WO2010097066A1 - Serinprotease-inhibitoren zur spezifischen inhibition von gewebs-kallikreinen - Google Patents

Serinprotease-inhibitoren zur spezifischen inhibition von gewebs-kallikreinen Download PDF

Info

Publication number
WO2010097066A1
WO2010097066A1 PCT/DE2010/000033 DE2010000033W WO2010097066A1 WO 2010097066 A1 WO2010097066 A1 WO 2010097066A1 DE 2010000033 W DE2010000033 W DE 2010000033W WO 2010097066 A1 WO2010097066 A1 WO 2010097066A1
Authority
WO
WIPO (PCT)
Prior art keywords
serine protease
lekti
protease inhibitor
inhibitor according
seq
Prior art date
Application number
PCT/DE2010/000033
Other languages
English (en)
French (fr)
Inventor
Ulf Meyer-Hoffert
Jens-Michael SCHRÖDER
Zhihong Wu
Original Assignee
Universitätsklinikum Schleswig-Holstein
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitätsklinikum Schleswig-Holstein filed Critical Universitätsklinikum Schleswig-Holstein
Publication of WO2010097066A1 publication Critical patent/WO2010097066A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/81Protease inhibitors
    • C07K14/8107Endopeptidase (E.C. 3.4.21-99) inhibitors
    • C07K14/811Serine protease (E.C. 3.4.21) inhibitors
    • C07K14/8135Kazal type inhibitors, e.g. pancreatic secretory inhibitor, ovomucoid

Definitions

  • the invention relates to Serm protease inhibitors for the specific inhibition of tissue kallikreins.
  • the stratum corneum acts as the body's main protective barrier against physical and chemical damage, dehydration and microbial pathogens. During normal desquamation of the stratum corneum, the most superficial corneocytes are discarded from the skin surface. This process requires the proteolysis of the corneodesmosomal adhesion molecules that occurs through serine proteases.
  • KLKs human tissue kallikreins
  • kallikrein-related peptidases a family of 15 different trypsin and chymotrypsin-like serine proteases in the desquamation of the stratum corneum KLK5 and KLK7
  • KLK 5 and 7 other kallikreins are associated with desquamation: KLK 5, 6, 7, 8, 10, 11, 13 and 14 are in epidermis and are involved in desquamation of the skin and its barrier function (Lundwall, A. and Brattsand, M. (2008) Kallikrein-related peptidases, Cell Mol. Life Sci 65: 2019-38).
  • SPIs serine protease inhibitors
  • spink5 encodes a SPI with 15 inhibitor domains, termed the lymphoepithelial Kazal-type inhibitor (LEKTI) (Magert, HJ., Ständker, L., Kreutzmann, P., Breeding, HD, Reinecke, M., Sommerhoff, CP , Fritz, H. and Forssmann, WG (1999) LEKTI, a novel 15- domain type of human serine proteinase inhibitor, J. Biol. Chem. 274: 21499-502). All known spink5 mutations cause premature stop codons in the LEKTI transcript and lead to the formation of truncated LEKTI forms that lack some inhibitor domains.
  • LEKTI lymphoepithelial Kazal-type inhibitor
  • LEKTI deficiency causes an abnormal proteolysis of the corneodesmosomes due to the hyperactivity of KLK5 and KLK7. This leads to accelerated exfoliation of the stratum corneum and consequent loss of the barrier function of the skin (Yang, T., Liang, D., Koch, PJ., Hohl, D., Kheradmand, F. and Overbeek, PA (2004) Epidermal detachment Desmosomal dissociation, and destabilization of corneodesmosin in Spink5 - / - mice Genes Dev.
  • LEKTI a novel 15-domain type of human serine proteinase inhibitor J. Biol Chem 274: 21499-502; Magert, HJ., Kreutzmann, P., Ständker, L., Waiden, M., Drogemüller , K. and Forssmann, WG (2002) LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance, Int., J.
  • LEKTI could not only have biological effects directly on the skin .
  • the extent of atopic manifestations in NS suggests that LEKTI participates as a protease inhibitor in the inflammatory process (Deraison, C, Bonnart, C, Lopez, F., Besson, C, Robinson, R., Jayakumar, A., Wagberg, F., Brattsand, M., Hachem, JP, Leonardsson, G. and - A -
  • LEKTI belongs to the family of Kazal-type serine protease inhibitors, whose numerous members generally have 3-7 tandem Kazal domains. Interestingly, LEKTI consists of a signal peptide and 15 potential serine protease inhibitor domains (Dl -D 15) separated by 14 spacer segments. Two of these domains (D2 and D15) resemble typical Kazal-type serine protease inhibitors, with a characteristic motif consisting of six cysteine residues. The remaining 13 domains are highly homologous with this inhibitor family but lack one of the three conserved disulfide bridges. Some authors have studied the inhibitory activity of various forms of LECTI.
  • LEKTI6-9 another LEKTI form containing domains 6-9 inhibits trypsin, subtilisin A, chymotrypsin, KLK5 and KLK7 but not plasmin, cathepsin G or elastase (Jayakumar, A., Kang, Y ., Mitsudo, K., Henderson, Y., Frederick, MJ, Wang, M., El-Naggar, AK, Marx, UC, Briggs, K.
  • LEKTI domains 6-9 ' in the baculovirus expression system recombinant LEKTI domains 6-9 'inhibit trypsin and subtilisin A.
  • domain D6 was shown to inhibit trypsin, KLK5, and KLK7, whereas D15 has no effect on these two kallikreins.
  • Serine protease inhibitors or their fragments containing LEKTI domains are the subject of several patents.
  • the application PCT / EP 98/08424 relates to serine protease inhibitors having a domain with four cysteines, wherein between the first and a second cysteine a sequence of 0 to 20 amino acids or the serine proteinase inhibitors is a domain with six cysteines and between the first and second cysteine is a sequence of 7 to 20 amino acids.
  • WO03 / 070953 A1 describes LEKTI fragments and their use for inhibiting infections or virus multiplication.
  • WO02 / 066513 A2 and EP 1 040 190 B1 also relate to biologically active LEKTI fragments and their use as diagnostics and medicaments for the treatment of various indications.
  • protease inhibitors Due to the important physiological role played by the described proteolytic processes, certain protease inhibitors have a high therapeutic potential. Therefore, there is a continuing need for new specific-acting serine protease inhibitors that can be used preventively or curatively.
  • the present invention is therefore based on the objects to provide further serine proteinase inhibitors that can be used as a readily available drug with biological and therapeutic activity of a natural substance and to show a way to their production. According to the invention, this object is achieved by the serine proteinase inhibitor having the features of claim 1.
  • the subclaims reflect advantageous embodiments of the invention.
  • Fig. 1 is an overview of the LEKTI-3-encoding spink ⁇ gene and the
  • LEKTI-3 protein namely a) a schematic representation of the exon-intron structure of the spink ⁇ gene; b) the nucleotide and amino acid sequence of the human spink ⁇ gene; and c) the schematic structural representation of the kazal domain of the human LEKTI-3 protein from a sequence comparison of LEKTI-3 proteins from different species;
  • Fig. 2 shows the expression profile of LEKTI-3 in various human
  • FIG. 3 shows the isolation of LEKTI-3 from human skin a) in a C2C 18-
  • Fig. 4 shows the identification of LEKTI-3 in human skin
  • the present invention relates to the isolation and use of the skin-occurring protein serine proteinase inhibitor LEKTI-3.
  • the human chromosomal region 5q32 there are several spink Qtnt that form a cluster with the already characterized SpinkS, Spink7 and Spink9, including Spink ⁇ (GenBank accession No. NM_205841).
  • Spink ⁇ encodes the protein LEKTI-3.
  • the inventors To characterize the human Spink ⁇ , the inventors have isolated the LEKTI-3 cDNA from cultured keratinocytes.
  • the entire spink-encoded protein LEKTI-3 has the amino acid sequence (SEQ ID: NO 1):
  • LEKTI-3 fragment was isolated from human skin, with the amino acid sequence (SEQ ID: NO 2):
  • LEKTI-3 fragment SEQ ID: NO 2 The above-described LEKTI-3 fragment SEQ ID: NO 2) was expressed in E. coli and subsequently purified.
  • the recombinant LEKTI-3 fragment dose-dependently and selectively inhibits the activity of KLK 5, 7, 12, 13 and 14, but not that of KLK3 and KLK8.
  • Figure 1 shows an overview of the LEKTI-3-encoding spink ⁇ gene and the LEKTI-3 protein.
  • the structure of the Spink ⁇ gene is illustrated in Figure Ia).
  • Spink ⁇ includes 4 exons and .3 introns. The non-coding regions are shown in gray in FIG. 1a).
  • the cDNA sequence data are available under GenBank from the National Center for Biotechnology Information (NCBI) under accession number AY358716.
  • the open reading frame (black in Figure Ia)) comprises 243 nucleotides encoding an 80 amino acid residue long peptide (SEQ ID NO: 1, GenBank AAQ89078), the human LEKTI-3 protein.
  • the resulting 80 amino acid residue-long LEKTI-3 protein contains a leader sequence with a signal peptide (residues 1-24, not underlined in the protein sequence in Figure Ib)). Sequence comparison of the kazal domains encoded by Spink ⁇ in mammals and birds indicates that these sequences are highly conserved ( Figure Ic). The labeled putative disulfide bridges in the consensus sequence correspond to the disulfide bridges that form in a Kazal inhibitor domain.
  • the expression profile of LEKTI-3 in various human tissues is illustrated in FIG.
  • the mRNA expression of Spink ⁇ was examined by real-time RT-PCR.
  • Spink ⁇ mRNA was detected in all tissues and cells examined, including the respiratory tract (lung and trachea), gastrointestinal tract (salivary glands, stomach, small intestine, colon and liver), reproductive system and urinary tract (kidney, bladder, prostate, testes, mammary gland , Bone marrow and placenta), endocrine system (thyroid gland and adrenal gland), brain and lymphoid tissues (tonsils, brain, spleen, thymus, heart), foreskin glands, cell culture primary keratinocytes and HaCat cells.
  • LEKTI-3 To characterize the inhibitory activity of LEKTI-3, the percent inhibition of recombinant LEKTI-3 SEQ ID: NO 2 was determined for various serine proteases (Table 1, Example 7). Inhibition by LEKTI-3 was detected only for the KLK family members tested, but not for other serine proteases tested, including trypsin, chymotrypsin and thrombin.
  • LEKTI-3 is a KLK-selective inhibitor. Concentration-dependent experiments were then carried out for the inhibition of KLK3, 5, 7, 8, 12, 13, 14.
  • Fig. 5 shows the dose-dependent inhibition of KLKs by recombinant LEKTI-3.
  • the inventors were able to demonstrate that LEKTI-3 dose-dependently and selectively inhibits the activity of KLK5, 7, 12, 13, and 14.
  • a Ki of 0.6 nM for KLK5 and of 0.1 nM for KLKl 4 was determined. KLK 3 and 8 were not inhibited by LEKTI-3.
  • the present invention further provides a production process for the peptides of the invention.
  • the invention is therefore in addition to the use of the described peptides, the use of their biologically active fragments.
  • Biologically active means that the fragments have a maximum of 10-fold as high ki value as the underlying complete peptides according to the measurement method given in the examples.
  • Preference is given to derivatives in which one or more amino acids are absent from the N- or C-terminal.
  • amino acids from the sequence may also be deleted.
  • Such fragments preferably have not more than 10% deleted amino acids.
  • the invention further relates to the use of such peptides in which individual amino acids are exchanged.
  • these are conservative substitutions, i.
  • Amino acids with similar properties are being replaced, for example alanine versus serine, leucine versus isoleucine, etc. Again, it is preferred that not more than 10% of the amino acids in the peptides be replaced.
  • individual amino acids may also be replaced by non-natural amino acids, i. by amino acids which carry further functional groups, for example hydroxyprolines, methylthreonines, homocysteins, etc. Also in this case preferably not more than 10% of the amino acids are modified accordingly.
  • the peptides may carry derivatizations, for example glycosylated, amidated, acetylated, sulfated or phosphorylated.
  • the present invention further relates to the use of the peptides according to the invention as medicaments for various therapeutic indications.
  • the peptides can be used as high-purity substances or - if sufficient for use - within a partially purified peptide mixture or as a mixture of several inventive peptides.
  • the Peptides according to the invention are particularly well-suited for the treatment of skin diseases with damaged epidermal barrier such as neurodermatitis, dishydrosiform hand-foot eczema, nummular eczema and Netherton syndrome.
  • Cosmetic applications are also possible for the peptides according to the invention if a rough, chapped skin is to be treated.
  • RNA-free total RNA for the synthesis of the First-strand cDNA for the RACE (Rapid Amplification of cDNA Ends) with the SMART RACE cDNA Amplification Kit (BD Bioscience Clontech, Heidelberg, Germany) according to the manufacturer's instructions.
  • 5' RACE was amplified with a gene specific antisense primer (5'-AGG CAC ATT TAT TGC CAT ATG TCT GGC CAT C-3 1 ) and a universal primer mixture (10 x UPM) after the Clontech SMART RACE cDNA Ampilization protocol performed.
  • the 5'-RACE PCR was performed as follows: 1 min, 95 0 C; 5 cycles of 95 0 C, 20 s, 3 min, 72 ° C; 5 cycles 95 ° C., 20 seconds, 3 minutes, 70 ° C.; 25 cycles 95 ° C, 20 s, 3 min, 68 0 C; final 10 min extension at 72 ° C.
  • the first PCR cycle was performed with a gene-specific sense primer (5'-GTG AGT TCC AGG ACC CCA AGG TCT ACT G-3') and 10 x RPM. Subsequently, 0.5 ⁇ l of the PCR product was used as template for the nested PCR with nested gene-specific primers (5-nest: 5'-GCC ACA GTG TGG GTT AGA TTC CCG AGT G-3 ';3'-nest: 5 'CCA CAC TGT GGC TCT GAT GGC CAG A- 3 ').
  • the reaction took place under the following conditions: 1 min, 95 0 C; 30 cycles 95 ° C., 20 seconds, 3 minutes 70 ° C.; finally 10 min extension at 70 0 C.
  • the amplified fragment was gel-purified, subcloned into the vector pGEM-T (Promega, Mannheim, Germany) and then sequenced.
  • Example 2 Determination of the Expression of LEKTI-3 by Real-Time RT-PCR
  • TRzol Invitrogen, Hamburg, Germany
  • Other total RNAs from different tissues were obtained from BD Bioscience Clontech (Heidelberg, Germany).
  • the reverse transcription was carried out from 2 ⁇ g total RNA with an oligo (dT) 18 primer and the Superscript II RNaseH reverse transcriptase (Invitrogen).
  • the pair of gene-specific PCR primers used (forward primer: 5'-ACC TCA GCT GGA CAA AGC AG -3 ', reverse primer: 5'-TGG CAA GTC ACC AAG AAA CA -3') enables the amplification of a 322 bp LEKTI-3 fragment encompassing all three exon-intron boundaries.
  • the real-time RT-PCR experiments were performed with the SYBR® Premix Ex Taq TM kit (Takara Bio, Heidelberg, Germany) in a fluorescence thermocycler according to the manufacturer's instructions (LightCycler, Roche Molecular Biochemicals, Hamburg, Germany).
  • the amplification products were analyzed by 2.0% agarose gel electrophoresis and, if necessary, further purified and sequenced to confirm their identity.
  • the housekeeping gene GAPDH glycosyl phosphodehydrogenase
  • the recombinant expression of the spink cDNA was carried out in E. coli.
  • the spink ⁇ cDNA was subcloned into the prokaryotic expression vectors pET-32a (Novagen, North Ryde, Australia) and pET-SUMO (Invitrogen) as described (Wu and Meyer-Hoffert et al, J Invest Derm in press).
  • the SUMO-His-tagged fusion protein was digested with SUMO protease according to the manufacturer's instructions (Lifesensors Inc., Pennsylvania, USA) and analyzed on a Jupiter 5 .mu.g C4-300A HPLC column (Phenomenex, Aillesburg, Germany). purified. The purity and sequence of the peptide were checked by ESI-QTOF mass spectrometry (Micromass, Manchester, UK).
  • the polyclonal antisera to the amino acid sequence of the human LEKTI-3 fragment (SEQ ID NO 2) were prepared in goat.
  • the total amount of 1.0 mg of the fusion protein (pET-32a-LEKTI-3) was determined by the Glutarataldeyd method (Briand, JP, Muller, S. and Van Regenmortel, MH (1985) Synthetic peptides as antigens: Pitfalls of conjugation methods. J. Immunol., Methods: 78: 59-69) to maleimide-activated keyhole limpet hemocyanin (KLH) (protein KLH 1: 1 w / w) and then for use as immunogen with 500 ⁇ g pET-32a-LEKTI-3 mixed.
  • KLH keyhole limpet hemocyanin
  • the immunization of the goats was performed four times on days 0, 14, 28 and 35.
  • the blood of the goat was taken two weeks after the last "booster".
  • the serum was stored until use at -70 0 C.
  • the antisera were.
  • the absorbance on hiTrap NHS-activated HP 1 ml columns (American Biosciences, Freiburg, Germany) was affinity-purified with covalently bound rLEKTI-3
  • the specificity was tested with purified rLEKTI-3 and stratum corneum extracts by Western Blot.
  • Example 5 Isolation of natural LEKTI-3 from human skin samples Total protein was isolated from horn material from various subjects (80-120 g stratum corneum from heel tissue) as described Meyer-Hoffert et al., 2009 (PLoS ONE., 2009; 4 (2) : e4372.) and affinity-purified. For this, anti-human LEKTI-3 antibodies (Example 4) were covalently bound to HiTrap NHS-activated HP 1 ml columns (Amersham Biosciences). The affinity-purified fractions were further resolved by C2C18 RP-HPLC.
  • the expression of LEKTI-3 in the skin was examined by immunohistochemical staining of paraffin sections. Fixation of the tissue samples was performed in 4% paraformaldehyde. Paraffin sections (5 ⁇ m) of the tissue samples were deparaffinized and rehydrated before heat-induced antigen recovery was performed in 0.01 M citrate buffer (pH 6.0). These paraffin areas were subsequently blocked before staining with normal rabbit serum (1:75, Dalco Cytomation, Glostrup, Denmark). The immunohistochemical staining was performed with affinity-purified polyclonal goat LEKTI-3 antibody (1: 200 dilution) for 1 hour at room temperature.
  • the areas were incubated with biotinylated anti-goat IgG (1: 100, Dako Cytomation), then incubated with the Vector Universal ABC Alkaline Phophatase Substrate Kit (Vector, Burlingame, CA, USA) and developed with Vector NovaRED Substrate (Vector). Finally, counterstaining with hematoxylin was performed. Specificity was tested by blocking the primary antibody with the recombinant LEKTI-3 peptide, and the negative controls were done by staining the areas with preimmune goat sera.
  • KLK14 (R & D, Systems), originally inactive pro form, was activated according to the manufacturer's instructions.
  • the concentration of active KLK14 was 3.19 ⁇ M (89 ⁇ g / ml).
  • KLK5 (R & D), already in active form, was used at 3.7 ⁇ M (0.149 mg / ml).
  • the active forms of both enzymes were preincubated at 4 nM with increasing rLEKTI-3 levels in 100 ⁇ l TNT buffer (50 mM Tris, 0.15 mM NaCl, 0.05% Tween-20) , The concentration of the inhibitor was calculated from sequence-based molar extinction coefficients and absorbance measurements at 280 nm.
  • the incubation with the inhibitor was carried out for 15 minutes at 21 0 C, followed by the addition of the substrate (trypsin substrate tosyl-Gly-Pro-Arg-pNa (Sigma)).
  • the substrate trypsin substrate tosyl-Gly-Pro-Arg-pNa (Sigma)
  • To each sample was added 100 ⁇ l of T-GPR-pNa solution and kinetics measurements (absorbance at 405 nm) were then immediately performed in a microplate reader (Sunrise).
  • the final concentration of each enzyme in a total volume of 200 ⁇ l was 2 nM, the substrate concentration was 1 mM and the LEKTI 3 concentration was up to 2000 nM.
  • the absorbance was measured in the case of KLKl 4 for one hour and for KLK5 overnight.
  • the results were analyzed by Baici's method (Baici, A. (1981) The Specific Velocity Plot: A Graphical Method for Determining Inhibition Parameters for Both Linear
  • Table 1 LEKTI-3 inhibition of various serine proteases.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Serinprotease-Inhibitor, ausgewählt aus der Gruppe von Peptiden bestehend aus einem Peptid mit der in SEQ ID:NO 1 dargestellten Aminosäuresequenz, einem Peptid mit der in SEQ ID:NO 2 dargestellten Aminosäuresequenz, und einem Derivat oder Fragment eines Peptids mit der in SEQ ID:NO 1 oder SEQ ID:NO 2 dargestellten Aminosäuresequenz mit Serinprotease-inhibierender Wirkung.

Description

Serinprotease-Inhibitoren zur spezifischen Inhibition von Gewebs-Kallikreinen
Die Erfindung betrifft Serm-Protease-Inhibitoren zur spezifischen Inhibition von Gewebs- Kallikreinen.
Ungefähr 60 % der Weltbevölkerung leidet unter dermatologischen Störungen, wobei 25 % ärztliche Behandlung benötigen (Hadgraft, J. (2002) Crossing the barrier. In: The Essential Stratum cornβum, R. Marks, JX. Leveque und R. Voegeli, eds., 103-9). Die klinische Diagnose von Hautstörungen ist eine schwierige Aufgabe, da anomale Hautbilder von verschiedensten lokalen oder systemischen Krankheiten verursacht werden können. Hautkrankheiten sind zudem oft schwer zu behandeln, aufgrund der Barriere, die die äußerste Hautschicht, das Stratum corneum, darstellt.
Das Stratum corneum wirkt als wichtigste schützende Grenzschicht des Körpers gegen physische und chemische Schaden, Dehydratisierung und mikrobielle Krankheitserreger. Während der normalen Desquamation des Stratum corneum werden die oberflächlichsten Korneozyten von der Hautoberfläche abgeworfen. Dieser Prozess erfordert die Proteolyse der korneodesmosomalen Adhäsionsmoleküle, die durch Serin-Proteasen erfolgt. Bislang wird Serin-Protease-Aktivität im Stratum corneum menschlichen Gewebs-Kallikreine (KLKs, nach neuester Nomenklaturregel „Kallikrein-related peptidases") zugeschrieben, eine Familie von 15 verschiedenen Trypsin- und Chymotrypsin-artigen Serin-Proteasen. Bei den KLKs ist eine Rolle in der Desquamation des Stratum corneum KLK5 und KLK7 zugeschrieben worden. Weitere Studien haben ergeben, dass zusätzlich zu KLK 5 und 7 andere Kallikreine mit Desquamation in Verbindung stehen: KLK 5, 6, 7, 8, 10, 11, 13 und 14 werden in der Epidermis exprimiert und sind an der Desquamation der Haut und ihrer Barrierefunktion maßgeblich beteiligt (Lundwall, A. und Brattsand, M. (2008) Kallikrein-related peptidases. Cell. Mol. Life Sei. 65: 2019-38).
Da Desquamation ein Serin-Protease-abhängiger Prozess ist, wird sie durch Serin-Protease- Inhibitoren (SPIs) reguliert. Die Bedeutung des desquamationsregelndes Serin-Protease/SPI- Gleichgewichtes ist bei der Genodermatose „Netherton Syndrom" (NS) am deutlichsten. NS, eine autosomal rezessive ichthyosiforme Hautstörung, durch Haarschaft-Defekte gekennzeichnet, charakterisiert durch atopische Eigenschaften, übermäßige Desquamation der Korneozyten, und schwerwiegende Funktionsstörungen des Stratum comeum, wird durch frameshift- und nonsense-Mutationen im Kazal-Typ Serin-Protease-Inhibitor 5 Gen (spink5) verursacht (Komatsu, N., Takata, M., Otsuki, N., Ohka, R., Amano, O., Takehara, K. und Saijoh, K. (2002) Elevated Stratum comeum hydrolytic activity in Netherton Syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J. Invest. Dermatol. 118: 436-43; Chavanas, S., Bodemer, C, Rochat, A., Hamel-Teillac, D., Ali, M., Irvine, A.D., Bonafe, J.L., Wilkinson, J., Taieb, A., Barrandon, Y., et al. (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton Syndrome. Nat. Genet. 25: 141-2; Sprecher, E., Chavanas, S., DiGiovanna, J. J., Amin, S., Nielsen, K., Prendiville, J. S., Silverman, R., Esterly, N.B., Spraker, M.K., Guelig, E., et al. (2001) The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton Syndrome: implications for mutation detection and first case of prenatal diagnosis. J. Invest. Dermatol. 1 17: 179-87). spink5 kodiert für ein SPI mit 15 Inhibitor-Domänen, der lymphoepithelial Kazal-Typ Inhibitor (LEKTI) bezeichnet wird (Magert, HJ., Ständker, L., Kreutzmann, P., Zucht, H. D., Reinecke, M., Sommerhoff, C.P., Fritz, H. und Forssmann, W.G. (1999) LEKTI, a novel 15- domain type of human serine Proteinase inhibitor. J. Biol. Chem. 274: 21499-502). Alle bekannte spink5 Mutationen verursachen vorzeitigen Stoppcodons im LEKTI Transkript und führen zur Entstehung verkürzter LEKTI Formen, denen einige Inhibitor-Domänen fehlen. Infolgedessen verursachen reduzierte LEKTI Expression bzw. Aktivität unkontrollierte, erhöhte Serin-Protease-Aktivität, wie im Stratum comeum von NS-Patienten (Descargues, P., Deraison, C, Prost, C, Fraitag, S., Mazereeuw-Hautier, J., D'Alessio, M., Ishida-Yamamoto, A., Bodemer, C, Zambruno, G., und Hovnanian, A. (2006) Corneodesmosomal Cadherins are preferential targets of Stratum comeum trypsin- and chymotrypsin-like hyperactivity in Netherton Syndrome. J. Invest Dermatol. 126: 1622-32; Komatsu, N., Takata, M., Otsuki, N., Ohka, R., Amano, O., Takehara, K. und Saijoh, K. (2002) Elevated Stratum comeum hydrolytic activity in Netherton Syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J. Invest. Dermatol. 118: 436-43; Hachem, J.P., Houben, E., Crumrine, D., Man, M.Q., Schurer, N., Roelandt, T., Choi, E.H., Uchida, Y., Brown, B.E., Feingold, K.R. und Elias, P.M. (2006) Serine protease signaling of epidermal permeability barrier homeostasis. J. Invest. Dermatol. 126: 2074-86) und bei spink5-null Mäusen (Descargues, P., Deraison, C, Bonnart, C5 Kreft, M., Kishibe, M., Ishida-Yamamoto, A., Elias, P., Barrandon, Y., Zambruno, G., Sonnenberg, A. und Hovnanian, A. (2005) Spink5- deficient mice mimic Netherton Syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat. Genet. 37: 56-65) beobachtet werden kann, und führen zu übermäßiger Desquamation und zum Abbau des Stratum corneum.
LEKTI Mangel verursacht eine anormale Proteolyse der Korneodesmosomen wegen der Hyperaktivität von KLK5 und KLK7. Dies führt zu beschleunigter Abschilferung des Stratum corneum und folglich zum Verlust der Barrierenfunktion der Haut (Yang, T., Liang, D., Koch, PJ., Hohl, D., Kheradmand, F. und Overbeek, P.A. (2004) Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice. Genes Dev. 18: 2354-8.; Descargues, P., Deraison, C, Bonnart, C, Kreft, M., Kishibe, M., Ishida- Yamamoto, A., Elias, P., Barrandon, Y., Zambruno, G., Sonnenberg, A. und Hovnanian, A. (2005) Spink5-deficient mice mimic Netherton Syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat. Genet. 37: 56-65; Hewett, D. R., Simons, A.L., Mangan, N.E., Jolin, H.E., Green, S.M., Fallon, P.G. und McKenzie, A.N. (2005) Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton Syndrome. Hum. Mol. Genet. 14: 335-46). LEKTI kann daher als Schlüsselregulator der epidermalen Protease-Aktivität betrachtet werden. Zudem deutet das Vorkommen von LEKTI-Domänen in der Blutzirkulation darauf hin (Magert, H. J., Ständker, L., Kreutzmann, P., Zucht, H.D., Reinecke, M., Sommerhoff, CP. , Fritz, H. und Forssmann, W.G. (1999) LEKTI, a novel 15-domain type of human serine Proteinase inhibitor. J. Biol. Chem. 274: 21499-502; Magert, HJ., Kreutzmann, P., Ständker, L., Waiden, M., Drogemüller, K. und Forssmann, WG. (2002) LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance. Int. J. Biochem. Cell Biol. 34: 573-6), dass LEKTI nicht nur direkt an der Haut biologische Effekte aufweisen könnte. Der Umfang der atopischen Manifestationen beim NS spricht dafür, dass LEKTI als Protease-Inhibitor am Entzündungsprozess mitbeteiligt ist (Deraison, C, Bonnart, C, Lopez, F., Besson, C, Robinson, R., Jayakumar, A., Wagberg, F., Brattsand, M., Hachem, J.P., Leonardsson, G. und - A -
Hovnanian, A. (2007) LEKTI fragments specifically inhibit KLK55 KLK7, and KLK14 and control desquamation thiOugh a pH-dependent interaction. Mol. Biol. Cell 18: 3607-19).
LEKTI gehört zur Familie der Kazal-Typ Serin-Protease-Inhibitoren, deren zahlreiche Mitglieder im Allgemeinen 3-7 Tandem-Kazal-Domänen aufweisen. Interessanterweise besteht LEKTI aus einem Signalpeptid und 15 potentiellen Serin-Protease-Inhibitor-Domänen (Dl -D 15) getrennt durch 14 spacer-Segmente. Zwei dieser Domänen (D2 und D 15) ähneln typischer Kazal-Typ Serin-Protease-Inhibitoren, mit einem charakteristischen Motiv aus sechs Cysteinresten. Die übrigen 13 Domänen weisen eine hohe Homologie mit dieser Inhibitor- Familie, aber ihnen fehlt eine der drei konservierten Disulfidbrücken. Einige Autoren haben die inhibitorische Aktivität verschiedener LEKTI-Formen untersucht. Es wurde gezeigt, dass das gesamte rekombinante LEKTI-Protein Trypsin, Subtilisin A, Plasmin, Kathepsin G und Neutrophilelastase, aber nicht Chymotrypsin (Mitsudo, K., Jayakumar, A., Henderson, Y., Frederick, MJ., Kang, Y., Wang, M., El-Naggar, A.K. und Clayman, G.L. (2003) Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis. Biochemistry 42: 3874-81) oder KLKs (Deraison, C3 Bonnart, C, Lopez, F., Besson, C, Robinson, R., Jayakumar, A., Wagberg, F., Brattsand, M., Hachem, J.P., Leonardsson, G. und Hovnanian, A. (2007) LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol. Biol. Cell 18: 3607-19) inhibieren kann. Eine andere LEKTI-Form, das Domänen 6-9 (rLEKTI6-9) ent-hält, inhibiert hingegen Trypsin, Subtilisin A, Chymotrypsin, KLK5 und KLK7, aber nicht Plasmin, Kathepsin G oder Elastase (Jayakumar, A., Kang, Y., Mitsudo, K., Henderson, Y., Frederick, M.J., Wang, M., El-Naggar, A.K., Marx, U.C., Briggs, K. und Clayman, G.L. (2004) Expression of LEKTI domains 6-9' in the baculovirus expression system: recombinant LEKTI domains 6-9' inhibit trypsin and subtilisin A. Protein Expr. Purif. 35: 93-101; Schechter, N.M., Choi, E. J., Wang, Z.M., Hanakawa, Y., Stanley, J.R., Kang, Y., Clayman, G.L. und Jayakumar, A. (2005) Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI). Biol. Chem. 386: 1173-84). Zudem wurde gezeigt, dass die Domäne D6 Trypsin, KLK5 und KLK7 inhibiert, wohingegen D15 gegenüber dieser zwei Kallikreine keine Wirkung aufweist. Beim Kazal-Typ Serin-Protease-Inhibitor Familienmitglied LEKTI2 (von spink9 kodiert) wurde gezeigt, dass es spezifisch die Aktivität von KLK5 inhibiert, nicht aber von KLK7, 8, und 14 oder humanem Thrombin, bovinem Trypsin und bovinem Chymotrypsin (Stefansson, K. (2008) Kallikrein-related peptidases in human epidermis: studies on activity, regulation, and fuαction. Doctoral thesis, Umeä University, Faculty of Medicine, Public Health and Clinical Medicine, Dermatology and Venerology, http://www.diva- portal.org/umu/abstract.xsql?dbid= 1644).
Serin-Protease-Inhibitoren oder dessen Fragmente, die LEKTI-Domänen enthalten, sind Gegenstand mehrerer Patenten bzw. Patentanmeldungen. So betrifft die Anmeldung PCT/EP 98/08424 Serin-Protease-Inhibitoren, die eine Domäne mit vier Cysteinen aufweisen, wobei sich zwischen dem ersten und einem zweiten Cystein eine Sequenz von 0 bis 20 Aminosäuren befindet oder die Serin-Proteinase-Inhibitoren eine Domäne mit sechs Cysteinen aufweisen und sich zwischen dem ersten und zweiten Cystein eine Sequenz von 7 bis 20 Aminosäuren befindet. Die WO03/070953 Al beschreibt LEKTI Fragmente und ihre Verwendung zur Inhibierung von Infektionen oder Virusvermehrung. Die WO02/066513 A2 und die EP 1 040 190 Bl betreffen auch biologisch aktive LEKTI Fragmente und ihre Verwendung als Diagnostik und Arzneimittel zur Behandlung verschiedener Indikationen.
Aufgrund der bedeutenden physiologischen Rolle, die die geschilderten proteolytischen Prozesse spielen, besitzen bestimmte Protease-Inhibitoren ein hohes therapeutisches Potential. Daher besteht ein ständiger Bedarf an neuen spezifisch-wirkenden Serin-Protease-Inhibitoren, die präventiv oder kurativ eingesetzt werden können.
Der vorliegende Erfindung liegt damit die Aufgaben zugrunde, weitere Serin-Proteinase- Inhibitoren bereitzustellen, die als gut zugängliches Arzneimittel mit biologischer und therapeutischer Aktivität eines natürlichen Stoffes verwendet werden können sowie einen Weg zu ihrer Produktion aufzuzeigen. Erfindungsgemäß wird diese Aufgabe durch den Serin-Proteinase-Inhibitor mit den Merkmalen von Anspruch 1 gelöst. Die Unteransprüche geben vorteilhafte Ausgestaltungen der Erfindung wieder.
Die Erfindung wird anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 eine Übersicht über das LEKTI-3 -kodierende spinkό Gen und das
LEKTI-3 Protein, nämlich a) eine schematische Darstellung der Exon- Intron-Struktur des spinkό Gens; b) die Nukleotid- und Aminosäurensequenz des humanen spinkό Gens; und c) die schematische Strukturdarstellung der Kazal-Domäne des humanen LEKTI-3 Proteins anhand eines Sequenzvergleiches von LEKTI-3 Proteinen von verschiedenen Spezies;
Fig. 2 das Expressionsprofil von LEKTI-3 in verschiedenen menschlichen
Geweben;
Fig. 3 die Isolierung von LEKTI-3 aus menschlicher Haut a) in einer C2C 18-
RP-HPLC Analyse und B9 in einer ESI-MS Analyse;
Fig. 4 die Identifizierung von LEKTI-3 in menschlicher Haut;
Fig. 5 KLK3-, KLK5- und KLK7-Aktivität unter Einfluss von hrLEKTI-3;
Fig. 6 KLK8-, KLK12, und KLKl 3 -Aktivität unter Einfluss von hrLEKTI-3; und
Fig. 7 KLKl 4- Aktivität unter Einfluss von hrLEKTI-3.
Die vorliegende Erfindung betrifft die Isolierung und Verwendung des in der Haut vorkommenden Proteins Serin-Proteinase-Inhibitor LEKTI-3. In der menschlichen Chromosomregion 5q32 gibt es verschiedene Spink-Qtnt, die einen Cluster mit den bereits charakterisierten SpinkS, Spink7 und Spink9 bilden, u.a. Spinkδ (GenBank accession No. NM_205841). Spinkδ kodiert für das Protein LEKTI-3. Um das menschliche Spinkδ zu charakterisieren, haben die Erfinder die LEKTI-3-cDNA aus kultivierten Keratinozyten isoliert. Das gesamte durch spinkό-kodierte Protein LEKTI-3 hat die Aminosäuresequenz (SEQ ID:NO 1):
MKLSGMFLLLSLALFCFLTGVFSQGGQVDCGEFQDPK VYCTRESNPHCGSDGQTYGNKCAFCKAIVKSGGKISLKHPGKC.
Aus menschlicher Haut wurde zudem ein LEKTI-3 Fragment isoliert, mit der Aminosäuresequenz (SEQ ID:NO 2):
GGQVDCGEFQDTKVYCTRESNPHCGSDGQTYGNKCAFCKAIVKSGG KISLKHPGKC.
Das oben beschriebene LEKTI-3 Fragment SEQ ID:NO 2) wurde in E. coli exprimiert und anschließend aufgereinigt. Das rekombinante LEKTI-3-Fragment inhibiert dosisabhängig und in selektiver Weise die Aktivität von KLK 5, 7, 12, 13 und 14, aber nicht die von KLK3 und KLK8.
Weitere Einzelheiten der Erfindung sind der folgenden Beschreibung zu entnehmen, in der die Erfindung anhand der Figuren näher erläutert ist.
Figur 1 zeigt eine Übersicht über das LEKTI-3 -kodierende spinkό Gen und das LEKTI-3 Protein. Die Struktur des Spinkδ-Gens wird in Figur Ia) veranschaulicht. Spinkδ umfasst 4 Exons und .3 Introns. Die nicht-kodierenden Regionen sind in Figur Ia) grau dargestellt. Die cDNA-Sequenzdaten sind unter der GenBank beim "National Center for Biotechnology Information" (NCBI) unter Zugangsnummer AY358716 verfügbar. Der offene Leserahmen (schwarz in Fig. Ia)) umfasst 243 Nukleotide, die für ein 80 Aminosäurereste langes Peptid (SEQ ID:NO 1, GenBank AAQ89078) kodieren, das humane LEKTI-3 Protein.
Durch RACE („Rapid Amplification of cDNA Ends") wurden zwei cDNA-Klone aus Keratinozyten charakterisiert. Die 5 '-Experimente ergaben zwei Extensionsprodukte mit unterschiedlichen Transkriptionsstarstellen (transcription start site, TSS in Fig. Ib)). Die 3"- Experimente ergaben ein einziges Extensionsprodukt mit einem Polyadenylierungssignal (AATAAA, doppelt unterstrichen in Fig. Ib)) 214 Nukleotide 5' vom PoIy(A). Die cDNAs (947 bp für den längeren Transkript; 883 bp für den kürzeren) enthalten den gleichen offenen Leserahmen (243 bp; Fig. Ib)). Das resultierende 80 Aminosäurereste-lange LEKTI-3 Protein enthält eine leader-Sequenz mit einem Signalpeptid (Reste 1-24, nicht unterstrichen bei der Proteinsequenz in Fig. Ib)). Der Sequenzvergleich der Kazal-Domänen, die bei Säugetieren und Vögeln von Spinkό kodiert werden, zeigt, dass diese Sequenzen sehr konserviert sind (Fig. Ic). Die markierten putativen Disulfidbrücken bei der Konsensus-Sequenz entsprechen den Disulfidbrücken, die sich bei einer Kazal-Inhibitor-Domäne ausbilden.
Das Expressionsprofil von LEKTI-3 in verschiedenen menschlichen Geweben wird in Fig. 2 veranschaulicht. Die mRNA Expression von Spinkό wurde mittels real-time RT-PCR untersucht. Dabei wurde Spinkό mRNA in allen untersuchten Geweben und Zellen nachgewiesen, einschließlich Atemwege (Lunge und Trachea), Magen-Darm-Trakt (Speicheldrüsen, Magen, Dünndarm, Kolon und Leber), Fortpflanzungsapparat und Harnwege (Niere, Blase, Prostata, Hoden, Milchdrüse, Knochenmark und Plazenta), endokrines System (Schild- und Adrenaldrüse), Gehirn und Lymphgewebe (Mandeln, Gehirn, Milz, Thymus, Herz), Vorhaut-Hauproben, primäre Keratinozyten aus Zellkultur und HaCat Zellen.
Um natürlich prozessiertes LEKTI-3 Protein in menschlicher Haut zu identifizieren, wurde das affmitätsgereinigte polyklonale Spinkό-Antikörper (Beispiel 4) zur affmitätschromatographischen Isolierung von LEKTI-3 Formen aus menschlichen Hautextrakten verwendet. Die Fraktion des einzigen dabei erhaltenen Peaks (nicht gezeigt) wurde anschließend durch C2C18-RP-HPLC aufgereinigt (Fig. 3a): die durchgehende Linie zeigt die Absorption bei 215 nM, die darunterliegende - siehe Anfang des Chromatogramm.es - bei 254 nM und die unterste bei 280 nM). ESI-MS Analysen (Fig.3b))zeigten eine einzige proteinhaltige HPLC Fraktion mit dem Molekulargewicht (5933,75 Da) des vorausgesagten Spinkό-Fragmentes (Reste 25 bis 80). Die Identität dieser Fraktion wurde außerdem durch MS/MS Analysen bestätigt. Dieses natürlich prozessierte Spinkό-Fragment hat folgende Sequenz (SEQ ID:NO 2) und unterscheidet sich von der bereits bekannten cDNA Sequenz (SEQ ID:NO 1) in einem Aminosäurerest (unterstrichen):
GGQVDCGEFQDTKVYCTRESNPHCGSDGQTYGNKCAFCKAIVKSGG KISLKHPGKC
Immunohistochemische Analysen haben gezeigt, dass LEKTI-3 in der menschlichen Haut in der Epidermis exprimiert wird (Fig. 4), mit einem erhöhten Expressionsniveau von basalen bis terminal differenzierten Keratinozyten. LEKTI-3 Immunoreaktivität wurde zudem in Haarfollikel, Schweiß- und Talgdrüsen nachgewiesen (nicht gezeigt).
Zur Charakterisierung der inhibitorischen Aktivität von LEKTI-3 wurde die prozentuale Inhibition von rekombinantem LEKTI-3 SEQ ID:NO 2 für verschiedene Serin-Proteasen bestimmt (Tabelle 1; Beispiel 7). Inhibition durch LEKTI-3 wurde dabei nur für die getesteten KLK-Familienmitglieder festgestellt, aber nicht für andere untersuchte Serin-Proteasen, einschließlich Trypsin, Chymotrypsin und Thrombin.
Daraufhin wurde vermutet, dass es sich bei LEKTI-3 um einen KLK-selektiven Inhibitor handelt. Für die Inhibition von KLK3, 5, 7, 8, 12, 13, 14 wurden anschließend Konzentrations-abhängige Versuche durchgeführt. Fig. 5 zeigt die dosisabhängige Inhibition von KLKs durch rekombinantes LEKTI-3. Mit in vitro Assays (Fig. 5; Beispiel 7) konnten die Erfinder zeigen, dass LEKTI-3 dosisabhängig und in selektiver Weise die Aktivität von KLK5, 7, 12, 13 und 14 inhibiert. Es ließ sich eine Ki von 0,6 nM für KLK5 und von 0,1 nM für KLKl 4 ermitteln. KLK 3 und 8 wurden nicht von LEKTI-3 inhibiert.
Die vorliegende Erfindung stellt des Weiteren ein Herstellungsverfahren für die erfindungsgemäßen Peptide bereit. Neben der gentechnischen Herstellung der Peptide ist auch die aufbauende Totalsynthese an üblichen Festphasen im Sinne der Merrifield-Synthese oder einer Flüssigphasensynthese möglich. Die Synthesestrategie und der Aufbau der Peptide und von ihnen abgeleiteten Derivaten mit den entsprechend geschützten Aminosäuren sind dem Fachmann bekannt. Gegenstand der Erfindung ist daher neben der Verwendung der beschriebenen Peptide auch die Verwendung deren biologisch aktive Fragmente. Biologisch aktiv bedeutet, dass die Fragmente gemäß dem in den Beispielen angegebenen Messverfahren einen maximal 10-fach so hohen Ki- Wert aufweisen wie die zugrunde liegenden kompletten Peptide. Bevorzugt handelt es sich um Derivate, bei dem N- oder C-Terminal eine oder mehrere Aminosäuren fehlen. Es können jedoch auch Aminosäuren aus der Sequenz deletiert sein. Solche Fragmente weisen bevorzugt nicht mehr als 10 % deletierte Aminosäuren auf.
Gegenstand der Erfindung ist weiterhin die Verwendung solcher Peptide, bei denen einzelne Aminosäuren ausgetauscht sind. Bevorzugt handelt es sich dabei um konservative Austausche, d.h. Aminosäuren mit ähnlichen Eigenschaften werden ersetzt, beispielweise Alanin gegen Serin, Leucin gegen Isoleucin, etc. Auch hier wird bevorzugt, dass nicht mehr als 10% der Aminosäuren in den Peptiden ersetzt werden.
Darüber hinaus können auch einzelne Aminosäuren durch nicht-natürliche Aminosäuren ersetzt sein, d.h. durch Aminosäuren, die weitere funktionelle Gruppen tragen, beispielsweise Hydroxyproline, Methylthreonine, Homocysteine, etc. Auch in diesem Fall sind bevorzugt nicht mehr als 10% der Aminosäuren entsprechend modifiziert. Weiterhin können die Peptide Derivatisierungen tragen, beispielsweise glycosiliert, amidiert, acetyliert, sulfatiert oder phosphoryliert sein.
Die vorliegende Erfindung betrifft des Weiteren die Verwendung der erfindungsgemäßen Peptide als Arzneimittel für verschiedene therapeutische Indikationen. Dazu können die Peptide als hochreine Stoffe oder - wenn für die Verwendung ausreichend - innerhalb eines teilweise aufgereinigten Peptidgemisches oder als Gemisch mehrerer erfindungsgemäßer Peptide verwendet werden.
Da LEKTI-3 natürlicherweise im Bereich der Epidermis gefunden wird und eine spezifische Wirkung als Inhibitor von KLK.5, 7, 12, 13 und 14 aufweist, eignen sich die erfindungsgemäßen Peptide besonders gut zur Behandlung von Hauterkrankungen mit geschädigter epidermaler Barriere wie Neurodermatitis, dishydrosiformes Hand-Fußekzem, nummuläres Ekzem und Netherton Syndrom.
Für die erfindungsgemäßen Peptide sind auch kosmetische Anwendungen möglich, wenn ein raues, rissiges Hautbild behandelt werden soll.
Die Erfindung wird anhand der folgenden Beispiele näher beschrieben.
Beispiel 1 : Klonierung der LEKTI-3 cDNA
Mit Hilfe gängiger molekularbiologischer Methoden gelang die Klonierung der cDNA aus kultivierten menschlichen Keratinozyten. Die Gesamt-RNA wurde mit TRIzol (Invitrogen, Hamburg, Germany) aus kultivierten Keratinozyten menschlicher Vorhäute gewonnen. Um eine Kontamination mit genomischer DNA auszuschließen wurden nach Behandlung mit RNase freier DNasel (Roche Diagnostics, Mannheim, Germany) 3 μg der DNA-freien Gesamt-RNA zur Synthese der First-strand cDNA für die RACE („Rapid Amplification of cDNA Ends") mit dem SMART RACE cDNA Amplifikations Kit (BD Bioscience Clontech, Heidelberg, Germany) nach Angaben des Herstellers verwendet.
Um das 5 '-Ende der spinkβ cDNA zu gewinnen, wurde 5'-RACE mit einem genspezifischen Antisenseprimer (5'-AGG CAC ATT TAT TGC CAT ATG TCT GGC CAT C-31) und einem Universalprimergemisch (10 x UPM) nach dem Clontech SMART RACE cDNA Ampilfizierungsprotokoll durchgeführt. Die 5'-RACE PCR wurde folgendermaßen durchgeführt: 1 min, 95 0C; 5 Zyklen 95 0C, 20 s, 3 min, 72 °C; 5 Zyklen 95 0C, 20 s, 3 min, 70 0C; 25 Zyklen 95 °C, 20 s, 3 min, 68 0C; abschließend 10 min Extension bei 72 0C.
Um das 3 '-Ende der spinlcό cDNA zu erhalten, wurde der erste PCR Zyklus mit einem genspezifischen Senseprimer (5'-GTG AGT TCC AGG ACC CCA AGG TCT ACT G-3') und 10 x UPM durchgeführt. Anschließend wurden 0,5 μl des PCR-Produktes als Template für die nested-PCR verwendet mit nested genspezifischen Primern (5 -nest: 5'-GCC ACA GTG TGG GTT AGA TTC CCG AGT G-3'; 3'-nest: 5'-CCA CAC TGT GGC TCT GAT GGC CAG A- 3'). Die Reaktion fand unter folgenden Bedingungen statt: 1 min, 95 0C; 30 Zyklen 95 0C, 20 s, 3 min 70 0C; abschließend 10 min Extension bei 70 0C. Das amplifizierte Fragment wurde Gel-gereinigt, in den Vektor pGEM-T (Promega, Mannheim, Germany) subkloniert und anschließend sequenziert.
Beispiel 2: Bestimmung der Expression von LEKTI-3 durch Real-time RT-PCR Gesamt-RNA aus kultivierten Keratinozyten menschlicher Vorhäute, aus HaCaT-Zellen und aus Haut wurde mit TRlzol (Invitrogen, Hamburg, Germany) gewonnen. Andere Gesamt- RNAs aus verschiedenen Geweben wurden von BD Bioscience Clontech (Heidelberg, Germany) bezogen. Die reverse Transkription erfolgte aus 2 μg Gesamt-RNA mit einem oligo(dT)18 Primer und der Superscript II RNaseH- Reversen Transcriptase (Invitrogen). Das verwendete Paar Gen-spezifischer PCR-Primer (forward Primer: 5'- ACC TCA GCT GGA CAA AGC AG -3'; reverse Primer: 5'- TGG CAA GTC ACC AAG AAA CA -3') ermöglicht die Amplifizierung eines 322 bp LEKTI-3 -Fragmentes, das alle drei Exon-Intron-Grenzen umfasst. Die Real-time RT-PCR Experimente wurden mit dem SYBR® Premix Ex Taq™ Kit (Takara Bio, Heidelberg, Germany) in einem Fluoreszenz-Thermocycler nach den Angaben des Herstellers (LightCycler, Roche Molecular Biochemicals, Hamburg, Germany) durchgeführt. Die Amplifikationsprodukte wurden durch 2,0 % Agarose-Gelelectrophorese analysiert und, wenn nötig, noch aufgereinigt und sequenziert, um ihre Identität zu bestätigen. Durch Quantifizierung bei jeder cDNA in einer gesonderten PCR-Reaktion wurde das "housekeeping"-Gen GAPDH (Glyceraldehyd Phosphodehydrogenase) als interne Kontrolle verwendet.
Beispiel 3: Expression eines rekombinanten LEKTI-3 -Fragmentes
Die rekombinante Expression der spinkό cDNA wurde in E. coli durchgeführt. Dazu wurde die spinkβ cDNA in die prokaryotischen Expressionsvektoren pET-32a (Novagen, North Ryde, Australia) und pET-SUMO (Invitrogen), wie beschrieben (Wu and Meyer-Hoffert et al, J Invest Derm in press) subkloniert. Das SUMO-His-tagged Fusionsprotein wurde mit SUMO Protease nach Angaben des Herstellers (Lifesensors Inc., Pennsylvania, USA) verdaut und über eine Jupiter-5μg-C4-300A HPLC Säule (Phenomenex, Aschaffenburg, Germany) aufgereinigt. Die Reinheit und die Sequenz des Peptides wurden mittels ESI-QTOF- Massenspektrometrie überprüft (Micromass, Manchester, U.K.).
Beispiel 4: Herstellung von Antikörper gegen LEKTI-3
Die polyklonalen Antisera gegen die Aminosäuresequenz des humanen LEKTI-3-Fragmentes (SEQ ID:NO 2) wurden in der Ziege hergestellt. Die Gesamtmenge 1,0 mg des Fusionsproteins (pET-32a-LEKTI-3) wurde mit der Glutarataldeyd Methode (Briand, J. P., Müller, S. und Van Regenmortel, M.H. (1985). Synthetic peptides as antigens: Pitfalls of conjugation methods. J. Immunol. Methods. 78: 59-69) zu Maleimid-aktiviertem keyhole limpet Hemocyanin (KLH) (Protein KLH 1 :1 w/w) konjugiert und anschließend für den Gebrauch als Immunogen mit 500 μg pET-32a-LEKTI-3 gemischt.
Die Immunisierung der Ziege wurde viermal durchgeführt an den Tagen 0, 14, 28 und 35. Das Blut der Ziege wurde 2 Wochen nach dem letzten „booster" entnommen. Das Serum wurde bis zum Gebrauch bei -70 0C aufbewahrt. Die Antisera wurden durch die Absorption an hiTrap NHS-akti vierte HP 1 ml Säulen (American Biosciences, Freiburg, Germany) mit kovalent-gebundenem rLEKTI-3 Affinitäts-gereinigt. Die Spezifität wurde mit gereinigtem rLEKTI-3 und Stratum corneum Extrakten mittels Western Blot getestet.
Beispiel 5: Isolierung von natürlichem LEKTI-3 aus menschlichen Hautproben Gesamtprotein wurde aus Hornmaterial von verschiedenen Probanden (80-120 g Stratum corneum aus Fersengewebe) wie beschrieben isoliert Meyer-Hoffert et al., 2009 (PLoS ONE. 2009;4(2):e4372.) und Affinitäts-gereinigt. Dafür wurden anti-humanen LEKTI-3-Antikörper (Beispiel 4) zu HiTrap NHS-aktivierten HP 1 ml Säulen (Amersham Biosciences) kovalent gebunden. Die Affϊnitäts-gereinigten Fraktionen wurden ferner durch C2C18 RP-HPLC aufgetrennt. Jede Fraktion wurde anschließend durch ESI-Massenspektrometrie im positiven Ionisierungsmodus mit einem Quadrupol orthogonal beschleunigenden Flugzeit- Massenspektrometer (QTOF-II hybrid mass spectrometer; Micromass, Manchester, United Kingdom) analysiert. MS/MS wurde zudem angewendet, um die Identität der Fraktionen zu analysieren. Beispiel 6: Bestimmung der Expression von LEKTI-3 in der Haut
Die Expression von LEKTI-3 in der Haut wurde mit Hilfe von immunhistochemischer Färbung von Paraffin-Schnitten untersucht. Die Fixierung der Gewebeproben wurde in 4% Paraformaldehyd durchgeführt. Es wurden Paraffin Bereiche (5 μm) der Gewebeproben deparaffiniert und rehydriert, bevor eine hitzeinduzierte Antigen Rückgewinnung in 0,01 M Citratpuffer (pH 6,0) durchgeführt wurde. Diese Paraffin Bereiche wurden anschließend vor der Färbung mit normalem Hasenserum (1:75, Dalco Cytomation, Glostrup, Denmark) blockiert. Die immunohistochemische Färbung wurde mit Affinitäts-gereinigten polyklonalen Ziegen-LEKTI-3 Antikörper (1 :200 Verdünnung) für 1 Stunde bei Raumtemperatur durchgeführt. Die Bereiche wurden mit biotiniliertem Anti -Ziege IgG (1 : 100, Dako Cytomation) inkubiert, anschließend mit dem Vector Universal ABC Alkaline Phophatase Substrate Kit (Vector, Burlingame, CA, USA) inkubiert und mit Vector NovaRED Substrate (Vector) entwickelt. Schließlich wurde eine Gegenfärbung mit Hematoxylin durchgeführt. Die Spezifität wurde durch Blockieren des primären Antikörpers mit dem rekombinanten LEKTI-3 -Peptid getestet, und die Negativ-Kontrollen erfolgten durch Färbung der Bereiche mit präimmunen Ziegen-Sera.
Beispiel 7: Bestimmung der biologischen Aktivität von LEKTI-3
Zur Charakterisierung der Protease-inhibitorischen Aktivität von LEKTI-3 wurde die prozentuale Inhibition für verschiedene Serin-Proteasen bestimmt (Tabelle 1). Alle Protease- Assays erfolgten durch Bestimmung der Freisetzung von chromo genischem Substrat durch die Proteasen. Die Aktivität aller Proteasen (Tabelle 1) wurde im vom Hersteller empfohlenen Puffer bestimmt. Die spezifischen Protease-, Substrat- und Inhibitorkonzentrationen sind in Tabelle 1 angegeben. Die Veränderung der Absorbanz bei 405 nm wurde über 16 Stunden verfolgt und mit Enzym-freien Kontrollreaktionen verglichen. KLK-Inhibition wurde nach Präinkubation des Enzyms mit dem Inhibitor für 15 min bei 21 0C bestimmt.
KLK14 (R&D, Systems), ursprünglich als inaktive Proform, wurde nach den Angaben des Herstellers aktiviert. Die Konzentration des aktiven KLK14 war 3,19 μM (89 μg/ml). KLK5 (R&D), bereits als aktive Form, wurde in der Konzentration 3,7 μM (0,149 mg/ml) verwendet. Um den Ki-Wert zu bestimmen, wurden die aktiven Formen beider Enzyme in der Konzentration 4 nM mit steigenden rLEKTI-3 Mengen in 100 μl TNT Puffer (50 mM Tris; 0,15 mM NaCl; 0,05% Tween-20) präinkubiert. Die Konzentration des Inhibitors wurde anhand von Sequenz-basierten molaren Extinktionskoeffizienten und Messungen der Absorbanz bei 280 nm berechnet. Die Inkubation mit dem Inhibitor erfolgte für 15 Minuten bei 21 0C, gefolgt von der Beigabe des Substrates (Trypsin Substrat Tosyl-Gly-Pro-Arg-pNa (Sigma)). Zu jeder Probe wurden 100 μl T-GPR-pNa-Lösung hinzugefügt, und die Kinetik- Messungen (Absorbanz bei 405 nm) wurde anschließend sofort in einem Mikroplatten-Leser (Sunrise) durchgeführt. Die Endkonzentration jedes Enzyms in einem Gesamtvolumen von 200 μl betrug 2 nM, die Substratkonzentration 1 mM und die LEKTI- 3 -Konzentration bis zu 2000 nM. Die Absorbanz wurde im Falle von KLKl 4 für eine Stunde und für KLK5 übernacht gemessen. Die Ergebnisse wurden anhand der Methode von Baici analysiert (Baici, A. (1981) The Specific Velocity Plot: A Graphical Method for Determining Inhibition Parameters for Both Linear and Hyperbolic Enzyme Inhibitors. Eur.J.Biochem. 119: 9-14).
Tabelle 1 : LEKTI-3 Inhibition verschiedener Serin-Proteasen.
LEKTI-3 Inhibition
Proteinase (Endkonzentration) Substrat (0,33 mM)
(nM) (%)
Bovines Trypsin (2 nM) 400 0 N-(p-Tosyl)-Arg-Gly-Val 5-
Nitroanilid
Cathepsin G (1 nM) 666 0 N-Succinyl-Ala-Ala-Pro-Phe p-
Nitroanilid
Chymase (2 nM) 666 0 N-Succinyl-Ala-Ala-Pro-Phe p-
Nitroanilid
Humanes Chymotrypsin (2 nM) 400 0 3 -Carbomethoxypropionyl- Ar g-
Pro-Tyr p-Nitroanilin
Humanes Kallikrein 14 (2 nM) 400 99,9 N(p-Tosyl)-Arg-Gly-Val 5-
Nitroanilid
Humanes Kallikrein 5 (5,3 nM) 400 99,9 N(p-Tosyl)-Arg-Gly-Val 5-
Nitroanilid
Humanes Kallikrein 7 400 88,3 3 -Carbomethoxypropionyl — Arg-
(15,8 nM) Pro-Tyr p-Nitroanilin
Humanes Leukozyt Ekstase 400 0 N-Methoxysuccinyl-Ala-Ala-Pro-
(2 nM) VaI p-Nitroanilid
Humanes Plasmin (2 nM) 400 0 N-(p-Tosyl)-Gly-Pro-Lys 4-
Nitroanilid
Humanes Thrombin (1 nM) 400 0 N-(p-Tosyl)-Gly-Pro-Arg p-
Nitroanilid
Matriptase (0,5 nM) 400 0 H-D-Ile-Pro-Arg p-Nitroanilin

Claims

ANSPRÜCHE
1. Serinprotease-Inhibitor, ausgewählt aus der Gruppe von Peptiden bestehend aus
- einem Peptid mit der in SEQ ID:NO 1 dargestellten Aminosäuresequenz,
- einem Peptid mit der in SEQ ID:NO 2 dargestellten Aminosäuresequenz, und
- einem Derivat oder Fragment eines Peptids mit der in SEQ ID:NO 1 oder SEQ ID:NO 2 dargestellten Aminosäuresequenz mit Serinprotease-inhibierender Wirkung.
2. Serinprotease-Inhibitor nach Anspruch 1, dadurch gekennzeichnet, dass das Derivat oder Fragment ein zyklisches, amidiertes, acetyliertes, sulfatiertes, phosphoryliertes, glycolysiertes oder oxidiertes Peptid ist.
3. Serinprotease-Inhibitor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Derivat oder Fragment bis zu 10 % konservativ ausgetauschte Aminosäuren aufweist.
4. Serinprotease-Inhibitor nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Derivat oder Fragment bis zu 10 % nicht-natürlich vorkommende Aminosäuren aufweist.
5. Serinprotease-Inhibitor nach Anspruch 4, dadurch gekennzeichnet, dass die nicht- natürlich vorkommenden Aminosäuren ausgewählt sind aus der Gruppe von nichtnatürlich vorkommenden Aminosäuren bestehend aus Hydroxyprolin, Methylthreonin, Homocystein.
6. Verwendung des Serinprotease-Inhibitors nach einem der vorhergehenden Ansprüche zur Inhibierung einer der Serinproteasen KLK4, KLK5, KLK7, KLK 12, KLK 13 oder KLKl 4.
7. Verwendung des Serinprotease-Inhibitors nach einem der Ansprüche 1 bis 6 zur Herstellung eines Arzneimittels zur Behandlung von Hauterkrankungen des menschlichen oder tierischen Organismus.
8. Verwendung des Serinprotease-Inhibitors nach einem der Ansprüche 1 bis 6 zur Herstellung eines Arzneimittels zur Behandlung von Neurodermitits, dyshidrosiformem Hand-Fußekzem, nummulärem Ekzem oder Netherton Syndrom.
9. Medizinisches Instrument, Katheter, medizinisches Implantat oder Kontaktlinse, gekennzeichnet durch eine den Serinprotease-Inhibitor nach einem der Ansprüche 1 bis 6 aufweisende Beschichtung.
10. Arzneimittel gekennzeichnet durch den Serinprotease-Inhibitor nach einem der Ansprüche 1 bis 6.
11. Kosmetische Zusammensetzung, gekennzeichnet durch den Serinprotease-Inhibitor nach einem der Ansprüche 1 bis 6.
PCT/DE2010/000033 2009-02-27 2010-01-16 Serinprotease-inhibitoren zur spezifischen inhibition von gewebs-kallikreinen WO2010097066A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009010942.0 2009-02-27
DE102009010942A DE102009010942A1 (de) 2009-02-27 2009-02-27 Serinprotease-Inhibitoren zur spezifischen Inhibition von Gewebs-Kallikreinen

Publications (1)

Publication Number Publication Date
WO2010097066A1 true WO2010097066A1 (de) 2010-09-02

Family

ID=42082708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000033 WO2010097066A1 (de) 2009-02-27 2010-01-16 Serinprotease-inhibitoren zur spezifischen inhibition von gewebs-kallikreinen

Country Status (2)

Country Link
DE (1) DE102009010942A1 (de)
WO (1) WO2010097066A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050850A (zh) * 2017-06-16 2020-04-21 阿兹特拉公司 用于用表达lekti的重组微生物治疗内瑟顿综合征的组合物和方法
US12037412B2 (en) 2018-03-14 2024-07-16 Genentech, Inc. Anti-KLK5 antibodies and methods of use

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999055865A1 (en) * 1998-04-29 1999-11-04 Genesis Research And Development Corporation Limited Polynucleotides isolated from skin cells and methods for their use
WO2000009709A2 (en) * 1998-08-10 2000-02-24 Incyte Pharmaceuticals, Inc. Proteases and associated proteins
WO2002066513A2 (de) 2001-02-19 2002-08-29 Ipf Pharmaceuticals Gmbh Humane zirkulierende lekti fragmente hf7072, hf7638 und hf14448 sowie ihre verwendung
WO2003070953A1 (de) 2002-02-22 2003-08-28 Ipf Pharmaceuticals Gmbh Verbindung zur inhibierung der serin-proteinasen und zur inhibierung von infektionen oder virusvermehrung: rld 8564
EP1040190B1 (de) 1997-12-23 2005-04-06 Pharis Biotec GmbH Serin-proteinase-inhibitoren

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998008424A1 (en) 1996-08-26 1998-03-05 Barry James Dixon Chair

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1040190B1 (de) 1997-12-23 2005-04-06 Pharis Biotec GmbH Serin-proteinase-inhibitoren
WO1999055865A1 (en) * 1998-04-29 1999-11-04 Genesis Research And Development Corporation Limited Polynucleotides isolated from skin cells and methods for their use
WO2000009709A2 (en) * 1998-08-10 2000-02-24 Incyte Pharmaceuticals, Inc. Proteases and associated proteins
WO2002066513A2 (de) 2001-02-19 2002-08-29 Ipf Pharmaceuticals Gmbh Humane zirkulierende lekti fragmente hf7072, hf7638 und hf14448 sowie ihre verwendung
WO2003070953A1 (de) 2002-02-22 2003-08-28 Ipf Pharmaceuticals Gmbh Verbindung zur inhibierung der serin-proteinasen und zur inhibierung von infektionen oder virusvermehrung: rld 8564

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
à LUNDWALL ET AL: "Kallikrein-related peptidases", CMLS CELLULAR AND MOLECULAR LIFE SCIENCES, BIRKHÄUSER-VERLAG, BA, vol. 65, no. 13, 17 March 2008 (2008-03-17), pages 2019 - 2038, XP019619959, ISSN: 1420-9071 *
BAICI, A.: "The Specific Velocity Plot: A Graphical Method for Determining Inhibition Parameters for Both Linear and Hyperbolic Enzyme Inhibitors", EUR.J.BIOCHEM., vol. 119, 1981, pages 9 - 14
BRIAND, J.P; MÜLLER, S.; VAN REGENMORTEL, M.H.: "Synthetic peptides as antigens: Pitfalls of conjugation methods", J. IMMUNOL. METHODS, vol. 78, 1985, pages 59 - 69, XP023992245, DOI: doi:10.1016/0022-1759(85)90329-1
CHAVANAS, S.; BODEMER, C.; ROCHAT, A.; HAMEL-TEILLAC, D.; ALI, M.; IRVINE, A.D.; BONAFE, J.L.; WILKINSON, J.; TAIEB, A.; BARRANDON: "Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome", NAT. GENET., vol. 25, 2000, pages 141 - 2, XP001000302, DOI: doi:10.1038/75977
DATABASE UniProt [online] 5 July 2004 (2004-07-05), "RecName: Full=Serine protease inhibitor Kazal-type 6; Flags: Precursor;", XP002577888, retrieved from EBI accession no. UNIPROT:Q6UWN8 Database accession no. Q6UWN8 *
DERAISON, C.; BONNART, C.; LOPEZ, F.; BESSON, C.; ROBINSON, R.; JAYAKUMAR, A.; WAGBERG, F.; BRATTSAND, M.; HACHEM, J.P; LEONARDSSO: "LEKTI fragments specifically inhibit KLK5, KLK7, and KLK 14 and control desquamation through a pH-dependent interaction", MOL. BIOL. CELL, vol. 18, 2007, pages 3607 - 19
DERAISON, C.; BONNART, C.; LOPEZ, F.; BESSON, C.; ROBINSON, R.; JAYAKUMAR, A.; WAGBERG, F.; BRATTSAND, M.; HACHEM, J.P; LEONARDSSO: "LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction", MOL. BIOL. CELL, vol. 18, 2007, pages 3607 - 19
DESCARGUES, P.; DERAISON, C.; BONNART, C.; KREFT, M.; KISHIBE, M.; ISHIDA-YAMAMOTO, A.; ELIAS, P.; BARRANDON, Y.; ZAMBRUNO, G.; SO: "Spink5-deficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity", NAT. GENET., vol. 37, 2005, pages 56 - 65
DESCARGUES, P.; DERAISON, C.; BONNART, C.; KREFT, M.; KISHIBE, M.; ISHIDA-YAMAMOTO, A.; ELIAS, P.; BARRANDON, Y.; ZAMBRUNO, G.; SO: "SpinkSdeficient mice mimic Netherton syndrome through degradation of desmoglein 1 by epidermal protease hyperactivity", NAT. GENET., vol. 37, 2005, pages 56 - 65
DESCARGUES, P.; DERAISON, C.; PROST, C.; FRAITAG, S.; MAZEREEUW-HAUTIER, J.; D'ALESSIO, M.; ISHIDA-YAMAMOTO, A.; BODEMER, C.; ZAMB: "Comeodesmosomal cadherins are preferential targets of Stratum corneum trypsin- and chymotrypsin-like hyperactivity in Netherton syndrome", J. INVEST DERMATOL., vol. 126, 2006, pages 1622 - 32
HACHEM, J.P.; HOUBEN, E.; CRUMRINE, D.; MAN, M.Q.; SCHURER, N.; ROELANDT, T.; CHOI, E.H.; UCHIDA, Y.; BROWN, B.E.; FEINGOLD, K.R.: "Serine protease signaling of epidermal permeability barrier homeostasis", J. INVEST. DERMATOL., vol. 126, 2006, pages 2074 - 86
HADGRAFT, J.: "The Essential Stratum corneum", 2002, article "Crossing the barrier", pages: 103 - 9
HEWETT, D.R.; SIMONS, A.L.; MANGAN, N.E.; JOLIN, H.E.; GREEN, S.M.; FALLON, P.G.; MCKENZIE, A.N.: "Lethal, neonatal ichthyosis with increased proteolytic processing of filaggrin in a mouse model of Netherton syndrome", HUM. MOL. GENET., vol. 14, 2005, pages 335 - 46, XP002434224, DOI: doi:10.1093/hmg/ddi030
JAYAKUMAR, A.; KANG, Y.; MITSUDO, K.; HENDERSON. Y.; FREDERICK, M.J.; WANG, M.; EL-NAGGAR, A.K.; MARX, U.C.; BRIGGS, K.; CLAYMAN,: "Expression of LEKTI domains 6-9' in the baculovirus expression system: recombinant LEKTI domains 6-9' inhibit trypsin and subtilisin A", PROTEIN EXPR. PURIF., vol. 35, 2004, pages 93 - 101, XP004497027, DOI: doi:10.1016/j.pep.2003.12.004
KOMATSU, N.; TAKATA, M.; OTSUKI, N.; OHKA, R.; AMANO, O.; TAKEHARA, K.; SAIJOH, K.: "Elevated Stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINKS-derived peptides", J. INVEST. DERMATOL., vol. 118, 2002, pages 436 - 43
LUNDWALL, A.; BRATTSAND, M.: "Kallikrein-related peptidases", CELL. MOL. LIFE SCI., vol. 65, 2008, pages 2019 - 38, XP019619959
LUO LIU-YING ET AL: "Inhibition profiles of human tissue kallikreins by serine protease inhibitors", BIOLOGICAL CHEMISTRY, WALTER DE GRUYTER GMBH & CO, BERLIN, DE, vol. 387, no. 6, 1 June 2006 (2006-06-01), pages 813 - 816, XP009132227, ISSN: 1431-6730 *
MÄGERT, H.J.; KREUTZMANN, P.; STÄNDKER, L.; WALDEN, M.; DROGEMÜLLER, K.; FORSSMANN, WG.: "LEKTI: a multidomain serine proteinase inhibitor with pathophysiological relevance", INT. J. BIOCHEM. CELL BIOL., vol. 34, 2002, pages 573 - 6
MÄGERT, H.J.; STÄNDKER, L.; KREUTZMANN, P.; ZUCHT, H.D.; REINECKE, M.; SOMMERHOFF, C.P.; FRITZ, H.; FORSSMANN, W.G.: "LEKTI, a novel 15- domain type of human serine proteinase inhibitor", J. BIOL. CHEM., vol. 274, 1999, pages 21499 - 502
MÄGERT. H.J.; STÄNDKER. L.; KREUTZMANN, P.; ZUCHT, H.D.; REINECKE, M.; SOMMERHOFF, C.P.; FRITZ, H.; FORSSMANN, W.G.: "LEKTI, a novel 15-domain type of human serine proteinase inhibitor", J. BIOL. CHEM., vol. 274, 1999, pages 21499 - 502
MITSUDO, K.; JAYAKUMAR, A.; HENDERSON, Y.; FREDERICK, M.J.; KANG, Y.; WANG, M.; EL-NAGGAR, A.K.; CLAYMAN, G.L.: "Inhibition of serine proteinases plasmin, trypsin, subtilisin A, cathepsin G, and elastase by LEKTI: a kinetic analysis", BIOCHEMISTRY, vol. 42, 2003, pages 3874 - 81
PLOS ONE, vol. 4, no. 2, 2009, pages 4372
SCHECHTER NORMAN M ET AL: "Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI)", BIOLOGICAL CHEMISTRY, WALTER DE GRUYTER GMBH & CO, BERLIN, DE, vol. 386, no. 11, 1 November 2005 (2005-11-01), pages 1173 - 1184, XP009132228, ISSN: 1431-6730 *
SCHECHTER, N.M.; CHOI, E.J.; WANG, Z.M.; HANAKAWA, Y.; STANLEY, J.R.; KANG, Y.; CLAYMAN, G.L.; JAYAKUMAR, A.: "Inhibition of human kallikreins 5 and 7 by the serine protease inhibitor lympho-epithelial Kazal-type inhibitor (LEKTI)", BIOL. CHEM., vol. 386, 2005, pages 1173 - 84, XP009132228
SPRECHER, E.; CHAVANAS, S.; DIGIOVANNA, J.J.; AMIN, S.; NIELSEN, K.; PRENDIVILLE, J.S.; SILVERMAN, R.; ESTERLY, N.B.; SPRAKER, M.K: "The spectrum of pathogenic mutations in SPINK5 in 19 families with Netherton syndrome: implications for mutation detection and first case of prenatal diagnosis", J. INVEST. DERMATOL., vol. 117, 2001, pages 179 - 87
YANG, T.; LIANG, D.; KOCH, P.J.; HOHL, D.; KHERADMAND, F.; OVERBEEK, P.A.: "Epidermal detachment, desmosomal dissociation, and destabilization of corneodesmosin in Spink5-/- mice", GENES DEV., vol. 18, 2004, pages 2354 - 8

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111050850A (zh) * 2017-06-16 2020-04-21 阿兹特拉公司 用于用表达lekti的重组微生物治疗内瑟顿综合征的组合物和方法
US12037412B2 (en) 2018-03-14 2024-07-16 Genentech, Inc. Anti-KLK5 antibodies and methods of use

Also Published As

Publication number Publication date
DE102009010942A1 (de) 2010-09-02

Similar Documents

Publication Publication Date Title
US5849560A (en) Proteases causing degradation of amyloid β-protein precursor
JP5891266B2 (ja) 皮膚病の治療におけるセリンプロテアーゼ阻害剤の使用
Li et al. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii
EP0209061A2 (de) Neue Polypeptide mit blutgerinnungshemmender Wirkung, Verfahren zu deren Herstellung bzw. Gewinnung, deren Verwendung und diese enthaltende Mittel
EP0207956A1 (de) Hirudin-pa und dessen derivate, verfahren zu deren herstellung und deren verwendung.
KR101830926B1 (ko) 피부 노화를 방지 및/또는 개선하기 위해 사용되는 pedf-유도 폴리펩티드의 용도
Fischer et al. Characterization of Spink6 in mouse skin: the conserved inhibitor of kallikrein-related peptidases is reduced by barrier injury
Paiva et al. Combined venom gland cDNA sequencing and venomics of the New Guinea small-eyed snake, Micropechis ikaheka
DE10130985A1 (de) Verwendung löslicher Cytokeratin-1-Fragmente in Diagnostik und Therapie
JP4585342B2 (ja) 不全角化を抑制する物質のスクリーニング方法、同方法によりスクリーニングされた物質及び不全角化を抑制する方法
EP1161524B1 (de) Zellen, die ein amyloidvorlauferprotein und ein a-sekretase coexprimieren und deren anwendungen in testverfahren und diagnostik
WO2010097066A1 (de) Serinprotease-inhibitoren zur spezifischen inhibition von gewebs-kallikreinen
JP6738280B2 (ja) 角層剥離の抑制又は亢進に起因する肌状態を改善するための美容方法及び評価方法
EP0677107B1 (de) Thrombininhibitor aus speichel von protostomiern
CN105770077B (zh) 博来霉素水解酶产生促进剂
WO1988007552A1 (en) Protein having activity of inhibiting inflammation-inducing phospholipase a2
EP0364942B1 (de) Neue Isohirudine
JP2019110845A (ja) トロンビンの抑制作用を指標とした皮膚状態改善剤のスクリーニング方法、及びトロンビン作用阻害剤を含む皮膚状態改善剤
EP1458866B1 (de) Modifizierte tridegine, ihre herstellung und verwendung als transglutaminase-inhibitoren
DiNardo et al. Cutaneous barriers in defense against microbial invasion
del Río Oliva Targeting the immunoproteasome and VCP/p97 in autoimmune disorders and viral infection
EP0728209A1 (de) Endothelinkonversionsenzym (ece)
DE10163333B4 (de) Modifizierte Tridegine, ihre Herstellung deren Verwendung als Transglutaminase Inhibitoren und diese enthaltende Arzneimittel und Kombinationspräparate
JP2022064914A (ja) 角栓形成予防・改善剤のスクリーニング方法
WO2018024818A1 (de) Verbindung zur behandlung einer mit einer desregulierung des alternativen komplementweges assoziierten erkrankung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10702399

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 10702399

Country of ref document: EP

Kind code of ref document: A1