible to keep the number of microorganisms (bioburden) in the packaging solution low even before the high-pressure steam sterilization step in the production process.
  • sterilization work such as water washing and heat disinfection of the storage tank that had to be performed frequently during production Can be greatly reduced or not performed.
  • This makes it possible to operate the contact lens package production line continuously for a long period of time, for example, for 24 hours or more, while maintaining sufficient sterility on the line. It can be greatly improved.
  • by reducing the frequency of cleaning and sterilization of the storage tank it is possible to save a large amount of water, power, and labor that have been consumed for cleaning and thermal disinfection of the storage tank so far, making it easy to save energy in the manufacturing process. Can be achieved.
  • the packaging solution can be substantially sterilized, and there is no need to add a dangerous substance such as a bactericide, which can adversely affect the human body, to the packaging solution. . Therefore, when the user opens the contact lens package and uses the contact lens, there is no danger even if the packaging solution touches the eyes directly, and a contact lens package that can be used safely can be realized. .
  • the buffer solution is contained in the contained packaging solution, so that the packaging solution can be used even if autoclaving is performed on the contact lens package.
  • the pH value of can be kept substantially constant.
  • the method of the present invention is particularly preferably used for manufacturing a soft contact lens package made of a hydrous hydrogel. More preferably, the method of the present invention is employed when a soft contact lens package made of a hydrous silicon hydrogel is produced.
  • Such hydrous hydrogel materials need to be immersed in the packaging solution for a relatively long period of time, such as swelling in the manufacturing process, and the contact lens is impregnated with the packaging solution.
  • a chelating agent is added to the packaging solution to maintain sterility, thereby including a long immersion time.
  • the soft contact lens can be kept in a water-containing state in a good state for a long time until it is provided to the user, and the danger when the user wears can be suppressed to an extremely low level. .
  • FIG. 1 shows a schematic diagram of a manufacturing process of a contact lens package 10 in a method of manufacturing a contact lens package as one embodiment of the present invention.
  • FIG. 2 shows an example of a contact lens package 10 manufactured according to the manufacturing process shown in FIG. That is, in the present embodiment, the contact lens 12 and the packaging solution 14 are accommodated in the package body 11, the package body 11 is sealed with the package lid 15, and then subjected to high-pressure steam sterilization treatment. The contact lens package 10 to be shipped to the market is obtained.
  • the packaging solution 14 used in the production line of the present embodiment is first prepared in the production tank 16 and then stored in the storage tank 18 as a storage tank and supplied from there to the production line. Then, it is injected into the package body 11.
  • the contact lens 12 in the present embodiment is a soft contact lens, and in particular, a soft contact lens made of a hydrous hydrogel is employed.
  • the specific material of the contact lens 12 is not particularly limited. Specifically, for example, 2-hydroxyethyl methacrylate, N, N-dimethylacrylamide, N-vinyl-2-pyrrolidone, Hydrophilic monomers such as glycerol methacrylate and methacrylic acid can be employed. These monomers may be used alone or in combination with a plurality of types of monomers. Furthermore, in addition to these hydrophilic monomers, a silicone hydrogel that is a copolymer obtained by copolymerizing a hydrophobic monomer containing silicon may be used as a material.
  • any known contact lens package 10 can be adopted.
  • the contact lens package 10 has a film-shaped package lid 15 superimposed on a package main body 11 having a substantially hemispherical housing recess 20, and the housing recess 20. The cover is covered.
  • An accommodation region 22 is formed by the accommodation recess 20 of the package body 11, and the contact lens 12 is supplied to and accommodated in the accommodation region 22, and the packaging solution 14 is injected so that the contact lens 12 is It is stored in a state immersed in the packaging solution 14.
  • the package body 11 can be used as a swelling container in addition to using a special swelling container in the swelling process after the contact lens 12 is molded.
  • a solvent or packaging as a liquid for hydration and swelling treatment in a state in which the molded contact lens 12 is housed in the housing region 22 of the package body 11.
  • the solution 14 can be processed by supplying it to the storage area 22.
  • the package lid 15 is overlaid in a state where a predetermined amount of the packaging solution 14 is held in the accommodation area 22 in which the contact lens 12 is accommodated. 15 is fixed to the package body 11 by adhesion or welding. Thereby, the accommodation area
  • a plate-shaped gripping plate portion 26 that spreads outward from the peripheral edge of the opening of the housing recess 20 in a flange shape is integrally formed.
  • the package lid 15 covered so as to cover up to the gripping plate portion 26 is fixed to the surface of the gripping plate portion 26 and is not adhered to the gripping plate portion 26 at the edge portion of the package lid 15. As a result, the user can easily perform the opening operation.
  • the package body 11 to be employed is of an appropriate shape and material depending on the size and shape of the contact lens 12 to be accommodated and the amount of the packaging solution 14.
  • the package lid 15 to be adopted an appropriate structure and material are adopted according to the material of the contact lens body 11 and the fixing means.
  • the package body 11 is preferably made of a synthetic resin material such as polypropylene
  • the package lid 15 is preferably made of a laminated film made of aluminum and polypropylene.
  • cover body 15 what can endure the high pressure steam sterilization mentioned later is employ
  • the packaging solution 14 has a specific composition. Specifically, a solution obtained by adding a chelating agent and a buffering agent in addition to an isotonic agent to water as a solvent is employed as the packaging solution 14.
  • the isotonic agent is highly safe for the human body and does not affect the contact lens 12, effects such as reduction of irritation at the time of wearing by the user and stabilization of components of the packaging solution 14 can be obtained.
  • sodium chloride, potassium chloride, or the like can be used.
  • the blending ratio of such an isotonic agent is preferably 0.8 to 0.9% by weight, but it depends on the concentration of other substances mixed in the packaging solution 14 such as a buffering agent and a chelating agent. It can be changed appropriately.
  • the osmotic pressure of the packaging solution 14 is desirably adjusted within a range of 200 to 400 mOsm by appropriately adding an isotonic agent. More preferably, it is adjusted within the range of 250 to 350 mOsm.
  • purified water distilled water, filtered water, or the like can be used as the solvent for the packaging solution 14 in addition to pure water.
  • the chelating agent employed in the present invention is not particularly limited as long as it has a chelating action, but EDTA or a salt thereof is preferably employed.
  • EDTA ethylenediaminetetraacetic acid
  • ethylenediaminetetraacetic acid disodium ethylenediaminetetraacetic acid trisodium
  • ethylenediaminetetraacetic acid tetrasodium etc. suppress the growth of bacteria by sealing heavy metal ions such as iron ions. It is preferably employed from the standpoint of the persistence and strength of the chelating action as a bacteriostatic effect.
  • substances that can be employed as chelating agents include hydroxyethylethylenediamine triacetic acid and its salt, diethylenetriaminepentaacetic acid and its salt, triethylenetetraminehexaacetic acid and its salt, nitrilotriacetic acid and its salt, Nitrilosanpropionic acid and its salt, gluconic acid, hydroxyethyliminodiacetic acid and its salt, aminotrimethylenephosphonic acid and its salt, hydroxyethanediphosphonic acid and its salt, dihydroxyethylethylenediaminediacetic acid and its salt, 1,3 Propanediaminetetraacetic acid and its salts, aspartic acid diacetic acid and its salts, ethylenediaminetetraacetic acid and its derivatives, and their derivatives. From these substances, only one type may be adopted as a chelating agent, or a plurality of types may be used in combination.
  • the mixing ratio of the chelating agent is preferably 0.001 to 0.05% by weight of the chelating agent.
  • a specific composition can be arbitrarily selected as long as it has a buffering effect and does not affect the user's eyes when the contact lens 12 is worn.
  • a specific composition for example, disodium hydrogen phosphate dodecahydrate and sodium dihydrogen phosphate dihydrate are particularly preferably employed.
  • phosphoric acid, boric acid, citric acid And one or more selected from the salts thereof can be suitably employed.
  • Phosphoric acid and its salts include phosphoric acid, sodium dihydrogen phosphate, sodium dihydrogen phosphate dihydrate, sodium hydrogen phosphate, disodium hydrogen phosphate dodecahydrate, trisodium phosphate, phosphorus Trisodium acid 12 hydrate, tetrasodium pyrophosphate, tetrasodium pyrophosphate 10 hydrate, disodium dihydrogen pyrophosphate, dipotassium phosphate trihydrate, potassium dihydrogen phosphate, diphosphate diphosphate Potassium, tripotassium phosphate, potassium pyrophosphate, monocalcium phosphate ⁇ hydrate, dicalcium phosphate ⁇ dihydrate and the like are suitably employed.
  • boric acid and its salt boric acid, sodium borate, potassium borate, sodium tetraborate decahydrate and the like are preferably employed. Furthermore, citric acid, sodium citrate dihydrate, potassium citrate monohydrate and the like are preferably used as citric acid and its salts.
  • acetic acid such as a hydrate, potassium acetate and the salt thereof, trishydroxymethylaminomethane, trishydroxymethylaminomethane hydrochloride and the like, and a salt thereof may be employed.
  • the blending ratio of these buffering agents is 0.01 to 10% by weight, more preferably 0.1 to 4.0% by weight. If the amount of the buffering agent is too small, sufficient buffering ability cannot be exhibited, and if the amount of the buffering agent is too large, the influence on the user's eyes when using the contact lens 12 may become a problem. There is.
  • the contact lens package 10 Since such a buffering agent is contained, even if high-pressure steam sterilization is performed on the sealed contact lens package 10 including the contact lens 12 and the packaging solution 14, the contact lens package 10 has a The change in pH of the packaging solution 14 can be suppressed and the pH can be kept substantially constant.
  • the contact lens 12 can be stored more stably during the storage period from the manufacture of the contact lens package 10 to the opening by the user.
  • the contact lens packaging solution 14 employs a combination of a chelating agent and a buffering agent.
  • the compounding amount of the chelating agent is such that the bacteria growth inhibitory effect is exhibited.
  • the combination of a buffer and a buffering agent suppresses the phenomenon of lowering the pH exerted on the packaging solution 14 due to high-pressure steam sterilization, thereby reducing irritation when the user wears contact lenses and improving the feeling of wearing. It was possible to achieve.
  • the concentration of the chelating agent added to the packaging solution 14 is set to a very low concentration of 0.001 to 0.05% by weight, and the function of the buffering agent added together is set.
  • the pH of the packaging solution 14 is preferably adjusted within the range of 5.5 to 8.0. More preferably, the pH is in the range of 6.8 to 7.9. Further, it is desirable that the buffering agent contained in the packaging solution 14 is selected so that it acts effectively near the pH value at which the pH of the packaging solution 14 is adjusted. Thereby, even after high-pressure steam sterilization, the pH of the packaging solution 14 can be more effectively maintained within a suitable range.
  • necessary additives such as a wetting agent and a lubricant can be added to the packaging solution 14 as appropriate in addition to the above-described buffer, chelating agent, and isotonic agent.
  • the packaging solution 14 containing the above-described components is first prepared in the production tank 16 and then supplied from the production line into the contact lens package 10 through the storage tank 18.
  • the storage tank 18 Preferably, in order to continuously supply the packaging solution 14 to the production line of the contact lens package 10 by continuous operation for a predetermined time or longer, the storage tank 18 always has a certain amount or more of the packaging solution 14.
  • the packaging solution 14 is supplied as needed from the production tank 16 as the amount of storage in the storage tank 18 is reduced by supplying the packaging solution 14 to the production line.
  • the packaging solution 14 in the production tank 16 becomes less than a predetermined amount due to the supply to the storage tank 18, a new packaging solution 14 is prepared in the production tank 16.
  • the packaging solution 14 is supplied from the production tank 16 to the storage tank 18 by, for example, opening a manual or automatic valve 32 provided on the supply line 30 from the production tank 16 to the storage tank 18. It is possible to do this.
  • the capacity of the production tank 16 and the storage tank 18 is 50 to 1000 L, for example, and preferably 100 to 1000 L.
  • the capacity of the storage tank 18 is set according to the production capacity (the number of production per unit time) of the contact lens package 10 in the production line, and is not limited.
  • the production tank 16 since the production tank 16 only needs to have a preparation capacity sufficient to compensate for the shortage of the storage amount in the storage tank 18, a small tank having a preparation capacity smaller than the capacity of the storage tank 18 can be adopted. .
  • the packaging solution 14 supplied to the production line need not be sterilized after being prepared in the production tank 16 until it is sealed in the contact lens package 10 and subjected to high-pressure steam sterilization. That is, the inside of the storage tank 18 is filled when the contact lens package 10 is started to be used, and a new packaging solution 14 is replenished from the manufacturing tank 16 and used as needed. The packaging solution 14 in the storage tank 18 is exposed to a state in which no special sterilization treatment is performed.
  • the maximum residence time of the packaging solution 14 stored in the 500 L storage tank 18 is set to 24 hours. That is, the packaging solution 14 stored in the storage tank 18 at the start of production is used in such a manner that a part of the packaging solution 14 is replaced by replenishment from the production tank 16 and is not sterilized for about 24 hours in the storage tank 18. Will exist.
  • the maximum residence time of the packaging solution 14 in the storage tank 18 is not limited to 24 hours.
  • the present invention is suitably employed when the packaging solution 14 is stored in the storage tank 18 for 24 hours or longer without being sterilized.
  • the packaging solution 14 prepared in the production tank 16 contains a chelating agent (for example, EDTA), the packaging solution 14 can be stored in the storage tank 18 for a long time.
  • a chelating agent for example, EDTA
  • the propagation of various germs in the solution of the packaging solution 14 or the inner surface of the storage tank 18 can be suppressed or prevented.
  • the packaging solution 14 made of purified water or the like basically has few nutrients for the propagation of microorganisms, and it was thought that the microorganisms hardly propagate.
  • the stainless steel of the storage tank 18 is mainly used when the packaging solution 14 has a conventional composition that does not contain a chelating agent such as EDTA.
  • the present inventor has confirmed that microorganisms grow by forming a biofilm on the manufactured surface.
  • a chelating agent for example, EDTA
  • the packaging solution 14 is sealed in the contact lens package 10
  • the amount of microorganisms (bioburden) mixed in the package can be reduced. This does not stop at reducing the amount of microorganisms when the contact lens package 10 is sealed. This is because the microorganisms that are covered and mixed at the time of sealing the contact lens package 10 can be dealt with by sterilization with high-pressure steam applied thereafter.
  • the effects of the present invention are present in the packaging solution of the contact lens package 10 that is provided with a toxin such as endotoxin derived from microorganisms mixed at the time of sealing the contact lens package 10 as a product. It is to be able to prevent this. That is, toxins such as endotoxin derived from microorganisms are not detoxified even when the contact lens package 10 is subjected to high-pressure steam sterilization, and therefore high-pressure steam sterilization has no meaning.
  • a toxin such as endotoxin derived from microorganisms mixed at the time of sealing the contact lens package 10 as a product.
  • the presence of microorganisms that are the cause of the generation of toxins such as endotoxin can be suppressed in the first stage prior to the high-pressure steam sterilization treatment, whereby the toxins in the contact lens package 10 as a product can be suppressed. It was possible to make it possible to avoid existence from the root.
  • the packaging solution 14 contained in the contact lens package 10 can be made extremely safe.
  • the propagation of microorganisms on the inner surface of the storage tank 18 is effectively suppressed, so that the number of times of sterilization operations by washing and heat treatment of the storage tank 18 that has been frequently required in the past is greatly reduced. can do. That is, when the packaging solution 14 having the conventional composition is used, the storage tank 18 is emptied and washed after the production line is stopped in order to prevent the growth of microorganisms on the inner surface of the storage tank 18 and the like. However, it is necessary to frequently perform a special operation of sterilizing the inside of the storage tank 18 by heat treatment.
  • the manufacturing method employing the packaging solution 14 having the composition according to the present invention it is possible to reduce the number of sterilization operations involving the stop of the manufacturing line while preventing the generation of microorganisms and toxins.
  • the production line can be operated continuously for a longer period of time, the productivity can be greatly improved, and a significant reduction in work labor can be achieved.
  • the contact lens package 10 is subjected to high-pressure steam sterilization.
  • the specific conditions for high-pressure steam sterilization are not particularly limited as long as the contact lens package 10 can be sufficiently sterilized and do not have an undesirable effect on the contact lens package 10 or the like. Is set to 115 to 130 ° C. and 2.0 to 2.8 atmospheres for 15 to 60 minutes.
  • the packaging solution 14 sealed in the contact lens package 10 contains a buffering agent, even if the contact lens package 10 is exposed to high temperature and high pressure in high-pressure steam sterilization, the packaging is possible.
  • the pH of the working solution 14 can be kept substantially constant. That is, in the conventional packaging solution, the pH may fluctuate after sterilization by high-pressure steam sterilization.
  • such a change in physical properties is prevented and the packaging solution 14 is stabilized. It is possible to maintain the state.
  • the concentration of EDTA as a chelating agent as low as 0.05% by weight or less, it can be set to a level that does not cause a problem even if the packaging solution 14 directly touches the user's eyes. I can do it.
  • the present inventors have confirmed that when the concentration of EDTA as a chelating agent is set low as described above, the pH value tends to fluctuate due to the influence of high-pressure steam sterilization.
  • the pH variation due to high-pressure steam sterilization is reduced to 0 to 0.1 while suppressing the amount of the chelating agent in the packaging solution 14 low. Therefore, it was possible to maintain a stable storage state.
  • such a buffering agent can select a safe substance such as phosphoric acid that has little influence on the human body. Therefore, even if the packaging solution 14 directly touches the eye, no problem occurs.
  • the contact lens package 10 sterilized by such high-pressure steam sterilization is shipped to the market and delivered to the user through a dealer or the like.
  • the contact lens package 10 opened by the user has the packaging solution 14 having a safe composition and is maintained in a state in which the presence of microorganisms, toxins, and the like is hardly recognized.
  • the pH of the working solution 14 can also be kept in an ideal range. Therefore, the user does not need to clean the contact lens 12 that is taken out by opening the contact lens package 10 with a separately prepared cleaning agent, and can be worn on the eye as it is safely and with excellent wearing feeling. It is said.
  • the two tanks of the production tank 16 and the storage tank 18 are used in combination for supplying the packaging solution 14 to the production line.
  • the functions of the production tank and the storage tank can be exhibited using a single tank.
  • the solution composition of the test sample used in this experiment is as shown in Table 1 below. That is, in Examples 1 and 2 as examples of the packaging solution 14 according to this embodiment, 0.8% by weight of sodium chloride as an isotonic agent and EDTA (trisodium ethylenediaminetetraacetate as a chelating agent) ⁇ 0.03-0.05% by weight of dihydrate) and phosphoric acid as a buffer (disodium hydrogen phosphate, 0.6% by weight of 12 hydrate, sodium dihydrogen phosphate, 2 water 0.04% by weight of Japanese product).
  • a physiological saline containing only sodium chloride, a solution containing only sodium chloride and a chelating agent, and a solution containing only sodium chloride and a buffering agent were prepared.
  • the strains cultured in this experiment are as follows. That is, as standard strains, E. coli (Escherichia03coli IFO03972), Ps.aeruginosa (Pseudomonasu aeruginosa IFO13275), S.aureus (Staphylococcus aureus NBRC13276), C.albicans (Candida ⁇ albicans 10 and Oligocans species IFO1594) There are three types of bioburden bacteria collected at the manufacturing site of AS51-01 (Staphylococcu pisciermentans), AS51-02 (Pseudomonas pyrrocinia), and AS51-03 (Ralstonia picketii). Bioburden bacteria were identified by a biolog system (GSI Creos Co., Ltd.).
  • soy bean casein digest agar medium (hereinafter referred to as SCDA) is 40 g of soy bean casein digest agar medium (Nippon Pharmaceutical Co., Ltd., Cat. No. 399-00981) per 1 L of purified water. In addition, it was heated and melted, and then autoclaved at 121 ° C. for 20 minutes for use.
  • Sabouraud glucose agar medium (hereinafter referred to as SDA) is heated by adding 65 g of Sabouraud glucose agar medium (Nippon Pharmaceutical, Cat. No.392-01831) to 1 L of purified water. After thawing, it was used after being sterilized under high pressure steam at 121 ° C. for 20 minutes.
  • 0.05 w / v% polysorbate 80-containing peptone saline buffer (hereinafter referred to as 0.05% BSCPST) was prepared as an experimental reagent.
  • 0.05% BSCPST peptone salt buffer powder
  • polyoxyethylene (20) sorbitan monooleate polysorbate 80
  • 0.5 g was added and heated to melt, and then autoclaved at 121 ° C. for 20 minutes for use.
  • the details of the pre-culture of the above three types of bioburden bacteria are as follows. First, all three types of bioburden bacteria were cultured at 30 to 35 ° C. for 18 to 24 hours using SCDA medium. Next, the bacteria grown on the medium were suspended in 0.05% BSCPST, and then the cells were collected by centrifugation at 3000 rpm for 5 minutes. Then, the supernatant of the bacterial suspension was removed and suspended again in 0.05% BSCPST. After repeating this operation three times, three types of bacterial solutions having different absorbances were prepared. The viable cell count of the bacterial solution at each concentration was measured by measuring the viable cell count by 10-fold dilution.
  • an absorbance curve was prepared from the measured number of bacteria and the measured value of the absorbance at OD 660 nm, and a bacterial solution having the number of bacteria of 10 7 to 10 8 cfu / mL was prepared according to this absorbance curve.
  • the details of the pre-culture of the above four standard strains are as follows. First, three types of bacteria, E. coli, Ps. Aeruginosa and S. aureus, were cultured at 30 to 35 ° C. for 18 to 24 hours using SCDA medium. C. albicans was cultured at 30-35 ° C. for 18-24 hours using SDA medium. Next, after the microorganisms grown on each medium were suspended in 0.05% BSCPST, the bacteria were collected by centrifugation at 3000 rpm for 5 minutes. Then, the supernatant of the bacterial suspension was removed and suspended again in 0.05% BSCPST, and this operation was repeated three times. Thereafter, the bacterial suspension was diluted with 0.05% BSCPST, and a bacterial solution having a viable cell count of 10 7 to 10 8 cfu / mL was prepared by absorbance at OD 660 nm .
  • a plate medium which is cultured at 30 to 35 ° C. for 3 days or more. The number of colonies formed was counted.
  • SDA medium is used for C. albicans
  • SCDA medium is used for other bacterial species, as in the preculture.
  • One pouch medium was prepared for each.
  • Table 3 shows the results of collecting 1 mL of the culture solution 1 day, 3 days, and 8 days after inoculation with the bacteria, preparing a pour medium, and confirming the number of remaining viable bacteria.
  • the number of remaining viable bacteria in the sample was expressed as an integer.
  • the number of viable bacteria is counted from 1 to 300 cfu / plate, and if it is 300 cfu / plate or more, TNTC (Too Numerous to Count). However, in evaluating the effect of suppressing the increase of bacteria, the numerical values are also shown if the number of bacteria can be counted even if> 300 cfu / mL.
  • Example 2 In the results of Table 3, when Examples 1 and 2 and Comparative Example 2 to which EDTA was added were compared with Comparative Examples 1 and 3 to which EDTA was not added, Examples 1 and 2 and EDTA to which EDTA was added were compared.
  • Example 2 in particular, it is possible to confirm a clear growth inhibitory effect on E. coli, Ps. Aeruginosa, AS51-02 and AS51-03. For example, focusing on the results of E. coli, in Comparative Example 1 and Comparative Example 3 that did not contain EDTA, the colonies were growing so that the number of colonies could not be counted after 1 day, 3 days, and 8 days.
  • the solution composition of the test sample used in this experiment is as shown in Table 4 below. That is, in Examples 3 to 7 as examples of the packaging solution 14 according to the present embodiment, 0.8% by weight of sodium chloride as an isotonic agent and EDTA (trisodium ethylenediaminetetraacetate as a chelating agent) • 0.001 to 0.05% by weight of dihydrate) and phosphoric acid as a buffer (disodium hydrogen phosphate • 0.6% by weight of 12 hydrate and sodium dihydrogen phosphate • 2 water 0.04% by weight of Japanese product). Moreover, as a comparative example of the packaging solution 14, a physiological saline containing only sodium chloride was prepared.
  • 0.05% BSCPST reagent and SCDA medium were prepared under the same conditions as in the above experiment.
  • the same strain as that used in the above test was used as the strain used in this test, and four types of E. coli, Ps. Aeruginosa, AS51-02 and AS51-03 were used.
  • These four strains are pre-cultured under the same conditions as in the above test to prepare a bacterial solution with a viable cell count of 10 7 to 10 8 cfu / mL, which is diluted to 10 3 to 10 4 cfu / mL.
  • a bacterial solution was prepared.
  • each test sample shown in Table 4 was dispensed into a sterilized conical tube. This was inoculated with 500 ⁇ L of each prepared bacterial solution. After stirring, incubate at 20-25 ° C in a programmed low-temperature incubator, and after 1 day, 3 days, and 8 days, use 0.05% BSCPST to make a 10-fold dilution series that maximizes 100-fold dilution. A pour medium was prepared and the number of viable bacteria was measured. That is, 1 mL of the diluted solution was mixed with SCDA or SDA medium dissolved and heated at 50 to 60 ° C. to prepare a plate medium, which was cultured at 30 to 35 ° C. for 3 days or longer. Numbers were counted. Three pouch plate media were prepared for each.
  • Table 5 shows the results of confirming the number of remaining viable bacteria after culturing for 1 day, 3 days and 8 days after inoculation with the bacteria.
  • the number of remaining viable bacteria in the sample was expressed as an integer.
  • the number of viable bacteria was counted in the range of 30 to 300 cfu / plate, and when it was 300 cfu / plate or more, it was expressed as TNTC (Too Numerous to Count).
  • the packaging solution 14 containing the chelating agent according to the present invention has the effect of suppressing the growth of the fungus against both the standard strain and the bioburden fungus. Show. That is, it can be seen that by using the packaging solution 14 according to the present invention for the production of the contact lens package 10, it is possible to effectively suppress the growth of germs in the storage tank 18 and the like.
  • a solution containing phosphoric acid, boric acid, citric acid and the like as a buffer was prepared, and a solution containing no buffer was prepared as a comparative example.
  • the composition of each solution is as shown in Tables 6 to 9 below.
  • Each solution was prepared by changing the EDTA concentration to 0 to 0.05% by weight.
  • Each of these solutions was sealed in a polypropylene contact lens package 10 and subjected to high-pressure steam sterilization at 121 ° C. for 20 minutes, and the change in pH before and after high-pressure steam sterilization was measured. Details of the composition of each solution and the measurement results of pH are as shown in Tables 6 to 9 below.
  • Comparative Examples 5 to 7 show the results of Comparative Examples 5 to 7 not containing a buffer.
  • the initial pH of Comparative Examples 5 to 7 was 7.1 to 7.7, the pH dropped to about 6.4 to 6.9 after high-pressure steam sterilization. That is, Comparative Examples 5 to 7 contain no buffering agent and contain only 0.01 to 0.05% by weight of ethylenediaminetetraacetic acid trisodium dihydrate (EDTA.3Na.2H2O).
  • EDTA.3Na.2H2O ethylenediaminetetraacetic acid trisodium dihydrate
  • Table 7 shows the results when phosphoric acid was added as a buffering agent.
  • Examples 8 to 10 include phosphoric acid (0.6% by weight of disodium hydrogen phosphate.12 hydrate and 0.02% of sodium dihydrogen phosphate.dihydrate as a buffering agent. 04 wt%) is added.
  • phosphoric acid (0.6% by weight of disodium hydrogen phosphate.12 hydrate and 0.02% of sodium dihydrogen phosphate.dihydrate as a buffering agent. 04 wt%) is added.
  • the initial value around pH 7.7 was hardly changed, indicating that any decrease in pH was effectively suppressed.
  • Table 8 shows the results when boric acid was added as a buffering agent. Specifically, in Examples 11 to 13 shown in Table 8, boric acid was added at a ratio of 0.31% by weight and borax at a ratio of 0.019% by weight. In these Examples 11 to 13 as well, the pH value hardly changed from around pH 7.4 even after autoclaving, indicating that any decrease in pH was effectively suppressed.
  • Table 9 shows the results when citric acid and phosphoric acid were added in combination as buffering agents. Specifically, in Examples 14 to 16 shown in Table 9, citric acid was added at a rate of 0.12% by weight, and disodium hydrogen phosphate dodecahydrate was added at a rate of 3.13% by weight. . Also in these Examples 14 to 16, the pH value remained almost unchanged from around pH 7.3 even after autoclaving, and any decrease in pH was effectively suppressed.
  • the packaging solution 14 according to the present invention contains a buffer in combination with a chelating agent, so that a decrease in pH due to high-pressure steam sterilization can be effectively suppressed. I understand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Eyeglasses (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

 本発明の課題は、ユーザーへの安全性が高く、且つ、製造時の包装用溶液の無菌性を高度に維持し得るコンタクトレンズパッケージを、優れた生産効率をもって連続的に効率良く生産することの出来る、コンタクトレンズパッケージの新規な製造方法を提供することにある。 かかる課題を解決するために、コンタクトレンズパッケージ内にコンタクトレンズを浸漬させた状態で密封収容されて、密封後に高圧蒸気殺菌される包装用溶液として、キレート剤と緩衝剤とを含む溶液を採用した。これにより、微生物だけでなく高圧蒸気殺菌では対応できない微生物由来の毒素の包装用溶液内への残存までも、特別な労力を費やすことなく抑え得ると共に、高圧蒸気滅菌に伴うpHの変化も抑え得て、包装用溶液がそのまま眼に触れても刺激性が低く、人体への安全性が高いコンタクトレンズパッケージの提供を実現可能とした。

Description

コンタクトレンズパッケージの製造方法
 本発明は、コンタクトレンズと包装用溶液が密封状態で収容されており、コンタクトレンズをメーカーからユーザーに提供するのに用いられるコンタクトレンズパッケージの新規な製造方法に関するものである。
 一般に、コンタクトレンズは、包装用溶液と共にコンタクトレンズパッケージ内に封入された状態で市場に出荷されて、ユーザーへと供給されている。そして、このようなコンタクトレンズは、ユーザーの眼に直接触れて使用(装用)されるものであることから、無菌の状態でユーザーに届けられる必要がある。このため、コンタクトレンズパッケージは、製造工程においてコンタクトレンズと包装用溶液とが封入されて密封された後、高圧蒸気滅菌等が施されることにより無菌状態とされてから、市場へ出荷されている。
 しかしながら、このような高圧蒸気滅菌だけでは、微生物は殺菌し得るものの、エンドトキシン等の微生物由来の毒素を完全に無毒化することは難しい。それ故、高圧蒸気滅菌等による滅菌後だけでなく、滅菌工程以前の各工程においても、微生物が存在していることは望ましくなく、滅菌前の段階で製品に付着している微生物の数(バイオバーデン)は、低く抑えておく必要がある。即ち、ユーザーの眼への悪影響を防止するためには、高圧蒸気滅菌等による滅菌工程より前の段階の製造工程においても、製造ライン内は高度に無菌化された状態に保たれることが望ましい。
 また、一般的なコンタクトレンズパッケージの製造工程において使用される包装用溶液は、製造タンクから貯蔵タンクに貯留された後、必要量が随時製造ラインへと供給されて、パッケージングに用いられることとなる。このため、コンタクトレンズパッケージの製造時には、パッケージングを行う製造ライン自体と共に、これら包装用溶液の製造タンクや貯蔵タンクの表面、及び、包装用溶液そのものを、高度な無菌状態に保つことが望ましい。
 ここにおいて、従来、コンタクトレンズパッケージの製造は、1日単位等、一定期間を単位としたバッチ処理的に行われていた。このような製造方法においては、製造ラインの稼動開始時において、例えば1日分など、その製造期間において必要なだけの無菌状態の包装用溶液が新たに調製されて製造に用いられると共に、余った包装用溶液は廃棄されていた。また、包装用溶液を貯蔵する製造タンクや貯蔵用タンクは、例えば、その日の製造の終了後や、所定の量を使い切るごとに空にされて洗浄され、熱消毒などが施されることによって、製造ラインや包装用溶液の無菌状態が維持されるようになっていた。
 しかしながら、近年、製造工程等の変化により、製造ラインを1日の作業毎に止めることなく、24時間稼動させることが求められるようになってきている。このような24時間稼動される製造ラインにおいては、従来の1日単位の製造の場合のように、その日の製造ラインの停止後に貯蔵タンクや製造タンクの滅菌を行うことができない。また、包装用溶液を常にラインに供給し続けることが必要であるから、包装用溶液を一定時間毎に完全に入れ替えることも困難である。このため、このような24時間稼動の製造ラインにおいては、製造ライン内の無菌性を保つために、コンタクトレンズパッケージの一連の製造工程とは別に、別途、製造ラインを一時停止させて、貯蔵タンク等を熱消毒するといった、特別の殺菌作業が必要となっていた。このような製造方法においては、24時間体制の稼動時間の中で、無菌状態の維持のために頻繁に製造ラインを停止させる必要があることから、生産性が低くなってしまうと共に、殺菌作業の労力負担が避けられないという問題があった。
 一方、このような殺菌作業に伴う製造ラインの停止回数を抑えるために、包装用溶液に殺菌剤を加えることにより、製造ライン中の包装用溶液等における微生物の繁殖を抑えることも考えられる。しかしながら、コンタクトレンズパッケージの製造に用いられる包装用溶液は、完成後のコンタクトレンズパッケージにおいて包装用溶液として封入されて、ユーザーがコンタクトレンズを装用する際に直接目に触れる可能性があることから、強力な殺菌性を有する物質を加えることは、ユーザーの眼への悪影響という面で好ましくない。
 また、コンタクトレンズパッケージの製造工程においては、従来から、コンタクトレンズと包装用溶液を容器に収容して密封した後に、滅菌処理として、高圧蒸気滅菌が実施されている。しかしながら、発明者らの研究の結果、このような高圧蒸気滅菌を実施することにより、滅菌時の高温・高圧の影響によって、コンタクトレンズパッケージ内の包装用溶液の物性値、特に、pHに変化が生じてしまうことが新たに判明したのである。包装用溶液のpHの変動は、コンタクトレンズ自体の保存状態に悪影響を与えるだけでなく、コンタクトレンズが装着される際にユーザーの眼組織へも刺激等の悪影響が及ぼされるおそれがある。
 このような問題に対し、コンタクトレンズパッケージの製造現場においては、製造時の包装用溶液の無菌性を高度に維持しつつ、コンタクトレンズ装用時のユーザーの眼組織への影響を最小限に抑え得る、新たなコンタクトレンズパッケージの製造方法が希求されていたのである。
 特に、近年では、装用感に優れたシリコンハイドロゲル等からなるソフトコンタクトレンズが多用されている。特許文献1にも記載されているように、これら含水性のソフトコンタクトレンズでは、コンタクトレンズが長時間に亘って包装用溶液に浸漬されると共に、包装用溶液を包含した状態で装用される。それ故、上述の如きコンタクトレンズパッケージ内の無菌化の要求と、包装用溶液の眼組織への影響回避の要求とが、非常に大きい。
特開2007-86777号公報
 ここにおいて、本発明は上述の如き事情を背景として為されたものであり、その解決課題とするところは、包装用溶液の貯蔵タンクや供給経路において、頻繁な洗滌消毒処理を必要とすることなく且つ殺菌剤を使用することもなく、菌の繁殖を抑えて略無菌状態に維持することが出来、それによって、装用時の安全性の高いコンタクトレンズパッケージを少ない労力をもって連続的に効率良く製造することが出来る、コンタクトレンズパッケージの新規な製造方法を提供することにある。
 以下、コンタクトレンズパッケージの製造方法に関する本発明の態様を記載する。なお、以下に記載の態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。また、本発明の態様や技術的特徴は、以下に記載のものに限定されることなく、明細書全体及び図面に記載されたもの、或いはそれらの記載から当業者が把握することが出来る発明思想に基づいて認識されるものであることが理解されるべきである。
 本発明の特徴とするところは、ソフトコンタクトレンズを包装用溶液に浸漬させた状態でコンタクトレンズパッケージに密封した後、該コンタクトレンズパッケージを高圧蒸気滅菌するコンタクトレンズパッケージの製造方法であって、前記包装用溶液を予め調製して、該包装用溶液を貯留タンクに貯留させておき、必要とする所定量ずつ該貯留タンクから取り出して前記コンタクトレンズパッケージに注入すると共に、該包装用溶液としてキレート剤および緩衝剤を含有する溶液を採用することを特徴とする。
 このような本発明に従うコンタクトレンズパッケージの製造方法においては、キレート剤を含む溶液を包装用溶液として採用したことにより、包装用溶液を非滅菌状態で貯留タンク内に長時間滞留させても、貯留タンクの表面や包装用溶液内における微生物の繁殖を抑えることができる。これにより、製造工程における高圧蒸気滅菌工程以前の段階においても、包装用溶液における微生物の存在数(バイオバーデン)を低く保つことが可能となる。その結果、高圧蒸気滅菌では無効化できない微生物由来のエンドトキシン等の毒素の発生を、極めて低レベルに維持して、コンタクトレンズパッケージを提供することが可能となるのである。
 また、このように貯留タンク表面や包装用溶液における雑菌の繁殖を抑制し得ることから、従来、製造中に頻繁にラインを止めて行う必要があった貯留タンクの水洗や熱消毒等の殺菌作業を、大幅に回数削減したり、行なわないようにすることができる。これにより、コンタクトレンズパッケージの製造ラインを、そのライン上の無菌性を充分に保ちつつ、例えば24時間以上に亘って連続稼働させるなど、長時間連続的に稼動させることが可能となり、生産性が大きく向上され得る。また、貯留タンクの洗浄殺菌等の頻度を抑え得ることにより、これまで貯留タンクの洗浄や熱消毒に消費されていた大量の水や電力,労力等を節約できることから、製造工程の省エネルギー化が容易に達成され得る。
 更にまた、本発明の製造方法によれば、包装用溶液の実質的な無菌化が実現可能となって、殺菌剤などの人体に悪影響を及ぼし得る危険な物質を包装用溶液に加える必要もなくなる。それ故、ユーザーがコンタクトレンズパッケージを開封してコンタクトレンズを使用する際に包装用溶液が眼に直接触れても危険性が無く、安全に使用することが可能なコンタクトレンズパッケージが実現可能となる。
 加えて、本発明方法に従って製造されたコンタクトレンズパッケージでは、収容された包装用溶液に緩衝剤が含まれていることにより、コンタクトレンズパッケージに対して高圧蒸気滅菌を実施しても、包装用溶液のpHの値は略一定に保たれ得る。これにより、ユーザーがコンタクトレンズを装用する際に包装用溶液が直接にユーザーの眼に触れたとしても、眼粘膜等が刺激されることもなく、そのまま快適に使用することが出来るのである。
 さらに、本発明方法は、特に含水性のハイドロゲルからなるソフトコンタクトレンズのパッケージ製造に好適に採用される。より好適には、含水性のシリコンハイドロゲルからなるソフトコンタクトレンズのパッケージ製造に際して、本発明方法が採用される。
 このような含水性のハイドロゲル材料は、その製造工程において膨潤させる等、比較的長時間に亘って包装用溶液に浸漬させておく必要があると共に、コンタクトレンズの内部に包装用溶液が含浸された状態でユーザーに提供される。このような含水性のハイドロゲルからなるソフトコンタクトレンズにおいても、本発明方法に従えば、包装用溶液にキレート剤が配合されて無菌性が維持されることによって、長期の浸漬時間中を含めてユーザーに提供されるまでの長時間に亘って、良好な状態でソフトコンタクトレンズを含水状態に保つことができるのであり、ユーザーが装用する際の危険性を極めて低レベルに抑えることが可能となる。
本発明の一実施形態としてのコンタクトレンズパッケージの製造方法の作業の流れと、本実施形態において用いられる包装用溶液の流れとを示す概念図。 本発明方法に従って製造されたコンタクトレンズパッケージの一具体例を示す説明図である。
符号の説明
10:コンタクトレンズパッケージ、11:パッケージ本体、12:コンタクトレンズ、14:包装用溶液、18:貯蔵タンク
 以下に、本発明を更に具体的に明らかにするために、本発明の一実施形態について、説明する。
 先ず、図1には、本発明の一実施形態としてのコンタクトレンズパッケージの製造方法におけるコンタクトレンズパッケージ10の製造工程の概略図が示されている。また、図2には、図1に示された製造工程に従って製造されるコンタクトレンズパッケージ10の一例が示されている。即ち、本実施形態では、パッケージ本体11にコンタクトレンズ12と包装用溶液14を収容して、このパッケージ本体11をパッケージ蓋体15で封止した後、これに高圧蒸気滅菌処理を施すことによって、市場に出荷するコンタクトレンズパッケージ10を得るようになっている。また、このような本実施形態の製造ラインで使用される包装用溶液14は、先ず製造タンク16で調製された後、貯留タンクとしての貯蔵タンク18に貯留されて、そこから製造ラインへと供給されてパッケージ本体11に注入されるようになっている。
 より詳細には、本実施形態におけるコンタクトレンズ12は、ソフトコンタクトレンズであって、特に含水性のハイドロゲルからなるソフトコンタクトレンズが採用されている。
 なお、このコンタクトレンズ12の具体的な材質は、特に限定されるものではないが、具体的には、例えば、2-ヒドロキシエチルメタクリレート、N,N-ジメチルアクリルアミド、N-ビニル-2-ピロリドン、グリセロールメタクリレート、メタクリル酸等の親水性のモノマー等が採用され得る。また、これらのモノマーを単体で使用してもよいし、複数種類のモノマーを組み合わせて採用しても良い。更にまた、これらの親水性のモノマーに加えて、シリコンを含有する疎水性のモノマーを組み合わせて採用し、これらを共重合させたコポリマーであるシリコンハイドロゲルを材料としてもよい。
 また、かかるコンタクトレンズ12を収容するコンタクトレンズパッケージ10としては、公知のコンタクトレンズパッケージ10が何れも採用可能である。かかるコンタクトレンズパッケージ10は、例えば図2に示されているように、略半球殻形状の収容凹部20を備えたパッケージ本体11に対して、フィルム状のパッケージ蓋体15が重ね合わされて収容凹部20を覆蓋した構造とされる。パッケージ本体11の収容凹部20によって収容領域22が形成されており、この収容領域22に対して、コンタクトレンズ12が供給されて収容されると共に、包装用溶液14が注入されて、コンタクトレンズ12が包装用溶液14への浸漬状態で保存されるようになっている。
 なお、コンタクトレンズ12が含水性材料からなる場合には、コンタクトレンズ12の成形後の膨潤工程において、特別な膨潤用容器を用いる他、パッケージ本体11を膨潤用容器として用いることも可能である。その場合には、例えばWO2004/019114A1に記載されているように、パッケージ本体11の収容領域22に成形後のコンタクトレンズ12を収容した状態で、水和及び膨潤処理用の液としての溶媒あるいは包装用溶液14を収容領域22に対して供給することによって処理することが出来る。
 このような膨潤処理の後、コンタクトレンズ12を収容した収容領域22に所定量の包装用溶液14を保留させた状態で、パッケージ蓋体15を重ねて、収容領域22の周囲において、パッケージ蓋体15をパッケージ本体11に対して接着や溶着等で固着する。これにより、収容領域22を密封して、そこにコンタクトレンズ12と包装用溶液14を封止する。好適には、図2に示されているように、パッケージ本体11において、収容凹部20の開口周縁部からフランジ状に外方に広がるプレート形状の把持板部26が一体形成されている。そして、この把持板部26まで覆うように被せられたパッケージ蓋体15が、把持板部26の表面に固着されると共に、パッケージ蓋体15の端縁部において、把持板部26に非接着とされた摘み部が形成されて、ユーザーの開封操作が容易とされる。
 なお、採用するパッケージ本体11は、収容するコンタクトレンズ12の大きさや形状および包装用溶液14の量等に応じて、適当な形状および材質のものが採用される。また、採用するパッケージ蓋体15としても、コンタクトレンズ本体11の材質や固着手段等に応じて、適当な構造および材質のものが採用される。具体的には、パッケージ本体11としてポリプロピレン等の合成樹脂材料からなるものが好適に採用されると共に、パッケージ蓋体15としてアルミニウムとポリプロピレン等からなる積層フィルムからなるものが好適に採用される。なお、パッケージ本体11およびパッケージ蓋体15は、何れも、後述する高圧蒸気滅菌に耐え得るものが、その条件に応じて採用される。
 また、本実施形態では、上記包装用溶液14として、特定の組成のものが採用される。具体的には、溶媒としての水に対して、等張化剤の他、キレート剤と緩衝剤を添加したものが、包装用溶液14として採用される。
 ここにおいて、等張化剤は、人体にとって安全性が高く、コンタクトレンズ12に影響を及ぼさないものであれば、ユーザの装用時における刺激の低減や包装用溶液14の成分安定化等の効果が認められるものが採用され得る。具体的には、塩化ナトリウムや塩化カリウム等が採用可能である。かかる等張化剤の配合比率は、0.8~0.9重量%とされることが望ましいが、緩衝剤やキレート剤等、包装用溶液14内に混合されるその他の物質の濃度によっても適宜変更され得る。また、包装用溶液14の浸透圧は、等張化剤が適宜配合されることによって、200~400mOsmの範囲内に調整されていることが望ましい。さらに好ましくは、250~350mOsmの範囲内に調整されていることが望ましい。
 なお、包装用溶液14の溶媒としての水は、純水の他、精製水や蒸留水、濾過水等も採用可能である。
 また、本発明において採用されるキレート剤は、キレート作用を有するものであれば特に限定されるものではないが、EDTAやその塩が好適に採用される。具体的には、エチレンジアミン四酢酸(EDTA)の他、エチレンジアミン四酢酸二ナトリウム、エチレンジアミン四酢酸三ナトリウム、エチレンジアミン四酢酸四ナトリウム等が、鉄イオン等の重金属イオンを封止することで菌増殖を抑えるといった静菌効果としてのキレート作用の持続性や強度などの点から好適に採用される。また、その他にキレート剤として採用され得る物質を具体的に例示すると、ヒドロキシエチルエチレンジアミン三酢酸及びその塩、ジエチレントリアミン五酢酸及びその塩、トリエチレンテトラミン六酢酸及びその塩、ニトリロ三酢酸及びその塩、ニトリロサンプロピオン酸及びその塩、グルコン酸、ヒドロキシエチルイミノ二酢酸及びその塩、アミノトリメチレンホスホン酸及びその塩、ヒドロキシエタンジホスホン酸及びその塩、ジヒドロキシエチルエチレンジアミン二酢酸及びその塩、1,3-プロパンジアミン四酢酸及びその塩、アスパラギン酸二酢酸及びその塩、またエチレンジアミン四酢酸及びその塩も含めたこれらの誘導体等がある。これらの物質から一種類のみをキレート剤として採用して良いし、複数種類を組み合わせて採用してもよい。
 キレート剤の配合比率は、キレート剤が0.001~0.05重量%とされることが望ましい。このようなキレート剤が配合されることにより、常温大気中でのコンタクトレンズパッケージング環境下において包装用溶液14を貯蔵タンク18の内部に非滅菌状態で長時間滞留させても、貯蔵タンク18の内部表面等における菌の繁殖を充分に抑えることが出来る。なお、キレート剤の量が少なすぎると、充分な殺菌効果が発揮され難くなり、キレート剤の量が多すぎると、コンタクトレンズ12の使用時にユーザーの眼に包装用溶液14が触れた際のアレルギー反応等を含む安全性の面等から好ましくない。
 また、緩衝剤としては、緩衝作用を有し、且つ、コンタクトレンズ12の装用時にユーザーの眼に影響を与えない範囲であれば、具体的な組成は任意に選択され得る。具体的には、かかる緩衝剤として、例えばリン酸水素二ナトリウム・12水和物及びリン酸二水素ナトリウム・2水和物が特に好適に採用されるが、例えばリン酸、ホウ酸、クエン酸及びそれらの塩から選択される1種類以上が好適に採用され得る。
 リン酸及びその塩としては、リン酸、リン酸二水素ナトリウム、リン酸二水素ナトリウム・2水和物、リン酸水素ナトリウム、リン酸水素二ナトリウム・12水和物、リン酸三ナトリウム、リン酸三ナトリウム・12水和物、ピロリン酸四ナトリウム、ピロリン酸四ナトリウム・10水和物、ピロリン酸二水素二ナトリウム、リン酸二カリウム・3水和物、リン酸二水素カリウム、リン酸二カリウム、リン酸三カリウム、ピロリン酸カリウム、リン酸一カルシウム・水和物、リン酸二カルシウム・2水和物等が好適に採用される。
 また、ホウ酸及びその塩としては、ホウ酸、ホウ酸ナトリウム、ホウ酸カリウム、四ホウ酸ナトリウム・10水和物等が好適に採用される。
 更にまた、クエン酸及びその塩としては、クエン酸、クエン酸ナトリウム・2水和物、クエン酸カリウム・1水和物等が好適に採用される。
 なお、その他、炭酸水素ナトリウム、炭酸ナトリウム、炭酸ナトリウム・1水和物、炭酸水素カルシウム、炭酸カルシウム、炭酸カリウム、炭酸水素カリウム等の炭酸およびその塩や、酢酸、酢酸ナトリウム、酢酸ナトリウム・3水和物、酢酸カリウム等の酢酸及びその塩、トリスヒドロキシメチルアミノメタン、トリスヒドロキシメチルアミノメタン塩酸塩等のトリス及びその塩等を、緩衝剤として採用しても良い。
 また、これら緩衝剤の配合比率は、緩衝剤が0.01~10重量%、より望ましくは0.1~4.0重量%とされる。なお、緩衝剤の配合量が少なすぎると充分な緩衝能を発揮し得ず、また、緩衝剤の配合量が多すぎると、コンタクトレンズ12使用時におけるユーザーの眼への影響が問題となるおそれがある。
 そして、このような緩衝剤が含まれていることにより、コンタクトレンズ12と包装用溶液14を含んで密閉されたコンタクトレンズパッケージ10に対して高圧蒸気滅菌を実施しても、コンタクトレンズパッケージ10内の包装用溶液14のpHの変化を抑え得て、pHを略一定に保つことができるのである。
 その結果、ユーザーがコンタクトレンズパッケージ10を開封してコンタクトレンズ12を使用する際にも、pHの変化による眼組織等への刺激が抑えられるのである。また、包装用溶液14のpHが一定に維持されることにより、コンタクトレンズパッケージ10の製造からユーザーによる開封までの保存期間においても、コンタクトレンズ12をより安定的に保存することができる。
 特に、本発明では、コンタクトレンズの包装用溶液14において、キレート剤と緩衝剤を組み合わせて採用したことを特徴の一つとする。特に、コンタクトレンズの包装用溶液14は、コンタクトレンズ装用時にユーザーが眼組織に直接に触れることになることを考慮して、本発明ではキレート剤の配合量を菌増殖抑制効果が発揮される程度に低く抑えつつ、緩衝剤を組み合わせたことによって、高圧蒸気滅菌に伴って包装用溶液14に及ぼされるpHの低下現象を抑えて、ユーザーのコンタクトレンズ装用時における刺激を低減させて装用感の向上を達成し得たのである。この結果、本発明の一態様では、包装用溶液14に添加するキレート剤の濃度を0.001~0.05重量%と、極めて低濃度に設定しつつ、合わせて添加した緩衝剤の機能により、高圧蒸気滅菌に伴う包装用溶液14のpHの低下を充分に抑えて、極めて良好な装用感を実現することが出来るのである。
 なお、包装用溶液14のpHは、5.5~8.0の範囲内に調整されていることが望ましい。更に望ましくは、pHは6.8~7.9の範囲とされる。また、包装用溶液14に含まれる緩衝剤は、包装用溶液14のpHが調整されたpH値付近で有効に作用するものが選択されることが望ましい。これにより、高圧蒸気滅菌後においても、包装用溶液14のpHを好適な範囲に一層効果的に維持できる。
 さらに、包装用溶液14には、上述の緩衝剤、キレート剤、等張化剤の他にも、湿潤剤、潤滑剤等、適宜、必要な添加物が加えられ得る。
 そして、上述の各成分を含む包装用溶液14は、先ず、製造タンク16内において調製された後、貯蔵タンク18を経て、製造ラインからコンタクトレンズパッケージ10内へと供給される。好適には、所定時間以上の連続操業によるコンタクトレンズパッケージ10の製造ラインに対して、絶え間なく包装用溶液14を供給し続けるために、貯蔵タンク18には常に一定量以上の包装用溶液14が貯留されるようになっており、包装用溶液14を製造ラインに供給することによる貯蔵タンク18内の貯留量の減少に伴って、製造タンク16から包装用溶液14が随時供給される。
 また、貯蔵タンク18への供給によって製造タンク16内の包装用溶液14が予め定められた量よりも少なくなると、製造タンク16において新たな包装用溶液14が調製されるようになっている。なお、製造タンク16から貯蔵タンク18への包装用溶液14の供給は、例えば製造タンク16から貯蔵タンク18への供給管路30上に設けた手動式或いは自動式のバルブ32を開操作することによって行なうことが可能である。
 また、製造タンク16及び貯蔵タンク18の容量は、何れも、例えば50~1000Lとされ、好適には100~1000Lとされる。尤も、貯蔵タンク18の容量は、製造ラインにおけるコンタクトレンズパッケージ10の製造能力(単位時間当たりの製造数)に応じて設定されるものであって限定されない。また、製造タンク16は、貯蔵タンク18における貯留量不足分を補うだけの調製能力をもっていれば良いことから、貯蔵タンク18の容量よりも小さな調製能力を備えた小型のものを採用することが出来る。
 ここにおいて、製造ラインに供給される包装用溶液14は、製造タンク16で調製されてから、コンタクトレンズパッケージ10に封入されて高圧蒸気滅菌が施されるまでに、滅菌処理を施す必要はない。即ち、貯蔵タンク18内は、コンタクトレンズパッケージ10の製造開始時に満杯とされてから、随時、製造タンク16から新たな包装用溶液14が補充されて混合されつつ使用されることとなるが、その間、貯蔵タンク18内の包装用溶液14は、特別な滅菌処理が施されないままの状態に晒される。
 例えば、本実施形態では、容量500Lの貯蔵タンク18内に貯留された包装用溶液14の最大滞留時間が、24時間に設定される。即ち、製造開始時に貯蔵タンク18に蓄えられた包装用溶液14は、製造タンク16からの補充によって一部が入れ替わるようにして使用されつつ、略24時間は滅菌処理されない状態で貯蔵タンク18内に存在することとなる。なお、貯蔵タンク18内の包装用溶液14の最大滞留時間は、24時間に限定されるものでない。特に本発明は、包装用溶液14が貯蔵タンク18内に、滅菌処理を施されずに24時間以上貯留せしめられる場合において、好適に採用される。
 その際、製造タンク16で調製された包装用溶液14には、キレート剤(例としてEDTA)が含まれていることにより、貯蔵タンク18内おいて包装用溶液14を長時間貯留させ続けても、包装用溶液14の溶液中や貯蔵タンク18の内部表面等における雑菌の繁殖が抑制又は防止され得るのである。
 すなわち、精製水等からなる包装用溶液14は、基本的に微生物が繁殖するような栄養分は少なく、微生物の繁殖は起こり難いと考えられていた。しかし、貯蔵タンク18内に非滅菌状態の包装用溶液14を長時間貯留し続けると、包装用溶液14がEDTA等のキレート剤を含まない従来組成の場合には、主に貯蔵タンク18のステンレス製の表面においてバイオフィルムを形成して、微生物が増殖することを、本発明者が確認した。これに対して、包装用溶液14にEDTA等のキレート剤(例としてEDTA)を添加することによって、このような微生物の増殖を極めて効果的に抑え得ることを確認した。
 これにより、包装用溶液14をコンタクトレンズパッケージ10に封入する際にパッケージ内部に混入する微生物の量(バイオバーデン)を減少させることが可能である。このことは、単に、コンタクトレンズパッケージ10の封止の時点で、微生物量を抑えることに止まるものではない。蓋し、コンタクトレンズパッケージ10の封止時に混入した微生物は、その後に施される高圧蒸気による滅菌処理で対応できるからである。
 要するに、本発明の効果は、コンタクトレンズパッケージ10の封止時に混入した微生物に由来する、エンドトキシン等の毒素が、製品として出荷されてユーザーに提供されるコンタクトレンズパッケージ10の包装用溶液に存在することを防止し得ることにある。即ち、微生物由来のエンドトキシン等の毒素は、コンタクトレンズパッケージ10に高圧蒸気滅菌処理を施しても無毒化されずに残存することから、高圧蒸気滅菌処理は意味を持たないことになる。ここにおいて、本発明では、高圧蒸気滅菌処理の前の段階で、そもそもエンドトキシン等の毒素の発生原因である微生物自体の存在を抑え得るのであり、それによって、製品であるコンタクトレンズパッケージ10における毒素の存在を根元から回避させることを可能と為し得たのである。
 また、本実施形態に従えば、上述の新規な技術思想に基づいて、殺菌剤等の人体にとって危険性の高い物質を使用することなく、雑菌の繁殖を効果的に抑えることができることから、製品としてのコンタクトレンズパッケージ10に含まれる包装用溶液14を、極めて安全性が高いものと為し得る。
 加えて、製造過程では、特に、貯蔵タンク18内部表面における微生物の繁殖が効果的に抑えられることにより、従来頻繁に必要であった貯蔵タンク18の洗浄や熱処理による殺菌作業の回数を大幅に削減することができる。即ち、従来の組成の包装用溶液14を使用した場合には、貯蔵タンク18の内部表面等における微生物の増殖を防止するために、製造ラインを停止させた上で貯蔵タンク18を空にして洗浄し、熱処理により貯蔵タンク18内部等を滅菌するという特別な作業を頻繁に行う必要があった。しかし、本発明に従う組成の包装用溶液14を採用する製造方法に従えば、微生物や毒素の発生を防止しつつ、製造ラインの停止を伴う滅菌作業の回数を減らすことが出来るのである。これにより、製造ラインをより長時間連続的に稼動させることが可能となり、生産性を大きく向上させることができると共に、作業労力の大幅な軽減も達成可能となる。
 このようにして、包装用溶液14とコンタクトレンズ12が、コンタクトレンズパッケージ10に対してコンタクトレンズ12と共に密封封入された後、コンタクトレンズパッケージ10には、高圧蒸気滅菌が施される。高圧蒸気滅菌の具体的な条件は、コンタクトレンズパッケージ10を充分に無菌化でき、且つ、コンタクトレンズパッケージ10等に望ましくない影響を与えない範囲であれば、特に限定されるものではないが、望ましくは、115~130℃、2.0~2.8気圧で15~60分とされる。
 ここにおいて、本発明においては、コンタクトレンズパッケージ10に封止された包装用溶液14が緩衝剤を含んでいることにより、高圧蒸気滅菌においてコンタクトレンズパッケージ10が高温・高圧に晒されても、包装用溶液14のpHが略一定に保たれ得る。即ち、従来組成の包装用溶液では、高圧蒸気滅菌による滅菌後にpHが変動してしまうことがあったが、本発明に従えば、そのような物性の変化を防止し、包装用溶液14を安定した状態に維持することが可能となる。
 特に、キレート剤としてのEDTAの濃度を、0.05重量%以下と低く設定することで、ユーザーの眼に直接に包装用溶液14が触れても問題となることが無いレベルに設定することが出来る。一方、このようにキレート剤としてのEDTAの濃度を低く設定すると、高圧蒸気滅菌の影響を受けてpHの値が変動し易い傾向にあることを、本発明者が確認した。かかる問題に関して、本発明においては、包装用溶液14に緩衝剤を加えたことにより、包装用溶液14のキレート剤の配合量を低く抑えつつ、高圧蒸気滅菌によるpHの変動を0~0.1に抑えて、安定した保存状態を維持することを可能と為し得たのである。特に、かかる緩衝剤は、リン酸等の人体への影響の少ない安全な物質を選択することが出来るのであり、それ故、包装用溶液14が眼に直接触れても問題が生じることもない。
 そして、かかる高圧蒸気滅菌により無菌化されたコンタクトレンズパッケージ10は、市場に向けて出荷され、販売店等を介してユーザーに届けられることとなる。ユーザーにより開封されたコンタクトレンズパッケージ10は、包装用溶液14が安全な組成を有しており、そこにおける微生物および毒素等の存在も殆ど認められない状態に維持されているのであり、しかも、包装用溶液14のpHも理想的な範囲に保たれ得る。それ故、ユーザーは、コンタクトレンズパッケージ10を開封して取り出したコンタクトレンズ12を、別途準備した洗浄剤等で洗浄する必要がなく、そのまま安全に且つ優れた装用感をもって眼に装着することが可能とされるのである。
 以上、本発明の好適な実施態様を具体的に例示しつつ、本発明について詳述してきたが、これはあくまでも例示であって、本発明は、上述の具体的な記載によって、何等、限定的に解釈されるものではない。
 例えば、上述の実施形態においては、製造ラインへの包装用溶液14の供給用に製造タンク16と貯蔵タンク18の二つのタンクが併用されていたが、貯蔵タンク18及び製造ラインに適切に包装用溶液14を供給し得る態様であれば、単一のタンクを用いて製造タンク及び貯蔵タンクの機能を発揮させることも可能である。
 また、各タンクの容量やコンタクトレンズパッケージの単位時間当たりの生産能力等に応じて、製造タンク16や貯蔵タンク18を複数採用することも可能である。例えば、製造タンク16や貯蔵タンク18の容量自体を調節設定することに代えて、製造タンク16や貯蔵タンク18を複数準備して、その使用数を適当に調節設定することで、コンタクトレンズパッケージの単位時間当たりの生産能力の変更に対応することも可能である。
 その他、一々列挙はしないが、本発明は、当業者の知識に基づいて種々なる変更、修正、改良等を加えた態様において実施され得るものであり、また、そのような実施態様が、本発明の趣旨を逸脱しない限り、何れも、本発明の範囲内に含まれるものであることは、言うまでもない。
 以下に、本発明に従うコンタクトレンズパッケージの製造方法に関して、その技術的意義を一層明確にするために実験を行った結果を示す。
 始めに、本発明において採用され得るキレート剤の殺菌効果を検証するために、上述の如き組成からなる包装用溶液14を用いた微生物の培養実験を行った。
 本実験に使用した試験試料の溶液組成は、以下の表1に示すとおりである。即ち、本実施形態に従う包装用溶液14の実施例としての実施例1,2には、等張化剤としての塩化ナトリウムが0.8重量%と、キレート剤としてのEDTA(エチレンジアミン四酢酸三ナトリウム・2水和物)が0.03~0.05重量%と、緩衝剤としてのリン酸(リン酸水素二ナトリウム・12水和物が0.6重量%とリン酸二水素ナトリウム・2水和物が0.04重量%)とが含まれている。また、かかる包装用溶液14の比較例としては、塩化ナトリウムのみを含む生理食塩水と、塩化ナトリウムとキレート剤のみを含む溶液と、塩化ナトリウムと緩衝剤のみを含む溶液を用意した。
Figure JPOXMLDOC01-appb-T000001
 一方、本実験で培養を実施した菌株は以下のとおりである。即ち、標準菌株として、E.coli(Escherichia coli IFO03972) 、Ps.aeruginosa(Pseudomonasu aeruginosa IFO13275) 、S.aureus(Staphylococcus aureus NBRC13276) 、C.albicans(Candida albicans IFO1594)の4種と、コンタクトレンズパッケージ10の製造現場で採取したバイオバーデン菌として、AS51-01(Staphylococcu pisciermentans) 、AS51-02(Pseudomonas pyrrocinia) 、AS51-03(Ralstonia picketii) の3種、合計7種である。なお、バイオバーデン菌は、バイオログシステム(GSIクレオス株式会社製)により同定した。
 次に、これらの菌の培養に用いた培地は、以下の2種類である。先ず、ソイビーン・カゼイン・ダイジェスト寒天培地(以下、SCDAと称する)は、精製水に1Lに対し、ソイビーン・カゼイン・ダイジェスト寒天培地(日本製薬製、Cat.NO.399-00981)を40gの割合で加えて加温融解した後、121℃で20分間高圧蒸気滅菌して用いた。また、サブロー・ブドウ糖カンテン培地(以下、SDAと称する)は、精製水1Lに対し、サブロー・ブドウ糖カンテン培地(日本製薬製、Cat.No.392-01831)のを65gの割合で加えて加温融解した後、121℃で20分間高圧蒸気滅菌して用いた。
 また、実験用の試薬として、0.05w/v%ポリソルベート80含有ペプトン食塩緩衝液(以下、0.05%BSCPSTと称する)を用意した。具体的には、精製水1Lに対して、ペプトン食塩緩衝粉末(日本製薬製、Cat.No.392-01711) を13.5gと、ポリオキシエチレン(20)ソルビタンモノオレート(ポリソルベート80)(和光純薬工業、Cat.No.163.21775) 0.5gとを加えて加温融解した後、121℃で20分間高圧蒸気滅菌して用いた。
 そして、上述の3種のバイオバーデン菌の前培養の詳細は、以下のとおりである。先ず、3種のバイオバーデン菌を、何れもSCDA培地を用いて、30~35℃で18~24時間培養した。次に、培地上に発育した菌を0.05%BSCPSTに懸濁した後、これを3000rpmで5分間遠心して集菌した。そして、菌懸濁液の上清を除去し、再び0.05%BSCPSTに懸濁した。この操作を3回繰り返して実施した後、吸光度の異なる菌液を各3種類調製した。これら各濃度の菌液の生菌数を、10倍希釈による生菌数測定により測定した。そして、測定菌数とOD660nm における吸光度の測定値から吸光度曲線を作成し、この吸光度曲線に従って、菌数が10~10cfu/mLの菌液を調製した。
 次に、上述の4種の標準菌株の前培養の詳細は、以下のとおりである。先ず、E.coli、Ps.aeruginosa 、S.aureusの3種の菌を、SCDA培地を用いて30~35℃で18~24時間培養した。また、C.albicansをSDA培地を用いて30~35℃で18~24時間培養した。次に、各培地上に発育した菌を0.05%BSCPSTに懸濁した後、これを3000rpmで5分間遠心して集菌した。そして、菌懸濁液の上清を除去し、再び0.05%BSCPSTに懸濁し、この操作を3回繰り返して実施した。その後、菌懸濁液を0.05%BSCPSTで希釈して、OD660nm の吸光度により生菌数10~10cfu/mLの菌液を調製した。
 更に、これらの菌液を何れも希釈して、10~10cfu/mLの菌液を得た。また、作製した各菌液は、使用時まで氷中に保存し、その日のうちに使用した。
 これらの準備が完了した後、調製した菌液を用いて本試験を行った。先ず、試験試料として比較例1~3及び実施例1,2の溶液を、滅菌済みのコニカルチューブに10mLずつ各菌種ごとに3本分注した。次に、これらの溶液中に調製済みの菌濁液を100μL接種した。攪拌後、プログラム低温恒温器内で20~25℃に保温して、1日、3日、8日後に、各試料を1mLとり、混釈培地法により菌数を計測した。より具体的には、採取した1mLの菌液を、50~60℃に溶解加温したSCDA又はSDA培地に混釈して平板培地を作製し、これを30~35℃で3日間以上培養して、形成されたコロニーの数を計数した。なお、混釈に使用した培地は、前培養等と同じく、C.albicansにはSDA培地を、それ以外の菌種にはSCDA培地を用いている。また、混釈培地は、各1枚ずつ作製した。
 また、接種菌量測定用として、10mLの0.05%BSCPSTに菌懸濁液を100μL接種した直後に、攪拌した溶液1mLを採取して、上述の操作と同じくSCDA又はSDA培地に混釈して、各試験試料ごとに3枚の平板培地を作製した。これらを30℃~35℃にて3日間以上培養した後、コロニーを計数して、3枚の平板培地の平均値から初期の接種菌量を求めた。その計数結果を次の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 次に、菌を接種してから、1 日、3日、8日後において培養液1mLを採取し、混釈培地を作製して残存生菌数を確認した結果を、表3に示す。なお、試料中の残存生菌数は整数で表記した。また、生菌数は、1 ~300cfu/プレートの範囲のプレートをカウントし、300cfu/プレート以上の場合は、TNTC(Too
Numerous to Count )として表記した。但し、増菌抑制効果を評価するにあたり、>300cfu/mLであっても菌数がカウント可能であれば数値を併記した。
Figure JPOXMLDOC01-appb-T000003
 表3の結果において、EDTAが添加された実施例1,2及び比較例2と、EDTAが添加されていない比較例1,3とを比較すると、EDTAが添加された実施例1,2及び比較例2においては、特に、E.coli、Ps.aeruginosa 、AS51-02 、AS51-03 に対する明らかな増殖抑制効果が確認できる。例えば、E.coliの結果に着目すると、EDTAを含まない比較例1及び比較例3では1日後、3日後、8日後全てにおいて、コロニー数が計数不能な程に増殖していたが、EDTAを添加した実施例1,2及び比較例2では、菌数は100~350cfu/mL程度にしか増殖していない。また、S.aureusの結果を見ると、比較例1,3では8日後においても、それぞれ27及び4cfu/mLの生菌が確認されたが、EDTAが添加された実施例1,2及び比較例2では、生菌が消失している。
 また、キレート剤としてのEDTAのみを添加した比較例2と、EDTAに加えて、緩衝剤としてのリン酸を併せて添加した実施例1及び2とを比較してみると、何れも充分な抗菌効果が発揮されていることから、実施例1,2において緩衝剤を添加したことによって、EDTAが有する抗菌作用への悪影響は特に生じていないことが分かる。
 次に、キレート剤としてのEDTAの有効な濃度範囲を確認するために、包装用溶液14におけるEDTAの濃度を様々に変えて、抗菌作用を調べる実験を行った。
 本実験に使用した試験試料の溶液組成は、以下の表4に示すとおりである。即ち、本実施形態に従う包装用溶液14の実施例としての実施例3~7には、等張化剤としての塩化ナトリウムが0.8重量%と、キレート剤としてのEDTA(エチレンジアミン四酢酸三ナトリウム・2水和物)が0.001~0.05重量%と、緩衝剤としてのリン酸(リン酸水素二ナトリウム・12水和物が0.6重量%とリン酸二水素ナトリウム・2水和物が0.04重量%)とが含まれている。また、かかる包装用溶液14の比較例としては、塩化ナトリウムのみを含む生理食塩水を用意した。
Figure JPOXMLDOC01-appb-T000004
 次に、上述の実験と同様の条件で、0.05%BSCPST試薬とSCDA培地を用意した。また、本試験に使用する菌株は、上記の試験で用いたものと同種のものを用い、E.coli、Ps.aeruginosa 、AS51-02 、AS51-03 の4種を使用した。そして、これら4種の菌株を上述の試験と同じ条件で前培養して生菌数10~10cfu/mLの菌液に調製し、これを希釈して10~10cfu/mLの菌液を用意した。
 その後、表4に示した各試験試料を、滅菌済みのコニカルチューブに各50mL分注した。これに、調製済みの菌液をそれぞれ500μL接種した。攪拌後、プログラム低温恒温器内で20~25℃に保温して、1日、3日、8日後に、0.05%BSCPSTを用いて、100倍希釈液を最大とする10倍希釈系列にて混釈培地を作製し、生菌数を測定した。即ち、希釈液1mLを、50~60℃に溶解加温したSCDA又はSDA培地に混釈して平板培地を作製し、これを30~35℃で3日間以上培養して、形成されたコロニーの数を計数した。また、混釈平板培地は各3枚ずつ作製した。
 また、接種菌量測定用として、10mLの0.05%BSCPSTに菌懸濁液を100μL接種した直後に、攪拌した溶液1mLを採取して、上述の操作と同じくSCDA培地に混釈して、各試験試料ごとに3枚の平板培地を作製した。これらを30℃~35℃にて3日間以上培養した後、コロニーを計数して、3枚の平板培地の平均値から初期の接種菌量を求めた。
 一方、菌を接種してから1 日、3日、8日の培養後において残存生菌数を確認した結果を、表5に示す。なお、試料中の残存生菌数は整数で表記した。また、生菌数は、30~300cfu/プレートの範囲のプレートをカウントし、300cfu/プレート以上の場合は、TNTC(Too Numerous to Count )として表記した。
Figure JPOXMLDOC01-appb-T000005
 上記表5の結果からも明らかなように、EDTAを加えていない比較例4においては、何れの菌においても速やかに増菌が起こり、菌接種3日後には、今回の菌数測定限界値とした30000cfu/mL以上の菌数となった。これに対し、実施例3~7では、殆どの条件で菌の増殖は計数可能な範囲に抑えられている。特に、バイオバーデン菌のAS51-03 においては、何れのEDTA濃度においても、菌の増殖を略完全に抑制し得ている。また、今回の実験結果から、包装用溶液14に含まれるキレート剤としてのEDTAの量は、0.001~0.05重量%という低濃度であっても、菌の増殖を有効に抑え得ることが分かる。
 よって、これらの各種の菌の培養実験の結果によれば、本発明に従うキレート剤を含む包装用溶液14は、標準菌株及びバイオバーデン菌の何れに対しても、菌の繁殖を抑制する効果を示している。即ち、本発明に従う包装用溶液14をコンタクトレンズパッケージ10の製造に使用することにより、貯蔵タンク18等における雑菌の増殖を有効に抑え得ることがわかる。
 次に、包装用溶液14に添加する緩衝剤の技術的意義を確認するために行った実験の結果を示す。
 即ち、本実験では、包装用溶液14の実施例として、緩衝剤としてリン酸、ホウ酸、クエン酸等を含む溶液を用意すると共に、これらの比較例として緩衝剤を含まない溶液を用意した。なお、各溶液の組成は以下の表6~9に示すとおりである。また、各溶液について、EDTAの濃度を0~0.05重量%に変化させたものをそれぞれ用意した。そして、これらの各溶液を、ポリプロピレン製のコンタクトレンズパッケージ10に封入し、121℃、20分間の高圧蒸気滅菌を実施して、高圧蒸気滅菌前と高圧蒸気滅菌後のpHの変化を測定した。各溶液の組成の詳細と、pHの測定結果は次の表6~9に示すとおりである。
 先ず、以下の表6に、緩衝剤を含まない比較例5~7の結果を示す。比較例5~7の初期のpHは7.1~7.7であったが、高圧蒸気滅菌後には何れもpHが6.4~6.9程度に低下している。即ち、比較例5~7には緩衝剤が添加されておらず、0.01~0.05重量%のエチレンジアミン四酢酸三ナトリウム・2水和物(EDTA・3Na・2H2O)のみが含まれているが、このような溶液では、何れも高圧蒸気滅菌の影響によりpHが大きく変化してしまうことがわかる。
Figure JPOXMLDOC01-appb-T000006
 次に、緩衝剤として、リン酸を添加した場合の結果を表7に示す。具体的には、実施例8~10には、緩衝剤としてのリン酸(リン酸水素二ナトリウム・12水和物が0.6重量%とリン酸二水素ナトリウム・2水和物が0.04重量%)が添加されている。これら実施例8~10においては、高圧蒸気滅菌後においても、初期のpH7.7付近の値から殆ど変化しておらず、pHの低下が何れも有効に抑えられていることがわかる。
Figure JPOXMLDOC01-appb-T000007
 次に、緩衝剤として、ホウ酸を添加した場合の結果を表8に示す。具体的には、表8に示す実施例11~13には、ホウ酸が0.31重量%と、ホウ砂が0.019重量%の割合で添加されている。これら実施例11~13でも、pHの値は高圧蒸気滅菌の後もpH7.4付近から殆ど変化しておらず、pHの低下が何れも有効に抑えられていることがわかる。
Figure JPOXMLDOC01-appb-T000008
 更に、緩衝剤として、クエン酸とリン酸とを組み合わせて添加した場合の結果を表9に示す。具体的には、表9に示す実施例14~16には、クエン酸が0.12重量%と、リン酸水素二ナトリウム・12水和物が3.13重量%の割合で添加されている。これらの実施例14~16でも、pHの値は高圧蒸気滅菌の後もpH7.3付近から殆ど変化しておらず、pHの低下が何れも有効に抑えられている。
Figure JPOXMLDOC01-appb-T000009
 よって、これら表6~9に示す実験から、本発明に従う包装用溶液14においては、キレート剤と組み合わせて緩衝剤が含まれていることによって、高圧蒸気滅菌によるpHの低下が有効に抑えられることがわかる。

Claims (11)

  1.  ソフトコンタクトレンズを包装用溶液に浸漬させた状態でコンタクトレンズパッケージに密封した後、該コンタクトレンズパッケージを高圧蒸気滅菌するコンタクトレンズパッケージの製造方法であって、前記包装用溶液を予め調製して、該包装用溶液を貯留タンクに貯留させておき、必要とする所定量ずつ該貯留タンクから取り出して前記コンタクトレンズパッケージに注入すると共に、該包装用溶液としてキレート剤および緩衝剤を含有する溶液を採用することを特徴とするコンタクトレンズパッケージの製造方法。
  2.  前記貯留タンクの非滅菌状態での滞留時間を24時間以上として、前記コンタクトレンズパッケージを製造する請求項1に記載のコンタクトレンズパッケージの製造方法。
  3.  前記包装用溶液が殺菌剤を含まない請求項1又は2に記載のコンタクトレンズパッケージの製造方法。
  4.  前記キレート剤としてEDTAとその塩の少なくとも一方を採用する請求項1乃至3の何れか1項に記載のコンタクトレンズパッケージの製造方法。
  5.  前記キレート剤の配合比率を、0.05重量%以下とする請求項4に記載のコンタクトレンズパッケージの製造方法。
  6.  前記緩衝剤としてリン酸、ホウ酸、クエン酸及びそれらの塩から選択される1種類以上を採用する請求項1乃至5の何れか1項に記載のコンタクトレンズパッケージの製造方法。
  7.  前記包装用溶液が等張化剤を含む請求項1乃至6の何れか1項に記載のコンタクトレンズパッケージの製造方法。
  8.  前記等張化剤が塩化ナトリウムである請求項7に記載のコンタクトレンズパッケージの製造方法。
  9.  前記貯留タンクの容量が100L以上である請求項1乃至8の何れか1項に記載のコンタクトレンズパッケージの製造方法。
  10.  前記ソフトコンタクトレンズがシリコンハイドロゲルである請求項1乃至9の何れか1項に記載のコンタクトレンズパッケージの製造方法。
  11.  前記包装用溶液の浸透圧が200~400mOsmの範囲内に調整されている請求項1乃至10の何れか1項に記載のコンタクトレンズパッケージの製造方法。
PCT/JP2009/001009 2009-03-05 2009-03-05 コンタクトレンズパッケージの製造方法 WO2010100676A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001009 WO2010100676A1 (ja) 2009-03-05 2009-03-05 コンタクトレンズパッケージの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/001009 WO2010100676A1 (ja) 2009-03-05 2009-03-05 コンタクトレンズパッケージの製造方法

Publications (1)

Publication Number Publication Date
WO2010100676A1 true WO2010100676A1 (ja) 2010-09-10

Family

ID=42709256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/001009 WO2010100676A1 (ja) 2009-03-05 2009-03-05 コンタクトレンズパッケージの製造方法

Country Status (1)

Country Link
WO (1) WO2010100676A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209714A (ja) * 1982-06-01 1983-12-06 Hoya Corp ソフトコンタクトレンズ用保存剤
JPH03249727A (ja) * 1990-02-28 1991-11-07 Hoya Corp コンタクトレンズ用水溶液
JPH0872808A (ja) * 1994-06-10 1996-03-19 Johnson & Johnson Vision Prod Inc 包装装置
JP2007512554A (ja) * 2003-11-05 2007-05-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド レンズがそれらの包装材料に張り付くのを抑制する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58209714A (ja) * 1982-06-01 1983-12-06 Hoya Corp ソフトコンタクトレンズ用保存剤
JPH03249727A (ja) * 1990-02-28 1991-11-07 Hoya Corp コンタクトレンズ用水溶液
JPH0872808A (ja) * 1994-06-10 1996-03-19 Johnson & Johnson Vision Prod Inc 包装装置
JP2007512554A (ja) * 2003-11-05 2007-05-17 ジョンソン・アンド・ジョンソン・ビジョン・ケア・インコーポレイテッド レンズがそれらの包装材料に張り付くのを抑制する方法

Similar Documents

Publication Publication Date Title
MX2013010646A (es) Soluciones estabilizadas de acido hipohaloso.
EP0055515B1 (en) Lens sterilising solutions and their use
EP1416975B1 (en) Disinfecting and cleansing system for contact lenses
EP1976570B1 (en) Methods and systems for contact lens sterilization
JP5848758B2 (ja) 過酸化物コンタクトレンズケア液
JP5095308B2 (ja) 殺菌剤組成物
JP2017511185A (ja) コンタクトレンズの消毒システム
WO2010100676A1 (ja) コンタクトレンズパッケージの製造方法
JP4963055B2 (ja) 殺菌剤組成物
TW201127423A (en) Ophthalmic solutions with improved disinfection profiles
JP2013213017A (ja) 過酢酸含有殺菌組成物
CN107372597A (zh) 一种过氧化氢消毒剂及其制备方法
EP2616105B1 (en) Contact lens care system with peroxide
JP4130378B2 (ja) 医療機器用殺菌洗浄剤
JP2001264707A (ja) コンタクトレンズ用消毒保存用溶液
JP6106516B2 (ja) アカントアメーバ角膜炎の予防剤及び治療剤
KR20150123080A (ko) 저온 살균력이 강화되고 식품 및 양조 공장에 특화된 과산화산을 함유한 무헹굼 항균 조성물 및 그 제조 방법
JP6471292B2 (ja) 眼科用液剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841043

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP