WO2010098528A1 - 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법 - Google Patents

생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법 Download PDF

Info

Publication number
WO2010098528A1
WO2010098528A1 PCT/KR2009/005968 KR2009005968W WO2010098528A1 WO 2010098528 A1 WO2010098528 A1 WO 2010098528A1 KR 2009005968 W KR2009005968 W KR 2009005968W WO 2010098528 A1 WO2010098528 A1 WO 2010098528A1
Authority
WO
WIPO (PCT)
Prior art keywords
biomaterial
sensor
cantilever
sensing
afm
Prior art date
Application number
PCT/KR2009/005968
Other languages
English (en)
French (fr)
Inventor
한승헌
Original Assignee
두산메카텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산메카텍 주식회사 filed Critical 두산메카텍 주식회사
Publication of WO2010098528A1 publication Critical patent/WO2010098528A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes
    • G01Q60/38Probes, their manufacture, or their related instrumentation, e.g. holders
    • G01Q60/42Functionalisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • G01N21/553Attenuated total reflection and using surface plasmons

Definitions

  • the present invention relates to a biosensor, and more particularly, to a biosensor device capable of real-time detection of minute physical changes in a biological material.
  • a biosensor is composed of a bio-sensing material and a signal converter to selectively detect a material to be analyzed. Say the device.
  • an enzyme an antibody, an antigen, a lectin, a hormone-receptor complex (Hormonereceptor), etc., which selectively react with or bind to a specific material may be used.
  • an enzyme an antibody, an antigen, a lectin, a hormone-receptor complex (Hormonereceptor), etc., which selectively react with or bind to a specific material may be used.
  • various physical and chemical methods such as electrochemical, fluorescence, color development, surface plasma resonance (SPR), field-effect transistor (FET), quartz crystal microbalance (QCM), and thermal sensor are used.
  • SPR surface plasma resonance
  • FET field-effect transistor
  • QCM quartz crystal microbalance
  • the SPR sensor using optical senses the mechanical response and change of the biomaterial to be measured by using the electron density vibration generated along the interface between the dielectric material and the metal.
  • the electron density vibration generates the surface plasmon resonance wavelength
  • the surface plasmon resonance wavelength is shifted by the composition change generated on the surface of the biomaterial bonded to the metal, and generally the degree of reaction generated on the surface of the biomaterial As is increased, the movement of the surface plasmon wave increases.
  • the signal sensed by the SPR sensor as described above is an image of the optical signal reflected from the surface of the sensor sensing film and the surface of the sensor sensing film, and is not a signal for a physical change occurring on the surface of the sensor sensing film. Therefore, the SPR sensor is only capable of analyzing before and after the reaction of the biological material, and has a disadvantage in that real-time measurement of the moment of reaction is difficult.
  • the biosensor including the SPR sensor can acquire information about the presence or absence of the biomaterial to be detected and the degree of reaction, but there is a big problem that a minute physical change of the biomaterial occurring on the actual sensor detection film cannot be obtained. .
  • the present invention has been made to solve the above-described problems, and to provide a biosensor device and a sensing method capable of accurately observing a biological material by real-time detection during the reaction and deformation of the biological material.
  • a biosensor device capable of real-time detection of a physical change of a biomaterial, including: a sensor sensing film having a property of reacting with a biomaterial to be measured; An SPR sensor for detecting a change in the biomaterial applied on the sensor detection layer by using a surface plasmon resonance phenomenon; AFM (Atomic Force Microscope) for scanning the surface of the biomaterial applied on the sensor sensing film to scan the mechanical response to the biomaterial in real time; And a controller configured to receive a signal sensed by the SPR sensor and a signal scanned from the AFM, respectively, and detect a reaction state and the presence or absence of the biomaterial from the moment when the biomaterial reacts to completion.
  • AFM Anatomic Force Microscope
  • the sensor sensing layer may be made of metal.
  • the SPR sensor may include a light source for irradiating light of a specific wavelength to the sensor detection film, and a light receiving unit for receiving light reflected from the sensor detection film by the surface plasmon resonance phenomenon.
  • the light receiving unit refers to a light receiving element including any one of a photodiode, an optical spectrum analyzer, an optical amplifier, a photosensitive paper, and an image sensor such as a CCD or a CMOS.
  • the AFM is provided with a sharp tip at the tip cantilever probes the surface of the biological material;
  • a three-dimensional scanner which scans the cantilever while moving to a measurement position along an X-Y-Z axis direction;
  • a sensing unit measuring an actual position of the three-dimensional scanner;
  • a photodetector measuring the reflected light of the laser beam incident on the cantilever to detect the degree of warpage of the cantilever.
  • the controller is characterized in that the addition of a function for correcting the measurement position based on the actual position of the three-dimensional scanner measured by the sensing unit.
  • the SPR sensor and the AFM may be driven simultaneously.
  • the AFM can be detected in the air or in solution.
  • the sensing method capable of real-time detection of the physical change of the biological material for achieving the above object, in the method for sensing the biological material, (A) can react with the biological material Applying the biomaterial on a sensor sensing film having a property of being; (B) sensing the biomaterial applied on the sensor detection film using a surface plasmon resonance phenomenon; (C) scanning the surface of the biomaterial through an AFM (Atomic Force Microscope) while scanning in step (B) to scan in real time the mechanical response to the biomaterial; And (D) processing the signals sensed in the steps (B) and (C) and displaying them on the screen.
  • AFM Atomic Force Microscope
  • the step (A) is to apply the biological material over the entire surface of the sensor sensing film, or to apply only to a specific area of the sensor sensing film after labeling the fine amount on the cantilever of the AFM. Can be.
  • the step (C) may include: (C-1) moving the cantilever of the AFM to a measurement position of the biological material; (C-2) probe the surface of the biological material using the cantilever; And (C-3) detecting the probe signal to calculate the displacement of the cantilever, and imaging the surface shape of the biological material according to the calculated displacement of the cantilever.
  • the biological material can be accurately observed, thereby securing the reliability of the biosensor.
  • the probe can be applied to a very small amount of the material on the sensing film and only the fine area of the coated layer can be sensed, there is an effect of detecting a response to the small amount of material.
  • FIG. 1 is a conceptual diagram of a biosensor device according to an embodiment of the present invention.
  • FIG. 2 is a detailed block diagram illustrating a biosensor device according to an exemplary embodiment of the present invention.
  • FIG. 3 is a waveform diagram showing a result signal output from the SPR of the biosensor device according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method of sensing using a biosensor device according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a biosensor device according to an embodiment of the present invention
  • Figure 2 is a detailed configuration diagram showing a biosensor device according to an embodiment of the present invention
  • Figure 3 is a biosensor device according to an embodiment of the present invention The result signal output from SPR and AFM is shown.
  • a biosensor device may include a sensor sensing film 100 coated with a biomaterial (or a biomaterial) as a measurement target material, and a living body at upper and lower portions of the sensor sensing film 100.
  • a sensor sensing film 100 coated with a biomaterial (or a biomaterial) as a measurement target material, and a living body at upper and lower portions of the sensor sensing film 100.
  • Surface Plasmon Resonance hereinafter referred to as 'SPR sensor'
  • AFM Atomic Force Microscope: 300
  • controller (400 of FIG. 2) and the OSD (500 of FIG. 2) may be additionally implemented.
  • the SPR sensor 200 is a device for detecting the presence or absence of a reaction of a biological material using surface plasmon resonance
  • the AFM 300 is a device for detecting a physical change state in which a reaction of a biological material occurs.
  • the biosensor device detects a biological material by mounting an AFM 300 for real-time detection in addition to the SPR sensor 200 on one side of the sensor detection film 100, and at the same time, the sensor detection film 100 It is possible to observe in real time the physical change of the biological material occurring on the). As a result, the reliability of the biosensor can be mutually complemented.
  • the sensor sensing film 100 is coated with a biomaterial, which is a target material to be measured, on the upper surface thereof, and reacts with the biomaterial. It may be provided with a specific material having a property.
  • the sensor detection film 100 is provided with a metal such as gold, silver, copper, and aluminum.
  • the biosensor may mainly use gold which does not change the properties of the metal even in a solution state.
  • the sensor sensing layer 100 may have various shapes such as a planar shape, a pore shape, a channel shape, and a wire shape.
  • the SPR sensor 200 basically includes a prism 210 provided below the sensor sensing layer 100, a light source 220 for irradiating light of a specific wavelength, and a prism 210 in the light source 220. It is configured to include a light receiving unit 230 for receiving the light transmitted through the.
  • the polarizer 240 and the lens 250 may be provided as necessary. In this case, the polarizer 240 and the lens 250 are for condensing the light emitted from the light source 220 and the prism 210, and may be selectively added or deleted.
  • the light receiving unit 230 is a light receiving element including any one of a photodiode, an optical spectrum analyzer, an optical amplifier, a photosensitive paper, and an image sensor such as a CCD or a CMOS.
  • the SPR sensor 200 configured as described above, light emitted from the light source 220 is irradiated to the prism 210 through the polarizer 240, and a part of the light irradiated to the prism 210 is the bottom of the prism 210.
  • the light is transmitted through the surface, and the other part is reflected to reach the light receiving unit 230 opposite to the light source 220.
  • the incident angle of the light incident on the flat lower surface of the prism 210 exceeds a certain threshold angle, the light passing through the bottom surface is no longer reflected and all the light is reflected.
  • the SPR sensor 200 shows a method using the prism 210 as an example, but the present invention is not limited thereto, and the presence or absence of reaction and the degree of reaction of the biological material, such as a method using an optical waveguide or a channel type structure, are described. If it can be detected, it can be applied in various ways.
  • the AFM 300 may include a laser 310, a cantilever 320, a 3D scanner 330, a light detector 340, and a sensing unit 350.
  • the cantilever 320 is positioned above the biomaterial on the sensor sensing layer 100, and has a sharp tip at the tip thereof to observe the surface shape of the biomaterial by using the tip to probe the surface of the biomaterial.
  • the 3D scanner 330 scans the biomaterial at the position to be measured by moving the cantilever 320 in the X-Y axis direction and at the same time by displacing the cantilever 320.
  • the 3D scanner 330 may include a piezo actuator for driving by using a piezo element.
  • the laser 310 generates a laser beam required to detect the degree of warpage of the cantilever 320, and the photo detector 340 detects the reflected light of the laser beam generated by the laser 310 and incident on the cantilever 320. .
  • the sensing unit 350 detects an error between the measurement position and the actual position to be measured by sensing the actual coordinate value of the measurement position probed by the cantilever 320, and the actual coordinate value where the 3D scanner 330 is located. Provide accurate location information by detecting
  • the sensing unit 350 for this purpose includes an X-axis position sensor for detecting the actual position of the 3D scanner 330 with respect to at least the X axis, and a Y-axis position for detecting the actual position of the 3D scanner 330 with respect to the Y axis. It may include a sensor, and may further include a Z-axis position sensor for detecting the actual position of the three-dimensional scanner 330 about the Z-axis.
  • the AFM 300 when the AFM 300 according to the present embodiment approaches the cantilever 320 with the biomaterial to be measured during the probe, the AFM 300 pulls between the pointed end of the cantilever 320 and the surface of the biomaterial. The repulsive interatomic force is generated. The cantilever 320 is bent downward or upward by this force, and the degree of warpage of the cantilever 320 can be detected by the laser beam generated from the laser 310. Through detection, the thickness of the biomaterial according to the degree of warpage of the cantilever 320 may be calculated to acquire the surface shape of the biomaterial in three dimensions.
  • the AFM 300 may image the surface of the biomaterial on the sensor sensing layer 310 by real-time scanning. As a result, a phenomenon about a physical reaction of the biological material occurring on the sensor sensing layer 310 may be detected in real time.
  • the controller 400 illustrated in FIG. 2 receives and processes the signal SS1 detected through the SPR sensor 200, and simultaneously receives the signal SS2 detected through the AFM 300. Process.
  • the controller 400 for this purpose is embedded with integrated software for processing the signals SS1 and SS2 detected through the AFM 300 as well as the SPR sensor 200.
  • the signal SS1 sensed by the SPR sensor 200 is a resonance wavelength output from the light receiving unit 230 of FIG. 2 of the SPR sensor 200 of FIG. 2, as shown in FIG. 2, 400) detects the presence or absence of the biological material and the degree of reaction by analyzing information on the movement range ( ⁇ ) of the resonance wavelength and the movement time.
  • the signal SS2 sensed by the AFM 300 is an optical signal according to the degree of warpage of the cantilever 320
  • the controller 400 receives the signal detected by the photodetector 340 and receives the cantilever 320.
  • the degree of warp, i.e., the displacement of the cantilever 320 is detected, and the thickness of the biomaterial is calculated according to the detected displacement to detect the surface shape of the biomaterial.
  • the signals detected by the controller 400 may be imaged through the OSD 500.
  • the controller 400 senses a displacement amount value of the cantilever 320 detected from the AFM 300 in order to correct an error caused by the warpage of the cantilever 320 due to internal shock or nonlinearity of piezoelectric driving.
  • a function of correcting based on the actual position value measured by 350 may be performed.
  • the controller 400 may be provided as a system for integrally controlling the SPR sensor 200 and the AFM 300 as described above, but if necessary, the SPR sensor 200 and the AFM 300 may be provided. Each may be provided as an independent system for processing each function. The same may apply to the OSD 500.
  • the biosensor device due to the above configuration, can detect the reaction and change of the biological material through the SPR sensor 200, and furthermore, through the AFM 300 for real-time observation
  • the physical change of the biological material that is actually occurring can be detected from the time of the reaction of the material to the time of completion.
  • the biosensor device may detect an image of a specific portion of the fine sensor sensing film 100 using the cantilever 320 of the AFM 300.
  • a physical reaction occurs only on the specific portion of the applied SPR sensor. It can be detected by sensing through 200).
  • FIG. 4 is a flowchart illustrating a method of sensing using a biosensor device according to an embodiment of the present invention.
  • the biosensor device includes an SPR sensor implemented as a light source unit and a light receiving unit under the sensor detection layer.
  • the upper part of the sensor sensing film has a system configuration in which a cantilever, an AFM implemented as a 3D scanner, and a photodetector are mounted.
  • a biomaterial which is a measurement target material, is first coated on a sensor sensing film for measurement (S100).
  • the biomaterial may be applied over the entire surface of the sensor sensing layer, or may be applied in a minute amount only to a specific region of the sensor sensing layer using a cantilever of the AFM.
  • the process is performed by using the AFM provided on the sensor sensing layer (S200), and sensing by using the SPR sensor provided below the sensor sensing layer (S300).
  • Each process (S200, S300) may be performed simultaneously, and may be repeated from before the reaction of the biomaterial applied on the sensor sensing layer to the completion of the reaction.
  • the cantilever is moved to a measurement position to which a biological material is applied using a 3D scanner (S210).
  • the three-dimensional scanner is a device that can be adjusted in both X-Y-Z directions and can be used to bring the cantilever to the measurement reference point on the sensor sensing film.
  • the cantilever may be moved after sensing the actual position of the 3D scanner separately, performing a correction process of detecting the corrected position by the controller, and correcting the measured position based on the actual position.
  • the probe has an amplitude of more than several tens of nm to several tens of um in the X-axis direction and a frequency of several Hz to several tens of kHz, and a scan rate corresponding to the number of frames of the real-time image to be detected in the Y-axis direction. Is done by driving. At this time, the cantilever probes the surface of the biomaterial while moving in the Z-axis direction according to the change on the sensor sensing film. These probes can also be detected in the air or in solution.
  • the optical detector detects the optical signal detected by the probe (S230).
  • the detected optical signal is transmitted to the controller to calculate the displacement of the cantilever, and the surface shape of the biological material is imaged according to the displacement of the cantilever (S240).
  • Such an image may be a real-time image image according to physical reactions and changes of the biological material, and may detect a mechanical image from the initial reaction of the biological material until the reaction is completed (S250).
  • the light receiving unit detects this.
  • a spectrum (hereinafter, referred to as a resonance wavelength) in which surface plasmon resonance is generated at the light receiving unit is detected and transmitted to the controller to detect the presence or absence of the measurement target material and the degree of reaction (S320 and S330).
  • the SPR sensing method using the prism has been described in the present disclosure, the SPR sensing method using the optical waveguide and the channel structure is not limited thereto.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

본 발명은 생체 물질이 반응 및 변형하는 동안 실시간 검출이 가능하여 생체 물질을 정확하게 관찰할 수 있는 바이오 센서 장치 및 센싱 방법에 관한 것이다. 이러한 본 발명은 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 이용한 SPR 센서를 통해 생체 물질의 유무 및 반응 정도를 감지함은 물론, 여기에 실시간 관찰용 AFM(Atomic Force Microscope)을 이용하여 생체 물질의 표면을 탐침함으로써 생체 물질의 반응이 이루어지는 시간부터 완료되는 시간까지 실제 일어나고 있는 생체 물질의 물리적 변화를 실시간으로 감지할 수 있는 구조 및 방법을 제공한다.

Description

생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법
본 발명은 바이오 센서에 관한 것으로, 특히 생체 물질의 미세한 물리적 변화에 대하여 실시간 검출이 가능한 바이오 센서 장치에 관한 것이다.
최근, 주위를 보면 ‘바이오’라는 말이 첨단 기술에서 양말에 이르기까지 너무 흔하게 쓰임을 알 수 있는데, 통상 바이오 센서는 생체 감지 물질과 신호 변환기로 구성되어 분석하고자 하는 물질을 선택적으로 감지할 수 있도록 한 장치를 말한다.
이때, 생체 감지 물질로는 특정 물질과 선택적으로 반응하거나 결합할 수 있는 효소나, 항체, 항원, 렉틴, 호르몬-감수체 복합체(Hormonereceptor) 등이 사용된다.
신호 변환기로는 전기화학(Electrochemical), 형광, 발색, SPR(Surface Plasmon Resonance), FET(Field-Effect Transistor), QCM(Quartz Crystal Microbalance), 열 센서 등과 같이 다양한 물리ㆍ화학적 방법이 이용된다.
이 중 광학을 이용한 SPR 센서는 생체 물질인 유전체와 금속 사이의 계면을 따라 발생되는 전자 밀도 진동을 이용하여, 측정하고자 하는 생체 물질의 역학적 반응 및 변화 등을 감지한다.
여기서, 전자 밀도 진동은 표면 플라즈몬 공명 파장을 발생하게 되고, 표면 플라즈몬 공명 파장은 금속과 접합된 생체 물질의 표면에서 생성되는 조성 변화에 의해 이동하게 되는데, 일반적으로 생체 물질의 표면에서 생성되는 반응 정도가 증가할수록 표면 플라즈몬파의 이동이 증가한다.
그런데, 이와 같이 SPR 센서를 통해 감지한 신호는 센서 감지막 표면으로부터 반사되어 나온 광 신호와 센서 감지막의 표면을 영상화한 신호로, 센서 감지막의 표면에서 발생하는 물리적 변화에 대한 신호라 할 수 없다. 따라서, SPR 센서는 생체 물질의 반응 전, 후에 대한 분석만 가능할 뿐, 반응하는 순간에 대한 실시간 측정이 어려운 단점이 있다.
다시 말해, SPR 센서를 포함한 바이오 센서는 감지 대상인 생체 물질의 유무 및 반응 정도 등에 대한 정보를 취득할 수 있으나, 실제 센서 감지막 상에서 일어나고 있는 생체 물질의 미세한 물리적 변화는 취득할 수 없는 큰 문제점이 있다.
따라서, 종래에는 상기한 문제점을 해결하기 위하여, 소정 센서를 통해 생체 물질에 관한 정보를 얻은 다음, 생체 물질의 반응 후 표면 분석 장비로 센서 감지막 상의 실제 물리적 변화를 이미지로 분석하는 방법이 도입되었다.
그러나, 이러한 방법 또한 생체 물질의 반응 전, 후에 대한 생체 물질의 분석만 가능할 뿐, 실제로 물질이 반응하는 순간의 미세한 물리적 변화에 대한 정보는 얻을 수 없으며, 감지 대상 물질의 변성 및 변형이 올 수 있어 실제 생체 물질의 형상이라고 할 수 없는 문제점이 있다.
본 발명은 상술한 바와 같은 문제점을 해결하기 위해 안출된 것으로서, 생체 물질이 반응 및 변형하는 동안 실시간 검출이 가능하여 생체 물질을 정확하게 관찰할 수 있는 바이오 센서 장치 및 센싱 방법을 제공하고자 한다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치는, 측정하고자 하는 생체 물질과 반응하는 성질을 갖는 센서 감지막; 상기 센서 감지막 상에 도포된 생체 물질의 변화를 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 이용하여 감지하는 SPR 센서; 상기 센서 감지막 상에 도포된 생체 물질의 표면을 탐침하여 상기 생체 물질에 대한 역학적 반응을 실시간으로 스캔하는 AFM(Atomic Force Microscope); 및 상기 SPR 센서로부터 감지한 신호와 상기 AFM로부터 스캔한 신호를 각각 인가받아, 상기 생체 물질이 반응하는 순간부터 완료되기까지의 반응 상태 및 상기 생체 물질의 유무를 실시간 검출하는 콘트롤러를 포함한다.
본 발명의 일례에 따르면, 상기 센서 감지막은 금속(metal)으로 구성될 수 있다.
본 발명의 일례에 따르면, 상기 SPR 센서는, 상기 센서 감지막에 특정 파장의 빛을 조사하는 광원과, 상기 표면 플라즈몬 공명 현상에 의해 상기 센서 감지막으로부터 반사되는 빛을 수광하는 수광부를 포함할 수 있다.
이때, 상기 수광부는 포토다이오드, 광 스펙트럼 분석기, 광 증폭기, 감광용지, CCD나 CMOS와 같은 이미지센서 중 어느 하나를 포함하는 수광소자를 의미한다.
한편, 본 발명의 일례에 따르면, 상기 AFM은, 선단에 날카로운 팁이 구비되어 상기 생체 물질의 표면을 탐침하는 캔틸레버; 상기 캔틸레버를 X-Y-Z축 방향을 따라 측정 위치로 이동시키며 주사하는 3차원 스캐너; 상기 3차원 스캐너가 이동한 실제 위치를 측정하는 센싱 유닛; 및 상기 캔틸레버에 입사한 레이저광선의 반사광을 측정하여 상기 캔틸레버의 휨 정도를 검출하는 광검출기를 포함할 수 있다.
이러한 구성에 의하면, 상기 콘트롤러는 상기 센싱 유닛을 통해 측정한 상기 3차원 스캐너의 실제 위치에 근거하여 상기 측정 위치를 보정하는 기능이 부가되는 것을 특징으로 한다.
본 발명의 일례에 따르면, 상기 SPR 센서와 상기 AFM은 동시에 구동 가능한 것을 특징으로 한다.
또한, 상기 AFM은 대기 또는 용액 상에서도 검출이 가능한 것을 특징으로 한다.
한편, 상술한 바와 같은 목적을 달성하기 위한 본 발명에 따른 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 센싱 방법은, 생체 물질을 센싱하기 위한 방법에 있어서, (A) 상기 생체 물질과 반응할 수 있는 성질을 갖는 센서 감지막 상에 상기 생체 물질을 도포하는 단계; (B) 상기 센서 감지막 상에 도포된 생체 물질을 표면 플라즈몬 공명 현상을 이용하여 센싱하는 단계; (C) 상기 (B)단계에서 센싱하는 동안, AFM(Atomic Force Microscope)를 통해 상기 생체 물질의 표면을 탐침하여 상기 생체 물질에 대한 역학적 반응을 실시간으로 스캔하는 단계; 및 (D) 상기 (B)단계 및 상기 (C)단계에서 센싱한 신호를 처리하여 화면에 표시하는 단계를 포함한다.
여기서, 본 발명의 일례에 따르면, 상기 (A)단계는 상기 생체 물질을 상기 센서 감지막의 전면에 걸쳐 도포하거나, 또는 상기 AFM의 캔틸레버에 미세량을 표지한 후 상기 센서 감지막의 특정 영역에만 도포할 수 있다.
본 발명의 일례에 따르면, 상기 (C)단계는, (C-1)상기 AFM의 캔틸레버를 상기 생체 물질의 측정 위치로 이동시키는 단계; (C-2)상기 캔틸레버를 이용하여 상기 생체 물질의 표면을 탐침하는 단계; 및 (C-3)상기 탐침한 신호를 검출하여 상기 캔틸레버의 변위량을 산출하고, 상기 산출된 캔틸레버의 변위량에 따라 상기 생체 물질의 표면 형상을 이미지화하는 단계를 포함할 수 있다.
상기한 본 발명에 따르면, 생체 물질의 반응 및 변화에 대한 실시간 이미지 검출이 가능하므로 생체 물질에 대하여 정확하게 관찰할 수 있고, 이로써 바이오 센서의 신뢰성을 확보할 수 있는 효과가 있다.
더욱이, 나노 단위의 미세한 바이오 물질의 반응 및 변화 순간에 대한 역학적 정보를 검출할 수 있으므로, 의약학 분야의 생체 물질 검출 영역에 새로운 영상 정보를 제공할 수 있다.
또한, 탐침을 이용하여 감지막 상에 극소량의 물질을 도포하고 도포한 미세 영역만 센싱할 수 있으므로 미세량의 물질에 대한 반응을 검출할 수 있는 효과가 있다.
도 1은 본 발명의 실시예에 따른 바이오 센서 장치의 개념도이다.
도 2는 본 발명의 실시예에 따른 바이오 센서 장치를 나타낸 세부 구성도이다.
도 3은 본 발명의 실시예에 따른 바이오 센서 장치의 SPR로부터 출력되는 결과 신호를 나타낸 파형도이다.
도 4는 본 발명의 실시예에 따른 바이오 센서 장치를 이용하여 센싱하는 방법을 설명하기 위한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예에 따른 바이오 센서 장치에 대해 구체적으로 설명한다.
도 1은 본 발명의 실시예에 따른 바이오 센서 장치의 개념도이고, 도 2는 본 발명의 실시예에 따른 바이오 센서 장치를 나타낸 세부 구성도이며, 도 3은 본 발명의 실시예에 따른 바이오 센서 장치의 SPR 및 AFM으로부터 출력되는 결과 신호를 나타낸 도면이다.
먼저 도 1을 참조하면, 본 발명의 실시예에 따른 바이오 센서 장치는 측정 대상 물질로서 생체 물질(또는 바이오 물질)이 도포되는 센서 감지막(100)과, 센서 감지막(100)의 상하부에서 생체 물질의 유무 및 반응을 검출하는 표면 플라즈몬 공명 센서(Surface Plasmon Resonance: 이하, 'SPR 센서'라 칭함)(200), 및 실시간 관찰용 AFM(Atomic Force Microscope: 300)을 포함하여 구현된다.
여기에, 콘트롤러(도 2의 400) 및 OSD(도 2의 500)를 추가로 포함하여 구현될 수 있다.
SPR 센서(200)는 표면 플라즈몬 공명 현상을 이용하여 생체 물질의 반응 유무를 검출하는 장치이고, AFM(300)는 생체 물질의 반응이 일어나는 물리적 변화 상태를 실시간으로 검출하는 장치이다.
이처럼, 본 발명의 실시예에 따른 바이오 센서 장치는 센서 감지막(100)의 일측에 SPR 센서(200) 외 실시간 검출용 AFM(300)를 장착함으로써 생체 물질을 감지함와 동시에, 센서 감지막(100) 상에서 일어나는 생체 물질의 물리적 변화 현상을 실시간으로 관찰할 수 있다. 이로써, 바이오 센서에 대한 신뢰성을 상호 보완할 수 있다.
이러한 바이오 센서 장치의 구성요소를 도 1 및 도 2를 참조하여 구체적으로 설명하면, 센서 감지막(100)은 그 상면에 측정하고자 하는 대상 물질인 생체 물질이 도포되며, 이 생체 물질과 반응할 수 있는 성질을 갖는 특정 물질로 구비될 수 있다.
일반적으로, 센서 감지막(100)은 금, 은, 구리, 알류미늄과 같은 금속(metal)으로 구비되며, 특히 바이오 센서용으로는 용액 상태에서도 금속의 성질이 변하지 않는 금을 주로 사용하기도 한다.
또한, 센서 감지막(100)은 그 형상 구조가 평면 형태, 포어(pore) 형태, 채널 형태, 와이어 형태 등 다양하게 형성될 수 있다.
SPR 센서(200)는 기본적으로, 센서 감지막(100)의 하부에 구비되는 프리즘(210)과, 특정 파장의 빛을 조사하는 광원(Light source: 220), 광원(220)에서 프리즘(210)을 투과하여 나온 빛을 수광하는 수광부(230)를 포함하여 구성된다. 여기에, 필요에 따라 편광기(240) 및 렌즈(250) 등이 구비될 수 있다. 이 경우, 편광기(240) 및 렌즈(250)는 광원(220) 및 프리즘(210)으로부터 나온 빛을 집광하기 위한 것으로, 선택적으로 부가 내지는 삭제할 수 있다.
수광부(230)는 포토다이오드, 광 스펙트럼 분석기, 광 증폭기, 감광용지, CCD나 CMOS와 같은 이미지센서 중 어느 하나를 포함하는 수광소자이다.
이와 같이 구성되는 SPR 센서(200)는 광원(220)으로부터 조사되는 빛이 편광기(240)를 통해 프리즘(210)으로 조사되고, 프리즘(210)에 조사된 빛의 일부는 프리즘(210)의 바닥면을 지나 투과하게 되며, 나머지 일부는 반사되어 광원(220)의 반대편에 위치한 수광부(230)에 도달한다. 이때, 프리즘(210)의 편평한 하면을 기준으로 하여 입사하는 빛의 입사각이 특정한 임계각을 넘으면, 더 이상 바닥면으로 투과하는 빛은 없어지고 모든 빛이 반사하게 된다. 이와 같이 반사되는 빛을 수광부(230)에서 수광함으로써 생체 물질의 유무 및 반응 정도를 감지할 수 있다.
본 실시예에서, SPR 센서(200)는 일 예로 프리즘(210)을 이용한 방법을 도시하였으나, 이에 한정되지 않고 광도파로를 이용한 방법, 또는 채널형 구조를 이용한 방법 등 생체 물질의 유무 및 반응 정도를 감지할 수 있는 방법이라면 다양하게 적용 가능하다.
한편, AFM(300)은 레이저(310), 캔틸레버(320), 3차원 스캐너(330), 광 검출기(340), 및 센싱 유닛(350)을 포함하여 구성될 수 있다.
캔틸레버(320)는 센서 감지막(100) 상의 생체 물질과 이격된 상부에 위치되며, 선단에 날카로운 팁이 구비되어 이 팁으로 생체 물질의 표면을 탐침함으로써 생체 물질의 표면 형상을 관찰한다.
3차원 스캐너(330)는 캔틸레버(320)를 X-Y축 방향으로 이동시킴과 동시에 Z축 방향으로 변위시킴으로써 측정하고자 하는 위치의 생체 물질을 스캔(sacn)하도록 한다. 이러한 3차원 스캐너(330)는 피에조(piezo) 소자를 이용하여 구동시키는 피에조 액츄에이터가 포함될 수 있다.
레이저(310)는 캔틸레버(320)의 휨 정도를 검출하기 위해 필요한 레이저광선을 발생시키며, 광 검출기(340)는 레이저(310)에서 발생하여 캔틸레버(320)로 입사한 레이저광선의 반사광을 검출한다.
센싱 유닛(350)은 캔틸레버(320)로 탐침하는 측정 위치의 실 좌표값을 센싱하여 측정하고자 하는 측정 위치와 실제 위치간 오차 여부를 검출하기 위한 것으로, 3차원 스캐너(330)가 위치한 실 좌표값을 감지하여 정확한 위치 정보를 제공한다.
이를 위한 센싱 유닛(350)은 적어도 X축에 대하여 3차원 스캐너(330)의 실제 위치를 감지하는 X축 위치 센서와, Y축에 대하여 3차원 스캐너(330)의 실제 위치를 감지하는 Y축 위치 센서를 포함하며, 추가로 Z축에 대하여 3차원 스캐너(330)의 실제 위치를 감지하는 Z축 위치 센서를 포함할 수 있다.
상기한 구성으로, 본 실시예에 따른 AFM(300)은 탐침시 캔틸레버(320)를 측정하고자 하는 생체 물질로 근접시키면, 캔틸레버(320)의 뽀족한 끝부분과 생체 물질의 표면 사이에 끌어당기거나 밀어내는 원자간 힘이 발생한다. 이러한 힘에 의해 캔틸레버(320)가 아래 또는 위로 휘어지게 되는데, 이러한 캔틸레버(320)의 휨 정도를 레이저(310)로부터 발생되는 레이저광선에 의해 감지할 수 있다. 감지를 통해, 캔틸레버(320)의 휨 정도에 따른 생체 물질의 두께를 산출하여 생체 물질의 표면 형상을 3차원으로 취득할 수 있다.
따라서, 본 실시예에 따른 AFM(300)은 센서 감지막(310) 상의 생체 물질에 대한 표면을 실시간 스캔하여 이미지화할 수 있다. 이에 의해, 센서 감지막(310) 상에서 일어나는 생체 물질의 물리적 반응에 대한 현상을 실시간으로 검출할 수 있다.
한편, 도 2에 도시한 콘트롤러(400)는 상기한 SPR 센서(200)를 통해 감지한 신호(SS1)를 인가받아 처리하며, 이와 동시에 AFM(300)을 통해 감지한 신호(SS2)를 인가받아 처리한다. 이를 위한 콘트롤러(400)는 SPR 센서(200)뿐만 아니라 AFM(300)을 통해 감지한 신호들(SS1, SS2)을 처리하기 위한 통합 소프트웨어가 내장된다.
상기에서, SPR 센서(200)를 통해 감지한 신호(SS1)는 도 3에 도시된 바와 같이 SPR 센서(도 2의 200)의 수광부(도 2의 230)로부터 출력되는 공명 파장으로, 콘트롤러(도 2의 400)는 공명 파장의 이동 범위(Δλ)와 이동 시간 등에 대한 정보를 분석하여 생체 물질의 유무 및 반응 정도를 검출한다.
또한, AFM(300)을 통해 감지한 신호(SS2)는 캔틸레버(320)의 휨 정도에 따른 광 신호로, 콘트롤러(400)는 광 검출기(340)를 통해 검출된 신호를 인가받아 캔틸레버(320)의 휨 정도 즉, 캔틸레버(320)의 변위량을 검출하고, 검출된 변위량에 따른 생체 물질의 두께를 산출하여 생체 물질의 표면 형상을 검출한다. 이렇게 콘트롤러(400)를 통해 검출된 각 신호들은 OSD(500)를 통해 이미지화할 수 있다.
추가로, 콘트롤러(400)는 내부적인 충격이나 피에조 구동의 비선형 등에 의한 캔틸레버(320)의 휨으로 발생하는 오류를 보정하기 위해, AFM(300)으로부터 검출된 캔틸레버(320)의 변위량 값을 센싱 유닛(350)에 의해 측정된 실제 위치값에 근거하여 보정하는 기능을 수행할 수 있다.
본 실시예에서, 콘트롤러(400)는 앞서 설명한 바와 같이 SPR 센서(200)와 AFM(300)를 통합 제어하는 하나의 시스템으로 구비될 수 있으나, 필요에 따라 SPR 센서(200) 및 AFM(300)에 각각 구비되어 각각의 기능을 처리하는 독립적인 시스템으로 구비될 수 있다. OSD(500)도 마찬가지일 수 있다.
따라서, 상기한 구성으로 인한 본 발명의 실시예에 따른 바이오 센서 장치는, SPR 센서(200)를 통해 생체 물질의 반응 및 변화에 대하여 감지할 수 있으며, 더욱이 실시간 관찰용 AFM(300)을 통해 생체 물질의 반응이 이루어지는 시간부터 완료되는 시간까지 실제 일어나고 있는 생체 물질의 물리적 변화를 감지할 수 있다.
한편, 본 발명의 실시예에 따른 바이오 센서 장치는 AFM(300)의 캔틸레버(320)를 이용하여 미세한 센서 감지막(100)의 특정 부분에 대한 이미지를 검출할 수 있다.
예를 들면, AFM(300)의 캔틸레버(320)에 생체 물질을 표지한 후 센서 감지막(100)의 특정 부분에 도포하면 도포한 특정 부분에만 물리적 반응이 일어나게 되는데, 이러한 특정 부분을 SPR 센서(200)을 통해 센싱하여 검출할 수 있다.
이는 단백질 칩(protein chip)에서와 같이, 특정 단백질과 반응하는 항체, 수용기, 핵산, 탄수화물 등의 물질 상에 고밀도로 고정화된 여러 종류의 특정 단백질에 대하여 반응을 검출할 때 적용이 가능하다. 즉, 감지하고자 하는 대상 물질을 캔틸레버의 끝에 고정한 후, 단백질 칩에 고밀도로 고정된 단백질에 캔틸레버를 이동하여 대상 물질을 도포함으로써 감지 대상 물질의 상호 작용에 대한 정보를 SPR 센서를 이용하여 얻어낼 수 있다. 따라서, 미세량의 물질에 대한 반응을 검출할 수 있다.
이하, 첨부된 도면 도 4를 참조하여 본 발명의 실시예에 따른 센싱 방법에 대해 구체적으로 설명한다.
참고로, 도 4는 본 발명의 실시예에 따른 바이오 센서 장치를 이용하여 센싱하는 방법을 설명하기 위한 흐름도로, 바이오 센서 장치는 센서 감지막의 하부에 광원부와 수광부로 구현되는 SPR 센서가 장착되고, 센서 감지막의 상부에는 캔틸레버와 3차원 스캐너 및 광검출기로 구현되는 AFM이 장착되어 구현되는 시스템 구성을 갖는다.
이러한 시스템에서, 측정을 위해 먼저 센서 감지막 상에 측정 대상 물질인 생체 물질을 도포한다(S100).
이때, 생체 물질은 센서 감지막 상의 전면에 걸쳐 도포할 수 있으며, 또는 AFM의 캔틸레버를 이용하여 센서 감지막의 특정 영역에만 미세량으로 도포할 수 있다.
이후, 센서 감지막 상에 구비된 AFM를 이용하여 센싱하는 과정(S200)과, 센서 감지막 하부에 구비된 SPR 센서를 이용하여 센싱하는 과정(S300)으로 수행된다.
각 과정(S200, S300)은 동시 수행이 가능하며, 센서 감지막 상에 도포된 생체 물질이 반응하기 전서부터 반응이 완료되기까지 반복 수행할 수 있다.
구체적으로, AFM를 이용하여 센싱하는 과정(S200)은 다음과 같다.
먼저, 3차원 스캐너를 이용하여 캔틸레버를 생체 물질이 도포된 측정 위치로 이동시킨다(S210).
3차원 스캐너는 X-Y-Z 방향으로 모두 조절 가능한 장치이며, 이를 이용하여 캔틸레버를 센서 감지막 위의 측정 기준점까지 근접시킬 수 있다.
캔틸레버의 이동 동작시, AFM의 내부적인 충격이나 피에조 구동에 의한 비선형 등에 의해 캔틸레버의 휨 현상이 발생되고, 이로 인해 측정 위치와 실제 위치가 실제로 달라지는 오류가 발생될 수 있다. 따라서, 별도로 3차원 스캐너의 실제 위치를 센싱하고, 콘트롤러에서 이를 검출하여 측정 위치를 실제 위치에 근거하여 보정하는 보정 과정을 수행한 후, 캔틸레버를 이동시킬 수 있다.
이후, 이동한 캔틸레버를 이용하여 생체 물질의 표면을 탐침한다(S220).
탐침은 X축 방향으로 수십 nm ~ 수십 um정도 이상의 진폭과 수 Hz ~ 수십 kHz 이상의 진동수를 가지고 이루어지며, Y축 방향으로는 검출하고자 하는 실시간 이미지의 프레임(frame) 수에 해당하는 스캔 속도(rate)로 구동하면서 이루어진다. 이때, 캔틸레버가 센서 감지막 상의 변화에 따라 Z축 방향으로 이동하면서 생체 물질의 표면을 탐침하게 된다. 이러한 탐침은 대기 또는 용액 상에서도 검출이 가능하다.
이후, 광 검출기에서 탐침에 의해 검출된 광 신호를 검출한다(S230).
이후, 검출된 광 신호를 콘트롤러에 전송하여 캔틸레버의 변위량을 산출하고, 이 캔틸레버의 변위량에 따라 생체 물질의 표면 형상을 이미지화한다(S240).
이러한 이미지는 생체 물질의 물리적 반응 및 변화에 따른 실시간 영상 이미지로 생체 물질이 최초 반응시부터 반응이 완료되기까지의 역학적 이미지를 검출할 수 있다(S250).
한편, SPR 센서를 이용하여 센싱하는 과정(S300)은 다음과 같다.
프리즘 구조를 이용한 경우, 광원으로부터 조사되는 빛을 편광기를 거쳐 프리즘의 바닥면으로 입사시키면, 프리즘에 입사된 빛의 일부는 프리즘의 바닥면을 지나 투과하게 되고, 나머지 일부는 반사되어 광원의 반대편에 위치한 수광부에 도달한다(S310). 이때, 프리즘의 바닥면 법선을 기준으로 하는 빛의 입사각이 특정한 임계각을 넘으면 더 이상 바닥면으로 투과하는 빛은 없어지고, 모든 빛이 반사하게 되므로 수광부에서 이를 감지한다.
그러면, 수광부에서 표면 플라즈몬 공명이 발생한 스펙트럼(이하, 공명 파장)을 검출하고 이를 콘트롤러에 전송하여 측정 대상 물질의 유무 및 반응 정도를 검출한다(S320, S330).
참고로, 본 설명에는 프리즘을 이용한 SPR 센싱 방법에 대하여 설명하였으나, 이에 한정되지 않고 광도파로, 채널 구조를 이용한 SPR 센싱 방법을 적용할 수 있을 것이다.
이후, AFM 및 SPR센서를 통해 검출한 이미지 및 스펙트럼을 화면에 표시함으로써 양 신호간 비교 분석을 통해 센서 감지막 상에서 실제 일어나고 있는 생체 물질의 물리적 변화에 대한 정확한 정보를 얻을 수 있다(S400).
이상, 본 발명의 특정 실시예에 대하여 상술하였지만, 본 발명의 사상 및 범위는 이러한 특정 실시예에 한정되는 것이 아니라, 본 발명의 요지를 변경하지 않는 범위 내에서 다양하게 수정 및 변형이 가능하다는 것을 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 이해할 것이다.
따라서, 이상에서 기술한 실시예들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이므로, 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 하며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.

Claims (12)

  1. 측정하고자 하는 생체 물질과 반응하는 성질을 갖는 센서 감지막;
    상기 센서 감지막 상에 도포된 생체 물질의 변화를 표면 플라즈몬 공명(Surface Plasmon Resonance) 현상을 이용하여 감지하는 SPR 센서;
    상기 센서 감지막 상에 도포된 생체 물질의 표면을 탐침하여 상기 생체 물질에 대한 역학적 반응을 실시간으로 스캔하는 AFM(Atomic Force Microscope); 및
    상기 SPR 센서로부터 감지한 신호와 상기 AFM로부터 스캔한 신호를 각각 인가받아, 상기 생체 물질이 반응하는 순간부터 완료되기까지의 반응 상태 및 상기 생체 물질의 유무를 실시간 검출하는 콘트롤러
    를 포함하는 바이오 센서 장치.
  2. 제1항에 있어서,
    상기 센서 감지막은 금속(metal)으로 구성되는 것을 특징으로 하는 바이오 센서 장치.
  3. 제1항에 있어서,
    상기 SPR 센서는,
    상기 센서 감지막에 특정 파장의 빛을 조사하는 광원과,
    상기 표면 플라즈몬 공명 현상에 의해 상기 센서 감지막으로부터 반사되는 빛을 수광하는 수광부
    를 포함하는 것을 특징으로 하는 바이오 센서 장치.
  4. 제3항에 있어서,
    상기 수광부는 포토다이오드, 광 스펙트럼 분석기, 광 증폭기, 감광용지, CCD나 CMOS와 같은 이미지센서 중 어느 하나를 포함하는 수광소자인 것을 특징으로 하는 바이오 센서 장치.
  5. 제1항에 있어서,
    상기 AFM은,
    선단에 날카로운 팁이 구비되어 상기 생체 물질의 표면을 탐침하는 캔틸레버;
    상기 캔틸레버를 X-Y-Z축 방향을 따라 측정 위치로 이동시키며 주사하는 3차원 스캐너;
    상기 3차원 스캐너가 이동한 실제 위치를 측정하는 센싱 유닛; 및
    상기 캔틸레버에 입사한 레이저광선의 반사광을 측정하여 상기 캔틸레버의 휨 정도를 검출하는 광검출기
    를 포함하는 것을 특징으로 하는 바이오 센서 장치.
  6. 제5항에 있어서,
    상기 콘트롤러는,
    상기 센싱 유닛을 통해 측정한 상기 3차원 스캐너의 실제 위치에 근거하여 상기 측정 위치를 보정하는 기능이 부가되는 것을 특징으로 하는 바이오 센서 장치.
  7. 제1항에 있어서,
    상기 SPR 센서와 상기 AFM은 동시에 구동 가능한 것을 특징으로 하는 바이오 센서 장치.
  8. 제1항에 있어서,
    상기 AFM은 대기 또는 용액 상에서도 검출이 가능한 것을 특징으로 하는 바이오 센서 장치.
  9. 생체 물질을 센싱하기 위한 방법에 있어서,
    (A) 상기 생체 물질과 반응할 수 있는 성질을 갖는 센서 감지막 상에 상기 생체 물질을 도포하는 단계;
    (B) 상기 센서 감지막 상에 도포된 생체 물질을 표면 플라즈몬 공명 현상을 이용하여 센싱하는 단계;
    (C) 상기 (B)단계에서 센싱하는 동안, AFM(Atomic Force Microscope)를 통해 상기 생체 물질의 표면을 탐침하여 상기 생체 물질에 대한 역학적 반응을 실시간으로 스캔하는 단계; 및
    (D) 상기 (B)단계 및 상기 (C)단계에서 센싱한 신호를 처리하여 화면에 표시하는 단계
    를 포함하여 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 센싱 방법.
  10. 제9항에 있어서,
    상기 (A)단계는,
    상기 생체 물질을 상기 센서 감지막의 전면에 걸쳐 도포하거나, 또는 상기 AFM의 캔틸레버에 미세량을 표지하여 상기 센서 감지막의 특정 영역에만 도포하는 것을 특징으로 하는 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 센싱 방법.
  11. 제9항에 있어서,
    상기 (C)단계는,
    (C-1) 상기 AFM의 캔틸레버를 상기 생체 물질의 측정 위치로 이동시키는 단계;
    (C-2) 상기 캔틸레버를 이용하여 상기 생체 물질의 표면을 탐침하는 단계; 및
    (C-3) 상기 탐침한 신호를 검출하여 상기 캔틸레버의 변위량을 산출하고, 상기 산출된 캔틸레버의 변위량에 따라 상기 생체 물질의 표면 형상을 이미지화하는 단계
    를 포함하는 것을 특징으로 하는 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 센싱 방법.
  12. 제9항에 있어서,
    상기 (C)단계는,
    상기 생체 물질이 반응하는 순간부터 완료되기까지 반복 수행하는 것을 특징으로 하는 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 센싱 방법.
PCT/KR2009/005968 2009-02-25 2009-10-16 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법 WO2010098528A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0015950 2009-02-25
KR1020090015950A KR101173607B1 (ko) 2009-02-25 2009-02-25 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법

Publications (1)

Publication Number Publication Date
WO2010098528A1 true WO2010098528A1 (ko) 2010-09-02

Family

ID=42665717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005968 WO2010098528A1 (ko) 2009-02-25 2009-10-16 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법

Country Status (2)

Country Link
KR (1) KR101173607B1 (ko)
WO (1) WO2010098528A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448377B1 (ko) * 2013-03-19 2014-10-07 경희대학교 산학협력단 세포 기능 평가용 양방향 동시측정 시스템
KR101543251B1 (ko) 2014-02-17 2015-08-12 한국기술교육대학교 산학협력단 교육용 afm 장치
US10371874B2 (en) 2016-06-20 2019-08-06 Yonsei University, University—Industry Foundation (UIF) Substrate unit of nanostructure assembly type, optical imaging apparatus including the same, and controlling method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167443A (ja) * 1992-10-23 1994-06-14 Olympus Optical Co Ltd 表面プラズモン共鳴を利用した測定装置
US20050074774A1 (en) * 2003-08-29 2005-04-07 Applera Corporation Multiplex detection compositions, methods, and kits
JP2007085744A (ja) * 2005-09-20 2007-04-05 Sony Corp 表面プラズモン共鳴の測定装置及び測定方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06167443A (ja) * 1992-10-23 1994-06-14 Olympus Optical Co Ltd 表面プラズモン共鳴を利用した測定装置
US20050074774A1 (en) * 2003-08-29 2005-04-07 Applera Corporation Multiplex detection compositions, methods, and kits
JP2007085744A (ja) * 2005-09-20 2007-04-05 Sony Corp 表面プラズモン共鳴の測定装置及び測定方法

Also Published As

Publication number Publication date
KR101173607B1 (ko) 2012-08-13
KR20100096874A (ko) 2010-09-02

Similar Documents

Publication Publication Date Title
JP3579321B2 (ja) 2次元イメージング表面プラズモン共鳴測定装置および測定方法
WO2010062149A2 (en) Multi-channel surface plasmon resonance sensor using beam profile ellipsometry
JP2006208294A (ja) プラズモン共鳴および蛍光の同時イメージング装置及びイメージング方法
US20180156752A1 (en) System and Method for Small Molecule Detection
CN110567859B (zh) 一种细胞力学特性测量设备及测量方法
WO2010098528A1 (ko) 생체 물질의 물리적 변화에 대한 실시간 검출이 가능한 바이오 센서 장치 및 센싱 방법
US5838000A (en) Method device and system for optical near-field scanning microscopy of test specimens in liquids
WO2007072706A1 (ja) 走査型プローブ顕微鏡
JP3778248B2 (ja) 偏光を用いたspr装置及びspr測定方法
JP4563117B2 (ja) 顕微鏡システム及び顕微鏡システムの走査法ならびに顕微鏡システムの画像合成法
CN105548011A (zh) 一种基于光纤阵列的微悬臂梁阵列生化传感装置及方法
WO2020038235A1 (zh) 基于平面波导技术的高通量生物、化学、环境检测系统和方法
KR101957800B1 (ko) 정량적 측정을 위한 스트립 삽입형 형광 리더기
JP3196945B2 (ja) 走査型光学顕微装置
KR20150053386A (ko) 전기화학발광용 lfa형 진단 스트립, 이것의 리더기 및 이것을 이용한 측정방법
WO2017039170A1 (ko) 물체의 두께 또는 높이 변화를 측정하는 장치 및 방법
US20220091119A1 (en) Methods for the Diagnosis and Detection of Viral Analytes
WO2020040509A1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
CN111487190B (zh) 一种单离子成像检测方法及装置
JP2011501124A (ja) マイクロプレート画像解析のためのシステム及び方法
JP4600769B2 (ja) プローブ及び特定物質解析装置並びに特定物質解析方法
JP2009511882A (ja) 測定対象の検査方法、及び装置
JP2005315888A (ja) インダクタンス素子およびキャパシタンス素子を用いたバイオ結合検出装置およびその方法
WO2020213803A1 (ko) 생체물질의 분석 방법
US7745206B2 (en) AFM for simultaneous recognition of multiple factors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840874

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011134979

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840874

Country of ref document: EP

Kind code of ref document: A1