WO2010095651A1 - Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition - Google Patents

Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition Download PDF

Info

Publication number
WO2010095651A1
WO2010095651A1 PCT/JP2010/052355 JP2010052355W WO2010095651A1 WO 2010095651 A1 WO2010095651 A1 WO 2010095651A1 JP 2010052355 W JP2010052355 W JP 2010052355W WO 2010095651 A1 WO2010095651 A1 WO 2010095651A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
group
conductive polymer
polymer composition
Prior art date
Application number
PCT/JP2010/052355
Other languages
French (fr)
Japanese (ja)
Inventor
文明 小林
岡本 秀二
目黒 晃
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Priority to JP2011500629A priority Critical patent/JP5869880B2/en
Publication of WO2010095651A1 publication Critical patent/WO2010095651A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1807C7-(meth)acrylate, e.g. heptyl (meth)acrylate or benzyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/38Esters containing sulfur
    • C08F220/382Esters containing sulfur and containing oxygen, e.g. 2-sulfoethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants

Definitions

  • the present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition, and more specifically, an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic ring.
  • a composite conductive polymer composition doped with a polymer compound, a method for producing the same, a solution containing the composition, and The present invention relates to the use of the composition for a dye-sensitized solar electric electrode or an antistatic film.
  • Doping with a dopant is essential for imparting high conductivity in a ⁇ -conjugated polymer.
  • a polymer in which ⁇ conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of ⁇ bond.
  • the ⁇ -conjugated polymer doped with the dopant has higher planarity and higher affinity due to ⁇ -conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the ⁇ -conjugated polymer and the electrical conductivity.
  • Patent Document 1 a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a ⁇ -conjugated polymer has been proposed.
  • Patent Document 1 a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a ⁇ -conjugated polymer.
  • doping is necessary. When this doping is performed, as a result, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of ⁇ -conjugate affinity.
  • a self-supporting film or a self-supporting body that can be dissolved by a solvent or melted by heat, and has sufficient electrical conductivity after molding.
  • a polymer film is formed by electrolytic polymerization or vapor exposure on a substrate to which direct conductivity is desired, an oxidizing agent and a conductive polymer. After being immersed in the precursor monomer solution, a thin film polymerization or the like is performed by heating or the like, and then a treatment such as doping of the obtained polymer film is performed.
  • the electrolytic polymerization requires the substrate to be a semiconductor or a conductor, and corrosion resistance to the electrolytic solution is also required, so that usable substrates are limited.
  • the oxidant homogeneously present in the thin film that becomes the polymerization field, which is not sufficient in terms of film formation control.
  • fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
  • Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent.
  • 3 discloses a water-dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P.
  • Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water.
  • Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
  • Patent Document 4 polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent.
  • a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level.
  • the surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
  • polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonate and a molecular weight of 2,000 to 500,000 are disclosed.
  • a solution of polythiophene comprising a polyanion derived from polystyrene sulfonic acid in water or a mixed solvent of water and a water-miscible organic solvent is disclosed.
  • This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent.
  • PEDOT poly(ethylene dioxide substituted thiophene)
  • PSS polystyrene sulfonic acid
  • the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough.
  • Patent Document 6 discloses precipitation, isolation, and purification by oxidative polymerization of aniline or aniline derivatives in a solvent containing an organic acid or an inorganic acid in the presence of a highly hydrophobic anionic surfactant. And then extracting with an organic solvent immiscible with water to form an organic solution.
  • the emulsifier used in this patent document is a low molecular sulfonic acid type, and aniline is converted to hydrochloric acid before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier.
  • the exchange hardly occurs, and the polyaniline obtained by the synthesis method of this patent document does not actually dissolve in the solvent, and there is a problem that only a finely dispersed solvent dispersion can be obtained.
  • Patent Document 7 a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer soot made of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
  • Patent Document 8 discloses a conductive material containing (a) a protonated substituted or unsubstituted polyaniline complex and (b) a compound having a phenolic hydroxyl group dissolved in an organic solvent that is substantially immiscible with water.
  • a functional polyaniline composition is disclosed.
  • Non-Patent Document 1 This is a technique described in Non-Patent Document 1, although the description is not sufficient, and by adjusting the donor strength in the polyaniline coating, the affinity of the phenolic compound is remarkable, and the conductivity in the polyaniline coating is It is disclosed that it is useful for improving the performance. In other words, by mixing non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene.
  • Patent Document 10 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
  • a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer.
  • the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance.
  • Patent Document 11 discloses an antistatic film in which an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol is applied to a thermoplastic resin film.
  • the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
  • the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or a molded body that is free from pinholes, and a method for producing the same. Is an issue.
  • the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a ⁇ -conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a ⁇ -conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
  • the present invention provides the following components (a-1) to (a-3) (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol% (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol% (A-3) Alkyl (meth) acrylate 30 to 60 mol%
  • the polymer compounds obtained by polymerizing are represented by the following formulas (I) to (III) (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
  • a composite conductive polymer composition obtained by doping a ⁇ -conjugated polymer ( ⁇ ) having a monomer component as a monomer constituent.
  • the present invention also provides the following components (a-1) to (a-3) (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol% (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol% (A-3) Alkyl (meth) acrylate 30 to 60 mol% Characterized by coexisting a polymer compound obtained by polymerizing the compound and a compound selected from the formulas (I) to (III) in an electrolytic substrate solvent and performing chemical oxidative polymerization using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
  • the present invention relates to the above composite conductive polymer composition in an aromatic solvent selected from toluene, benzene and xylene and / or an ester solvent selected from ethyl acetate, propyl acetate and butyl acetate.
  • aromatic solvent selected from toluene, benzene and xylene
  • ester solvent selected from ethyl acetate, propyl acetate and butyl acetate.
  • the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
  • the present invention is an antistatic film using the composite conductive polymer composition.
  • the composite conductive polymer compound obtained by polymerization by the action of an oxidizing agent in the presence of the polymer compound of the present invention is stably dissolved in an aromatic solvent such as toluene or an ester solvent such as ethyl acetate. Is.
  • the polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group as component (a-1), an aromatic group or alicyclic group as component (a-2) according to a conventional method. And a monomer having a polymerizable vinyl group and an alkyl (meth) acrylate of component (a-3) are polymerized in the presence of a polymerization initiator.
  • the monomer having a sulfonic acid group and a polymerizable vinyl group as the component (a-1) is a monomer having a sulfonic acid group such as a styrene sulfonic acid group or a sulfoethyl group. Examples thereof include styrene sulfonic acid and styrene sulfone.
  • Styrene sulfonates such as sodium acrylate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium acrylate), ethyl (meth) acrylate 2 -Ethyl (meth) acrylate 2-sulfonates such as potassium sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, etc.
  • Examples of the monomer (a-2) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2 -Methyl phthalate, ethyl (meth) acrylate 2-ethyl phthalate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate , T-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethylc
  • alkyl (meth) acrylate of component (a-3) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and n-butyl.
  • (Meth) acrylate, i-butyl (meth) acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (Meth) acrylate etc. are mentioned.
  • the molar ratio of the monomer (a-1), the monomer (a-2) and the monomer (a-3) is important.
  • the polymer compound of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group, and this is incorporated into the solvent. This is to enable dissolution.
  • the amount of component (a-1) for producing the polymer compound (A) of the present invention is 20 to 50 mol%, preferably 25 to 40 mol%.
  • the amount of component (a-2) is 20 to 50 mol%, preferably 30 to 45 mol%.
  • the amount of component (a-3) is 30 to 60 mol%, preferably 35 to 50 mol%.
  • the polymer compound of the present invention may contain a polymerizable component other than the monomers (a-1), (a-2) and (a-3).
  • this polymerizable component include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, methoxyethyl (meth) Acrylate, butoxyethyl (meth) acrylate, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, acetoacetoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, N, N- Examples thereof include dimethylaminoethyl (meth) acrylate, vinylpyridine, and the blending amount when blending is about 0 to 20 mol%.
  • the polymerization reaction of the component (a-1), the component (a-2), the component (a-3) and the polymerizable component added as necessary can be carried out by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
  • the polymerization method that can be employed to produce the polymer compound (A) is not particularly limited as long as it is a method that can be carried out without the component (a-2) being separated from the monomer mixture.
  • a polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
  • the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction.
  • this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA).
  • water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used.
  • redox agents such as ferrocene and amines are possible.
  • polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol per 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. . Further, in the case of bulk polymerization or solution polymerization using a small amount of solvent (50 wt% or less based on the monomer), a polymerization method using a combination of mercaptan and metallocene (Patent Document 9) is also possible.
  • alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol
  • ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • methyl cellosolve ethyl cellosolve
  • propylene glycol methyl ether propylene
  • glycol solvents such as glycol ethyl ether
  • lactic acid solvents such as methyl lactate and ethyl lactate.
  • a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight.
  • the chain transfer agent that can be used any compound can be used as long as it is soluble in the above-mentioned monomers and solvents.
  • polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA).
  • a water-soluble thiol having a group, an oily radical inhibitor such as ⁇ -styrene dimer (ASD), and the like can be used as appropriate.
  • this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable.
  • it is preferably performed at 25 ° C. to 80 ° C.
  • the polymer thus obtained can be purified as necessary to obtain a polymer compound (A).
  • an oily poor solvent such as hexane is used to remove oily low molecular impurities and residual monomers and low molecular impurities, and then polymer precipitation with an aqueous poor solvent such as acetonitrile, methanol, ethanol, acetone, etc. And removing water-based impurities and residues.
  • the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
  • the polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 100,000.
  • the weight average molecular weight is less than 3,000, the function as a polymer compound is insufficient.
  • the solubility in the polymerization field (acidic aqueous solution) at the time of synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer compound itself may deteriorate, and the conductive polymer may be used. May significantly affect solubilization.
  • the composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the ⁇ -conjugated polymer ( ⁇ ), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the ⁇ -conjugated polymer ( ⁇ ) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
  • the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group.
  • this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline.
  • the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
  • the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
  • ion-exchanged water as an electrolytic substrate solvent is acidified as necessary, and then, as described above, The polymer compound (A) thus obtained is added, and then one or more of the compounds of the formulas (I) to (III) as raw materials are added thereto, and an oxidant is further added for oxidative polymerization.
  • an oxidant is further added for oxidative polymerization.
  • a ketone solvent such as acetone or methyl ethyl ketone
  • an alcohol solvent such as methanol, ethanol or isopropyl alcohol
  • a highly hydrophilic organic solvent such as acetonitrile
  • Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like.
  • the amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
  • the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition.
  • ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate
  • copper (II) hexafluorophosphate can be used.
  • the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply.
  • an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
  • the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
  • the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system.
  • the polymerization can be sufficiently carried out even with 1 mol or less per 1 mol of the monomer.
  • the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III)
  • the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
  • the temperature is preferably 40 ° C. or lower
  • the compound (II) is preferably 90 ° C. or lower
  • the compound (III) is preferably 20 ° C. or lower.
  • the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
  • the polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As described later, this dissolves stably in an aromatic solvent such as toluene and an ester solvent such as ethyl acetate in which the conventional conductive polymer composition did not dissolve.
  • Examples of methods of using the composite conductive polymer composition of the present invention thus obtained include a composite conductive polymer composition solution in which this is dissolved in an aromatic solvent and an ester solvent in a homogeneous state. Can do.
  • This composite conductive polymer composition solution is uniformly applied to the target portion by applying it to the portion where the formation of the conductive film is required and then volatilizing the aromatic solvent in the composition by means such as drying. A conductive film can be formed.
  • the composite conductive polymer composition is preferably an aromatic solvent such as toluene, benzene or xylene and / or an ester such as ethyl acetate, propyl acetate or butyl acetate. It is dissolved in a solvent of about 0.1 to 10% by mass.
  • aromatic solvent such as toluene, benzene or xylene and / or an ester such as ethyl acetate, propyl acetate or butyl acetate. It is dissolved in a solvent of about 0.1 to 10% by mass.
  • the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state.
  • Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol, 2,6-dimethylphenol can be added. These hydroxyl group-containing compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
  • the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells.
  • Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion
  • the body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
  • the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell.
  • the counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested
  • the thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m.
  • a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used.
  • transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin.
  • metal foil metal foil, such as gold
  • the thickness of these transparent substrates is usually in the range of 200 to 7000 ⁇ m in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 ⁇ m, preferably in the range of 20 to 2000 ⁇ m in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 ⁇ m to 1000 ⁇ m, preferably 1 ⁇ m to 500 ⁇ m.
  • the polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
  • a transparent electrode as needed to one side of the said transparent substrate.
  • the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
  • the film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like.
  • This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate. ⁇
  • the thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 ⁇ m, preferably 0.01 to 0.5 ⁇ m.
  • the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape.
  • the mesh-like conductive metal electrode has a line width of usually 10 to 70 ⁇ m, preferably 10 to 20 ⁇ m, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 ⁇ m, preferably 50 to 200 ⁇ m.
  • the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 ⁇ m, preferably 8 to 15 ⁇ m.
  • This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
  • the counter electrode for dye-sensitized solar cell as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
  • a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
  • the solvent can be removed by a method such as natural drying by standing or forced drying under heating conditions using hot air or infrared rays.
  • the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
  • the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range.
  • the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range.
  • the counter electrode for the dye-sensitized solar cell is a composite conductive polymer film as a uniform oxidation resistant film against an expensive platinum electrode which has been used as an electrode having oxidation resistance with respect to an electrolytic solution. Since various metals can be used as a result of the action, it can be provided at a low price.
  • the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
  • thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated.
  • examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
  • thermosetting resin used in the antistatic film of the present invention examples include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluororesin, and alkyd resin.
  • the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
  • AIBN azobisisobutyronitrile
  • Coating film evaluation The finely dispersed solution of the comparative conductive polymer composition of the above (6) was filtered through a 200 mesh filter, and the filtrate was coated on a glass substrate and dried to obtain a uniform film ( ⁇ -7) was obtained, but the film quality was such that it would fall off when the surface was rubbed with a finger, and it was not a uniform free-standing coating film as obtained in Example 1 and its surface resistance was 1 M ⁇ / It was ⁇ .
  • Examples 2 to 5 and Comparative Examples 2 to 4 Polymer compounds ⁇ -2 to ⁇ -5 having the compositions shown in Table 1 below were prepared by the method shown in (1) and (2) of Example 1. Further, comparative polymer compounds ⁇ -7 to ⁇ -9 were prepared by the method shown in (1) and (2) of Comparative Example 1 with the composition shown in Table 1. Table 1 shows the molecular weight and water solubility of each polymer compound, including those obtained in Example 1 and Comparative Example 1.
  • Examples 6 to 10 and Comparative Examples 5 to 10 Using the polymer compounds ⁇ -2 to ⁇ -5 obtained in Examples 2 to 5, the composite conductive polymer composition ⁇ having the composition shown in Table 2 by the method shown in (3) and (4) of Example 1 was used. - ⁇ to ⁇ -6 were prepared (however, in the preparation of ⁇ -4, 100 g of ion-exchanged water and 100 g of 25 ° C. saturated saline were used instead of 200 g of ion-exchanged water at the time of re-dissolution of the polymer compound).
  • Comparative Examples 2 to 4 were used, and by the method shown in Comparative Examples 1 (1) and (2), the compositions shown in Table 2 were used for comparative conductivity.
  • Polymer compositions ⁇ -8 to ⁇ -13 were prepared.
  • Table 2 including those obtained in Example 1 and Comparative Example 1, the monomer composition of each conductive polymer, the type and amount of polymer compound used, the amount of hydrochloric acid used, the amount of oxidizing agent and the amount thereof, and the reaction Conditions (reaction temperature and reaction time) are shown.
  • Examples 11 to 15 and Comparative Examples 11 to 16 The composite conductive polymer compositions ⁇ -1 to ⁇ -6 obtained in Examples 1 and 6 to 10 were prepared from various aromatic solvents and / or esters according to (6) and (7) of Example 1. It was dissolved in a system solvent and dried to form a composite conductive polymer composition film of ⁇ -2 to ⁇ -6.
  • the comparative conductive polymer compositions obtained in Comparative Examples 1 and 5 to 10 were similarly dissolved in various aromatic solvents and / or ester solvents and then dried to try to form a film. ( ⁇ -8 to ⁇ -13).
  • Table 3 shows the dissolved state of each conductive polymer composition in the solvent, the state of the dry film produced using the conductive polymer composition, and the surface resistance value. In the table, the film obtained in Example 1 and Comparative Example 1 and the film using water as the solvent ( ⁇ -17) are also shown.
  • the composite conductive polymer composition obtained by oxidizing the aromatic compound using the polymer compound ( ⁇ -1 to ⁇ -5) of the present invention is aromatic.
  • a film that is soluble in a solvent and an ester solvent, and obtained after volatilization of the solvent was highly conductive.
  • the comparative conductive polymer composition obtained by using a polymer compound having a composition different from that of the polymer compound of the present invention has no solubility in an aromatic solvent or an ester solvent.
  • the film prepared by using the film had almost no conductivity.
  • Examples 16 to 22 and Comparative Examples 12 to 14 The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 ⁇ m thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 ⁇ m using a doctor blade It replaced with what was coated on the board
  • the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
  • Examples 23 to 24 and Comparative Examples 15 to 16 The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 ⁇ m and a PET film substrate having a thickness of 1000 ⁇ m under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
  • Dektak 6M manufactured by ULVAC
  • the composite conductive polymer composition of the present invention uses a polymer compound (A) whose main component is a highly hydrophobic aromatic ring or alicyclic group as a dopant, and an aromatic solvent such as toluene, It can be stably solubilized in an ester solvent such as ethyl acetate.
  • a conductive polymer-forming composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an aromatic solvent or an ester solvent in a transparent state can be easily applied to a portion requiring conductivity. It is possible to form a conductive film on the surface, and it can be used very advantageously in the field of electronic parts and the like.
  • a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Abstract

Disclosed is a composite conductive polymer composition which is obtained by doping a π-conjugated polymer that contains, as a monomer constituting component, a compound which is optionally substituted with an alkyl group and selected from among aniline, thiophene and pyrrole, with a polymer compound that is composed of 20-50 mol% of a monomer having a sulfonic acid group and a polymerizable vinyl group, 20-50 mol% of a monomer having an aromatic group or an alicyclic group and a polymerizable vinyl group, and 30-60 mol% of an alkyl (meth)acrylate. Also disclosed are a method for producing the composite conductive polymer composition, and a solution which is obtained by dissolving the composition in an aromatic solvent and/or an ester solvent.

Description

複合導電性高分子組成物、その製造法、当該組成物を含有する溶液、および当該組成物の用途Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
 本発明は、複合導電性高分子組成物、その製造法、当該組成物を含有する溶液、および当該組成物の用途に関し、更に詳細には、アニリン、チオフェン、ピロール等の芳香族系、複素環系化合物をモノマー構成成分とするπ共役系高分子に溶剤可溶性を付与するために、高分子化合物をドーピングした複合導電性高分子組成物、その製造法、当該組成物を含有する溶液、および当該組成物の色素増感型太陽電気用電極や帯電防止フィルムなどへの利用に関する。 The present invention relates to a composite conductive polymer composition, a production method thereof, a solution containing the composition, and a use of the composition, and more specifically, an aromatic system such as aniline, thiophene, and pyrrole, and a heterocyclic ring. A composite conductive polymer composition doped with a polymer compound, a method for producing the same, a solution containing the composition, and The present invention relates to the use of the composition for a dye-sensitized solar electric electrode or an antistatic film.
 π共役系高分子における高い導電性付与にはドーパントによるドーピングが必須である。しかし、本来π共役が発達した高分子は、高分子鎖の平面性が高く、π結合の親和力による高分子鎖間の結晶性(スタッキング性)が高い構造となっている。しかも、ドーパントにより、ドーピングされたπ共役系高分子は、更に平面性およびπ共役による親和力が高くなり、スタッキング性が更に顕著となる。このため、π共役系高分子の溶解(熱または溶剤による)と電気伝導度の両立は難しい課題であった。 Doping with a dopant is essential for imparting high conductivity in a π-conjugated polymer. However, a polymer in which π conjugation has originally developed has a structure in which the polymer chain has high planarity and crystallinity (stacking property) between polymer chains due to the affinity of π bond. Moreover, the π-conjugated polymer doped with the dopant has higher planarity and higher affinity due to π-conjugation, and the stacking property becomes more remarkable. For this reason, it is a difficult problem to achieve both the dissolution (by heat or solvent) of the π-conjugated polymer and the electrical conductivity.
 そこで、π共役系高分子の側鎖へアルキル基やアルコキシル基等を導入した高分子が提案されているが(特許文献1)、実際に十分導電体と言える10のマイナス5乗s・m以下まで電気伝導度を上げるためには、ドーピングが必要となる。そして、このドーピングを行うと、この結果として、導電性高分子の平面性発達とπ共役親和性の発達により、十分な溶剤可溶性が得られなくなってしまうという問題があった。 Thus, a polymer in which an alkyl group, an alkoxyl group, or the like is introduced into the side chain of a π-conjugated polymer has been proposed (Patent Document 1). In order to increase the electrical conductivity up to, doping is necessary. When this doping is performed, as a result, there is a problem that sufficient solvent solubility cannot be obtained due to the development of the planarity of the conductive polymer and the development of π-conjugate affinity.
 導電性高分子の利用を考えた場合、取り扱いの容易さからは、溶剤による溶解や、熱による溶融が可能で、且つ成型成膜後は十分な電気伝導度を有する自立膜や自立形成体が得られることが望まれており、従来、これら導電性ポリマーの使用の際には、直接導電性を付与したい基体上で電解重合や蒸気暴露による重合体膜の成膜、酸化剤と導電性ポリマー前躯体モノマー溶液に浸漬後加熱等による薄膜重合等を行い、その後、得られた重合体膜にドーピングする等の処理を行っている。 When considering the use of conductive polymers, from the viewpoint of ease of handling, it is possible to use a self-supporting film or a self-supporting body that can be dissolved by a solvent or melted by heat, and has sufficient electrical conductivity after molding. Conventionally, when these conductive polymers are used, a polymer film is formed by electrolytic polymerization or vapor exposure on a substrate to which direct conductivity is desired, an oxidizing agent and a conductive polymer. After being immersed in the precursor monomer solution, a thin film polymerization or the like is performed by heating or the like, and then a treatment such as doping of the obtained polymer film is performed.
 しかしこの場合、電解重合では基体が半導体若しくは導電体である必要が有り、また、電解液への耐腐食性も求められる為、使用できる基体が制限される。また、直接蒸気による薄膜重合では、重合場となる薄膜に酸化剤を均質に存在させる必要があり、成膜制御の面では十分と言えず、また、これら手法で用いられるポリマーコンデンサー用途では、表面積を大きくする為に微細な凹凸を形成しており、十分均質な表面への導電性ポリマー形成は困難であった。 However, in this case, the electrolytic polymerization requires the substrate to be a semiconductor or a conductor, and corrosion resistance to the electrolytic solution is also required, so that usable substrates are limited. In addition, in thin film polymerization using direct vapor, it is necessary to make the oxidant homogeneously present in the thin film that becomes the polymerization field, which is not sufficient in terms of film formation control. In order to increase the thickness, fine irregularities were formed, and it was difficult to form a conductive polymer on a sufficiently homogeneous surface.
 そこで、導電性ポリマーを有機溶媒に溶解させる試みがなされ、そのための手段がいくつか提案されている。特許文献2には、3,4-ジ置換チオフェンを無機第2鉄塩類および酸化剤を用いて重合させるポリ(3,4ージ置換チオフェン)の製造法が開示されており、また、特許文献3には、主に繰り返しチオフェン単位を有するポリマーTおよび少なくとも1個の他のポリアニオンポリマーPを有する水分散性粉末が開示されている。しかし、特許文献2の方法は、粉末物を得る手法若しくは直接対象被着体表面で酸化重合する方法であって、本手法では得られた重合物を溶剤若しくは水等へ溶解させることは不可能であり、また特許文献3のものも、水分散性良好な分散体でしかなく、有機溶剤に対し分子可溶するようなものではない。 Therefore, attempts have been made to dissolve the conductive polymer in an organic solvent, and several means for that purpose have been proposed. Patent Document 2 discloses a method for producing poly (3,4-disubstituted thiophene) in which 3,4-disubstituted thiophene is polymerized using an inorganic ferric salt and an oxidizing agent. 3 discloses a water-dispersible powder having a polymer T having predominantly repeating thiophene units and at least one other polyanionic polymer P. However, the method of Patent Document 2 is a method for obtaining a powdered material or a method for performing oxidative polymerization directly on the surface of the target adherend, and it is impossible to dissolve the polymer obtained in this method in a solvent or water. Also, the one of Patent Document 3 is only a dispersion having good water dispersibility, and is not such that it is molecularly soluble in an organic solvent.
 また、より直接的な溶剤ナノ分散化の手段として各種検討がされており、特許文献4では、本質的に溶剤に可溶しないポリアニリンを、ナノサイズレベルまで粉砕微粉化しポリアニリンおよび溶剤に親和性の高いSDS(ドデシルベンゼンスルホン酸)やPTS(パラトルエンスルホン酸)等のスルホン酸アニオン乳化剤を分散剤として用いながら溶剤に共分散させ、ナノレベルでの微分散体溶液の提供を開示しているが、実質的に溶剤に可溶している訳ではないので、塗工膜の表面は凸凹としており、また、ポリアニリンのみでの自立膜(均質膜ともいう。単独でピンホールなどを生じずに膜化したものを意味する)とすることは出来ないため、バインダーなどと組み合わせない限りコーティング後に膜化させることは不可能である。 Further, various studies have been made as a more direct means for solvent nanodispersion. In Patent Document 4, polyaniline, which is essentially insoluble in a solvent, is pulverized and pulverized to a nano-size level and has an affinity for polyaniline and the solvent. Although a high sulfonic acid anion emulsifier such as SDS (dodecylbenzenesulfonic acid) or PTS (paratoluenesulfonic acid) is used as a dispersant, it is disclosed to provide a fine dispersion solution at a nano level. The surface of the coating film is uneven because it is not substantially soluble in a solvent, and is also a self-supporting film made of only polyaniline (also called a homogeneous film. It is impossible to form a film after coating unless it is combined with a binder or the like.
 更に、特許文献5では、分子量2,000~500,000の範囲の分子量を有する、ポリスチレンスルホン酸のポリ陰イオンの存在下で酸化化学重合されたポリチオフェンと、分子量2,000~500,000の、ポリスチレンスルホン酸由来のポリ陰イオンを水または水と水混和性有機溶媒の混合溶媒中に含んでなるポリチオフェンの溶液が開示されている。 Furthermore, in Patent Document 5, polythiophene having a molecular weight in the range of 2,000 to 500,000 and oxidized and chemically polymerized in the presence of a polyanion of polystyrene sulfonate and a molecular weight of 2,000 to 500,000 are disclosed. A solution of polythiophene comprising a polyanion derived from polystyrene sulfonic acid in water or a mixed solvent of water and a water-miscible organic solvent is disclosed.
 この特許文献は、ポリスチレンスルホン酸(PSS)と酸化剤共存下での酸化重合で、水またはアルコール溶剤へ溶解または分散可能なポリ(エチレンジオキサイド置換チオフェン)(PEDOT)の製造法の提案であるが、ここで得られるPEDOT/PSSは水に分散はされているが、完全な溶解はされておらず、部分的なPEDOT間のスタッキングを抑えることは難しく、導電性ポリマーを溶解するには不十分なものであった。 This patent document proposes a method for producing poly (ethylene dioxide substituted thiophene) (PEDOT) that can be dissolved or dispersed in water or an alcohol solvent by oxidative polymerization in the presence of polystyrene sulfonic acid (PSS) and an oxidizing agent. However, although the PEDOT / PSS obtained here is dispersed in water, it is not completely dissolved, it is difficult to suppress stacking between partial PEDOTs, and it is difficult to dissolve the conductive polymer. It was enough.
 更にまた、特許文献6には、疎水性の大きなアニオン性界面活性剤の存在下において、アニリン、もしくはアニリン誘導体を、有機酸や無機酸を含む溶媒中で酸化重合して析出、単離、精製した後、水と混和しない有機溶媒で抽出して有機溶液を形成することが開示されている。 Furthermore, Patent Document 6 discloses precipitation, isolation, and purification by oxidative polymerization of aniline or aniline derivatives in a solvent containing an organic acid or an inorganic acid in the presence of a highly hydrophobic anionic surfactant. And then extracting with an organic solvent immiscible with water to form an organic solution.
 しかし、この特許文献で使用されている乳化剤は低分子スルホン酸系であり、重合前にアニリンを塩酸塩化し、その後スルホン酸系乳化剤によりアニリン塩置換を行っているが、実際には十分な塩交換は起こり難く、また、本特許文献の合成法により得られるポリアニリンは実際には溶剤に溶解せず、微分散状態の溶剤分散液しか得られないという問題がある。また、アニリンに対して等量モル以上のスルホン酸系乳化剤が使用される為、実質ドープされた乳化剤以外の乳化剤が50%以上残存し、使用に当たっては、これら乳化剤を取り除くことが必要であり、この為には洗浄工程が煩雑であるという問題がある。更には、低分子乳化剤では溶剤への溶解付与効果と、ポリアニリンのスタックを抑止する効果を1分子の設計として導入することは非常に困難であり、仮に一時的に溶剤に溶解したポリアニリンの状態でも直ぐにスタック(PANIの結晶化)による微凝集が発生してしまうという問題がある。 However, the emulsifier used in this patent document is a low molecular sulfonic acid type, and aniline is converted to hydrochloric acid before polymerization, and then aniline salt substitution is performed with the sulfonic acid type emulsifier. The exchange hardly occurs, and the polyaniline obtained by the synthesis method of this patent document does not actually dissolve in the solvent, and there is a problem that only a finely dispersed solvent dispersion can be obtained. Moreover, since sulfonic acid-based emulsifiers in an equimolar amount or more with respect to aniline are used, 50% or more of emulsifiers other than substantially doped emulsifiers remain, and in use, it is necessary to remove these emulsifiers, For this purpose, there is a problem that the cleaning process is complicated. Furthermore, it is very difficult to introduce the effect of imparting solubility in a solvent and the effect of inhibiting the stacking of polyaniline as a single molecule design with a low molecular emulsifier, and even in the state of polyaniline temporarily dissolved in a solvent. There is a problem that fine aggregation due to stacking (PANI crystallization) occurs immediately.
 また更に特許文献7では、(A)スルホン酸官能基とラジカル重合性官能基とを有するモノマーおよび(B)アニリンまたはその誘導体からなるモノマー を水もしくは有機溶剤に溶解した溶液を乳化し、(B)のモノマー中に(A)のモノマーに由来するスルホン酸構造を導入した後、重合開始剤下記の共存下に(A)および(B)のモノマーを重合して、(B)の重合体と(A)の重合体とが絡み合った状態の導電性ポリマーを作製する方法が開示されている。 Furthermore, in Patent Document 7, a solution in which (A) a monomer having a sulfonic acid functional group and a radical polymerizable functional group and (B) a monomer soot made of aniline or a derivative thereof is dissolved in water or an organic solvent is emulsified. ), The sulfonic acid structure derived from the monomer (A) is introduced into the monomer, the polymerization initiator (A) and the monomer (B) are polymerized in the coexistence of the following, and the polymer (B): A method for producing a conductive polymer in an intertwined state with the polymer (A) is disclosed.
 しかし、この特許文献の方法では、水系酸化剤兼ラジカル開始剤として過硫酸アンモニウム塩を使用している為、実際には本明細に書かれているような理想的なビニル系ポリマーとポリアニリンの相互網目状構造は困難である。従って、この特許文献方法では、実際には、PANIを含まないビニルポリマーが相当数存在したり、逆にビニルポリマーに取り込まれないドープモノマーがPANI中で存在したりして、非常に不均一且つ不安定な物となるという問題がある。 However, in the method of this patent document, an ammonium persulfate salt is used as an aqueous oxidant / radical initiator, so that an ideal vinyl polymer and polyaniline mutual network as described in this specification is actually used. The structure is difficult. Therefore, in this patent document method, there are actually a large number of vinyl polymers that do not contain PANI, and conversely, dope monomers that are not incorporated into the vinyl polymer exist in PANI. There is a problem of becoming unstable.
 例えば特許文献8には、実質的に水と混和しない有機溶剤に溶解している、(a)プロトネーションされた置換または未置換ポリアニリン複合体、および(b)フェノール性水酸基を有する化合物を含む導電性ポリアニリン組成物が開示されている。 For example, Patent Document 8 discloses a conductive material containing (a) a protonated substituted or unsubstituted polyaniline complex and (b) a compound having a phenolic hydroxyl group dissolved in an organic solvent that is substantially immiscible with water. A functional polyaniline composition is disclosed.
 しかしこの特許文献では、溶剤/水/モノマー/乳化剤の重合場において、水溶性酸化剤を用いてポリアニリンの合成を行っている為、本質的には水溶アニリンモノマーが重合しながら乳化剤を介してトルエンに分散する系でポリアニリンとなり、実質トルエン以外に水に対して幾分溶解するような溶剤への展開は不可能である。また、本特許文献の発明で、実際に使用しているジイソオクチルスルホコハク酸ナトリウム(AOT)では、ポリアニリンのスタッキングを十分に抑制することが出来ない為、フェノール類(クレゾール)等の併用が必須となっている。これは、明細書の記載は十分ではないが非特許文献1に記載されている技術であり、ポリアニリン被膜中におけるドナー強度の調整により、フェノール性化合物の親和性が顕著にあり、ポリアニリン被膜における導電性向上に有用であると開示されている。これは、つまりフェノール類の様にトルエンに対し溶解性が良好でポリアニリンへの相溶性が良好な不揮発性添加剤を混合することで、乾燥塗膜の導電性を向上させるだけでなく、トルエン可溶中のポリアニリン同士のスタックをフェノール類が抑制していると考えられ、これら添加剤が無い場合はAOTのような立体障害性でのポリアニリンの結晶性制御では十分な可溶性の安定化が不可能であり、このことは本発明者らの追試でも確認されている。 However, in this patent document, since polyaniline is synthesized using a water-soluble oxidant in a solvent / water / monomer / emulsifier polymerization field, essentially water-soluble aniline monomer is polymerized while toluene is passed through the emulsifier. It is impossible to develop into a solvent that becomes polyaniline in a system in which it is dispersed in water and is somewhat soluble in water other than toluene. In addition, the sodium diisooctylsulfosuccinate (AOT) actually used in the invention of this patent document cannot sufficiently suppress the stacking of polyaniline. Therefore, it is essential to use phenols (cresol) together. It has become. This is a technique described in Non-Patent Document 1, although the description is not sufficient, and by adjusting the donor strength in the polyaniline coating, the affinity of the phenolic compound is remarkable, and the conductivity in the polyaniline coating is It is disclosed that it is useful for improving the performance. In other words, by mixing non-volatile additives that have good solubility in toluene and good compatibility with polyaniline, such as phenols, not only improve the conductivity of the dried coating, but also allow toluene. It is thought that phenols suppress the stack of polyaniline in solution, and in the absence of these additives, it is impossible to stabilize the solubility sufficiently by controlling the crystallinity of polyaniline with steric hindrance like AOT This has been confirmed by the inventors' additional test.
一方、導電性ポリマー組成物を用いた用途として、色素増感型太陽電池用対極や帯電防止フィルムがある。特許文献10には、透明導電層を設けられたプラスチックフィルムに導電性高分子層を設けてなる色素増感型太陽電池の対極が開示されている。 On the other hand, applications using the conductive polymer composition include counter electrodes for dye-sensitized solar cells and antistatic films. Patent Document 10 discloses a counter electrode of a dye-sensitized solar cell in which a conductive polymer layer is provided on a plastic film provided with a transparent conductive layer.
しかし、この特許文献では、導電性高分子を含む分散液を塗布し、溶媒を除去して導電性高分子層を形成しているが、導電性高分子は微粒子の分散膜であるため、透明導電層に対する密着性が悪く、予めプラズマ処理などを行い透明導電層の表面エネルギーを高める必要がある。また、この特許文献の実施例において、分散剤にポリスチレンスルホン酸を用いていることが記載されているが、この場合は導電性高分子のドープに寄与しないフリーのスルホン酸が存在することとなり、溶媒は水溶液となる為にフィルム基板上に塗工する場合に溶媒とフィルム基板表面の選択性が非常に大きく、導電性高分子塗膜の不均一性に由来するピンホールが発生し易いこと、残存スルホン酸基により塗膜の極性が高いことから電解質溶液で一般的に使用されるアセトニトリルやイオン性液体等への耐久性が悪く塗膜の剥がれが発生し易いこと、等を原因として透明導電膜が電解液中のヨウ素により腐食される問題が挙げられることから、対極としての長期的な安定性に問題があることで白金対極を置き換えるには不十分であった。 However, in this patent document, a dispersion containing conductive polymer is applied and the solvent is removed to form a conductive polymer layer. However, since the conductive polymer is a dispersion film of fine particles, it is transparent. Adhesion to the conductive layer is poor, and it is necessary to increase the surface energy of the transparent conductive layer by performing plasma treatment or the like in advance. In addition, in the examples of this patent document, it is described that polystyrene sulfonic acid is used as the dispersant, but in this case, there is free sulfonic acid that does not contribute to the doping of the conductive polymer, Since the solvent becomes an aqueous solution, the selectivity between the solvent and the film substrate surface is very large when applied on the film substrate, and pinholes derived from the non-uniformity of the conductive polymer coating film are likely to occur. Transparent conductivity due to the high polarity of the coating film due to residual sulfonic acid groups, and poor durability to acetonitrile and ionic liquids commonly used in electrolyte solutions, and the tendency of the coating film to peel off. Since the problem is that the membrane is corroded by iodine in the electrolyte, the long-term stability as a counter electrode is insufficient to replace the platinum counter electrode.
 また、特許文献11には、ポリチオフェン系化合物、酸性ポリマーおよび糖アルコールを含有する帯電防止材料を熱可塑性樹脂フィルムに塗布した帯電防止フィルムが開示されている。 Further, Patent Document 11 discloses an antistatic film in which an antistatic material containing a polythiophene compound, an acidic polymer, and a sugar alcohol is applied to a thermoplastic resin film.
 しかし、この特許文献では、帯電防止材料として糖アルコールを必須成分とすることにより、得られる帯電防止フィルムの透明性や帯電防止性は良好であるが、ポリチオフェン系化合物へのドーピング剤としてポリスチレンスルホン酸などの酸性ポリマーのみを使用しているため、帯電防止膜が経時で吸湿することによって、密着性および帯電防止性が低下する問題がある。 However, in this patent document, by using sugar alcohol as an essential component as an antistatic material, the antistatic film obtained has good transparency and antistatic properties, but polystyrene sulfonic acid is used as a doping agent for polythiophene compounds. Since only an acidic polymer such as the above is used, the antistatic film absorbs moisture over time, and there is a problem that adhesion and antistatic properties are lowered.
特表2002-539287Special Table 2002-539287 特開平01-313521JP-A-01-313521 特表2004-514753Special table 2004-514753 特表2007-518859Special table 2007-518859 特許第2636968Japanese Patent No. 2636968 特開2008-169255JP2008-169255 特開2007-314606JP2007-314606A WO2005/052058WO2005 / 052058 特開2000-344823JP 2000-344823 A 特開2006-155907JP 2006-155907 A 特開2008-179809JP2008-179809
 そこで、本発明は、溶剤への溶解性に優れ、自立膜、すなわち、単独でピンホールなどの生じない均質な膜若しくは成形体となる導電性高分子組成物およびその製造法等を提供することを課題としている。 Accordingly, the present invention provides a conductive polymer composition that is excellent in solubility in a solvent and is a self-supporting film, that is, a homogeneous film or a molded body that is free from pinholes, and a method for producing the same. Is an issue.
 本発明者らは、上記課題を解決すべく前記の先行技術を追試し検討した結果、<1>π共役系高分子の重合場では十分な電解資質溶媒を使用し、酸化が進むアニオン場を安定且つ均一系を与える必要が有ること、<2>重合成長中のπ共役系高分子のスタッキングを制御し且つ安定なモノマー供給を与える為の場が必要なこと、<3>これら重合成長場でのπ共役系ポリマーへのドーピングが積極的に進むこと、<4>これらドーピングの過程で水等の初期重合場電解資質溶媒から析出可能であること、<5>重合後のπ共役系高分子が何らかの立体的分子障害により主鎖骨格のスタッキングが抑止されていること、<6>これら立体障害性因子がこの物自身で結晶性を有しておらず、且つ溶剤や熱などでの溶融が可能であること等の要素が導電性ポリマー合成の初期から精製、溶剤への再溶解に必要である事実が明確になった。 As a result of further examination of the above prior art in order to solve the above problems, the present inventors have found that an anionic field in which oxidation is progressed by using a sufficient electrolytic solvent in the polymerization field of <1> π-conjugated polymer. It is necessary to provide a stable and homogeneous system, <2> a field for controlling the stacking of π-conjugated polymers during polymerization growth and providing a stable monomer supply, <3> these polymerization growth fields <4> Precipitation from an initial polymerization field electrolyte solvent such as water in the process of doping, <5> High π-conjugated system after polymerization Stacking of the main chain skeleton is suppressed due to some steric molecular hindrance, and <6> these steric hindrance factors do not have crystallinity themselves, and are melted by a solvent or heat. Such as being possible Purification from the initial conductive polymer synthesis, the fact is required to re-dissolution in a solvent became clear.
 そこで、本発明者らは更に検討した結果、特定のモノマーを共重合した高分子化合物を、π共役系高分子の重合時に添加剤として使用すると、乳化剤としての重合場を均一状態化する機能に加えて、ドープ材としての機能を発揮すると共に、π共役系高分子への適度な立体障害性を有するために、特定の溶剤への可溶性に優れた複合導電性高分子組成物が得られることを見いだした。また、本発明者らは前記の複合導電性高分子組成物が、色素増感型太陽電気用対極や帯電防止フィルムなどに利用できることを見いだし、本発明の完成に至った。 Therefore, as a result of further studies, the present inventors have found that when a polymer compound copolymerized with a specific monomer is used as an additive during the polymerization of a π-conjugated polymer, the function of making the polymerization field as an emulsifier uniform. In addition, it exhibits a function as a doping material and has an appropriate steric hindrance to a π-conjugated polymer, so that a composite conductive polymer composition excellent in solubility in a specific solvent can be obtained. I found. In addition, the present inventors have found that the composite conductive polymer composition can be used for a dye-sensitized solar counter electrode, an antistatic film, and the like, and have completed the present invention.
 すなわち本発明は、次の成分(a-1)ないし(a-3)
 (a-1)スルホン酸基と重合性ビニル基を有するモノマー
      20~50mol%
 (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      20~50mol%
 (a-3)アルキル(メタ)アクリレート
      30~60mol%
を重合させることにより得られる高分子化合物を、次式(I)~(III)
Figure JPOXMLDOC01-appb-C000003
(各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)に、ドーピングさせてなる複合導電性高分子組成物である。
That is, the present invention provides the following components (a-1) to (a-3)
(A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol%
(A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol%
(A-3) Alkyl (meth) acrylate 30 to 60 mol%
The polymer compounds obtained by polymerizing are represented by the following formulas (I) to (III)
Figure JPOXMLDOC01-appb-C000003
(In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a monomer component as a monomer constituent.
 また本発明は、次の成分(a-1)ないし(a-3)
 (a-1)スルホン酸基と重合性ビニル基を有するモノマー
      20~50mol%
 (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノマー
      20~50mol%
 (a-3)アルキル(メタ)アクリレート
      30~60mol%
を重合させることにより得られる高分子化合物と、前記式(I)~(III)から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製造法である。
The present invention also provides the following components (a-1) to (a-3)
(A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol%
(A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol%
(A-3) Alkyl (meth) acrylate 30 to 60 mol%
Characterized by coexisting a polymer compound obtained by polymerizing the compound and a compound selected from the formulas (I) to (III) in an electrolytic substrate solvent and performing chemical oxidative polymerization using an oxidizing agent. This is a method for producing a composite conductive polymer composition.
 更に本発明は、前記の複合導電性高分子組成物を、トルエン、ベンゼンおよびキシレンから選ばれる芳香族系溶剤および/または酢酸エチル、酢酸プロピルおよび酢酸ブチルから選ばれるエステル系溶剤に0.1~10質量%、溶解状態で含有してなる複合導電性高分子組成物溶液である。 Further, the present invention relates to the above composite conductive polymer composition in an aromatic solvent selected from toluene, benzene and xylene and / or an ester solvent selected from ethyl acetate, propyl acetate and butyl acetate. A composite conductive polymer composition solution containing 10% by mass in a dissolved state.
 また更に本発明は、前記の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極である。 Furthermore, the present invention provides a counter electrode for a dye-sensitized solar cell using the above composite conductive polymer composition.
 更にまた本発明は、前記の複合導電性高分子組成物を用いてなる帯電防止フィルムである。 Furthermore, the present invention is an antistatic film using the composite conductive polymer composition.
 本発明の高分子化合物の存在下で、酸化剤の作用により重合して得られた複合導電性高分子化合物は、トルエン等の芳香族溶剤や酢酸エチル等のエステル系溶剤中に安定に溶解するものである。 The composite conductive polymer compound obtained by polymerization by the action of an oxidizing agent in the presence of the polymer compound of the present invention is stably dissolved in an aromatic solvent such as toluene or an ester solvent such as ethyl acetate. Is.
 従って、芳香族溶剤中にこの複合導電性高分子化合物を溶解した溶液を、導電性付与を必要とする部位に塗布し、これを乾燥させることにより、簡単に導電性皮膜を得ることが可能となる。 Therefore, it is possible to easily obtain a conductive film by applying a solution in which this composite conductive polymer compound is dissolved in an aromatic solvent to a site requiring conductivity and drying it. Become.
 本発明において使用される高分子化合物(A)は、常法に従って成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマー、成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマーおよび成分(a-3)のアルキル(メタ)アクリレートを、重合開始剤の存在下で重合させることにより製造される。 The polymer compound (A) used in the present invention comprises a monomer having a sulfonic acid group and a polymerizable vinyl group as component (a-1), an aromatic group or alicyclic group as component (a-2) according to a conventional method. And a monomer having a polymerizable vinyl group and an alkyl (meth) acrylate of component (a-3) are polymerized in the presence of a polymerization initiator.
 成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーは、スチレンスルホン酸基や、スルホエチル基等のスルホン酸基を有するモノマーであり、この例としては、スチレンスルホン酸やスチレンスルホン酸ナトリウム、スチレンスルホン酸カリウム、スチレンスルホン酸カルシウム等のスチレンスルホン酸塩、(メタ)アクリル酸エチル2-スルホン酸や、(メタ)アクリル酸エチル2-スルホン酸ナトリウム、(メタ)アクリル酸エチル2-スルホン酸カリウム、(メタ)アクリル酸エチル2-スルホン酸カルシウム等の(メタ)アクリル酸エチル2-スルホン酸塩が挙げられる。 The monomer having a sulfonic acid group and a polymerizable vinyl group as the component (a-1) is a monomer having a sulfonic acid group such as a styrene sulfonic acid group or a sulfoethyl group. Examples thereof include styrene sulfonic acid and styrene sulfone. Styrene sulfonates such as sodium acrylate, potassium styrene sulfonate, calcium styrene sulfonate, ethyl 2-methacrylate (meth) acrylate, ethyl 2-methacrylate (sodium acrylate), ethyl (meth) acrylate 2 -Ethyl (meth) acrylate 2-sulfonates such as potassium sulfonate, ethyl (meth) acrylate 2-calcium sulfonate, etc.
 また、成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマーの例としては、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、(メタ)アクリル酸エチル2-フタル酸メチルエステル、(メタ)アクリル酸エチル2-フタル酸エチルエステル、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、(メタ)アクリレートモルホリン、スチレン、ジメチルスチレン、ナフタレン(メタ)アクリレート、ビニルナフタレン、ビニルn-エチルカルバゾール、ビニルフルオレン等が挙げられる。 Examples of the monomer (a-2) having an aromatic group or alicyclic group and a polymerizable vinyl group include benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, ethyl (meth) acrylate 2 -Methyl phthalate, ethyl (meth) acrylate 2-ethyl phthalate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, isobornyl (meth) acrylate , T-butylcyclohexyl (meth) acrylate, cyclohexyl (meth) acrylate, (meth) acrylate morpholine, styrene, dimethylstyrene, naphthalene (meth) acrylate, vinyl naphthalene, vinyl n-ethylcarbazole, vinyl fluorene, etc. And the like.
 更に、成分(a-3)のアルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、nープロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、i-プロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等が挙げられる。 Furthermore, specific examples of the alkyl (meth) acrylate of component (a-3) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, and n-butyl. (Meth) acrylate, i-butyl (meth) acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (Meth) acrylate etc. are mentioned.
 本発明で用いる高分子化合物(A)の製造に当たっては、モノマー(a-1)、モノマー(a-2)およびモノマー(a-3)のモル比が重要である。すなわち、本発明の高分子化合物は、芳香族基または脂環族基による疎水性とスルホン酸基による親水性を適宜バランスさせることにより、導電性高分子組成物に作用し、これを溶剤中に溶解可能とするためである。 In the production of the polymer compound (A) used in the present invention, the molar ratio of the monomer (a-1), the monomer (a-2) and the monomer (a-3) is important. In other words, the polymer compound of the present invention acts on the conductive polymer composition by appropriately balancing the hydrophobicity due to the aromatic group or alicyclic group and the hydrophilicity due to the sulfonic acid group, and this is incorporated into the solvent. This is to enable dissolution.
 本発明の高分子化合物(A)を製造するための、成分(a-1)の配合量は、20~50mol%であり、好ましくは、25~40mol%である。また、成分(a-2)の配合量は、20~50mol%であり、好ましくは、30~45mol%である。更に、成分(a-3)の配合量は、30~60mol%であり、好ましくは、35~50mol%である。 The amount of component (a-1) for producing the polymer compound (A) of the present invention is 20 to 50 mol%, preferably 25 to 40 mol%. The amount of component (a-2) is 20 to 50 mol%, preferably 30 to 45 mol%. Further, the amount of component (a-3) is 30 to 60 mol%, preferably 35 to 50 mol%.
 本発明の高分子化合物には、上記モノマー(a-1)、(a-2)および(a-3)以外の重合性成分を含有させることもできる。この重合性成分の例としては、2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸、アセトアセトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、ビニルピルジン等が挙げられ、配合させる場合の配合量は、0~20mol%程度である。 The polymer compound of the present invention may contain a polymerizable component other than the monomers (a-1), (a-2) and (a-3). Examples of this polymerizable component include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, methoxyethyl (meth) Acrylate, butoxyethyl (meth) acrylate, polyethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, acetoacetoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, N, N- Examples thereof include dimethylaminoethyl (meth) acrylate, vinylpyridine, and the blending amount when blending is about 0 to 20 mol%.
 上記成分(a-1)、成分(a-2)、成分(a-3)および必要により加える重合性成分の重合反応は、公知の方法で行うことができる。例えば、これら各成分を混合した後、これに重合開始剤を添加し、加熱、光照射等により重合を開始することで製造することができる。 The polymerization reaction of the component (a-1), the component (a-2), the component (a-3) and the polymerizable component added as necessary can be carried out by a known method. For example, after mixing each of these components, a polymerization initiator can be added thereto and polymerization can be started by heating, light irradiation, or the like.
 上記高分子化合物(A)を製造するために採用可能な重合法は、モノマー混合物から成分(a-2)が分離状態とならない状態で実施可能な方法であれば特に限定されず、例えば、溶液重合法、塊状(バルク)重合法、析出重合法等が採用される。 The polymerization method that can be employed to produce the polymer compound (A) is not particularly limited as long as it is a method that can be carried out without the component (a-2) being separated from the monomer mixture. A polymerization method, a bulk (bulk) polymerization method, a precipitation polymerization method, or the like is employed.
 また、重合反応に使用される重合開始剤は、上記各成分や、反応時に使用する溶媒に溶解可能なものであれば、特に限定されるものではない。この重合開始剤の例としては、過酸化ベンゾイル(BPO)等の油溶性過酸化物系熱重合開始剤、アゾビスイソブチロニトリル(AIBN)等の油溶性アゾ系熱重合開始剤、アゾビスシアノ吉草酸(ACVA)等の水溶性アゾ系熱重合開始剤等が挙げられる。また、溶液重合の溶媒中の水割合が多い場合は、過硫酸アンモニウムや過硫酸カリウム等の水溶性過酸化物系熱重合開始剤、過酸化水素水等も使用することができる。さらに、フェロセンやアミン類等のレドックス剤の組み合わせも可能である。 Further, the polymerization initiator used in the polymerization reaction is not particularly limited as long as it can be dissolved in each of the above components and the solvent used during the reaction. Examples of this polymerization initiator include oil-soluble peroxide-based thermal polymerization initiators such as benzoyl peroxide (BPO), oil-soluble azo-based thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobiscyano Examples thereof include water-soluble azo-based thermal polymerization initiators such as herbal acid (ACVA). In addition, when the water ratio in the solvent for solution polymerization is large, water-soluble peroxide thermal polymerization initiators such as ammonium persulfate and potassium persulfate, hydrogen peroxide water, and the like can also be used. Furthermore, combinations of redox agents such as ferrocene and amines are possible.
 これらの重合開始剤の使用範囲は、上記化合物1モルに対し0.001~0.1モルの範囲で任意に使用することができ、一括投入、滴下投入、逐次投入のいずれの方法も利用できる。また、塊状重合や少量(モノマーに対して50wt%以下)の溶剤を使用した溶液重合の場合は、メルカプタンとメタロセンの組み合わせによる重合方法(特許文献9)も可能である。 These polymerization initiators can be used arbitrarily in the range of 0.001 to 0.1 mol per 1 mol of the above compound, and any method of batch charging, dropping charging and sequential charging can be used. . Further, in the case of bulk polymerization or solution polymerization using a small amount of solvent (50 wt% or less based on the monomer), a polymerization method using a combination of mercaptan and metallocene (Patent Document 9) is also possible.
 更に、上記重合反応に用いる溶媒としては、メタノール、エタノール、イソプロピルアルコール、ブタノール等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピレングリコールメチルエーテル、プロピレングリコールエチルエーテル等のグリコール系溶剤、乳酸メチル、乳酸エチル等の乳酸系溶剤等を挙げることができる。 Furthermore, as a solvent used in the above polymerization reaction, alcohol solvents such as methanol, ethanol, isopropyl alcohol and butanol, ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methyl cellosolve, ethyl cellosolve, propylene glycol methyl ether, propylene Examples thereof include glycol solvents such as glycol ethyl ether, and lactic acid solvents such as methyl lactate and ethyl lactate.
 更にまた、重合時には重合開始剤以外にも連鎖移動剤を併用しても良く、分子量を調整したい場合は、適宜使用可能である。使用できる連鎖移動剤としては、上記モノマーや溶剤に溶解する物であれば何れの化合物も使用可能であり、例えば、ドデシルメルカプタンやヘプチルメルカプタン等のアルキルチオール、メルカプトプロピオン酸(BMPA)の様な極性基を有する水溶性チオール、αスチレンダイマー(ASD)等の油性ラジカル抑止剤等も適宜使用可能である。 Furthermore, a chain transfer agent may be used in addition to the polymerization initiator at the time of polymerization, and can be appropriately used when adjusting the molecular weight. As the chain transfer agent that can be used, any compound can be used as long as it is soluble in the above-mentioned monomers and solvents. For example, polar thiols such as alkylthiols such as dodecyl mercaptan and heptyl mercaptan, and mercaptopropionic acid (BMPA). A water-soluble thiol having a group, an oily radical inhibitor such as α-styrene dimer (ASD), and the like can be used as appropriate.
 また更に、この重合反応は、使用する溶剤(バルク重合の場合を除く)の沸点以下で行うのが好ましく、例えば、65℃~80℃程度が好ましい。但し、バルク重合やメルカプタンとメタロセンで行う特許文献9の様な重合を行う際は、25℃~80℃で行うことが好ましい。 Furthermore, this polymerization reaction is preferably carried out below the boiling point of the solvent used (except for bulk polymerization), for example, about 65 ° C. to 80 ° C. is preferable. However, when performing bulk polymerization or polymerization as in Patent Document 9 performed with mercaptan and metallocene, it is preferably performed at 25 ° C. to 80 ° C.
 かくして得られる重合物は、必要により精製し、高分子化合物(A)とすることができる。この精製方法の例としては、ヘキサン等の油性貧溶媒を使用し、油性低分子不純物および残存モノマー、低分子不純物を取り除き、その後、アセトニトリル、メタノール、エタノール、アセトンなどの水性貧溶剤でポリマー析出等を行い、水系不純物、残存物を取り除く方法を挙げることができる。 The polymer thus obtained can be purified as necessary to obtain a polymer compound (A). As an example of this purification method, an oily poor solvent such as hexane is used to remove oily low molecular impurities and residual monomers and low molecular impurities, and then polymer precipitation with an aqueous poor solvent such as acetonitrile, methanol, ethanol, acetone, etc. And removing water-based impurities and residues.
 このように精製することが好ましい理由は、高分子化合物(A)は、導電性高分子組成物中へドープ剤として導入され、スタック抑止剤、かつ溶剤可溶剤として作用するため、重合後の残存物としてそれ以外の重合開始剤残物、モノマー、オリゴマー、不均一組成物等が残存すると導電性高分子組成物の機能低下が問題となるので、これらを除去する必要が有るのである。そして、このように精製する結果、特許文献7の様な不均一なラジカル重合物が混在せず、均一な導電性高分子組成物の組成と高分子化合物(A)の組成が一様に相溶化したような可溶状態を発現できるのである。 The reason why it is preferable to purify in this way is that the polymer compound (A) is introduced as a dopant into the conductive polymer composition and acts as a stack inhibitor and a solvent solubilizer. If other polymerization initiator residue, monomer, oligomer, heterogeneous composition, etc. remain as a product, the functional degradation of the conductive polymer composition becomes a problem, and it is necessary to remove these. As a result of such purification, the heterogeneous radical polymer as in Patent Document 7 is not mixed, and the composition of the uniform conductive polymer composition and the composition of the polymer compound (A) are uniformly matched. A solubilized state can be expressed.
 以上のようにして得られる高分子化合物(A)は、そのGPC換算重量平均分子量が、3,000~100,000であることが好ましい。重量平均分子量が3,000に満たない場合は、高分子化合物としての機能が不十分である。逆に10万を超えると、導電性ポリマー合成時の重合場(酸性水溶液)への溶解性が十分でない場合があり、また、高分子化合物自身の溶剤溶解性が悪くなり、導電性ポリマーの可溶化性に著しく悪い影響を与えることがある。 The polymer compound (A) obtained as described above preferably has a GPC equivalent weight average molecular weight of 3,000 to 100,000. When the weight average molecular weight is less than 3,000, the function as a polymer compound is insufficient. Conversely, if it exceeds 100,000, the solubility in the polymerization field (acidic aqueous solution) at the time of synthesis of the conductive polymer may not be sufficient, and the solvent solubility of the polymer compound itself may deteriorate, and the conductive polymer may be used. May significantly affect solubilization.
 本発明の複合導電性高分子組成物は、上記のようにして得られた高分子化合物(A)を用い、次のようにして製造される。すなわち、上記高分子化合物(A)を電解性基質溶媒に溶解し、次いでこの溶液中に、π共役系高分子(β)の原料となる前記式(I)ないし(III)で表される化合物を添加し、更にこれを酸化剤により酸化することにより、前記式(I)ないし(III)で表される化合物をモノマー構成成分とするπ共役系高分子(β)に前記高分子化合物(A)がドーピングされた、複合導電性高分子組成物を得ることができる。 The composite conductive polymer composition of the present invention is produced as follows using the polymer compound (A) obtained as described above. That is, the compound represented by the above formulas (I) to (III), which is a raw material for the π-conjugated polymer (β), which is obtained by dissolving the polymer compound (A) in an electrolytic substrate solvent. Is added to the π-conjugated polymer (β) containing the compounds represented by the formulas (I) to (III) as monomer constituents. ) Can be obtained.
 原料である化合物のうち、式(I)で表される化合物は、置換基が水素原子またはアルキル基であるアニリンである。この化合物の具体例としては、アニリン、o-トルイジン、m-トルイジン、3,5-ジメチルアニリン、2,3-ジメチルアニリン、2,5-ジメチルアニリン、2,6-ジメチルアニリン、2-エチルアニリン、3-エチルアニリン、2-イソプロピルアニリン、3-イソプロピルアニリン、2-メチル-6-エチルアニリン、2-n-プロピルアニリン、2-メチル-5-イソプロピルアニリン、2-ブチルアニリン、3-ブチルアニリン、5,6,7,8-テトラヒドロ-1-ナフチルアミン、2,6-ジエチルアニリン等を挙げることができる。 Among the compounds that are raw materials, the compound represented by the formula (I) is aniline whose substituent is a hydrogen atom or an alkyl group. Specific examples of this compound include aniline, o-toluidine, m-toluidine, 3,5-dimethylaniline, 2,3-dimethylaniline, 2,5-dimethylaniline, 2,6-dimethylaniline, and 2-ethylaniline. 3-ethylaniline, 2-isopropylaniline, 3-isopropylaniline, 2-methyl-6-ethylaniline, 2-n-propylaniline, 2-methyl-5-isopropylaniline, 2-butylaniline, 3-butylaniline Examples include 5,6,7,8-tetrahydro-1-naphthylamine, 2,6-diethylaniline, and the like.
 また、式(II)で表される化合物は、置換基が水素またはアルキル基のチオフェンであり、その具体例としては、チオフェン、3-メチルチオフェン、3-エチルチオフェン、3-プロピルチオフェン、3-ブチルチオフェン、3-ペンチルチオフェン、3-ヘキシルチオフェン、3-ヘプチルチオフェン、3-n-オクチルチオフェン等を挙げることができる。 In addition, the compound represented by the formula (II) is a thiophene whose substituent is hydrogen or an alkyl group, and specific examples thereof include thiophene, 3-methylthiophene, 3-ethylthiophene, 3-propylthiophene, 3- Examples thereof include butylthiophene, 3-pentylthiophene, 3-hexylthiophene, 3-heptylthiophene, and 3-n-octylthiophene.
 更に、式(III)で表される化合物は、置換基が水素またはアルキル基のピロールであり、その具体例としては、ピロール、3-メチルピロール、3-ヘプチルピロール、3-n-オクチルピロール等を挙げることができる。 Further, the compound represented by the formula (III) is pyrrole whose substituent is hydrogen or an alkyl group, and specific examples thereof include pyrrole, 3-methylpyrrole, 3-heptylpyrrole, 3-n-octylpyrrole and the like. Can be mentioned.
 本発明方法により複合導電性高分子組成物を製造する具体的方法の一例としては、まず、電解性基質溶媒としてのイオン交換水を、必要により酸性とした後、この中に、前記のようにして得た高分子化合物(A)を添加し、次いでこの中に原料である式(I)ないし(III)の化合物の1種または2種以上を加え、更に酸化剤を加えて酸化重合させる方法を挙げることができる。なお、高分子化合物(A)のイオン交換水への溶解性により、適宜アセトン、メチルエチルケトン等のケトン系溶剤、メタノール、エタノール、イソプロピルアルコール等のアルコール系溶剤、アセトニトリル等の親水性の高い有機溶剤を併用しても良い。 As an example of a specific method for producing a composite conductive polymer composition by the method of the present invention, first, ion-exchanged water as an electrolytic substrate solvent is acidified as necessary, and then, as described above, The polymer compound (A) thus obtained is added, and then one or more of the compounds of the formulas (I) to (III) as raw materials are added thereto, and an oxidant is further added for oxidative polymerization. Can be mentioned. Depending on the solubility of the polymer compound (A) in ion exchange water, a ketone solvent such as acetone or methyl ethyl ketone, an alcohol solvent such as methanol, ethanol or isopropyl alcohol, or a highly hydrophilic organic solvent such as acetonitrile may be used. You may use together.
 上記反応において電解性基質溶媒を酸性とするために使用される酸性成分としては、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)、硫酸鉄(II)等が挙げられ、その量は、式(I)~(III)の化合物1molに対し、0.5~3.0mol程度とすればよい。 Examples of the acidic component used for acidifying the electrolytic substrate solvent in the above reaction include hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride, iron (II) sulfate, and the like. The amount may be about 0.5 to 3.0 mol with respect to 1 mol of the compounds of formulas (I) to (III).
 また、反応に使用する酸化剤も複合導電性高分子組成物を形成する芳香族化合物(モノマー)のレドックスポテンシャルによって適宜調整が必要であるが、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)等が使用可能である。 In addition, the oxidizing agent used in the reaction also needs to be appropriately adjusted depending on the redox potential of the aromatic compound (monomer) forming the composite conductive polymer composition. However, ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate , Iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper (II) sulfate, copper (II) chloride, copper (II) tetrafluoroborate In addition, copper (II) hexafluorophosphate can be used.
 また、反応における高分子化合物(A)と化合物(I)ないし(III)との割合は、最終的に得られる複合導電性高分子組成物の性質にもよるため、単純に決定できるものではないが、たとえば、好ましい範囲の例は、高分子化合物(A)中のスルホン酸基の数と、使用する化合物(I)~(III)のモル比により次のように示すことができる。 Further, the ratio of the polymer compound (A) to the compounds (I) to (III) in the reaction depends on the properties of the finally obtained composite conductive polymer composition, and therefore cannot be determined simply. However, for example, an example of a preferable range can be shown as follows by the number of sulfonic acid groups in the polymer compound (A) and the molar ratio of the compounds (I) to (III) used.
 すなわち、式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、当該化合物中のスルホン酸基のモル比が0.2~1.5となる量で共存せしめればよい。 That is, the polymer compound (A) is present in an amount such that the molar ratio of the sulfonic acid groups in the compound is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). You just have to let them know.
 更に、酸化剤の使用量は、通常化合物(I)ないし(III)1モルに対し1.5~2.5モル(1価換算)程度使用するが、系内の酸化度(酸性度)によっては、モノマー1モルに対し1モル以下でも十分重合は可能である。 Further, the amount of the oxidizing agent used is usually about 1.5 to 2.5 mol (monovalent conversion) per 1 mol of the compounds (I) to (III), depending on the oxidation degree (acidity) in the system. The polymerization can be sufficiently carried out even with 1 mol or less per 1 mol of the monomer.
 更にまた、複合導電性高分子組成物を得るための重合反応の温度は、酸化反応後の発熱量や水素引き抜かれ易さが化合物(I)ないし(III)の種類により異なるため、好適な温度範囲が異なる。 Furthermore, since the temperature of the polymerization reaction for obtaining the composite conductive polymer composition varies depending on the types of the compounds (I) to (III), the calorific value after the oxidation reaction and the ease of extracting hydrogen vary depending on the types of the compounds (I) to (III). The range is different.
 一般的には、化合物(I)を利用する場合は、40℃以下が好ましく、化合物(II)の場合は、90℃以下、化合物(III)の場合は、20℃以下とすることが好ましい。 Generally, when the compound (I) is used, the temperature is preferably 40 ° C. or lower, the compound (II) is preferably 90 ° C. or lower, and the compound (III) is preferably 20 ° C. or lower.
 また更に、複合導電性高分子組成物を高分子量化したい場合は、反応温度を相対的に低くし、反応時間を相対的に長めにすれば良く、低分子量化する場合は、この逆とすれば良い。 Furthermore, when it is desired to increase the molecular weight of the composite conductive polymer composition, the reaction temperature should be relatively low and the reaction time should be relatively long, and vice versa. It ’s fine.
 このようにして得られた重合物は、必要により更に洗浄等を行った後、目的物である複合導電性高分子組成物とすることができる。このものは、後記するように従来の導電性高分子組成物が溶解しなかったトルエン等の芳香族溶剤および酢酸エチル等のエステル系溶剤中で、安定に溶解するものである。 The polymer obtained in this manner can be made into a composite conductive polymer composition as a target product after further washing and the like as necessary. As described later, this dissolves stably in an aromatic solvent such as toluene and an ester solvent such as ethyl acetate in which the conventional conductive polymer composition did not dissolve.
 かくして得られた本発明の複合導電性高分子組成物の利用方法の例としては、これを芳香族溶剤およびエステル系溶剤中に均質状態で溶解させた複合導電性高分子組成物溶液を挙げることができる。この複合導電性高分子組成物溶液は、これを導電性皮膜の形成が求められる部分に塗布し、次いで乾燥等の手段により当該組成物中の芳香族溶媒を揮発させることにより、目的部分に均一な導電性皮膜を形成することができる。 Examples of methods of using the composite conductive polymer composition of the present invention thus obtained include a composite conductive polymer composition solution in which this is dissolved in an aromatic solvent and an ester solvent in a homogeneous state. Can do. This composite conductive polymer composition solution is uniformly applied to the target portion by applying it to the portion where the formation of the conductive film is required and then volatilizing the aromatic solvent in the composition by means such as drying. A conductive film can be formed.
 上記複合導電性高分子組成物溶液を調製するには、好ましくは、複合導電性高分子組成物をトルエン、ベンゼン、キシレン等の芳香族系溶剤および/または酢酸エチル、酢酸プロピル、酢酸ブチル等エステル系溶剤に0.1~10質量%程度で溶解させたものである。 In order to prepare the composite conductive polymer composition solution, the composite conductive polymer composition is preferably an aromatic solvent such as toluene, benzene or xylene and / or an ester such as ethyl acetate, propyl acetate or butyl acetate. It is dissolved in a solvent of about 0.1 to 10% by mass.
 また、上記の複合導電性高分子組成物溶液には、更に、溶液の安定性向上および塗膜状態での導電性向上を目的として、ベンジルアルコール、フェノール、m-クレゾール、o-クレゾール、2-ナフタノール、1-ナフタノール、グアイコール、2,6-ジメチルフェノール等のヒドロキシル基を有する芳香族化合物を加えることができる。これらのヒドロキシル基を有する化合物は、複合導電性高分子組成物溶液の溶剤量100重量部に対し、0.01~45重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes benzyl alcohol, phenol, m-cresol, o-cresol, 2-ethyl alcohol for the purpose of improving the stability of the solution and improving the conductivity in the coating film state. Aromatic compounds having a hydroxyl group such as naphthanol, 1-naphthanol, guaicol, 2,6-dimethylphenol can be added. These hydroxyl group-containing compounds are preferably added in an amount of about 0.01 to 45 parts by weight with respect to 100 parts by weight of the solvent in the composite conductive polymer composition solution.
 また、上記の複合導電性高分子組成物溶液には、更に、帯電防止塗料としての自立膜の導電性の向上および太陽電池用対極材としての触媒性能の向上を目的として、銅、銀、アルミニウム、白金等の金属、酸化チタン、酸化インジウムスズ、フッ素ドープ酸化スズ、アルミナ、シリカ等の金属酸化物、導電性ポリマー組成物、カーボンナノチューブ(CNT)、フラーレン、カーボンブラック等の炭素粉末、または分散体をフィラー成分として含むことができる。これらの粉末または分散体は複合導電性高分子組成物溶液の固形分100重量部に対し、固形分0.01~50重量部程度加えることが好ましい。 In addition, the above composite conductive polymer composition solution further includes copper, silver, aluminum for the purpose of improving the conductivity of a self-supporting film as an antistatic coating and improving the catalytic performance as a counter electrode material for solar cells. , Metals such as platinum, titanium oxide, indium tin oxide, fluorine-doped tin oxide, metal oxides such as alumina and silica, conductive polymer compositions, carbon powders such as carbon nanotubes (CNT), fullerenes, carbon black, or dispersion The body can be included as a filler component. These powders or dispersions are preferably added in an amount of 0.01 to 50 parts by weight with respect to 100 parts by weight of the solid content of the composite conductive polymer composition solution.
 さらに、上記複合導電性高分子組成物は色素増感型太陽電池用対極に用いることができる。この色素増感型太陽電池用対極は、透明性が要求される場合には透明基板の片面に上記複合導電性高分子組成物を積層する、または透明基板の一方の面に光透過性電極を配置し、その光透過性電極に上記複合導電性高分子組成物を積層することにより形成することができる。また、透明性が要求されない場合には、金属箔等に積層することで形成することができる。この複合導電性高分子組成物の厚さは通常は0.01~100μm、好ましくは0.1~50μmの範囲内にある。 Furthermore, the composite conductive polymer composition can be used for a counter electrode for a dye-sensitized solar cell. The counter electrode for dye-sensitized solar cell is formed by laminating the composite conductive polymer composition on one side of a transparent substrate when transparency is required, or by providing a light transmissive electrode on one side of the transparent substrate. It can be formed by arranging and laminating the composite conductive polymer composition on the light transmissive electrode. Moreover, when transparency is not requested | required, it can form by laminating | stacking on metal foil etc. The thickness of the composite conductive polymer composition is usually in the range of 0.01 to 100 μm, preferably 0.1 to 50 μm.
 本発明の色素増感上記で用いる透明基板としては、光透過率が通常は50%以上、好ましくは80%以上のフィルムまたは板を使用することができる。このような透明基板の例としては、ガラス等の無機透明基板、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリフェニレンスルフィド、ポリスルホン、ポリエステルスルホン、ポリアルキル(メタ)アクリレート、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)、ポリシクロオレフィン等の高分子透明基板等を挙げることができる。また、金属箔としては、金、白金、銀、錫、銅、アルミ、ステンレス、ニッケル等の金属箔を挙げることができる。 As the transparent substrate used for the dye sensitization of the present invention, a film or plate having a light transmittance of usually 50% or more, preferably 80% or more can be used. Examples of such transparent substrates include inorganic transparent substrates such as glass, polyethylene terephthalate (PET), polycarbonate (PC), polyphenylene sulfide, polysulfone, polyester sulfone, polyalkyl (meth) acrylate, polyethylene naphthalate (PEN), Examples thereof include polymer transparent substrates such as polyethersulfone (PES) and polycycloolefin. Moreover, as metal foil, metal foil, such as gold | metal | money, platinum, silver, tin, copper, aluminum, stainless steel, nickel, can be mentioned.
 これら透明基板の厚さは、無機透明基板の場合には、通常は200~7000μmの範囲内であり、高分子透明基板の場合には、通常は20~4000μm、好ましくは20~2000μmの範囲内にある。金属箔基板の場合には、0.1μm~1000μm、好ましくは1μm~500μmの範囲内にある。この範囲内の厚さの高分子透明基板および金属箔基板は、得られる色素増感太陽電池に可撓性を付与することができる。 The thickness of these transparent substrates is usually in the range of 200 to 7000 μm in the case of the inorganic transparent substrate, and is usually in the range of 20 to 4000 μm, preferably in the range of 20 to 2000 μm in the case of the polymer transparent substrate. It is in. In the case of a metal foil substrate, it is in the range of 0.1 μm to 1000 μm, preferably 1 μm to 500 μm. The polymer transparent substrate and the metal foil substrate having a thickness within this range can impart flexibility to the resulting dye-sensitized solar cell.
また、上記透明基板の一方の面には必要に応じて光透過性電極を配置してもよい。ここで用いる光透過性電極としては、膜状導電性金属電極、メッシュ状導電性金属電極などを挙げることができる。 Moreover, you may arrange | position a transparent electrode as needed to one side of the said transparent substrate. Examples of the light transmissive electrode used here include a film-like conductive metal electrode and a mesh-like conductive metal electrode.
 上記膜状導電性金属電極は酸化錫、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)などを膜状に形成させたものである。この膜状導電性金属電極は透明基板の表面に、酸化錫、ITO、FTOなどを蒸着あるいはスパッタリングなどすることにより形成することができる。 この膜状導電性金属電極の厚さは、通常は0.01~1μm、好ましくは0.01~0.5μmの範囲内にある。 The film-like conductive metal electrode is formed by forming a film of tin oxide, tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO) or the like. This film-like conductive metal electrode can be formed by vapor-depositing or sputtering tin oxide, ITO, FTO or the like on the surface of the transparent substrate.厚 The thickness of the film-like conductive metal electrode is usually in the range of 0.01 to 1 μm, preferably 0.01 to 0.5 μm.
 一方、メッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属をメッシュ状に形成させたものである。具体的にメッシュ状導電性金属電極は、銅、ニッケル、アルミニウムなどの導電性金属を用いて、例えばフォトリソグラフ法により、線幅が通常は10~70μm、好ましくは10~20μmであり、ピッチ幅が通常は50~300μm、好ましくは50~200μmのメッシュとなるようにエッチングすることにより形成することができる。このときのメッシュ状導電性金属電極の導線の厚さは、使用する導電性金属の厚さと略同一になり、通常は8~150μm、好ましくは8~15μmの範囲内にある。 このメッシュ状導電性金属電極は、透明基板の表面に粘着剤などを用いて貼着することができる。 On the other hand, the mesh-like conductive metal electrode is formed by forming a conductive metal such as copper, nickel, or aluminum in a mesh shape. Specifically, the mesh-like conductive metal electrode has a line width of usually 10 to 70 μm, preferably 10 to 20 μm, using a conductive metal such as copper, nickel, and aluminum, for example, by photolithography, and a pitch width. Is usually formed by etching to a mesh of 50 to 300 μm, preferably 50 to 200 μm. At this time, the thickness of the conductive wire of the mesh-like conductive metal electrode is substantially the same as the thickness of the conductive metal used, and is usually in the range of 8 to 150 μm, preferably 8 to 15 μm. This mesh-like conductive metal electrode can be attached to the surface of the transparent substrate using an adhesive or the like.
 上記色素増感型太陽電池用対極を製造するにあたり、複合導電性高分子組成物を上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に積層する方法としては、例えば、上記透明基板の片面または透明基板の一方の面に配置した光透過性電極に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去することを1ないし複数回行う方法が挙げられる。 In producing the counter electrode for dye-sensitized solar cell, as a method of laminating the composite conductive polymer composition on the light transmissive electrode disposed on one side of the transparent substrate or one side of the transparent substrate, for example, A method of applying the composite conductive polymer composition solution to a light transmissive electrode disposed on one surface of the transparent substrate or one surface of the transparent substrate and removing the solvent in the solution one or more times is mentioned. It is done.
上記複合導電性高分子組成物溶液の塗布は、ディップコーター、マイクロバーコーター、ロールコーター、コンマコーター、ダイコーター、グラビアコーターなど公知のコーターを適用できる。 For application of the composite conductive polymer composition solution, a known coater such as a dip coater, a micro bar coater, a roll coater, a comma coater, a die coater, or a gravure coater can be applied.
また、溶媒の除去は、放置による自然乾燥、熱風・赤外線による加熱条件下での強制乾燥などの方法を適用できる。 The solvent can be removed by a method such as natural drying by standing or forced drying under heating conditions using hot air or infrared rays.
 上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、有機溶剤に可溶であるため、従来の複合導電性高分子組成物を水性媒体で分散された分散液に比べ、塗布工程が容易であり、生産性に優れている。また、酸性水溶液に由来する対極作製段階での金属の腐食劣化を抑制することができる。 Since the composite conductive polymer composition used for the dye-sensitized solar cell counter electrode is soluble in an organic solvent, the conventional composite conductive polymer composition is dispersed in an aqueous medium. Compared with the liquid, the coating process is easy and the productivity is excellent. Moreover, the corrosion deterioration of the metal in the counter electrode preparation stage originating in acidic aqueous solution can be suppressed.
 また、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させた得られる高分子化合物(A)を用いることにより、上記透明基板や光透過性電極や金属箔に対する密着性に優れているので、長期間使用できる。 In the counter electrode for dye-sensitized solar cell, the composite conductive polymer composition used for the counter electrode has components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) obtained by copolymerization with, the adhesiveness to the transparent substrate, the light transmissive electrode, and the metal foil is excellent, so that it can be used for a long time.
 更に、上記色素増感型太陽電池用対極は、これに用いる上記複合導電性高分子組成物が、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる酸性度が抑えられた高分子化合物(A)を用いることにより、光透過性電極(導電性金属)が腐食されにくくなる上、電解液に対する耐久性が向上するので、長期間使用できる。 Further, in the counter electrode for dye-sensitized solar cell, the composite electroconductive polymer composition used for the counter electrode comprises components (a-1), (a-2) and (a-3) in a predetermined range. By using the polymer compound (A) with reduced acidity obtained by copolymerization with the above, the light-transmitting electrode (conductive metal) is less likely to be corroded and the durability against the electrolytic solution is improved. Can be used for a long time.
 また更に、上記色素増感型太陽電池用対極は、従来電解液に対する耐酸化性を有する電極として用いられていた高価な白金電極に対して、均一な耐酸化性膜として複合導電性高分子膜が作用することで各種金属が使用可能となる為に廉価に提供できる。 Furthermore, the counter electrode for the dye-sensitized solar cell is a composite conductive polymer film as a uniform oxidation resistant film against an expensive platinum electrode which has been used as an electrode having oxidation resistance with respect to an electrolytic solution. Since various metals can be used as a result of the action, it can be provided at a low price.
 また、上記複合導電性高分子組成物を用いてなる帯電防止フィルムは、上記複合導電性高分子組成物単独で、塗工・乾燥を行い自立膜として成膜可能である為に低抵抗の帯電防止フィルムが加工できる。また、必要に応じて複合導電性高分子組成物と熱可塑性樹脂および/または熱硬化性樹脂とを混合する場合には、(1)押出機やエクストルーダーなどで溶融混練したものをTダイなどを用いて成膜する方法、(2)熱可塑性樹脂、熱硬化性樹脂、およびガラス製のフィルムの片面または両面に上記複合導電性高分子組成物溶液を塗布し、溶液中の溶媒を除去して帯電防止層を形成する方法などによって得ることができる。 In addition, the antistatic film using the composite conductive polymer composition can be formed as a self-supporting film by applying and drying the composite conductive polymer composition alone, so that it has a low resistance charge. Preventive film can be processed. Moreover, when mixing a composite conductive polymer composition and a thermoplastic resin and / or a thermosetting resin as needed, (1) what was melt-kneaded with an extruder, an extruder, etc. T-die etc. (2) Applying the composite conductive polymer composition solution to one or both surfaces of a thermoplastic resin, a thermosetting resin, and a glass film, and removing the solvent in the solution Can be obtained by a method of forming an antistatic layer.
 上記帯電防止フィルムで用いられる熱可塑性樹脂としては、ポリオレフィン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリ酢酸ビニル、ポリテトラフルオロエチレン、ポリアクリロニトリルブタジエンスチレン、ポリアクリロニトリルスチレン、ポリメタクリル、ポリアクリル、飽和ポリエステル、ポリアミド、ポリカーボネート、ポリ変性フェニレンエーテル、ポリフェニレンサルファイド、ポリスルホン、ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、ポリアミドイミドなどが挙げられ、これらの熱可塑性樹脂のポリマーアロイや熱可塑性エラストマーも含まれる。 The thermoplastic resin used in the antistatic film is polyolefin, polyvinyl chloride, polyvinylidene chloride, polystyrene, polyvinyl acetate, polytetrafluoroethylene, polyacrylonitrile butadiene styrene, polyacrylonitrile styrene, polymethacryl, polyacryl, saturated. Examples thereof include polyester, polyamide, polycarbonate, poly-modified phenylene ether, polyphenylene sulfide, polysulfone, polyarylate, liquid crystal polymer, polyether ether ketone, polyamide imide, and the like, and polymer alloys and thermoplastic elastomers of these thermoplastic resins are also included.
 本発明の上記帯電防止フィルムで用いられる熱硬化性樹脂としては、ポリフェノール、ポリエポキシ、不飽和ポリエステル、ポリウレタン、ポリイミド、ポリ尿素、シリコーン樹脂、メラミン樹脂、フッ素樹脂、アルキド樹脂などが挙げられる。 Examples of the thermosetting resin used in the antistatic film of the present invention include polyphenol, polyepoxy, unsaturated polyester, polyurethane, polyimide, polyurea, silicone resin, melamine resin, fluororesin, and alkyd resin.
 また、上記帯電防止フィルムは、上記成分(a-1)、成分(a-2)および成分(a-3)を所定範囲で共重合させて得られる高分子化合物(A)を用いることにより、各種高湿低湿環境条件下での性能バラツキが少なく、高い透過性を有した帯電防止膜の形成が可能となる。 Further, the antistatic film is obtained by using the polymer compound (A) obtained by copolymerizing the component (a-1), the component (a-2) and the component (a-3) within a predetermined range. It is possible to form an antistatic film having high permeability with little performance variation under various high and low humidity conditions.
 次に実施例を挙げ、本発明を更に詳しく説明するが、本発明はこれら実施例により何ら制約されるものではない。なお、本実施例中における分子量および表面抵抗値は下記方法により測定した。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited by these examples. The molecular weight and the surface resistance value in this example were measured by the following methods.
< 分子量 >
 下記条件でのGPCにより測定した。
  装置名:HLC-8120(東ソー(株)製)
  カラム:GF-1G7B+GF-510HQ(Asahipak:登録商標、
      昭和電工(株)製)
  基準物質:ポリスチレンおよびポリスチレンスルホン酸ナトリウム
  サンプル濃度:1.0mg/ml
  溶離液:50ミリモル塩化リチウム水溶液/CHCN=60/40wt
  流量:0.6ml/min
  カラム温度:30℃
  検出器:UV254nm
<Molecular weight>
It was measured by GPC under the following conditions.
Device name: HLC-8120 (manufactured by Tosoh Corporation)
Column: GF-1G7B + GF-510HQ (Asahipak: registered trademark,
Showa Denko Co., Ltd.)
Reference material: polystyrene and sodium polystyrene sulfonate Sample concentration: 1.0 mg / ml
Eluent: 50 mmol lithium chloride aqueous solution / CH 3 CN = 60/40 wt
Flow rate: 0.6 ml / min
Column temperature: 30 ° C
Detector: UV254nm
< 表面抵抗 >
 (株)ダイアインスツルメンツ製の、低抵抗率計ロレスタGP、PSPタイププローブを用い、四端子四探針法により測定した。
<Surface resistance>
Measurement was performed by a four-terminal four-probe method using a low resistivity meter Loresta GP, a PSP type probe manufactured by Dia Instruments Co., Ltd.
実 施 例 1
(1)高分子化合物(2-NaSEMA/BzMA/2-EHMA=30/40/30):
 2-ソジウムスルホエチルメタクリレート(2-NaSEMA)50g、ベンジルメタクリレート(BzMA)55g、2-エチルヘキシルメタクリレート(2-EHA)47g、水150gおよびイソプロピルアルコール300gを計量し、フラスコに仕込んだ。リフラックス温度まで昇温後、アゾビスイソブチロニトリル(AIBN)を0.7g添加して重合を行った。リフラックス状態のまま18時間反応を行なった。
Example 1
(1) Polymer compound (2-NaSEMA / BzMA / 2-EHMA = 30/40/30):
50 g of 2-sodium sulfoethyl methacrylate (2-NaSEMA), 55 g of benzyl methacrylate (BzMA), 47 g of 2-ethylhexyl methacrylate (2-EHA), 150 g of water and 300 g of isopropyl alcohol were weighed and charged into a flask. After raising the temperature to the reflux temperature, 0.7 g of azobisisobutyronitrile (AIBN) was added for polymerization. The reaction was performed for 18 hours in the reflux state.
(2)高分子化合物精製:
 上記(1)で得られたポリマー溶液に、ヘキサン500gを添加後、分液抽出により油層の不純物を除去した。分液後の水層に、1kgのメタノールを1時間かけて滴下して固形分を析出させ、固形分を濾別した。得られた固形物を減圧下、100℃で24時間乾燥した後、乳鉢で粉砕して高分子化合物の粉体(α-1)を得た。得られたポリマーをGPCで測定したところ、Mw=38,000だった。
(2) Polymer compound purification:
After adding 500 g of hexane to the polymer solution obtained in (1) above, impurities in the oil layer were removed by liquid separation extraction. To the aqueous layer after separation, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid, and the solid was separated by filtration. The obtained solid was dried at 100 ° C. under reduced pressure for 24 hours, and then pulverized in a mortar to obtain a polymer compound powder (α-1). When the obtained polymer was measured by GPC, it was Mw = 38,000.
(3)高分子化合物の再溶解:
 上記(2)で得た高分子化合物16.1g、イオン交換水200gおよび35%塩酸水溶液6gをフラスコに秤り取り、60℃で加熱攪拌を行い、均一な高分子化合物水溶液を得た。
(3) Re-dissolution of polymer compound:
16.1 g of the polymer compound obtained in (2) above, 200 g of ion-exchanged water and 6 g of 35% hydrochloric acid aqueous solution were weighed in a flask and heated and stirred at 60 ° C. to obtain a uniform polymer compound aqueous solution.
(4)ポリアニリン重合:
 上記(3)で得た高分子化合物水溶液を冷却後、これにアニリン4.65gを秤量し、加えた。この混合物を攪拌・溶解したところ、均一な乳化液となった。別に、水30g、ペルオキソ二硫酸アンモニウム10gを計量、混合し、この混合物を0℃で2時間かけて乳化液の入ったフラスコ中に滴下した。滴下終了後、室温(25℃)に戻し、48時間攪拌を行った。
(4) Polyaniline polymerization:
After cooling the polymer compound aqueous solution obtained in (3) above, 4.65 g of aniline was weighed and added thereto. When this mixture was stirred and dissolved, a uniform emulsion was obtained. Separately, 30 g of water and 10 g of ammonium peroxodisulfate were weighed and mixed, and this mixture was dropped into the flask containing the emulsion at 0 ° C. over 2 hours. After completion of the dropping, the temperature was returned to room temperature (25 ° C.), and stirring was performed for 48 hours.
(5)ポリアニリン精製:
 反応終了後の重合溶液を濾別し、得られた結晶を水に再分散して洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃にて96時間乾燥してポリアニリン乾燥物(複合導電性高分子組成物)(β-1)を得た。複合導電性高分子組成物の揮発分を測定した結果、揮発分は2%以下だった。
(5) Polyaniline purification:
After completion of the reaction, the polymerization solution was filtered off, and the resulting crystals were redispersed in water, washed, and filtered again. A solid containing water obtained by repeating the washing 4 times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a dried polyaniline (composite conductive polymer composition) (β-1). As a result of measuring the volatile content of the composite conductive polymer composition, the volatile content was 2% or less.
(6)ポリアニリン溶解:
 前記(5)で得た複合導電性高分子組成物5g、トルエン47gおよび酢酸エチル48gを秤量してフラスコに取り、これを攪拌、溶解して、複合導電性高分子組成物溶液を得た。
(6) Polyaniline dissolution:
5 g of the composite conductive polymer composition obtained in (5) above, 47 g of toluene and 48 g of ethyl acetate were weighed and taken into a flask, which was stirred and dissolved to obtain a composite conductive polymer composition solution.
(7)塗膜評価:
 上記(6)で得た複合導電性高分子組成物溶液をガラス基板上に塗工し、これを90℃で乾燥したところ、緑色の均一塗膜塗膜(γ-1)が得られた。このものの表面抵抗値は、60kΩ/□だった。
(7) Coating film evaluation:
When the composite conductive polymer composition solution obtained in the above (6) was coated on a glass substrate and dried at 90 ° C., a green uniform coating film (γ-1) was obtained. The surface resistance of this product was 60 kΩ / □.
比 較 例 1
(1)比較高分子化合物(2-NaSEMA/BzMA/2-EHMA=30/10/60):
 2-NaSEMA50g、BzMA13.8g、2-EHA94g、イオン交換水150gおよびイソプロピルアルコール300gを計量し、フラスコに仕込んだ。リフラックス温度まで昇後、AIBN0.7g添加して重合を行った。リフラックス状態のまま18時間反応を行った。
Comparative Example 1
(1) Comparative polymer compound (2-NaSEMA / BzMA / 2-EHMA = 30/10/60):
2-NaSEMA 50 g, BzMA 13.8 g, 2-EHA 94 g, ion-exchanged water 150 g and isopropyl alcohol 300 g were weighed and charged into a flask. After raising to the reflux temperature, 0.7 g of AIBN was added for polymerization. The reaction was performed for 18 hours in the reflux state.
(2)高分子化合物精製:
 上記(1)で得られたポリマー溶液にヘキサン約500gを添加後、分液抽出により油層の不純物を除去した。分液後の水層に、1kgのメタノールを1時間かけて滴下して固形分を析出させ、固形分を濾別した。得られた固形物を減圧下、100℃で24時間乾燥した後、乳鉢で粉砕して高分子化合物(α-6)の粉体を得た。得られたポリマーの分子量をGPCで測定したところ、Mw=35,000だった。
(2) Polymer compound purification:
About 500 g of hexane was added to the polymer solution obtained in (1) above, and impurities in the oil layer were removed by liquid separation extraction. To the aqueous layer after separation, 1 kg of methanol was added dropwise over 1 hour to precipitate a solid, and the solid was separated by filtration. The obtained solid was dried under reduced pressure at 100 ° C. for 24 hours, and then pulverized in a mortar to obtain a powder of a polymer compound (α-6). When the molecular weight of the obtained polymer was measured by GPC, it was Mw = 35,000.
(3)高分子化合物の再溶解:
 上記高分子化合物16.7g、イオン交換水200gおよび35%塩酸水溶液6gをフラスコに秤り取り、60℃で加熱攪拌を行い、均一な高分子化合物水溶液を得た。
(3) Re-dissolution of polymer compound:
16.7 g of the above polymer compound, 200 g of ion-exchanged water and 6 g of 35% hydrochloric acid aqueous solution were weighed in a flask and stirred at 60 ° C. to obtain a uniform polymer compound aqueous solution.
(4)ポリアニリン重合:
 上記(3)で得た高分子化合物水溶液を冷却後、これにアニリン4.65gを秤量し、加えた。この混合物を攪拌・溶解したところ均一な乳化液が得られた。別に、イオン交換水30g、ペルオキソ二硫酸アンモニウム10gを計量、混合し、この混合物を0℃で約2時間かけて乳化液の入ったフラスコ中に滴下した。滴下終了後、室温(25℃)に戻し30時間攪拌を行った。
(4) Polyaniline polymerization:
After cooling the polymer compound aqueous solution obtained in (3) above, 4.65 g of aniline was weighed and added thereto. When this mixture was stirred and dissolved, a uniform emulsion was obtained. Separately, 30 g of ion-exchanged water and 10 g of ammonium peroxodisulfate were weighed and mixed, and this mixture was dropped into a flask containing the emulsion at 0 ° C. over about 2 hours. After completion of dropping, the mixture was returned to room temperature (25 ° C.) and stirred for 30 hours.
(5)ポリアニリン精製:
 反応終了後の重合溶液を濾別し、得られた結晶を水に再分散して洗浄を行い、再度濾別を行った。前記洗浄を4回繰り返して得た水を含んだ固形物を取り出し、減圧下40℃で96時間乾燥してポリアニリン乾燥物(比較導電性高分子組成物)(β-7)を得た。比較導電性高分子組成物の揮発分を測定した結果、揮発分は2%以下だった。
(5) Polyaniline purification:
After completion of the reaction, the polymerization solution was filtered off, and the resulting crystals were redispersed in water, washed, and filtered again. A solid containing water obtained by repeating the washing 4 times was taken out and dried under reduced pressure at 40 ° C. for 96 hours to obtain a dried polyaniline (comparative conductive polymer composition) (β-7). As a result of measuring the volatile content of the comparative conductive polymer composition, the volatile content was 2% or less.
(6)ポリアニリン溶解:
 前記(5)で得た比較導電性高分子組成物5g、トルエン47gおよび酢酸エチル48gを秤量してフラスコに取り、これを攪拌したが溶解せず、一部沈殿物を生じた比較導電性高分子組成物の微分散溶液が得られた。
(6) Polyaniline dissolution:
5 g of the comparative conductive polymer composition obtained in the above (5), 47 g of toluene, and 48 g of ethyl acetate were weighed and taken in a flask. A finely dispersed solution of the molecular composition was obtained.
(7)塗膜評価:
 上記(6)の比較導電性高分子組成物の微分散溶液を200メッシュフィルターにてろ過し、ろ液をガラス基板上に塗工して乾燥を行ったところ、微粒子膜としての均一膜(γ-7)は得られたが、表面を指で擦ると脱落するような膜質であり、実施例1などで得られていたような均一な自立塗膜にならず、その表面抵抗値は1MΩ/□だった。
(7) Coating film evaluation:
The finely dispersed solution of the comparative conductive polymer composition of the above (6) was filtered through a 200 mesh filter, and the filtrate was coated on a glass substrate and dried to obtain a uniform film (γ -7) was obtained, but the film quality was such that it would fall off when the surface was rubbed with a finger, and it was not a uniform free-standing coating film as obtained in Example 1 and its surface resistance was 1 MΩ / It was □.
実 施 例 2~5 および 比 較 例 2~4
 実施例1の(1)および(2)に示した方法により、下記表1に示す組成で高分子化合物α-2からα-5を調製した。また、比較例1の(1)および(2)に示した方法により、表1の組成で、比較高分子化合物α-7からα-9を調製した。実施例1および比較例1で得られたものも含め、各高分子化合物の分子量および水への溶解性を表1中に示す。
Examples 2 to 5 and Comparative Examples 2 to 4
Polymer compounds α-2 to α-5 having the compositions shown in Table 1 below were prepared by the method shown in (1) and (2) of Example 1. Further, comparative polymer compounds α-7 to α-9 were prepared by the method shown in (1) and (2) of Comparative Example 1 with the composition shown in Table 1. Table 1 shows the molecular weight and water solubility of each polymer compound, including those obtained in Example 1 and Comparative Example 1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
実 施 例 6~10 および 比 較 例 5~10
 実施例2ないし5で得た高分子化合物α-2ないしα-5を用い、実施例1の(3)および(4)に示した方法により表2の組成で複合導電性高分子組成物β-2~β-6を調製した(但し、β-4の調製では、高分子化合物の再溶解時のイオン交換水200gに代え、イオン交換水100gと25℃飽和食塩水100gを用いた)。また、比較例2ないし4で得た比較高分子化合物α-7からα-9を用い、比較例1の(1)および(2)に示した方法により、表2の組成で、比較導電性高分子組成物β-8からβ-13を調製した。表2中には、実施例1および比較例1で得られたものも含め、各導電性ポリマーのモノマー組成、使用高分子化合物種およびその量、使用塩酸量、使用酸化剤およびその量並びに反応条件(反応温度および反応時間)を示した。
Examples 6 to 10 and Comparative Examples 5 to 10
Using the polymer compounds α-2 to α-5 obtained in Examples 2 to 5, the composite conductive polymer composition β having the composition shown in Table 2 by the method shown in (3) and (4) of Example 1 was used. -Β to β-6 were prepared (however, in the preparation of β-4, 100 g of ion-exchanged water and 100 g of 25 ° C. saturated saline were used instead of 200 g of ion-exchanged water at the time of re-dissolution of the polymer compound). Further, the comparative polymer compounds α-7 to α-9 obtained in Comparative Examples 2 to 4 were used, and by the method shown in Comparative Examples 1 (1) and (2), the compositions shown in Table 2 were used for comparative conductivity. Polymer compositions β-8 to β-13 were prepared. In Table 2, including those obtained in Example 1 and Comparative Example 1, the monomer composition of each conductive polymer, the type and amount of polymer compound used, the amount of hydrochloric acid used, the amount of oxidizing agent and the amount thereof, and the reaction Conditions (reaction temperature and reaction time) are shown.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
実 施 例 11~15 および 比 較 例 11~16
 実施例1および6~10で得た複合導電性高分子組成物β-1~β-6を、実施例1の(6)および(7)に準じて種々の芳香族系溶剤および/またはエステル系溶剤に溶解させた後乾燥させ、γ-2~γ-6の複合導電性高分子組成物皮膜を形成した。また、比較例1および5~10で得た比較導電性高分子組成物についても、同様、種々の芳香族系溶剤および/またはエステル系溶剤に溶解させた後乾燥させ、皮膜の形成を試みた(γ-8~γ-13)。それぞれの導電性高分子組成物の溶剤への溶解状態、これを用いて作製した乾燥皮膜の状態およびその表面抵抗値を表3に示す。なお、表中には、実施例1および比較例1で得た皮膜および溶剤として水を用いた場合の皮膜(γ-17)も合わせて示した。
Examples 11 to 15 and Comparative Examples 11 to 16
The composite conductive polymer compositions β-1 to β-6 obtained in Examples 1 and 6 to 10 were prepared from various aromatic solvents and / or esters according to (6) and (7) of Example 1. It was dissolved in a system solvent and dried to form a composite conductive polymer composition film of γ-2 to γ-6. In addition, the comparative conductive polymer compositions obtained in Comparative Examples 1 and 5 to 10 were similarly dissolved in various aromatic solvents and / or ester solvents and then dried to try to form a film. (Γ-8 to γ-13). Table 3 shows the dissolved state of each conductive polymer composition in the solvent, the state of the dry film produced using the conductive polymer composition, and the surface resistance value. In the table, the film obtained in Example 1 and Comparative Example 1 and the film using water as the solvent (γ-17) are also shown.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 この結果から明らかなように、本発明の高分子化合物(α-1からα-5)を使用して芳香族化合物を酸化させて得た複合導電性高分子組成物は、何れも芳香族系溶剤およびエステル系溶剤に溶解するものであり、これら溶剤を揮発させた後に得られる皮膜は、導電性が高いものであった。 As is apparent from the results, the composite conductive polymer composition obtained by oxidizing the aromatic compound using the polymer compound (α-1 to α-5) of the present invention is aromatic. A film that is soluble in a solvent and an ester solvent, and obtained after volatilization of the solvent was highly conductive.
 これに対し、本発明の高分子化合物と組成が異なる高分子化合物を使用して得られた比較導電性高分子組成物は、芳香族系溶剤や、エステル系溶剤に対する溶解性がなく、これを用いて調製した皮膜は、ほとんど導電性が認められないものであった。 On the other hand, the comparative conductive polymer composition obtained by using a polymer compound having a composition different from that of the polymer compound of the present invention has no solubility in an aromatic solvent or an ester solvent. The film prepared by using the film had almost no conductivity.
実施例16~実施例22および比較例12~比較例14
 国際公開番号WO/2009/013942の実施例1で用いている対向電極(開口銅メッシュ電極)ならび対向電極基板(厚さ80μmのPETフィルム)を、実施例1~4で調製した複合導電性高分子組成物溶液もしくは比較例2で調製した導電性高分子組成物溶液をドクターブレードを用い乾燥後の厚みが5μmとなるように、SUS箔、ITO PENフィルム、ガラス基板、ITOガラス基板またはFTOガラス基板上に塗工したものに替えて色素増感型太陽電池素子を製造した。
Examples 16 to 22 and Comparative Examples 12 to 14
The counter electrode (opened copper mesh electrode) and the counter electrode substrate (80 μm thick PET film) used in Example 1 of International Publication No. WO / 2009/013942 were prepared in Examples 1 to 4. SUS foil, ITO PEN film, glass substrate, ITO glass substrate or FTO glass so that the thickness after drying the molecular composition solution or the conductive polymer composition solution prepared in Comparative Example 2 is 5 μm using a doctor blade It replaced with what was coated on the board | substrate, and manufactured the dye-sensitized solar cell element.
 得られた色素増感型太陽電池素子評価は山下電装(株)製のソーラーシュミレーターYSS-80Aを用いた。セル面積1cmの素子に対してAM1.5(1sun;100mW/cm2)照射下のI-V特性を調べることにより、セルの短絡電流、開放電圧、フィルファクターおよび発電効率を評価した。その結果を表4に示した。 For evaluation of the obtained dye-sensitized solar cell element, a solar simulator YSS-80A manufactured by Yamashita Denso Co., Ltd. was used. The cell short-circuit current, open-circuit voltage, fill factor, and power generation efficiency were evaluated by examining the IV characteristics under irradiation of AM 1.5 (1 sun; 100 mW / cm 2 ) for an element having a cell area of 1 cm 2 . The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 以上の結果より、本発明の複合導電性高分子組成物を用いてなる色素増感型太陽電池素子は高い光電変換効率を示した。 From the above results, the dye-sensitized solar cell element using the composite conductive polymer composition of the present invention showed high photoelectric conversion efficiency.
 実施例23~実施例24および比較例15~比較例16
 実施例1~2で調製した複合導電性高分子組成物溶液または比較例2で調製した導電性高分子組成物溶液を、それぞれ固形分2.5%に再調整し、それらをスピンコート法により4000rpm-15secの条件で、厚さが1000μmのガラス基板および100μmのPETフィルム基板に対して塗布し、熱風乾燥機で溶媒を除去させて帯電防止層を形成した帯電防止フィルムを作製した。なお、帯電防止層の膜厚を触針式表面形状測定器(Dektak 6M:アルバック製)で測定を行ったところ、帯電防止層の厚さはいずれもおよそ25nmであった。
Examples 23 to 24 and Comparative Examples 15 to 16
The composite conductive polymer composition solution prepared in Examples 1 and 2 or the conductive polymer composition solution prepared in Comparative Example 2 was readjusted to a solid content of 2.5%, respectively, and these were prepared by spin coating. The coating was applied to a glass substrate having a thickness of 1000 μm and a PET film substrate having a thickness of 1000 μm under a condition of 4000 rpm-15 sec, and the solvent was removed by a hot air dryer to produce an antistatic film having an antistatic layer formed thereon. In addition, when the film thickness of the antistatic layer was measured with a stylus type surface shape measuring instrument (Dektak 6M: manufactured by ULVAC), the thickness of each antistatic layer was approximately 25 nm.
 得られた帯電防止フィルムについて、以下のような条件下で静置した後に表面抵抗値の評価を行った。評価結果を表5に示した。
 条件(1):23℃50%RHにて192hr
 条件(2):40℃80%RHにて168hr
The obtained antistatic film was allowed to stand under the following conditions, and then the surface resistance value was evaluated. The evaluation results are shown in Table 5.
Condition (1): 192 hr at 23 ° C. and 50% RH
Condition (2): 168 hr at 40 ° C. and 80% RH
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 以上の結果より、本発明の帯電防止フィルムは、高温多湿下での環境で使用されても、帯電防止特性を十分に示す結果であった。 From the above results, even when the antistatic film of the present invention was used in an environment under high temperature and high humidity, it was a result that sufficiently exhibited antistatic properties.
 本発明の複合導電性高分子組成物は、疎水性の強い芳香環または脂環族を主成分とする高分子化合物(A)をドープ剤として使用したものであり、トルエン等の芳香族溶剤や酢酸エチル等のエステル系溶剤に安定に可溶化させることが可能となったものである。 The composite conductive polymer composition of the present invention uses a polymer compound (A) whose main component is a highly hydrophobic aromatic ring or alicyclic group as a dopant, and an aromatic solvent such as toluene, It can be stably solubilized in an ester solvent such as ethyl acetate.
 そして、このようにして得られる複合導電性高分子組成物を芳香族溶剤やエステル系溶剤中に透明状態で溶解させた導電性高分子形成組成物溶液は、導電性が要求される部分に簡単に導電性皮膜を形成することが可能であり、電子部品等の分野において、きわめて有利に使用できるものである。 A conductive polymer-forming composition solution obtained by dissolving the composite conductive polymer composition thus obtained in an aromatic solvent or an ester solvent in a transparent state can be easily applied to a portion requiring conductivity. It is possible to form a conductive film on the surface, and it can be used very advantageously in the field of electronic parts and the like.
 さらに、本発明の複合導電性高分子組成物を用いた色素増感型太陽電気用電極や帯電防止フィルムは、優れた性能を有する。 Furthermore, a dye-sensitized solar electrode or an antistatic film using the composite conductive polymer composition of the present invention has excellent performance.

Claims (18)

  1.  次の成分(a-1)ないし(a-3)
     (a-1)スルホン酸基と重合性ビニル基を有するモノマー
                  20~50mol%
     (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      20~50mol%
     (a-3)アルキル(メタ)アクリレート
                  30~60mol%
    を重合させることにより得られる高分子化合物(A)を、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000001
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物をモノマー構成成分とするπ共役系高分子(β)にドーピングさせてなる複合導電性高分子組成物。
    The following components (a-1) to (a-3)
    (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol%
    (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol%
    (A-3) Alkyl (meth) acrylate 30 to 60 mol%
    The polymer compound (A) obtained by polymerizing the compound is represented by the following formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000001
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A composite conductive polymer composition obtained by doping a π-conjugated polymer (β) having a compound selected from:
  2.  成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーが、スチレンスルホン酸ナトリウム、スチレンスルホン酸、2-ソジウムスルホエチル(メタ)アクリレートおよび2-スルホエチル(メタ)アクリレートよりなる群から選ばれたものである請求項1記載の複合導電性高分子組成物。 Group (a-1) wherein the monomer having a sulfonic acid group and a polymerizable vinyl group is composed of sodium styrene sulfonate, styrene sulfonic acid, 2-sodium sulfoethyl (meth) acrylate and 2-sulfoethyl (meth) acrylate. The composite conductive polymer composition according to claim 1, which is selected from the group consisting of:
  3.  成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマーが、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ネオペンチルグリコール(メタ)アクリル酸安息香酸エステル、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ヒドロキシエチル化o-フェノール(メタ)アクリレート、o-フェニルフェノールグリシジルエーテル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ビニルピリジンおよび(メタ)アクリロイルモルホリンよりなる群から選ばれたものである請求項1または2記載の複合導電性高分子組成物。 The monomer having an aromatic group or alicyclic group and a polymerizable vinyl group as component (a-2) is benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, 2- (meth) acryloyloxyethylphthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, neopentyl glycol (meth) acrylic acid benzoate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, hydroxyethylated o-phenol (meth) acrylate, o-Phenylphenol glycidyl ether (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, dicyclopentenyl (meth) acrylate 3. The composite conductive material according to claim 1, wherein the compound is selected from the group consisting of benzoate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, vinylpyridine and (meth) acryloylmorpholine. Molecular composition.
  4.  成分(a-3)のアルキル(メタ)アクリレートが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、nープロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、i-プロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレートおよびステアリル(メタ)アクリレートよりなる群から選ばれたものである請求項1ないし3の何れかの項記載の複合導電性高分子組成物。 The alkyl (meth) acrylate of component (a-3) is methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i -Butyl (meth) acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate and stearyl (meth) acrylate 4. The composite conductive polymer composition according to claim 1, wherein the composite conductive polymer composition is selected from the group.
  5.  次の成分(a-1)ないし(a-3)
     (a-1)スルホン酸基と重合性ビニル基を有するモノマー
                  20~50mol%
     (a-2)芳香族基または脂環族基と重合性ビニル基を有するモノ
          マー      20~50mol%
     (a-3)アルキル(メタ)アクリレート
                  30~60mol%
    を重合させることにより得られる高分子化合物(A)と、次式(I)~(III)
    Figure JPOXMLDOC01-appb-C000002
    (各式中、Rないしは、水素原子または炭素数1ないし12のアルキル基を示す)
    から選ばれる化合物とを電解性基質溶媒中にて共存させ、酸化剤を用いて化学酸化重合することを特徴とする複合導電性高分子組成物の製造方法。
    The following components (a-1) to (a-3)
    (A-1) Monomer having sulfonic acid group and polymerizable vinyl group 20 to 50 mol%
    (A-2) Monomer having aromatic group or alicyclic group and polymerizable vinyl group 20 to 50 mol%
    (A-3) Alkyl (meth) acrylate 30 to 60 mol%
    A polymer compound (A) obtained by polymerizing the compound, and the following formulas (I) to (III):
    Figure JPOXMLDOC01-appb-C000002
    (In each formula, R 1 to 7 represent a hydrogen atom or an alkyl group having 1 to 12 carbon atoms)
    A method for producing a composite conductive polymer composition, comprising coexisting a compound selected from the group consisting of an organic substrate solvent and chemical oxidative polymerization using an oxidizing agent.
  6.  成分(a-1)のスルホン酸基と重合性ビニル基を有するモノマーが、スチレンスルホン酸ナトリウム、スチレンスルホン酸、2-ソジウムスルホエチル(メタ)アクリレートおよび2-スルホエチル(メタ)アクリレートよりなる群から選ばれたものである請求項5記載の複合導電性高分子組成物の製造方法。 Group (a-1) wherein the monomer having a sulfonic acid group and a polymerizable vinyl group is composed of sodium styrene sulfonate, styrene sulfonic acid, 2-sodium sulfoethyl (meth) acrylate and 2-sulfoethyl (meth) acrylate. The method for producing a composite conductive polymer composition according to claim 5, which is selected from the group consisting of:
  7.  成分(a-2)の芳香族基または脂環族基と重合性ビニル基を有するモノマー(メタ)アクリルモノマーが、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、ネオペンチルグリコール(メタ)アクリル酸安息香酸エステル、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ヒドロキシエチル化o-フェノール(メタ)アクリレート、o-フェニルフェノールグリシジルエーテル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、t-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ビニルピリジンおよび(メタ)アクリロイルモルホリンよりなる群から選ばれたものである請求項5または6記載の複合導電性高分子組成物の製造方法。 The monomer (meth) acrylic monomer having an aromatic or alicyclic group and a polymerizable vinyl group as the component (a-2) is selected from benzyl (meth) acrylate, phenoxyethyl (meth) acrylate, and 2- (meth) acryloyl. Roxyethyl phthalic acid, 2- (meth) acryloyloxyethyl hexahydrophthalic acid, neopentyl glycol (meth) acrylic acid benzoate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, hydroxyethylated o-phenol (Meth) acrylate, o-phenylphenol glycidyl ether (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, t-butylcyclohexyl (meth) acrylate, dicyclo The composite according to claim 5 or 6, wherein the composite is selected from the group consisting of tertenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, vinylpyridine and (meth) acryloylmorpholine. A method for producing a conductive polymer composition.
  8.  成分(a-3)のアルキル(メタ)アクリレートが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、nープロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、i-プロピル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレートおよびステアリル(メタ)アクリレートよりなる群から選ばれたものである請求項5ないし7の何れかの項記載の複合導電性高分子組成物の製造方法。 The alkyl (meth) acrylate of component (a-3) is methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, i -Butyl (meth) acrylate, i-propyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate and stearyl (meth) acrylate The method for producing a composite conductive polymer composition according to any one of claims 5 to 7, which is selected from the group.
  9.  式(I)~(III)から選ばれる化合物1モルに対し、高分子化合物(A)を、そのスルホン酸基モル比が0.2~1.5となるように共存せしめる請求項5ないし8の何れかの項記載の複合導電性高分子組成物の製造方法。 9. The polymer compound (A) is allowed to coexist so that the molar ratio of the sulfonic acid group is 0.2 to 1.5 with respect to 1 mol of the compound selected from the formulas (I) to (III). A method for producing a composite conductive polymer composition according to any one of the above.
  10.  酸化剤が、ペルオキソ二硫酸アンモニウム、ペルオキソ二硫酸カリウム、ペルオキソ二硫酸ナトリウム、塩化鉄(III)、硫酸鉄(III)、テトラフルオロホウ酸鉄(III)、ヘキサフルオロ燐酸鉄(III)、硫酸銅(II)、塩化銅(II)、テトラフルオロホウ酸銅(II)、ヘキサフルオロ燐酸銅(II)およびオキソ二硫酸アンモニウムからなる群より選ばれた酸化剤である請求項5ないし9の何れかの項記載の複合導電性高分子組成物の製造方法。 The oxidizing agent is ammonium peroxodisulfate, potassium peroxodisulfate, sodium peroxodisulfate, iron (III) chloride, iron (III) sulfate, iron (III) tetrafluoroborate, iron (III) hexafluorophosphate, copper sulfate ( 10. The oxidant selected from the group consisting of II), copper (II) chloride, copper (II) tetrafluoroborate, copper (II) hexafluorophosphate, and ammonium oxodisulfate. The manufacturing method of the composite conductive polymer composition of description.
  11.  電解性基質溶媒がイオン交換水である請求項5ないし10の何れかの項記載の複合導電性高分子組成物の製造方法。 The method for producing a composite conductive polymer composition according to any one of claims 5 to 10, wherein the electrolytic substrate solvent is ion-exchanged water.
  12.  化学酸化重合を、1molの式(I)~(III)から選ばれる化合物に対し、0.5~3.0molの、塩酸、硫酸、過塩素酸、過ヨウ素酸、塩化鉄(II)および硫酸鉄(II)から選ばれる酸性成分を加えて行う請求項5ないし11の何れかの項記載の複合導電性高分子組成物の製造方法。 For chemical oxidative polymerization, 0.5 to 3.0 mol of hydrochloric acid, sulfuric acid, perchloric acid, periodic acid, iron (II) chloride and sulfuric acid with respect to 1 mol of the compound selected from formulas (I) to (III) The method for producing a composite conductive polymer composition according to any one of claims 5 to 11, wherein an acidic component selected from iron (II) is added.
  13.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を、トルエン、ベンゼンおよびキシレンから選ばれる芳香族系溶剤および/または酢酸エチル、酢酸プロピル、酢酸ブチルから選ばれるエステル系溶剤に0.1~10質量%、溶解状態で含有してなる複合導電性高分子組成物溶液。 The composite conductive polymer composition according to any one of claims 1 to 4, comprising an aromatic solvent selected from toluene, benzene and xylene and / or an ester solvent selected from ethyl acetate, propyl acetate and butyl acetate. A composite conductive polymer composition solution containing 0.1 to 10% by mass in a dissolved state.
  14.  請求項13記載の複合導電性高分子組成物溶液の溶剤100重量部に対して、ヒドロキシル基を有する芳香族化合物を0.01~45重量部混合してなる複合導電性高分子組成物溶液。 A composite conductive polymer composition solution obtained by mixing 0.01 to 45 parts by weight of an aromatic compound having a hydroxyl group with 100 parts by weight of the solvent of the composite conductive polymer composition solution according to claim 13.
  15.  ヒドロキシル基を有する芳香族化合物が、ベンジルアルコール、フェノール、m-クレゾール、o-クレゾール、2-ナフタノール、1-ナフタノール、グアイコールおよび2,6-ジメチルフェノールからなる群から選ばれた化合物である請求項14記載の複合導電性高分子組成物溶液。 The aromatic compound having a hydroxyl group is a compound selected from the group consisting of benzyl alcohol, phenol, m-cresol, o-cresol, 2-naphthanol, 1-naphthanol, guaicol and 2,6-dimethylphenol. 14. The composite conductive polymer composition solution according to 14.
  16.  更に、金属、酸化金属、導電性ポリマー組成物、炭素粉末または分散体を含有する請求項13ないし15の何れかの項記載の複合導電性高分子組成物溶液。 The composite conductive polymer composition solution according to any one of claims 13 to 15, further comprising a metal, a metal oxide, a conductive polymer composition, carbon powder, or a dispersion.
  17.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を用いてなる色素増感型太陽電池用対極。 A counter electrode for a dye-sensitized solar cell, comprising the composite conductive polymer composition according to any one of claims 1 to 4.
  18.  請求項1ないし4の何れかの項記載の複合導電性高分子組成物を用いてなる帯電防止フィルム。 An antistatic film comprising the composite conductive polymer composition according to any one of claims 1 to 4.
PCT/JP2010/052355 2009-02-17 2010-02-17 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition WO2010095651A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011500629A JP5869880B2 (en) 2009-02-17 2010-02-17 Composite conductive polymer solution and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009033646 2009-02-17
JP2009-033646 2009-02-17

Publications (1)

Publication Number Publication Date
WO2010095651A1 true WO2010095651A1 (en) 2010-08-26

Family

ID=42633931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052355 WO2010095651A1 (en) 2009-02-17 2010-02-17 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition

Country Status (3)

Country Link
JP (1) JP5869880B2 (en)
TW (1) TWI595038B (en)
WO (1) WO2010095651A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP2013249368A (en) * 2012-05-31 2013-12-12 Shin Etsu Polymer Co Ltd Conductive polymer coating material and conductive coating film
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869881B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
CN115286730A (en) * 2022-08-16 2022-11-04 乳源东阳光氟树脂有限公司 Vinylidene fluoride copolymer and preparation method and application thereof
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101927240B1 (en) * 2016-09-09 2018-12-10 롯데케미칼 주식회사 Preparation method of highly dispersed conductive polymer nanocomposite by solution blending

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469621A (en) * 1987-09-10 1989-03-15 Fuji Photo Film Co Ltd Preparation of conductive polymer emulsion
JPH05262981A (en) * 1992-03-18 1993-10-12 Japan Carlit Co Ltd:The Water-dispersible polyaniline composition and its production
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
JP2005508418A (en) * 2001-11-06 2005-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (dioxythiophene) / poly (acrylamide alkyl sulfonic acid) composite
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169255A (en) * 2007-01-09 2008-07-24 Noriyuki Kuramoto Highly conductive polyaniline having excellent solubility and method for producing the same
JP5738178B2 (en) * 2009-02-17 2015-06-17 綜研化学株式会社 Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
JP5869881B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
WO2010095648A1 (en) * 2009-02-17 2010-08-26 綜研化学株式会社 Composite conductive polymer composition, method for producing same, solution containing the composition, and use of the composition
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6469621A (en) * 1987-09-10 1989-03-15 Fuji Photo Film Co Ltd Preparation of conductive polymer emulsion
JPH05262981A (en) * 1992-03-18 1993-10-12 Japan Carlit Co Ltd:The Water-dispersible polyaniline composition and its production
JP2005508418A (en) * 2001-11-06 2005-03-31 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (dioxythiophene) / poly (acrylamide alkyl sulfonic acid) composite
JP2004307722A (en) * 2003-04-09 2004-11-04 Nippon Shokubai Co Ltd Emulsion-type electrically conductive polymer composition and manufacturing method thereof
WO2005052058A1 (en) * 2003-11-28 2005-06-09 Idemitsu Kosan Co., Ltd. Conductive polyaniline composition, process for producing the same, and molded object thereof
JP2006155907A (en) * 2004-11-25 2006-06-15 Teijin Dupont Films Japan Ltd Counter electrode for dye-sensitized solar cell, and dye-sensitized solar cell using this
WO2008010978A2 (en) * 2006-07-17 2008-01-24 E. I. Du Pont De Nemours And Company Metal compositions, thermal imaging donors and patterned multilayer compositions derived therefrom
JP2008121014A (en) * 2006-11-08 2008-05-29 Cheil Industries Inc Conductive polymeric copolymer, conductive polymeric copolymer composition, conductive polymeric copolymer composition film, and organic photoelectric element using them

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5435437B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) * 2009-02-17 2014-03-05 綜研化学株式会社 Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
US9034211B2 (en) 2009-02-17 2015-05-19 Soken & Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
US9058916B2 (en) 2009-02-17 2015-06-16 Soken Chemical & Engineering Co., Ltd. Composite conductive polymer composition, method of manufacturing the same, solution containing the composition, use of the composition
JP5869881B2 (en) * 2009-02-17 2016-02-24 綜研化学株式会社 Composite conductive polymer solution and method for producing the same
WO2013035548A1 (en) * 2011-09-06 2013-03-14 テイカ株式会社 Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
JP5252669B1 (en) * 2011-09-06 2013-07-31 テイカ株式会社 Solid electrolytic capacitor
US9460860B2 (en) 2011-09-06 2016-10-04 Tayca Corporation Dispersion of electrically conductive polymer, and electrically conductive polymer and use thereof
US9953767B2 (en) 2011-09-06 2018-04-24 Tayca Corporation Conductive polymer dispersion liquid, a conductive polymer, and use thereof
JP2013249368A (en) * 2012-05-31 2013-12-12 Shin Etsu Polymer Co Ltd Conductive polymer coating material and conductive coating film
US11114250B2 (en) 2018-08-10 2021-09-07 Avx Corporation Solid electrolytic capacitor formed from conductive polymer particles
US11183342B2 (en) 2018-08-10 2021-11-23 Avx Corporation Solid electrolytic capacitor containing polyaniline
US11462366B2 (en) 2018-08-10 2022-10-04 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11756746B2 (en) 2018-08-10 2023-09-12 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11791106B2 (en) 2018-08-10 2023-10-17 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing polyaniline
US11955294B2 (en) 2018-12-11 2024-04-09 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
US11670461B2 (en) 2019-09-18 2023-06-06 KYOCERA AVX Components Corporation Solid electrolytic capacitor for use at high voltages
US11776759B2 (en) 2019-12-10 2023-10-03 KYOCER AVX Components Corporation Tantalum capacitor with increased stability
US11823846B2 (en) 2019-12-10 2023-11-21 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a pre-coat and intrinsically conductive polymer
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
CN115286730A (en) * 2022-08-16 2022-11-04 乳源东阳光氟树脂有限公司 Vinylidene fluoride copolymer and preparation method and application thereof
CN115286730B (en) * 2022-08-16 2023-05-26 乳源东阳光氟树脂有限公司 Vinylidene fluoride copolymer and preparation method and application thereof

Also Published As

Publication number Publication date
JPWO2010095651A1 (en) 2012-08-30
JP5869880B2 (en) 2016-02-24
TW201100487A (en) 2011-01-01
TWI595038B (en) 2017-08-11

Similar Documents

Publication Publication Date Title
JP5738178B2 (en) Composite conductive polymer composition, production method thereof, solution containing the composition, and use of the composition
JP5869880B2 (en) Composite conductive polymer solution and method for producing the same
JP5435437B2 (en) COMPOSITE CONDUCTIVE POLYMER COMPOSITION, PROCESS FOR PRODUCING THE SAME, SOLUTION CONTAINING THE COMPOSITION, AND USE OF THE COMPOSITION
JP5435436B2 (en) Composite conductive polymer composition, method for producing the same, solution containing the composition, and use of the composition
JP5869881B2 (en) Composite conductive polymer solution and method for producing the same
TWI488909B (en) Composition for solid electrolyte and solar cell using the same
US9558861B2 (en) Block copolymers that disperse nanofillers in water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743777

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500629

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743777

Country of ref document: EP

Kind code of ref document: A1