WO2010095826A2 - Method for generating laser beam irradiation trajectory - Google Patents

Method for generating laser beam irradiation trajectory Download PDF

Info

Publication number
WO2010095826A2
WO2010095826A2 PCT/KR2010/000707 KR2010000707W WO2010095826A2 WO 2010095826 A2 WO2010095826 A2 WO 2010095826A2 KR 2010000707 W KR2010000707 W KR 2010000707W WO 2010095826 A2 WO2010095826 A2 WO 2010095826A2
Authority
WO
WIPO (PCT)
Prior art keywords
trajectory
laser beam
spiral
spiral trajectory
beam irradiation
Prior art date
Application number
PCT/KR2010/000707
Other languages
French (fr)
Korean (ko)
Other versions
WO2010095826A3 (en
Inventor
허일
최홍찬
김영환
Original Assignee
한미반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미반도체 주식회사 filed Critical 한미반도체 주식회사
Priority to CN2010800051234A priority Critical patent/CN102292797A/en
Publication of WO2010095826A2 publication Critical patent/WO2010095826A2/en
Publication of WO2010095826A3 publication Critical patent/WO2010095826A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method of automatically generating an irradiation trajectory of a laser beam irradiated onto a semiconductor package during processing of the semiconductor package. More particularly, a manufacturing process of a semiconductor package such as a package on package (PoP) type
  • the present invention relates to a method for generating a laser beam irradiation trajectory for processing a semiconductor package that can automatically and accurately generate a spiral laser beam irradiation trajectory to be irradiated to a mold portion of a semiconductor package.
  • MCP multi-chip package
  • PoP package on package
  • a package on package (PoP) technology is a technology of stacking a package containing one or more semiconductor chips, and typically forms a plurality of solder ball pads for electrical connection on an upper surface of a lower semiconductor package.
  • PoP package on package
  • the solder balls of the upper semiconductor package and the solder ball pads 12 of the lower semiconductor package are interconnected through the via holes 13.
  • the laser beam is irradiated along the spiral trajectory to the position corresponding to each solder ball pad to damage the solder ball pad by the laser beam
  • a method of uniformly cutting the mold part while minimizing it is used. Since the spiral trajectory of the laser beam is primarily created by CAD drawing, numerical information about each trajectory is input to the controller of the laser beam irradiator so that the laser beam is always irradiated with a constant trajectory during via hole processing.
  • the spiral trajectory should also be changed according to the type or size of the semiconductor package.
  • the operator first places the spiral trajectory on the CAD drawing. After the generation, the numerical information of the spiral trajectory has to be input to the controller of the laser beam irradiation apparatus, and thus the spiral trajectory generation operation must be repeated whenever the type of semiconductor package to be processed changes.
  • the present invention is to solve the above conventional problems, an object of the present invention is to process a via hole with a laser beam in the mold portion of the semiconductor package during the manufacturing process of a semiconductor package, such as a package-on-package (PoP) type
  • the present invention provides a method for generating a laser beam irradiation trajectory for processing a semiconductor package, which enables to generate a laser beam irradiation trajectory quickly and easily.
  • a method comprising: selecting any one of the spiral trajectory pattern types in a controller of a laser beam irradiation apparatus in which a plurality of spiral trajectory patterns are stored for each type; Generating a spiral trajectory by inputting information on the selected spiral trajectory pattern; Provided is a method of generating a laser beam irradiation trajectory for processing a semiconductor package including a step of inputting a laser beam irradiation condition.
  • the method for generating the irradiation trajectory of the laser beam in each spiral section Generating a spiral trajectory by inputting pattern information on a stepwise spiral pattern type in which the interval G of the trajectory is formed differently;
  • a method of generating a laser beam irradiation trajectory for processing a semiconductor package including a step of inputting a laser beam irradiation condition is provided.
  • a spiral pattern is automatically generated by selecting a spiral trajectory pattern of a laser beam that an operator intends to generate, and inputting information and laser beam irradiation conditions for the spiral pattern, thereby performing via hole processing of a package. Therefore, even if the type or size of the semiconductor package to be processed is different, the operator can easily and quickly create a spiral trajectory in the correct form. Therefore, productivity and work efficiency can be improved significantly.
  • FIG. 1 and 2 are cross-sectional views illustrating main processes of forming a via hole by irradiating a laser beam to a mold portion of a semiconductor package during a typical package-on-package type semiconductor package manufacturing process.
  • FIG. 3 is a flow chart illustrating a method for generating a laser beam irradiation trajectory for processing a semiconductor package according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an evenly spaced spiral trajectory pattern generated by an equally spaced spiral mode in the laser beam irradiation trajectory generation method of FIG. 3, wherein (A) and (B) are anticlockwise and clockwise without an outline connection trajectory. Directional equal interval spiral trajectory patterns are shown, and (C) and (D) show counterclockwise and clockwise equal interval spiral trajectory patterns with outline connection trajectories.
  • FIG. 5 is a diagram illustrating an example of progressively increasing spiral trajectory patterns generated by the progressive spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
  • FIG. 6 is a diagram illustrating an example of a progressively reduced spiral track pattern generated by a progressive spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
  • FIG. 7 is a diagram illustrating an example of stepwise spiral trajectory patterns generated by stepwise spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
  • FIG. 8 is a flowchart illustrating a method of generating a laser beam irradiation trajectory for processing a semiconductor package according to another exemplary embodiment of the present disclosure.
  • FIG. 9 is a diagram illustrating other examples of stepwise spiral patterns generated by the laser beam irradiation trajectory generation method of FIG. 8.
  • an embodiment of the method for generating a laser beam irradiation trajectory described below is for exposing a solder ball pad to a mold portion of a lower semiconductor package during a package on package (PoP) type semiconductor package manufacturing process.
  • the present invention relates to a method of generating a spiral irradiation trajectory of a laser beam for generating a via hole, but the present invention is not limited thereto, and the present invention is not limited thereto. Or similarly applicable.
  • FIG. 3 is a flowchart illustrating an embodiment of a method for generating a laser beam irradiation trajectory according to the present invention.
  • the method for generating a laser beam irradiation trajectory for processing a semiconductor package according to the present invention is largely stored in a controller of a laser beam irradiation apparatus. Selecting one of a plurality of spiral trajectory patterns, generating information about the selected spiral trajectory pattern, and generating a spiral trajectory, and inputting a laser beam irradiation condition with respect to the generated spiral trajectory. .
  • the controller of the laser beam irradiation apparatus for irradiating the laser beam is embedded in the program for generating the spiral trajectory of the laser beam, the plurality of spiral trajectory patterns are stored.
  • the spiral trajectory patterns stored in the controller are, for example, an equally spaced spiral pattern in which the distance G of the spiral trajectory is kept constant from the inner end to the outer end as shown in FIG. 4, and in FIGS. 5 and 6.
  • a gradual increasing / decreasing spiral pattern in which the interval G of the spiral trajectory gradually increases or decreases from the inner end to the outer end as shown, and the interval G of the spiral trajectory G for each section as shown in FIG. 7. Can be classified into a stepwise spiral pattern formed differently.
  • the operator has an equal interval spiral mode for generating the equally spaced spiral pattern, a progressive spiral mode for generating a progressively increasing / decreasing spiral pattern, and a stepwise spiral mode for generating a stepwise spiral pattern. Select either mode.
  • the operator inputs information about the spiral trajectory to be generated according to the selected spiral trajectory mode.
  • the user may select the direction of the spiral trajectory (clockwise or counterclockwise) and the innermost portion of the spiral trajectory as shown in FIG. 4.
  • Information about the diameter Is of the trajectory, the diameter Os of the outermost trajectory of the spiral trajectory, and the space G between the spiral trajectories is input.
  • the operator additionally inputs whether to generate the outline connection trace OL for connecting the outermost trace of the spiral trace in a circular manner.
  • the spiral traces shown in FIGS. 4C and 4D show a state in which the outline connection traces OL have been generated, and the outline connection traces OL make the outline of the spiral traces a perfect circle.
  • the via hole formed in the mold portion of the function to allow to be formed in a complete circle.
  • the operator when the operator selects a progressive spiral mode among the spiral trajectory pattern generation modes, the operator has the direction (clockwise or counterclockwise) of the spiral trajectory, the diameter Is of the innermost trajectory of the spiral trajectory, and the spiral trajectory.
  • the diameter (Os) of the outermost trajectory of the and the interval (G) between the spiral trajectories, the interval variation of the spiral trajectory, the maximum distance of the spiral trajectory (G max ), and the minimum distance of the spiral trajectory (G min ) Enter.
  • it is preferable to determine whether to further generate the outline connection trace OL by inputting whether to generate the outline connection trace OL connecting the outermost trace of the spiral circle in a circular manner as in the above-described equally spaced spiral mode. .
  • the spiral trajectory generated in the progressive spiral mode may be in the form of gradually increasing the interval toward the outer side as shown in FIG. 5 according to the change amount of the interval of the spiral trajectory or gradually toward the outer side as shown in FIG. 6. It is determined whether the interval is to be reduced.
  • the operator when the operator selects the stepwise spiral mode among the spiral trajectory pattern generation modes, the operator has the direction (clockwise or counterclockwise) of the spiral trajectory, the diameter Is of the innermost trajectory of the spiral trajectory, and the spiral trajectory.
  • the section information may be set in consideration of the diameter of the solder ball pad (see FIG. 2) of the semiconductor package.
  • the center portion corresponding to the solder ball pads 12 of the semiconductor package has a tight spacing, and the outer portion thereof has a wide spacing, and then closes again at the outermost portion (FIG. 7 (A) (B) ( E) (F)), or the center portion may have a wide spacing, and the outer portion may have a tight spacing, and then the spacing may be widened again ((C) (D) (E) (F) of FIG. 7).
  • it may be made in various forms for each section by various factors such as the processing form of the via hole 13 (see FIG. 2) formed in the semiconductor package.
  • the controller of the laser beam irradiation apparatus When the trajectory information input for the selected spiral trajectory pattern is completed as described above, the controller of the laser beam irradiation apparatus outputs the spiral trajectory generated through the monitor so that the operator can check whether the desired trajectory is generated.
  • the operator may perform laser beam irradiation conditions such as the laser beam irradiation speed of the laser beam irradiation apparatus, the intensity of the laser beam, the number of laser beam irradiation, and the laser beam irradiation direction (from inside to outside of the spiral trajectory or from outside outside of the spiral trajectory).
  • laser beam irradiation conditions such as the laser beam irradiation speed of the laser beam irradiation apparatus, the intensity of the laser beam, the number of laser beam irradiation, and the laser beam irradiation direction (from inside to outside of the spiral trajectory or from outside outside of the spiral trajectory).
  • the mold part 11 (see FIGS. 1 and 2) of the semiconductor package 10 may be cut by slowing down the laser beam irradiation speed or amplifying the intensity of the laser beam.
  • the mold part 11 may be cut by increasing the laser beam irradiation speed or decreasing the laser beam intensity.
  • some of the ray point beam irradiation conditions may be simultaneously performed in the step of
  • the spiral trajectory generation operation is terminated, and the controller of the laser irradiation apparatus repeatedly irradiates the laser beam with the set number of times along the generated spiral laser beam irradiation trajectory to mold the semiconductor package.
  • the via hole 13 is formed in (11) (refer FIG. 1 and FIG. 2).
  • the laser irradiation device may irradiate the laser beam along the spiral trajectory from the inside of the generated spiral trajectory to the outside, but in order to have a shape in which the inner circumferential surface of the via hole 13 extends upward, the laser beam is outside the spiral trajectory. It is preferable to irradiate along the spiral trajectory from the side to the inside.
  • the via hole is repeatedly formed by repeatedly irradiating the laser beam along the generated spiral trajectory, but the spiral trajectories of different patterns may be generated according to the number of repetitions.
  • the spiral trajectory of a predetermined shape is formed from the end point of the single spiral trajectory.
  • the spiral hole may be concentrated in only the outermost portion, so that the via holes may be processed in sections according to the number of repetitions.
  • the step of inputting the information on the spiral trajectory pattern is preceded by the step of inputting the laser beam irradiation condition.
  • the laser beam irradiation condition is inputted first, followed by the information on the spiral trajectory pattern. You could do it.
  • a plurality of spiral trajectory patterns are formed in the controller, and one of these spiral trajectory patterns is selected to generate the ray point beam irradiation trajectory.
  • one spiral trajectory pattern for example, a stepwise spiral pattern, is stored by default in the controller so that the operator can immediately obtain the spiral trajectory information and the step without selecting the spiral pattern type. It may be possible to enter a laser beam irradiation condition.
  • the operator can also check the direction of the spiral trajectory (clockwise or counterclockwise), the diameter of the innermost trajectory of the spiral trajectory Is, the diameter of the outermost trajectory of the spiral trajectory Os, and the spiral trajectory according to the section.
  • Section information in consideration of the diameter of the solder ball pad (refer to FIG. 2), etc. of the semiconductor package is input together with the interval G information.
  • the operator When the input of the trajectory information on the spiral trajectory pattern is completed, the operator outputs the spiral trajectory generated through the monitor to check whether the desired trajectory is generated, and then the laser beam irradiation speed of the laser beam irradiation apparatus, the intensity of the laser beam, and the laser.
  • the laser beam irradiation conditions such as the number of beam irradiation and the laser beam irradiation direction (from inside to outside of the spiral trajectory or from outside to inside of the spiral trajectory) are set.
  • FIG. 9 illustrates an example of a stepped spiral trajectory pattern generated by the method of generating the laser beam irradiation trajectory illustrated in FIG. 8, wherein the stepped spiral trajectory pattern shown in FIG. 9A corresponds to an outer side of the solder ball.
  • One section (# 1 section) has a very tight interval
  • the second section (# 2 section) inside the first section has a wider equal interval than the first section.
  • the third section (# 3 section) inside the second section has a wider equal interval than the second section.
  • the stepped spiral trajectory pattern illustrated in (B) of FIG. 9 may have a wider equal interval 4th section outside the first section (# 1 section) of the stepped spiral pattern illustrated in (A) of FIG. # 4section) has an additional shape.
  • the present invention can be used to automatically generate the irradiation trajectory of the laser beam irradiated to the mold portion of the semiconductor package in the manufacturing process of the semiconductor package.

Abstract

The present invention relates to a method for generating a laser beam irradiation trajectory for processing a semiconductor package, capable of automatically, accurately and easily generating a laser beam irradiation trajectory in a mold portion of the semiconductor package during manufacture of the semiconductor package. According to the present invention, the method for generating a laser beam irradiation trajectory for a semiconductor package-processing apparatus, which irradiates a laser beam onto the mold portion of the semiconductor package along a spiral trajectory to form via holes, comprises the steps of: enabling a controller of a laser beam irradiation apparatus, in which a plurality of spiral trajectory patterns are stored by types, to select one of the spiral trajectory pattern types; inputting information on the selected spiral trajectory pattern to generate a spiral trajectory; and inputting a laser beam irradiation condition.

Description

레이저 빔 조사 궤적 생성방법Laser beam irradiation trajectory generation method
본 발명은 반도체 패키지의 가공시 반도체 패키지에 조사되는 레이저 빔의 조사 궤적을 자동으로 생성하는 방법에 관한 것으로, 더욱 상세하게는 패키지 온 패키지(PoP; Package on Package) 타입 등의 반도체 패키지의 제조 과정에서 반도체 패키지의 몰드부에 조사될 나선형의 레이저 빔 조사 궤적을 자동으로 정확하고 용이하게 생성할 수 있는 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of automatically generating an irradiation trajectory of a laser beam irradiated onto a semiconductor package during processing of the semiconductor package. More particularly, a manufacturing process of a semiconductor package such as a package on package (PoP) type The present invention relates to a method for generating a laser beam irradiation trajectory for processing a semiconductor package that can automatically and accurately generate a spiral laser beam irradiation trajectory to be irradiated to a mold portion of a semiconductor package.
최근들어 이동통신단말기, 휴대용 인터넷 디바이스, 휴대용 멀티미디어 단말기 등 다양한 기능을 갖는 소형 멀티 애플리케이션의 개발 추세에 따라 경박단소화를 구현함과 동시에 고용량 및 고집적화를 구현할 수 있는 멀티칩 패키지(MCP; Multi Chip Package) 및 패키지온패키지(PoP; Package on Package) 기술 등 다양한 반도체 패키징 기술이 개발되고 있다. Recently, in accordance with the development trend of small multi-applications having various functions such as mobile communication terminals, portable Internet devices, and portable multimedia terminals, a multi-chip package (MCP; Multi Chip Package) that can realize high-capacity and high-density and high-capacity And various semiconductor packaging technologies, such as package on package (PoP) technology, are being developed.
이 중 패키지온패키지(PoP) 기술은 한 개 이상의 반도체 칩을 내장한 패키지를 적층하는 기술로서, 통상적으로 하부의 반도체 패키지의 상면에 전기적 연결을 위한 복수개의 솔더볼 패드를 형성하여, 하부 반도체 패키지의 상측에 상부 반도체 패키지를 적층시킬 때 상부 반도체 패키지의 하부면에 형성된 솔더볼을 상기 하부의 반도체 패키지의 솔더볼 패드에 접합시키는 기술이다. Among these, a package on package (PoP) technology is a technology of stacking a package containing one or more semiconductor chips, and typically forms a plurality of solder ball pads for electrical connection on an upper surface of a lower semiconductor package. When the upper semiconductor package is stacked on the upper side, the solder ball formed on the lower surface of the upper semiconductor package is bonded to the solder ball pads of the lower semiconductor package.
이러한 패키지온패키지 기술에 의해 2개의 반도체 패키지들을 서로 접합시킬 때 상,하부의 반도체 패키지들이 워페이지(warpage) 변형 등이 발생할 경우에는 상,하부 반도체 패키지들의 솔더볼 패드와 솔더볼 간의 접합이 정확하게 이루어지지 않아 불량이 발생할 가능성이 높다.When the two semiconductor packages are bonded to each other by the package-on-package technology, when warpage deformation occurs in the upper and lower semiconductor packages, the solder ball pads and the solder balls of the upper and lower semiconductor packages are not precisely bonded. There is a high possibility of failure.
이에 현재에는 하부의 반도체 패키지를 제조할 때 몰딩 공정에서 솔더볼 패드가 형성되어 있는 부분까지 모두 몰딩을 하여 워페이지를 최소화한 다음, 첨부된 도면의 도 1과 도 2에 도시한 것과 같이, 레이저 빔 조사장치(20)를 이용하여 반도체 패키지(10)의 몰드부(11)의 각 솔더볼 패드(12) 부분에 비아홀(via hole)(13)을 가공하여 솔더볼 패드(12)를 외부로 노출시킨 후, 상부 반도체 패키지를 적층시킬 때 상기 비아홀(13)을 통해 상부 반도체 패키지의 솔더볼과 하부 반도체 패키지의 솔더볼 패드(12)를 상호 접속시키고 있다. At this time, when manufacturing the lower semiconductor package, all the parts are formed in the molding process in which the solder ball pads are formed to minimize the warpage, and as shown in FIGS. 1 and 2 of the accompanying drawings, the laser beam After the via hole 13 is formed in each solder ball pad 12 of the mold portion 11 of the semiconductor package 10 using the irradiation device 20 to expose the solder ball pad 12 to the outside. When the upper semiconductor package is stacked, the solder balls of the upper semiconductor package and the solder ball pads 12 of the lower semiconductor package are interconnected through the via holes 13.
한편, 상기 하부 반도체 패키지의 몰드부에 비아홀을 가공할 때 레이저 빔을 조사하는데, 이 때 레이저 빔을 각 솔더볼 패드에 대응하는 위치에 나선형 궤적을 따라 조사하여 솔더볼 패드가 레이저 빔에 의해 손상되는 것을 최소화하면서 몰드부가 균일하게 절삭될 수 있도록 하는 방식이 사용되고 있다. 이러한 레이저 빔의 나선형 궤적은 캐드 도면에 의해 1차적으로 작성된 후 각 궤적에 대한 수치 정보가 레이저 빔 조사장치의 콘트롤러에 입력되어 비아홀 가공시 항상 일정한 궤적으로 레이저 빔이 조사되도록 되어 있다. On the other hand, when processing the via hole in the mold portion of the lower semiconductor package is irradiated with a laser beam, the laser beam is irradiated along the spiral trajectory to the position corresponding to each solder ball pad to damage the solder ball pad by the laser beam A method of uniformly cutting the mold part while minimizing it is used. Since the spiral trajectory of the laser beam is primarily created by CAD drawing, numerical information about each trajectory is input to the controller of the laser beam irradiator so that the laser beam is always irradiated with a constant trajectory during via hole processing.
그런데, 반도체 패키지 제조 공정에서 가공 대상 반도체 패키지의 종류나 크기가 바뀌게 되면, 나선형 궤적 또한 반도체 패키지의 종류 또는 크기에 맞게 바뀌어야 하는데, 전술한 것과 같이 종래에는 작업자가 캐드도면에 1차적으로 나선형 궤적을 생성한 다음, 이 나선형 궤적의 수치 정보를 레이저 빔 조사장치의 콘트롤러에 입력해 주어야 했기 때문에 가공 대상 반도체 패키지의 종류가 바뀔 때마다 이러한 나선형 궤적 생성 작업을 반복해야 한다.However, when the type or size of the semiconductor package to be processed is changed in the semiconductor package manufacturing process, the spiral trajectory should also be changed according to the type or size of the semiconductor package. As described above, the operator first places the spiral trajectory on the CAD drawing. After the generation, the numerical information of the spiral trajectory has to be input to the controller of the laser beam irradiation apparatus, and thus the spiral trajectory generation operation must be repeated whenever the type of semiconductor package to be processed changes.
따라서, 나선형 궤적 생성 작업에 많은 시간이 소요되어 생산성이 저하되는 문제가 있다. Therefore, the spiral trajectory generation operation takes a long time, there is a problem that the productivity is reduced.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로, 본 발명의 목적은 패키지온패키지(PoP) 타입과 같은 반도체 패키지의 제조 공정 중, 반도체 패키지의 몰드부에 비아홀을 레이저 빔으로 가공할 때 레이저 빔의 조사 궤적을 신속하고 용이하게 생성할 수 있도록 한 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법을 제공함에 있다. The present invention is to solve the above conventional problems, an object of the present invention is to process a via hole with a laser beam in the mold portion of the semiconductor package during the manufacturing process of a semiconductor package, such as a package-on-package (PoP) type The present invention provides a method for generating a laser beam irradiation trajectory for processing a semiconductor package, which enables to generate a laser beam irradiation trajectory quickly and easily.
상기와 같은 목적을 달성하기 위한 본 발명의 한 실시형태에 따르면, 반도체 패키지의 몰드부에 레이저 빔을 나선형 궤적을 따라 조사하여 비아홀을 가공하는 반도체 패키지 가공장치에서 상기 레이저 빔의 조사 궤적을 생성하는 방법에 있어서, 복수개의 나선형 궤적 패턴이 유형별로 저장되어 있는 레이저 빔 조사장치의 콘트롤러에서 상기 나선형 궤적 패턴 유형 중 어느 하나를 선택하는 단계; 상기 선택된 나선형 궤적 패턴에 대한 정보를 입력하여 나선형 궤적을 생성하는 단계; 레이저 빔 조사 조건을 입력하는 단계를 포함하여 구성된 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법이 제공된다.According to an embodiment of the present invention for achieving the above object, to generate the irradiation trajectory of the laser beam in the semiconductor package processing apparatus for processing the via hole by irradiating the laser beam along the spiral trajectory to the mold portion of the semiconductor package A method, comprising: selecting any one of the spiral trajectory pattern types in a controller of a laser beam irradiation apparatus in which a plurality of spiral trajectory patterns are stored for each type; Generating a spiral trajectory by inputting information on the selected spiral trajectory pattern; Provided is a method of generating a laser beam irradiation trajectory for processing a semiconductor package including a step of inputting a laser beam irradiation condition.
본 발명의 다른 한 실시형태에 따르면, 반도체 패키지의 몰드부에 레이저 빔을 나선형 궤적을 따라 조사하여 비아홀을 가공하는 반도체 패키지 가공장치에서 상기 레이저 빔의 조사 궤적을 생성하는 방법에 있어서, 구간 별로 나선형 궤적의 간격(G)이 다르게 형성되는 단계적 나선 패턴 유형에 대한 패턴 정보를 입력하여 나선형 궤적을 생성하는 단계; 그리고, 레이저 빔 조사 조건을 입력하는 단계를 포함하여 구성된 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법이 제공된다.According to another embodiment of the present invention, in the semiconductor package processing apparatus for processing a via hole by irradiating a laser beam along the spiral trajectory to the mold portion of the semiconductor package, the method for generating the irradiation trajectory of the laser beam in each spiral section Generating a spiral trajectory by inputting pattern information on a stepwise spiral pattern type in which the interval G of the trajectory is formed differently; In addition, a method of generating a laser beam irradiation trajectory for processing a semiconductor package including a step of inputting a laser beam irradiation condition is provided.
이러한 본 발명에 따르면, 작업자가 생성하고자 하는 레이저 빔의 나선형 궤적 패턴을 선택하고, 이 나선형 패턴에 대한 정보 및 레이저 빔 조사 조건을 입력하는 것에 의해 자동으로 나선형 패턴이 생성되어 패키지의 비아홀 가공이 이루어지므로, 가공하고자 하는 반도체 패키지의 종류 또는 크기가 달라지더라도 작업자가 용이하고 신속하게 정확한 형태로 나선형 궤적을 생성할 수 있다. 따라서, 생산성 및 작업 효율성을 크게 향상시킬 수 있다. According to the present invention, a spiral pattern is automatically generated by selecting a spiral trajectory pattern of a laser beam that an operator intends to generate, and inputting information and laser beam irradiation conditions for the spiral pattern, thereby performing via hole processing of a package. Therefore, even if the type or size of the semiconductor package to be processed is different, the operator can easily and quickly create a spiral trajectory in the correct form. Therefore, productivity and work efficiency can be improved significantly.
도 1과 도 2는 일반적인 패키지온패키지 타입의 반도체 패키지 제조공정 중 반도체 패키지의 몰드부에 레이저 빔을 조사하여 비아홀을 형성하는 공정을 나타낸 요부 단면도이다. 1 and 2 are cross-sectional views illustrating main processes of forming a via hole by irradiating a laser beam to a mold portion of a semiconductor package during a typical package-on-package type semiconductor package manufacturing process.
도 3은 본 발명의 일 실시예에 따른 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법을 설명하는 순서도이다. 3 is a flow chart illustrating a method for generating a laser beam irradiation trajectory for processing a semiconductor package according to an embodiment of the present invention.
도 4는 도 3의 레이저 빔 조사 궤적 생성방법 중 등간격 나선 모드에 의해 에 의해 생성되는 등간격 나선형 궤적 패턴들을 나타낸 것으로, (A)와 (B)는 아우트라인 연결 궤적이 없는 반시계방향 및 시계방향 등간격 나선형 궤적 패턴을 나타내고, (C)와 (D)는 아우트라인 연결 궤적이 있는 반시계방향 및 시계방향 등간격 나선형 궤적 패턴을 나타낸다.FIG. 4 is a diagram illustrating an evenly spaced spiral trajectory pattern generated by an equally spaced spiral mode in the laser beam irradiation trajectory generation method of FIG. 3, wherein (A) and (B) are anticlockwise and clockwise without an outline connection trajectory. Directional equal interval spiral trajectory patterns are shown, and (C) and (D) show counterclockwise and clockwise equal interval spiral trajectory patterns with outline connection trajectories.
도 5는 도 3의 레이저 빔 조사 궤적 생성방법 중 점진적 나선 모드에 의해 에 의해 생성되는 점진적 증가형 나선형 궤적 패턴들의 예를 나타낸 도면이다. FIG. 5 is a diagram illustrating an example of progressively increasing spiral trajectory patterns generated by the progressive spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
도 6은 도 3의 레이저 빔 조사 궤적 생성방법 중 점진적 나선 모드에 의해 에 의해 생성되는 점진적 감소형 나선형 궤적 패턴들의 예를 나타낸 도면이다. FIG. 6 is a diagram illustrating an example of a progressively reduced spiral track pattern generated by a progressive spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
도 7은 도 3의 레이저 빔 조사 궤적 생성방법 중 단계적 나선 모드에 의해 에 의해 생성되는 단계적 나선형 궤적 패턴들의 예를 나타낸 도면이다. FIG. 7 is a diagram illustrating an example of stepwise spiral trajectory patterns generated by stepwise spiral mode in the laser beam irradiation trajectory generation method of FIG. 3.
도 8은 본 발명의 다른 실시예에 따른 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법을 설명하는 순서도이다. 8 is a flowchart illustrating a method of generating a laser beam irradiation trajectory for processing a semiconductor package according to another exemplary embodiment of the present disclosure.
도 9는 도 8의 레이저 빔 조사 궤적 생성방법에 의해 생성된 단계적 나선 패턴들의 다른 예들을 나타낸 도면이다. FIG. 9 is a diagram illustrating other examples of stepwise spiral patterns generated by the laser beam irradiation trajectory generation method of FIG. 8.
* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings
10 : 반도체 패키지 11 : 몰드부10 semiconductor package 11 mold part
12 : 솔더볼 패드 13 : 비아홀12: solder ball pad 13: via hole
20 : 레이저 빔 조사장치 G : 나선형 궤적의 간격20: laser beam irradiation device G: spacing of the spiral trajectory
Is : 최내곽 궤적의 직경 Os : 최외곽 궤적의 직경Is: Diameter of outermost trajectory Os: Diameter of outermost trajectory
OL : 아우트라인 연결 궤적 Gmax : 나선형 궤적의 최대 간격OL: Outer connection trajectory G max : Maximum distance of the spiral trajectory
Gmin: 나선형 궤적의 최소 간격 G min : minimum distance of the spiral trajectory
이하, 첨부된 도면을 참조하여 본 발명에 따른 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법에 대한 바람직한 실시예를 상세히 설명한다. Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the method for generating a laser beam irradiation trajectory for processing of the semiconductor package according to the present invention.
참고로, 아래에서 설명하는 본 발명의 레이저 빔 조사 궤적 생성방법의 실시예는 패키지온패키지(PoP; Package on Package) 타입의 반도체 패키지 제조 공정 중 하부 반도체 패키지의 몰드부에 솔더볼 패드를 노출시키기 위한 비아홀 생성을 위한 레이저 빔의 나선형 조사 궤적 생성방법에 관한 것이나, 본 발명은 이에 국한되지 않고 반도체 패키지 제조공정 중 레이저 빔을 나선형 궤적을 따라 조사하여 소정의 가공을 수행하는 모든 반도체 패키지 제조 공정에 동일 또는 유사하게 적용될 수 있을 것이다. For reference, an embodiment of the method for generating a laser beam irradiation trajectory described below is for exposing a solder ball pad to a mold portion of a lower semiconductor package during a package on package (PoP) type semiconductor package manufacturing process. The present invention relates to a method of generating a spiral irradiation trajectory of a laser beam for generating a via hole, but the present invention is not limited thereto, and the present invention is not limited thereto. Or similarly applicable.
도 3은 본 발명에 따른 레이저 빔 조사 궤적 생성 방법의 일 실시예를 설명하는 순서도로, 본 발명에 따른 반도체 패키지의 가공을 위한 레이저 빔 조사 궤적 생성방법은 크게 레이저 빔 조사장치의 콘트롤러에 저장되어 있는 복수개의 나선형 궤적 패턴 중 어느 하나를 선택하는 단계와, 상기 선택된 나선형 궤적 패턴에 대한 정보를 입력하여 나선형 궤적을 생성하는 단계, 생성된 나선형 궤적에 대하여 레이저 빔 조사 조건을 입력하는 단계로 구성된다. 3 is a flowchart illustrating an embodiment of a method for generating a laser beam irradiation trajectory according to the present invention. The method for generating a laser beam irradiation trajectory for processing a semiconductor package according to the present invention is largely stored in a controller of a laser beam irradiation apparatus. Selecting one of a plurality of spiral trajectory patterns, generating information about the selected spiral trajectory pattern, and generating a spiral trajectory, and inputting a laser beam irradiation condition with respect to the generated spiral trajectory. .
각 단계에 대해 상세히 설명하면 다음과 같다. Each step will be described in detail as follows.
레이저 빔을 조사하는 레이저 빔 조사장치의 콘트롤러에는 레이저 빔의 나선형 궤적을 생성하기 위한 프로그램이 내장되는데, 이 프로그램에는 복수개의 나선형 궤적 패턴들이 저장되어 있다. The controller of the laser beam irradiation apparatus for irradiating the laser beam is embedded in the program for generating the spiral trajectory of the laser beam, the plurality of spiral trajectory patterns are stored.
상기 콘트롤러에 저장된 나선형 궤적 패턴들은 예를 들어 도 4에 도시된 것과 같이 내측 단부에서부터 외측 단부에 이르기까지 나선형 궤적의 간격(G)이 일정하게 유지되는 등간격 나선 패턴과, 도 5와 도 6에 도시된 것과 같이 내측 단부에서부터 외측 단부에 이르기까지 나선형 궤적의 간격(G)이 점차적으로 증가하거나 줄어드는 점진적 증가형/감소형 나선 패턴과, 도 7에 도시된 것과 같이 구간 별로 나선형 궤적의 간격(G)이 다르게 형성되는 단계적 나선 패턴 등으로 구분할 수 있다. The spiral trajectory patterns stored in the controller are, for example, an equally spaced spiral pattern in which the distance G of the spiral trajectory is kept constant from the inner end to the outer end as shown in FIG. 4, and in FIGS. 5 and 6. A gradual increasing / decreasing spiral pattern in which the interval G of the spiral trajectory gradually increases or decreases from the inner end to the outer end as shown, and the interval G of the spiral trajectory G for each section as shown in FIG. 7. ) Can be classified into a stepwise spiral pattern formed differently.
상기 나선형 궤적 패턴 선택 단계에서는 작업자가 상기 등간격 나선 패턴을 생성하기 위한 등간격 나선 모드와, 점진적 증가형/감소형 나선 패턴을 생성하기 위한 점진적 나선 모드, 단계적 나선 패턴을 생성하기 위한 단계적 나선 모드 중 어느 하나의 모드를 선택한다. In the spiral trajectory pattern selection step, the operator has an equal interval spiral mode for generating the equally spaced spiral pattern, a progressive spiral mode for generating a progressively increasing / decreasing spiral pattern, and a stepwise spiral mode for generating a stepwise spiral pattern. Select either mode.
다음으로, 작업자는 선택된 나선형 궤적 모드에 따라 생성하고자 하는 나선형 궤적에 대한 정보들을 입력한다. Next, the operator inputs information about the spiral trajectory to be generated according to the selected spiral trajectory mode.
예를 들어, 작업자가 상기 나선형 궤적 패턴 생성모드들 중 등간격 나선 모드를 선택한 경우, 사용자는 도 4에 도시된 것과 같이 나선형 궤적의 방향(시계방향 또는 반시계방향)과, 나선형 궤적의 최내곽 궤적의 직경(Is)과, 나선형 궤적의 최외곽 궤적의 직경(Os)과, 나선형 궤적 간의 간격(G) 정보를 입력한다. 이 때, 작업자는 추가적으로 나선형 궤적의 최외곽 궤적을 원형으로 연결하는 아우트라인 연결 궤적(OL)의 생성 여부를 입력한다. 도 4의 (C) 와 (D)에 도시된 나선형 궤적은 아우트라인 연결 궤적(OL)이 생성된 상태를 나타낸 것으로, 상기 아우트라인 연결 궤적(OL)은 나선형 궤적의 아우트라인을 완전한 원으로 만들어줌으로써 반도체 패키지의 몰드부에 형성되는 비아홀이 완전한 원형으로 형성될 수 있도록 하는 기능을 한다. For example, when an operator selects an equally spaced spiral mode among the spiral trajectory pattern generation modes, the user may select the direction of the spiral trajectory (clockwise or counterclockwise) and the innermost portion of the spiral trajectory as shown in FIG. 4. Information about the diameter Is of the trajectory, the diameter Os of the outermost trajectory of the spiral trajectory, and the space G between the spiral trajectories is input. At this time, the operator additionally inputs whether to generate the outline connection trace OL for connecting the outermost trace of the spiral trace in a circular manner. The spiral traces shown in FIGS. 4C and 4D show a state in which the outline connection traces OL have been generated, and the outline connection traces OL make the outline of the spiral traces a perfect circle. The via hole formed in the mold portion of the function to allow to be formed in a complete circle.
또한, 작업자가 상기 나선형 궤적 패턴 생성모드들 중 점진적 나선 모드를 선택한 경우, 작업자는 나선형 궤적의 방향(시계방향 또는 반시계방향)과, 나선형 궤적의 최내곽 궤적의 직경(Is)과, 나선형 궤적의 최외곽 궤적의 직경(Os)과, 나선형 궤적 간의 간격(G) 정보와 더불어, 나선형 궤적의 간격 변화량(variation), 나선형 궤적의 최대 간격(Gmax), 나선형 궤적의 최소 간격(Gmin)을 입력한다. 물론, 이 때에도 전술한 등간격 나선 모드와 마찬가지로 나선형 궤적의 최외곽 궤적을 원형으로 연결하는 아우트라인 연결 궤적(OL)의 생성 여부를 입력하여 아우트라인 연결 궤적(OL)을 추가적으로 생성할지를 결정하는 것이 바람직하다. In addition, when the operator selects a progressive spiral mode among the spiral trajectory pattern generation modes, the operator has the direction (clockwise or counterclockwise) of the spiral trajectory, the diameter Is of the innermost trajectory of the spiral trajectory, and the spiral trajectory. In addition to the information about the diameter (Os) of the outermost trajectory of the and the interval (G) between the spiral trajectories, the interval variation of the spiral trajectory, the maximum distance of the spiral trajectory (G max ), and the minimum distance of the spiral trajectory (G min ) Enter. Of course, in this case, it is preferable to determine whether to further generate the outline connection trace OL by inputting whether to generate the outline connection trace OL connecting the outermost trace of the spiral circle in a circular manner as in the above-described equally spaced spiral mode. .
상기 점진적 나선 모드에서 생성되는 나선형 궤적은 상기 나선형 궤적의 간격 변화량에 따라 도 5에 도시된 것과 같이 외곽으로 갈수록 점진적으로 간격이 증가하는 형태로 될지 아니면 도 6에 도시된 것과 같이 외곽으로 갈수록 점진적으로 간격이 감소하는 형태로 될지 결정된다. The spiral trajectory generated in the progressive spiral mode may be in the form of gradually increasing the interval toward the outer side as shown in FIG. 5 according to the change amount of the interval of the spiral trajectory or gradually toward the outer side as shown in FIG. 6. It is determined whether the interval is to be reduced.
그리고, 작업자가 상기 나선형 궤적 패턴 생성모드들 중 단계적 나선 모드를 선택한 경우, 작업자는 나선형 궤적의 방향(시계방향 또는 반시계방향)과, 나선형 궤적의 최내곽 궤적의 직경(Is)과, 나선형 궤적의 최외곽 궤적의 직경(Os)과, 구간에 따른 나선형 궤적 간의 간격(G) 정보와 더불어, 구간 정보 등을 입력한다. 여기서, 상기 구간 정보는 반도체 패키지의 솔더볼 패드(도 2참조)의 직경 등을 고려하여 설정될 수 있다. In addition, when the operator selects the stepwise spiral mode among the spiral trajectory pattern generation modes, the operator has the direction (clockwise or counterclockwise) of the spiral trajectory, the diameter Is of the innermost trajectory of the spiral trajectory, and the spiral trajectory. In addition to information on the diameter Os of the outermost trajectory of the and the interval G between the spiral trajectories according to the section, section information and the like are input. Here, the section information may be set in consideration of the diameter of the solder ball pad (see FIG. 2) of the semiconductor package.
예를 들어, 반도체 패키지의 솔더볼 패드(12)와 대응하는 중앙부분은 간격이 촘촘하고, 그 외곽 부분은 간격이 넓다가 다시 최외곽 부분에서 촘촘해지는 형태(도 7의 (A)(B)(E)(F)), 또는 가장 중앙 부분은 간격이 넓고 그 외곽 부분은 간격이 촘촘하다가 다시 간격이 넓어지는 형태(도 7의 (C)(D)(E)(F))로 될 수도 있다. 물론, 이외에도 반도체 패키지에 형성되는 비아홀(13)(도 2참조)의 가공 형태 등 다양한 요인에 의해 구간 별로 다양한 형태로 이루어질 수 있다. For example, the center portion corresponding to the solder ball pads 12 of the semiconductor package has a tight spacing, and the outer portion thereof has a wide spacing, and then closes again at the outermost portion (FIG. 7 (A) (B) ( E) (F)), or the center portion may have a wide spacing, and the outer portion may have a tight spacing, and then the spacing may be widened again ((C) (D) (E) (F) of FIG. 7). . Of course, in addition to this, it may be made in various forms for each section by various factors such as the processing form of the via hole 13 (see FIG. 2) formed in the semiconductor package.
상기와 같이 선택된 나선형 궤적 패턴에 대한 궤적 정보 입력이 완료되면, 레이저 빔 조사장치의 콘트롤러는 모니터를 통해 생성된 나선형 궤적을 출력하여 작업자가 원하는 궤적이 생성되었는지 확인할 수 있도록 한다. When the trajectory information input for the selected spiral trajectory pattern is completed as described above, the controller of the laser beam irradiation apparatus outputs the spiral trajectory generated through the monitor so that the operator can check whether the desired trajectory is generated.
이어서, 작업자는 레이저 빔 조사장치의 레이저 빔 조사 속도, 레이저 빔의 강도, 레이저 빔 조사 횟수, 레이저 빔 조사 방향(나선형 궤적의 안쪽에서부터 바깥쪽 또는 나선형 궤적의 바깥쪽에서부터 안쪽) 등 레이저 빔 조사 조건을 설정한다. 예를 들어 에너지가 많이 요구되는 부분에서는 레이저 빔 조사 속도를 느리게 하거나 레이저 빔의 강도를 증폭시켜 반도체 패키지(10)의 몰드부(11)(도 1 및 도 2참조)를 절삭할 수 있으며, 반대로 에너지가 적게 요구되는 부분에서는 레이저 빔 조사 속도를 빠르게 하거나 레이저 빔 강도를 감소시켜 몰드부(11)를 절삭할 수도 있다. 물론, 상기 레이점 빔 조사 조건 중 일부는 상기 나선형 궤적의 정보를 입력하는 단계에서 동시에 수행될 수도 있을 것이다. Subsequently, the operator may perform laser beam irradiation conditions such as the laser beam irradiation speed of the laser beam irradiation apparatus, the intensity of the laser beam, the number of laser beam irradiation, and the laser beam irradiation direction (from inside to outside of the spiral trajectory or from outside outside of the spiral trajectory). Set. For example, in the part where energy is required, the mold part 11 (see FIGS. 1 and 2) of the semiconductor package 10 may be cut by slowing down the laser beam irradiation speed or amplifying the intensity of the laser beam. In the part where energy is required, the mold part 11 may be cut by increasing the laser beam irradiation speed or decreasing the laser beam intensity. Of course, some of the ray point beam irradiation conditions may be simultaneously performed in the step of inputting the information of the spiral trajectory.
상기와 같이 레이저 빔 조사 조건이 모두 설정되면, 나선형 궤적 생성 작업이 종료되고, 레이저 조사장치의 콘트롤러는 생성된 나선형의 레이저 빔 조사 궤적을 따라 레이저 빔을 설정된 횟수만큼 반복 조사하여 반도체 패키지의 몰드부(11)(도 1 및 도 2참조)에 비아홀(13)을 형성한다. 여기서, 상기 레이저 조사장치는 생성된 나선형 궤적의 안쪽에서 바깥쪽으로 나선형 궤적을 따라 레이저 빔을 조사할 수도 있지만, 비아홀(13)의 내주면이 상측으로 확장된 형태를 갖기 위해서는 레이저 빔이 나선형 궤적의 바깥쪽에서부터 안쪽으로 나선형 궤적을 따라 조사되는 것이 바람직하다. When all the laser beam irradiation conditions are set as described above, the spiral trajectory generation operation is terminated, and the controller of the laser irradiation apparatus repeatedly irradiates the laser beam with the set number of times along the generated spiral laser beam irradiation trajectory to mold the semiconductor package. The via hole 13 is formed in (11) (refer FIG. 1 and FIG. 2). Here, the laser irradiation device may irradiate the laser beam along the spiral trajectory from the inside of the generated spiral trajectory to the outside, but in order to have a shape in which the inner circumferential surface of the via hole 13 extends upward, the laser beam is outside the spiral trajectory. It is preferable to irradiate along the spiral trajectory from the side to the inside.
한편, 전술한 실시예에서는 생성된 나선형 궤적을 따라 동일하게 레이저 빔을 반복 조사하여 비아홀을 형성하는 것으로 예시되었지만, 반복 횟수에 따라 각각 다른 패턴의 나선형 궤적을 생성하게 할 수도 있을 것이다.Meanwhile, in the above-described embodiment, the via hole is repeatedly formed by repeatedly irradiating the laser beam along the generated spiral trajectory, but the spiral trajectories of different patterns may be generated according to the number of repetitions.
예를 들어, 1회 레이저 빔 조사시에는 나선형 궤적이 중앙 부분만 등간격 또는 점진적 간격으로 형성되도록 하고, 2회 조사시에는 1회 나선형 궤적의 끝지점에서부터 소정 형태의 나선형 궤적을 형성하도록 하고, 3회 조사시에는 최외곽 부분에만 집중적으로 나선형 궤적이 형성되도록 하여 비아홀을 반복 횟수에 따라 구간별로 가공할 수도 있을 것이다. For example, when the laser beam is irradiated once, only the central portion is formed at equal intervals or gradual intervals, and when it is irradiated twice, the spiral trajectory of a predetermined shape is formed from the end point of the single spiral trajectory. In the third survey, the spiral hole may be concentrated in only the outermost portion, so that the via holes may be processed in sections according to the number of repetitions.
또한, 전술한 실시예에서는 나선형 궤적 패턴에 대한 정보를 입력하는 단계가 레이저 빔 조사조건을 입력하는 단계보다 선행되었으나, 이와 다르게 레이저 빔 조사조건을 먼저 입력하고 그 후에 나선형 궤적 패턴에 대한 정보를 입력할 수도 있을 것이다. In addition, in the above-described embodiment, the step of inputting the information on the spiral trajectory pattern is preceded by the step of inputting the laser beam irradiation condition. Alternatively, the laser beam irradiation condition is inputted first, followed by the information on the spiral trajectory pattern. You could do it.
전술한 실시예의 레이점 빔 조사 궤적 생성방법에서는 콘트롤러에 복수개의 나선형 궤적 패턴이 형성되고, 이들 나선형 궤적 패턴들중 어느 하나를 선택하여 레이점 빔 조사 궤적을 생성하였다. 그러나, 도 8에 다른 실시예로 나타내어진 것과 같이, 콘트롤러에 하나의 나선형 궤적 패턴, 예를 들어 단계적 나선형 패턴이 디폴트(default)로 저장되어 나선형 패턴 유형의 선택 단계 없이 작업자가 곧바로 나선형 궤적 정보 및 레이저 빔 조사 조건을 입력하도록 할 수도 있을 것이다. In the ray point beam irradiation trajectory generation method of the above-described embodiment, a plurality of spiral trajectory patterns are formed in the controller, and one of these spiral trajectory patterns is selected to generate the ray point beam irradiation trajectory. However, as shown in another embodiment in FIG. 8, one spiral trajectory pattern, for example, a stepwise spiral pattern, is stored by default in the controller so that the operator can immediately obtain the spiral trajectory information and the step without selecting the spiral pattern type. It may be possible to enter a laser beam irradiation condition.
물론, 실시예에서도 작업자는 나선형 궤적의 방향(시계방향 또는 반시계방향)과, 나선형 궤적의 최내곽 궤적의 직경(Is), 나선형 궤적의 최외곽 궤적의 직경(Os), 구간에 따른 나선형 궤적 간의 간격(G) 정보 등과 더불어, 반도체 패키지의 솔더볼 패드(도 2참조)의 직경 등을 고려한 구간 정보 등을 입력한다. Of course, in the embodiment, the operator can also check the direction of the spiral trajectory (clockwise or counterclockwise), the diameter of the innermost trajectory of the spiral trajectory Is, the diameter of the outermost trajectory of the spiral trajectory Os, and the spiral trajectory according to the section. Section information in consideration of the diameter of the solder ball pad (refer to FIG. 2), etc. of the semiconductor package is input together with the interval G information.
그리고, 나선형 궤적 패턴에 대한 궤적 정보 입력이 완료되면, 작업자는 모니터를 통해 생성된 나선형 궤적을 출력하여 원하는 궤적이 생성되었는지 확인한 다음, 레이저 빔 조사장치의 레이저 빔 조사 속도, 레이저 빔의 강도, 레이저 빔 조사 횟수, 레이저 빔 조사 방향(나선형 궤적의 안쪽에서부터 바깥쪽 또는 나선형 궤적의 바깥쪽에서부터 안쪽) 등 레이저 빔 조사 조건을 설정한다. When the input of the trajectory information on the spiral trajectory pattern is completed, the operator outputs the spiral trajectory generated through the monitor to check whether the desired trajectory is generated, and then the laser beam irradiation speed of the laser beam irradiation apparatus, the intensity of the laser beam, and the laser. The laser beam irradiation conditions such as the number of beam irradiation and the laser beam irradiation direction (from inside to outside of the spiral trajectory or from outside to inside of the spiral trajectory) are set.
도 9는 도 8에 예시된 레이저 빔 조사 궤적 생성방법에 의해 생성된 단계적 나선형 궤적 패턴의 예를 나타낸 것으로, 도 9의 (A)도면에 도시된 단계적 나선형 궤적 패턴은 솔더볼의 외측에 대응하는 제1구간(#1section)이 매우 촘촘한 간격을 가지며, 제1구간 내측의 제2구간(#2section)은 제1구간 보다 넓은 등간격을 갖는다. 그리고, 제2구간 내측의 제3구간(#3section)은 제2구간 보다 더 넓은 등간격을갖는다. 그리고, 도 9의 (B) 도면에 도시된 단계적 나선형 궤적 패턴은 도 9의 (A)도면에 도시된 단계적 나선형 패턴의 제1구간(#1section) 외측에 이보다 더 넓은 등간격의 제4구간(#4section)이 추가로 형성된 모양을 갖는다. 물론, 도 9에 도시된 패턴 외에도 다양한 형태로 단계적 나선형 패턴을 형성할 수 있을 것이다. FIG. 9 illustrates an example of a stepped spiral trajectory pattern generated by the method of generating the laser beam irradiation trajectory illustrated in FIG. 8, wherein the stepped spiral trajectory pattern shown in FIG. 9A corresponds to an outer side of the solder ball. One section (# 1 section) has a very tight interval, the second section (# 2 section) inside the first section has a wider equal interval than the first section. The third section (# 3 section) inside the second section has a wider equal interval than the second section. In addition, the stepped spiral trajectory pattern illustrated in (B) of FIG. 9 may have a wider equal interval 4th section outside the first section (# 1 section) of the stepped spiral pattern illustrated in (A) of FIG. # 4section) has an additional shape. Of course, in addition to the pattern shown in Figure 9 it will be able to form a stepped spiral pattern in various forms.
전술한 본 발명의 레이저 빔 조사 궤적 생성방법에 대한 실시예들은 단지 본 발명의 이해를 돕기 위한 예시 목적으로 제시된 것으로, 본 발명은 이에 국한되지 않으며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 첨부된 특허청구범위에 기재된 기술 사상의 범주 내에서 다양한 변경 및 실시가 가능할 것이다. Embodiments of the method for generating a laser beam irradiation trajectory of the present invention described above are presented for illustrative purposes only to help understanding of the present invention, and the present invention is not limited thereto, and those skilled in the art to which the present invention pertains. Various modifications and implementations may be made without departing from the spirit and scope of the technical spirit set forth in the appended claims.
본 발명은 반도체 패키지의 제조 공정에서 반도체 패키지의 몰드부에 조사되는 레이저 빔의 조사 궤적을 자동으로 생성하는데 이용될 수 있다. The present invention can be used to automatically generate the irradiation trajectory of the laser beam irradiated to the mold portion of the semiconductor package in the manufacturing process of the semiconductor package.

Claims (12)

  1. 반도체 패키지의 몰드부에 레이저 빔을 나선형 궤적을 따라 조사하여 비아홀을 가공하는 반도체 패키지 가공장치에서 상기 레이저 빔의 조사 궤적을 생성하는 방법에 있어서,In the semiconductor package processing apparatus for processing the via hole by irradiating a laser beam along the spiral trajectory to the mold portion of the semiconductor package, a method for generating the irradiation trajectory of the laser beam,
    (a) 복수개의 나선형 궤적 패턴이 유형별로 저장되어 있는 레이저 빔 조사장치의 콘트롤러에서 상기 나선형 궤적 패턴 유형 중 어느 하나를 선택하는 단계와;(a) selecting one of the spiral trajectory pattern types in a controller of the laser beam irradiation apparatus in which a plurality of spiral trajectory patterns are stored for each type;
    (b) 상기 선택된 나선형 궤적 패턴에 대한 정보를 입력하여 나선형 궤적을 생성하는 단계; 그리고, (b) generating a spiral trajectory by inputting information on the selected spiral trajectory pattern; And,
    (c) 레이저 빔 조사 조건을 입력하는 단계를 포함하여 구성된 레이저 빔 조사 궤적 생성방법.and (c) inputting a laser beam irradiation condition.
  2. 제1항에 있어서, 상기 콘트롤러에 저장되는 나선형 궤적 패턴 유형은, 내측 단부에서부터 외측 단부에 이르기까지 나선형 궤적의 간격(G)이 일정하게 유지되는 등간격 나선 패턴 유형과, 내측 단부에서부터 외측 단부에 이르기까지 나선형 궤적의 간격(G)이 점차적으로 줄어들거나 증가하는 점진적 나선 패턴 유형과, 구간 별로 나선형 궤적의 간격(G)이 다르게 형성되는 단계적 나선 패턴 유형을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The helical trajectory pattern type stored in the controller is an equally spaced helix pattern type in which the spacing G of the helical trajectory is kept constant from the inner end to the outer end, and the inner end to the outer end. Laser beam irradiation trajectory, comprising a progressive spiral pattern type in which the spacing G of the spiral trajectory gradually decreases or increases, and a stepwise spiral pattern type in which the spacing G of the spiral trajectory is formed differently for each section. How to create.
  3. 제1항에 있어서, 상기 (b) 단계에서 입력하는 나선형 궤적 정보는, 나선형 궤적의 방향, 나선형 궤적의 최내곽 궤적의 직경(Is)과, 나선형 궤적의 최외곽 궤적의 직경(Os)과, 나선형 궤적 간의 간격(G) 정보들 중 하나 이상을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 1, wherein the spiral trajectory information input in the step (b) comprises a direction of the spiral trajectory, a diameter Is of the innermost trajectory of the spiral trajectory, a diameter Os of the outermost trajectory of the spiral trajectory, A method of generating a laser beam irradiation trajectory, comprising one or more of the information on the distance between the spiral trajectories.
  4. 제3항에 있어서, 상기 (b) 단계에서 입력하는 나선형 궤적 정보는, 나선형 궤적의 간격 변화량, 나선형 궤적의 최대 간격(Gmax), 나선형 궤적의 최소 간격(Gmin), 구간별 나선형 궤적 간의 간격(G), 반도체 패키지의 솔더볼 패드의 직경에 대한 정보들중 하나 이상을 더 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 3, wherein the spiral trajectory information input in the step (b) comprises: an interval change amount of the spiral trajectory, a maximum distance G max of the spiral trajectory, a minimum interval G min of the spiral trajectory, and a spiral trajectory for each section; A method for generating a laser beam irradiation trajectory further comprising one or more of information about a gap G and a diameter of a solder ball pad of the semiconductor package.
  5. 제3항에 있어서, 상기 (b) 단계에서 입력하는 나선형 궤적 정보는, 나선형 궤적의 최외곽 궤적을 원형으로 연결하는 아우트라인 연결 궤적(OL)의 생성 여부에 대한 정보를 더 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 3, wherein the spiral trajectory information input in the step (b) further includes information on whether to generate an outline connection trajectory OL for circularly connecting the outermost trajectory of the spiral trajectory. Laser beam irradiation trajectory generation method.
  6. 제1항에 있어서, 상기 (c) 단계에서 입력되는 레이저 빔 조사 조건은, 레이저 빔의 조사 속도, 레이저 빔의 강도, 레이저 빔의 조사 횟수에 대한 정보들 중 하나 이상을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 1, wherein the laser beam irradiation condition input in the step (c) comprises one or more of information on the irradiation speed of the laser beam, the intensity of the laser beam, and the number of irradiation of the laser beams. Laser beam irradiation trajectory generation method.
  7. 제1항에 있어서, 상기 (c) 단계에서 레이저 빔 조사 조건을 입력할 때, 레이저 빔이 나선형 궤적의 바깥쪽에서부터 안쪽으로 조사되도록 설정하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 1, wherein when the laser beam irradiation condition is input in the step (c), the laser beam is set to be irradiated inward from the outside of the spiral trajectory.
  8. 반도체 패키지의 몰드부에 레이저 빔을 나선형 궤적을 따라 조사하여 비아홀을 가공하는 반도체 패키지 가공장치에서 상기 레이저 빔의 조사 궤적을 생성하는 방법에 있어서,In the semiconductor package processing apparatus for processing the via hole by irradiating a laser beam along the spiral trajectory to the mold portion of the semiconductor package, a method for generating the irradiation trajectory of the laser beam,
    (a) 구간 별로 나선형 궤적의 간격(G)이 다르게 형성되는 단계적 나선 패턴 유형에 대한 패턴 정보를 입력하여 나선형 궤적을 생성하는 단계; 그리고,(a) generating a spiral trajectory by inputting pattern information on a stepwise spiral pattern type in which the interval G of the spiral trajectory is formed for each section; And,
    (b) 레이저 빔 조사 조건을 입력하는 단계를 포함하여 구성된 레이저 빔 조사 궤적 생성방법.(b) A method for generating a laser beam irradiation trajectory comprising inputting a laser beam irradiation condition.
  9. 제8항에 있어서, 상기 (a) 단계에서 입력하는 나선형 궤적 정보는, 나선형 궤적의 방향과, 나선형 궤적의 최내곽 궤적의 직경(Is), 나선형 궤적의 최외곽 궤적의 직경(Os), 구간별 나선형 궤적 간의 간격(G), 구간별 나선형 궤적의 간격 변화량, 구간별 나선형 궤적의 최대 간격(Gmax), 구간별 나선형 궤적의 최소 간격(Gmin), 반도체 패키지의 솔더볼 패드의 직경 정보들중 하나 이상을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 8, wherein the spiral trajectory information input in the step (a) comprises a direction of the spiral trajectory, a diameter Is of the innermost trajectory of the spiral trajectory, a diameter Os of the outermost trajectory of the spiral trajectory, and a section. Gap between each spiral trajectory (G), interval variation of the spiral trajectory per section, maximum distance (G max ) of the spiral trajectory per section, minimum distance (G min ) of the spiral trajectory per section, diameter information of the solder ball pads of the semiconductor package Laser beam irradiation trajectory generation method comprising at least one of.
  10. 제9항에 있어서, 상기 (a) 단계에서 입력하는 나선형 궤적 정보는, 나선형 궤적의 최외곽 궤적을 원형으로 연결하는 아우트라인 연결 궤적(OL)의 생성 여부에 대한 정보를 더 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.10. The method of claim 9, wherein the spiral trajectory information input in the step (a) further comprises information on whether to generate an outline connection trajectory OL for circularly connecting the outermost trajectory of the spiral trajectory. Laser beam irradiation trajectory generation method.
  11. 제8항에 있어서, 상기 (b) 단계에서 입력되는 레이저 빔 조사 조건은, 레이저 빔의 조사 속도, 레이저 빔의 강도, 레이저 빔의 조사 횟수에 대한 정보들 중 하나 이상을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 8, wherein the laser beam irradiation condition input in the step (b) comprises at least one of information on the irradiation speed of the laser beam, the intensity of the laser beam, the number of irradiation of the laser beam. Laser beam irradiation trajectory generation method.
  12. 제8항에 있어서, 상기 (b) 단계에서 레이저 빔 조사 조건을 입력할 때, 레이저 빔이 나선형 궤적의 바깥쪽에서부터 안쪽으로 조사되도록 설정하는 것을 특징으로 하는 레이저 빔 중 하나 이상을 포함하는 것을 특징으로 하는 레이저 빔 조사 궤적 생성방법.The method of claim 8, wherein when the laser beam irradiation condition is input in the step (b), the laser beam includes one or more of the laser beams, wherein the laser beam is set to be irradiated inward from the outside of the spiral trajectory. Laser beam irradiation trajectory generation method.
PCT/KR2010/000707 2009-02-23 2010-02-05 Method for generating laser beam irradiation trajectory WO2010095826A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800051234A CN102292797A (en) 2009-02-23 2010-02-05 Method for generating laser beam irradiation trajectory

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0014698 2009-02-23
KR1020090014698A KR101179983B1 (en) 2009-02-23 2009-02-23 Method for Generating Laser Beam Radiation Trajectories for Processing Semiconductor Packages

Publications (2)

Publication Number Publication Date
WO2010095826A2 true WO2010095826A2 (en) 2010-08-26
WO2010095826A3 WO2010095826A3 (en) 2010-11-18

Family

ID=42634302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000707 WO2010095826A2 (en) 2009-02-23 2010-02-05 Method for generating laser beam irradiation trajectory

Country Status (4)

Country Link
KR (1) KR101179983B1 (en)
CN (2) CN102292797A (en)
TW (2) TWI429496B (en)
WO (1) WO2010095826A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502468A (en) * 2012-12-04 2016-01-28 エワーグ アーゲー Laser machining apparatus and method of machining a workpiece using the laser machining apparatus

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105108338B (en) * 2015-09-30 2017-03-22 深圳市联赢激光股份有限公司 Method for controlling laser welding
CN108406141A (en) * 2018-04-18 2018-08-17 中国科学院西安光学精密机械研究所 Ultrafast laser capillary processing method and device based on optical coherence tomography scanning
CN110153555A (en) * 2019-06-18 2019-08-23 西安中科微精光子制造科技有限公司 Laser machine control method, device and the electronic equipment of rotary-cut scanning track
CN110385521B (en) * 2019-08-29 2021-03-16 西安交通大学 Femtosecond laser processing device and method for silicon carbide rapid deep etching
KR102410304B1 (en) * 2020-05-27 2022-06-17 최지훈 The chip-rework apparatus
KR20220046364A (en) 2020-10-07 2022-04-14 한미반도체 주식회사 Laser processing method of semiconductor package

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035022A (en) * 1999-07-21 2001-02-09 Sony Corp Method and device for manufacturing optical information recording medium
KR20060126010A (en) * 2005-06-03 2006-12-07 가부시끼가이샤 인테그레이티드 솔루션즈 Apparatus for and method of exposure patterns
KR100835482B1 (en) * 2007-05-11 2008-06-04 동부일렉트로닉스 주식회사 Semiconductor device topology measuring method using atomic force microscope

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5788178A (en) * 1995-06-08 1998-08-04 Barrett, Jr.; Rolin F. Guided bullet
CN1139983C (en) * 2000-11-17 2004-02-25 矽品精密工业股份有限公司 Wafer-covered solder pad on package base board of integrated circuit
JP4062976B2 (en) * 2002-05-31 2008-03-19 ヤマハ株式会社 Image forming apparatus and image forming method for optical disc
CN1882408A (en) * 2003-10-24 2006-12-20 电子科学工业公司 Laser processing of a locally heated target material
US8004069B2 (en) * 2005-12-21 2011-08-23 Freescale Semiconductor, Inc. Lead frame based semiconductor package and a method of manufacturing the same
JP2007268576A (en) * 2006-03-31 2007-10-18 Hitachi Via Mechanics Ltd Laser beam machining method
KR100792352B1 (en) * 2006-07-06 2008-01-08 삼성전기주식회사 Bottom substrate of pop and manufacturing method thereof
CN101320696A (en) * 2007-06-04 2008-12-10 矽品精密工业股份有限公司 Stack type packaging structure and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001035022A (en) * 1999-07-21 2001-02-09 Sony Corp Method and device for manufacturing optical information recording medium
KR20060126010A (en) * 2005-06-03 2006-12-07 가부시끼가이샤 인테그레이티드 솔루션즈 Apparatus for and method of exposure patterns
KR100835482B1 (en) * 2007-05-11 2008-06-04 동부일렉트로닉스 주식회사 Semiconductor device topology measuring method using atomic force microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016502468A (en) * 2012-12-04 2016-01-28 エワーグ アーゲー Laser machining apparatus and method of machining a workpiece using the laser machining apparatus
EP2928635B1 (en) 2012-12-04 2017-02-22 Ewag AG Laser machining device and method for machining a workpiece by using a laser machining device
US9770784B2 (en) 2012-12-04 2017-09-26 Ewag Ag Laser machining device and method for machining a workpiece by using a laser machining device

Also Published As

Publication number Publication date
WO2010095826A3 (en) 2010-11-18
CN102292797A (en) 2011-12-21
KR20100095735A (en) 2010-09-01
KR101179983B1 (en) 2012-09-07
CN102728957A (en) 2012-10-17
TW201032933A (en) 2010-09-16
TW201244862A (en) 2012-11-16
CN102728957B (en) 2015-09-16
TWI429496B (en) 2014-03-11
TWI477341B (en) 2015-03-21

Similar Documents

Publication Publication Date Title
WO2010095826A2 (en) Method for generating laser beam irradiation trajectory
TWI795532B (en) Embedded multi-die interconnect bridge package, semiconductor device package, method of operating an embedded multi-die interconnect bridge apparatus, and computing system
KR101652890B1 (en) Logic die and other components embedded in build-up layers
JP5865642B2 (en) Semiconductor device, chip ID assigning method and setting method thereof
US20140138130A1 (en) Substrate structure having component-disposing area and manufacturing process thereof
CN100428251C (en) Method for designing chip package by re-using existing mask designs
WO2010110233A1 (en) Semiconductor wafer and semiconductor device manufacturing method
US20150145121A1 (en) Thin embedded packages, methods of fabricating the same, electronic systems including the same, and memory cards including the same
US20140367851A1 (en) Embedded packages, methods of fabricating the same, electronic systems including the same, and memory cards including the same
US9437492B2 (en) Substrate for alternative semiconductor die configurations
US11450633B2 (en) Package structure of semiconductor device with improved bonding between the substrates
KR101236999B1 (en) Laser processing method for manufacturing semiconductor packages
KR101061909B1 (en) Laser Processing Method of Semiconductor Package
Qin et al. Wire bonding looping solutions for advanced high pin count devices
KR20110122810A (en) Method for processing semiconductor packages
KR20120064066A (en) Method for processing semiconductor packages
US20090267208A1 (en) Semiconductor package having chip selection through electrodes and stacked semiconductor package having the same
KR20150037166A (en) Semiconductor apparatus and generating chip id of the same
KR101332775B1 (en) Method for wafer alignment using X-ray inspection
KR20110094255A (en) Laser processing method for manufacturing semiconductor packages
US11864329B2 (en) Packaging structure with embedded electronic components and method for manufacturing the same
JP4786756B1 (en) Semiconductor device
US9351409B2 (en) Method of manufacturing a thin support package structure
JP2010129716A (en) Semiconductor device and connection checking method for semiconductor device
US20220102055A1 (en) Stepped coax mil pths for modulating inductance within a package

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005123.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743901

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743901

Country of ref document: EP

Kind code of ref document: A2