WO2010098437A1 - 試薬調製装置および検体処理システム - Google Patents

試薬調製装置および検体処理システム Download PDF

Info

Publication number
WO2010098437A1
WO2010098437A1 PCT/JP2010/053065 JP2010053065W WO2010098437A1 WO 2010098437 A1 WO2010098437 A1 WO 2010098437A1 JP 2010053065 W JP2010053065 W JP 2010053065W WO 2010098437 A1 WO2010098437 A1 WO 2010098437A1
Authority
WO
WIPO (PCT)
Prior art keywords
reagent
unit
preparation
information
predetermined
Prior art date
Application number
PCT/JP2010/053065
Other languages
English (en)
French (fr)
Inventor
友幸 朝原
孝一 大久保
利志 中西
Original Assignee
シスメックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シスメックス株式会社 filed Critical シスメックス株式会社
Priority to CN201080009622.0A priority Critical patent/CN102334034B/zh
Priority to EP10746316.8A priority patent/EP2402763B1/en
Priority to JP2010538243A priority patent/JP4647042B2/ja
Publication of WO2010098437A1 publication Critical patent/WO2010098437A1/ja
Priority to US13/218,956 priority patent/US9316660B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00663Quality control of consumables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00613Quality control
    • G01N35/00663Quality control of consumables
    • G01N2035/00673Quality control of consumables of reagents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00722Communications; Identification
    • G01N35/00732Identification of carriers, materials or components in automatic analysers

Definitions

  • the present invention relates to a reagent preparation device and a sample processing system, and more particularly to a reagent preparation device and a sample processing system capable of preparing a predetermined reagent used for measurement.
  • Patent Document 1 discloses a reagent preparation apparatus capable of preparing a reagent composed of a high concentration reagent and pure water.
  • reagent information related to the reagent used for the measurement can be considered.
  • Patent Document 1 does not describe any configuration for acquiring reagent information related to the reagent prepared by the reagent preparing device. For this reason, in this reagent preparation device, it is considered that the reagent information of the reagent used in the measurement cannot be obtained when the reliability of the measurement result is low. Therefore, the cause of the decrease in the reliability of the measurement result is investigated. There is a problem that it is difficult.
  • Patent Document 2 a technique capable of acquiring reagent information related to a reagent prepared by a reagent preparation device is known (see, for example, Patent Document 2).
  • Patent Document 2 discloses a centralized monitoring system including a plurality of reagent preparation devices, a server computer connected to the plurality of reagent preparation devices, and a client computer connected to the server computer.
  • reagent information such as the electrical conductivity of the reagent prepared by the reagent preparation device and reagent preparation date and time information are transmitted from each reagent preparation device to the server computer, and the transmitted reagent information and preparation date and time information Can be displayed on the client computer.
  • the present invention has been made to solve the above-described problems, and one object of the present invention is to provide a reagent preparation device capable of easily pursuing the cause of a decrease in the reliability of measurement results and It is to provide a sample processing system.
  • a reagent preparing device provides a measuring unit that measures a specimen using a predetermined reagent including a first liquid and a second liquid different from the first liquid.
  • a reagent preparation device for preparing a predetermined reagent to be supplied comprising: a reagent preparation unit for preparing a predetermined reagent; and reagent information relating to the predetermined reagent prepared by the reagent preparation unit;
  • a control unit that acquires supply time information related to a time when the predetermined reagent is supplied to the measurement unit, and outputs the reagent information and the supply time information.
  • the reagent information relating to the predetermined reagent prepared by the reagent preparing unit is acquired, and the predetermined reagent prepared by the reagent preparing unit is supplied to the measuring unit.
  • the control unit that obtains supply time information related to the determined time and outputs the reagent information and supply time information, the reagent information of the predetermined reagent output by the control unit and the supply of the predetermined reagent to the measurement unit Based on the time information, it is possible to easily confirm when the reagent having what attribute is supplied to the measurement unit. Thereby, when the reliability of the measurement result is low, it becomes easy to acquire information on the reagent used for the measurement, and therefore it becomes easy to pursue the cause of the decrease in the reliability of the measurement result.
  • the control unit acquires quality information indicating the quality of a predetermined reagent as reagent information.
  • the quality of the predetermined reagent can be confirmed after the predetermined reagent used for measurement by the measurement unit is specified, it is easier to pursue the cause of the decrease in the reliability of the measurement result. It can be carried out.
  • an electric conductivity measuring unit that measures the electric conductivity of a predetermined reagent is further provided, and the control unit acquires the electric conductivity measured by the electric conductivity measuring unit as quality information. If comprised in this way, based on the electrical conductivity of the predetermined reagent used for the measurement of a measurement part, the quality of a predetermined reagent can be judged easily.
  • the control unit further acquires preparation time information related to a time when the predetermined reagent is prepared by the reagent preparation unit, and supplies the preparation based on the acquired preparation time information. Get time information. If comprised in this way, since supply time information can be acquired based on preparation time information by a control part, it is not necessary to measure and acquire supply time information separately from preparation time information.
  • the apparatus further includes a reagent storage unit that stores a predetermined reagent that is prepared by the reagent preparation unit and is in a supply standby state to the measurement unit, and the control unit supplies the predetermined reagent to the reagent storage unit.
  • Time is acquired as preparation time information. If comprised in this way, the time of completion of preparation when the predetermined
  • the control unit further includes an electrical conductivity measurement unit that measures electrical conductivity of a predetermined reagent transferred to the reagent storage unit, and the control unit includes the predetermined reagent in the reagent storage unit.
  • the supplied time is determined based on the time required for the predetermined reagent transferred to the reagent reservoir to pass through the electrical conductivity measuring unit. If comprised in this way, preparation time information and the time when the predetermined reagent after completion of preparation transferred to the reagent reservoir passes through the electrical conductivity measuring unit as the time when the predetermined reagent is supplied to the reagent reservoir can do.
  • the control unit acquires the preparation time information each time a predetermined reagent is supplied to the reagent storage unit, and supplies based on the acquired plurality of preparation time information. Get time information. If comprised in this way, it will be in the several preparation time information of the preparation time information of the predetermined reagent of this time supplied to a reagent storage part, and the preparation time information of predetermined reagents other than this time supplied to a reagent storage part Since supply time information can be acquired based on this, supply time information can be acquired more accurately.
  • the control unit preferably acquires a time zone in which a predetermined reagent may be supplied to the measurement unit as supply time information.
  • a predetermined reagent that is prepared by the reagent preparation unit and is in a standby state for supply to the measurement unit is stored, and a reagent storage unit having a predetermined storage capacity is further provided,
  • the time zone that may have been supplied to the measurement unit starts from the time when the predetermined reagent to be specified has started to be supplied to the reagent storage unit, and the predetermined amount of the predetermined reagent is approximately the same as the predetermined storage amount of the reagent storage unit. It is a time zone from the storage part to the time discharged to the measurement part side.
  • the first liquid is a reagent stock solution
  • the control unit acquires reagent stock solution information regarding the reagent stock solution as reagent information, and outputs the reagent stock solution information. If comprised in this way, based on the reagent stock solution information of the reagent stock solution contained in a predetermined reagent, it can be confirmed easily which reagent stock solution the predetermined reagent used for measurement was prepared. Therefore, it becomes easier to pursue the cause of the decrease in the reliability of the measurement result.
  • an information reading unit that reads reagent stock solution information from a reagent container that contains the reagent stock solution is further provided, and the control unit obtains reagent stock solution information based on the reading result of the information reading unit. If comprised in this way, reagent stock solution information can be easily acquired using an information reading part.
  • the reagent stock solution information includes a lot number of the reagent stock solution. According to this configuration, it is possible to easily specify which lot of reagent stock solution the predetermined reagent used for the measurement is prepared by using the lot number.
  • the reagent stock solution information includes expiration date information regarding the expiration date of the reagent stock solution. If comprised in this way, it can be confirmed whether the predetermined reagent used for the measurement is the predetermined reagent prepared using the expired reagent stock solution.
  • a reagent preparation device prepares a predetermined reagent to be supplied to a measurement unit that measures a specimen using a predetermined reagent containing a first liquid and a second liquid different from the first liquid.
  • a reagent preparing device for preparing a predetermined reagent, a reagent information acquiring means for acquiring reagent information relating to the predetermined reagent prepared by the reagent preparing unit, and a predetermined reagent prepared by the reagent preparing unit Supply time information acquisition means for acquiring supply time information relating to the time when the reagent is supplied to the measurement unit, and output means for outputting reagent information and supply time information.
  • reagent information acquiring means for acquiring reagent information relating to the predetermined reagent prepared by the reagent preparing unit, and the predetermined reagent prepared by the reagent preparing unit Is provided with supply time information acquisition means for acquiring supply time information relating to the time supplied to the measuring unit, and output means for outputting reagent information and supply time information, thereby providing a predetermined reagent output by the output means.
  • supply time information acquisition means for acquiring supply time information relating to the time supplied to the measuring unit
  • a specimen processing system includes a reagent preparing unit that prepares a predetermined reagent containing a first liquid and a second liquid that is different from the first liquid, and a predetermined reagent prepared by the reagent preparing unit.
  • a controller that outputs reagent information and supply time information.
  • the reagent information relating to the predetermined reagent prepared by the reagent preparing unit is acquired, and the predetermined reagent prepared by the reagent preparing unit is supplied to the measuring unit.
  • the control unit that obtains supply time information related to the determined time and outputs the reagent information and supply time information, the reagent information of the predetermined reagent output by the control unit and the supply of the predetermined reagent to the measurement unit Based on the time information, it is possible to easily confirm when the reagent having what attribute is supplied to the measurement unit. Thereby, when the reliability of the measurement result is low, it becomes easy to acquire information on the reagent used for the measurement, and therefore it becomes easy to pursue the cause of the decrease in the reliability of the measurement result.
  • FIG. 1st Embodiment of this invention It is the perspective view which showed the use condition of the reagent preparation apparatus by 1st Embodiment of this invention. It is the block diagram which showed the structure of the blood analyzer provided with the reagent preparation apparatus by 1st Embodiment shown in FIG. It is a figure for demonstrating the sample preparation part of the blood analyzer provided with the reagent preparation apparatus by 1st Embodiment shown in FIG. It is the schematic which showed the detection part of the blood analyzer provided with the reagent preparation apparatus by 1st Embodiment shown in FIG. It is the block diagram which showed the structure of the data processing part of the blood analyzer provided with the reagent preparation apparatus by 1st Embodiment shown in FIG.
  • FIG. It is the schematic which showed the structure of the reagent preparation apparatus by 1st Embodiment shown in FIG. It is a block diagram for demonstrating the control part of the reagent preparation apparatus by 1st Embodiment of this invention. It is a figure for demonstrating the barcode reader of the reagent preparation apparatus by 1st Embodiment of this invention. It is a flowchart for demonstrating the high concentration reagent information acquisition processing operation of the reagent preparation apparatus by 1st Embodiment of this invention. It is a screen figure for demonstrating the high concentration reagent information acquisition processing operation of the reagent preparation apparatus by 1st Embodiment of this invention.
  • FIG. 13 is a flowchart for explaining a supply processing operation of a high concentration reagent and RO water in step S20 of the reagent preparation processing operation shown in FIG.
  • the blood sample processing system 1 includes a measuring unit 2 having a function of measuring blood, a data processing unit 3 that analyzes measurement data output from the measuring unit 2 and obtains an analysis result, And a reagent preparation device 4 for preparing a reagent used for the sample processing.
  • the measurement unit 2 is configured to measure white blood cells, reticulocytes, and platelets in blood by flow cytometry.
  • the measuring unit 2 is configured to measure white blood cells, reticulocytes, and platelets by diluting blood using the reagent prepared and supplied by the reagent preparing device 4.
  • the measurement unit 2 uses the reagent prepared and supplied by the reagent preparation device 4 as a cleaning liquid, and is included in a sampling valve 21b and a reaction chamber 21c included in a sample preparation unit 21 described later, and a detection unit 22.
  • the sheath flow cell 22c and the like are configured to be washed.
  • the flow cytometry method forms a sample flow including a measurement sample and irradiates the sample flow with a laser beam, whereby forward scattered light and side scattered light emitted from particles (blood cells) in the measurement sample. And a method for measuring particles (blood cells) for detecting side fluorescence.
  • the measurement unit 2 includes a measurement sample preparation unit 21, a detection unit 22 that performs measurement of the measurement sample, an analog processing unit 23 for the output of the detection unit 22, a display / operation unit 24, a measurement And a microcomputer unit 25 for controlling the unit 2.
  • the measurement sample preparation unit 21 is provided for preparing a white blood cell measurement sample, a reticulocyte measurement sample, and a platelet measurement sample. As shown in FIG. 3, the measurement sample preparation unit 21 includes a sampling valve 21b through which blood is sucked and a reaction chamber 21c. The blood collection tube 21a contains blood to be analyzed.
  • the sampling valve 21b has a function of quantifying the blood in the blood collection tube 21a sucked by a suction pipette (not shown) by a predetermined amount.
  • the sampling valve 21b is configured to be able to mix a predetermined reagent with the aspirated blood. That is, the sampling valve 21b is configured to generate a diluted sample in which a predetermined amount of blood supplied from the reagent preparation device 4 is mixed with a predetermined amount of blood.
  • the reaction chamber 21c is configured to further mix a predetermined staining solution with the diluted sample supplied from the sampling valve 21b and to react for a predetermined time.
  • the measurement sample preparation unit 21 has a function of preparing a white blood cell measurement sample in which white blood cells are stained and red blood cells are hemolyzed.
  • the measurement sample preparation unit 21 has a function of preparing a reticulocyte measurement sample in which reticulocytes are stained, and preparing a platelet measurement sample in which platelets are stained.
  • the measurement sample preparation unit 21 supplies the white blood cell measurement sample together with the sheath liquid from the measurement sample preparation unit 21 to a sheath flow cell 22c (see FIG. 4) described later in the white blood cell classification measurement (hereinafter referred to as “DIFF measurement”) mode. Is configured to do.
  • the measurement sample preparation unit 21 is configured to supply a reticulocyte measurement sample together with the sheath liquid from the measurement sample preparation unit 21 to the sheath flow cell 22c in the reticulocyte measurement (hereinafter referred to as “RET measurement”) mode. Yes.
  • the measurement sample preparation unit 21 is configured to supply a platelet measurement sample together with the sheath liquid from the measurement sample preparation unit 21 to the sheath flow cell 22c in the platelet measurement (hereinafter referred to as “PLT measurement”) mode.
  • the detector 22 emits a laser beam emitted from the light emitter 22 a, an irradiation lens unit 22 b, a sheath flow cell 22 c irradiated with the laser beam, and the laser beam emitted from the light emitter 22 a travels.
  • the light emitting part 22a is provided for emitting light to the sample flow including the measurement sample passing through the inside of the sheath flow cell 22c.
  • the irradiation lens unit 22b is provided in order to make the light radiate
  • the PD 22f is provided to receive forward scattered light emitted from the sheath flow cell 22c. In addition, it is possible to obtain information regarding the size of the particles (blood cells) in the measurement sample from the forward scattered light emitted from the sheath flow cell 22c.
  • the dichroic mirror 22h is provided to separate the side scattered light and the side fluorescence emitted from the sheath flow cell 22c. Specifically, the dichroic mirror 22h is provided to cause the side scattered light emitted from the sheath flow cell 22c to be incident on the PD 22l and the side fluorescence emitted from the sheath flow cell 22c to be incident on the APD 22k.
  • the PD 22l is provided to receive side scattered light. Note that it is possible to obtain internal information such as the size of the nuclei of particles (blood cells) in the measurement sample from the side scattered light emitted from the sheath flow cell 22c.
  • the APD 22k is provided for receiving side fluorescence.
  • Each of the PDs 22f and 22l and the APD 22k has a function of converting the received optical signal into an electric signal.
  • the analog processing unit 23 includes amplifiers 23a, 23b, and 23c as shown in FIG.
  • the amplifiers 23a, 23b, and 23c are provided to amplify and waveform-process electric signals output from the PDs 22f, 22l, and APD 22k, respectively.
  • the microcomputer unit 25 includes a control unit 251 having a control processor and a memory for operating the control processor, and an A / A for converting a signal output from the analog processing unit 23 into a digital signal.
  • a D conversion unit 252 and a calculation unit 253 for performing predetermined processing on the digital signal output from the A / D conversion unit 252 are included.
  • the control unit 251 has a function of controlling the measurement sample preparation unit 21 and the detection unit 22 via the bus 254a and the interface 255a.
  • the control unit 251 is connected to the display / operation unit 24 via the bus 254a and the interface 255b, and is connected to the data processing unit 3 via the bus 254b and the interface 255c.
  • the calculation unit 253 has a function of outputting a calculation result to the control unit 251 via the interface 255d and the bus 254a.
  • the control unit 251 has a function of transmitting a calculation result (measurement data) to the data processing unit 3.
  • the data processing unit 3 is composed of a personal computer (PC) or the like, and has a function of analyzing the measurement data of the measurement unit 2 and displaying the analysis result. Further, as shown in FIG. 5, the data processing unit 3 includes a control unit 31, a display unit 32, and an input device 33.
  • PC personal computer
  • the control unit 31 has a function of transmitting a measurement start signal including measurement mode information and a shutdown signal to the measurement unit 2.
  • the control unit 31 includes a CPU 31a, a ROM 31b, a RAM 31c, a hard disk 31d, a reading device 31e, an input / output interface 31f, an image output interface 31g, and a communication interface 31i.
  • the CPU 31a, ROM 31b, RAM 31c, hard disk 31d, reading device 31e, input / output interface 31f, image output interface 31g, and communication interface 31i are connected by a bus 31h.
  • the CPU 31a is provided to execute a computer program stored in the ROM 31b and a computer program loaded in the RAM 31c.
  • the ROM 31b is configured by a mask ROM, PROM, EPROM, EEPROM, or the like, and stores a computer program executed by the CPU 31a, data used for the same, and the like.
  • the RAM 31c is configured by SRAM, DRAM, or the like.
  • the RAM 31c is used to read out computer programs recorded in the ROM 31b and the hard disk 31d. Further, when these computer programs are executed, they are used as a work area of the CPU 31a.
  • the hard disk 31d is installed with various computer programs to be executed by the CPU 31a, such as an operating system and application programs, and data used for executing the computer programs.
  • An application program 34a described later is also installed in the hard disk 31d.
  • the reading device 31e is configured by a flexible disk drive, a CD-ROM drive, a DVD-ROM drive, or the like, and can read a computer program or data recorded on the portable recording medium 34.
  • the portable recording medium 34 stores an application program 34a for causing a computer to realize a predetermined function.
  • the computer as the data processing unit 3 is configured to read the application program 34a from the portable recording medium 34 and install the application program 34a in the hard disk 31d.
  • Examples of the application program 34a include an analysis program that analyzes the sample measured by the measurement unit and outputs the analysis result as the analysis result of the sample.
  • the application program 34a also includes software having a clock function, and the analysis program outputs the analysis result in association with the measurement time of the sample.
  • the application program 34a is not only provided by the portable recording medium 34, but also from the external device communicatively connected to the data processing unit 3 by an electric communication line (whether wired or wireless). It can also be provided through a communication line.
  • the application program 34a is stored in the hard disk of a server computer on the Internet, and the data processor 3 accesses the server computer to download the application program 34a and install it on the hard disk 31d. Is also possible.
  • an operating system that provides a graphical user interface environment such as Windows (registered trademark) manufactured and sold by US Microsoft Co. is installed in the hard disk 31d.
  • Windows registered trademark
  • the application program 34a according to the first embodiment is assumed to operate on the operating system.
  • the input / output interface 31f includes, for example, a serial interface such as USB, IEEE1394, RS-232C, a parallel interface such as SCSI, IDE, IEEE1284, and an analog interface including a D / A converter and an A / D converter.
  • a serial interface such as USB, IEEE1394, RS-232C
  • a parallel interface such as SCSI, IDE, IEEE1284
  • an analog interface including a D / A converter and an A / D converter.
  • An input device 33 including a keyboard and a mouse is connected to the input / output interface 31f, and the user can input data to the data processing unit 3 by using the input device 33.
  • the user can use the input device 33 to select a measurement mode and start up and shut down the measurement unit 2.
  • the image output interface 31g is connected to a display unit 32 composed of an LCD or a CRT, and outputs a video signal corresponding to the image data given from the CPU 31a to the display unit 32.
  • the display unit 32 displays an image (screen) according to the input video signal.
  • the reagent preparation device 4 is provided for preparing a reagent used in the measurement sample preparation unit 21 of the measurement unit 2. Specifically, the reagent preparation device 4 dilutes a high-concentration reagent to a desired concentration using RO water produced by the RO water production unit 7 provided outside, so that a reagent used for blood analysis is obtained. It is configured to be prepared.
  • the RO water is a kind of pure water, and is water from which impurities are removed by permeating through a RO (Reverse Osmosis) membrane (reverse osmosis membrane).
  • Pure water is water that includes purified water, deionized water, distilled water, and the like in addition to RO water and has been subjected to a treatment for removing impurities, but its purity is not particularly limited.
  • the high concentration reagent is a reagent stock solution, and the concentration of the contained component is higher than that of the reagent supplied to the measurement unit 2.
  • the reagent preparation device 4 includes a high concentration reagent chamber 41, an RO water chamber 42, two dilution chambers 43 and 44, two diaphragm pumps 45 a and 45 b, a stirring chamber 46, and a supply A chamber 47, a display unit 48, a control unit 49 for controlling the operation of each unit of the reagent preparing device 4, and a barcode reader 50 (see FIG. 1) are included. Furthermore, the reagent preparation device 4 includes a pneumatic unit 6 (see FIG. 1) installed outside the casing, and uses the negative pressure and the positive pressure supplied from the pneumatic unit 6 to transfer each liquid in the device. Is configured to do.
  • the pneumatic unit 6 includes a negative pressure source 61 for supplying a negative pressure to the reagent preparing device 4 and a positive pressure source 62 for supplying a positive pressure.
  • the high concentration reagent chamber 41 is configured to be supplied with a high concentration reagent from the high concentration reagent tank 5.
  • the high concentration reagent chamber 41 is provided with a float switch 100 for detecting that a predetermined amount of high concentration reagent is accommodated in the chamber.
  • the float switch 100 is configured such that the float part moves up and down according to the amount of liquid (liquid level) in the high concentration reagent chamber 41.
  • each part is controlled by the control part 49 so that the high concentration reagent is supplied from the high concentration reagent tank 5 to the high concentration reagent chamber 41.
  • each part is controlled by the control part 49 so that the supply of the high concentration reagent from the high concentration reagent tank 5 to the high concentration reagent chamber 41 is stopped. It is configured.
  • the float switch 100 is arranged near the upper end of the high concentration reagent chamber 41 so that when the high concentration reagent chamber 41 stores about 300 mL of high concentration reagent, the float portion reaches the upper limit. It is configured. Thus, the high concentration reagent chamber 41 is always supplied with the high concentration reagent so that about 300 mL is stored.
  • the high concentration reagent chamber 41 is connected to the high concentration reagent tank 5 via the electromagnetic valve 200 and connected to the negative pressure source 61 of the pneumatic unit 6 via the electromagnetic valve 201.
  • the high concentration reagent chamber 41 is configured to be opened to the atmosphere or closed by opening / closing the electromagnetic valve 202.
  • the high-concentration reagent chamber 41 is connected by a flow path 300 to a flow path 301 for transferring a liquid from the diaphragm pump 45a (45b) to the dilution chamber 43 (44).
  • An electromagnetic valve 203 is provided on the flow path 300, and the electromagnetic valve 203 is disposed in the vicinity of the flow path 301.
  • the length of the flow path 300a between the electromagnetic valve 203 and the flow path 301 is set to a small length of about 15 mm.
  • the flow path 300 (300a) connected to the high concentration reagent chamber 41 has an inner diameter of about 1.8 mm, and the flow path 301 has an inner diameter of about 4.0 mm.
  • the RO water chamber 42 is configured such that RO water for diluting the high concentration reagent is supplied from the RO water preparation unit 7.
  • the RO water chamber 42 is provided with float switches 101 and 102 for detecting that the upper limit amount and the lower limit amount of RO water accommodated in the chamber has been reached.
  • the float switch 101 (102) is configured such that the float part moves up and down according to the amount of liquid (liquid level) in the RO water chamber.
  • each part is controlled by the control part 49 so that the supply of the RO water from the RO water preparation part 7 to the RO water chamber 42 is stopped. Is configured to be controlled.
  • each part is controlled by the controller 49 so that RO water is supplied from the RO water preparation part 7 to the RO water chamber 42. It is configured to be controlled.
  • the float switch 101 is disposed in the vicinity of the upper end portion of the RO water chamber 42, and when about 600 mL of RO water is stored in the RO water chamber 42, the float portion corresponds to the upper limit amount of the RO water chamber 42. It is configured to reach the position to be. Further, the float switch 102 is configured such that when the RO water stored in the RO water chamber 42 is reduced to about 300 mL, the float portion reaches a position corresponding to the lower limit amount of the RO water chamber 42. . Thereby, while the reagent preparation device 4 is operating, the RO water chamber 42 stores about 300 mL or more and about 600 mL or less of RO water.
  • the RO water chamber 42 is configured to be able to discard the RO water in the chamber.
  • the RO water chamber 42 is connected to the positive pressure source 62 via the electromagnetic valve 204 and is connected to the waste flow path via the electromagnetic valve 205, and both the electromagnetic valves 204 and 205 are connected. By opening the, the internal RO water is pushed out to the waste channel with positive pressure.
  • the RO water chamber 42 is configured to be opened to the atmosphere or closed by opening / closing the electromagnetic valve 206.
  • the RO water chamber 42 is connected to an RO water storage tank 7a (described later) of the RO water preparation unit 7 via an electromagnetic valve 207.
  • the RO water chamber 42 is connected to the diaphragm pumps 45a and 45b by the flow path 302 via the electromagnetic valve 208.
  • the dilution chambers 43 and 44 are respectively provided for diluting the high concentration reagent with RO water.
  • the dilution chamber 43 (44) is configured to be capable of accommodating about 300 mL of liquid (mixed liquid of high concentration reagent and RO water) fed by the diaphragm pumps 45a and 45b.
  • the dilution chamber 43 (44) is provided with a float switch 103 (104) for detecting that the remaining amount of liquid (mixed liquid of high concentration reagent and RO water) stored in the chamber has reached a predetermined amount. It has been.
  • the float switch 103 (104) is configured such that the float part moves up and down in accordance with the amount of liquid (liquid level) in the dilution chamber 43 (44).
  • the dilution chamber 43 (44) is configured to be always open to the atmosphere.
  • the dilution chamber 43 (44) is connected to the flow path 301 by the flow path 303 (304) via the electromagnetic valve 209 (210).
  • the channel 303 (304) has an inner diameter of about 4 mm, like the channel 301.
  • the electromagnetic valve 209 by opening the electromagnetic valve 209 with the electromagnetic valve 210 closed, it is possible to transfer the liquid (RO water and high concentration reagent) transferred through the flow path 301 to the dilution chamber 43. .
  • the electromagnetic valve 210 is opened with the electromagnetic valve 209 closed, the liquid (RO water and high concentration reagent) transferred through the flow path 301 can be transferred to the dilution chamber 43. That is, the electromagnetic valves 209 and 210 are configured to function as flow path switching units for the flow paths 303 and 304, respectively.
  • the dilution chamber 43 (44) is connected to the stirring chamber 46 via the electromagnetic valve 211 (212).
  • a bubble sensor 400 (401) is provided between the dilution chamber 43 (44) and the electromagnetic valve 211 (212).
  • the bubble sensor 400 (401) is a transmissive sensor, and is configured to detect bubbles passing through the flow path. As a result, when the float part of the float switch 103 (104) reaches the lower limit and bubbles are detected by the bubble sensor 400 (401), the control unit 49 causes the liquid (in the dilution chamber 43 (44)) It is possible to confirm that all of the high-concentration reagent and RO water mixture) have been discharged.
  • the diaphragm pumps 45a and 45b have the same configuration as each other and are configured to perform the same operation at the same time.
  • the diaphragm pump 45a (45b) has a function of quantifying the high-concentration reagent and the RO water by about 6.0 mL (fixed amount) in one quantification operation.
  • the diaphragm pump 45a (45b) is connected to the negative pressure source 61 via the electromagnetic valve 213 (215), and is connected to the positive pressure source 62 via the electromagnetic valve 214 (216).
  • liquid quantification unit 51 of the reagent preparation device 4 is constituted by the high concentration reagent chamber 41, the RO water chamber 42, the diaphragm pumps 45a and 45b, the pneumatic unit 6, the flow channels 300 to 304, and the electromagnetic valves 200 to 210 and 213 to 216. (See FIG. 6).
  • the stirring chamber 46 is configured to be able to store about 300 mL of liquid, and stirs the liquid (mixed liquid of high concentration reagent and RO water) transferred from the dilution chamber 43 (44). It is provided for. Specifically, the stirring chamber 46 has a bent pipe 416, and the liquid (mixed liquid of high concentration reagent and RO water) transferred from the dilution chamber 43 (44) passes through the pipe 416. It is configured to flow into the stirring chamber 46 along the inner wall surface of the stirring chamber 46.
  • the high-concentration reagent and the RO water are stirred to some extent in the dilution chamber 43 (44) and in the flow path from the dilution chamber 43 (44) to the stirring chamber 46.
  • the stirring chamber 46 is provided with a float switch 105 for detecting that the remaining amount of the liquid (mixed liquid of high concentration reagent and RO water) stored in the chamber has reached a predetermined amount.
  • the float switch 105 is configured such that the float part moves up and down according to the amount of liquid (liquid level) in the stirring chamber 46.
  • each part is controlled by the control unit 49 so that about 300 mL of the mixed solution is supplied from one of the dilution chambers 43 and 44 to the stirring chamber 46. Is configured to be controlled.
  • the stirring chamber 46 When the mixed liquid supplied and stirred from one of the dilution chambers 43 and 44 is discharged from the stirring chamber 46, next, about 300 mL of the mixed liquid is supplied to the stirring chamber 46 from the other of the dilution chambers 43 and 44. Is done.
  • the stirring chamber 46 is connected to the negative pressure source 61 via the electromagnetic valve 217 and is connected to the positive pressure source 62 via the electromagnetic valve 218.
  • the supply chamber 47 is provided for storing a predetermined amount of reagent to be supplied to the measurement unit 2.
  • the supply chamber 47 has a capacity of about 600 mL.
  • the supply chamber 47 is provided with a float switch 106 for detecting that the remaining amount of the reagent accommodated in the chamber has reached about 300 mL. Further, the supply chamber 47 is provided with a float switch 107 for detecting that the remaining amount of the reagent accommodated in the supply chamber 47 is substantially zero.
  • the float switch 106 (107) is configured such that the float part moves up and down in accordance with the amount of liquid (liquid level) in the supply chamber 47.
  • the float part of the float switch 106 is configured to be movable from the vicinity of the upper end of the supply chamber 47 in the height direction to the intermediate position.
  • a desired concentration of about 300 mL is supplied from the stirring chamber 46 to the supply chamber 47.
  • Each unit is configured to be controlled by the control unit 49 so that the reagent is supplied.
  • a reagent having a desired concentration of about 300 mL or more and about 600 mL or less is always stored in the supply chamber 47.
  • the float part of the float switch 107 is configured to be movable in the vicinity of the bottom part of the supply chamber 47.
  • the float switch 107 detects that the remaining amount of the reagent stored in the chamber has become substantially zero, the supply of the reagent to the measurement unit 2 is stopped. Thereby, even if the reagent is not transferred to the supply chamber 47 for some reason, it is possible to prevent bubbles from being mixed into the reagent supplied to the measurement unit 2 while continuing to supply the reagent to the measurement unit 2 as much as possible. Is possible.
  • the supply chamber 47 is connected to the stirring chamber 46 through an electromagnetic valve 219. Further, the supply chamber 47 is configured such that the reagent in the chamber can be discarded during maintenance or the like by opening the electromagnetic valve 220. Further, the supply chamber 47 is configured so as to be always open to the atmosphere.
  • the supply chamber 47 is connected to the measurement unit 2 via a filter 471. The filter 471 is provided to prevent impurities from entering the reagent supplied to the measurement unit 2.
  • a conductivity sensor 402 for measuring the electrical conductivity of the reagent is provided.
  • the conductivity sensor 402 includes a temperature sensor 403 for measuring the temperature of the reagent at the position where the conductivity sensor 402 is disposed.
  • the electrical conductivity is obtained based on the reference voltage AD value obtained by the conductivity sensor 402 and the electrode voltage AD value, and the reagent temperature is obtained from the thermistor voltage AD value obtained by the temperature sensor 403. Obtained on the basis.
  • a waste flow path is connected between the conductivity sensor 402 and the electromagnetic valve 219 via the electromagnetic valve 221.
  • the display unit 48 is provided on the outer surface of the reagent preparing device 4 as shown in FIG.
  • the display unit 48 is configured by a touch panel type liquid crystal display.
  • control unit 49 includes a CPU 49a, a ROM 49b, a RAM 49c, a communication interface 49d connected to the data processing unit 3, and an I / O (Input / Input) connected to each unit of the reagent preparing device 4.
  • I / O Input / Input
  • An Output unit 49e and a storage unit 49f are included.
  • the CPU 49a is provided to execute a computer program stored in the ROM 49b and a computer program loaded in the RAM 49c.
  • the CPU 49a is configured to use the RAM 49c as a work area when executing these computer programs.
  • One of these computer programs is software having a function as a clock. The date and time described later is acquired by this software.
  • the current time by the software of the reagent preparation device 4 and the current time by the software of the data processing device 3 are preferably matched. This makes it possible to more accurately associate the analysis result of the sample with the reagent supply time.
  • Z 0 ⁇ X + (A ⁇ 1) Y ⁇ / A (1)
  • Z 0 is a target value (ms / cm) of electric conductivity at 25 ° C. of a reagent in which a high concentration reagent and RO water are mixed and stirred
  • X is a high concentration reagent at 25 ° C.
  • Y represents the electrical conductivity of RO water at 25 ° C. (ms / cm)
  • A represents the dilution factor (known) (25 times in the first embodiment).
  • X is a value unique to the high concentration reagent, and is a known value obtained in advance through experiments or the like.
  • Z is a target value (ms / cm) of electric conductivity at T2 ° C. of a reagent in which a high concentration reagent and RO water are mixed and stirred
  • Y1 is electric conductivity at T1 ° C. of RO water.
  • T1 is the temperature (° C.) of the RO water
  • T 2 is the temperature of the reagent in which the high concentration reagent and the RO water are mixed and stirred (° C.)
  • ⁇ 0 is the electric conductivity of the RO water
  • the temperature coefficient with respect to 25 ° C., ⁇ 1 represents the temperature coefficient with respect to 25 ° C. of the electrical conductivity of the reagent in which the high concentration reagent and the RO water are mixed and stirred.
  • the temperature coefficients ⁇ 0 and ⁇ 1 vary depending on the type and concentration of the liquid, but 0.02 is simply used in JIS (Japanese Industrial Standard).
  • the CPU 49a is configured to calculate the target value Z by the above equation (2). Therefore, the CPU 49a determines the desired dilution factor A (known), the detected value Y1 of the RO water electrical conductivity, the measured value T1 of the RO water temperature, the measured temperature value T2 of the mixed and stirred reagent, and the high concentration reagent. A target value is determined based on the electrical conductivity X (known).
  • the CPU 49a is configured to store the high concentration reagent information such as the lot number of the high concentration reagent, the expiration date after manufacture, the use start date, the expiration date after opening, etc. in the storage unit 49f. Yes.
  • a reagent management list 491 is stored in the storage unit 49f, and the CPU 49a records high-concentration reagent information in the reagent management list 491 based on information read by the barcode reader 50. To do.
  • the CPU 49a also displays the date and time when the reagent preparation is completed (reagent preparation date and time), the electrical conductivity when the reagent preparation is completed, the temperature when the reagent preparation is completed, and the reference when the reagent preparation is completed.
  • AD value reference value
  • AD value reference value
  • AD value electrospray value
  • AD value thermoelectric value
  • thermoistor value thermoistor voltage when reagent preparation is completed
  • reagent preparation history information including the preparation reagent supply time zone is stored in the storage unit 49f.
  • a reagent preparation list 492 is stored in the storage unit 49f, and the CPU 49a stores the reagent preparation history information in the reagent preparation list in the later-described reagent preparation process shown in FIGS. 492.
  • the electrical conductivity, temperature, reference voltage AD value, electrode voltage AD value, thermistor voltage AD value, and reagent preparation result are quality information indicating the quality of the prepared reagent.
  • the CPU 49a receives various information (high concentration reagent information and reagent preparation history information) recorded in the reagent management list 491 and the reagent preparation list 492 in response to an instruction from the user received via the touch panel display unit 48.
  • the display unit 48 can be displayed.
  • the CPU 49a is configured to receive an activation instruction and a shutdown instruction for the reagent preparation device 4 from the user via the touch panel display unit 48.
  • the communication interface 49d is configured to be able to transmit error information to the data processing unit 3 so that the user can check errors that have occurred in the reagent preparation device 4.
  • the error information includes information for prompting replacement of the high concentration reagent tank 5, information notifying that the RO water is not supplied, information notifying the abnormality of the negative pressure source 61 and the positive pressure source 62, and the like.
  • An error notification is displayed on the display unit 48 based on the error information.
  • the I / O unit 49e is configured such that signals are input from the float switches 100 to 107, the bubble sensors 400 and 401, the conductivity sensor 402, and the temperature sensor 403 via each sensor circuit. Has been. Further, the I / O unit 49e is configured to output a signal to each drive circuit in order to control the drive of the electromagnetic valves 200 to 221 and the pneumatic unit 6 via each drive circuit. The I / O unit 49e is configured to receive a signal corresponding to a user instruction from the touch panel display unit 48 and to output a video signal such as image data to the display unit 48. Further, the I / O unit 49e is configured to receive information on the high concentration reagent read by the barcode reader 50.
  • the storage unit 49f includes a nonvolatile memory and stores a reagent management list 491 and a reagent preparation list 492.
  • the reagent management list 491 is configured to be rewritable by the CPU 49a, and can record up to 100 high-concentration reagent information. When the high-concentration reagent information exceeds 100, the oldest one is overwritten sequentially.
  • the reagent preparation list 492 is configured to be rewritable by the CPU 49a, and can record up to 1000 pieces of reagent preparation history information. When the reagent preparation history information exceeds 1000 cases, the oldest one is overwritten sequentially.
  • the barcode reader 50 is a handy type, and is configured to be able to read the barcode 50 b (see FIG. 8) of the label 50 a attached to the high concentration reagent tank 5.
  • the barcode 50b includes information unique to each high concentration reagent such as the lot number of the high concentration reagent and the expiration date after manufacture.
  • the RO water preparation unit 7 is configured so that RO water as a dilution liquid for diluting a high concentration reagent can be prepared using tap water.
  • the RO water production unit 7 includes an RO water storage tank 7a, an RO membrane 7b, and a filter 7c for protecting the RO membrane 7b by removing impurities contained in tap water.
  • the RO water preparation unit 7 includes a high-pressure pump 7d that applies high pressure to the water that has passed through the filter 7c so that water molecules pass through the RO membrane 7b, and an electromagnetic valve 222 that controls the supply of tap water. .
  • the RO water storage tank 7a is provided for storing RO water that has permeated through the RO membrane 7b.
  • the RO water storage tank 7a is provided with a float switch 108 for detecting that a predetermined amount of RO water is stored.
  • the RO water storage tank 7a is provided with a conductivity sensor 404 for measuring the electrical conductivity of the RO water in the RO water storage tank 7a.
  • the conductivity sensor 404 includes a temperature sensor 405 for measuring the temperature of the RO water.
  • the RO water preparation unit 7 is configured to be able to cause the tap water to reach the filter 7c by opening the electromagnetic valve 222. Moreover, the RO water preparation part 7 can permeate
  • the RO water preparation unit 7 is configured to store a predetermined amount of RO water in the RO water storage tank 7 a based on the detection result of the float switch 108.
  • the speed at which RO water is supplied to the RO water storage tank 7a by the RO water preparation unit 7, that is, the RO water preparation speed by the RO water preparation unit 7 is about 20 L / hour or more and about 50 L / hour or less.
  • step S1 of FIG. 9 the CPU 49a determines whether or not the barcode reader 50 has read the barcode 50b (see FIG. 8) of the label 50a attached to the high concentration reagent tank 5. Specifically, when the user presses a reagent replacement button 481c on a menu screen 481 (see FIG. 10) displayed on the display unit 48, a reagent replacement screen 482 is displayed as shown in FIG. Thereafter, the user places the handy type barcode reader 50 on the barcode 50b (see FIG. 8) of the new high-concentration reagent tank 5, whereby the barcode reader 50 reads the barcode 50b.
  • the menu screen 481 displays a schematic diagram 481a indicating the remaining amount of the high concentration reagent, a select button 481b, a reagent replacement button 481c, a drainage replacement button 481d, and a shutdown button 481e.
  • the select button 481b is pressed when the user confirms various settings and various items, as will be described later.
  • the drainage exchange button 481d is pressed when exchanging a drainage tank (not shown) for storing the drainage discarded from the reagent preparing device 4.
  • the shutdown button 481e is pressed when the reagent preparation device 4 is shut down.
  • the reagent replacement screen 482 displays contents indicating that the aspiration of the high concentration reagent is to be stopped and that the replacement of the high concentration reagent is urged.
  • an OK button 482a and a cancel button 482b are displayed on the reagent replacement screen 482.
  • the OK button 482a is pressed after the replacement of the high concentration reagent tank 5 is completed.
  • the cancel button 482b is pressed when the replacement of the high concentration reagent tank 5 is stopped.
  • step S1 this determination is repeated until the barcode 50b is read by the barcode reader 50.
  • the CPU 49a stores the lot number of the high concentration reagent and the post-manufacturing expiration date in the storage unit 49f based on the barcode 50b. Specifically, the lot number and the post-manufacturing expiration date of a new high concentration reagent are recorded in the reagent management list 491 of the storage unit 49f.
  • step S3 the CPU 49a stores the date when the barcode 50b is read in the storage unit 49f as the use start date of the high concentration reagent. That is, the use start date of the high concentration reagent is recorded in the reagent management list 491 of the storage unit 49f.
  • step S4 the CPU 49a stores the expiration date after opening the high concentration reagent in the storage unit 49f. Specifically, the CPU 49a stores a period of 30 days from the use start date of the high concentration reagent (the date when the barcode 50b is read) in the storage unit 49f as the expiration date after opening. That is, the expiration date after opening the high concentration reagent is recorded in the reagent management list 491 of the storage unit 49f.
  • the process from step S1 to step S4 is repeatedly performed after the reagent preparation apparatus 4 is started until it is shut down.
  • step S11 in FIG. 12 the CPU 49a initializes the computer program stored in the ROM 49b.
  • step S12 the CPU 49a determines whether or not the reagent preparing device 4 has been normally shut down at the end of the previous operation. Specifically, as will be described later, the determination is made based on a flag that is set to ON when the shutdown is normally performed. If it has been shut down normally, the process proceeds to step S16. If it has not been shut down normally, the process proceeds to step S13.
  • step S13 all the liquids in the chambers 42, 43, 44 and 46 other than the high concentration reagent chamber 41 and the supply chamber 47 are discarded.
  • the electromagnetic valves 204 and 205 are opened by the CPU 49a with the electromagnetic valves 206, 207 and 208 closed, and the RO water in the RO water chamber 42 is discarded.
  • the RO water discarded from the RO water chamber 42 may be transferred again to the RO water production unit 7 to produce new RO water from the discarded RO water.
  • the CPU 49a opens the electromagnetic valves 218 and 221 with the electromagnetic valves 211, 212, 217 and 219 closed, and pushes the liquid mixture in the stirring chamber 46 to the waste flow path with positive pressure.
  • the CPU 49a opens the electromagnetic valves 211 and 217 with the electromagnetic valves 212, 218, 219, and 221 closed, and transfers the mixed liquid in the dilution chamber 43 to the stirring chamber 46 with a negative pressure.
  • the mixed solution is discarded from the stirring chamber 46 by the above operation.
  • the mixed solution in the dilution chamber 44 is transferred to the stirring chamber 46 by negative pressure by the CPU 49a by opening the electromagnetic valves 212 and 217 with the electromagnetic valves 211, 218, 219 and 221 closed.
  • step S13 all the liquid in the chambers 42, 43, 44 and 46 other than the high concentration reagent chamber 41 and the supply chamber 47 is discarded, so that the RO water which may have been retained for a long time is used as the reagent. It is possible to prevent the reagent from being used for the preparation and the reagent having an unknown dilution rate from being generated.
  • step S14 the flow path, the RO water chamber 42, the dilution chamber 43 (44), and the stirring chamber 46 are cleaned. Specifically, after the RO water newly produced by the RO water production unit 7 is supplied to the RO water chamber 42, the diaphragm valve is opened by the CPU 49a by opening the electromagnetic valves 206, 208 and 213 (215). 45a (45b) is supplied with about 12.0 mL (about 6.0 mL for each diaphragm pump) of RO water under negative pressure.
  • the CPU 49a opens the electromagnetic valves 211 and 217 to transfer about 300 mL of RO water from the dilution chamber 43 to the stirring chamber 46. Then, the RO water in the stirring chamber 46 is discarded by opening the electromagnetic valves 218 and 221 while the electromagnetic valves 217 and 219 are closed by the CPU 49a.
  • step S15 the reagent is prepared in the stirring chamber 46 by the same operation as that for generating the reagent of the desired concentration, and all the prepared reagents are discarded. Specifically, after supplying a reagent having a desired concentration to the stirring chamber 46 by the operation of steps S20 and S21 described later, the electromagnetic valves 218 and 221 are opened by the CPU 49a with the electromagnetic valves 217 and 219 closed. To discard the reagent in the stirring chamber 46.
  • the reagent is also cleaned with the reagent having the desired concentration. Therefore, it is possible to prevent the reagent from being adjusted to a concentration other than the desired concentration.
  • step S17 the CPU 49a determines whether or not a predetermined amount of high concentration reagent is stored in the high concentration reagent chamber 41 based on the detection result of the float switch 100. If the predetermined amount of high concentration reagent is not stored, the high concentration reagent is replenished from the high concentration reagent tank 5 to the high concentration reagent chamber 41 in step S18. Specifically, the high-concentration reagent is supplied to the high-concentration reagent chamber 41 with negative pressure by opening the electromagnetic valves 200 and 201 with the electromagnetic valves 202 and 203 closed by the CPU 49a.
  • the CPU 49a determines whether or not a predetermined amount of reagent is stored in the supply chamber 47 in step S19. That is, it is determined whether or not about 300 mL to about 600 mL of reagent is stored in the supply chamber 47. If a predetermined amount of reagent is stored, the process proceeds to step S30. On the other hand, when the predetermined amount of reagent is not stored, in step S20, supply processing of the high concentration reagent and RO water is performed.
  • step S20 of the reagent preparation processing operation shown in FIG. 12 will be described with reference to FIGS.
  • the flow paths 301 to 304 shown in FIG. 6 are substantially filled with RO water, and the flow path 300 is substantially Are filled with high concentration reagents.
  • the flow path 300 and the flow path 301 are directly connected, the flow path 300 (300a) has a small inner diameter of about 1.8 mm with respect to the inner diameter of the flow path 301 of about 4.0 mm.
  • the high concentration reagent in the channel 300 is difficult to be mixed with the RO water in the channel 301.
  • the amount of high concentration reagent present in the flow path 300a is as follows. Very small amount.
  • Step S202 after the electromagnetic valves 213 (215) and 208 are closed, the electromagnetic valves 214 (216) and 209 are opened, so that positive pressure is supplied to the diaphragm pump 45a (45b) and RO Water is discharged. Thereby, about 12.0 mL (about 6.0 mL for each diaphragm pump) of RO water is supplied to the dilution chamber 43 through the flow paths 301 and 303.
  • step S203 about 12.0 mL (about 6.0 mL for each diaphragm pump) of high concentration reagent is aspirated from the high concentration reagent chamber 41 by the diaphragm pumps 45a and 45b.
  • the electromagnetic valves 214 (216) and 209 are closed by the CPU 49a, the electromagnetic valves 202, 203, and 213 (215) are opened, so that negative pressure is supplied and the diaphragm pump 45a (45b) is supplied.
  • a high concentration reagent is aspirated.
  • the high-concentration reagent is also present in the flow channel 300a, as described above, the amount of the high-concentration reagent present in the flow channel 300a is extremely small and can be substantially ignored. Further, at the time of aspiration of the high concentration reagent after the second reagent preparation processing operation, the high concentration reagent remaining in the flow channel 300a by the previous reagent preparation processing operation is pushed out to the flow channel 301 side, so that the diaphragm pump 45a ( 45b) and the flow path 301 are combined, and a high-concentration reagent of about 12.0 mL exists more accurately.
  • Step S204 after the electromagnetic valves 202, 203 and 213 (215) are closed, the electromagnetic valves 214 (216) and 209 are opened, so that a positive pressure is supplied and the diaphragm pump 45a (45b). A mixture of RO water and a high concentration reagent is discharged from. As a result, the mixture of the RO water and the high concentration reagent is supplied to the dilution chamber 43 through the flow paths 301 and 303. At this time, several mL of high-concentration reagent remains in the channels 301 and 303 in a state of being mixed with the RO water.
  • n represents the number of times RO water is discharged by the diaphragm pumps 45a and 45b, and is defined as a real number starting from 1.
  • Step S206 as in Step S201, about 12.0 mL of RO water is sucked from the RO water chamber 42 by the diaphragm pumps 45a and 45b.
  • step S207 RO water is discharged from the diaphragm pumps 45a and 45b similarly to said step S202. Thereby, the high concentration reagent remaining in the flow paths 301 and 303 is transferred to the dilution chamber 43 together with the RO water.
  • the electromagnetic valves 211 (212) and 217 are opened by the CPU 49a in step S21, and the dilution chamber 43 (44) is negatively pressured.
  • the reagent inside is transferred to the stirring chamber 46.
  • the transferred reagent is stirred in the stirring chamber 46 by flowing along the inner wall of the stirring chamber 46 through a pipe 416 provided in the stirring chamber 46.
  • Step S22 after the electromagnetic valves 211 (212) and 217 are closed, the electromagnetic valves 218 and 219 are opened, and the reagent is transferred from the stirring chamber 46 to the supply chamber 47.
  • the electrical conductivity C is measured by the conductivity sensor 402, and the temperature T2 of the reagent is measured by the temperature sensor 403. That is, the electrical conductivity C is obtained by detecting the AD value of the reference voltage and the AD value of the electrode voltage by the conductivity sensor 402. Further, the temperature T2 of the reagent is acquired by detecting the AD value of the thermistor voltage by the temperature sensor 403.
  • step S24 the CPU 49a determines the electrical conductivity C, the temperature T2, the reference voltage AD value, the electrode voltage AD value, and the thermistor voltage AD value of the reagent that has passed the conductivity sensor 402 and the temperature sensor 403 this time. Electrical conductivity when reagent preparation is completed, temperature when reagent preparation is completed, reference value when reagent preparation is completed, electrode value when reagent preparation is completed, and when reagent preparation is completed. The thermistor value is stored in the storage unit 49f.
  • the CPU 49a stores the date and time when the reagent passes through the conductivity sensor 402 and the temperature sensor 403 in the storage unit 49f as the current reagent preparation date and time. That is, the CPU 49a records the current reagent preparation date and time in the reagent preparation list 492 of the storage unit 49f.
  • the date and time (date and time) when the reagent passes through the conductivity sensor 402 and the temperature sensor 403 is the date and time (date and time) immediately before the reagent is supplied to the supply chamber 47.
  • the date and time (date and time) that has passed through the temperature sensor 403 and the date and time (date and time) at which the reagent is supplied to the supply chamber 47 are substantially the same.
  • the date and time (date and time) when the reagent passes through the conductivity sensor 402 and the temperature sensor 403 is considered as the date and time (date and time) when the reagent is supplied to the supply chamber 47, and the reagent is
  • the date and time (date and time) passed through the conductivity sensor 402 and the temperature sensor 403, that is, the date and time (date and time) when the reagent is supplied to the supply chamber 47 is handled as the reagent preparation date and time.
  • step S25 the CPU 49a determines whether or not the electric conductivity C is within a predetermined range. Specifically, it is determined whether or not the measured electrical conductivity C is within a predetermined range with respect to the target value Z of electrical conductivity calculated by the above formula (2) at a dilution factor of 25 times.
  • the CPU 49a records that the reagent preparation result is NG in the reagent preparation list 492 of the storage unit 49f.
  • step S27 the electromagnetic valve 219 is closed and the electromagnetic valve 221 is opened, so that a reagent whose electrical conductivity C is not within the predetermined range is discarded through the discard channel. As a result, only the reagent diluted with high accuracy can be stored in the supply chamber 47.
  • step S28 the CPU 49a records that the reagent preparation result is G (Good) in the reagent preparation list 492 of the storage unit 49f.
  • step S29 the CPU 49a causes the storage unit 49f to store the reagent preparation reagent supply time zone in which the reagent preparation result is recorded as G (Good). That is, the reagent preparation time zone of the reagent recorded as the reagent preparation result G (Good) two times before is recorded in the reagent preparation list 492 of the storage unit 49f.
  • the preparation reagent supply time zone is a time zone during which the corresponding reagent may have been transferred from the reagent preparation device 4 to the measurement unit 2.
  • the prepared reagent supply time zone is acquired by the CPU 49a based on a plurality of reagent preparation dates and times acquired each time the reagent passes through the conductivity sensor 402 and the temperature sensor 403.
  • the reagent B was present in the supply chamber 47 between the state 2 (January 5, 2009, 10:03) and the state 7 (January 5, 2009, 10:15).
  • the time zone during which reagent B may have been transferred from the supply chamber 47 to the measuring unit 2 (prepared reagent supply time zone) is 10:03 on January 5, 2009 to 10:15 on January 5, 2009. Minutes. That is, the beginning of the preparation reagent supply time zone is the reagent preparation date and time of the target reagent B, and the end of the preparation reagent supply time zone is supplied to the supply chamber 47 two times later from the target reagent B. This is the reagent preparation date and time for reagent D.
  • the reagent supply time zone for reagent B preparation includes the reagent preparation date and time for reagent B (January 5, 2009 10:03) and the reagent preparation date and time for reagent D (January 5, 2009 10:15). Min) based on both.
  • the reagent B preparation reagent supply time zone of reagent B is the reagent B preparation reagent supply time zone. Is started to be supplied to the supply chamber 47 (state 2 (January 5, 2009, 10:03)), about 600 mL of reagent (about 300 mL of reagent A + about 300 mL of reagent B) which is the same as the capacity of the supply chamber 47 Is a time period until the state is discharged from the supply chamber 47 (state 7 (January 5, 2009, 10:15)).
  • step S30 After the prepared reagent supply time zone is stored in the storage unit 49f in step S29 of FIG. 13, whether or not there is a reagent supply instruction from the measurement unit 2 transmitted via the data processing unit 3 by the CPU 49a in step S30. If there is no instruction, the process proceeds to step S32. If there is a reagent supply instruction, the reagent in the supply chamber 47 is transferred to the measurement unit 2 via the filter 471 by the negative pressure supplied from the measurement unit 2 in step S31. In step S32, the CPU 49a determines whether or not there is a shutdown instruction from the user. If there is no instruction, the process proceeds to step S12.
  • step S33 If there is a shutdown instruction, the above operation is continued until the reagent being prepared is finally transferred to the supply chamber 47 in step S33. Specifically, when there is no predetermined amount (about 300 mL or more and about 600 mL or less) of reagent in the supply chamber 47, the reagent preparation is continued by the operation of the above steps S20 to S29. When the operation is stopped, the reagent diluted to a concentration different from the desired concentration remains in the flow path, the dilution chamber 43 (44), and the stirring chamber 46. Therefore, by continuing the preparation operation in step S33, it is possible to prevent the reagent diluted to a concentration different from the desired concentration from remaining in the flow path, the dilution chamber 43 (44), and the stirring chamber 46. is there.
  • step S34 shutdown is executed. At this time, the RO water is discharged from the RO water chamber 42. Thereby, it is possible to prevent the RO water from staying in the RO water chamber 42 until the reagent preparation device 4 is started next time. Thereafter, in step S35, a flag indicating that the shutdown has been normally performed is set to ON, and the reagent preparation processing operation is ended.
  • a select button 481b is pressed from a menu screen 481 displayed on the display unit 48, and maintenance, history, and preparation history are sequentially selected from the select menu.
  • a preparation history first screen 483 is displayed on the display unit 48 as shown in FIG.
  • the preparation history first screen 483 includes a reagent preparation date and time (date and time), a reagent preparation result, a temperature when the reagent preparation is completed, an electric conductivity when the reagent preparation is completed, and a preparation reagent supply time.
  • a band is displayed. These are displayed based on the contents of the reagent preparation list 492 in the storage unit 49f.
  • the preparation history first screen 483 also displays up and down direction buttons 483a and 483b, left and right direction buttons 483c and 483d, history clear button 483e, and return button 483f.
  • the up / down direction buttons 483a and 483b it is possible to display the preparation history information of each prepared reagent displayed in order of 5 in the ascending order of the reagent preparation date and time.
  • the history clear button 483e it is possible to delete the preparation history information of each preparation reagent.
  • the return button 483f the previous display screen is displayed. Then, the user can view other items of the preparation history information of each preparation reagent by pressing the left and right direction buttons 483c and 483d.
  • a preparation history second screen 484 is displayed on the display unit 48 as shown in FIG.
  • the preparation history second screen 484 displays the reagent preparation date (date and time), the reference value, the electrode value, and the thermistor value. These are displayed based on the contents of the reagent preparation list 492 in the storage unit 49f.
  • the preparation history third screen 485 is displayed on the display unit 48 as shown in FIG.
  • the reagent preparation date and time date and time
  • the lot number of the high concentration reagent used for the reagent preparation the expiration date after the manufacture of the high concentration reagent, and the use start date of the high concentration reagent are displayed.
  • the expiration date after opening the high concentration reagent are displayed. These are displayed based on the contents of the reagent management list 491 in the storage unit 49f.
  • the preparation history first screen 483, the preparation history second screen 484, and the preparation history third screen 485 are displayed in the reverse order to the case where the right button 483d is pressed. In this way, the user can check the high concentration reagent information and the reagent preparation history information by browsing the preparation history first screen 483, the preparation history second screen 484, and the preparation history third screen 485. is there.
  • an error history screen (not shown) is displayed, and various error histories in the reagent preparation device 4 are confirmed. It is possible. Further, when the user selects the maintenance, history, and replacement history of the select menu in order on the menu screen 481, a replacement history screen (not shown) is displayed, and the high concentration reagent tank based on the reagent management list 491 of the storage unit 49f is displayed. 5 exchange history can be confirmed.
  • the CPU 49a that acquires the reagent information related to the prepared reagent and acquires the prepared reagent supply time zone of the prepared reagent to the measurement unit 2, the reagent information and the prepared reagent supply time
  • the display unit 48 for displaying the band, what attributes are provided based on the reagent information of the prepared reagent displayed on the display unit 48 and the preparation reagent supply time zone of the prepared reagent to the measuring unit 2 It is possible to easily confirm when the reagent is supplied to the measurement unit 2. Thereby, when the reliability of the measurement result is low, it becomes easy to acquire information on the reagent used for the measurement, and therefore it becomes easy to pursue the cause of the decrease in the reliability of the measurement result.
  • the CPU 49a by configuring the CPU 49a to acquire the electrical conductivity of the prepared reagent, the reagent used for measurement by the measuring unit 2 is specified and then the quality of the reagent is confirmed. Therefore, the cause of the decrease in the reliability of the measurement result can be pursued more easily.
  • the prepared reagent supply time zone can be acquired based on the reagent preparation date and time by configuring the CPU 49a to acquire the prepared reagent supply time zone based on the reagent preparation date and time. It is not necessary to measure and acquire the preparation reagent supply time zone separately from the reagent preparation date and time.
  • the measurement of the measurement unit 2 is performed by configuring the CPU 49a so as to acquire the time zone in which the prepared reagent may be supplied to the measurement unit 2 as the preparation reagent supply time zone. Since it is possible to easily identify a reagent that may be actually used, it is easy to pursue the cause of the decrease in the reliability of the measurement result.
  • the CPU 49a is configured to acquire the high-concentration reagent information regarding the high-concentration reagent as the reagent information
  • the display unit 48 is configured to output the high-concentration reagent information.
  • the high-concentration reagent information of the high-concentration reagent contained in the reagent can easily confirm which high-concentration reagent was used to prepare the reagent used in the measurement. It becomes easier to pursue the cause of the decrease. In addition, by confirming the lot number of the high concentration reagent, it is possible to easily identify which lot of the high concentration reagent the reagent was prepared with.
  • a barcode reader 50 for reading the barcode 50b of the label 50a attached to the high concentration reagent tank 5 is provided, and the high concentration reagent information is obtained by the CPU 49a based on the information read by the barcode reader 50.
  • the blood sample processing system 1 includes a measuring unit 2 having a function of measuring blood, a data processing unit 3 that analyzes the measurement data output from the measuring unit 2 and obtains an analysis result, And a reagent preparation device 500 that prepares a reagent used for processing the specimen.
  • the reagent preparation device 500 uses the RO water produced by the RO water production unit 7 provided therein to obtain a desired high concentration reagent.
  • the reagent used for blood analysis is prepared by diluting to a concentration.
  • the reagent preparing device 500 is not provided with a display unit. For this reason, the user uses the input device 33 of the data processing unit 3 to start and shut down the reagent preparation device 4.
  • the reagent preparation device 500 receives various information (high concentration reagent information and reagent preparation history information) recorded in the reagent management list 491 and the reagent preparation list 492 of the storage unit 49f via the communication interface 49d. Configured to send to. Thereby, the user can confirm the high concentration reagent information and the reagent preparation history information on the display unit 32 of the data processing unit 3.
  • the remaining structure of the second embodiment is the same as that of the first embodiment.
  • the entire configuration of the blood sample processing system 1 can be simplified.
  • the present invention is not limited thereto, and the reagent information is high.
  • the RO water information including the electrical conductivity of the RO water produced by the RO water production unit 7 may be displayed on the display unit. Further, the RO water information and the reagent preparation history information may be displayed on the display unit without displaying the high concentration reagent information.
  • the reagent preparation history information includes reagent preparation date and time, electrical conductivity, temperature, reference value, electrode value, thermistor value, reagent preparation result,
  • the reagent preparation history information includes the prepared reagent supply time zone as long as the reagent preparation history information includes the prepared reagent supply time zone.
  • the structure which does not contain the said information other than may be sufficient, and the structure which further contains other information other than the above may be sufficient.
  • the reagent which consists of a high concentration reagent and RO water (pure water) was shown as an example of a predetermined reagent, this invention is not limited to this, A high concentration
  • the reagent may be composed of another type of liquid different from the reagent and RO water (pure water).
  • the prepared reagent supply time zone is the time from when the reagent starts to be supplied to the supply chamber to when the same amount of reagent as the supply chamber is discharged from the supply chamber.
  • the present invention is not limited to this, and the prepared reagent supply time zone is different from the supply chamber capacity after the reagent starts to be supplied to the supply chamber, for example, the supply chamber capacity It may be a time period until 1.5 times the amount of the reagent is discharged from the supply chamber, or until the amount of reagent different from 1.5 times the amount of the supply chamber is discharged from the supply chamber. It may be a time zone. In this case, if it is a time zone until a larger amount of reagent than the amount accommodated in the supply chamber is discharged from the supply chamber, the corresponding reagent preparation reagent supply time zone can be obtained more accurately.
  • a measurement part and a data processing part are 1 One blood sample analyzer may be used.
  • reagent information high concentration reagent information and reagent preparation history information
  • the present invention is not limited to this, and the second embodiment described above. Similar to the configuration of the embodiment, reagent information (high concentration reagent information and reagent preparation history information) is transmitted from the reagent preparation device to the data processing unit, and reagent information (high concentration reagent information and reagent preparation history is displayed on the display unit of the data processing unit). Information) may be displayed.
  • reagent information high concentration reagent information and reagent preparation history information
  • the present invention is not limited to this, and the first embodiment is not limited thereto.
  • a display unit may be provided in the reagent preparation device, and reagent information (high concentration reagent information and reagent preparation history information) may be displayed on the display unit of the reagent preparation device.
  • the reagent preparation date / time may be acquired based on the detection result of the float switch, or the reagent preparation date / time acquisition sensor may be separately provided in the supply chamber to acquire the reagent preparation date / time.
  • the reagent preparation apparatus installed separately from the measurement part was shown as an example of a reagent preparation apparatus, this invention is not restricted to this, As shown in FIG.
  • a reagent preparation device provided in the measurement unit and functioning as a reagent preparation mechanism may be used.
  • the measurement unit (device) having a reagent preparation mechanism include a blood cell counter, an immunoassay device, and a smear preparation device, which are particularly suitable for blood cell counters that use a large amount of dilution liquid. ing.
  • the reagent preparation apparatus in which the reagents prepared from the high concentration reagents having different lot numbers are mixed in the supply chamber is shown.
  • the present invention is not limited to this, A reagent preparation device that discards the high-concentration reagent accommodated in each chamber and the mixed solution of the high-concentration reagent and pure water when the high-concentration reagent is replaced may be used. As a result, reagents with different lot numbers are not mixed in the chamber, so that more accurate supply time information can be acquired.
  • the supply time information is displayed on the display of the reagent preparation device, and the analysis result of the sample is displayed on the display of the data processing device.
  • the present invention is not limited to this.
  • the reagent preparation device acquires the supply time information
  • the acquired supply time information is transmitted to the data processing device, and the data processing device receives the analysis result of the sample, the measurement time of the sample, and the reagent preparation device.
  • the sample processing system may output the supply time information in association with each other. As a result, centralized management of information by the data processing apparatus becomes possible.
  • the barcode reader 50 is shown as an example of the information reading unit.
  • the QR code including the information on the high concentration reagent
  • It may be an information reading unit other than a barcode reader, such as a QR code reader capable of reading (registered trademark).

Abstract

 この試薬調製装置は、第1液体と第2液体とを含む所定の試薬を用いて検体を測定する測定部に供給される所定の試薬を調製する試薬調製装置であって、所定の試薬を調製する試薬調製部と、調製された所定の試薬に関する試薬情報を取得し、調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得し、試薬情報と供給時間情報とを出力する制御部とを備える。

Description

試薬調製装置および検体処理システム
 本発明は、試薬調製装置および検体処理システムに関し、特に、測定に用いられる所定の試薬を調製可能な試薬調製装置および検体処理システムに関する。
 従来、測定に用いられる試薬を調製可能な試薬調製装置が知られている(たとえば、特許文献1参照)。
 上記特許文献1には、高濃度試薬と純水とからなる試薬を調製することが可能な試薬調製装置が開示されている。
 ここで、試薬調製装置により調製された試薬を用いて測定を行う場合、測定結果の信頼性が低ければ、その原因を追及し改善することが求められる。そして、測定結果の信頼性低下の原因を追及するための確認事項の1つとして、測定に用いられた試薬に関する試薬情報が考えられる。
 しかしながら、上記特許文献1では、試薬調製装置により調製された試薬に関する試薬情報を取得する構成について何ら記載されていない。このため、この試薬調製装置では、測定結果の信頼性が低い場合に、測定に用いられた試薬の試薬情報を得ることができないと考えられるので、測定結果の信頼性低下の原因の追及を行うことが難しいという問題点がある。
 そこで、従来、試薬調製装置により調製された試薬に関する試薬情報を取得可能な技術が知られている(たとえば、特許文献2参照)。
 上記特許文献2には、複数の試薬調製装置と、複数の試薬調製装置に接続されるサーバコンピュータと、サーバコンピュータに接続されるクライアントコンピュータとを備える集中監視システムが開示されている。この集中監視システムは、試薬調製装置により調製された試薬の電気伝導度などの試薬情報と試薬の調製日時情報とが各試薬調製装置からサーバコンピュータに送信され、送信された試薬情報および調製日時情報をクライアントコンピュータで表示可能に構成されている。
特開平9-33538号公報 特開2007-240430号公報
 しかしながら、上記特許文献2に記載の集中監視システムでは、試薬調製装置により調製された試薬の試薬情報および調製日時情報を確認することが可能である一方、調製された試薬がいつ測定部で用いられたかを確認することはできないので、測定結果の信頼性が低い場合に、測定に用いられた試薬を特定することが難しい。このため、この集中監視システムにおいても、測定結果の信頼性低下の原因の追及を容易に行うことができないという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、測定結果の信頼性低下の原因の追及を容易に行うことが可能な試薬調製装置および検体処理システムを提供することである。
課題を解決するための手段および発明の効果
 上記目的を達成するために、この発明の第1の局面における試薬調製装置は、第1液体と第1液体とは異なる第2液体とを含む所定の試薬を用いて検体を測定する測定部に供給される所定の試薬を調製する試薬調製装置であって、所定の試薬を調製する試薬調製部と、試薬調製部により調製された所定の試薬に関する試薬情報を取得し、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得し、試薬情報と供給時間情報とを出力する制御部と、を備える。
 この発明の第1の局面による試薬調製装置では、上記のように、試薬調製部により調製された所定の試薬に関する試薬情報を取得し、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得し、試薬情報と供給時間情報とを出力する制御部を設けることによって、制御部により出力された所定の試薬の試薬情報および所定の試薬の測定部への供給時間情報に基づいて、どのような属性を有する試薬がいつ測定部に供給されたかを容易に確認することができる。これにより、測定結果の信頼性が低い場合に、測定に用いられた試薬の情報を取得することが容易になるので、測定結果の信頼性低下の原因の追及が容易になる。
 上記第1の局面による試薬調製装置において、好ましくは、制御部は、試薬情報として、所定の試薬の品質を示す品質情報を取得する。このように構成すれば、測定部の測定に用いられた所定の試薬を特定した後にその所定の試薬の品質を確認することができるので、測定結果の信頼性低下の原因の追及をより容易に行うことができる。
 この場合、好ましくは、所定の試薬の電気伝導度を測定する電気伝導度測定部をさらに備え、制御部は、品質情報として、電気伝導度測定部によって測定された電気伝導度を取得する。このように構成すれば、測定部の測定に用いられた所定の試薬の電気伝導度に基づいて、所定の試薬の品質を容易に判断することができる。
 上記第1の局面による試薬調製装置において、好ましくは、制御部は、試薬調製部により所定の試薬が調製された時間に関する調製時間情報をさらに取得し、取得された調製時間情報に基づいて、供給時間情報を取得する。このように構成すれば、制御部により、調製時間情報に基づいて供給時間情報を取得することができるので、供給時間情報を調製時間情報とは別個に測定して取得する必要がない。
 この場合、好ましくは、試薬調製部により調製され、測定部への供給待機状態にある所定の試薬を貯留する試薬貯留部をさらに備え、制御部は、所定の試薬が試薬貯留部に供給される時間を、調製時間情報として取得する。このように構成すれば、所定の試薬が測定部に供給可能な状態となった調製完了時を調製時間情報とすることができる。
 上記試薬貯留部を備える構成において、好ましくは、試薬貯留部に移送される所定の試薬の電気伝導度を測定する電気伝導度測定部をさらに備え、制御部は、所定の試薬が試薬貯留部に供給される時間を、試薬貯留部に移送される所定の試薬が電気伝導度測定部を通過する時間に基づいて決定する。このように構成すれば、試薬貯留部に移送される調製完了後の所定の試薬が電気伝導度測定部を通過する時間を、所定の試薬が試薬貯留部に供給される時間として調製時間情報とすることができる。
 上記試薬貯留部を備える構成において、好ましくは、制御部は、所定の試薬が試薬貯留部に供給される毎に、調製時間情報を取得し、取得された複数の調製時間情報に基づいて、供給時間情報を取得する。このように構成すれば、試薬貯留部に供給される今回の所定の試薬の調製時間情報と、試薬貯留部に供給される今回以外の所定の試薬の調製時間情報との複数の調製時間情報に基づいて供給時間情報を取得することができるので、より精度よく供給時間情報を取得することができる。
 上記第1の局面による試薬調製装置において、好ましくは、制御部は、所定の試薬が測定部に供給された可能性のある時間帯を、供給時間情報として取得する。このように構成すれば、測定部の測定で実際に用いられた可能性のある所定の試薬をより容易に特定することができるので、測定結果の信頼性低下の原因の追及がより容易になる。
 この場合、好ましくは、試薬調製部により調製され、測定部への供給待機状態にある所定の試薬を貯留するとともに、所定の収容量を有する試薬貯留部をさらに備え、特定すべき所定の試薬が測定部に供給された可能性のある時間帯は、特定すべき所定の試薬が試薬貯留部に供給され始めた時間から、試薬貯留部の所定の収容量と略同じ量の所定の試薬が試薬貯留部から測定部側に排出された時間までの時間帯である。このように構成すれば、所定の試薬が測定部に供給された可能性のある時間帯の始期と終期とを明確にすることができるので、制御部により、容易に、所定の試薬が測定部に供給された可能性のある時間帯を取得することができる。
 上記第1の局面による試薬調製装置において、好ましくは、第1液体は、試薬原液であり、制御部は、試薬情報として、試薬原液に関する試薬原液情報を取得し、試薬原液情報を出力する。このように構成すれば、所定の試薬に含まれる試薬原液の試薬原液情報に基づいて、容易に、測定に用いられた所定の試薬がどの試薬原液を用いて調製されたかを確認することができるので、測定結果の信頼性低下の原因の追及がより容易となる。
 この場合、好ましくは、試薬原液を収容した試薬容器から試薬原液情報を読み取る情報読取部をさらに備え、制御部は、情報読取部の読み取り結果に基づいて、試薬原液情報を取得する。このように構成すれば、情報読取部を用いて容易に試薬原液情報を取得することができる。
 上記第1液体が試薬原液である構成において、好ましくは、試薬原液情報は、試薬原液のロット番号を含む。このように構成すれば、ロット番号により測定に用いられた所定の試薬がどのロットの試薬原液を用いて調製されたかを容易に特定することができる。
 上記第1液体が試薬原液である構成において、好ましくは、試薬原液情報は、試薬原液の有効期限に関する有効期限情報を含む。このように構成すれば、測定に用いられた所定の試薬が有効期限切れの試薬原液を用いて調製された所定の試薬であるか否かを確認することができる。
 この発明の第2の局面における試薬調製装置は、第1液体と第1液体とは異なる第2液体とを含む所定の試薬を用いて検体を測定する測定部に供給される所定の試薬を調製する試薬調製装置であって、所定の試薬を調製する試薬調製部と、試薬調製部により調製された所定の試薬に関する試薬情報を取得する試薬情報取得手段と、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得する供給時間情報取得手段と、試薬情報と供給時間情報とを出力する出力手段とを備える。
 この発明の第2の局面による試薬調製装置では、上記のように、試薬調製部により調製された所定の試薬に関する試薬情報を取得する試薬情報取得手段と、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得する供給時間情報取得手段と、試薬情報と供給時間情報とを出力する出力手段とを設けることによって、出力手段により出力された所定の試薬の試薬情報および所定の試薬の測定部への供給時間情報に基づいて、どのような属性を有する試薬がいつ測定部に供給されたかを容易に確認することができる。これにより、測定結果の信頼性が低い場合に、測定に用いられた試薬の情報を取得することが容易になるので、測定結果の信頼性低下の原因の追及が容易になる。
 この発明の第3の局面における検体処理システムは、第1液体と第1液体とは異なる第2液体とを含む所定の試薬を調製する試薬調製部と、試薬調製部により調製された所定の試薬を用いて検体を測定する測定部と、試薬調製部により調製された所定の試薬に関する試薬情報を取得し、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得し、試薬情報と供給時間情報とを出力する制御部と、を備える。
 この発明の第3の局面による検体処理システムでは、上記のように、試薬調製部により調製された所定の試薬に関する試薬情報を取得し、試薬調製部により調製された所定の試薬が測定部に供給された時間に関する供給時間情報を取得し、試薬情報と供給時間情報とを出力する制御部を設けることによって、制御部により出力された所定の試薬の試薬情報および所定の試薬の測定部への供給時間情報に基づいて、どのような属性を有する試薬がいつ測定部に供給されたかを容易に確認することができる。これにより、測定結果の信頼性が低い場合に、測定に用いられた試薬の情報を取得することが容易になるので、測定結果の信頼性低下の原因の追及が容易になる。
本発明の第1実施形態による試薬調製装置の使用状態を示した斜視図である。 図1に示した第1実施形態による試薬調製装置を備えた血液分析装置の構成を示したブロック図である。 図1に示した第1実施形態による試薬調製装置を備えた血液分析装置の試料調製部を説明するための図である。 図1に示した第1実施形態による試薬調製装置を備えた血液分析装置の検出部を示した概略図である。 図1に示した第1実施形態による試薬調製装置を備えた血液分析装置のデータ処理部の構成を示したブロック図である。 図1に示した第1実施形態による試薬調製装置の構成を示した概略図である。 本発明の第1実施形態による試薬調製装置の制御部を説明するためのブロック図である。 本発明の第1実施形態による試薬調製装置のバーコードリーダを説明するための図である。 本発明の第1実施形態による試薬調製装置の高濃度試薬情報取得処理動作を説明するためのフローチャートである。 本発明の第1実施形態による試薬調製装置の高濃度試薬情報取得処理動作を説明するための画面図である。 本発明の第1実施形態による試薬調製装置の高濃度試薬情報取得処理動作を説明するための画面図である。 本発明の第1実施形態による試薬調製装置の試薬調製処理動作を説明するためのフローチャートである。 本発明の第1実施形態による試薬調製装置の試薬調製処理動作を説明するためのフローチャートである。 図12に示した試薬調製処理動作のステップS20における高濃度試薬およびRO水の供給処理動作を説明するためのフローチャートである。 本発明の第1実施形態による試薬調製装置における調製試薬供給時間帯について説明するための概念図である。 本発明の第1実施形態による試薬調製装置において試薬調製履歴を確認する方法について説明するための図である。 本発明の第1実施形態による試薬調製装置において試薬調製履歴を確認する方法について説明するための図である。 本発明の第1実施形態による試薬調製装置において試薬調製履歴を確認する方法について説明するための図である。 本発明の第1実施形態による試薬調製装置において試薬調製履歴を確認する方法について説明するための図である。 本発明の第2実施形態による試薬調製装置の使用状態を示した斜視図である。 図20に示した第2実施形態による試薬調製装置の構成を示した概略図である。 図1に示した第1実施形態および図20に示した第2実施形態による試薬調製装置の変形例を説明するためのブロック図である。
 以下、本発明の実施形態を図面に基づいて説明する。
(第1実施形態)
 まず、図1~図8を参照して、本発明の第1実施形態による試薬調製装置4の構成について説明する。なお、第1実施形態では、血液検査を行うための血液検体処理システム1の一部として、本発明の第1実施形態による試薬調製装置4を使用する場合について説明する。
 血液検体処理システム1は、図1に示すように、血液の測定を行う機能を有する測定部2と、測定部2から出力された測定データを分析して分析結果を得るデータ処理部3と、検体の処理に用いられる試薬を調製する試薬調製装置4とにより構成されている。測定部2は、フローサイトメトリー法により、血液中の白血球、網状赤血球および血小板の測定を行うように構成されている。また、測定部2は、試薬調製装置4によって調製され、供給される試薬を用いて血液を希釈し、白血球、網状赤血球および血小板の測定を行うように構成されている。さらに、測定部2は、試薬調製装置4によって調製され、供給される上記試薬を洗浄液として用い、後述する試料調製部21に含まれるサンプリングバルブ21bおよび反応チャンバ21c等や、検出部22に含まれるシースフローセル22c等を洗浄するように構成されている。なお、フローサイトメトリー法とは、測定試料を含む試料流を形成するとともに、その試料流にレーザ光を照射することによって、測定試料中の粒子(血球)が発する前方散乱光、側方散乱光および側方蛍光を検出する粒子(血球)の測定方法である。
 測定部2は、図2に示すように、測定試料調製部21と、測定試料の測定を行う検出部22と、検出部22の出力に対するアナログ処理部23と、表示・操作部24と、測定部2を制御するためのマイクロコンピュータ部25とを備えている。
 測定試料調製部21は、白血球測定用試料と、網状赤血球測定用試料と、血小板測定用試料とを調製するために設けられている。測定試料調製部21は、図3に示すように、血液が吸引されるサンプリングバルブ21bと、反応チャンバ21cとを含んでいる。採血管21aは、分析対象の血液を収容している。
 サンプリングバルブ21bは、吸引ピペット(図示せず)により吸引された採血管21aの血液を所定の量だけ定量する機能を有する。また、サンプリングバルブ21bは、吸引された血液に所定の試薬を混合することが可能に構成されている。つまり、サンプリングバルブ21bは、所定量の血液に試薬調製装置4から供給される所定量の試薬が混合された希釈試料を生成可能に構成されている。
 反応チャンバ21cは、サンプリングバルブ21bから供給される希釈試料に所定の染色液をさらに混合して所定の時間反応させるように構成されている。これにより、測定試料調製部21は、白血球が染色されるとともに赤血球が溶血された、白血球測定用試料を調製する機能を有する。また、測定試料調製部21は、網状赤血球が染色された網状赤血球測定用試料を調製するとともに、血小板が染色された血小板測定用試料を調製する機能を有する。
 また、測定試料調製部21は、白血球分類測定(以下、「DIFF測定」という)モード時に、白血球測定用試料をシース液とともに測定試料調製部21から後述するシースフローセル22c(図4参照)に供給するように構成されている。また、測定試料調製部21は、網状赤血球測定(以下、「RET測定」という)モード時に、網状赤血球測定用試料をシース液とともに測定試料調製部21からシースフローセル22cに供給するように構成されている。また、測定試料調製部21は、血小板測定(以下、「PLT測定」という)モード時に、血小板測定用試料をシース液とともに測定試料調製部21からシースフローセル22cに供給するように構成されている。
 検出部22は、図4に示すように、レーザ光を出射する発光部22aと、照射レンズユニット22bと、レーザ光が照射されるシースフローセル22cと、発光部22aから出射されるレーザ光が進む方向の延長線上に配置されている集光レンズ22d、ピンホール22eおよびPD(フォトダイオード)22fと、発光部22aから出射されるレーザ光が進む方向と交差する方向に配置されている集光レンズ22g、ダイクロイックミラー22h、光学フィルタ22i、ピンホール22jおよびAPD(アバランシェフォトダイオード)22kと、ダイクロイックミラー22hの側方に配置されているPD22lとを含んでいる。
 発光部22aは、シースフローセル22cの内部を通過する測定試料を含む試料流に対して光を出射するために設けられている。また、照射レンズユニット22bは、発光部22aから出射された光を平行光にするために設けられている。また、PD22fは、シースフローセル22cから出射された前方散乱光を受光するために設けられている。なお、シースフローセル22cから出射された前方散乱光により、測定試料中の粒子(血球)の大きさに関する情報を得ることが可能である。
 ダイクロイックミラー22hは、シースフローセル22cから出射された側方散乱光および側方蛍光を分離するために設けられている。具体的には、ダイクロイックミラー22hは、シースフローセル22cから出射された側方散乱光をPD22lに入射させるとともに、シースフローセル22cから出射された側方蛍光をAPD22kに入射させるために設けられている。また、PD22lは、側方散乱光を受光するために設けられている。なお、シースフローセル22cから出射された側方散乱光により、測定試料中の粒子(血球)の核の大きさなどの内部情報を得ることが可能である。また、APD22kは、側方蛍光を受光するために設けられている。なお、シースフローセル22cから出射された側方蛍光により、測定試料中の粒子(血球)の染色度合いに関する情報を得ることが可能である。また、PD22f、22lおよびAPD22kは、それぞれ、受光した光信号を電気信号に変換する機能を有する。
 アナログ処理部23は、図4に示すように、アンプ23a、23bおよび23cを含んでいる。また、アンプ23a、23bおよび23cは、それぞれ、PD22f、22lおよびAPD22kから出力された電気信号を増幅および波形処理するために設けられている。
 マイクロコンピュータ部25は、図2に示すように、制御用プロセッサおよび制御用プロセッサを動作させるためのメモリを有する制御部251と、アナログ処理部23から出力された信号をデジタル信号に変換するA/D変換部252と、A/D変換部252から出力されたデジタル信号に所定の処理を行うための演算部253とを含んでいる。
 制御部251は、バス254aおよびインターフェース255aを介して測定試料調製部21および検出部22を制御する機能を有する。また、制御部251は、バス254aおよびインターフェース255bを介して表示・操作部24と接続されるとともに、バス254bおよびインターフェース255cを介してデータ処理部3と接続されている。また、演算部253は、インターフェース255dおよびバス254aを介して制御部251に演算結果を出力する機能を有する。また、制御部251は、演算結果(測定データ)をデータ処理部3に送信する機能を有する。
 データ処理部3は、図1に示すように、パーソナルコンピュータ(PC)などからなり、測定部2の測定データを分析するとともに、その分析結果を表示する機能を有する。また、データ処理部3は、図5に示すように、制御部31と、表示部32と、入力デバイス33とを含んでいる。
 制御部31は、測定モード情報を含む測定開始信号およびシャットダウン信号を測定部2に送信する機能を有する。また、制御部31は、図5に示すように、CPU31aと、ROM31bと、RAM31cと、ハードディスク31dと、読出装置31eと、入出力インターフェース31fと、画像出力インターフェース31gと、通信インターフェース31iとから構成されている。CPU31a、ROM31b、RAM31c、ハードディスク31d、読出装置31e、入出力インターフェース31f、画像出力インターフェース31gおよび通信インターフェース31iは、バス31hによって接続されている。
 CPU31aは、ROM31bに記憶されているコンピュータプログラムおよびRAM31cにロードされたコンピュータプログラムを実行するために設けられている。ROM31bは、マスクROM、PROM、EPROM、EEPROMなどによって構成されており、CPU31aに実行されるコンピュータプログラムおよびこれに用いるデータなどが記録されている。
 RAM31cは、SRAMまたはDRAMなどによって構成されている。RAM31cは、ROM31bおよびハードディスク31dに記録されているコンピュータプログラムの読み出しに用いられる。また、これらのコンピュータプログラムを実行するときに、CPU31aの作業領域として利用される。
 ハードディスク31dは、オペレーティングシステムおよびアプリケーションプログラムなど、CPU31aに実行させるための種々のコンピュータプログラムおよびそのコンピュータプログラムの実行に用いるデータがインストールされている。後述するアプリケーションプログラム34aも、このハードディスク31dにインストールされている。
 読出装置31eは、フレキシブルディスクドライブ、CD-ROMドライブ、またはDVD-ROMドライブなどによって構成されており、可搬型記録媒体34に記録されたコンピュータプログラムまたはデータを読み出すことができる。また、可搬型記録媒体34には、コンピュータに所定の機能を実現させるためのアプリケーションプログラム34aが格納されている。そして、データ処理部3としてのコンピュータは、その可搬型記録媒体34からアプリケーションプログラム34aを読み出し、そのアプリケーションプログラム34aをハードディスク31dにインストールするように構成されている。アプリケーションプログラム34aとしては、測定部で測定された検体を解析し、解析結果を検体の分析結果として出力する解析プログラムが挙げられる。また、アプリケーションプログラム34aとしては、時計としての機能を有するソフトウェアも挙げられ、解析プログラムは、分析結果に検体の測定時刻を対応付けて出力する。
 なお、上記アプリケーションプログラム34aは、可搬型記録媒体34によって提供されるのみならず、電気通信回線(有線、無線を問わない)によってデータ処理部3と通信可能に接続された外部の機器から上記電気通信回線を通じて提供することも可能である。たとえば、上記アプリケーションプログラム34aがインターネット上のサーバコンピュータのハードディスク内に格納されており、このサーバコンピュータにデータ処理部3がアクセスして、そのアプリケーションプログラム34aをダウンロードし、これをハードディスク31dにインストールすることも可能である。
 また、ハードディスク31dには、たとえば、米マイクロソフト社が製造販売するWindows(登録商標)などのグラフィカルユーザインターフェース環境を提供するオペレーティングシステムがインストールされている。以下の説明においては、第1実施形態に係るアプリケーションプログラム34aは上記オペレーティングシステム上で動作するものとしている。
 入出力インターフェース31fは、たとえば、USB、IEEE1394、RS-232Cなどのシリアルインターフェース、SCSI、IDE、IEEE1284などのパラレルインターフェース、およびD/A変換器、A/D変換器などからなるアナログインターフェースなどから構成されている。入出力インターフェース31fには、キーボードおよびマウスからなる入力デバイス33が接続されており、ユーザがその入力デバイス33を使用することにより、データ処理部3にデータを入力することが可能である。また、ユーザは、入力デバイス33を用いて、測定モードの選択、測定部2の起動およびシャットダウンを行うことが可能である。
 画像出力インターフェース31gは、LCDまたはCRTなどで構成された表示部32に接続されており、CPU31aから与えられた画像データに応じた映像信号を表示部32に出力するようになっている。表示部32は、入力された映像信号にしたがって、画像(画面)を表示する。
 試薬調製装置4は、測定部2の測定試料調製部21で用いられる試薬を調製するために設けられている。具体的には、試薬調製装置4は、外部に設けられたRO水作製部7により作製されたRO水を用いて高濃度試薬を所望の濃度に希釈することによって、血液分析に用いられる試薬を調製するように構成されている。ここで、RO水とは、純水の一種であり、RO(Reverse Osmosis)膜(逆浸透膜)を透過することによって、不純物を取り除かれた水である。また、純水とは、RO水の他に、精製水、脱イオン水、および蒸留水などを含み、不純物を取り除く処理が実施された水であるが、その純度は特に限定されない。また、高濃度試薬は、試薬原液であり、測定部2に供給される試薬よりも含有成分の濃度が高い。
 試薬調製装置4は、図6に示すように、高濃度試薬チャンバ41と、RO水チャンバ42と、2つの希釈チャンバ43および44と、2つのダイアフラムポンプ45aおよび45bと、攪拌チャンバ46と、供給チャンバ47と、表示部48と、試薬調製装置4の各部の動作を制御する制御部49と、バーコードリーダ50(図1参照)とを含んでいる。さらに、試薬調製装置4は、筐体外に設置された空圧部6(図1参照)を含み、空圧部6から供給される陰圧および陽圧を用いて、装置内における各液体の移送を行うように構成されている。空圧部6は、試薬調製装置4に対して陰圧を供給するための陰圧源61、および、陽圧を供給するための陽圧源62を有している。
 高濃度試薬チャンバ41は、高濃度試薬タンク5から高濃度試薬が供給されるように構成されている。高濃度試薬チャンバ41には、チャンバ内に所定量の高濃度試薬が収容されていることを検知するためのフロートスイッチ100が設けられている。フロートスイッチ100は、高濃度試薬チャンバ41内の液量(液面)に応じてフロート部が上下動するように構成されている。フロートスイッチ100のフロート部が下限に到達すると、高濃度試薬タンク5から高濃度試薬チャンバ41に高濃度試薬が供給されるように、制御部49により各部が制御されるように構成されている。また、フロートスイッチ100のフロート部が上限に到達すると、高濃度試薬タンク5から高濃度試薬チャンバ41への高濃度試薬の供給が停止されるように、制御部49により各部が制御されるように構成されている。また、フロートスイッチ100は、高濃度試薬チャンバ41の上端部近傍に配置されており、高濃度試薬チャンバ41に約300mLの高濃度試薬が貯留されたときに、フロート部が上限に到達するように構成されている。これにより、高濃度試薬チャンバ41には、常時、約300mL貯留されるように高濃度試薬が供給される。
 また、高濃度試薬チャンバ41は、電磁バルブ200を介して高濃度試薬タンク5に接続され、電磁バルブ201を介して空圧部6の陰圧源61に接続されている。また、高濃度試薬チャンバ41は、電磁バルブ202の開閉により、大気に開放され、または、閉塞されるように構成されている。また、高濃度試薬チャンバ41は、流路300により、ダイアフラムポンプ45a(45b)から希釈チャンバ43(44)に液体を移送するための流路301に接続されている。また、流路300上には、電磁バルブ203が設けられており、電磁バルブ203は、流路301の近傍に配置されている。具体的には、電磁バルブ203と流路301との間の流路300aの長さは、約15mmの小さい長さに設定されている。また、高濃度試薬チャンバ41に接続される流路300(300a)は、約1.8mmの内径を有しており、流路301は、約4.0mmの内径を有している。
 RO水チャンバ42は、高濃度試薬を希釈するためのRO水がRO水作製部7から供給されるように構成されている。RO水チャンバ42には、チャンバ内に収容されるRO水が上限量に達したこと、および、下限量に達したことをそれぞれ検知するためのフロートスイッチ101および102が設けられている。フロートスイッチ101(102)は、RO水チャンバ42内の液量(液面)に応じてフロート部が上下動するように構成されている。フロートスイッチ101のフロート部がRO水チャンバ42の上限量に対応する位置に到達すると、RO水作製部7からRO水チャンバ42へのRO水の供給が停止されるように、制御部49により各部が制御されるように構成されている。また、フロートスイッチ102のフロート部がRO水チャンバ42の下限量に対応する位置に到達すると、RO水作製部7からRO水チャンバ42にRO水が供給されるように、制御部49により各部が制御されるように構成されている。
 また、フロートスイッチ101は、RO水チャンバ42の上端部近傍に配置されており、RO水チャンバ42に約600mLのRO水が貯留されたときに、フロート部がRO水チャンバ42の上限量に対応する位置に到達するように構成されている。また、フロートスイッチ102は、RO水チャンバ42に貯留されているRO水が約300mLまで減少したときに、フロート部がRO水チャンバ42の下限量に対応する位置に到達するように構成されている。これにより、試薬調製装置4が動作している間、RO水チャンバ42には、約300mL以上約600mL以下のRO水が貯留されることとなる。
 また、RO水チャンバ42は、チャンバ内のRO水を廃棄可能に構成されている。具体的には、RO水チャンバ42は、電磁バルブ204を介して陽圧源62に接続されているとともに、電磁バルブ205を介して廃棄流路に接続されており、電磁バルブ204および205の両方を開放することによって、陽圧力で内部のRO水が廃棄流路に押し出されるように構成されている。また、RO水チャンバ42は、電磁バルブ206の開閉により、大気に開放され、または、閉塞されるように構成されている。また、RO水チャンバ42は、電磁バルブ207を介してRO水作製部7の後述するRO水貯留タンク7aに接続されている。また、RO水チャンバ42は、電磁バルブ208を介して、流路302によりダイアフラムポンプ45aおよび45bに接続されている。
 希釈チャンバ43および44は、それぞれ、RO水により高濃度試薬を希釈するために設けられている。また、希釈チャンバ43(44)は、後述するように、ダイアフラムポンプ45aおよび45bによって送り込まれる約300mLの液体(高濃度試薬およびRO水の混合液)を収容可能に構成されている。希釈チャンバ43(44)には、チャンバ内に収容された液体(高濃度試薬およびRO水の混合液)の残量が所定量に到達したことを検知するためのフロートスイッチ103(104)が設けられている。フロートスイッチ103(104)は、希釈チャンバ43(44)内の液量(液面)に応じてフロート部が上下動するように構成されている。希釈チャンバ43(44)は、常時大気開放された状態となるように構成されている。また、希釈チャンバ43(44)は、電磁バルブ209(210)を介して、流路303(304)により流路301に接続されている。流路303(304)は、流路301と同様に、約4mmの内径を有している。なお、電磁バルブ210を閉じた状態で、電磁バルブ209を開放することによって、流路301を介して移送される液体(RO水および高濃度試薬)を希釈チャンバ43に移送することが可能である。一方、電磁バルブ209を閉じた状態で、電磁バルブ210を開放すれば、流路301を介して移送される液体(RO水および高濃度試薬)を希釈チャンバ43に移送することが可能である。すなわち、電磁バルブ209および210は、それぞれ、流路303および304の流路切替部として機能するように構成されている。
 また、希釈チャンバ43(44)は、電磁バルブ211(212)を介して、攪拌チャンバ46に接続されている。また、希釈チャンバ43(44)と電磁バルブ211(212)との間には、気泡センサ400(401)が設けられている。気泡センサ400(401)は、透過型センサであり、流路を通る気泡を検知するように構成されている。これにより、フロートスイッチ103(104)のフロート部が下限に到達し、かつ、気泡センサ400(401)で気泡が検知されることによって、制御部49により、希釈チャンバ43(44)内の液体(高濃度試薬およびRO水の混合液)が全て排出されたことを確認することが可能となる。そして、希釈チャンバ43(44)が空になる(チャンバ内の液体が全て排出される)と、空になった希釈チャンバ43(44)に高濃度試薬およびRO水が供給されるように、制御部49により各部が制御されるように構成されている。
 ダイアフラムポンプ45aおよび45bは、互いに同様の構成を有しており、同時に同じ動作を行うように構成されている。ダイアフラムポンプ45a(45b)は、1回の定量動作で高濃度試薬およびRO水をそれぞれ約6.0mL(一定量)分定量する機能を有している。また、ダイアフラムポンプ45a(45b)は、電磁バルブ213(215)を介して陰圧源61に接続されているとともに、電磁バルブ214(216)を介して陽圧源62に接続されている。また、高濃度試薬チャンバ41、RO水チャンバ42、ダイアフラムポンプ45aおよび45b、空圧部6、流路300~304、電磁バルブ200~210および213~216により、試薬調製装置4の液体定量部51(図6参照)が構成されている。
 攪拌チャンバ46は、図6に示すように、約300mLの液体を収容可能に構成されており、希釈チャンバ43(44)から移送される液体(高濃度試薬およびRO水の混合液)を攪拌するために設けられている。具体的には、攪拌チャンバ46は、屈曲されたパイプ416を有し、希釈チャンバ43(44)から移送される液体(高濃度試薬およびRO水の混合液)がパイプ416を通過することによって、攪拌チャンバ46の内壁面に沿って攪拌チャンバ46内に流入されるように構成されている。これにより、希釈チャンバ43(44)から移送される液体(高濃度試薬およびRO水の混合液)が攪拌チャンバ46の内壁面に沿って流動されるので、容易に、高濃度試薬とRO水とが攪拌される。なお、高濃度試薬とRO水とは、希釈チャンバ43(44)内、および、希釈チャンバ43(44)から攪拌チャンバ46への流路内においても、ある程度攪拌されているが、攪拌チャンバ46を上記のように構成することによって、より確実に攪拌することが可能である。
 攪拌チャンバ46には、チャンバ内に収容された液体(高濃度試薬およびRO水の混合液)の残量が所定量に到達したことを検知するためのフロートスイッチ105が設けられている。フロートスイッチ105は、攪拌チャンバ46内の液量(液面)に応じてフロート部が上下動するように構成されている。フロートスイッチ105のフロート部が下限に到達してチャンバ内が空になると、希釈チャンバ43および44のいずれか一方から攪拌チャンバ46に約300mLの混合液が供給されるように、制御部49により各部が制御されるように構成されている。そして、希釈チャンバ43および44の一方から供給されて攪拌された混合液が攪拌チャンバ46から排出されると、次は、希釈チャンバ43および44の他方から攪拌チャンバ46に約300mLの混合液が供給される。また、攪拌チャンバ46は、電磁バルブ217を介して陰圧源61に接続されているとともに、電磁バルブ218を介して陽圧源62に接続されている。
 供給チャンバ47は、測定部2に供給するための所定量の試薬を貯留しておくために設けられている。供給チャンバ47は、約600mLの収容量を有している。供給チャンバ47には、チャンバ内に収容される試薬の残量が約300mLに到達したことを検知するためのフロートスイッチ106が設けられている。また、供給チャンバ47には、供給チャンバ47内に収容される試薬の残量が略ゼロとなったことを検知するためのフロートスイッチ107が設けられている。フロートスイッチ106(107)は、供給チャンバ47内の液量(液面)に応じてフロート部が上下動するように構成されている。フロートスイッチ106のフロート部は、供給チャンバ47の高さ方向の上端部近傍から中間位置にかけて移動可能に構成されている。フロートスイッチ106のフロート部が供給チャンバ47の高さ方向の中間位置(フロートスイッチ106のフロート部の移動可能範囲における下限位置)まで到達すると、攪拌チャンバ46から供給チャンバ47に約300mLの所望濃度の試薬が供給されるように、制御部49により各部が制御されるように構成されている。これにより、供給チャンバ47には、常時、約300mL以上約600mL以下の所望濃度の試薬が貯留されることとなる。このように供給チャンバ47に所定量の試薬を貯留しておくことによって、供給指示に応じて測定部2に迅速に試薬を移送することが可能である。
 また、フロートスイッチ107のフロート部は、供給チャンバ47の底部近傍で移動可能に構成されている。フロートスイッチ107により、チャンバ内に収容される試薬の残量が略ゼロとなったことを検知した場合には、測定部2への試薬の供給は停止される。これにより、何らかの理由で試薬が供給チャンバ47に移送されなかったとしても、極力測定部2への試薬の供給を継続させながら、測定部2に供給する試薬に気泡が混入することを防止することが可能である。
 また、供給チャンバ47は、電磁バルブ219を介して攪拌チャンバ46に接続されている。また、供給チャンバ47は、電磁バルブ220を開放することにより、メンテナンス時などにチャンバ内の試薬を廃棄可能に構成されている。また、供給チャンバ47は、常時大気開放された状態となるように構成されている。また、供給チャンバ47は、フィルタ471を介して測定部2に接続されている。フィルタ471は、測定部2に供給される試薬に不純物が混入するのを防止するために設けられている。
 攪拌チャンバ46と供給チャンバ47との間には、試薬の電気伝導度を測定するための導電率センサ402が設けられている。導電率センサ402は、導電率センサ402が配置された位置における試薬の温度を測定するための温度センサ403を含んでいる。また、電気伝導度は、導電率センサ402により取得される基準電圧のAD値および電極電圧のAD値に基づいて得られ、試薬の温度は、温度センサ403により取得されるサーミスタ電圧のAD値に基づいて得られる。また、導電率センサ402と電磁バルブ219との間には、電磁バルブ221を介して廃棄流路が接続されている。
 表示部48は、図1に示すように、試薬調製装置4の外表面に設けられている。また、表示部48は、タッチパネル式の液晶ディスプレイにより構成されている。
 図7に示すように、制御部49は、CPU49aと、ROM49bと、RAM49cと、データ処理部3に接続される通信インターフェース49dと、試薬調製装置4の各部に接続されるI/O(Input/Output)部49eと、記憶部49fとを含んでいる。
 CPU49aは、ROM49bに記憶されているコンピュータプログラムおよびRAM49cにロードされたコンピュータプログラムを実行するために設けられている。また、CPU49aは、これらのコンピュータプログラムを実行するときに、RAM49cを作業領域として利用するように構成されている。なお、これらのコンピュータプログラムの一つとして、時計としての機能を有するソフトウェアが挙げられる。後述する日時は、このソフトウェアにより取得される。なお、試薬調製装置4のソフトウェアによる現在時刻と、データ処理装置3のソフトウェアによる現在時刻とは一致させておくことが好ましい。これにより、検体の分析結果と試薬の供給時間との対応付けをより正確に行うことが可能となる。
 次に、試薬の電気伝導度の目標値を求める一般式を以下の式(1)に示す。
 Z={X+(A-1)Y}/A・・・・・(1)
 上記式(1)において、Zは、高濃度試薬とRO水とが混合攪拌された試薬の25℃における電気伝導度の目標値(ms/cm)、Xは、高濃度試薬の25℃における電気伝導度(ms/cm)、Yは、RO水の25℃における電気伝導度(ms/cm)、Aは、希釈倍率(既知)(第1実施形態では25倍)をそれぞれ表す。なお、Xは、高濃度試薬固有の値であり、予め実験などにより得られた既知の値である。
 また、温度センサ405により得られるRO水の温度、および、温度センサ403により得られる試薬の温度を考慮するための補正式を以下の式(2)に示す。
 Z=[{X+(A-1)Y}/A]×{1+α1(T2-25)}
  =[[X+(A-1)Y1/{1+α0(T1-25)}]/A]×{1+α1(T2-25)}・・・・・(2)
 上記式(2)において、Zは、高濃度試薬とRO水とが混合攪拌された試薬のT2℃における電気伝導度の目標値(ms/cm)、Y1は、RO水のT1℃における電気伝導度(ms/cm)、T1は、RO水の温度(℃)、T2は、高濃度試薬とRO水とが混合攪拌された試薬の温度(℃)、α0は、RO水の電気伝導度の25℃に対する温度係数、α1は、高濃度試薬とRO水とが混合攪拌された試薬の電気伝導度の25℃に対する温度係数をそれぞれ表す。なお、温度係数α0およびα1は、液体の種類や濃度によって異なるが、JIS(日本工業規格)では、簡易的に0.02が用いられる。
 また、CPU49aは、上記した式(2)により目標値Zを算出するように構成されている。したがって、CPU49aは、所望する希釈倍率A(既知)、RO水の電気伝導度の検出値Y1、RO水の温度の測定値T1、混合攪拌された試薬の温度の測定値T2および高濃度試薬の電気伝導度X(既知)に基づいて、目標値を決定する。
 ここで、第1実施形態では、CPU49aは、記憶部49fに高濃度試薬のロット番号、製造後有効期限、使用開始日、開封後有効期限などの高濃度試薬情報を記憶させるように構成されている。具体的には、後述するように、記憶部49fには試薬管理リスト491が格納されており、CPU49aは、バーコードリーダ50による読み取り情報に基づいて、高濃度試薬情報を試薬管理リスト491に記録する。
 また、CPU49aは、試薬調製が完了した時の日時(試薬調製日時)と、試薬調製が完了した時の電気伝導度と、試薬調製が完了した時の温度と、試薬調製が完了した時の基準電圧のAD値(基準値)と、試薬調製が完了した時の電極電圧のAD値(電極値)と、試薬調製が完了した時のサーミスタ電圧のAD値(サーミスタ値)と、試薬調製結果と、調製試薬供給時間帯とを含む試薬調製履歴情報を記憶部49fに記憶させるように構成されている。具体的には、後述するように、記憶部49fには試薬調製リスト492が格納されており、CPU49aは、図12および図13に示す後述の試薬調製処理において、試薬調製履歴情報を試薬調製リスト492に記録する。なお、上記電気伝導度、温度、基準電圧のAD値、電極電圧のAD値、サーミスタ電圧のAD値、および試薬調製結果は、調製された試薬の品質を示す品質情報である。
 また、CPU49aは、タッチパネル式の表示部48を介して受け付けるユーザからの指示に応じて、試薬管理リスト491および試薬調製リスト492に記録された各種情報(高濃度試薬情報および試薬調製履歴情報)を表示部48に表示させることが可能に構成されている。また、CPU49aは、タッチパネル式の表示部48を介して、ユーザから試薬調製装置4の起動指示およびシャットダウン指示を受け付けるように構成されている。
 通信インターフェース49dは、ユーザが試薬調製装置4内で発生したエラーを確認することができるように、エラー情報をデータ処理部3に伝達可能に構成されている。エラー情報としては、高濃度試薬タンク5の交換を促すための情報、RO水が供給されなくなったことを知らせる情報、陰圧源61および陽圧源62の異常を知らせる情報などがある。これらのエラー情報に基づいて、表示部48にエラー通知が表示される。
 I/O部49eは、図7に示すように、各センサ回路を介して、フロートスイッチ100~107、気泡センサ400、401、導電率センサ402および温度センサ403から信号が入力されるように構成されている。また、I/O部49eは、各駆動回路を介して、電磁バルブ200~221および空圧部6の駆動を制御するために、各駆動回路に信号を出力するように構成されている。また、I/O部49eは、タッチパネル式の表示部48からユーザの指示に応じた信号が入力されるとともに、表示部48に画像データなどの映像信号を出力するように構成されている。また、I/O部49eは、バーコードリーダ50により読み取られた高濃度試薬に関する情報が入力されるように構成されている。
 記憶部49fは、不揮発性メモリからなり、試薬管理リスト491および試薬調製リスト492を格納している。試薬管理リスト491は、CPU49aにより書き換え可能に構成されており、最大100件の高濃度試薬情報を記録可能である。高濃度試薬情報が100件を超えると、古いものから順次上書きされる。また、試薬調製リスト492は、CPU49aにより書き換え可能に構成されており、最大1000件の試薬調製履歴情報を記録可能である。試薬調製履歴情報が1000件を超えると、古いものから順次上書きされる。
 バーコードリーダ50は、図1に示すように、ハンディタイプであり、高濃度試薬タンク5に貼付されたラベル50aのバーコード50b(図8参照)を読み取り可能に構成されている。バーコード50bには、高濃度試薬のロット番号および製造後有効期限などの各高濃度試薬に固有の情報が含まれている。
 RO水作製部7は、高濃度試薬を希釈するための希釈用液体としてのRO水を、水道水を用いて作製することが可能なように構成されている。また、RO水作製部7は、RO水貯留タンク7aと、RO膜7bと、水道水に含まれる不純物を取り除くことによって、RO膜7bを保護するためのフィルタ7cとを含んでいる。さらに、RO水作製部7は、水分子がRO膜7bを透過するようにフィルタ7cを通過した水に高圧をかける高圧ポンプ7dと、水道水の供給を制御する電磁バルブ222とを含んでいる。
 RO水貯留タンク7aは、RO膜7bを透過したRO水を貯留するために設けられている。RO水貯留タンク7aには、所定量のRO水が貯留されていることを検知するためのフロートスイッチ108が設けられている。さらに、RO水貯留タンク7aには、RO水貯留タンク7a内のRO水の電気伝導度を測定するための導電率センサ404が設けられている。導電率センサ404は、RO水の温度を測定するための温度センサ405を含んでいる。
 また、RO水作製部7は、電磁バルブ222を開放することによって、水道水をフィルタ7cに到達させることが可能に構成されている。また、RO水作製部7は、高圧ポンプ7dを駆動することによって、フィルタ7cを通過した水を高圧でRO膜7bを透過させることが可能である。そして、RO水作製部7は、フロートスイッチ108の検知結果に基づいて、所定量のRO水をRO水貯留タンク7aに収容するように構成されている。なお、RO水作製部7によりRO水がRO水貯留タンク7aに供給される速度、すなわち、RO水作製部7によるRO水の作製速度は、約20L/時間以上約50L/時間以下である。
 次に、図8~図11を参照して、本発明の第1実施形態による試薬調製装置4の高濃度試薬情報取得処理動作について説明する。
 まず、図9のステップS1において、CPU49aにより、バーコードリーダ50が高濃度試薬タンク5に貼付されたラベル50aのバーコード50b(図8参照)を読み取ったか否かが判断される。具体的には、ユーザが表示部48に表示されるメニュー画面481(図10参照)の試薬交換ボタン481cを押下すると、図11に示すように、試薬交換画面482が表示される。その後、ユーザがハンディタイプのバーコードリーダ50を新規の高濃度試薬タンク5のバーコード50b(図8参照)上に配置させることによって、バーコードリーダ50によりバーコード50bが読み取られる。
 メニュー画面481には、図10に示すように、高濃度試薬の残量を示す模式図481a、セレクトボタン481b、試薬交換ボタン481c、排液交換ボタン481dおよびシャットダウンボタン481eが表示される。セレクトボタン481bは、後述するように、ユーザが各種設定および各種事項の確認を行う際に押下される。また、排液交換ボタン481dは、試薬調製装置4から廃棄された排液を収容する排液タンク(図示せず)を交換する際に押下される。また、シャットダウンボタン481eは、試薬調製装置4をシャットダウンする際に押下される。また、試薬交換画面482には、高濃度試薬の吸引を中止する旨、および、高濃度試薬を交換することを促す旨の内容が表示される。さらに、試薬交換画面482には、OKボタン482aおよびキャンセルボタン482bが表示される。OKボタン482aは、高濃度試薬タンク5の交換が完了した後に押下される。キャンセルボタン482bは、高濃度試薬タンク5の交換を中止する際に押下される。
 ステップS1では、バーコードリーダ50によりバーコード50bが読み取られるまでこの判断が繰り返される。そして、バーコード50bが読み取られると、ステップS2において、CPU49aにより、バーコード50bに基づいて高濃度試薬のロット番号および製造後有効期限が記憶部49fに記憶される。具体的には、新規の高濃度試薬のロット番号および製造後有効期限が記憶部49fの試薬管理リスト491に記録される。
 その後、ステップS3において、CPU49aは、バーコード50bを読み取った日を高濃度試薬の使用開始日として記憶部49fに記憶させる。すなわち、高濃度試薬の使用開始日が記憶部49fの試薬管理リスト491に記録される。そして、ステップS4において、CPU49aは、高濃度試薬の開封後有効期限を記憶部49fに記憶させる。具体的には、CPU49aは、高濃度試薬の使用開始日(バーコード50bを読み取った日)から30日の期間を開封後有効期限として記憶部49fに記憶させる。すなわち、高濃度試薬の開封後有効期限が記憶部49fの試薬管理リスト491に記録される。なお、ステップS1からステップS4までの処理は、試薬調製装置4が起動されてからシャットダウンされるまで繰り返し実行される。
 次に、図6および図12~図15を参照して、本発明の第1実施形態による試薬調製装置4の試薬調製処理動作について説明する。
 まず、図12のステップS11において、CPU49aにより、ROM49bに記憶されているコンピュータプログラムの初期化が行われる。次に、ステップS12において、CPU49aにより、前回の動作終了時において試薬調製装置4が正常にシャットダウンされたか否かが判断される。具体的には、後述するように、正常にシャットダウンされた場合にONに設定されるフラグに基づいて判断される。正常にシャットダウンされていた場合には、ステップS16に進み、正常にシャットダウンされていない場合には、ステップS13に進む。
 ステップS13では、高濃度試薬チャンバ41および供給チャンバ47以外のチャンバ42、43、44および46内の液体を全て廃棄する。具体的には、CPU49aにより、電磁バルブ206、207および208を閉じた状態で、電磁バルブ204および205を開放させて、RO水チャンバ42内のRO水を廃棄する。なお、RO水チャンバ42から廃棄されたRO水を再びRO水作製部7に移送して、廃棄されたRO水から新たなRO水を作製してもよい。また、CPU49aにより、電磁バルブ211、212、217および219を閉じた状態で、電磁バルブ218および221を開放させて、陽圧力で攪拌チャンバ46内の混合液を廃棄流路に押し出す。さらに、CPU49aにより、電磁バルブ212、218、219および221を閉じた状態で、電磁バルブ211および217を開放させて、陰圧力で希釈チャンバ43内の混合液を攪拌チャンバ46に移送し、その後、上記の動作により攪拌チャンバ46から混合液を廃棄する。また、希釈チャンバ44の混合液についても、CPU49aにより、電磁バルブ211、218、219および221を閉じた状態で、電磁バルブ212および217を開放させることによって、陰圧力で攪拌チャンバ46に移送する。
 このように、ステップS13において、高濃度試薬チャンバ41および供給チャンバ47以外のチャンバ42、43、44および46内の液体を全て廃棄することによって、長時間滞留された可能性のあるRO水を試薬調製に使用してしまうこと、および、希釈倍率が不明な試薬を生成してしまうことを防止することが可能である。
 その後、ステップS14において、流路、RO水チャンバ42、希釈チャンバ43(44)および攪拌チャンバ46の洗浄を行う。具体的には、RO水作製部7で新たに作製されたRO水がRO水チャンバ42に供給された後、CPU49aにより、電磁バルブ206、208および213(215)を開放させることによって、ダイアフラムポンプ45a(45b)に陰圧力で約12.0mL(各ダイアフラムポンプにそれぞれ約6.0mL)のRO水が流入される。次に、電磁バルブ208および213(215)を閉じた状態で、電磁バルブ214(216)および209を開放させることによって、ダイアフラムポンプ45a(45b)内の約12.0mL(各ダイアフラムポンプそれぞれに約6.0mL)のRO水を陽圧力で希釈チャンバ43に移送する。そして、上記の動作を25回繰り返すことによって、希釈チャンバ43に新たに作製された約300mLのRO水が供給される。
 その後、CPU49aにより、電磁バルブ211および217を開放させることによって、希釈チャンバ43から攪拌チャンバ46に約300mLのRO水を移送する。そして、CPU49aにより、電磁バルブ217および219を閉じた状態で、電磁バルブ218および221を開放させることによって、攪拌チャンバ46内のRO水を廃棄する。
 また、希釈チャンバ43から攪拌チャンバ46にRO水が移送されている間に、希釈チャンバ44には、希釈チャンバ43に移送するのと同様の動作によって、新たに作製された約300mLのRO水が供給される。希釈チャンバ44から攪拌チャンバ46へのRO水の移送も、希釈チャンバ43から攪拌チャンバ46への移送と同様の動作によって行われる。このように、上記の一連の動作によって、流路、RO水チャンバ42、希釈チャンバ43(44)および攪拌チャンバ46それぞれの内部が新たに作製されたRO水により洗浄される。なお、上記ステップS13の前に、RO水チャンバ42には既に所定量のRO水が貯留されている。
 次に、ステップS15において、所望濃度の試薬を生成する動作と同様の動作によって、攪拌チャンバ46に試薬を調製し、調製した試薬を全て廃棄する。具体的には、後述するステップS20およびS21の動作によって所望濃度の試薬を攪拌チャンバ46に供給した後、CPU49aにより、電磁バルブ217および219を閉じた状態で、電磁バルブ218および221を開放させることによって攪拌チャンバ46内の試薬を廃棄する。これにより、たとえ流路、希釈チャンバ43(44)および攪拌チャンバ46に所望濃度を超える濃度の試薬が残留していたとしても、上記したRO水による洗浄に加えて、所望濃度の試薬によっても洗浄されるので、試薬が所望濃度以外の濃度に調製されてしまうのを抑制することが可能となる。
 次に、ステップS16において、RO水チャンバ42にRO水を供給する。そして、ステップS17において、CPU49aにより、フロートスイッチ100の検知結果に基づいて、高濃度試薬チャンバ41に所定量の高濃度試薬が収容されているか否かが判断される。所定量の高濃度試薬が貯留されていない場合には、ステップS18において、高濃度試薬タンク5から高濃度試薬チャンバ41に高濃度試薬が補充される。具体的には、CPU49aにより、電磁バルブ202および203を閉じた状態で、電磁バルブ200および201を開放させることによって、高濃度試薬を陰圧力で高濃度試薬チャンバ41に供給する。
 所定量の高濃度試薬が高濃度試薬チャンバ41に収容されている場合には、ステップS19において、CPU49aにより、供給チャンバ47に所定量の試薬が貯留されているか否かが判断される。すなわち、供給チャンバ47に約300mL以上約600mL以下の試薬が貯留されているか否かが判断される。所定量の試薬が貯留されている場合には、ステップS30に移行される。一方、所定量の試薬が貯留されていない場合には、ステップS20において、高濃度試薬およびRO水の供給処理が行われる。
 次に、図6および図14を参照して、図12に示した試薬調製処理動作のステップS20における高濃度試薬およびRO水の供給処理動作について説明する。
 まず、試薬調製装置4の初期状態(試薬調製処理の直前の状態)として、図6に示す流路301~304は、実質的にRO水により満たされているとともに、流路300は、実質的に高濃度試薬により満たされている。なお、流路300と流路301とは直接接続されているが、流路301の約4.0mmの内径に対して、流路300(300a)の内径は約1.8mmと小さいため、流路300内の高濃度試薬は、流路301内のRO水と混合され難くなっている。また、電磁バルブ203と流路301との間の流路300aは、内径が約1.8mmかつ約15mmの小さい長さに設定されているので、流路300aに存在する高濃度試薬の量は極めて少量である。
 図14のステップS201において、ダイアフラムポンプ45aおよび45bにより、RO水チャンバ42から約12.0mL(各ダイアフラムポンプでそれぞれ約6.0mL)のRO水が吸引される。具体的には、CPU49aにより、電磁バルブ213(215)および208が開放されることによって、ダイアフラムポンプ45a(45b)にRO水が流入される。次に、ステップS202において、電磁バルブ213(215)および208が閉じられた後、電磁バルブ214(216)および209が開放されることにより、ダイアフラムポンプ45a(45b)に陽圧が供給されてRO水が吐出される。これにより、流路301および303を介して、約12.0mL(各ダイアフラムポンプでそれぞれ約6.0mL)のRO水が希釈チャンバ43に供給される。
 その後、ステップS203において、ダイアフラムポンプ45aおよび45bにより、高濃度試薬チャンバ41から約12.0mL(各ダイアフラムポンプでそれぞれ約6.0mL)の高濃度試薬が吸引される。具体的には、CPU49aにより、電磁バルブ214(216)および209が閉じられた後、電磁バルブ202、203および213(215)が開放されることにより、陰圧が供給されてダイアフラムポンプ45a(45b)に高濃度試薬が吸引される。詳細には、高濃度試薬チャンバ41から流出された約12.0mLの高濃度試薬が流路301に残留しているRO水と混合されることにより、ダイアフラムポンプ45a(45b)にRO水と高濃度試薬との混合液が吸引される。また、このときの流路301には、RO水と高濃度試薬との混合液が充満されている。すなわち、この状態においては、ダイアフラムポンプ45a(45b)および流路301を合わせた領域に、高濃度試薬チャンバ41から流出された約12.0mLの高濃度試薬が存在している。なお、高濃度試薬は、流路300aにも存在するが、上述のように、流路300aに存在する高濃度試薬の量は極めて少量であるので、実質的に無視することができる。さらに、2回目の試薬調製処理動作以降の高濃度試薬の吸引時には、前回の試薬調製処理動作により流路300aに残留していた高濃度試薬が流路301側に押し出されるので、ダイアフラムポンプ45a(45b)および流路301を合わせた領域に、より正確に約12.0mLの高濃度試薬が存在することになる。
 次に、ステップS204において、電磁バルブ202、203および213(215)が閉じられた後、電磁バルブ214(216)および209が開放されることにより、陽圧が供給されてダイアフラムポンプ45a(45b)からRO水および高濃度試薬の混合液が吐出される。これにより、流路301および303を介して、RO水および高濃度試薬の混合液が希釈チャンバ43に供給される。この際、流路301および303には、数mLの高濃度試薬がRO水と混合された状態で残留している。
 そして、ステップS205において、CPU49aにより、n=1に設定される。ここで、nは、ダイアフラムポンプ45aおよび45bによるRO水の吐出回数を表しており、1から始まる実数で定義される。次に、ステップS206において、上記ステップS201と同様に、ダイアフラムポンプ45aおよび45bにより、RO水チャンバ42から約12.0mLのRO水が吸引される。そして、ステップS207において、上記ステップS202と同様に、ダイアフラムポンプ45aおよび45bからRO水が吐出される。これにより、流路301および303に残留していた高濃度試薬が、RO水とともに希釈チャンバ43に移送される。
 その後、ステップS208において、CPU49aにより、nが22よりも大きいか否かが判断される。nが22よりも大きくない場合には、ステップS209において、n=n+1に設定され、nが22よりも大きくなるまでステップS206~ステップS209の動作が繰り返される。すなわち、ダイアフラムポンプ45aおよび45bによる高濃度試薬の吸引および吐出動作1回に対して、RO水の吸引および吐出動作が24回行われるまでステップS206~ステップS209の動作が繰り返される。そして、nが22よりも大きくなると、動作は終了される。これにより、希釈チャンバ43には、約12.0mL×24回=約288mLのRO水と、約12.0mL×1回=約12mLの高濃度試薬とで約288mL+約12mL=約300mLの混合液が供給される。また、ダイアフラムポンプ45aおよび45bによる高濃度試薬の吸引および吐出動作の後、RO水の吸引および吐出動作を23回行うため、流路301および303に残留していた高濃度試薬はすべて希釈チャンバ43に移送され、その結果、流路301および303には、RO水のみが存在する状態となる。
 なお、上記の動作において、電磁バルブ209に替えて、電磁バルブ210を駆動すれば、希釈チャンバ44に、約288mLのRO水と約12mLの高濃度試薬とからなる約300mLの混合液を移送することが可能である。
 図12のステップS20による高濃度試薬およびRO水の供給処理が行われた後、ステップS21において、CPU49aにより、電磁バルブ211(212)および217が開放させて、陰圧力で希釈チャンバ43(44)内の試薬を攪拌チャンバ46に移送する。この際、移送される試薬は、攪拌チャンバ46内に設けられたパイプ416により、攪拌チャンバ46の内壁に沿うように流されることによって、攪拌チャンバ46内で攪拌される。
 次に、ステップS22において、電磁バルブ211(212)および217が閉じられた後、電磁バルブ218および219が開放されて、試薬が攪拌チャンバ46から供給チャンバ47に移送される。この際、ステップS23において、導電率センサ402により、電気伝導度Cが測定されるとともに、温度センサ403により試薬の温度T2が測定される。すなわち、導電率センサ402により、基準電圧のAD値および電極電圧のAD値が検出されることによって電気伝導度Cが取得される。また、温度センサ403により、サーミスタ電圧のAD値が検出されることによって試薬の温度T2が取得される。
 そして、ステップS24において、CPU49aは、今回導電率センサ402および温度センサ403を通過した試薬の電気伝導度C、温度T2、基準電圧のAD値、電極電圧のAD値およびサーミスタ電圧のAD値を、それぞれ、試薬調製が完了した時の電気伝導度、試薬調製が完了した時の温度、試薬調製が完了した時の基準値、試薬調製が完了した時の電極値、および、試薬調製が完了した時のサーミスタ値として記憶部49fに記憶させる。具体的には、CPU49aにより、試薬調製が完了した時の電気伝導度、試薬調製が完了した時の温度、試薬調製が完了した時の基準値、試薬調製が完了した時の電極値、および、試薬調製が完了した時のサーミスタ値がそれぞれ記憶部49fの試薬調製リスト492に記録される。また、CPU49aは、試薬が導電率センサ402および温度センサ403を通過した日時を、今回の試薬調製日時として記憶部49fに記憶させる。すなわち、CPU49aにより、今回の試薬調製日時が記憶部49fの試薬調製リスト492に記録される。
 また、試薬が導電率センサ402および温度センサ403を通過した日時(日付および時刻)は、試薬が供給チャンバ47に供給される直前の日時(日付および時刻)であり、試薬が導電率センサ402および温度センサ403を通過した日時(日付および時刻)と試薬が供給チャンバ47に供給される日時(日付および時刻)とは略一致する。このため、第1実施形態では、試薬が導電率センサ402および温度センサ403を通過した日時(日付および時刻)を、試薬が供給チャンバ47に供給される日時(日付および時刻)として考え、試薬が導電率センサ402および温度センサ403を通過した日時(日付および時刻)、すなわち、試薬が供給チャンバ47に供給される日時(日付および時刻)を試薬調製日時として取り扱う。
 その後、ステップS25において、CPU49aにより、電気伝導度Cが所定範囲内にあるか否かが判断される。具体的には、上記式(2)により算出される、希釈倍率25倍における電気伝導度の目標値Zに対して、測定された電気伝導度Cが所定範囲内にあるか否かが判断される。電気伝導度Cが所定範囲内にない場合には、ステップS26において、CPU49aにより、試薬調製結果がNGであると記憶部49fの試薬調製リスト492に記録される。そして、ステップS27において、電磁バルブ219が閉じられるとともに、電磁バルブ221が開放されて、電気伝導度Cが所定範囲内にない試薬が廃棄流路を介して廃棄される。これにより、精度よく希釈された試薬のみを供給チャンバ47に貯留させることが可能となる。
 一方、電気伝導度Cが所定範囲内にある場合には、ステップS28において、CPU49aにより、試薬調製結果がG(Good)であると記憶部49fの試薬調製リスト492に記録される。そして、ステップS29において、CPU49aは、前々回に試薬調製結果がG(Good)であると記録された試薬の調製試薬供給時間帯を記憶部49fに記憶させる。すなわち、前々回に試薬調製結果がG(Good)であると記録された試薬の調製試薬供給時間帯が記憶部49fの試薬調製リスト492に記録される。
 ここで、図15を参照して、調製試薬供給時間帯について説明する。試薬の調製試薬供給時間帯とは、対応する試薬が試薬調製装置4から測定部2に移送された可能性のある時間帯である。また、調製試薬供給時間帯は、CPU49aにより、試薬が導電率センサ402および温度センサ403を通過する毎に取得される複数の試薬調製日時に基づいて取得される。
 具体的には、図15に示すように、供給チャンバ47内の試薬Aが残量約300mLになる(状態1)と、約300mLの新たな試薬Bが供給チャンバ47に供給される(状態2)。このときの日付および時刻が試薬調製日時である。すなわち、図15の場合には、2009年1月5日10時03分が試薬Bの試薬調製日時となる。なお、供給チャンバ47内の試薬Aが残量約300mLになる(状態1)と、約300mLの新たな試薬Bが迅速に供給チャンバ47に供給される(状態2)ので、状態1と状態2との時間は略一致する。このため、第1実施形態では、供給チャンバ47内の試薬が残量約300mLになった時間と、約300mLの新たな試薬が供給チャンバ47に供給される時間とで、便宜上、時間差がないものとして取り扱う。
 そして、試薬Aと試薬Bとは供給チャンバ47内において若干混合された後(状態3)、供給チャンバ47から測定部2に約300mLの試薬が移送される(状態4)。この際、供給チャンバ47内で試薬Aと試薬Bとは若干混合されているので、測定部2に移送される約300mLの試薬には試薬Aのみならず少量の試薬Bも含まれている。しかしながら、この際に測定部2に移送される試薬Bは少量であると考えられるので、第1実施形態では、便宜上、供給チャンバ47には約300mLの試薬Bのみが残存しているものとして取り扱う。
 そして、状態4において、供給チャンバ47内の試薬Bが残量約300mLになるので、約300mLの新たな試薬Cが供給チャンバ47に供給される(状態5)。このときの日時(2009年1月5日10時10分)は、試薬Cの試薬調製日時となる。試薬Bと試薬Cとは供給チャンバ47内において若干混合され(状態6)、その後、供給チャンバ47から測定部2にさらに約300mLの試薬が移送される(状態7)。この際、上記の考えに基づき、便宜上、供給チャンバ47には約300mLの試薬Cのみが残存しているものとして取り扱う。すなわち、状態7において、試薬Bは全て測定部2に移送されたものとして取り扱う。また、状態7の後、約300mLの新たな試薬Dが供給チャンバ47に供給される(状態8)。このときの日時(2009年1月5日10時15分)が試薬Dの試薬調製日時となる。
 この場合、試薬Bは、状態2(2009年1月5日10時03分)から状態7(2009年1月5日10時15分)の間に供給チャンバ47に存在していたと考えられるので、試薬Bが供給チャンバ47から測定部2に移送された可能性のある時間帯(調製試薬供給時間帯)は、2009年1月5日10時03分~2009年1月5日10時15分となる。すなわち、調製試薬供給時間帯の始期は、対象となる試薬Bの試薬調製日時であり、調製試薬供給時間帯の終期は、対象となる試薬Bから見て2つ後に供給チャンバ47に供給される試薬Dの試薬調製日時である。言い換えると、試薬Dの試薬調製日時が取得されることによって、前々回に供給チャンバ47に供給された(試薬調製結果がG(Good)であった)試薬Bの調製試薬供給時間帯が取得可能となる。このようにして、試薬Bの調製試薬供給時間帯は、試薬Bの試薬調製日時(2009年1月5日10時03分)および試薬Dの試薬調製日時(2009年1月5日10時15分)の両方に基づいて取得される。
 また、試薬Bの調製試薬供給時間帯について、供給チャンバ47から排出される(測定部2に移送される)試薬の液量の観点から見ると、試薬Bの調製試薬供給時間帯は、試薬Bが供給チャンバ47に供給され始めてから(状態2(2009年1月5日10時03分))、供給チャンバ47の収容量と同じ約600mLの試薬(約300mLの試薬A+約300mLの試薬B)が供給チャンバ47から排出される(状態7(2009年1月5日10時15分))までの時間帯である。
 図13のステップS29で調製試薬供給時間帯が記憶部49fに記憶された後、ステップS30において、CPU49aにより、データ処理部3を介して伝達される測定部2からの試薬供給指示があるか否かが判断され、指示がない場合には、ステップS32に進む。試薬供給指示がある場合には、ステップS31において、測定部2から供給される陰圧力により供給チャンバ47内の試薬がフィルタ471を介して測定部2に移送される。そして、ステップS32において、CPU49aにより、ユーザからのシャットダウン指示の有無が判断され、指示がない場合にはステップS12に移行される。
 シャットダウン指示がある場合には、ステップS33において、調製途中の試薬が最終的に供給チャンバ47に移送されるまで、上記の動作が継続される。具体的には、供給チャンバ47内に所定量(約300mL以上約600mL以下)の試薬がない場合には、上記ステップS20~ステップS29の動作により試薬調製が継続されているので、調製途中で動作を停止すると、所望濃度とは異なる濃度に希釈された試薬が流路、希釈チャンバ43(44)および攪拌チャンバ46に残留することとなる。このため、ステップS33において調製動作を継続させることによって、所望濃度とは異なる濃度に希釈された試薬が流路、希釈チャンバ43(44)および攪拌チャンバ46に残留することを防止することが可能である。
 そして、ステップS34において、シャットダウンを実行する。この際、RO水チャンバ42からRO水を排出する。これにより、試薬調製装置4が次回起動されるまでRO水がRO水チャンバ42に滞留してしまうのを防止することが可能である。その後、ステップS35において、シャットダウンが正常に行われたことを示すフラグをONに設定し、試薬調製処理動作を終了する。
 次に、図16~図19を参照して、試薬調製履歴を確認する方法について説明する。
 まず、図16に示すように、表示部48に表示されるメニュー画面481から、セレクトボタン481bを押下し、セレクトメニューから保守、履歴および調製履歴を順に選択する。ユーザが調製履歴を選択すると、図17に示すように、調製履歴第1画面483が表示部48に表示される。調製履歴第1画面483には、試薬調製日時(日付および時刻)と、試薬調製結果と、試薬調製が完了した時の温度と、試薬調製が完了した時の電気伝導度と、調製試薬供給時間帯とが表示される。これらは、記憶部49fの試薬調製リスト492の内容に基づいて表示される。また、試薬調製結果がNGである試薬は、供給チャンバ47に移送されることなく廃棄されるので、測定部2に移送されることがない。したがって、試薬調製結果がNGである試薬についての調製試薬供給時間帯の欄は空欄となる。
 また、調製履歴第1画面483には、上下方向ボタン483aおよび483b、左右方向ボタン483cおよび483d、履歴クリアボタン483eおよび戻るボタン483fも表示される。ユーザが上下方向ボタン483aおよび483bを押下することによって、試薬調製日時の昇順で5件ずつ表示される各調製試薬の調製履歴情報を順に表示させることが可能である。また、履歴クリアボタン483eを押下することによって、各調製試薬の調製履歴情報を削除することが可能である。また、ユーザが戻るボタン483fを押下すると、前表示画面が表示される。そして、ユーザは、左右方向ボタン483cおよび483dを押下することによって、各調製試薬の調製履歴情報の他の項目を閲覧することが可能である。
 ユーザが右方向ボタン483dを押下すると、図18に示すように、調製履歴第2画面484が表示部48に表示される。調製履歴第2画面484には、試薬調製日時(日付および時刻)、基準値、電極値およびサーミスタ値が表示される。これらは、記憶部49fの試薬調製リスト492の内容に基づいて表示される。
 ユーザが調製履歴第2画面484を表示させた状態でさらに右方向ボタン483dを押下すると、図19に示すように、調製履歴第3画面485が表示部48に表示される。調製履歴第3画面485には、試薬調製日時(日付および時刻)と、試薬調製に用いられた高濃度試薬のロット番号と、高濃度試薬の製造後有効期限と、高濃度試薬の使用開始日と、高濃度試薬の開封後有効期限とが表示される。これらは、記憶部49fの試薬管理リスト491の内容に基づいて表示される。また、ユーザが調製履歴第3画面485を表示させた状態でさらに右方向ボタン483dを押下すると、表示画面が図17に示す調製履歴第1画面483に戻る。また、左方向ボタン483cを押下すれば、右方向ボタン483dを押下した場合とは逆の順番で調製履歴第1画面483、調製履歴第2画面484および調製履歴第3画面485が表示される。このようにして、ユーザは、調製履歴第1画面483、調製履歴第2画面484および調製履歴第3画面485を閲覧することによって、高濃度試薬情報および試薬調製履歴情報を確認することが可能である。
 なお、図16に示すメニュー画面481において、ユーザがセレクトメニューの保守、履歴、エラー履歴を順に選択した場合には、図示しないエラー履歴画面が表示され、試薬調製装置4における各種エラー履歴を確認することが可能である。また、メニュー画面481において、ユーザがセレクトメニューの保守、履歴、交換履歴を順に選択した場合には、図示しない交換履歴画面が表示され、記憶部49fの試薬管理リスト491に基づいた高濃度試薬タンク5の交換履歴を確認することが可能である。
 第1実施形態では、上記のように、調製された試薬に関する試薬情報を取得し、調製された試薬の測定部2への調製試薬供給時間帯を取得するCPU49aと、試薬情報と調製試薬供給時間帯とを表示する表示部48とを設けることによって、表示部48に表示された調製試薬の試薬情報および調製試薬の測定部2への調製試薬供給時間帯に基づいて、どのような属性を有する試薬がいつ測定部2に供給されたかを容易に確認することができる。これにより、測定結果の信頼性が低い場合に、測定に用いられた試薬の情報を取得することが容易になるので、測定結果の信頼性低下の原因の追及が容易になる。
 また、第1実施形態では、調製された試薬の電気伝導度を取得するようにCPU49aを構成することによって、測定部2の測定に用いられた試薬を特定した後にその試薬の品質を確認することができるので、測定結果の信頼性低下の原因の追及をより容易に行うことができる。
 また、第1実施形態では、試薬調製日時に基づいて、調製試薬供給時間帯を取得するようにCPU49aを構成することによって、試薬調製日時に基づいて調製試薬供給時間帯を取得することができるので、調製試薬供給時間帯を試薬調製日時とは別個に測定して取得する必要がない。
 また、第1実施形態では、調製された試薬が測定部2に供給された可能性のある時間帯を調製試薬供給時間帯として取得するようにCPU49aを構成することによって、測定部2の測定で実際に用いられた可能性のある試薬を容易に特定することができるので、測定結果の信頼性低下の原因の追及が容易になる。
 また、第1実施形態では、試薬情報として高濃度試薬に関する高濃度試薬情報を取得するようにCPU49aを構成するとともに、高濃度試薬情報を出力するように表示部48を構成することによって、調製された試薬に含まれる高濃度試薬の高濃度試薬情報に基づいて、容易に、測定に用いられた試薬がどの高濃度試薬を用いて調製されたかを確認することができるので、測定結果の信頼性低下の原因の追及がより容易となる。また、高濃度試薬のロット番号を確認することによって、試薬がどのロットの高濃度試薬を用いて調製されたかを容易に特定することができる。
 また、第1実施形態では、高濃度試薬タンク5に貼付されたラベル50aのバーコード50bを読み取るバーコードリーダ50を設け、CPU49aにより、バーコードリーダ50による読み取り情報に基づいて、高濃度試薬情報を取得することによって、バーコードリーダ50を用いて容易に高濃度試薬情報を取得することができる。
(第2実施形態)
 次に、図20および図21を参照して、第2実施形態について説明する。この第2実施形態では、上記第1実施形態と異なり、RO水作製部7を内部に含む試薬調製装置500について説明する。
 血液検体処理システム1は、図20に示すように、血液の測定を行う機能を有する測定部2と、測定部2から出力された測定データを分析して分析結果を得るデータ処理部3と、検体の処理に用いられる試薬を調製する試薬調製装置500とにより構成されている。
 ここで、第2実施形態では、図20および図21に示すように、試薬調製装置500は、内部に設けられたRO水作製部7により作製されたRO水を用いて高濃度試薬を所望の濃度に希釈することによって、血液分析に用いられる試薬を調製するように構成されている。
 また、試薬調製装置500には、上記第1実施形態とは異なり、表示部が設けられていない。このため、ユーザは、データ処理部3の入力デバイス33を用いて、試薬調製装置4の起動およびシャットダウンを行う。
 また、試薬調製装置500は、通信インターフェース49dを介して、記憶部49fの試薬管理リスト491および試薬調製リスト492に記録された各種情報(高濃度試薬情報および試薬調製履歴情報)をデータ処理部3に送信するように構成されている。これにより、ユーザは、高濃度試薬情報および試薬調製履歴情報をデータ処理部3の表示部32で確認することが可能である。
 なお、第2実施形態のその他の構造は、上記第1実施形態と同様である。
 第2実施形態では、上記のように、RO水作製部7を試薬調製装置500の内部に設けることによって、血液検体処理システム1全体の構成を簡易な構成とすることができる。
 なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。
 たとえば、上記第1実施形態および第2実施形態では、試薬情報として高濃度試薬情報および試薬調製履歴情報を表示部に表示する例を示したが、本発明はこれに限らず、試薬情報として高濃度試薬情報および試薬調製履歴情報に加えて、RO水作製部7で作製されたRO水の電気伝導度などからなるRO水情報を表示部に表示するようにしてもよい。また、高濃度試薬情報は表示せずにRO水情報および試薬調製履歴情報を表示部に表示するようにしてもよい。
 また、上記第1実施形態および第2実施形態では、試薬調製履歴情報が、試薬調製日時と、電気伝導度と、温度と、基準値と、電極値と、サーミスタ値と、試薬調製結果と、調製試薬供給時間帯とを含む構成の例を示したが、本発明はこれに限らず、試薬調製履歴情報が調製試薬供給時間帯さえ含んでいれば、試薬調製履歴情報が調製試薬供給時間帯以外の上記情報を含まない構成であってもよいし、上記以外の他の情報をさらに含む構成であってもよい。
 また、上記第1実施形態および第2実施形態では、試薬調製日時に基づいて調製試薬供給時間帯を取得する構成の例を示したが、本発明はこれに限らず、供給チャンバから測定部に至る経路にセンサを設け、供給チャンバから測定部に移送される試薬がセンサを通過した時刻を調製試薬供給時間として取得する構成であってもよい。
 また、上記第1実施形態および第2実施形態では、所定の試薬の一例として、高濃度試薬とRO水(純水)とからなる試薬を示したが、本発明はこれに限らず、高濃度試薬およびRO水(純水)とは異なる他の種類の液体からなる試薬であってもよい。
 また、上記第1実施形態および第2実施形態では、調製試薬供給時間帯を、試薬が供給チャンバに供給され始めてから供給チャンバの収容量と同じ量の試薬が供給チャンバから排出されるまでの時間帯とする例を示したが、本発明はこれに限らず、調製試薬供給時間帯を、試薬が供給チャンバに供給され始めてから供給チャンバの収容量とは異なる量、たとえば、供給チャンバの収容量の1.5倍の量の試薬が供給チャンバから排出されるまでの時間帯としてもよいし、供給チャンバの収容量の1.5倍とは異なる量の試薬が供給チャンバから排出されるまでの時間帯としてもよい。この場合、供給チャンバの収容量よりも多い量の試薬が供給チャンバから排出されるまでの時間帯とすれば、対応する試薬の調製試薬供給時間帯をより精度よく取得することができる。
 また、上記第1実施形態および第2実施形態では、測定部とデータ処理部とを別個に設ける構成の例を示したが、本発明はこれに限らず、測定部とデータ処理部とを1つの血液検体分析装置とする構成であってもよい。
 また、上記第1実施形態では、試薬調製装置の表示部に試薬情報(高濃度試薬情報および試薬調製履歴情報)を表示する例を示したが、本発明はこれに限らず、上記第2実施形態の構成と同様に、試薬調製装置からデータ処理部に試薬情報(高濃度試薬情報および試薬調製履歴情報)を送信し、データ処理部の表示部に試薬情報(高濃度試薬情報および試薬調製履歴情報)を表示してもよい。
 また、上記第2実施形態では、データ処理部の表示部に試薬情報(高濃度試薬情報および試薬調製履歴情報)を表示する例を示したが、本発明はこれに限らず、上記第1実施形態の構成と同様に、試薬調製装置に表示部を設け、試薬調製装置の表示部に試薬情報(高濃度試薬情報および試薬調製履歴情報)を表示してもよい。
 また、上記第1実施形態および第2実施形態では、調製された試薬が導電率センサを通過した日時を試薬調製日時とする構成の例を示したが、本発明はこれに限らず、供給チャンバのフロートスイッチの検知結果に基づいて試薬調製日時を取得する構成であってもよいし、供給チャンバに試薬調製日時取得用のセンサを別途設けて、試薬調製日時を取得する構成であってもよい。
 また、上記第1実施形態および第2実施形態では、試薬調製装置の一例として、測定部と別個に設置される試薬調製装置を示したが、本発明はこれに限らず、図22に示すように、測定部内に設けられ、試薬調製機構として機能する試薬調製装置であってもよい。このように試薬調製機構を備える測定部(装置)としては、たとえば、血球計数装置、免疫測定装置および塗抹標本作製装置などがあるが、特に、希釈用液体の使用量が多い血球計数装置に適している。
 また、上記第1実施形態および第2実施形態では、供給チャンバ内でロット番号の異なる高濃度試薬から調製された試薬が混合される試薬調製装置を示したが、本発明はこれに限らず、高濃度試薬の交換時に、各チャンバに収容されている高濃度試薬および高濃度試薬と純水との混合液を廃棄する試薬調製装置であってもよい。これにより、チャンバ内でロット番号の異なる試薬が混合されることがなくなるので、より正確な供給時間情報を取得することが可能となる。
 また、上記第1実施形態では、供給時間情報は試薬調製装置のディスプレイで表示され、検体の分析結果はデータ処理装置のディスプレイで表示される検体処理システムを示したが、本発明はこれに限らず、試薬調製装置が供給時間情報を取得する度にデータ処理装置に取得した供給時間情報を送信し、データ処理装置により、検体の分析結果と、当該検体の測定時間と、試薬調製装置から受信した供給時間情報とを対応付けて出力する検体処理システムであってもよい。これにより、データ処理装置による情報の一元管理が可能となる。
 また、上記第1実施形態および第2実施形態では、情報読取部の一例として、バーコードリーダ50を示したが、本発明はこれに限らず、たとえば、高濃度試薬に関する情報を含むQRコード(登録商標)を読み取り可能なQRコードリーダなど、バーコードリーダ以外の情報読取部であってもよい。

Claims (15)

  1.  第1液体と前記第1液体とは異なる第2液体とを含む所定の試薬を用いて検体を測定する測定部に供給される前記所定の試薬を調製する試薬調製装置であって、
     前記所定の試薬を調製する試薬調製部と、
      前記試薬調製部により調製された前記所定の試薬に関する試薬情報を取得し、
      前記試薬調製部により調製された前記所定の試薬が前記測定部に供給された時間に関する供給時間情報を取得し、
      前記試薬情報と前記供給時間情報とを出力する
     制御部と、を備える試薬調製装置。
  2.  前記制御部は、前記試薬情報として、前記所定の試薬の品質を示す品質情報を取得する、請求項1に記載の試薬調製装置。
  3.  前記所定の試薬の電気伝導度を測定する電気伝導度測定部をさらに備え、
     前記制御部は、前記品質情報として、前記電気伝導度測定部によって測定された電気伝導度を取得する、請求項2に記載の試薬調製装置。
  4.  前記制御部は、
      前記試薬調製部により前記所定の試薬が調製された時間に関する調製時間情報をさらに取得し、
      取得された前記調製時間情報に基づいて、前記供給時間情報を取得する、請求項1~3のいずれか1項に記載の試薬調製装置。
  5.  前記試薬調製部により調製され、前記測定部への供給待機状態にある前記所定の試薬を貯留する試薬貯留部をさらに備え、
     前記制御部は、前記所定の試薬が前記試薬貯留部に供給される時間を、前記調製時間情報として取得する、請求項4に記載の試薬調製装置。
  6.  前記試薬貯留部に移送される前記所定の試薬の電気伝導度を測定する電気伝導度測定部をさらに備え、
     前記制御部は、前記所定の試薬が前記試薬貯留部に供給される時間を、前記試薬貯留部に移送される前記所定の試薬が前記電気伝導度測定部を通過する時間に基づいて決定する、請求項5に記載の試薬調製装置。
  7.  前記制御部は、
      前記所定の試薬が前記試薬貯留部に供給される毎に、前記調製時間情報を取得し、
      取得された複数の前記調製時間情報に基づいて、前記供給時間情報を取得する、請求項5または6に記載の試薬調製装置。
  8.  前記制御部は、前記所定の試薬が前記測定部に供給された可能性のある時間帯を、前記供給時間情報として取得する、請求項1に記載の試薬調製装置。
  9.  前記試薬調製部により調製され、前記測定部への供給待機状態にある前記所定の試薬を貯留するとともに、所定の収容量を有する試薬貯留部をさらに備え、
     特定すべき前記所定の試薬が前記測定部に供給された可能性のある時間帯は、前記特定すべき所定の試薬が前記試薬貯留部に供給され始めた時間から、前記試薬貯留部の前記所定の収容量と略同じ量の前記所定の試薬が前記試薬貯留部から前記測定部側に排出された時間までの時間帯である、請求項8に記載の試薬調製装置。
  10.  前記第1液体は、試薬原液であり、
     前記制御部は、
      前記試薬情報として、前記試薬原液に関する試薬原液情報を取得し、
      前記試薬原液情報を出力する、請求項1に記載の試薬調製装置。
  11.  前記試薬原液を収容した試薬容器から前記試薬原液情報を読み取る情報読取部をさらに備え、
     前記制御部は、前記情報読取部の読み取り結果に基づいて、前記試薬原液情報を取得する、請求項10に記載の試薬調製装置。
  12.  前記試薬原液情報は、前記試薬原液のロット番号を含む、請求項10または11に記載の試薬調製装置。
  13.  前記試薬原液情報は、前記試薬原液の有効期限に関する有効期限情報を含む、請求項10または11に記載の試薬調製装置。
  14.  第1液体と前記第1液体とは異なる第2液体とを含む所定の試薬を用いて検体を測定する測定部に供給される前記所定の試薬を調製する試薬調製装置であって、
     前記所定の試薬を調製する試薬調製部と、
     前記試薬調製部により調製された前記所定の試薬に関する試薬情報を取得する試薬情報取得手段と、
     前記試薬調製部により調製された前記所定の試薬が前記測定部に供給された時間に関する供給時間情報を取得する供給時間情報取得手段と、
     前記試薬情報と前記供給時間情報とを出力する出力手段とを備える、試薬調製装置。
  15.  第1液体と前記第1液体とは異なる第2液体とを含む所定の試薬を調製する試薬調製部と、
     前記試薬調製部により調製された前記所定の試薬を用いて検体を測定する測定部と、
      前記試薬調製部により調製された前記所定の試薬に関する試薬情報を取得し、
      前記試薬調製部により調製された前記所定の試薬が前記測定部に供給された時間に関する供給時間情報を取得し、
      前記試薬情報と前記供給時間情報とを出力する
     制御部と、を備える検体処理システム。
PCT/JP2010/053065 2009-02-27 2010-02-26 試薬調製装置および検体処理システム WO2010098437A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080009622.0A CN102334034B (zh) 2009-02-27 2010-02-26 试剂制备装置及样本处理系统
EP10746316.8A EP2402763B1 (en) 2009-02-27 2010-02-26 Reagent preparation equipment and specimen processing system
JP2010538243A JP4647042B2 (ja) 2009-02-27 2010-02-26 試薬調製装置および検体処理システム
US13/218,956 US9316660B2 (en) 2009-02-27 2011-08-26 Reagent preparation apparatus and specimen processing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-046588 2009-02-27
JP2009046588 2009-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/218,956 Continuation US9316660B2 (en) 2009-02-27 2011-08-26 Reagent preparation apparatus and specimen processing system

Publications (1)

Publication Number Publication Date
WO2010098437A1 true WO2010098437A1 (ja) 2010-09-02

Family

ID=42665641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053065 WO2010098437A1 (ja) 2009-02-27 2010-02-26 試薬調製装置および検体処理システム

Country Status (5)

Country Link
US (1) US9316660B2 (ja)
EP (1) EP2402763B1 (ja)
JP (1) JP4647042B2 (ja)
CN (1) CN102334034B (ja)
WO (1) WO2010098437A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195431A (ja) * 2012-03-20 2013-09-30 Eppendorf Ag 電動ピペット器具および電動ピペット器具を動作させる方法
JP2016200587A (ja) * 2015-04-07 2016-12-01 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 試薬管理システム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289912B (zh) * 2016-09-07 2023-07-07 广东省科学院测试分析研究所(中国广州分析测试中心) 一种用于水在线监测的前处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207944A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 洗浄機能付き自動分析装置
JPH0933538A (ja) 1995-07-19 1997-02-07 Toa Medical Electronics Co Ltd 試薬調製装置およびその方法
JP2002032642A (ja) * 2000-05-16 2002-01-31 F Hoffmann-La Roche Ag 自動管理方法及び分析システム
JP2002277451A (ja) * 2001-03-22 2002-09-25 Shimadzu Corp 液体クロマトグラフ
JP2007240430A (ja) 2006-03-10 2007-09-20 Sysmex Corp 集中監視システムおよび分析システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011838A1 (en) * 1992-11-06 1994-05-26 Abbott Laboratories Process control system for biological fluid testing
US7381370B2 (en) 2003-07-18 2008-06-03 Dade Behring Inc. Automated multi-detector analyzer
CN1826218B (zh) * 2003-07-18 2010-09-22 Dade白令公司 自动多检测器分析仪
US7776265B2 (en) * 2004-03-18 2010-08-17 Cummins Filtration Ip, Inc. System for diagnosing reagent solution quality

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207944A (ja) * 1993-01-11 1994-07-26 Hitachi Ltd 洗浄機能付き自動分析装置
JPH0933538A (ja) 1995-07-19 1997-02-07 Toa Medical Electronics Co Ltd 試薬調製装置およびその方法
JP2002032642A (ja) * 2000-05-16 2002-01-31 F Hoffmann-La Roche Ag 自動管理方法及び分析システム
JP2002277451A (ja) * 2001-03-22 2002-09-25 Shimadzu Corp 液体クロマトグラフ
JP2007240430A (ja) 2006-03-10 2007-09-20 Sysmex Corp 集中監視システムおよび分析システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2402763A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013195431A (ja) * 2012-03-20 2013-09-30 Eppendorf Ag 電動ピペット器具および電動ピペット器具を動作させる方法
JP2016200587A (ja) * 2015-04-07 2016-12-01 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト 試薬管理システム

Also Published As

Publication number Publication date
EP2402763A4 (en) 2013-12-04
CN102334034A (zh) 2012-01-25
CN102334034B (zh) 2015-02-18
JP4647042B2 (ja) 2011-03-09
EP2402763A1 (en) 2012-01-04
JPWO2010098437A1 (ja) 2012-09-06
US9316660B2 (en) 2016-04-19
US20110311396A1 (en) 2011-12-22
EP2402763B1 (en) 2015-08-19

Similar Documents

Publication Publication Date Title
JP5355173B2 (ja) 試薬調製装置および検体処理システム
JP5478101B2 (ja) 試薬調製装置および検体処理システム
US8082113B2 (en) Sample analysis system and reagent preparation device
EP2728360B1 (en) Sample analyzer
JP5255498B2 (ja) 試薬調製装置および検体処理システム
JP5355145B2 (ja) 試薬調製装置、検体測定装置および試薬調製方法
JP5161703B2 (ja) 試薬調製装置、検体処理装置および試薬調製方法
US20130011298A1 (en) Sample analyzer and storage medium
US20090074618A1 (en) Sample analyzer
EP2224224B1 (en) Reagent preparing device, specimen processing system and reagent preparing method
JP5244351B2 (ja) 検体分析装置
JP4436741B2 (ja) 測定結果チェック方法、測定結果チェックシステム、測定結果チェック装置、及びコンピュータプログラム
JP2009174942A (ja) 試料処理装置及び試料処理装置用プログラム
JP4647042B2 (ja) 試薬調製装置および検体処理システム
WO2007119785A1 (ja) 自動分析装置の分析支援用液体の品質管理方法および自動分析装置
JP5596208B2 (ja) 試薬調製装置、検体測定装置および試薬調製方法
JP5726239B2 (ja) 検体分析装置及び検体分析装置用プログラム
JP5289138B2 (ja) 試薬調製装置および検体処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080009622.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010538243

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10746316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010746316

Country of ref document: EP