WO2010095652A1 - Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition - Google Patents

Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition Download PDF

Info

Publication number
WO2010095652A1
WO2010095652A1 PCT/JP2010/052356 JP2010052356W WO2010095652A1 WO 2010095652 A1 WO2010095652 A1 WO 2010095652A1 JP 2010052356 W JP2010052356 W JP 2010052356W WO 2010095652 A1 WO2010095652 A1 WO 2010095652A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
group
conductive polymer
polymer composition
Prior art date
Application number
PCT/JP2010/052356
Other languages
French (fr)
Japanese (ja)
Inventor
文明 小林
岡本 秀二
目黒 晃
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2011500630A priority Critical patent/JP5869881B2/en
Publication of WO2010095652A1 publication Critical patent/WO2010095652A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition, and more specifically, an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic system.
  • the present invention relates to the use of dye sensitized solar electrodes and antistatic films.
  • Doping with a dopant is essential for imparting high conductivity in a ⁇ -conjugated polymer.
  • a polymer in which ⁇ conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of ⁇ bond.
  • the ⁇ -conjugated polymer doped with the dopant has higher planarity and higher affinity due to ⁇ -conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the ⁇ -conjugated polymer and the electrical conductivity.
  • Patent Document 1 a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a ⁇ -conjugated polymer has been proposed.
  • Patent Document 1 a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a ⁇ -conjugated polymer.
  • doping is necessary. When this doping is performed, as a result, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of ⁇ -conjugate affinity.
  • the substrate in the electropolymerization, the substrate needs to be a semiconductor or a conductor, and corrosion resistance to an electrolytic solution is also required, so that the substrate to be used is limited.
  • fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
  • Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent.
  • 3 discloses a water-dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P.
  • Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water.
  • Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
  • Patent Document 4 polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent.
  • a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level.
  • the surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
  • aniline or an aniline derivative is precipitated, isolated and purified by oxidative polymerization in a solvent containing an organic acid or an inorganic acid in the presence of a hydrophobic anionic surfactant. Later, it is disclosed that an organic solution is formed by extraction with an organic solvent immiscible with water.
  • the emulsifier used in this patent document is a low-molecular sulfonic acid type, and aniline is subjected to hydrochloric acid chloride before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier.
  • polyaniline obtained by the synthesis method of this patent document does not actually dissolve in a solvent, and only a finely dispersed solvent dispersion can be obtained.
  • the surfactant used has increased hydrophobicity, the resulting polyaniline does not exhibit solubility or stable fine dispersion in polar solvents such as alcohols and ketones having strong hydrogen bonding properties. For polar solvents, it promotes the crystallinity of polyaniline.
  • Patent Document 6 a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer composed of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
  • Patent Document 7 includes (a) a protonated substituted or unsubstituted polyaniline complex, and (b) a compound having a phenolic hydroxyl group, which is dissolved in an organic solvent that is substantially immiscible with water.
  • a conductive polyaniline composition is disclosed.
  • non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene. It is thought that phenols suppress the stack of polyaniline in solution, and in the absence of these additives, it is impossible to stabilize the solubility sufficiently by controlling the crystallinity of polyaniline with steric hindrance like AOT Furthermore, in an alcohol or ketone solvent, the polyaniline and the phenolic compound are rather localized, so that they are finely agglomerated and finally completely separated and settled from the solvent. These have also been confirmed in the supplementary test by the present inventors.
  • Patent Document 5 discloses that polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonic acid, and a molecular weight of 2,000 to A solution of polythiophene comprising 500,000 polyanion derived from polystyrene sulfonic acid in water or a mixture of water and a water miscible organic solvent is disclosed.
  • This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent.
  • PEDOT poly(ethylene dioxide substituted thiophene)
  • PSS polystyrene sulfonic acid
  • the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough.
  • polystyrene sulfonic acid used can exhibit compatibility with water and polar solvents having ion dissociation ability, but in order to control the crystallinity of polythiophene, only the structure of polystyrene sulfonic acid can be used. It is extremely difficult, and furthermore, it is extremely difficult to dissolve ketones substantially free of moisture unless a skeleton having solubility and compatibility is attached.
  • Patent Document 9 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
  • a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer.
  • the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance.
  • Patent Document 10 discloses an antistatic film obtained by applying an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol to a thermoplastic resin film.
  • the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
  • the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or molded body that does not cause pinholes alone, a method for producing the same, and the like. It is an issue.
  • the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a ⁇ -conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a ⁇ -conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
  • the present invention provides the following components (a-1) to (a-3) (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol% (A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol% (A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol%
  • the polymer compounds obtained by polymerizing are represented by the following formulas (I) to (III) (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
  • a composite conductive polymer composition obtained by doping a ⁇ -conjugated polymer ( ⁇ ) having a monomer component as a monomer constituent.
  • the present invention also provides the following components (a-1) to (a-3) (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol% (A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol% (A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol% Characterized by coexisting a polymer compound obtained by polymerizing the compound and a compound selected from the formulas (I) to (III) in an electrolytic substrate solvent and performing chemical oxidative polymerization using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
  • the present invention is a composite conductive polymer composition solution containing the composite conductive polymer composition in an dissolved state in an amount of 0.1 to 10% by mass in an alcohol solvent and a ketone solvent. .
  • the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
  • the present invention is an antistatic film using the composite conductive polymer composition.
  • the composite conductive polymer obtained by polymerization by the action of an oxidizing agent in the presence of the polymer compound of the present invention is stably dissolved in an alcoholic or ketone solvent.
  • the polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group in the component (a-1), a hydrophilic group in the component (a-2) and a polymerizable vinyl according to a conventional method. It is produced by polymerizing a polar monomer having a group and a monomer having an aromatic group or alicyclic group of component (a-3) and a polymerizable vinyl group in the presence of a polymerization initiator.
  • the monomer having a sulfonic acid group and a polymerizable vinyl group as the component (a-1) is a monomer having a sulfonic acid group such as a styrene sulfonic acid group or a sulfoethyl group. Examples thereof include styrene sulfonic acid and styrene sulfone.
  • Styrene sulfonates such as sodium acrylate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium acrylate), ethyl (meth) acrylate 2 -Ethyl (meth) acrylate 2-sulfonates such as potassium sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, etc.
  • the polar monomer having a hydrophilic group and a polymerizable vinyl group as the component (a-2) is dissolved in distilled water having a pH of 7.0 at room temperature at 0.1 mmol / l, and the pH of the solution is reduced.
  • Specific examples thereof include acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinate.
  • examples of the monomer (a-3) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2 -Methyl phthalate, ethyl (meth) acrylate 2-ethyl phthalate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate , T-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinylnaphthalene, N-vinylcarbazole
  • the molar ratio of the monomer (a-1), the monomer (a-2) and the monomer (a-3) is important. That is, the polymer compound of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group and the hydrophilic group, This is because it can be dissolved in a solvent.
  • the amount of component (a-1) for producing the polymer compound (A) of the present invention is 20 to 60 mol%, preferably 25 to 50 mol%.
  • the amount of component (a-2) is 20 to 60 mol%, preferably 25 to 55 mol%.
  • the amount of component (a-3) is 20 to 35 mol%, preferably 25 to 30 mol%.
  • the polymer compound of the present invention may contain a polymerizable component other than the monomers (a-1), (a-2) and (a-3).
  • the polymerizable component include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) Acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrafurfuryl (meth) Examples thereof include acrylate, N, N-dimethylaminoethyl methacrylate, vinyl pyridine, (meth)
  • the polymerization reaction of the component (a-1), the component (a-2), the component (a-3) and the polymerizable component added as necessary can be carried out by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
  • the polymerization method that can be employed for producing the polymer compound (A) is not particularly limited as long as it is a method that can be carried out in a state where the component (a-3) is not separated from the monomer mixture.
  • a polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
  • the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction.
  • this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA).
  • water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used.
  • redox agents such as ferrocene and amines are possible.
  • polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol with respect to 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. .
  • a polymerization method using a combination of mercaptan and metallocene is also possible.
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • methyl cellosolve ethyl cellosolve
  • propylene glycol methyl ether propylene
  • glycol solvents such as glycol ethyl ether
  • lactic acid solvents such as methyl lactate and ethyl lactate.
  • a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight.
  • the chain transfer agent that can be used any compound can be used as long as it is soluble in the above-mentioned monomers and solvents.
  • polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA).
  • a water-soluble thiol having a group, an oily radical inhibitor such as ⁇ -styrene dimer (ASD), and the like can be used as appropriate.
  • this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable.
  • it is preferably performed at 25 ° C. to 80 ° C.
  • the polymer thus obtained can be purified as necessary to obtain a polymer compound (A).
  • this purification method simply remove the conductive polymer polymer deposited in the polymerization solvent, wash it several times with ion-exchanged water to remove aqueous impurities, and then use an oily poor solvent such as hexane, Examples thereof include a method for removing oily low-molecular impurities, residual monomers, and low-molecular impurities.
  • the ion dissociation constant of the polymerization medium is adjusted by adding an ion dissociable aqueous solvent such as acetonitrile to the polymerization field, or the addition of saturated saline or the like.
  • the conductive polymer is precipitated from the polymerization solvent after completion of polymerization by increasing the ion concentration in the polymerization solvent or adjusting the pH of the polymerization medium by adding a proton-releasing acidic aqueous solution such as hydrochloric acid water.
  • a method of removing oily low-molecular impurities, residual monomers, and low-molecular impurities by adding an oily poor solvent such as hexane to the solution and then performing liquid separation extraction, and then removing water-based impurities and residuals with ion-exchanged water may be mentioned. it can.
  • the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
  • the polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 150,000.
  • the weight average molecular weight is less than 3,000, the function as a polymer compound is insufficient.
  • the solubility in the polymerization field (acidic aqueous solution) during synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer compound itself will deteriorate, and the conductive polymer may be used. May significantly affect solubilization.
  • the composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the ⁇ -conjugated polymer ( ⁇ ), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the ⁇ -conjugated polymer ( ⁇ ) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
  • the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group.
  • this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline.
  • the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
  • the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
  • ion-exchanged water as an electrolytic substrate solvent is acidified as necessary, and then, as described above, The polymer compound (A) thus obtained is added, and then one or more of the compounds of the formulas (I) to (III) as raw materials are added thereto, and an oxidant is further added for oxidative polymerization.
  • an oxidant is further added for oxidative polymerization.
  • a ketone solvent such as acetone or methyl ethyl ketone
  • an alcohol solvent such as methanol, ethanol or isopropyl alcohol
  • a highly hydrophilic organic solvent such as acetonitrile
  • Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like.
  • the amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
  • the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition.
  • ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate
  • copper (II) hexafluorophosphate can be used.
  • the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply.
  • an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
  • the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
  • the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system. Can be sufficiently polymerized even if it is less than 1 mole per mole of monomer.
  • the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III)
  • the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
  • the temperature is preferably 40 ° C. or lower
  • the compound (II) is preferably 90 ° C. or lower
  • the compound (III) is preferably 20 ° C. or lower.
  • the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
  • the polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As will be described later, this is one that dissolves stably in an alcohol-based or ketone-based solvent in which a conventional conductive polymer composition has not dissolved.
  • Examples of the method of using the composite conductive polymer composition of the present invention thus obtained include a composite conductive polymer composition solution obtained by dissolving the composite conductive polymer composition in an alcohol-based or ketone-based solvent in a homogeneous state. be able to.
  • This composite conductive polymer composition solution is applied to a portion where the formation of a conductive film is required, and then the solvent in the composition is volatilized by means such as drying, whereby a uniform conductive property is applied to the target portion.
  • An adhesive film can be formed.
  • the composite conductive polymer composition is made of an alcohol solvent such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, propylene glycol monomethyl ether acetate, acetone, Dissolved in a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone at about 0.1 to 10% by mass.
  • an alcohol solvent such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, propylene glycol monomethyl ether acetate, acetone
  • Dissolved in a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone at about 0.1 to 10% by mass.
  • the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state.
  • Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol, 2,6-dimethylphenol can be added. These compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
  • the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells.
  • Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion
  • the body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
  • the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell.
  • the counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested
  • the thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m.
  • a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used.
  • transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin.
  • metal foil metal foil, such as gold
  • the thickness of these transparent substrates is usually in the range of 200 to 7000 ⁇ m in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 ⁇ m, preferably in the range of 20 to 2000 ⁇ m in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 500 ⁇ m.
  • the polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
  • a transparent electrode as needed to one side of the said transparent substrate.
  • the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
  • the film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like.
  • This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate. ⁇
  • the thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 ⁇ m, preferably 0.01 to 0.5 ⁇ m.
  • the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape.
  • the mesh-like conductive metal electrode has a line width of usually 10 to 70 ⁇ m, preferably 10 to 20 ⁇ m, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 ⁇ m, preferably 50 to 200 ⁇ m.
  • the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 ⁇ m, preferably 8 to 15 ⁇ m.
  • This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
  • the counter electrode for dye-sensitized solar cell as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
  • a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
  • the solvent can be removed by a method such as natural drying by standing or forced drying under heating with hot air or infrared rays.
  • the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
  • the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range.
  • the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range.
  • the counter electrode for the dye-sensitized solar cell has a conductive polymer film as a uniform oxidation resistant film, compared to an expensive platinum electrode that has been used as an electrode having resistance to oxidation with respect to an electrolytic solution. Since various metals can be used by acting, it can be provided at a low price.
  • the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
  • thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated.
  • examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
  • thermosetting resin used in the antistatic film of the present invention examples include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluororesin, and alkyd resin.
  • the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
  • the total amount of the obtained polymer solution (A-1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added with stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities.
  • the solution on the water layer side was dried at 100 ° C. for 24 hours using a dryer.
  • the obtained solid was dried under reduced pressure at 100 ° C. for 24 hours, and then pulverized in a mortar to obtain a polymer compound powder (AP-1).
  • Synthesis Examples 2 to 5 and Comparative Synthesis Examples 6 to 9 Polymer compounds (AP-2 to 9) were obtained in the same manner as in Synthesis Example 1 using the monomers shown in Table 1.
  • Table 1 shows the solubility of the obtained polymer compounds (AP-2 to 9) in Mw and water.
  • Example 1 Polyaniline polymerization and purification: In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 10.9 g of the polymer compound (AP-1) obtained in Synthesis Example 1 and ions 100 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, then heated to 60 ° C. and stirred for 3 hours to obtain a uniform aqueous emulsifier solution. Further, 100 g of 25 ° C. saturated saline was added to this aqueous emulsifier solution, and the mixture was stirred at 60 ° C. for 1 hour, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
  • AP-1 polymer compound obtained in Synthesis Example 1
  • ions 100 g of exchange water and 6 g of 35% hydrochloric acid aque
  • the polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again.
  • a solid containing water obtained by repeating the washing four times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a composite conductive polymer composition (E-1).
  • the volatile content of this conductive polymer composition was measured and found to be 2% or less.
  • the volatile content was obtained from the weight loss rate before and after the conductive polymer composition was put into a 105 ° C. hot air circulation dryer for 3 hours (hereinafter the same).
  • the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 200 k ⁇ / ⁇ .
  • Example 2 Polypyrrole polymerization and purification: In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 10.6 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, then heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
  • AP-2 polymer compound obtained in Synthesis Example 2
  • ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, then heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C.
  • the emulsifier solution in the flask was uniform.
  • the composite conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m, and dried to obtain a black uniform coating film. It was.
  • the surface resistance value of the coating film was 60 k ⁇ / ⁇ .
  • Example 3 Polythiophene polymerization and purification: In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 11.6 g of the polymer compound (AP-3) obtained in Synthesis Example 3 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
  • AP-3 polymer compound obtained in Synthesis Example 3
  • ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C.
  • the emulsifier solution in the flask was uniform.
  • the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m, and dried to obtain a black-green uniform coating film. It was.
  • the surface resistance value of the coating film was 30 k ⁇ / ⁇ .
  • Example 4 Polyaniline polymerization and purification: In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 13.3 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
  • AP-2 polymer compound obtained in Synthesis Example 2
  • ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C.
  • the emulsifier solution in the flask was uniform.
  • the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 300 k ⁇ / ⁇ .
  • Example 5 Polyaniline polymerization and purification: A composite conductive polymer composition (E-5) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 14.6 g of the polymer compound (AP-4). It was. When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
  • the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 550 k ⁇ / ⁇ .
  • Example 6 Polyaniline polymerization and purification: A composite conductive polymer composition (E-6) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 13.7 g of the polymer compound (AP-5). It was. When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
  • the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 150 k ⁇ / ⁇ .
  • Comparative Example 1 Polyaniline polymerization and purification: A conductive polymer composition (EC-1) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 37.9 g of the polymer compound (AP-6). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green non-uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 8 M ⁇ / ⁇ .
  • Comparative Example 2 Polyaniline polymerization and purification: A conductive polymer composition (EC-2) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 15.4 g of the polymer compound (AP-7). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green non-uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 1 M ⁇ / ⁇ .
  • Comparative Example 3 Polyaniline polymerization and purification: A conductive polymer composition (EC-3) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 7.2 g of the polymer compound (AP-8). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green non-uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 5 M ⁇ / ⁇ .
  • a conductive polymer composition (EC-4) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 5.15 g of the polymer compound (AP-9). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, and a green non-uniform coating film was obtained. It was.
  • the surface resistance value of the coating film was 12 M ⁇ / ⁇ .
  • Comparative Example 5 Polyaniline polymerization and purification: The conductive polymer composition was the same as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 20.6 g of the polymer compound (AP-9) and 6 g of 35% aqueous hydrochloric acid solution was changed to 10 g. A product (EC-5) was obtained. When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, whereby a uniform green coating film was obtained. .
  • the surface resistance value of the coating film was 3 M ⁇ / ⁇ .
  • Comparative Example 6 Polypyrrole polymerization and purification: In a four-necked flask with a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 10.6 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
  • AP-2 polymer compound obtained in Synthesis Example 2
  • ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C.
  • the emulsifier solution in the flask was uniform.
  • the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 ⁇ m and dried, whereby a black coating film with unevenness was obtained. .
  • the surface resistance value of the coating film was 20 M ⁇ / ⁇ or more. Moreover, when the surface of the coating film was rubbed with a finger, the powdery material was peeled off.
  • Comparative Example 7 Polythiophene polymerization and purification: A conductive polymer composition (EC-7) was obtained in the same manner as in Example 3, except that 11.6 g of the polymer compound (AP-3) was changed to 4.3 g of the polymer compound (AP-8). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
  • the conductive polymer composition solution was applied onto a glass substrate with a doctor blade so that the thickness after drying was 10 ⁇ m, and dried to obtain a black-green non-uniform coating film. It was.
  • the surface resistance value of the coating film was 2 M ⁇ / ⁇ .
  • Examples 7 to 13 and Comparative Examples 8 to 10 The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 ⁇ m thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 ⁇ m using a doctor blade It replaced with what was coated on the board
  • the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
  • Examples 14 to 15 and Comparative Examples 11 to 12 The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 ⁇ m and a PET film substrate having a thickness of 1000 ⁇ m under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
  • Dektak 6M manufactured by ULVAC
  • the composite conductive polymer composition of the present invention uses a polymer compound (A) having as a main component a polar monomer having a hydrophilic group and a polymerizable vinyl group as a dopant, and is based on alcohol or ketone. This makes it possible to stably solubilize in a solvent.
  • the composite conductive polymer composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an alcohol-based or ketone-based solvent in a transparent state can be easily applied to a portion requiring electrical conductivity.
  • a conductive film can be formed, and can be used very advantageously in the field of electronic components and the like.
  • a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Abstract

Disclosed is a composite conductive polymer composition which is obtained by doping a π-conjugated polymer (β) that contains, as a monomer constituting component, a compound which is selected from among (I) an aniline compound that has a hydrogen atom or an alkyl group as a substituent, (II) a thiophene compound that has a hydrogen atom or an alkyl group as a substituent, and (III) a pyrrole compound that has a hydrogen atom or an alkyl group as a substituent, with a polymer compound (A) that is composed of (a-1) a monomer having a sulfonic acid group and a polymerizable vinyl group, (a-2) a polar monomer having a hydrophilic group and a polymerizable vinyl group, and (a-3) a monomer having an aromatic group or an alicyclic group and a polymerizable vinyl group.

Description

複合導電性高分子組成物、その製法、当該組成物を含有する溶液、および当該組成物の用途Composite conductive polymer composition, process for producing the same, solution containing the composition, and use of the composition
 本発明は、複合導電性高分子組成物、その製法、当該組成物を含有する溶液、および当該組成物の用途に関し、更に詳細には、アニリン、チオフェン、ピロール等の芳香族系、複素環系化合物をモノマー構成成分とするπ共役系高分子に溶剤可溶性を付与するために、高分子化合物をドーピングした複合導電性高分子組成物、その製法、当該組成物を含有する溶液、および当該組成物の色素増感型太陽電気用電極や帯電防止フィルムなどへの利用に関する。 The present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition, and more specifically, an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic system. COMPOSITE CONDUCTIVE POLYMER COMPOSITION DOPED WITH POLYMER COMPOUND FOR PRODUCING SOLVENT SOLUTION TO π CONJUGATED POLYMER CONTAINING COMPOUND AS MONOMER COMPONENT, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION The present invention relates to the use of dye sensitized solar electrodes and antistatic films.
 π共役系高分子における高い導電性付与にはドーパントによるドーピングが必須である。しかし、本来π共役が発達した高分子は、高分子鎖の平面性が高く、π結合の親和力による高分子鎖間の結晶性(スタッキング性)が高い構造となっている。しかも、ドーパントにより、ドーピングされたπ共役系高分子は、更に平面性およびπ共役による親和力が高くなり、スタッキング性が更に顕著となる。このため、π共役系高分子の溶解(熱または溶剤による)と電気伝導度の両立は難しい課題であった。 Doping with a dopant is essential for imparting high conductivity in a π-conjugated polymer. However, a polymer in which π conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of π bond. Moreover, the π-conjugated polymer doped with the dopant has higher planarity and higher affinity due to π-conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the π-conjugated polymer and the electrical conductivity.
 そこで、π共役系高分子の側鎖へアルキル基やアルコキシル基等を導入した高分子が提案されているが(特許文献1)、実際に十分導電体と言える10のマイナス5乗s・m以下まで電気伝導度を上げるためには、ドーピングが必要となる。そして、このドーピングを行うと、この結果として、導電性高分子の平面性発達とπ共役親和性の発達により、十分な溶剤可溶性が得られなくなってしまうという問題があった。 Thus, a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a π-conjugated polymer has been proposed (Patent Document 1). In order to increase the electrical conductivity up to, doping is necessary. When this doping is performed, as a result, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of π-conjugate affinity.
 導電性高分子の利用を考えた場合、取り扱いの容易さからは、溶剤による溶解や、熱による溶融が可能で、且つ成型成膜後は十分な電気伝導度を有する自立膜や自立形成体が得られることが望まれており、従来、これら導電性ポリマーの使用の際には、直接導電性を付与したい基体上で電解重合や蒸気暴露、酸化剤と導電性ポリマー前躯体モノマー溶液に浸漬後加熱等による薄膜重合を行い、その後ドーピングする等の処理を行っている。 When considering the use of conductive polymers, from the viewpoint of ease of handling, it is possible to use a self-supporting film or a self-supporting body that can be dissolved by a solvent or melted by heat, and has sufficient electrical conductivity after molding. In the past, when using these conductive polymers, it is desired to obtain direct conductivity after electrolytic polymerization or vapor exposure, after immersion in an oxidizer and conductive polymer precursor monomer solution. Thin film polymerization by heating or the like is performed, and then doping or the like is performed.
 しかしこの場合、電解重合では基体が半導体若しくは導電体である必要が有り、また、電解液への耐腐食性も求められる為、使用される基体が制限される。また、直接蒸気による薄膜重合では、重合場となる薄膜に酸化剤を均質に存在させる必要があり、成膜制御の面では十分と言えず、また、これら手法で用いられるポリマーコンデンサー用途では、表面積を大きくする為に微細な凹凸を形成しており、十分均質な表面への導電性ポリマー形成は困難であった。 However, in this case, in the electropolymerization, the substrate needs to be a semiconductor or a conductor, and corrosion resistance to an electrolytic solution is also required, so that the substrate to be used is limited. In addition, in thin film polymerization using direct vapor, it is necessary to make the oxidant homogeneously present in the thin film that becomes the polymerization field, which is not sufficient in terms of film formation control. In order to increase the thickness, fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
 そこで、導電性ポリマーを有機溶媒に溶解させる試みがなされ、そのための手段がいくつか提案されている。特許文献2には、3,4-ジ置換チオフェンを無機第2鉄塩類および酸化剤を用いて重合させるポリ(3,4ージ置換チオフェン)の製造法が開示されており、また、特許文献3には、主に繰り返しチオフェン単位を有するポリマーTおよび少なくとも1個の他のポリアニオンポリマーPを有する水分散性粉末が開示されている。しかし、特許文献2の方法は、粉末物を得る手法若しくは直接対象被着体表面で酸化重合する方法であって、本手法では得られた重合物を溶剤若しくは水等へ溶解させることは不可能であり、また特許文献3のものも、水分散性良好な分散体でしかなく、有機溶剤に対し分子可溶するようなものではない。 Therefore, attempts have been made to dissolve the conductive polymer in an organic solvent, and several means for that purpose have been proposed. Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent. 3 discloses a water-dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P. However, the method of Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water. Also, the one of Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
 また、より直接的な溶剤ナノ分散化の手段として各種検討がされており、特許文献4では、本質的に溶剤に可溶しないポリアニリンを、ナノサイズレベルまで粉砕微粉化しポリアニリンおよび溶剤に親和性の高いSDS(ドデシルベンゼンスルホン酸)やPTS(パラトルエンスルホン酸)等のスルホン酸アニオン乳化剤を分散剤として用いながら溶剤に共分散させ、ナノレベルでの微分散体溶液の提供を開示しているが、実質的に溶剤に可溶している訳ではないので、塗工膜の表面は凸凹としており、また、ポリアニリンのみでの自立膜(均質膜ともいう。単独でピンホールなどを生じずに膜化したものを意味する)とすることは出来ないため、バインダーなどと組み合わせない限りコーティング後に成膜化させることは不可能である。 Further, various studies have been made as a more direct means for solvent nanodispersion. In Patent Document 4, polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent. Although a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level. The surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
 更に、特許文献5には、疎水性の大きなアニオン性界面活性剤の存在下において、アニリン、もしくはアニリン誘導体を、有機酸や無機酸を含む溶媒中で酸化重合して析出、単離、精製した後、水と混和しない有機溶媒で抽出して有機溶液を形成することが開示されている。 Furthermore, in Patent Document 5, aniline or an aniline derivative is precipitated, isolated and purified by oxidative polymerization in a solvent containing an organic acid or an inorganic acid in the presence of a hydrophobic anionic surfactant. Later, it is disclosed that an organic solution is formed by extraction with an organic solvent immiscible with water.
 この特許文献で使用されている乳化剤は低分子スルホン酸系であり、重合前にアニリンを塩酸塩化し、その後スルホン酸系乳化剤によりアニリン塩置換を行っているが、実際には十分な塩交換は起こり難く、また、本特許文献の合成法により得られるポリアニリンは実際には溶剤に溶解せず、微分散状態の溶剤分散液しか得られないという問題がある。更には、用いる界面活性剤の疎水性を大きくしている為に、得られたポリアニリンは、水素結合性の強いアルコールやケトン類の極性溶媒に対して溶解や安定な微分散を示さず、これら極性溶剤類に対してはポリアニリンの結晶性を促進させてしまう。 The emulsifier used in this patent document is a low-molecular sulfonic acid type, and aniline is subjected to hydrochloric acid chloride before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier. In addition, polyaniline obtained by the synthesis method of this patent document does not actually dissolve in a solvent, and only a finely dispersed solvent dispersion can be obtained. Furthermore, since the surfactant used has increased hydrophobicity, the resulting polyaniline does not exhibit solubility or stable fine dispersion in polar solvents such as alcohols and ketones having strong hydrogen bonding properties. For polar solvents, it promotes the crystallinity of polyaniline.
 また更に特許文献6では、(A)スルホン酸官能基とラジカル重合性官能基とを有するモノマーおよび(B)アニリンまたはその誘導体からなるモノマーを水もしくは有機溶剤に溶解した溶液を乳化し、(B)のモノマー中に(A)のモノマーに由来するスルホン酸構造を導入した後、重合開始剤下記の共存下に(A)および(B)のモノマーを重合して、(B)の重合体と(A)の重合体とが絡み合った状態の導電性ポリマーを作製する方法が開示されている。 Furthermore, in Patent Document 6, a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer composed of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
 しかし、この特許文献の方法では、水系酸化剤兼ラジカル開始剤として過硫酸アンモニウム塩を使用している為、実際には本明細に書かれているような理想的なビニル系ポリマーとポリアニリンの相互網目状構造は困難である。従って、この特許文献方法では、実際には、PANIを含まないビニルポリマーが相当数存在したり、逆にビニルポリマーに取り込まれないドープモノマーがPANI中で存在したりして、非常に不均一且つ不安定な物となるという問題がある。 However, in the method of this patent document, an ammonium persulfate salt is used as an aqueous oxidant / radical initiator, so that an ideal vinyl polymer and polyaniline mutual network as described in this specification is actually used. The structure is difficult. Therefore, in this patent document method, there are actually a large number of vinyl polymers that do not contain PANI, and conversely, dope monomers that are not incorporated into the vinyl polymer exist in PANI. There is a problem of becoming unstable.
 また、特許文献7には、実質的に水と混和しない有機溶剤に溶解している、(a)プロトネーションされた置換または未置換ポリアニリン複合体、および(b)フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物が開示されている。 Patent Document 7 includes (a) a protonated substituted or unsubstituted polyaniline complex, and (b) a compound having a phenolic hydroxyl group, which is dissolved in an organic solvent that is substantially immiscible with water. A conductive polyaniline composition is disclosed.
 しかしこの特許文献では、溶剤/水/モノマー/乳化剤の重合場において、水溶性酸化剤を用いてポリアニリンの合成を行っている為、本質的には水溶アニリンモノマーが重合しながら乳化剤を介してトルエンに分散する系でポリアニリンとなり、実質トルエン以外に水に対して幾分溶解するような溶剤への展開は不可能であり、特にアルコールもしくはケトン類の溶剤を用いた場合、導電性ポリマー重合場における酸化剤のレドックスポテンシャルが著しく変化し、十分なポリアニリンの重合度を得られないだけでなくポリアニリンへのドーパントの挿入が起こらないため、得られたポリアニリンは十分な電気特性を示さず、また、収率として著しく低くなってしまう。このことは本発明者らの追試で確認がされている。また、本特許文献の発明で、実際に使用しているジイソオクチルスルホコハク酸ナトリウム(AOT)では、ポリアニリンのスタッキングを十分に抑制することが出来ない為、フェノール類(クレゾール)等の併用が必須となっている。これは、明細書の記載は十分ではないが非特許文献1に記載されている技術であり、ポリアニリン被膜中におけるドナー強度の調整により、フェノール性化合物の親和性が顕著にあり、ポリアニリン被膜における導電性向上に有用であると開示されている。これは、つまりフェノール類の様にトルエンに対し溶解性が良好でポリアニリンへの相溶性が良好な不揮発性添加剤を混合することで、乾燥塗膜の導電性を向上させるだけでなく、トルエン可溶中のポリアニリン同士のスタックをフェノール類が抑制していると考えられ、これら添加剤が無い場合はAOTのような立体障害性でのポリアニリンの結晶性制御では十分な可溶性の安定化が不可能であり、更には、アルコールもしくはケトン系溶剤中においては、ポリアニリンとフェノール性化合物が、むしろ局在化することにより、微凝集化してしまい最終的には完全に溶剤から分離沈降してしまう。これらも本発明者らの追試でも確認されている。 However, in this patent document, since polyaniline is synthesized using a water-soluble oxidant in a solvent / water / monomer / emulsifier polymerization field, essentially water-soluble aniline monomer is polymerized while toluene is passed through the emulsifier. It is impossible to develop into a solvent that dissolves in water in addition to the substantial toluene, especially when alcohol or ketone solvents are used. Not only does the redox potential of the oxidant change significantly, so that a sufficient degree of polymerization of the polyaniline is not obtained, but also the insertion of the dopant into the polyaniline does not occur, so that the resulting polyaniline does not exhibit sufficient electrical properties and is not The rate will be significantly lower. This has been confirmed by a follow-up test by the present inventors. In addition, the sodium diisooctylsulfosuccinate (AOT) actually used in the invention of this patent document cannot sufficiently suppress the stacking of polyaniline. Therefore, it is essential to use phenols (cresol) together. It has become. This is a technique described in Non-Patent Document 1, although the description is not sufficient, and by adjusting the donor strength in the polyaniline coating, the affinity of the phenolic compound is remarkable, and the conductivity in the polyaniline coating is It is disclosed that it is useful for improving the performance. In other words, by mixing non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene. It is thought that phenols suppress the stack of polyaniline in solution, and in the absence of these additives, it is impossible to stabilize the solubility sufficiently by controlling the crystallinity of polyaniline with steric hindrance like AOT Furthermore, in an alcohol or ketone solvent, the polyaniline and the phenolic compound are rather localized, so that they are finely agglomerated and finally completely separated and settled from the solvent. These have also been confirmed in the supplementary test by the present inventors.
 最も合理的な手法として特許文献5では、分子量2,000~500,000の範囲の分子量を有する、ポリスチレンスルホン酸のポリ陰イオンの存在下で酸化化学重合されたポリチオフェンと、分子量2,000~500,000の、ポリスチレンスルホン酸由来のポリ陰イオンを水または水と水混和性有機溶媒の混合溶媒中に含んでなるポリチオフェンの溶液が開示されている。 As the most rational method, Patent Document 5 discloses that polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonic acid, and a molecular weight of 2,000 to A solution of polythiophene comprising 500,000 polyanion derived from polystyrene sulfonic acid in water or a mixture of water and a water miscible organic solvent is disclosed.
 この特許文献は、ポリスチレンスルホン酸(PSS)と酸化剤共存下での酸化重合で、水またはアルコール溶剤へ溶解または分散可能なポリ(エチレンジオキサイド置換チオフェン)(PEDOT)の製造法の提案であるが、ここで得られるPEDOT/PSSは水に分散はされているが、完全な溶解はされておらず、部分的なPEDOT間のスタッキングを抑えることは難しく、導電性ポリマーを溶解するには不十分なものであった。また、用いたポリスチレンスルホン酸の構造では、イオン解離能を有す水や極性溶媒への相溶性を示すことは可能であるが、ポリチオフェンの結晶性を制御する為にはポリスチレンスルホン酸のみ構造では極めて困難であり、更には、実質的に水分を含まないケトン類に対しては溶解性および相溶性を有す骨格を付帯しない限り溶解させることは極めて困難である。 This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent. However, although the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough. In addition, the structure of polystyrene sulfonic acid used can exhibit compatibility with water and polar solvents having ion dissociation ability, but in order to control the crystallinity of polythiophene, only the structure of polystyrene sulfonic acid can be used. It is extremely difficult, and furthermore, it is extremely difficult to dissolve ketones substantially free of moisture unless a skeleton having solubility and compatibility is attached.
 一方、導電性ポリマー組成物を用いた用途として、色素増感型太陽電池用対極や帯電防止フィルムがある。特許文献9には、透明導電層を設けられたプラスチックフィルムに導電性高分子層を設けてなる色素増感型太陽電池の対極が開示されている。 On the other hand, as an application using the conductive polymer composition, there are a counter electrode for a dye-sensitized solar cell and an antistatic film. Patent Document 9 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
 しかし、この特許文献では、導電性高分子を含む分散液を塗布し、溶媒を除去して導電性高分子層を形成しているが、導電性高分子は微粒子の分散膜であるため、透明導電層に対する密着性が悪く、予めプラズマ処理などを行い透明導電層の表面エネルギーを高める必要がある。また、この特許文献の実施例において、分散剤にポリスチレンスルホン酸を用いていることが記載されているが、この場合は導電性高分子のドープに寄与しないフリーのスルホン酸が存在することとなり、溶媒は水溶液となる為にフィルム基板上に塗工する場合に溶媒とフィルム基板表面の選択性が非常に大きく、導電性高分子塗膜の不均一性に由来するピンホールが発生し易いこと、残存スルホン酸基により塗膜の極性が高いことから電解質溶液で一般的に使用されるアセトニトリルやイオン性液体等への耐久性が悪く塗膜の剥がれが発生し易いこと、等を原因として透明導電膜が電解液中のヨウ素により腐食される問題が挙げられることから、対極としての長期的な安定性に問題があることで白金対極を置き換えるには不十分であった。 However, in this patent document, a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer. However, since the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance. In addition, in the examples of this patent document, it is described that polystyrene sulfonic acid is used as the dispersant, but in this case, there is free sulfonic acid that does not contribute to the doping of the conductive polymer, Since the solvent becomes an aqueous solution, the selectivity between the solvent and the film substrate surface is very large when applied on the film substrate, and pinholes derived from the non-uniformity of the conductive polymer coating film are likely to occur. Transparent conductivity due to the high polarity of the coating film due to residual sulfonic acid groups, and poor durability to acetonitrile and ionic liquids commonly used in electrolyte solutions, and the tendency of the coating film to peel off. Since the problem is that the membrane is corroded by iodine in the electrolyte, the long-term stability as a counter electrode is insufficient to replace the platinum counter electrode.
 また、特許文献10には、ポリチオフェン系化合物、酸性ポリマーおよび糖アルコールを含有する帯電防止材料を熱可塑性樹脂フィルムに塗布した帯電防止フィルムが開示されている。 Patent Document 10 discloses an antistatic film obtained by applying an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol to a thermoplastic resin film.
 しかし、この特許文献では、帯電防止材料として糖アルコールを必須成分とすることにより、得られる帯電防止フィルムの透明性や帯電防止性は良好であるが、ポリチオフェン系化合物へのドーピング剤としてポリスチレンスルホン酸などの酸性ポリマーのみを使用しているため、帯電防止膜が経時で吸湿することによって、密着性および帯電防止性が低下する問題がある。 However, in this patent document, by using sugar alcohol as an essential component as an antistatic material, the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
特表2002-539287Special Table 2002-539287 特開平01-313521JP-A-01-313521 特表2004-514753Special table 2004-514753 特表2007-518859Special table 2007-518859 特許第2636968Japanese Patent No. 2636968 特開2007-314606JP2007-314606A WO2005/052058WO2005 / 052058 特開2009-344823JP2009-344823 特開2006-155907JP 2006-155907 A 特開2008-179809JP2008-179809
 そこで、本発明は、溶剤への溶解性に優れ、自立膜、すなわち、単独でピンホールなどの生じない均質な膜若しくは成形体となる導電性高分子組成物およびその製法等を提供することを課題としている。 Therefore, the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or molded body that does not cause pinholes alone, a method for producing the same, and the like. It is an issue.
 本発明者らは、上記課題を解決すべく前記の先行技術を追試し検討した結果、<1>π共役系高分子の重合場では十分な電解資質溶媒を使用し、酸化が進むアニオン場を安定且つ均一系を与える必要が有ること、<2>重合成長中のπ共役系高分子のスタッキングを制御し且つ安定なモノマー供給を与える為の場が必要なこと、<3>これら重合成長場でのπ共役系ポリマーへのドーピングが積極的に進むこと、<4>これらドーピングの過程で水等の初期重合場電解資質溶媒から析出可能であること、<5>重合後のπ共役系高分子が何らかの立体的分子障害により主鎖骨格のスタッキングが抑止されていること、<6>これら立体障害性因子がこの物自身で結晶性を有しておらず、且つ溶剤や熱などでの溶融が可能であること等の要素が導電性ポリマー合成の初期から精製、溶剤への再溶解に必要である事実が明確になった。 As a result of further examination of the above prior art in order to solve the above problems, the present inventors have found that an anionic field in which oxidation is progressed by using a sufficient electrolytic solvent in the polymerization field of <1> π-conjugated polymer. It is necessary to provide a stable and homogeneous system, <2> a field for controlling the stacking of π-conjugated polymers during polymerization growth and providing a stable monomer supply, <3> these polymerization growth fields <4> Precipitation from an initial polymerization field electrolyte solvent such as water in the process of doping, <5> High π-conjugated system after polymerization Stacking of the main chain skeleton is suppressed due to some steric molecular hindrance, and <6> these steric hindrance factors do not have crystallinity themselves, and are melted by a solvent or heat. Such as being possible Purification from the initial conductive polymer synthesis, the fact is required to re-dissolution in a solvent became clear.
 そこで、本発明者らは更に検討した結果、特定のモノマーを共重合した高分子化合物を、π共役系高分子の重合時に添加剤として使用すると、乳化剤としての重合場を均一状態化する機能に加えて、ドープ材としての機能を発揮すると共に、π共役系高分子への適度な立体障害性を有するために、特定の溶剤への可溶性に優れた複合導電性高分子組成物が得られることを見いだした。また、本発明者らは前記の複合導電性高分子組成物が、色素増感型太陽電気用対極や帯電防止フィルムなどに利用できることを見いだし、本発明の完成に至った。 Therefore, as a result of further studies, the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a π-conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a π-conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
 すなわち本発明は、次の成分(a-1)ないし(a-3)
 (a-1)スルホン酸基と重合性ビニル基を有するモノマー
      20~60mol%
 (a-2)親水性基と重合性ビニル基を有する極性モノマー
      20~60mol%
 (a-3)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      20~35mol%
を重合させることにより得られる高分子化合物を、次式(I)~(III)
Figure JPOXMLDOC01-appb-C000003
(各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)に、ドーピングさせてなる複合導電性高分子組成物である。
That is, the present invention provides the following components (a-1) to (a-3)
(A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol%
(A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol%
(A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol%
The polymer compounds obtained by polymerizing are represented by the following formulas (I) to (III)
Figure JPOXMLDOC01-appb-C000003
(In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a monomer component as a monomer constituent.
 また本発明は、次の成分(a-1)ないし(a-3)
 (a-1)スルホン酸基と重合性ビニル基を有するモノマー
      20~60mol%
 (a-2)親水性基と重合性ビニル基を有する極性モノマー
      20~60mol%
 (a-3)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      20~35mol%
を重合させることにより得られる高分子化合物と、前記式(I)~(III)から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製法である。
The present invention also provides the following components (a-1) to (a-3)
(A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol%
(A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol%
(A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol%
Characterized by coexisting a polymer compound obtained by polymerizing the compound and a compound selected from the formulas (I) to (III) in an electrolytic substrate solvent and performing chemical oxidative polymerization using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
 更に本発明は、前記の複合導電性高分子組成物を、アルコール系溶剤およびケトン系溶剤中に0.1~10質量%、溶解状態で含有してなる複合導電性高分子組成物溶液である。 Furthermore, the present invention is a composite conductive polymer composition solution containing the composite conductive polymer composition in an dissolved state in an amount of 0.1 to 10% by mass in an alcohol solvent and a ketone solvent. .
 また更に本発明は、前記の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極である。 Furthermore, the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
 更にまた本発明は、前記の複合導電性高分子組成物を用いてなる帯電防止フィルムである。 Furthermore, the present invention is an antistatic film using the composite conductive polymer composition.
 本発明の高分子化合物の存在下で、酸化剤の作用により重合して得られた複合導電性高分子は、アルコール系や、ケトン系の溶剤中に安定に溶解するものである。 The composite conductive polymer obtained by polymerization by the action of an oxidizing agent in the presence of the polymer compound of the present invention is stably dissolved in an alcoholic or ketone solvent.
 従って、これら溶剤中にこの複合導電性高分子を溶解した溶液を、導電性付与を必要とする部位に塗布し、これを乾燥させることにより、簡単に導電性皮膜を得ることが可能となる。 Therefore, it is possible to easily obtain a conductive film by applying a solution in which the composite conductive polymer is dissolved in these solvents to a portion requiring conductivity and drying it.
 本発明において使用される高分子化合物(A)は、常法に従って成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマー、成分(a-2)の親水性基と重合性ビニル基を有する極性モノマーおよび成分(a-3)の芳香族基または脂環族基と重合性ビニル基を有するモノマーを、重合開始剤の存在下で重合させることにより製造される。 The polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group in the component (a-1), a hydrophilic group in the component (a-2) and a polymerizable vinyl according to a conventional method. It is produced by polymerizing a polar monomer having a group and a monomer having an aromatic group or alicyclic group of component (a-3) and a polymerizable vinyl group in the presence of a polymerization initiator.
 成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーは、スチレンスルホン酸基や、スルホエチル基等のスルホン酸基を有するモノマーであり、この例としては、スチレンスルホン酸やスチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸カルシウム等のスチレンスルホン酸塩、(メタ)アクリル酸エチル2-スルホン酸や、(メタ)アクリル酸エチル2-スルホン酸ナトリウム、(メタ)アクリル酸エチル2-スルホン酸カリウム、(メタ)アクリル酸エチル2-スルホン酸カルシウム等の(メタ)アクリル酸エチル2-スルホン酸塩が挙げられる。 The monomer having a sulfonic acid group and a polymerizable vinyl group as the component (a-1) is a monomer having a sulfonic acid group such as a styrene sulfonic acid group or a sulfoethyl group. Examples thereof include styrene sulfonic acid and styrene sulfone. Styrene sulfonates such as sodium acrylate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium acrylate), ethyl (meth) acrylate 2 -Ethyl (meth) acrylate 2-sulfonates such as potassium sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, etc.
 また、成分(a-2)の親水性基と重合性ビニル基を有する極性モノマーは、室温でのpH7.0の蒸留水に対し0.1mmol/lで溶解させたときに、その溶液のpHが5.5を超え8.0未満(5.5<pH<8.0)を示すことが可能なものであり、その具体例としては、アクリル酸、メタクリル酸、2-メタクリロイロキシエチルコハク酸、(無水)マレイン酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-アセトアセトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、β-(メタ)アクリロイルオキシエチルハイドロジェンサクシネート等が挙げられる。 The polar monomer having a hydrophilic group and a polymerizable vinyl group as the component (a-2) is dissolved in distilled water having a pH of 7.0 at room temperature at 0.1 mmol / l, and the pH of the solution is reduced. Can be more than 5.5 and less than 8.0 (5.5 <pH <8.0). Specific examples thereof include acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinate. Acid, (anhydrous) maleic acid, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-acetoacetoxyethyl (meth) acrylate, methoxyethyl (meth) Acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, ethyl carbitol (meth) acrylate, methoxytri Ji glycol (meth) acrylate, methoxy polyethylene glycol (meth) acrylate, beta-(meth) acryloyloxyethyl hydrogen succinate, and the like.
 更に、成分(a-3)の芳香族基または脂環族基と重合性ビニル基を有するモノマーの例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸エチル2-フタル酸メチルエステル、(メタ)アクリル酸エチル2-フタル酸エチルエステル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(メタ)アクリレートモルホリン、スチレン、ジメチルスチレン、ナフタレン(メタ)アクリレート、ビニルナフタレン、N-ビニルカルバゾール、ビニルn-エチルカルバゾール、ビニルフルオレン等が挙げられる。 Further, examples of the monomer (a-3) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2 -Methyl phthalate, ethyl (meth) acrylate 2-ethyl phthalate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate , T-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinylnaphthalene, N-vinylcarbazole, vinyl n-ethylcarbazo Le, vinyl fluorene, and the like.
 本発明で用いる高分子化合物(A)の製造に当たっては、モノマー(a-1)、モノマー(a-2)およびモノマー(a-3)のモル比が重要である。すなわち、本発明の高分子化合物は、芳香族基または脂環族基による疎水性と、スルホン酸基および親水性基による親水性を適宜バランスさせることにより、導電性高分子組成物に作用し、これを溶剤中に溶解可能とするためである。 In the production of the polymer compound (A) used in the present invention, the molar ratio of the monomer (a-1), the monomer (a-2) and the monomer (a-3) is important. That is, the polymer compound of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group and the hydrophilic group, This is because it can be dissolved in a solvent.
 本発明の高分子化合物(A)を製造するための、成分(a-1)の配合量は、20~60mol%であり、好ましくは、25~50mol%である。また、成分(a-2)の配合量は、20~60mol%であり、好ましくは、25~55mol%である。更に、成分(a-3)の配合量は、20~35mol%であり、好ましくは、25~30mol%である。 The amount of component (a-1) for producing the polymer compound (A) of the present invention is 20 to 60 mol%, preferably 25 to 50 mol%. The amount of component (a-2) is 20 to 60 mol%, preferably 25 to 55 mol%. Further, the amount of component (a-3) is 20 to 35 mol%, preferably 25 to 30 mol%.
 本発明の高分子化合物には、上記モノマー(a-1)、(a-2)および(a-3)以外の重合性成分を含有させることもできる。この重合性成分の例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、nープロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、i-プロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、テトラフルフリル(メタ)アクリレート、N,N-ジメチルアミノエチルメタクリレート、ビニルピリジン、(メタ)アクリロイルモルホリン等が挙げられ、配合させる場合の配合量は、0~20mol%程度である。 The polymer compound of the present invention may contain a polymerizable component other than the monomers (a-1), (a-2) and (a-3). Examples of the polymerizable component include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) Acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, tetrafurfuryl (meth) Examples thereof include acrylate, N, N-dimethylaminoethyl methacrylate, vinyl pyridine, (meth) acryloylmorpholine, and the blending amount when blended is about 0 to 20 mol%.
 上記成分(a-1)、成分(a-2)、成分(a-3)および必要により加える重合性成分の重合反応は、公知の方法で行うことができる。例えば、これら各成分を混合した後、これに重合開始剤を添加し、加熱、光照射等により重合を開始することで製造することができる。 The polymerization reaction of the component (a-1), the component (a-2), the component (a-3) and the polymerizable component added as necessary can be carried out by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
 上記高分子化合物(A)を製造するために採用可能な重合法は、モノマー混合物から成分(a-3)が分離状態とならない状態で実施可能な方法であれば特に限定されず、例えば、溶液重合法、塊状(バルク)重合法、析出重合法等が採用される。 The polymerization method that can be employed for producing the polymer compound (A) is not particularly limited as long as it is a method that can be carried out in a state where the component (a-3) is not separated from the monomer mixture. A polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
 また、重合反応に使用される重合開始剤は、上記各成分や、反応時に使用する溶媒に溶解可能なものであれば、特に限定されるものではない。この重合開始剤の例としては、過酸化ベンゾイル(BPO)等の油溶性過酸化物系熱重合開始剤、アゾビスイソブチロニトリル(AIBN)等の油溶性アゾ系熱重合開始剤、アゾビスシアノ吉草酸(ACVA)等の水溶性アゾ系熱重合開始剤等が挙げられる。また、溶液重合の溶媒中の水割合が多い場合は、過硫酸アンモニウムや過硫酸カリウム等の水溶性過酸化物系熱重合開始剤、過酸化水素水等も使用することができる。さらに、フェロセンやアミン類等のレドックス剤の組み合わせも可能である。 Further, the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction. Examples of this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA). In addition, when the water ratio in the solvent for solution polymerization is large, water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used. Furthermore, combinations of redox agents such as ferrocene and amines are possible.
 これらの重合開始剤の使用範囲は、上記化合物1モルに対し0.001~0.1モルの範囲で任意に使用することができ、一括投入、滴下投入、逐次投入のいずれの方法も利用できる。また、塊状重合や少量(モノマーに対して50wt%以下)の溶剤を使用した溶液重合の場合は、メルカプタンとメタロセンの組み合わせによる重合方法(特許文献8)も可能である。 These polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol with respect to 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. . In the case of bulk polymerization or solution polymerization using a small amount of solvent (50 wt% or less based on the monomer), a polymerization method using a combination of mercaptan and metallocene (Patent Document 8) is also possible.
 更に、上記重合反応に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶剤、乳酸メチル、乳酸エチル等の乳酸系溶剤等を挙げることができる。 Furthermore, as a solvent used in the above polymerization reaction, alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether, propylene Examples thereof include glycol solvents such as glycol ethyl ether, and lactic acid solvents such as methyl lactate and ethyl lactate.
 更にまた、重合時には重合開始剤以外にも連鎖移動剤を併用しても良く、分子量を調整したい場合は、適宜使用可能である。使用できる連鎖移動剤としては、上記モノマーや溶剤に溶解する物であれば何れの化合物も使用可能であり、例えば、ドデシルメルカプタンやヘプチルメルカプタン等のアルキルチオール、メルカプトプロピオン酸(BMPA)の様な極性基を有する水溶性チオール、αスチレンダイマー(ASD)等の油性ラジカル抑止剤等も適宜使用可能である。 Furthermore, a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight. As the chain transfer agent that can be used, any compound can be used as long as it is soluble in the above-mentioned monomers and solvents. For example, polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA). A water-soluble thiol having a group, an oily radical inhibitor such as α-styrene dimer (ASD), and the like can be used as appropriate.
 また更に、この重合反応は、使用する溶剤(バルク重合の場合を除く)の沸点以下で行うのが好ましく、例えば、65℃~80℃程度が好ましい。但し、バルク重合やメルカプタンとメタロセンで行う特許文献9の様な重合を行う際は、25℃~80℃で行うことが好ましい。 Furthermore, this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable. However, when performing bulk polymerization or polymerization as in Patent Document 9 performed with mercaptan and metallocene, it is preferably performed at 25 ° C. to 80 ° C.
 かくして得られる重合物は、必要により精製し、高分子化合物(A)とすることができる。この精製方法の例としては、単純に重合溶媒に析出する導電性高分子重合体を濾別し、イオン交換水により数回洗浄し水系不純物を取り除き、その後ヘキサン等の油性貧溶媒を使用し、油性低分子不純物および残存モノマー、低分子不純物を取り除く方法が挙げられる。また、精製方法の別の例としては 高分子化合物(A)の重合後に重合場へアセトニトリル等のイオン解離性水性溶媒の添加により重合媒のイオン解離定数を調整したり、飽和食塩水などの添加で重合溶媒中のイオン濃度を増加させたり、または塩酸水等のプロトン放出性の酸性水溶液の添加により重合媒のpHを調整することにより、重合終了後の重合溶媒から導電性高分子を析出させ、これにヘキサンなどの油性貧溶媒を添加し分液抽出することにより油性低分子不純物および残存モノマー、低分子不純物を取り除き、その後、イオン交換水により水系不純物、残存物を取り除く方法を挙げることができる。 The polymer thus obtained can be purified as necessary to obtain a polymer compound (A). As an example of this purification method, simply remove the conductive polymer polymer deposited in the polymerization solvent, wash it several times with ion-exchanged water to remove aqueous impurities, and then use an oily poor solvent such as hexane, Examples thereof include a method for removing oily low-molecular impurities, residual monomers, and low-molecular impurities. As another example of the purification method, after the polymerization of the polymer compound (A), the ion dissociation constant of the polymerization medium is adjusted by adding an ion dissociable aqueous solvent such as acetonitrile to the polymerization field, or the addition of saturated saline or the like. The conductive polymer is precipitated from the polymerization solvent after completion of polymerization by increasing the ion concentration in the polymerization solvent or adjusting the pH of the polymerization medium by adding a proton-releasing acidic aqueous solution such as hydrochloric acid water. In addition, a method of removing oily low-molecular impurities, residual monomers, and low-molecular impurities by adding an oily poor solvent such as hexane to the solution and then performing liquid separation extraction, and then removing water-based impurities and residuals with ion-exchanged water may be mentioned. it can.
 このように精製することが好ましい理由は、高分子化合物(A)は、導電性高分子組成物中へドープ剤として導入され、スタック抑止剤、かつ溶剤可溶剤として作用するため、重合後の残存物としてそれ以外の重合開始剤残物、モノマー、オリゴマー、不均一組成物等が残存すると導電性高分子組成物の機能低下が問題となるので、これらを除去する必要が有るのである。そして、このように精製する結果、特許文献7の様な不均一なラジカル重合物が混在せず、均一な導電性高分子組成物の組成と高分子化合物(A)の組成が一様に相溶化したような可溶状態を発現できるのである。 The reason why it is preferable to purify in this way is that the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
 以上のようにして得られる高分子化合物(A)は、そのGPC換算重量平均分子量が、3,000~150,000であることが好ましい。重量平均分子量が3,000に満たない場合は、高分子化合物としての機能が不十分である。逆に15万を超えると、導電性ポリマー合成時の重合場(酸性水溶液)への溶解性が十分でない場合があり、また、高分子化合物自身の溶剤溶解性が悪くなり、導電性ポリマーの可溶化性に著しく悪い影響を与えることがある。 The polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 150,000. When the weight average molecular weight is less than 3,000, the function as a polymer compound is insufficient. On the other hand, if it exceeds 150,000, the solubility in the polymerization field (acidic aqueous solution) during synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer compound itself will deteriorate, and the conductive polymer may be used. May significantly affect solubilization.
 本発明の複合導電性高分子組成物は、上記のようにして得られた高分子化合物(A)を用い、次のようにして製造される。すなわち、上記高分子化合物(A)を電解性基質溶媒に溶解し、次いでこの溶液中に、π共役系高分子(β)の原料となる前記式(I)ないし(III)で表される化合物を添加し、更にこれを酸化剤により酸化することにより、前記式(I)ないし(III)で表される化合物をモノマー構成成分とするπ共役系高分子(β)に前記高分子化合物(A)がドーピングされた、複合導電性高分子組成物を得ることができる。 The composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the π-conjugated polymer (β), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the π-conjugated polymer (β) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
 原料である化合物のうち、式(I)で表される化合物は、置換基が水素原子またはアルキル基であるアニリンである。この化合物の具体例としては、アニリン、o-トルイジン、m-トルイジン、3,5-ジメチルアニリン、2,3-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、2-エチルアニリン、3-エチルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、2-メチル-6-エチルアニリン、2-n-プロピルアニリン、2-メチル-5-イソプロピルアニリン、2-ブチルアニリン、3-ブチルアニリン、5,6,7,8-テトラヒドロ-1-ナフチルアミン、2,6-ジエチルアニリン等を挙げることができる。 Among the compounds that are raw materials, the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group. Specific examples of this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline. 3-ethylaniline, 2-isopropylaniline, 3-isopropylaniline, 2-methyl-6-ethylaniline, 2-n-propylaniline, 2-methyl-5-isopropylaniline, 2-butylaniline, 3-butylaniline Examples include 5,6,7,8-tetrahydro-1-naphthylamine, 2,6-diethylaniline, and the like.
 また、式(II)で表される化合物は、置換基が水素またはアルキル基のチオフェンであり、その具体例としては、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ペンチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-n-オクチルチオフェン等を挙げることができる。 In addition, the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
 更に、式(III)で表される化合物は、置換基が水素またはアルキル基のピロールであり、その具体例としては、ピロール、3-メチルピロール、3-ヘプチルピロール、3-n-オクチルピロール等を挙げることができる。 Further, the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
 本発明方法により複合導電性高分子組成物を製造する具体的方法の一例としては、まず、電解性基質溶媒としてのイオン交換水を、必要により酸性とした後、この中に、前記のようにして得た高分子化合物(A)を添加し、次いでこの中に原料である式(I)ないし(III)の化合物の1種または2種以上を加え、更に酸化剤を加えて酸化重合させる方法を挙げることができる。なお、高分子化合物(A)のイオン交換水への溶解性により、適宜アセトン、メチルエチルケトン等ケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等アルコール系溶剤、アセトニトリル等の親水性の高い有機溶剤を併用しても良い。 As an example of a specific method for producing a composite conductive polymer composition by the method of the present invention, first, ion-exchanged water as an electrolytic substrate solvent is acidified as necessary, and then, as described above, The polymer compound (A) thus obtained is added, and then one or more of the compounds of the formulas (I) to (III) as raw materials are added thereto, and an oxidant is further added for oxidative polymerization. Can be mentioned. Depending on the solubility of the polymer compound (A) in ion-exchanged water, a ketone solvent such as acetone or methyl ethyl ketone, an alcohol solvent such as methanol, ethanol or isopropyl alcohol, or a highly hydrophilic organic solvent such as acetonitrile may be used in combination. May be.
 上記反応において電解性基質溶媒を酸性とするために使用される酸性成分としては、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)、硫酸鉄(II)等が挙げられ、その量は、式(I)~(III)の化合物1molに対し、0.5~3.0mol程度とすればよい。 Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like. The amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
 また、反応に使用する酸化剤も複合導電性高分子組成物を形成する芳香族化合物(モノマー)のレドックスポテンシャルによって適宜調整が必要であるが、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)等が使用可能である。 In addition, the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition. However, ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate , Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate In addition, copper (II) hexafluorophosphate can be used.
 また、反応における高分子化合物(A)と化合物(I)ないし(III)との割合は、最終的に得られる複合導電性高分子組成物の性質にもよるため、単純に決定できるものではないが、たとえば、好ましい範囲の例は、高分子化合物(A)中のスルホン酸基の数と、使用する化合物(I)~(III)のモル比により次のように示すことができる。 Further, the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply. However, for example, an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
 すなわち、式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、当該化合物中のスルホン酸基のモル比が0.2~1.5となる量で共存せしめればよい。 That is, the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
 更に、酸化剤の使用量は、通常化合物(I)ないし(III)1モルに対し1.5~2.5モル(1価換算)程度使用するが、系内の酸化度(酸性度)によっては、モノマー1モルに対し1モル以下でも十分重合は可能である。 Further, the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system. Can be sufficiently polymerized even if it is less than 1 mole per mole of monomer.
 更にまた、複合導電性高分子組成物を得るための重合反応の温度は、酸化反応後の発熱量や水素引き抜かれ易さが化合物(I)ないし(III)の種類により異なるため、好適な温度範囲が異なる。 Furthermore, since the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III), the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
 一般的には、化合物(I)を利用する場合は、40℃以下が好ましく、化合物(II)の場合は、90℃以下、化合物(III)の場合は、20℃以下とすることが好ましい。 Generally, when the compound (I) is used, the temperature is preferably 40 ° C. or lower, the compound (II) is preferably 90 ° C. or lower, and the compound (III) is preferably 20 ° C. or lower.
 また更に、複合導電性高分子組成物を高分子量化したい場合は、反応温度を相対的に低くし、反応時間を相対的に長めにすれば良く、低分子量化する場合は、この逆とすれば良い。 Furthermore, when it is desired to increase the molecular weight of the composite conductive polymer composition, the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
 このようにして得られた重合物は、必要により更に洗浄等を行った後、目的物である複合導電性高分子組成物とすることができる。このものは、後記するように従来の導電性高分子組成物が溶解しなかったアルコール系や、ケトン系の溶剤中で、安定に溶解するものである。 The polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As will be described later, this is one that dissolves stably in an alcohol-based or ketone-based solvent in which a conventional conductive polymer composition has not dissolved.
 かくして得られた本発明の複合導電性高分子組成物の利用方法の例としては、これをアルコール系や、ケトン系の溶剤中に均質状態で溶解させた複合導電性高分子組成物溶液を挙げることができる。この複合導電性高分子組成物溶液は、これを導電性皮膜の形成が求められる部分に塗布し、次いで乾燥等の手段により当該組成物中の溶剤を揮発させることにより、目的部分に均一な導電性皮膜を形成することができる。 Examples of the method of using the composite conductive polymer composition of the present invention thus obtained include a composite conductive polymer composition solution obtained by dissolving the composite conductive polymer composition in an alcohol-based or ketone-based solvent in a homogeneous state. be able to. This composite conductive polymer composition solution is applied to a portion where the formation of a conductive film is required, and then the solvent in the composition is volatilized by means such as drying, whereby a uniform conductive property is applied to the target portion. An adhesive film can be formed.
 上記複合導電性高分子組成物溶液を調製するには、好ましくは、複合導電性高分子組成物をメタノール、エタノール、イソプロピルアルコール、メチルセロソルブ、プロピレングリコールモノメチルエーテルアセテート等のアルコール系溶媒や、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶媒に0.1~10質量%程度で溶解させたものである。 In order to prepare the composite conductive polymer composition solution, preferably, the composite conductive polymer composition is made of an alcohol solvent such as methanol, ethanol, isopropyl alcohol, methyl cellosolve, propylene glycol monomethyl ether acetate, acetone, Dissolved in a ketone solvent such as methyl ethyl ketone and methyl isobutyl ketone at about 0.1 to 10% by mass.
 また、上記の複合導電性高分子組成物溶液には、更に、溶液の安定性向上および塗膜状態での導電性向上を目的として、ベンジルアルコール、フェノール、m-クレゾール、o-クレゾール、2-ナフタノール、1-ナフタノール、グアイコール、2,6-ジメチルフェノール等のヒドロキシル基を有する芳香族化合物を加えることができる。これらの化合物は、複合導電性高分子組成物溶液の溶剤量100重量部に対し、0.01~45重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state. Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol, 2,6-dimethylphenol can be added. These compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
 また、上記の複合導電性高分子組成物溶液には、更に、帯電防止塗料としての自立膜の導電性の向上および太陽電池用対極材としての触媒性能の向上を目的として、銅、銀、アルミニウム、白金等の金属、酸化チタン、酸化インジウムスズ、フッ素ドープ酸化スズ、アルミナ、シリカ等の金属酸化物、導電性ポリマー組成物、カーボンナノチューブ(CNT)、フラーレン、カーボンブラック等の炭素粉末、または分散体をフィラー成分として含むことができる。これらの粉末または分散体は複合導電性高分子組成物溶液の固形分100重量部に対し、固形分0.01~50重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells. , Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion The body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
 さらに、上記複合導電性高分子組成物は色素増感型太陽電池用対極に用いることができる。この色素増感型太陽電池用対極は、透明性が要求される場合には透明基板の片面に上記複合導電性高分子組成物を積層する、または透明基板の一方の面に光透過性電極を配置し、その光透過性電極に上記複合導電性高分子組成物を積層することにより形成することができる。また、透明性が要求されない場合には、金属箔等に積層することで形成することができる。この複合導電性高分子組成物の厚さは通常は0.01~100μm、好ましくは0.1~50μmの範囲内にある。 Furthermore, the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell. The counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested | required, it can form by laminating | stacking on metal foil etc. The thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 μm, preferably 0.1 to 50 μm.
 本発明の色素増感上記で用いる透明基板としては、光透過率が通常は50%以上、好ましくは80%以上のフィルムまたは板を使用することができる。このような透明基板の例としては、ガラス等の無機透明基板、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリフェニレンスルフィド、ポリスルホン、ポリエステルスルホン、ポリアルキル(メタ)アクリレート、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリシクロオレフィン等の高分子透明基板等を挙げることができる。また、金属箔としては、金、白金、銀、錫、銅、アルミ、ステンレス、ニッケル等の金属箔を挙げることができる。 As the transparent substrate used for the dye sensitization of the present invention, a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used. Examples of such transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin. Moreover, as metal foil, metal foil, such as gold | metal | money, platinum, silver, tin, copper, aluminum, stainless steel, nickel, can be mentioned.
 これら透明基板の厚さは、無機透明基板の場合には、通常は200~7000μmの範囲内であり、高分子透明基板の場合には、通常は20~4000μm、好ましくは20~2000μmの範囲内にある。金属箔基板の場合には、0.1μm~1000μm、好ましくは1μm~500μmの範囲内にある。この範囲内の厚さの高分子透明基板および金属箔基板は、得られる色素増感太陽電池に可撓性を付与することができる。 The thickness of these transparent substrates is usually in the range of 200 to 7000 μm in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 μm, preferably in the range of 20 to 2000 μm in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 μm to 1000 μm, preferably 1 μm to 500 μm. The polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
また、上記透明基板の一方の面には必要に応じて光透過性電極を配置してもよい。ここで用いる光透過性電極としては、膜状導電性金属電極、メッシュ状導電性金属電極などを挙げることができる。 Moreover, you may arrange | position a transparent electrode as needed to one side of the said transparent substrate. Examples of the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
 上記膜状導電性金属電極は酸化錫、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)などを膜状に形成させたものである。この膜状導電性金属電極は透明基板の表面に、酸化錫、ITO、FTOなどを蒸着あるいはスパッタリングなどすることにより形成することができる。 この膜状導電性金属電極の厚さは、通常は0.01~1μm、好ましくは0.01~0.5μmの範囲内にある。 The film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like. This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate.厚 The thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 μm, preferably 0.01 to 0.5 μm.
 一方、メッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属をメッシュ状に形成させたものである。具体的にメッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属を用いて、例えばフォトリソグラフ法により、線幅が通常は10~70μm、好ましくは10~20μmであり、ピッチ幅が通常は50~300μm、好ましくは50~200μmのメッシュとなるようにエッチングすることにより形成することができる。このときのメッシュ状導電性金属電極の導線の厚さは、使用する導電性金属の厚さと略同一になり、通常は8~150μm、好ましくは8~15μmの範囲内にある。 このメッシュ状導電性金属電極は、透明基板の表面に粘着剤などを用いて貼着することができる。 On the other hand, the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape. Specifically, the mesh-like conductive metal electrode has a line width of usually 10 to 70 μm, preferably 10 to 20 μm, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 μm, preferably 50 to 200 μm. At this time, the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 μm, preferably 8 to 15 μm. This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
 上記色素増感型太陽電池用対極を製造するにあたり、複合導電性高分子組成物を上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に積層する方法としては、例えば、上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去することを1ないし複数回行う方法が挙げられる。 In producing the counter electrode for dye-sensitized solar cell, as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
 上記複合導電性高分子組成物溶液の塗布は、ディップコーター、マイクロバーコーター、ロールコーター、コンマコーター、ダイコーター、グラビアコーターなど公知のコーターを適用できる。 For the application of the composite conductive polymer composition solution, a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
 また、溶媒の除去は、放置による自然乾燥、熱風・赤外線による加熱条件下での強制乾燥などの方法を適用できる。 In addition, the solvent can be removed by a method such as natural drying by standing or forced drying under heating with hot air or infrared rays.
 上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、有機溶剤に可溶であるため、従来の複合導電性高分子組成物を水性媒体で分散された分散液に比べ、塗布工程が容易であり、生産性に優れている。また、酸性水溶液に由来する対極作製段階での金属の腐食劣化を抑制することができる。 Since the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
また、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させた得られる高分子化合物(A)を用いることにより、上記透明基板や光透過性電極や金属箔に対する密着性に優れているので、長期間使用できる。 In the counter electrode for dye-sensitized solar cell, the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) obtained by copolymerization with, the adhesiveness to the transparent substrate, the light transmissive electrode, and the metal foil is excellent, so that it can be used for a long time.
 更に、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる酸性度が抑えられた高分子化合物(A)を用いることにより、光透過性電極(導電性金属)が腐食されにくくなる上、電解液に対する耐久性が向上するので、長期間使用できる。 Further, in the counter electrode for dye-sensitized solar cell, the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) with reduced acidity obtained by copolymerization with the above, the light-transmitting electrode (conductive metal) is less likely to be corroded and the durability against the electrolytic solution is improved. Can be used for a long time.
 また更に、上記色素増感型太陽電池用対極は、従来電解液に対する耐酸化性を有する電極として用いられていた高価な白金電極に対して、均一な耐酸化性膜として導電性高分子膜が作用することで各種金属が使用可能となる為に廉価に提供できる。 Further, the counter electrode for the dye-sensitized solar cell has a conductive polymer film as a uniform oxidation resistant film, compared to an expensive platinum electrode that has been used as an electrode having resistance to oxidation with respect to an electrolytic solution. Since various metals can be used by acting, it can be provided at a low price.
 また、上記複合導電性高分子組成物を用いてなる帯電防止フィルムは、上記複合導電性高分子組成物単独で、塗工・乾燥を行い自立膜として成膜可能である為に低抵抗の帯電防止フィルムが加工できる。また、必要に応じて複合導電性高分子組成物と熱可塑性樹脂および/または熱硬化性樹脂とを混合する場合には、(1)押出機やエクストルーダーなどで溶融混練したものをTダイなどを用いて成膜する方法、(2)熱可塑性樹脂、熱硬化性樹脂、およびガラス製のフィルムの片面または両面に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去して帯電防止層を形成する方法などによって得ることができる。 In addition, the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
 上記帯電防止フィルムで用いられる熱可塑性樹脂としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ポリアクリロニトリルブタジエンスチレン、ポリアクリロニトリルスチレン、ポリメタクリル、ポリアクリル、飽和ポリエステル、ポリアミド、ポリカーボネート、ポリ変性フェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、ポリアミドイミドなどが挙げられ、これらの熱可塑性樹脂のポリマーアロイや熱可塑性エラストマーも含まれる。 The thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated. Examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
 本発明の上記帯電防止フィルムで用いられる熱硬化性樹脂としては、ポリフェノール、ポリエポキシ、不飽和ポリエステル、ポリウレタン、ポリイミド、ポリ尿素、シリコーン樹脂、メラミン樹脂、フッ素樹脂、アルキド樹脂などが挙げられる。 Examples of the thermosetting resin used in the antistatic film of the present invention include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluororesin, and alkyd resin.
 また、上記帯電防止フィルムは、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる高分子化合物(A)を用いることにより、各種高湿低湿環境条件下での性能バラツキが少なく、高い透過性を有した帯電防止膜の形成が可能となる。 Further, the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例により何ら制約されるものではない。なお、本実施例中における分子量および表面抵抗値は下記方法により測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples. The molecular weight and the surface resistance value in this example were measured by the following methods.
< 分子量 >
 下記条件でのGPCにより測定した。
  装置名:HLC-8120(東ソー(株)製)
  カラム:GF-1G7B+GF-510HQ(Asahipak:登録商標、
      昭和電工(株)製)
  基準物質:ポリスチレンおよびポリスチレンスルホン酸ナトリウム
  サンプル濃度:1.0mg/ml
  溶離液:50ミリモル塩化リチウム水溶液/CHCN=60/40wt
  流量:0.6ml/min
  カラム温度:30℃
  検出器:UV254nm
<Molecular weight>
It was measured by GPC under the following conditions.
Device name: HLC-8120 (manufactured by Tosoh Corporation)
Column: GF-1G7B + GF-510HQ (Asahipak: registered trademark,
Showa Denko Co., Ltd.)
Reference material: polystyrene and sodium polystyrene sulfonate Sample concentration: 1.0 mg / ml
Eluent: 50 mmol lithium chloride aqueous solution / CH 3 CN = 60/40 wt
Flow rate: 0.6 ml / min
Column temperature: 30 ° C
Detector: UV254nm
< 表面抵抗 >
 (株)ダイアインスツルメンツ製の、低抵抗率計ロレスタGP、PSPタイププローブを用い、四端子四探針法により測定した。
<Surface resistance>
Measurement was performed by a four-terminal four-probe method using a low resistivity meter Loresta GP, a PSP type probe manufactured by Dia Instruments Co., Ltd.
合 成 例 1
  高分子化合物の合成(2-NaSEMA/BzMA/HEMA=40/25/35)
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量1000cmの四つ口フラスコに、2-ソジウムスルホエチルメタクリレートを68.9g、ベンジルメタクリレートを35.7g、2-ヒドロキシエチルメタクリレートを36.9g、イオン水を150gおよびイソプロピルアルコールを300g投入した。
Synthesis example 1
Synthesis of polymer compound (2-NaSEMA / BzMA / HEMA = 40/25/35)
To a 1000 cm 3 four-necked flask equipped with a stirrer, nitrogen gas inlet tube, reflux condenser, inlet and thermometer, 68.9 g of 2-sodium sulfoethyl methacrylate, 35.7 g of benzyl methacrylate, 2 -36.9 g of hydroxyethyl methacrylate, 150 g of ionic water and 300 g of isopropyl alcohol were added.
 フラスコ内に窒素ガスを導入しながら、フラスコ内の混合物をリフラックス温度まで昇温した。次いで、アゾビスイソブチロニトリルを0.7gフラスコ内に投入し、リフラックス状態を保ち、18時間重合反応を行ってポリマー溶液(A-1)を得た。 While introducing nitrogen gas into the flask, the mixture in the flask was heated to the reflux temperature. Next, 0.7 g of azobisisobutyronitrile was charged into the flask, the refluxed state was maintained, and a polymerization reaction was performed for 18 hours to obtain a polymer solution (A-1).
 得られたポリマー溶液(A-1)の全量を、2000cmのビーカーに移し、スターラーにより撹拌しながらヘキサンを500g添加し、その後1時間静置して不純物を含む油層を除去した。水層側の溶液を乾燥機を用い、100℃にて24時間乾燥した。得られた固形物を、減圧下、100℃で24時間乾燥した後、乳鉢で粉砕して高分子化合物の粉体(AP-1)を得た。 The total amount of the obtained polymer solution (A-1) was transferred to a 2000 cm 3 beaker, 500 g of hexane was added with stirring with a stirrer, and then allowed to stand for 1 hour to remove the oil layer containing impurities. The solution on the water layer side was dried at 100 ° C. for 24 hours using a dryer. The obtained solid was dried under reduced pressure at 100 ° C. for 24 hours, and then pulverized in a mortar to obtain a polymer compound powder (AP-1).
 得られた高分子化合物(AP-1)をゲルパーミュエーションクロマトグラフ(GPC)で測定したところ、重量平均分子量(Mw)=58,000であった。 The obtained polymer compound (AP-1) was measured by gel permeation chromatography (GPC) and found to have a weight average molecular weight (Mw) = 58,000.
合 成 例 2~5 および 比較合成例 6~9
 モノマーを表1に示す配合とし、合成例1と同様の方法で高分子化合物の粉体(AP-2~9)を得た。得られた高分子化合物(AP-2~9)のMwおよび水に対する溶解性を表1に示す。
Synthesis Examples 2 to 5 and Comparative Synthesis Examples 6 to 9
Polymer compounds (AP-2 to 9) were obtained in the same manner as in Synthesis Example 1 using the monomers shown in Table 1. Table 1 shows the solubility of the obtained polymer compounds (AP-2 to 9) in Mw and water.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実 施 例 1
(1)ポリアニリン重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、合成例1で得られた高分子化合物(AP-1)10.9g、イオン交換水100gおよび35%塩酸水溶液6gを投入し、次いで60℃に加熱し、3時間撹拌を行い、均一な乳化剤水溶液を得た。更に、この乳化剤水溶液に25℃飽和食塩水100gを添加し、60℃で1時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
Example 1
(1) Polyaniline polymerization and purification:
In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 10.9 g of the polymer compound (AP-1) obtained in Synthesis Example 1 and ions 100 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, then heated to 60 ° C. and stirred for 3 hours to obtain a uniform aqueous emulsifier solution. Further, 100 g of 25 ° C. saturated saline was added to this aqueous emulsifier solution, and the mixture was stirred at 60 ° C. for 1 hour, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、この乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。10gのペルオキソ二硫酸アンモニウムをイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に2時間かけて滴下した。滴下終了後、室温(25℃)に戻し、48時間重合反応を続けた。 Next, 4.65 g of aniline was added to this emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 10 g of ammonium peroxodisulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 2 hours. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 48 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形物を水に再分散して攪拌洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下、40℃にて96時間乾燥して複合導電性高分子組成物(E-1)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下だった。なお揮発分は、導電性高分子組成物を105℃の熱風循環式乾燥機に3時間投入し、その前後の質量減量率から求めた(以下同じ)。 The polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again. A solid containing water obtained by repeating the washing four times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a composite conductive polymer composition (E-1). The volatile content of this conductive polymer composition was measured and found to be 2% or less. The volatile content was obtained from the weight loss rate before and after the conductive polymer composition was put into a 105 ° C. hot air circulation dryer for 3 hours (hereinafter the same).
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物(E-1)5g、シクロペンタノン60gおよびメチルエチルケトン35gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある緑色であった。
(2) Coating film evaluation:
Into a beaker, 5 g of the composite conductive polymer composition (E-1) obtained above, 60 g of cyclopentanone and 35 g of methyl ethyl ketone were added and dissolved by stirring at room temperature to obtain a composite conductive polymer composition solution. The appearance of this solution was a transparent green color.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、200kΩ/□であった。 Next, the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and dried, and a green uniform coating film was obtained. It was. The surface resistance value of the coating film was 200 kΩ / □.
実 施 例 2
(1)ポリピロール重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、合成例2で得られた高分子化合物(AP-2)10.6g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、次いで60℃に加熱し、3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
Example 2
(1) Polypyrrole polymerization and purification:
In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 10.6 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, then heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、この乳化剤溶液にピロール3.35gを投入し、攪拌して均一な乳化液とした。58gの硫酸第二鉄をイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に2時間かけて滴下した。滴下終了後、室温(25℃)に戻し、73時間重合反応を続けた。 Next, 3.35 g of pyrrole was added to this emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 58 g of ferric sulfate in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 2 hours. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 73 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形物を水に再分散して攪拌洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃にて96時間乾燥して複合導電性高分子組成物(E-2)を得た。この複合導電性高分子組成物の揮発分を測定したところ、2%以下だった。 The polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again. A solid containing water obtained by repeating the washing four times was taken out and dried at 40 ° C. under reduced pressure for 96 hours to obtain a composite conductive polymer composition (E-2). When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物5g、メチルエチルケトン45gおよびメチルアルコール50gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、黒色であった。
(2) Coating film evaluation:
Into a beaker, 5 g of the composite conductive polymer composition obtained above, 45 g of methyl ethyl ketone and 50 g of methyl alcohol were added and stirred and dissolved at room temperature to obtain a composite conductive polymer composition solution. The appearance of this solution was black.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、黒色の均一な塗膜が得られた。その塗膜の表面抵抗値は、60kΩ/□であった。 Next, the composite conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm, and dried to obtain a black uniform coating film. It was. The surface resistance value of the coating film was 60 kΩ / □.
実 施 例 3
(1)ポリチオフェン重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、合成例3で得られた高分子化合物(AP-3)11.6g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、60℃に加熱し、3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
Example 3
(1) Polythiophene polymerization and purification:
In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 11.6 g of the polymer compound (AP-3) obtained in Synthesis Example 3 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、この乳化剤溶液にチオフェン4.2gを投入し、攪拌して均一な乳化液とした。16.5gの塩化第二鉄をイオン交換水30gに溶解したものを、80℃に保ったフラスコ内に2時間かけて滴下した。滴下終了後、80℃に保ったまま、58時間重合反応を続けた。 Next, 4.2 g of thiophene was added to this emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 16.5 g of ferric chloride in 30 g of ion-exchanged water was dropped into a flask kept at 80 ° C. over 2 hours. After completion of the dropwise addition, the polymerization reaction was continued for 58 hours while maintaining the temperature at 80 ° C.
 重合反応終了後の重合溶液を濾別し、得られた固形物を水に再分散して攪拌洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃にて96時間乾燥して複合導電性高分子組成物(E-3)を得た。この複合導電性高分子組成物の揮発分を測定したところ、2%以下だった。 The polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again. A solid substance containing water obtained by repeating the washing 4 times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a composite conductive polymer composition (E-3). When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物(E-3)5g、メチルエチルケトン50gおよびイソプロピルアルコール45gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある濃緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-3) obtained above, 50 g of methyl ethyl ketone and 45 g of isopropyl alcohol were added and dissolved by stirring at room temperature to obtain a composite conductive polymer composition solution. The appearance of this solution was a clear green color.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、黒緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、30kΩ/□であった。 Next, the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm, and dried to obtain a black-green uniform coating film. It was. The surface resistance value of the coating film was 30 kΩ / □.
実 施 例 4
(1)ポリアニリン重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、合成例2で得られた高分子化合物(AP-2)13.3g、イオン交換水200gおよび35%塩酸水溶液6gを投入し、60℃に加熱し、3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
Example 4
(1) Polyaniline polymerization and purification:
In a four-necked flask having a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, an inlet, and a thermometer, 13.3 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、この乳化剤溶液にアニリン4.65gを投入し、攪拌して均一な乳化液とした。58gの硫酸鉄(III)をイオン交換水100gに溶解したものを、30℃に保ったフラスコ内に2時間かけて滴下した。滴下終了後、50℃に昇温し、48時間重合反応を続けた。 Next, 4.65 g of aniline was added to this emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 58 g of iron (III) sulfate in 100 g of ion-exchanged water was dropped into a flask kept at 30 ° C. over 2 hours. After completion of the dropwise addition, the temperature was raised to 50 ° C. and the polymerization reaction was continued for 48 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形物を水に再分散して攪拌洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃にて96時間乾燥して複合導電性高分子組成物(E-4)を得た。この複合導電性高分子組成物の揮発分を測定したところ、2%以下だった。 The polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again. A solid substance containing water obtained by repeating the washing four times was taken out and dried at 40 ° C. under reduced pressure for 96 hours to obtain a composite conductive polymer composition (E-4). When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物(E-4)5g、シクロペンタノン50gおよびイソプロピルアルコール45gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-4) obtained above, 50 g of cyclopentanone and 45 g of isopropyl alcohol were added, and stirred and dissolved at room temperature to obtain a composite conductive polymer composition solution. . The appearance of this solution was a transparent green color.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、300kΩ/□であった。 Next, the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and dried, and a green uniform coating film was obtained. It was. The surface resistance value of the coating film was 300 kΩ / □.
実 施 例 5
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-4)14.6gに変更した以外は実施例4と同様にして、複合導電性高分子組成物(E-5)を得た。この複合導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Example 5
(1) Polyaniline polymerization and purification:
A composite conductive polymer composition (E-5) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 14.6 g of the polymer compound (AP-4). It was. When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物(E-5)5g、シクロペンタノン65gおよびメチルエチルケトン30gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-5) obtained above, 65 g of cyclopentanone, and 30 g of methyl ethyl ketone were added and stirred and dissolved at room temperature to obtain a composite conductive polymer composition solution. The appearance of this solution was a transparent green color.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、550kΩ/□であった。 Next, the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and dried, and a green uniform coating film was obtained. It was. The surface resistance value of the coating film was 550 kΩ / □.
実 施 例 6
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-5)13.7gに変更した以外は実施例4と同様にして、複合導電性高分子組成物(E-6)を得た。この複合導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Example 6
(1) Polyaniline polymerization and purification:
A composite conductive polymer composition (E-6) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 13.7 g of the polymer compound (AP-5). It was. When the volatile content of this composite conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た複合導電性高分子組成物(E-6)5g、シクロペンタノン65gおよびイソプロピルアルコール30gを投入し、室温で撹拌溶解して複合導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある黒緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the composite conductive polymer composition (E-6) obtained above, 65 g of cyclopentanone and 30 g of isopropyl alcohol were added, and stirred and dissolved at room temperature to obtain a composite conductive polymer composition solution. . The appearance of this solution was a transparent black-green color.
 ついで、その複合導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、150kΩ/□であった。 Next, the composite conductive polymer composition solution was coated on a glass substrate with a doctor blade so that the thickness after drying was 10 μm and dried, and a green uniform coating film was obtained. It was. The surface resistance value of the coating film was 150 kΩ / □.
比 較 例 1
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-6)37.9gに変更した以外は実施例4と同様にして、導電性高分子組成物(EC-1)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 1
(1) Polyaniline polymerization and purification:
A conductive polymer composition (EC-1) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 37.9 g of the polymer compound (AP-6). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-1)5gおよびメチルエチルケトン95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、不均質な緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-1) obtained above and 95 g of methyl ethyl ketone were added, and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a heterogeneous green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の不均一な塗膜が得られた。その塗膜の表面抵抗値は、8MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, and a green non-uniform coating film was obtained. It was. The surface resistance value of the coating film was 8 MΩ / □.
比 較 例 2
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-7)15.4gに変更した以外は実施例4と同様にして、導電性高分子組成物(EC-2)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 2
(1) Polyaniline polymerization and purification:
A conductive polymer composition (EC-2) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 15.4 g of the polymer compound (AP-7). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-2)5gおよびシクロペンタノン95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、不均質な緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-2) obtained above and 95 g of cyclopentanone were added and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a heterogeneous green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の不均一な塗膜が得られた。その塗膜の表面抵抗値は、1MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, and a green non-uniform coating film was obtained. It was. The surface resistance value of the coating film was 1 MΩ / □.
比 較 例 3
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-8)7.2gに変更した以外は実施例4と同様にして、導電性高分子組成物(EC-3)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 3
(1) Polyaniline polymerization and purification:
A conductive polymer composition (EC-3) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 7.2 g of the polymer compound (AP-8). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-3)5gおよびメタノール95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、やや不均質な緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-3) obtained above and 95 g of methanol were added, and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a slightly heterogeneous green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の不均一な塗膜が得られた。その塗膜の表面抵抗値は、5MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, and a green non-uniform coating film was obtained. It was. The surface resistance value of the coating film was 5 MΩ / □.
比 較 例 4
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-9)5.15gに変更した以外は実施例4と同様にして、導電性高分子組成物(EC-4)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 4
(1) Polyaniline polymerization and purification:
A conductive polymer composition (EC-4) was obtained in the same manner as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 5.15 g of the polymer compound (AP-9). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-4)5gおよびメタノール95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、やや不均質な緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-4) obtained above and 95 g of methanol were added and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a slightly heterogeneous green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の不均一な塗膜が得られた。その塗膜の表面抵抗値は、12MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, and a green non-uniform coating film was obtained. It was. The surface resistance value of the coating film was 12 MΩ / □.
比 較 例 5
(1)ポリアニリン重合と精製:
 高分子化合物(AP-2)13.3gを高分子化合物(AP-9)20.6gに、35%塩酸水溶液6gを10gに変更した以外は実施例4と同様にして、導電性高分子組成物(EC-5)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 5
(1) Polyaniline polymerization and purification:
The conductive polymer composition was the same as in Example 4 except that 13.3 g of the polymer compound (AP-2) was changed to 20.6 g of the polymer compound (AP-9) and 6 g of 35% aqueous hydrochloric acid solution was changed to 10 g. A product (EC-5) was obtained. When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-5)5gおよびイオン交換水95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、透明感のある緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-5) obtained above and 95 g of ion-exchanged water were added and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a transparent green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、緑色の均一な塗膜が得られた。その塗膜の表面抵抗値は、3MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, whereby a uniform green coating film was obtained. . The surface resistance value of the coating film was 3 MΩ / □.
比 較 例 6
(1)ポリピロール重合と精製:
 撹拌機、窒素ガス導入管、環流冷却器、投入口および温度計を備えた容量500cmの四つ口フラスコに、合成例2で得られた高分子化合物(AP-2)10.6g、イオン交換水200g、35%塩酸水溶液6gを投入し、60℃に加熱し3時間撹拌を行った後、25℃まで冷却した。フラスコ内の乳化剤溶液は、均一なものであった。
Comparative Example 6
(1) Polypyrrole polymerization and purification:
In a four-necked flask with a capacity of 500 cm 3 equipped with a stirrer, a nitrogen gas inlet tube, a reflux condenser, a charging port and a thermometer, 10.6 g of the polymer compound (AP-2) obtained in Synthesis Example 2 and ions 200 g of exchange water and 6 g of 35% hydrochloric acid aqueous solution were added, heated to 60 ° C., stirred for 3 hours, and then cooled to 25 ° C. The emulsifier solution in the flask was uniform.
 ついで、この乳化剤溶液に、ピロール3.35gを投入し、攪拌して均一な乳化液とした。16.5gの塩化第二鉄をイオン交換水30gに溶解したものを、0℃に保ったフラスコ内に2時間かけて滴下した。滴下終了後、室温(25℃)に戻し、43時間重合反応を続けた。 Next, 3.35 g of pyrrole was added to this emulsifier solution and stirred to obtain a uniform emulsion. A solution obtained by dissolving 16.5 g of ferric chloride in 30 g of ion-exchanged water was dropped into a flask kept at 0 ° C. over 2 hours. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and the polymerization reaction was continued for 43 hours.
 重合反応終了後の重合溶液を濾別し、得られた固形物を水に再分散して攪拌洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃にて96時間乾燥して導電性高分子組成物(EC-6)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下だった。 The polymerization solution after completion of the polymerization reaction was filtered off, and the resulting solid was redispersed in water, washed with stirring, and filtered again. A solid containing water obtained by repeating the washing 4 times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a conductive polymer composition (EC-6). The volatile content of this conductive polymer composition was measured and found to be 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-6)5gおよびメチルエチルケトン95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、不均質な黒色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-6) obtained above and 95 g of methyl ethyl ketone were added and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was heterogeneous black.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、凹凸のある黒色塗膜が得られた。その塗膜の表面抵抗値は、20MΩ/□以上であった。また、塗膜の表面を指でこすると粉状物が剥離した。 Next, the conductive polymer composition solution was applied onto a glass substrate using a doctor blade so that the thickness after drying was 10 μm and dried, whereby a black coating film with unevenness was obtained. . The surface resistance value of the coating film was 20 MΩ / □ or more. Moreover, when the surface of the coating film was rubbed with a finger, the powdery material was peeled off.
比 較 例 7
(1)ポリチオフェン重合と精製:
 高分子化合物(AP-3)11.6gを高分子化合物(AP-8)4.3gに変更した以外は実施例3と同様にして、導電性高分子組成物(EC-7)を得た。この導電性高分子組成物の揮発分を測定したところ、2%以下であった。
Comparative Example 7
(1) Polythiophene polymerization and purification:
A conductive polymer composition (EC-7) was obtained in the same manner as in Example 3, except that 11.6 g of the polymer compound (AP-3) was changed to 4.3 g of the polymer compound (AP-8). . When the volatile content of this conductive polymer composition was measured, it was 2% or less.
(2)塗膜評価:
 ビーカーに、上記で得た導電性高分子組成物(EC-6)5gおよびメタノール95gを投入し、室温で撹拌溶解して導電性高分子組成物溶液を得た。この溶液の外観は、やや不均質な黒緑色であった。
(2) Coating film evaluation:
In a beaker, 5 g of the conductive polymer composition (EC-6) obtained above and 95 g of methanol were added, and stirred and dissolved at room temperature to obtain a conductive polymer composition solution. The appearance of this solution was a slightly heterogeneous black-green color.
 ついで、その導電性高分子組成物溶液を、ドクターブレードを用い、乾燥後の厚みが10μmとなるようガラス基板上に塗工し、乾燥を行ったところ、黒緑色の不均一な塗膜が得られた。その塗膜の表面抵抗値は、2MΩ/□であった。 Next, the conductive polymer composition solution was applied onto a glass substrate with a doctor blade so that the thickness after drying was 10 μm, and dried to obtain a black-green non-uniform coating film. It was. The surface resistance value of the coating film was 2 MΩ / □.
実施例7~実施例13および比較例8~比較例10
 国際公開番号WO/2009/013942の実施例1で用いている対向電極(開口銅メッシュ電極)ならび対向電極基板(厚さ80μmのPETフィルム)を、実施例1~4で調製した複合導電性高分子組成物溶液もしくは比較例2で調製した導電性高分子組成物溶液をドクターブレードを用い乾燥後の厚みが5μmとなるように、SUS箔、ITO PENフィルム、ガラス基板、ITOガラス基板またはFTOガラス基板上に塗工したものに替えて色素増感型太陽電池素子を製造した。
Examples 7 to 13 and Comparative Examples 8 to 10
The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 μm thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 μm using a doctor blade It replaced with what was coated on the board | substrate, and manufactured the dye-sensitized solar cell element.
 得られた色素増感型太陽電池素子評価は山下電装(株)製のソーラーシュミレーターYSS-80Aを用いた。セル面積1cmの素子に対してAM1.5(1sun;100mW/cm2)照射下のI-V特性を調べることにより、セルの短絡電流、開放電圧、フィルファクターおよび発電効率を評価した。その結果を表2に示した。 For evaluation of the obtained dye-sensitized solar cell element, a solar simulator YSS-80A manufactured by Yamashita Denso Co., Ltd. was used. The cell short-circuit current, open-circuit voltage, fill factor, and power generation efficiency were evaluated by examining the IV characteristics under irradiation of AM 1.5 (1 sun; 100 mW / cm 2 ) for an element having a cell area of 1 cm 2 . The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上の結果より、本発明の複合導電性高分子組成物を用いてなる色素増感型太陽電池素子は高い光電変換効率を示した。 From the above results, the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
 実施例14~実施例15および比較例11~比較例12
 実施例1~2で調製した複合導電性高分子組成物溶液または比較例2で調製した導電性高分子組成物溶液を、それぞれ固形分2.5%に再調整し、それらをスピンコート法により4000rpm-15secの条件で、厚さが1000μmのガラス基板および100μmのPETフィルム基板に対して塗布し、熱風乾燥機で溶媒を除去させて帯電防止層を形成した帯電防止フィルムを作製した。なお、帯電防止層の膜厚を触針式表面形状測定器(Dektak 6M:アルバック製)で測定を行ったところ、帯電防止層の厚さはいずれもおよそ25nmであった。
Examples 14 to 15 and Comparative Examples 11 to 12
The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 μm and a PET film substrate having a thickness of 1000 μm under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
 得られた帯電防止フィルムについて、以下のような条件下で静置した後に表面抵抗値の評価を行った。評価結果を表3に示した。
 条件(1):23℃50%RHにて192hr
 条件(2):40℃80%RHにて168hr
The obtained antistatic film was allowed to stand under the following conditions, and then the surface resistance value was evaluated. The evaluation results are shown in Table 3.
Condition (1): 192 hr at 23 ° C. and 50% RH
Condition (2): 168 hr at 40 ° C. and 80% RH
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上の結果より、本発明の帯電防止フィルムは、高温多湿下での環境で使用されても、帯電防止特性を十分に示す結果であった。 From the above results, even when the antistatic film of the present invention was used in an environment under high temperature and high humidity, it was a result that sufficiently exhibited antistatic properties.
 本発明の複合導電性高分子組成物は、親水性基と重合性ビニル基を有する極性モノマーを主成分とする高分子化合物(A)をドープ剤として使用したものであり、アルコール系やケトン系溶剤に安定に可溶化させることが可能となったものである。 The composite conductive polymer composition of the present invention uses a polymer compound (A) having as a main component a polar monomer having a hydrophilic group and a polymerizable vinyl group as a dopant, and is based on alcohol or ketone. This makes it possible to stably solubilize in a solvent.
 そして、このようにして得られる複合導電性高分子組成物をアルコール系やケトン系溶剤中に透明状態で溶解させた複合導電性高分子組成物溶液は、導電性が要求される部分に簡単に導電性皮膜を形成することが可能であり、電子部品等の分野において、きわめて有利に使用できるものである。 The composite conductive polymer composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an alcohol-based or ketone-based solvent in a transparent state can be easily applied to a portion requiring electrical conductivity. A conductive film can be formed, and can be used very advantageously in the field of electronic components and the like.
 さらに、本発明の複合導電性高分子組成物を用いた色素増感型太陽電気用電極や帯電防止フィルムは、優れた性能を有する。 Furthermore, a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Claims (16)

  1.  次の成分(a-1)ないし(a-3)
     (a-1)スルホン酸基と重合性ビニル基を有するモノマー
                  20~60mol%
     (a-2)親水性基と重合性ビニル基を有する極性モノマー
                  20~60mol%
     (a-3)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      20~35mol%
    を重合させることにより得られる高分子化合物(A)を、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000001
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)にドーピングさせてなる複合導電性高分子組成物。
    The following components (a-1) to (a-3)
    (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol%
    (A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol%
    (A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol%
    The polymer compound (A) obtained by polymerizing the compound is represented by the following formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000001
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a compound selected from:
  2.  成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーが、スチレンスルホン酸ナトリウム、スチレンスルホン酸、2-ソジウムスルホエチル(メタ)アクリレートおよび2-スルホエチル(メタ)アクリレートよりなる群から選ばれたものである請求項1記載の複合導電性高分子組成物。 Group (a-1) wherein the monomer having a sulfonic acid group and a polymerizable vinyl group is composed of sodium styrene sulfonate, styrene sulfonic acid, 2-sodium sulfoethyl (meth) acrylate and 2-sulfoethyl (meth) acrylate. The composite conductive polymer composition according to claim 1, which is selected from the group consisting of:
  3.  成分(a-2)の親水性基と重合性ビニル基を有する極性モノマーが、アクリル酸、メタクリル酸、2-メタクリロイロキシエチルコハク酸、(無水)マレイン酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-アセトアセトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレートおよびβ-(メタ)アクリロイルオキシエチルハイドロジェンサクシネートよりなる群から選ばれたものである請求項1または2記載の複合導電性高分子組成物。 The polar monomer having a hydrophilic group and a polymerizable vinyl group as component (a-2) is acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinic acid, (anhydrous) maleic acid, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-acetoacetoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, Selected from the group consisting of ethyl carbitol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate and β- (meth) acryloyloxyethyl hydrogen succinate In a claim 1 or 2 composite conductive polymer composition according to.
  4.  成分(a-3)の芳香族基または脂環族基と重合性ビニル基を有するモノマーが、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ネオペンチルグリコール(メタ)アクリル酸安息香酸エステル、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ヒドロキシエチル化o-フェノール(メタ)アクリレート、o-フェニルフェノールグリシジルエーテル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ビニルピリジンおよび(メタ)アクリロイルモルホリンよりなる群から選ばれたものである請求項1ないし3の何れかの項記載の複合導電性高分子組成物。 The monomer having an aromatic group or alicyclic group and a polymerizable vinyl group as component (a-3) is benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, neopentyl glycol (meth) acrylic acid benzoate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, hydroxyethylated o-phenol (meth) acrylate, o-Phenylphenol glycidyl ether (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate A compound according to any one of claims 1 to 3, which is selected from the group consisting of benzoate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, vinylpyridine and (meth) acryloylmorpholine. A composite conductive polymer composition.
  5.  次の成分(a-1)ないし(a-3)
     (a-1)スルホン酸基と重合性ビニル基を有するモノマー
                  20~60mol%
     (a-2)親水性基と重合性ビニル基を有する極性モノマー
                  20~60mol%
     (a-3)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      20~35mol%
    を重合させることにより得られる高分子化合物(A)と、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000002
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製法。
    The following components (a-1) to (a-3)
    (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 60 mol%
    (A-2) Polar monomer having hydrophilic group and polymerizable vinyl group 20 to 60 mol%
    (A-3) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 35 mol%
    A polymer compound (A) obtained by polymerizing the compound, and the following formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000002
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A method for producing a composite conductive polymer composition comprising coexisting with a compound selected from the group consisting of an organic substrate solvent and chemical oxidative polymerization using an oxidizing agent.
  6.  成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーが、スチレンスルホン酸ナトリウム、スチレンスルホン酸、2-ソジウムスルホエチル(メタ)アクリレートおよび2-スルホエチル(メタ)アクリレートよりなる群から選ばれたものである請求項5記載の複合導電性高分子組成物の製法。 Group (a-1) wherein the monomer having a sulfonic acid group and a polymerizable vinyl group is composed of sodium styrene sulfonate, styrene sulfonic acid, 2-sodium sulfoethyl (meth) acrylate and 2-sulfoethyl (meth) acrylate. The method for producing a composite conductive polymer composition according to claim 5, which is selected from the group consisting of:
  7.  成分(a-2)の親水性基と重合性ビニル基を有する極性モノマーが、アクリル酸、メタクリル酸、2-メタクリロイロキシエチルコハク酸、(無水)マレイン酸、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-アセトアセトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレートおよびβ-(メタ)アクリロイルオキシエチルハイドロジェンサクシネートよりなる群から選ばれたものである請求項5または6記載の複合導電性高分子組成物の製法。 The polar monomer having a hydrophilic group and a polymerizable vinyl group as component (a-2) is acrylic acid, methacrylic acid, 2-methacryloyloxyethyl succinic acid, (anhydrous) maleic acid, 2-hydroxyethyl (meth) acrylate 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-acetoacetoxyethyl (meth) acrylate, methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, Selected from the group consisting of ethyl carbitol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate and β- (meth) acryloyloxyethyl hydrogen succinate Preparation of the in which claim 5 or 6 composite conductive polymer composition.
  8.  成分(a-3)の芳香族基または脂環族基と重合性ビニル基を有するモノマー(メタ)アクリルモノマーが、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ネオペンチルグリコール(メタ)アクリル酸安息香酸エステル、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ヒドロキシエチル化o-フェノール(メタ)アクリレート、o-フェニルフェノールグリシジルエーテル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ビニルピリジンおよび(メタ)アクリロイルモルホリンよりなる群から選ばれたものである請求項5ないし7の何れかの項記載の複合導電性高分子組成物の製法。 The monomer (meth) acrylic monomer having an aromatic or alicyclic group and a polymerizable vinyl group as the component (a-3) is benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2- (meth) acryloyl Roxyethyl phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, neopentyl glycol (meth) acrylic acid benzoate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, hydroxyethylated o-phenol (Meth) acrylate, o-phenylphenol glycidyl ether (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, dicyclo 8. The method according to claim 5, which is selected from the group consisting of tertenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, vinylpyridine and (meth) acryloylmorpholine. A method for producing a composite conductive polymer composition as described in the above item.
  9.  式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、そのスルホン酸基モル比が0.2~1.5となるように共存せしめる請求項5ないし8の何れかの項記載の複合導電性高分子組成物の製法。 The polymer compound (A) is allowed to coexist so that the molar ratio of the sulfonic acid group is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). A method for producing a composite conductive polymer composition according to any one of the above.
  10.  酸化剤が、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)およびオキソ二硫酸アンモニウムからなる群より選ばれた酸化剤である請求項5ないし9の何れかの項記載の複合導電性高分子組成物の製法。 The oxidizing agent is ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper sulfate ( 10. An oxidizing agent selected from the group consisting of II), copper chloride (II), copper tetrafluoroborate (II), copper hexafluorophosphate (II), and ammonium oxodisulfate. The manufacturing method of the composite conductive polymer composition of description.
  11.  電解性基質溶媒がイオン交換水である請求項5ないし10の何れかの項記載の複合導電性高分子組成物の製法。 The method for producing a composite conductive polymer composition according to any one of claims 5 to 10, wherein the electrolytic substrate solvent is ion-exchanged water.
  12.  化学酸化重合を、1molの式(I)~(III)から選ばれる化合物に対し、0.5~3.0molの、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)および硫酸鉄(II)から選ばれる酸性成分を加えて行う請求項5ないし11の何れかの項記載の複合導電性高分子組成物の製法。 For chemical oxidative polymerization, 0.5 to 3.0 mol of hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride and sulfuric acid with respect to 1 mol of the compound selected from formulas (I) to (III) The method for producing a composite conductive polymer composition according to any one of claims 5 to 11, wherein an acidic component selected from iron (II) is added.
  13.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を、アルコール系溶剤またはケトン系溶剤中に0.1~10質量%、溶解状態で含有してなる複合導電性高分子組成物溶液。 A composite conductive polymer comprising the composite conductive polymer composition according to any one of claims 1 to 4 in a dissolved state in an alcohol solvent or a ketone solvent in an amount of 0.1 to 10% by mass. Composition solution.
  14.  更に、金属、酸化金属、導電性ポリマー組成物、炭素粉末または分散体を含有する請求項13に記載の複合導電性高分子組成物溶液。 The composite conductive polymer composition solution according to claim 13, further comprising a metal, a metal oxide, a conductive polymer composition, carbon powder, or a dispersion.
  15.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極。 A counter electrode for a dye-sensitized solar cell, comprising the composite conductive polymer composition according to any one of claims 1 to 4.
  16.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を用いてなる帯電防止フィルム。 An antistatic film comprising the composite conductive polymer composition according to any one of claims 1 to 4.
PCT/JP2010/052356 2009-02-17 2010-02-17 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition WO2010095652A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500630A JP5869881B2 (en) 2009-02-17 2010-02-17 Composite conductive polymer solution and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009033647 2009-02-17
JP2009-033647 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095652A1 true WO2010095652A1 (en) 2010-08-26

Family

ID=42633932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052356 WO2010095652A1 (en) 2009-02-17 2010-02-17 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition

Country Status (3)

Country Link
JP (1) JP5869881B2 (en)
TW (1) TWI593733B (en)
WO (1) WO2010095652A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
JP5869880B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
CN109021761A (en) * 2018-08-22 2018-12-18 杭州创先彩印包装有限公司 A kind of oil polish and preparation method thereof
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469621A (en) * 1987-09-10 1989-03-15 Fuji Photo Film Co Ltd Preparation of conductive polymer emulsion
JPH05262981A (en) * 1992-03-18 1993-10-12 Japan Carlit Co Ltd:The Water-dispersible polyaniline composition and its production
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP2005508418A (en) * 2001-11-06 2005-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (dioxythiophene) / poly (acrylamide alkyl sulfonic acid) composite
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200642140A (en) * 2005-02-10 2006-12-01 Japan Carlit Co Ltd Catalytic electrode for dye-sensitized solar cell and dye-sensitized solar cell equipped with the same
JP2008169255A (en) * 2007-01-09 2008-07-24 Noriyuki Kuramoto Highly conductive polyaniline having excellent solubility and method for producing the same
JP5738178B2 (en) * 2009-02-17 2015-06-17 綜研化学株式会社 Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
WO2010095648A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
WO2010095651A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469621A (en) * 1987-09-10 1989-03-15 Fuji Photo Film Co Ltd Preparation of conductive polymer emulsion
JPH05262981A (en) * 1992-03-18 1993-10-12 Japan Carlit Co Ltd:The Water-dispersible polyaniline composition and its production
JP2005508418A (en) * 2001-11-06 2005-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (dioxythiophene) / poly (acrylamide alkyl sulfonic acid) composite
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9034211B2 (en) 2009-02-17 2015-05-19 Soken & Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
JP5869880B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
US9058916B2 (en) 2009-02-17 2015-06-16 Soken Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
US9953767B2 (en) 2011-09-06 2018-04-24 Tayca Corporation Conductive polymer dispersion liquid, a conductive polymer, and use thereof
JP5252669B1 (en) * 2011-09-06 2013-07-31 テイカ株式会社 Solid electrolytic capacitor
US9460860B2 (en) 2011-09-06 2016-10-04 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
TWI585149B (en) * 2011-09-06 2017-06-01 帝化股份有限公司 Dispersion liquid of conductive polymer, conductive polymer and its use
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
WO2015030193A1 (en) * 2013-08-30 2015-03-05 積水化学工業株式会社 Method for reactivating counter electrode active material for dye-sensitive solar cell, method for regenerating dye-sensitive solar cell in which said method is used, catalyst layer for dye-sensitive solar cell, counter electrode, electrolyte, and dye-sensitive solar cell
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
CN109021761A (en) * 2018-08-22 2018-12-18 杭州创先彩印包装有限公司 A kind of oil polish and preparation method thereof
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier

Also Published As

Publication number Publication date
JPWO2010095652A1 (en) 2012-08-30
TW201041964A (en) 2010-12-01
TWI593733B (en) 2017-08-01
JP5869881B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5738178B2 (en) Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
JP5435437B2 (en) COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5869881B2 (en) Composite conductive polymer solution and method for producing the same
JP5435436B2 (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869880B2 (en) Composite conductive polymer solution and method for producing the same
TWI488909B (en) Composition for solid electrolyte and solar cell using the same
JP5417629B2 (en) Conductive polymer composition and method for producing the same
US20150060737A1 (en) Block copolymers that disperse nanofillers in water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500630

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743778

Country of ref document: EP

Kind code of ref document: A1