WO2010100614A2 - Dispositif passif pour séparer et refroidir un flux d'air - Google Patents

Dispositif passif pour séparer et refroidir un flux d'air Download PDF

Info

Publication number
WO2010100614A2
WO2010100614A2 PCT/IB2010/050921 IB2010050921W WO2010100614A2 WO 2010100614 A2 WO2010100614 A2 WO 2010100614A2 IB 2010050921 W IB2010050921 W IB 2010050921W WO 2010100614 A2 WO2010100614 A2 WO 2010100614A2
Authority
WO
WIPO (PCT)
Prior art keywords
output pipe
air output
insert
separation chamber
pipe
Prior art date
Application number
PCT/IB2010/050921
Other languages
English (en)
Other versions
WO2010100614A3 (fr
Inventor
Antonio Lanti
Original Assignee
Idea Manent S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ITBS2009A000036A external-priority patent/IT1394495B1/it
Priority claimed from ITBS2009A000058A external-priority patent/IT1393497B1/it
Application filed by Idea Manent S.R.L. filed Critical Idea Manent S.R.L.
Publication of WO2010100614A2 publication Critical patent/WO2010100614A2/fr
Publication of WO2010100614A3 publication Critical patent/WO2010100614A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/02Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect
    • F25B9/04Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point using Joule-Thompson effect; using vortex effect using vortex effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention concerns a passive device for separating and cooling an air stream in a cold air stream and/or a hot air stream.
  • active devices meaning devices that use energy to operate on the inflowing air stream (generally at room temperature) , and obtain a higher- temperature air stream (hot air) and/or a lower- temperature air stream.
  • the object of the present invention is to manufacture a passive device for separating an inflowing air stream into a cold air stream and/or a hot air stream, with considerable thermal gradient.
  • This object is achieved by a device made in agreement with the claim 1.
  • the characteristics and the advantages of the device according to the present invention will be clearer from the description provided below by way of example only, in agreement with the attached illustrations, wherein: [0010] - the figure 1 represents an axonometric view of the devices in accordance with the present invention;
  • FIG. 1 shows an axonometric partially section view of the device in the figure 1;
  • FIG. 1 shows a further axonometric partially section view of the device in the figure 1;
  • FIG. 1 shows a further axonometric partially section view of the device in the figure 1;
  • FIG. 5 shows an axonometric separate-part view of the device in the figure 1.
  • the device 1 comprises an input pipe 6 for the inflow of an air stream under pressure. [0017] The device 1 further comprises an output pipe for cold air 8, for the output of a stream of cold air, meaning air at a temperature below that of the inflowing air stream. [0018] Furthermore, the device 1 comprises an intermediate hot air output pipe 2, for the output of a stream of intermediate hot air, and a final hot air output pipe 4, for the output of a stream of final hot air. [0019] Furthermore, the device 1 has, internally, a first separation chamber 10, into which leads the input pipe 6 and from which branches the intermediate hot air output pipe 2 and a further passage 12.
  • the separation chamber 10 has a lateral wall 10a shaped like a spiral, e.g., with axial direction coinciding with the direction of output of the intermediate hot air 2.
  • the pattern of the lateral wall 10a is such that the direction of the inflowing air, meaning the direction of the axis of the input pipe 6, is tangent to the initial section of the wall; said wall, proceeding in the direction of air input, evolves like a spiral to again connect with the input pipe 6.
  • the air input pipe 6 is coplanar to the intermediate chamber 10, i.e., with the curve defining the spiral wall 10a.
  • the intermediate hot air output pipe 2 is perpendicular with the intermediate chamber 10 and perpendicular with the air input pipe 6.
  • the lateral wall 10a extends in an axial direction in a convergent way towards the passage opening 12.
  • the intermediate hot air output pipe 2 is aligned with the passage 12.
  • the internal surface of the wall 10a, lapped during normal operation by the stream of air, is polished, e.g., like a mirror.
  • an intermediate hot air stream is channelled which has a temperature above that of the inflowing air stream, while in the passage 12, an intermediate cold air stream is channelled, which has a temperature below that of the inflowing air stream.
  • the device 1 also has, internally, a final separation chamber 14, into which leads the passage 12 and from which branch the final hot air output pipe 4 and the cold air output pipe 8.
  • the final hot air output pipe 4 and the cold air output pipe 8 are aligned; the passage 12 is perpendicular to these.
  • the device 1 has an accommodating compartment and comprises a rotating insert 16.
  • the rotating insert has an extension prevalently along an insert axis Z and comprises a head 18 and a tail 20.
  • the head and the tail are hollow inside, thus defining an insert pipe 22 in communication with the cold air output pipe 8.
  • the insert 16 is positioned so as to be aligned with the insert axis Z with the cold air output pipe 8 and with the final hot air output pipe 4.
  • the head 18 is accommodated in the accommodating compartment, so the room remaining in the compartment defines the final separation chamber 14.
  • the head 18 of the insert 16 has a head surface 30 substantially perpendicular to the insert axis Z .
  • a plurality of slits 32 angled with respect to the tangential direction, in agreement with one another, so as to produce a turbine effect .
  • the head 30 comprises a plurality of paddles 34 arranged in circumferential succession, protruding axially from the head surface 30, separated the one from the other circumferentially by said slits 32.
  • the head 30 On the surface of the head 30 also opens, preferably in central position, the insert pipe 22 which, on the other hand, emerges towards the cold air output pipe 8. [0038] The head 18 of the insert 16 is stopped up against the wall surrounding the opening of the final hot air output pipe 4.
  • a cold air stream is channelled with a temperature below that of the intermediate air stream, while in the final hot air stream, a hot air stream is channelled with a temperature higher than that of the intermediate air stream.
  • the device 1 comprises : [0042] - a cover body 100, made up of a plate from which protrudes the intermediate hot air outlet pipe 2;
  • the above components are made of plastic material, e.g., by means of moulding or injection moulding.
  • the cover body 100 is coupled with the first body 200 on the side of the first separation chamber 10, so as to delimit this.
  • the head 18 of the insert 16 is housed in the housing compartment of the first body 200.
  • the second body 300 is coupled with the first body 200, on the side of the housing compartment, so the tail
  • the separation and refrigeration device described above allows obtaining a considerable temperature gradient between the inflowing stream of air and the outflowing stream of cold air.
  • the structure of the device is particularly compact and therefore easy to use even in systems of reduced dimensions.
  • the device can be economically made, being made up of simple- geometry pieces, assembled together.
  • the device is of reduced dimensions and makes up, when assembled, a transportable whole.
  • a fuel cell is an electro-chemical device which allows obtaining electricity directly from certain substances, typically hydrogen and oxygen, without a heat combustion process occurring. The difference in potential stems from the flow of electrons produced during the chemical reaction.
  • the device cools the cell down to maintain a high level of efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

L'invention porte sur un dispositif passif pour séparer et refroidir (1), comprenant un tuyau d'entrée d'air (6), une première chambre de séparation (10), un tuyau de sortie d'air chaud intermédiaire (2), un passage (12), une chambre de séparation finale (14), un tuyau de sortie d'air chaud final (4), un tuyau de sortie d'air froid (8) et un insert (16) rotatif sous l'action du flux d'air fourni à la chambre de séparation finale (14). Des flux d'air sont canalisés à différentes températures vers le tuyau de sortie d'air froid (8) et vers le tuyau de sortie d'air chaud final (4).
PCT/IB2010/050921 2009-03-04 2010-03-03 Dispositif passif pour séparer et refroidir un flux d'air WO2010100614A2 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ITBS2009A000036 2009-03-04
ITBS2009A000036A IT1394495B1 (it) 2009-03-04 2009-03-04 Dispositivo passivo di separazione e refrigerazione di un flusso di aria
ITBS2009A000058 2009-03-24
ITBS2009A000058A IT1393497B1 (it) 2009-03-24 2009-03-24 Cella a combustibile con dispositivo di refrigerazione

Publications (2)

Publication Number Publication Date
WO2010100614A2 true WO2010100614A2 (fr) 2010-09-10
WO2010100614A3 WO2010100614A3 (fr) 2010-11-25

Family

ID=42308321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/050921 WO2010100614A2 (fr) 2009-03-04 2010-03-03 Dispositif passif pour séparer et refroidir un flux d'air

Country Status (1)

Country Link
WO (1) WO2010100614A2 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042089C1 (ru) 1993-07-30 1995-08-20 Николай Ефимович Курносов Вихревая труба
US6250086B1 (en) 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
ITMI20061472A1 (it) 2006-07-26 2008-01-27 Antonio Lanti Dispositivo meccanico statico per la separazione dei fluidi a due o piu'uscite a temperatura differenziata e a basso consumo energetico

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3361336A (en) * 1964-06-23 1968-01-02 Joseph V. Foa Method of energy separation and apparatus for carrying out the same
US4051689A (en) * 1976-06-08 1977-10-04 Macdonald Ronald A Air separating apparatus
SU826159A1 (ru) * 1979-08-06 1981-04-30 Od T I Kholodilnoj Promyshlenn Многоступенчатая вихревая холодильная установка 1
SU1076712A1 (ru) * 1982-11-15 1984-02-29 Куйбышевский ордена Трудового Красного Знамени политехнический институт им.В.В.Куйбышева Вихревой холодильник
JP2007280794A (ja) * 2006-04-07 2007-10-25 Toyota Motor Corp 燃料電池システム
JP2008226676A (ja) * 2007-03-14 2008-09-25 Toyota Industries Corp 燃料電池システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2042089C1 (ru) 1993-07-30 1995-08-20 Николай Ефимович Курносов Вихревая труба
US6250086B1 (en) 2000-03-03 2001-06-26 Vortex Aircon, Inc. High efficiency refrigeration system
ITMI20061472A1 (it) 2006-07-26 2008-01-27 Antonio Lanti Dispositivo meccanico statico per la separazione dei fluidi a due o piu'uscite a temperatura differenziata e a basso consumo energetico

Also Published As

Publication number Publication date
WO2010100614A3 (fr) 2010-11-25

Similar Documents

Publication Publication Date Title
US7662220B2 (en) Drain separator
CN100497955C (zh) 泵以及液体供给系统
WO2010022032A3 (fr) Dispositif et système de chauffage du liquide de lave-vitre
US7919877B2 (en) Faucet generator
US8517663B2 (en) Method and apparatus for gas turbine engine temperature management
US7338543B2 (en) Gas mixing apparatus
RU2552658C2 (ru) Устройство нагрева торцевой крышки компрессора
US20110169225A1 (en) Mechanical seal assembly with integrated heat transfer unit
US9647510B2 (en) Cooling jacket and deflection unit for cooling jackets
CN109415970A (zh) 涡轮机壳体、排气涡轮机以及增压器
JP5521394B2 (ja) 一体型冷却材ポンピング・モジュール
EP3470647B1 (fr) Carter de turbine, turbine d'échappement et turbocompresseur
US6702547B2 (en) Gas turbine
WO2010100614A2 (fr) Dispositif passif pour séparer et refroidir un flux d'air
US8814508B2 (en) Heat exchanger for centrifugal compressor gas sealing
JP5502087B2 (ja) ガスタービンのためにタービンガイドベーンサポートおよびガスタービンを作動するための方法
RU2548966C1 (ru) Теплообменное устройство, в частности для отопителя транспортного средства
CN102292553A (zh) 泵机组
JP7162122B2 (ja) ターボ機械
WO2024084768A1 (fr) Turbine de détente
CN218971873U (zh) 水阀总成及燃气热水器
US20230193923A1 (en) Centrifugal Pump Assembly
KR102421037B1 (ko) 이온필터 어셈블리
US11515748B2 (en) Cooled housing
CN217518918U (zh) 空气压缩装置和氢能系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712518

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10712518

Country of ref document: EP

Kind code of ref document: A2