WO2010095518A1 - Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device - Google Patents

Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device Download PDF

Info

Publication number
WO2010095518A1
WO2010095518A1 PCT/JP2010/051605 JP2010051605W WO2010095518A1 WO 2010095518 A1 WO2010095518 A1 WO 2010095518A1 JP 2010051605 W JP2010051605 W JP 2010051605W WO 2010095518 A1 WO2010095518 A1 WO 2010095518A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
resin
inert gas
polarizing plate
Prior art date
Application number
PCT/JP2010/051605
Other languages
French (fr)
Japanese (ja)
Inventor
研一 風間
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN2010800083023A priority Critical patent/CN102325640A/en
Priority to JP2011500559A priority patent/JPWO2010095518A1/en
Publication of WO2010095518A1 publication Critical patent/WO2010095518A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/915Cooling of flat articles, e.g. using specially adapted supporting means with means for improving the adhesion to the supporting means
    • B29C48/9155Pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets

Definitions

  • the present invention relates to an optical film manufacturing method, an optical film, a polarizing plate using the optical film, and a liquid crystal display device.
  • Optical films are often used in image display devices such as word processors, personal computers, and TVs.
  • polarizing plates provided on both sides of a liquid crystal cell used in a liquid crystal image display (LCD) are used as protective films that are attached to both sides of a polarizer. Since the polarizing plate allows only light with a polarization plane in a certain direction to pass, it plays an important role in visualizing changes in the orientation of the liquid crystal due to the electric field in the LCD, and the performance of the polarizing plate greatly depends on the performance of the polarizing plate. The Therefore, the optical performance required for the protective film attached to both surfaces of the polarizer is also increasing.
  • the solution casting method is a film forming method in which a solution obtained by dissolving a resin in a solvent is cast to obtain a film shape, and then the solvent is evaporated and dried to obtain a film. Since a film formed by the solution casting method has high flatness, a high-quality image display device without unevenness can be obtained using this film.
  • cellulose acylate as a main resin is melted to form a film.
  • Various additives are added to the melt of cellulose acylate for improving film forming properties and improving properties as a protective film of a polarizing plate.
  • film properties are improved by adding plasticizers, antioxidants, ultraviolet absorbers, matting agents, and the like.
  • the melt casting method for producing a film is used.
  • the lip portion is a constituent member of an outlet portion that extrudes the molten resin from the casting die, and the periphery of the lip portion indicates the vicinity of the outlet from which the molten resin exits the casting die.
  • Patent Document 1 As a method for preventing the adhesion of the sublimated material, a method (Patent Document 1) has been proposed in which a suction nozzle is installed in the vicinity of the lip portion to forcibly exhaust the generated sublimated material.
  • the object of the present invention is that the melt adhering to the periphery of the lip portion does not form an agglomerate due to oxidative degradation, and the sublimate from the melt does not adhere to the periphery of the lip portion. It is providing the manufacturing method of the optical film which does not generate
  • the extrusion process includes An optical film manufacturing method, wherein an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower is supplied from a supply nozzle to the lip portion.
  • the suction nozzle is disposed downstream of the supply nozzle in the direction in which the extruded film-like resin flows down, and the suction nozzle sucks the inert gas that exits from the supply nozzle. 4.
  • the method for producing an optical film according to any one of items 1 to 3.
  • the cooling step includes providing a touch roll that presses the film-shaped resin on the cooling drum, and pressing the touch roll smoothes the surface of the film-shaped resin. 6.
  • a polarizing plate using the optical film according to 8 as a protective film for a polarizing plate 8.
  • an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower is supplied to the lip portion from the supply nozzle, so that the sublimate adheres to the periphery of the lip portion. Further, it is possible to prevent oxidative deterioration of the melt adhered to the lip portion, and no aggregate is formed around the lip portion. Therefore, it is possible to provide a method for producing an optical film having a uniform thickness that does not generate streak noise, an optical film produced by the production method, a polarizing plate using the optical film as a protective film, and a liquid crystal display device. .
  • FIG. 3 is a schematic side view and a part of a side view of a casting die 4. It is a schematic sectional drawing of one Embodiment of a touch roll. It is a center sectional view in the plane which intersects perpendicularly with the axis of rotation of another embodiment of a touch roll. It is sectional drawing in the plane containing the rotating shaft of another embodiment of a touch roll.
  • FIG. 1 is a schematic flow sheet showing the overall configuration of an apparatus for carrying out the method for producing an optical film of the present invention.
  • the extrusion process after the film constituent materials such as the raw material resin are mixed, the melted film constituent material is extruded from the casting die 4 onto the first cooling roll 5 using the extruder 1, and the first cooling is performed as the cooling process. While making it contact with the surface of the roll 5, it is made to contact with the surface of a total of three cooling rolls, the 2nd cooling roll 7 and the 3rd cooling roll 8 in order, and is cooled and solidified, and it is set as the film 10.
  • FIG. 1 is a schematic flow sheet showing the overall configuration of an apparatus for carrying out the method for producing an optical film of the present invention.
  • the film 10 is peeled off by the peeling roll 9, and then as the stretching process, the longitudinal stretching is performed by the speed difference between the rolls by the longitudinal stretching apparatus 12a, and then the both ends of the film are held by the lateral stretching apparatus 12b. Then, the film is stretched in the width direction, and then wound by the winding device 16 as a winding process.
  • an inert gas having a temperature of 110 ° C. or more and 300 ° C. or less is supplied to the lip portion of the casting die 4 when extruding molten resin from the casting die 4 in the extrusion step. Is supplied from
  • FIG. 2 is a schematic cross-sectional view of the periphery of the lip portion of the present embodiment.
  • the lip portions 33 and 34 of the casting die 4 and a pair of supply nozzles 70 and 70 for supplying an inert gas to the lip portions 33 and 34 are shown.
  • the arrangement of one cooling roll 5 and the flow of inert gas are shown.
  • the pair of supply nozzles 70, 70 are at their tips at positions separated from the respective surfaces of the melted resin film 10 flowing down from the slits 32 formed by the lip portions 33 and 34 of the casting die 4 by a predetermined distance d. It is arranged so that the part comes.
  • the tip of the supply nozzle 70 (on the film 10 side) has a shape extending in the width direction of the film 10, like the slit 32 of the casting die 4, specifically, an elongated rectangular opening.
  • a side wall in the longitudinal direction of the supply nozzle 70 is formed from the side portion of the casting die 4 and the nozzle side plate 71.
  • the end in the longitudinal direction (not shown) is sealed by another member so that gas from the supply nozzle does not leak.
  • an inert gas is supplied to the supply nozzle 70 from a supply pipe 73.
  • the pair of suction nozzles 80, 80 are arranged below the pair of supply nozzles 70, 70.
  • the tip portions of the pair of suction nozzles 80, 80 are disposed on the downstream side in the direction in which the film 10 flows down with respect to the tip portions of the pair of supply nozzles 70, 70.
  • the supplied inert gas flows along the film 10, is sucked by the suction nozzle 80 disposed on the downstream side, and is discharged by the discharge pipe 82.
  • the shape of the opening at the tip of the suction nozzle 80 (film 10 side) is a rectangle parallel to the width direction of the film 10.
  • the side portion of the suction nozzle 80 is also formed by nozzle side plates 71 and 81, and the end portion in the longitudinal direction (not shown) is sealed with another member.
  • the temperature of the inert gas supplied from the supply nozzle 70 toward the lip portion is 110 ° C. or higher and 300 ° C. or lower.
  • the temperature is less than 110 ° C., a problem occurs in that the film becomes uneven as a result of cooling the film.
  • Examples of the inert gas supplied from the supply nozzle 70 toward the lip portions 33 and 34 include helium, neon, argon, krypton, xenon, radon, and nitrogen gas.
  • nitrogen gas is more preferable than other inert gases. Is preferable because it is inexpensive and easy to obtain.
  • the suction nozzle 80 is disposed in the vicinity of the supply nozzle 70, but suction and discharge may be performed at a remote position.
  • the lip portion of the present invention is also provided on either lip side of the casting die 4. There is an effect of suppressing the adhesion of aggregates. However, it is more effective and preferable to arrange them on both lip sides of the casting die.
  • the inert gas is preferably supplied at a wind speed of 0.3 m / s or more and 3 m / s or less from the tip of the supply nozzle 70.
  • the calculation of the wind speed of the inert gas is a value obtained by dividing the supply amount Wm 3 / s of the inert gas from the supply pipe 73 by the opening area Sm 2 of the tip of the supply nozzle 70.
  • the inert gas wind speed is too low, so that there is no risk of oxygen mixing into the lip and no sublimation component adhering to the lip. Since the gas wind speed is too high and there is no fear of disturbing the flow of the extruded film-like molten resin, an optical film with a uniform film thickness without streak noise can be produced, which is preferable.
  • the wind speed is preferably uniform in the width direction, and the deviation of the wind speed in the width direction is preferably within ⁇ 30%. More preferably, it is within 10%. By making the deviation of the wind speed in the width direction within the above range, it is preferable that there is no fear of disturbing the flow of the film-like molten resin extruded from the casting die.
  • a heater 72 is disposed in the supply nozzle 70.
  • the inert gas sent to the supply nozzle 70 may be heated to a predetermined temperature in advance and then supplied to the supply nozzle 70 from the supply pipe 73.
  • a heater in the supply nozzle 70, the temperature of the inert gas that flows from the tip of the supply nozzle 70 toward the lip can be controlled more stably.
  • a gas heated in advance to a predetermined temperature may be sent and heated again by a heater arranged in the nozzle.
  • a rubber heater, a cartridge heater, an aluminum cast heater, or the like can be preferably used, but is not limited thereto.
  • a cartridge heater is particularly preferred.
  • the distance d between the tip of the supply nozzle 70 and the surface of the molten resin film 10 extruded from the slit 32 is preferably 2 mm or more and 15 mm or less.
  • the thickness is less than 2 mm, there is a possibility that the film 10 and the supply nozzle 70 come into contact with each other due to a change in the flow rate of the inert gas from the supply nozzle 70.
  • it exceeds 15 mm the flow of airflow around the lip due to the inert gas tends to fluctuate, and the adhesion of sublimable components to the lip portions 33 and 34 and the oxidative deterioration of the melt adhering to the lip portions 33 and 34 occur. Occurrence of aggregates can occur.
  • the distance between the tip of the suction nozzle 80 and the surface of the film 10 is preferably 2 mm or more and 15 mm or less, like the supply nozzle 70.
  • a touch roll 6 that presses the film-like resin flowing down on the first cooling drum 5. By pressing the resin on the first cooling drum 5 with the touch roll 6, a film with higher planarity can be formed.
  • FIG. 3 is an enlarged schematic cross-sectional view for explaining a state in which a melted film-like resin is sandwiched between the first cooling roll 5 and the touch roll 6.
  • the touch roll 6 that abuts on the first cooling roll 5 has an elastic surface, and is deformed along the surface of the first cooling roll 5 by the pressing force to the first cooling roll 5.
  • a nip is formed in By forming the nip portion and clamping with the touch roll 6 in this way, even if there is a small unevenness in the film thickness of the molten resin flowing down on the first cooling roll 5, it can be smoothed. It is preferable because of improved properties.
  • ⁇ Cellulose acylate film> First, the constituent materials of the cellulose acylate film will be described.
  • Cellulose as a cellulose acylate raw material is not particularly limited, and examples thereof include cotton linter, wood pulp, and kefna. Moreover, you may mix and use the raw material cellulose obtained from these in arbitrary ratios.
  • the cellulose acylate is preferably a cellulose acylate having an acetyl group or an acyl group having 3 to 22 carbon atoms.
  • acyl group having 3 to 22 carbon atoms examples include propionyl (C 2 H 5 CO—), n-butyryl (C 3 H 7 CO—), isobutyryl, valeryl (C 4 H 9 CO—), isovaleryl, Includes sec-valeryl, tert-valeryl, octanoyl, dodecanoyl, octadecanoyl and oleoloyl. Propionyl and butyryl are preferred.
  • cellulose acylate cellulose acetate is preferable, and cellulose triacetate is particularly preferable.
  • acylating agent for the acyl group is an acid anhydride or acid chloride
  • an organic acid eg, acetic acid
  • methylene chloride is used as the organic solvent as the reaction solvent.
  • Cellulose acylate preferably has a hydroxyl group substitution degree of 2.6 to 3.0.
  • the degree of polymerization (average viscosity) of cellulose acylate is preferably 200 to 700, and particularly preferably 250 to 550.
  • These cellulose acylates are marketed by Daicel Chemical Industries, Ltd., Courtles, Hoechst, and Eastman Kodak. Photographic grade cellulose acylate is preferably used.
  • the water content of cellulose acylate is preferably 2% by mass or less.
  • the ⁇ -1,4-bonded glucose unit constituting cellulose has free hydroxyl groups at the 2nd, 3rd and 6th positions.
  • Cellulose acylate is a polymer obtained by esterifying some or all of these hydroxyl groups with acetic acid or other acids.
  • the degree of acyl substitution means the proportion of cellulose esterified at each of the 2-position, 3-position and 6-position (100% esterification is 1.00).
  • the cellulose acylate used is a cellulose acylate having a total acyl substitution degree of 2-position and 3-position of 1.70 to 1.95 and an acyl substitution degree of 6-position of 0.88 or more, and 2-position. It is obtained by blending with a cellulose acylate having a total 3-position acyl substitution degree of 1.70 to 1.95 and a 6-position acyl substitution degree of less than 0.88.
  • An ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and an ester plasticizer comprising a polyvalent carboxylic acid and a monohydric alcohol are preferred because of their high affinity with the cellulose ester.
  • An ethylene glycol ester plasticizer that is one of polyhydric alcohol esters: specifically, ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, ethylene glycol dicyclopropylcarboxylate And ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate, and ethylene glycol aryl ester plasticizers such as ethylene glycol dibenzoate and ethylene glycol di-4-methylbenzoate.
  • ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate
  • ethylene glycol dicyclopropylcarboxylate ethylene glycol cyclopropylcarboxylate
  • ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate
  • ethylene glycol aryl ester plasticizers such as ethylene glycol di
  • the ethylene glycol part may be substituted, and the ethylene glycol ester partial structure may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber, etc. It may be introduced into a part of the molecular structure of the additive.
  • Glycerin ester plasticizer that is one of polyhydric alcohol esters: Specifically, glycerol alkyl esters such as triacetin, tributyrin, glycerol diacetate caprylate, glycerol oleate propionate, glycerol tricyclopropylcarboxylate, glycerol Glycerin cycloalkyl esters such as tricyclohexylcarboxylate, glycerol aryl esters such as glycerol tribenzoate and glycerol-4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetra Diglycerol alkyl esters such as laurate, diglycerol tetracyclobutylcarboxylate, diglycerol tetra Diglycerol cycloalkyl esters such as Russia pent
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond.
  • the glycerin and diglycerin part may be substituted, the partial structure of the glycerin ester and the diglycerin ester may be part of the polymer or regularly pendant, and the antioxidant, acid scavenger, You may introduce
  • polyhydric alcohol ester plasticizers include polyhydric alcohol ester plasticizers described in paragraphs 30 to 33 of JP-A No. 2003-12823.
  • alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond.
  • the polyhydric alcohol part may be substituted, and the partial structure of the polyhydric alcohol may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber. May be introduced into a part of the molecular structure of the additive.
  • alkyl polyhydric alcohol aryl esters are preferred.
  • the above-mentioned ethylene glycol dibenzoate, glycerin tribenzoate, diglycerin tetrabenzoate, Examples thereof include the exemplified compound 16 described in paragraph 32 of Kaikai 2003-12823.
  • Dicarboxylic acid ester plasticizer that is one of polyvalent carboxylic acid esters: Specifically, alkyl dicarboxylic acid alkyl such as didodecyl malonate (C1), dioctyl adipate (C4), dibutyl sebacate (C8), etc.
  • Ester plasticizers alkyl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclopentyl succinate and dicyclohexyl adipate, and alkyl dicarboxylic acid aryl ester plasticizers such as diphenyl succinate and di-4-methylphenyl glutarate Dialkyl-1,4-cyclohexanedicarboxylate, didecylbicyclo [2.2.1] heptane-2,3-dicarboxylate, and the like, cycloalkyldicarboxylic acid alkyl ester plasticizers, dicyclohexyl-1,2- Cyclobutane deca Cycloalkyldicarboxylic acid cycloalkyl ester type plasticizers such as boxylate, dicyclopropyl-1,2-cyclohexyl dicarboxylate, diphenyl-1,1-cyclopropyldicarboxylate, di-2-naphthyl-1
  • alkoxy groups and cycloalkoxy groups may be the same or different, may be mono-substituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • the partial structure of phthalate ester may be part of the polymer or regularly pendant to the polymer, and it may be part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. It may be introduced.
  • polycarboxylic acid ester plasticizers include alkyl polycarboxylic acid alkyl esters such as tridodecyl tricarbarate and tributyl-meso-butane-1,2,3,4-tetracarboxylate.
  • Plasticizers alkylpolycarboxylic acid cycloalkyl ester plasticizers such as tricyclohexyltricarbarate, tricyclopropyl-2-hydroxy-1,2,3-propanetricarboxylate, triphenyl-2-hydroxy -1,2,3-propanetricarboxylate, tetra-3-methylphenyltetrahydrofuran-2,3,4,5-tetracarboxylate and other alkyl polyvalent carboxylic acid aryl ester plasticizers, tetrahexyl-1, 2,3,4-cyclobutanetetracarboxylate, te Cycloalkyl polycarboxylic acid alkyl ester plasticizers such as rabutyl-1,2,3,4-cyclopentanetetracarboxylate, tetracyclopropyl-1,2,3,4-cyclobutanetetracarboxylate, tricyclohexyl- Cycloalkyl polycarboxylic acid cyclo
  • alkoxy groups and cycloalkoxy groups may be the same or different, and may be mono-substituted, and these substituents may be further substituted.
  • the alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond.
  • the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used.
  • the partial structure of phthalate ester may be part of the polymer or regularly pendant into the polymer, and introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • dialkyl carboxylic acid alkyl esters are preferred, and specific examples include the dioctyl adipate and tridecyl tricarbalate.
  • phosphate ester plasticizers include carbohydrate ester plasticizers, and polymer plasticizers.
  • Phosphate ester plasticizers specifically, phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate, phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and cyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate And phosphoric acid aryl esters such as cresylphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl phosphate, trixylyl phosphate, tris ortho-biphenyl phosphate.
  • phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate
  • phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • alkylene bis (dialkyl phosphate) such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaphthyl phosphate), phenylene bis (dibutyl phosphate) ), Arylene bis (dialkyl phosphate) such as biphenylene bis (dioctyl phosphate), phosphate esters such as arylene bis (diaryl phosphate) such as phenylene bis (diphenyl phosphate) and naphthylene bis (ditoluyl phosphate).
  • dialkyl phosphate such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaph
  • substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple
  • the partial structure of phosphate ester may be part of the polymer, or may be regularly pendant, and also introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
  • phosphoric acid aryl ester and arylene bis (diaryl phosphate) are preferable, and specifically, triphenyl phosphate and phenylene bis (diphenyl phosphate) are preferable.
  • the carbohydrate means a monosaccharide, disaccharide or trisaccharide in which the saccharide is present in the form of pyranose or furanose (6-membered ring or 5-membered ring).
  • Non-limiting examples of carbohydrates include glucose, saccharose, lactose, cellobiose, mannose, xylose, ribose, galactose, arabinose, fructose, sorbose, cellotriose and raffinose.
  • the carbohydrate ester refers to an ester compound formed by dehydration condensation of a carbohydrate hydroxyl group and a carboxylic acid, and specifically means an aliphatic carboxylic acid ester or an aromatic carboxylic acid ester of a carbohydrate.
  • the aliphatic carboxylic acid include acetic acid and propionic acid
  • examples of the aromatic carboxylic acid include benzoic acid, toluic acid, and anisic acid.
  • Carbohydrates have a number of hydroxyl groups depending on the type, but even if a part of the hydroxyl group reacts with the carboxylic acid to form an ester compound, the whole hydroxyl group reacts with the carboxylic acid to form an ester compound. Also good. In the present invention, it is preferable that all of the hydroxyl groups react with the carboxylic acid to form an ester compound.
  • carbohydrate ester plasticizer examples include glucose pentaacetate, glucose pentapropionate, glucose pentabtylate, saccharose octaacetate, saccharose octabenzoate, and of these, saccharose octaacetate is more preferred. preferable.
  • Polymer plasticizer Specifically, aliphatic hydrocarbon polymer, alicyclic hydrocarbon polymer, polyethyl acrylate, polymethyl methacrylate, copolymer of methyl methacrylate and 2-hydroxyethyl methacrylate (For example, an arbitrary ratio between copolymer ratios 1:99 to 99: 1), vinyl polymers such as polyvinyl isobutyl ether, poly N-vinyl pyrrolidone, polystyrene, poly 4-hydroxystyrene, etc.
  • polystyrene-based polymers examples thereof include styrene-based polymers, polybutylene succinates, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethers such as polyethylene oxide and polypropylene oxide, polyamides, polyurethanes, and polyureas.
  • the number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5000 to 200,000. If it is 1000 or less, a problem arises in volatility, and if it exceeds 500000, the plasticizing ability is lowered, and the mechanical properties of the cellulose ester film are adversely affected.
  • These polymer plasticizers may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating structures. Two or more of the above polymers may be used in combination.
  • the yellowness is preferably 3.0 or less, more preferably 1.0 or less. Yellowness can be measured based on JIS-K7103.
  • the plasticizer removes impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from the time of manufacture or generated during storage, and more preferably has a purity of 99% or more. is there.
  • Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
  • an antioxidant is used as a stabilizer because cellulose ester is decomposed not only by heat but also by oxygen in a high temperature environment where melt film formation is performed. Is also preferable.
  • the antioxidant useful in the present invention can be used without limitation as long as it is a compound that suppresses deterioration of the melt-molded material due to oxygen, but among the useful antioxidants, phenolic compounds, hindered amine compounds, Examples thereof include phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among these, phenol compounds, hindered amine compounds, phosphorus compounds, and lactone compounds are particularly preferable.
  • HALS hindered amine compound
  • 2,2,6,6-tetraalkylpiperidine compounds, or their acid addition salts or complexes of them with metal compounds are preferred.
  • LA52 made by Asahi Denka Co., Ltd.
  • lactone compound compounds described in JP-A-7-233160 and JP-A-7-247278 are preferable.
  • stabilizers can be used singly or in combination of two or more, and the blending amount is appropriately selected within a range not impairing the object of the present invention, but is usually 0 with respect to 100 parts by mass of the cellulose ester. 0.001 to 10.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and more preferably 0.1 to 3.0 parts by mass.
  • the addition amount of the antioxidant is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
  • the acid scavenger is an agent that plays a role of trapping an acid (protonic acid) remaining in the cellulose ester brought in from the production. When the cellulose ester is melted, side chain hydrolysis is promoted by moisture and heat in the polymer, and acetic acid and propionic acid are generated in the case of CAP.
  • a compound having an epoxy structure, a tertiary amine, an ether structure, or the like may be used as long as it can be chemically bonded to an acid, but is not limited thereto.
  • an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201.
  • Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8 to 40 moles of ethylene oxide per mole of polyglycol.
  • Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)).
  • UV absorber As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer or a display device with respect to ultraviolet rays, the ultraviolet absorber has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, absorption of visible light having a wavelength of 400 nm or more is absorbed. Less is preferred.
  • salicylic acid ultraviolet absorbers phenyl salicylate, p-tert-butyl salicylate, etc.
  • benzophenone ultraviolet absorbers (2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, etc.)
  • Benzotriazole UV absorber (2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di) -Tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-3'-dodecyl- 5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t rt-butyl-5 '-(2-octyloxycarbonylethy
  • UV absorber a benzotriazole UV absorber and a triazine UV absorber that are highly transparent and excellent in preventing deterioration of a polarizing plate and a liquid crystal element are preferable, and a benzotriazole UV light having a more appropriate spectral absorption spectrum. Absorbents are particularly preferred.
  • the conventionally known UV-absorbing polymer is not particularly limited, and examples thereof include a polymer obtained by homopolymerizing RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.) and a polymer obtained by copolymerizing RUVA-93 and other monomers. It is done. Specifically, PUVA-30M obtained by copolymerizing RUVA-93 and methyl methacrylate in a ratio (mass ratio) of 3: 7, and PUVA-50M copolymerized in a ratio of 5: 5 (mass ratio). It is done. Furthermore, the polymer etc. which are described in Unexamined-Japanese-Patent No. 2003-113317 are mentioned.
  • TINUVIN 109 As commercially available products, TINUVIN 109, TINUVIN 171, TINUVIN 360, TINUVIN 900, TINUVIN 928 (all manufactured by Ciba Japan), LA-31 (Asahi) Denka Co., Ltd.) and RUVA-100 (Otsuka Chemical Co., Ltd.) can also be used.
  • benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
  • the ultraviolet absorber is preferably added in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
  • Viscosity reducing agent For the purpose of reducing the melt viscosity, a hydrogen bonding solvent can be added.
  • the hydrogen bonding solvent is J.I. N.
  • the glass transition temperature of the cellulose resin used alone is higher than that.
  • the melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
  • Examples of the hydrogen bonding solvent include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, t-butanol, 2-ethylhexanol, heptanol, octanol, nonanol, dodecanol, ethylene glycol, Propylene glycol, hexylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, hexyl cellosolve, glycerin, etc., ketones: acetone, methyl ethyl ketone, etc., carboxylic acids: eg formic acid, acetic acid, propionic acid, Butyric acid, etc., ethers: eg, diethyl ether, tetrahydrofuran, dioxane,
  • These hydrogen bonding solvents can be used alone or in admixture of two or more.
  • alcohol, ketone, and ether are preferable, and methanol, ethanol, propanol, isopropanol, octanol, dodecanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable.
  • water-soluble solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable.
  • water-soluble means that the solubility in 100 g of water is 10 g or more.
  • An alignment film may be formed in the cellulose acylate film, a liquid crystal layer may be provided, and polarizing plate processing may be performed in which the cellulose acylate film and the retardation derived from the liquid crystal layer are combined to provide an optical compensation capability.
  • the compound to be added to control the retardation is an aromatic compound having two or more aromatic rings as described in EP 911,656A2, which is used as a retardation control agent. You can also. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring.
  • An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring.
  • Fine particles such as a matting agent can be added to the cellulose acylate film in order to impart slipperiness, and examples of the fine particles include inorganic compound fine particles and organic compound fine particles.
  • the matting agent is preferably as fine as possible.
  • the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles.
  • silicon dioxide is preferable because it can reduce the haze of the film.
  • fine particles such as silicon dioxide are surface-treated with an organic material, but such a material is preferable because it can reduce the haze of the film.
  • Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like.
  • the average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 ⁇ m.
  • the average particle size of secondary particles of preferable fine particles is preferably 5 to 50 nm, more preferably 7 to 14 nm. These fine particles are preferably used in the cellulose acylate film in order to produce an unevenness of 0.01 to 1.0 ⁇ m on the surface of the cellulose acylate film.
  • the content of the fine particles in the cellulose ester is preferably 0.005 to 0.3% by mass with respect to the cellulose ester.
  • Examples of the fine particles of silicon dioxide include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972. , R972V, R974, R202, R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
  • the presence of fine particles in the film used as the matting agent can be used for another purpose to improve the strength of the film.
  • the presence of the fine particles in the film can improve the orientation of the cellulose ester constituting the cellulose acylate film of the present invention.
  • Polymer material For the cellulose acylate film, polymer materials other than cellulose esters and oligomers may be appropriately selected and mixed.
  • the above polymer materials and oligomers are preferably those having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is 80% or more, more preferably 90% or more, and further preferably 92% or more.
  • the purpose of mixing at least one of polymer materials and oligomers other than cellulose ester includes meanings for controlling viscosity at the time of heating and melting and improving film physical properties after film processing.
  • a cellulose acylate film is formed into a film with the film forming apparatus using the melt casting method shown in FIG. 1, and a cellulose acylate film is manufactured.
  • a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, a Henschel mixer, or a ribbon mixer can be used.
  • the mixed film constituent material is melted at an extrusion temperature of about 200 to 300 ° C. using the extruder 1 and filtered through a leaf disk type filter 2 to remove foreign matters.
  • additives such as a plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder.
  • a mixing apparatus such as a static mixer 3.
  • the film constituent material extruded from the extruder 1 and filtered by the metal filter 2 is sent to the casting die 4 and extruded from the slit of the casting die 4 into a film shape.
  • the casting die 4 is not particularly limited as long as it is used for producing a sheet or a film.
  • the material of the casting die 4 is sprayed or plated with hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc.
  • a preferred material for the lip portion of the casting die 4 is the same as that of the casting die 4.
  • the surface accuracy of the lip is preferably 0.5S or less, and more preferably 0.2S or less.
  • the slit of the casting die 4 is configured so that the gap can be adjusted.
  • FIG. 4 shows a schematic view of the casting die 4, FIG. 4 (a) shows a part of a side view, and FIG. 4 (b) shows a cross-sectional view.
  • the pair of lips 33, 34 forming the slit 32 of the casting die 4 one is a flexible lip 33 that has low rigidity and is easily deformed, and the other is a fixed lip 34.
  • a large number of heat bolts 35 are arranged at a constant pitch in the width direction of the casting die 4, that is, in the length direction of the slits 32.
  • Each heat bolt 5 is provided with a block 36 having an embedded electric heater 37 and a cooling medium passage, and each heat bolt 35 penetrates each block 36 vertically.
  • the base of the heat bolt 35 is fixed to the die body 31, and the tip is in contact with the outer surface of the flexible lip 33. While the block 36 is always air-cooled, the input of the embedded electric heater 37 is increased or decreased to raise or lower the temperature of the block 36, thereby causing the heat bolt 35 to thermally expand and contract, thereby displacing the flexible lip 33 to change the film thickness. Adjust. Thickness gauges are installed at the required locations in the wake of the die, and the web thickness information detected thereby is fed back to the control device. The thickness information is compared with the set thickness information by the control device, and correction control comes from the same device. It is also possible to control the power or ON rate of the heating element of the heat bolt 35 by the amount signal.
  • the heat bolt 35 preferably has a length of 20 to 40 cm and a diameter of 7 to 14 mm, and a plurality of, for example, several tens of heat bolts are preferably arranged at a pitch of 20 to 40 mm.
  • a gap adjusting member mainly composed of a bolt for adjusting the gap of the slit 32 by manually moving back and forth in the axial direction may be provided.
  • the gap of the slit 32 adjusted by the gap adjusting member is usually 500 to 1500 ⁇ m, preferably 800 to 1300 ⁇ m, more preferably 900 to 1200 ⁇ m.
  • the step of supplying an inert gas having a temperature of 110 ° C. or more and 300 ° C. or less from the supply nozzle 70 to the lip portion is extruded. Details are described here and are omitted here. (Cooling process)
  • the film-like resin extruded from the casting die 4 in the extrusion process is sandwiched between the first cooling roller 5 and the touch roll 6 to be cooled and the surface thereof is flattened.
  • FIG. 5 shows a schematic cross section of an embodiment of the touch roll 6 (hereinafter, touch roll A).
  • touch roll A has an elastic roller 42 disposed inside a flexible metal sleeve 41.
  • the metal sleeve 41 is made of stainless steel having a thickness of 0.3 mm and has flexibility. If the metal sleeve 41 is too thin, the strength is insufficient, whereas if it is too thick, the elasticity is insufficient. For these reasons, the thickness of the metal sleeve 41 is preferably 0.1 mm or more and 1.5 mm or less.
  • the elastic roller 42 is formed in a roll shape by providing a rubber 44 on the surface of a metal inner cylinder 43 that is rotatable via a bearing. When the touch roll A is pressed toward the first cooling roll 5, the elastic roller 42 presses the metal sleeve 41 against the first cooling roll 5, and the metal sleep 41 and the elastic roller 42 have the shape of the first cooling roll 5. It deforms corresponding to the familiar shape, and forms a nip with the first cooling roll. A cooling liquid 45 flows in a space formed between the metal sleeve 41 and the elastic roller 42.
  • FIG. 6 and 7 show a touch roll B which is another embodiment of the touch roll.
  • 6 is a central sectional view in a plane orthogonal to the rotation axis
  • FIG. 7 is a sectional view in a plane including the rotation axis.
  • the touch roll B includes a flexible and seamless stainless steel pipe (for example, 4 mm thick) outer cylinder 51 and a highly rigid metal inner cylinder 52 arranged on the same axis as the inner side of the outer cylinder 51. It is roughly composed of The cooling liquid 45 flows in the space 53 between the outer cylinder 51 and the inner cylinder 52.
  • the touch rolls A and B are urged toward the first cooling roll by urging means (not shown).
  • the urging force of the urging means is F
  • the value F / W (linear pressure) obtained by dividing the width W of the film in the nip along the rotation axis of the first cooling roll 5 is 1 N / cm or more and 150 N / cm.
  • the film is sandwiched over a long time with a small linear pressure compared to the case where the touch roll is formed of a rigid body and no nip is formed between the first cooling roll and the flatness is more reliably corrected.
  • Can do That is, when the linear pressure is less than 1 N / cm, it is impossible to sufficiently eliminate the die line (vertical stripe-like film thickness unevenness parallel to the film conveyance direction).
  • the linear pressure is greater than 150 N / cm, the film is difficult to pass through the nip, resulting in unevenness in place of the film thickness.
  • the surfaces of the touch rolls A and B are made of metal, the surfaces of the touch rolls A and B can be made smoother than when the surface of the touch roll is rubber. Obtainable.
  • ethylene propylene rubber, neoprene rubber, silicon rubber, or the like can be used as a material of the elastic body 44 of the elastic roller 42.
  • the viscosity of the film when the touch roll 6 clamps the film is in an appropriate range.
  • Cellulose resins are known to have a relatively large change in viscosity with temperature. Therefore, in order to set the viscosity when the touch roll 6 clamps the film to an appropriate range, it is important to set the film temperature when the touch roll 6 clamps the film to an appropriate range.
  • Tg glass transition temperature of the cellulose acylate film
  • the temperature T of the film immediately before the film is sandwiched between the touch rolls 6 may be set so as to satisfy Tg + 80 ° C. ⁇ T ⁇ Tg + 140 ° C.
  • the film temperature T is lower than Tg, the viscosity of the film is too high and the die line cannot be corrected.
  • Tg + 140 ° C. the film surface and the roll do not adhere uniformly, and the die line cannot be corrected.
  • Tg + 100 ° C. ⁇ T ⁇ Tg + 130 ° C. more preferably Tg + 110 ° C. ⁇ T ⁇ Tg + 130 ° C.
  • the first cooling roll 5 from the position P1 at which the melt extruded from the casting die 4 contacts the first cooling roll 5 is used. What is necessary is just to adjust the length L along the rotation direction of the 1st cooling roll 5 of the nip with the touch roll 6.
  • Preferred materials for the first roll 5 and the second roll 6 include carbon steel, stainless steel, resin, and the like.
  • the surface accuracy is preferably increased, and the surface roughness is set to 0.3 S or less, more preferably 0.01 S or less.
  • the film-like cellulose ester-based resin in a molten state from the casting die 4 is brought into close contact with the first roll (first cooling roll) 5, the second cooling roll 7, and the third cooling roll 8 in order to be cooled and solidified.
  • An unstretched cellulose ester resin film 10 is obtained.
  • the cooled and solidified film 10 is peeled off from the third cooling roll 8 by the peeling roll 9.
  • the peeled and solidified unstretched film 10 is guided to a longitudinal stretching machine 12a through a dancer roll (film tension adjusting roll) 11, where it is longitudinally stretched.
  • the film is guided to the transverse stretching machine 12b, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
  • a method of longitudinally stretching the film a method of stretching by a speed difference between two rolls can be preferably used.
  • a known tenter or the like can be preferably used.
  • the glass transition temperature Tg of the film constituting material can be controlled by making the material type constituting the film and the ratio of the constituting material different.
  • Tg is preferably 120 ° C. or higher, preferably 135 ° C. or higher.
  • the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source.
  • the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape as the film are greatly changed.
  • Tg is preferably 250 ° C. or lower.
  • known heat setting conditions, cooling, and relaxation treatment may be performed, and it may be appropriately adjusted so as to have characteristics required for the target optical film.
  • the stretching step and the heat setting treatment are appropriately selected and performed.
  • the heating and pressing step of the present invention is performed before the stretching step and heat setting treatment.
  • the refractive index can be controlled by a stretching operation. Is a preferred method. Hereinafter, the stretching method will be described.
  • the required litter is stretched by 1.0 to 2.0 times in one direction of the cellulose resin and 1.01 to 2.5 times in the direction perpendicular to the film plane.
  • the foundation Ro and Rt can be controlled.
  • Ro indicates in-plane retardation
  • the difference between the refractive index in the longitudinal direction MD in the plane and the refractive index in the width direction TD is multiplied by the thickness
  • Rt indicates the thickness direction retardation
  • the difference between the refractive index (average of the longitudinal direction MD and the width direction TD) and the refractive index in the thickness direction is multiplied by the thickness.
  • Stretching can be performed sequentially or simultaneously with respect to, for example, the longitudinal direction of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.
  • Stretching in biaxial directions perpendicular to each other is an effective method for putting the refractive indexes nx, ny, and nz of the film within a predetermined range.
  • nx is the refractive index in the longitudinal MD direction
  • ny is the refractive index in the width TD direction
  • nz is the refractive index in the thickness direction.
  • the film when the film is stretched in the melt casting direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, it can be improved by suppressing the width shrinkage of the film or stretching in the width direction.
  • the refractive index When stretching in the width direction, the refractive index may be distributed in the width direction. This distribution may appear when the tenter method is used.
  • a shrinkage force is generated at the center of the film, and the phenomenon is caused by the end being fixed. It is thought to be called the Boeing phenomenon. Even in this case, by stretching in the casting direction, the bowing phenomenon can be suppressed and the distribution of the phase difference in the width direction can be reduced.
  • the film thickness variation of the obtained film can be reduced by stretching in the biaxial directions perpendicular to each other.
  • the film thickness variation of the retardation film is too large, the retardation becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.
  • the film thickness variation of the cellulose resin film is preferably in the range of ⁇ 3%, more preferably ⁇ 1%.
  • Winding process After the stretching step, the end of the film is slit into a product width by the slitter 13 and cut off, and knurled (embossing) is applied to both ends of the film by a knurling device including the embossing ring 14 and the back roll 15. Thereafter, as a winding process, the film is wound by the winder 16 to obtain a cellulose acylate film (original winding) F.
  • the knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing.
  • the cycloolefin polymer used in the present invention is made of a polymer resin containing an alicyclic structure.
  • a preferred cycloolefin polymer is a resin obtained by polymerizing or copolymerizing a cyclic olefin.
  • the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, tetracyclo [7.4.0.110, 13.02,7] trideca-2,4, Polycyclic unsaturated hydrocarbons such as 6,11-tetraene and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic unsaturated hydrocarbons such as octene, 3a, 5,6,7a-tetrahydro-4
  • cyclic olefins may have a polar group as a substituent.
  • the polar group include a hydroxyl group, a carboxyl group, an alkoxyl group, an epoxy group, a glycidyl group, an oxycarbonyl group, a carbonyl group, an amino group, an ester group, and a carboxylic acid anhydride group. Or a carboxylic anhydride group is preferred.
  • Preferred cycloolefin polymers may be those obtained by addition copolymerization of monomers other than cyclic olefins.
  • Addition copolymerizable monomers include ethylene or ⁇ -olefins such as ethylene, propylene, 1-butene and 1-pentene; 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- And dienes such as 1,4-hexadiene and 1,7-octadiene.
  • the cyclic olefin is obtained by an addition polymerization reaction or a metathesis ring-opening polymerization reaction.
  • the polymerization is carried out in the presence of a catalyst.
  • the addition polymerization catalyst include a polymerization catalyst composed of a vanadium compound and an organoaluminum compound.
  • a polymerization catalyst comprising a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, platinum, nitrate or acetylacetone compound, and a reducing agent; or titanium, vanadium, zirconium, tungsten, molybdenum Examples thereof include a polymerization catalyst comprising a metal halide such as acetylacetone compound and an organoaluminum compound.
  • the polymerization temperature, pressure and the like are not particularly limited, but the polymerization is usually carried out at a polymerization temperature of ⁇ 50 ° C. to 100 ° C. and a polymerization pressure of 0 to 490 N / cm 2 .
  • the cycloolefin polymer used in the present invention is preferably a polymer obtained by polymerizing or copolymerizing a cyclic olefin, followed by a hydrogenation reaction to change the unsaturated bond in the molecule to a saturated bond.
  • the hydrogenation reaction is performed by blowing hydrogen in the presence of a known hydrogenation catalyst.
  • hydrogenation catalysts examples include cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, transition metal compounds such as titanocene dichloride / n-butyllithium, zirconocene dichloride / sec-butyllithium, tetrabutoxytitanate / dimethylmagnesium / alkyl.
  • Homogeneous catalyst consisting of a combination of metal compounds; heterogeneous metal catalyst such as nickel, palladium, platinum; nickel / silica, nickel / diatomaceous earth, nickel / alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth And a heterogeneous solid-supported catalyst in which a metal catalyst such as palladium / alumina is supported on a carrier.
  • examples of the cycloolefin polymer include the following norbornene polymers.
  • the norbornene-based polymer preferably has a norbornene skeleton as a repeating unit, and specific examples thereof include JP-A-62-252406, JP-A-62-2252407, and JP-A-2-133413.
  • A, B, C and D each independently represent a hydrogen atom or a monovalent organic group.
  • norbornene-based polymers a polymer obtained by metathesis polymerization of at least one compound represented by the following structural formula (V) or (VI) and an unsaturated cyclic compound copolymerizable therewith.
  • a hydrogenated polymer obtained by hydrogenating is also preferred.
  • A, B, C and D each independently represent a hydrogen atom or a monovalent organic group.
  • A, B, C and D are not particularly limited, but preferably an organic group may be linked via a hydrogen atom, a halogen atom, a monovalent organic group, or at least a divalent linking group. These may be the same or different.
  • a or B and C or D may form a monocyclic or polycyclic structure.
  • the at least divalent linking group includes a hetero atom typified by an oxygen atom, a sulfur atom, and a nitrogen atom, and examples thereof include ethers, esters, carbonyls, urethanes, amides, and thioethers. It is not limited.
  • the organic group may be further substituted via the linking group.
  • Other monomers copolymerizable with the norbornene monomer include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, ⁇ -olefins having 2 to 20 carbon atoms such as 1-hexadecene, 1-octadecene, 1-eicocene, and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7a-tetrahydro-4,7 Cycloolefins such as methano-1H-indene, and derivatives thereof; non-such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, etc. Conjugated dienes; and the like are used. Of
  • the ratio of the structural unit derived from the norbornene monomer and the structural unit derived from the other monomer copolymerizable in the addition copolymer is usually 30:70 to 99: 1, preferably 50:50 to 97: 3, and more preferably 70:30 to 95: 5.
  • the hydrogenation rate is 90% or more, preferably 95% or more, particularly from the viewpoint of light resistance deterioration, weather resistance deterioration, etc. Preferably it is 99% or more.
  • examples of the cycloolefin polymer used in the present invention include thermoplastic saturated norbornene resins described in paragraph Nos. [0014] to [0019] of JP-A-5-2108, and paragraph Nos. [0015] of JP-A-2001-277430. ] To [0031] thermoplastic norbornene polymers, JP 2003-14901 paragraph Nos. [0008] to [0045] thermoplastic norbornene resins, JP 2003-139950 paragraph Nos.
  • ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation, APPEL manufactured by Mitsui Chemicals, Inc. (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) and the like are preferably used.
  • the molecular weight of the cycloolefin polymer used in the present invention is appropriately selected according to the purpose of use, and was measured by a gel permeation chromatography method of a cyclohexane solution (or a toluene solution when the polymer resin does not dissolve).
  • a gel permeation chromatography method of a cyclohexane solution or a toluene solution when the polymer resin does not dissolve.
  • the weight average molecular weight in terms of polyisoprene or polystyrene is usually in the range of 5,000 to 500,000, preferably 8,000 to 200,000, more preferably 10,000 to 100,000, the mechanical strength and molding processability of the molded body are high. Balanced and suitable.
  • a low-volatile antioxidant when blended in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the cycloolefin polymer, it can effectively prevent the polymer from being decomposed or colored during the molding process. I can do it.
  • the cycloolefin polymer film contains various additives in the same manner as the cellulose acylate film in order to improve the film characteristics.
  • the method for producing an optical film of the present invention no agglomerates adhere to the lip portions 33 and 34 of the casting die 4, there is little foreign matter mixed in the film, and the film is conveyed. It is possible to produce a film having no directional stripe-shaped film thickness unevenness.
  • the cellulose acylate film as the optical film of the present invention has no generation of foreign matter that is reflected in white by irradiation light, and there is a wave of reflected light reflected on the film surface due to the stripe-like film thickness unevenness of the film. High quality film can be produced. Therefore, a liquid crystal display device with high display quality can be obtained by using the optical film of the present invention for a polarizing plate as a protective film for a polarizing plate.
  • the optical film manufactured using the method for manufacturing an optical film of the present invention can be used for various display devices such as a liquid crystal display device, a plasma display device, and an organic EL display device. It can also be used as an optical compensation film such as a retardation film, an antireflection film, a brightness enhancement film, and a viewing angle expansion.
  • a polarizing plate using the optical film of the present invention as a protective film and a liquid crystal display device using the polarizing plate will be described.
  • a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • the optical film of the present invention may be used, or another polarizing plate protective film may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction.
  • a typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 Pa to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type.
  • the concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • Liquid crystal display device By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use.
  • the polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
  • the polarizing plate according to the present invention includes a reflective type, a transmissive type, a transflective type LCD or a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), an IPS type (including an FFS type), and the like. It is preferably used in various drive LCDs.
  • Example 1 to 6 Comparative Examples 1 and 2
  • Pellet creation 100 parts by mass of cellulose acetate propionate (acetyl group substitution degree 1.95, propionyl group substitution degree 0.7, number average molecular weight 75000, dried at 130 ° C.
  • Tg 174 ° C.
  • the produced pellets (water content 50 ppm) were melted in a single screw extruder and subjected to pressure filtration using a leaf disk type metal filter.
  • a cast film having a film thickness of 100 ⁇ m was obtained by melting and extruding the film from a casting die into a film at a melting temperature of 250 ° C. on a first cooling roll having a surface temperature of 100 ° C.
  • the gap between the slits 32 of the casting die 4 was 1.0 mm
  • the average surface roughness Ra of the lip portions 33 and 34 was 0.01 ⁇ m.
  • silica fine particles as a slip agent were added from the hopper opening in the middle of the extruder 1 so as to be 0.1 part by mass.
  • the supply of the inert gas to the lip portion by the supply nozzle 70 was performed using the apparatus shown in FIG. 2, and nitrogen gas was used as the gas.
  • the gap d between the tip of the supply nozzle 70 and the film was 5 mm, and the cartridge heater 72 was used to heat the nitrogen gas having the temperature shown in Table 1 so that it would come out of the tip of the supply nozzle 70.
  • the nitrogen gas was adjusted by a regulating valve (not shown) so as to come out from the tip of the supply nozzle 70 at the wind speed shown in Table 1.
  • the suction nozzle 80 is arranged so that the tip of the suction nozzle 80 has a gap of 5 mm from the film, and the suction force at the tip of the suction nozzle 80 is not so high that the wind speed is the same as the wind speed of the tip of the supply nozzle 70. It adjusted with the adjustment valve of illustration and sucked.
  • the first cooling roll and the second cooling roll were made of carbon steel having a diameter of 40 cm, and the surface was hard chrome plated.
  • temperature adjusting oil (cooling fluid) was circulated inside to control the roll surface temperature.
  • the elastic touch roll had a diameter of 35 cm, the inner cylinder and the outer cylinder were made of carbon steel, and the outer cylinder surface was hard chrome plated.
  • the wall thickness of the outer cylinder was 2 mm, and oil for cooling (cooling fluid) was circulated in the space between the inner cylinder and the outer cylinder to control the surface temperature of the elastic touch roll.
  • the film on the 1st cooling roll 5 was pressed using the touch roll B shown in FIG. 6, FIG.
  • the outer cylinder 51 of the touch roll B was a carbon steel pipe having a thickness of 2 mm and was pressed at a linear pressure of 5 N / cm.
  • the film temperature on the touch roll B side during pressing was 245 ° C. ⁇ 1 ° C.
  • the film temperature on the side of the touch roll B at the time of pressing here refers to the temperature of the film at the position where the touch roll B on the first cooling roll 5 is in contact with the touch roll B by using a non-contact thermometer.
  • the glass transition temperature Tg of this film was 136 ° C.
  • the glass transition temperature of the film extruded from the die was measured by DSC method (in nitrogen, temperature rising temperature 10 ° C./min) using DSC6200 manufactured by Seiko Corporation.)
  • the surface temperature of the touch roll B was 100 ° C.
  • the surface temperature of the second cooling roll 7 was 80 ° C.
  • the surface temperature of each roll of the touch roll B, the first cooling roll 5, and the second cooling roll 7 is the non-contact temperature of the roll surface at a position 90 ° before the rotation direction from the position where the film first contacts the roll.
  • the average value measured at 10 points in the width direction using a thermometer was defined as the surface temperature of each roll.
  • the film forming speed was 20 m / min.
  • the obtained film was introduced into a tenter as a stretching apparatus, stretched 1.3 times at 160 ° C. in the width direction, and wound into a roll to produce an optical film.
  • the optical film was continuously produced with the manufacturing apparatus of FIG. 1, and the vertical streak-like noise on the film surface before the winding process was visually observed, and the continuous film formation time until the occurrence of noise was observed was evaluated. .
  • the evaluation rank those exceeding 400 hours were marked with ⁇ , those exceeding 50 hours were marked with ⁇ , and those with 50 hours or less were marked with ⁇ . When the time is less than 50 hours, it is necessary to frequently stop the apparatus and clean the lip portion of the casting die, which causes a problem as a manufacturing apparatus due to extremely low productivity.
  • Example 7 As Example 7, the optical film was manufactured and evaluated in the same manner as Example 4 except that the touch roll B was not used in the manufacture of the optical film of Example 4. The evaluation result is rank ⁇ , and the length of time during which vertical streak-like noise is generated is shorter than in Example 4.
  • the cellulose acylate film produced in Example 1 was bonded to both sides of the polarizer from both sides with the alkali saponified surface as the polarizer side and a 5% by mass aqueous solution of a fully saponified polyvinyl alcohol as an adhesive.
  • a polarizing plate to which a film was bonded was produced. (Characteristic evaluation as a liquid crystal display device)
  • the polarizing plate of 32 type TFT type color liquid crystal display Vega manufactured by Sony Corporation was peeled off, and each polarizing plate produced above was cut according to the size of the liquid crystal cell.
  • a liquid crystal cell is sandwiched, and the two polarizing plates thus prepared are pasted so as to be orthogonal to each other so that the polarizing axes of the polarizing plates are not changed from each other, thereby producing a 32-type TFT color liquid crystal display, and a cellulose acylate film.
  • the polarizing plate produced from the cellulose acylate film which is the optical film of the present invention, exhibited excellent display properties without streak-like color unevenness and image distortion. Thereby, it was confirmed that it is excellent as a polarizing plate for image display devices.

Abstract

Disclosed is a method for manufacturing an optical film for which a fused material adhering to the perimeter of a lip part does not degrade due to oxidation and form an aggregate, and for which sublimates from the fused material do not adhere to the perimeter of the lip part, and for which striped noise is not generated; further disclosed are an optical film manufactured with said method, and a polarizing plate and a liquid crystal display device for which said optical film is used as a protective film. In an extrusion process, an inert gas with a temperature of not less than 110°C and not more than 300°C is supplied to the lip part of a casting die from a supply nozzle.

Description

光学フィルムの製造方法、光学フィルム、偏光板及び液晶表示装置Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
 本発明は、光学フィルムの製造方法、光学フィルム、該光学フィルムを用いた偏光板及び液晶表示装置に関する。 The present invention relates to an optical film manufacturing method, an optical film, a polarizing plate using the optical film, and a liquid crystal display device.
 ワードプロセッサーやパーソナルコンピュータ、TV等の画像表示装置には、光学フィルムが多く用いられている。例えば、液晶画像表示装置(LCD)に用いられる液晶セルの両側に設けられている偏光板には、偏光子の両面に貼り付けられる保護フィルムとして用いられている。偏光板は、一定方向の偏波面の光だけを通すので、LCDにおいては、電界による液晶の配向の変化を可視化させる重要な役割を担っており、偏光板の性能によってLCDの性能が大きく左右される。よって、偏光子の両面に貼り付けられる保護フィルムに要求される光学性能も高くなってきている。 Optical films are often used in image display devices such as word processors, personal computers, and TVs. For example, polarizing plates provided on both sides of a liquid crystal cell used in a liquid crystal image display (LCD) are used as protective films that are attached to both sides of a polarizer. Since the polarizing plate allows only light with a polarization plane in a certain direction to pass, it plays an important role in visualizing changes in the orientation of the liquid crystal due to the electric field in the LCD, and the performance of the polarizing plate greatly depends on the performance of the polarizing plate. The Therefore, the optical performance required for the protective film attached to both surfaces of the polarizer is also increasing.
 このような光学フィルムは、これまで、専ら溶液流延法によって製造されてきた。溶液流延法とは、樹脂を溶媒に溶解した溶液を流延してフィルム形状を得た後、溶媒を蒸発・乾燥させてフィルムを得るといった製膜方法である。溶液流延法で製膜したフィルムは平面性が高いため、これを用いてムラのない高画質な画像表示装置を得ることができる。 Until now, such optical films have been produced exclusively by the solution casting method. The solution casting method is a film forming method in which a solution obtained by dissolving a resin in a solvent is cast to obtain a film shape, and then the solvent is evaporated and dried to obtain a film. Since a film formed by the solution casting method has high flatness, a high-quality image display device without unevenness can be obtained using this film.
 しかし溶液流延法は多量の有機溶媒を用いるため、その有機溶剤を乾燥・回収するための設備が必要なことが課題となっていた。そこで近年光学フィルムの製造方法として、樹脂を溶融して製膜する溶融流延法の試みが行われている。 However, since the solution casting method uses a large amount of organic solvent, it has been a problem that equipment for drying and recovering the organic solvent is required. Therefore, in recent years, as an optical film manufacturing method, an attempt of a melt casting method for forming a film by melting a resin has been performed.
 例えば、保護フィルムに用いられるセルロースアシレートフィルムの場合について見てみると、主要な樹脂としてのセルロースアシレートを溶融して製膜している。セルロースアシレートの溶融物には、製膜性改良や偏光板の保護フィルムとしての特性改良のためにいろいろな添加物が加えられている。例えば、可塑剤や酸化防止剤、紫外線吸収剤、マット剤等を加え、フィルム特性の改良を行っている。 For example, in the case of a cellulose acylate film used for a protective film, cellulose acylate as a main resin is melted to form a film. Various additives are added to the melt of cellulose acylate for improving film forming properties and improving properties as a protective film of a polarizing plate. For example, film properties are improved by adding plasticizers, antioxidants, ultraviolet absorbers, matting agents, and the like.
 しかし、このようなセルロースアシレートフィルムの構成材料を高温で溶融し、流延ダイのリップ部から冷却ロール上に押し出して冷却固化し、フィルムを製造する溶融流延法を用いた場合、流延ダイのリップ部周辺に凝集物が付着して、流延ダイから出てくる溶融物の膜厚が不均一となり、製造したフィルムにスジ状ノイズ(膜厚ムラ)が発生するという問題があった。なお、リップ部とは、流延ダイから溶融樹脂を押し出す出口部分の構成部材であり、リップ部周辺とは、溶融樹脂が流延ダイから出てくる出口周辺を指す。 However, when such a cellulose acylate film constituent material is melted at a high temperature and extruded from the lip portion of the casting die onto a cooling roll to be cooled and solidified, the melt casting method for producing a film is used. There was a problem that aggregates adhered to the periphery of the lip part of the die, the film thickness of the melt coming out from the casting die became non-uniform, and streaky noise (film thickness unevenness) occurred in the manufactured film. . The lip portion is a constituent member of an outlet portion that extrudes the molten resin from the casting die, and the periphery of the lip portion indicates the vicinity of the outlet from which the molten resin exits the casting die.
 このリップ部周辺に付着する凝集物の発生原因としては、流延ダイから押し出される溶融物から発生する昇華物がリップ部周辺に付着することが一因であることが分かっている。 It has been found that the cause of the generation of aggregates around the lip is due to the fact that sublimates generated from the melt extruded from the casting die adhere to the lip.
 このような昇華物の付着に対する防止方法として、リップ部近辺に吸引ノズルを設置して、発生した昇華物を強制排気させる方法(特許文献1)が提案されている。 As a method for preventing the adhesion of the sublimated material, a method (Patent Document 1) has been proposed in which a suction nozzle is installed in the vicinity of the lip portion to forcibly exhaust the generated sublimated material.
特開平11-48306号公報Japanese Patent Laid-Open No. 11-48306
 しかしながら、特許文献1の方法を用いても十分にリップ部周辺の凝集物を無くすことができず、フィルムのスジ状ノイズが発生するという問題があった。本発明人は、昇華物の付着以外の凝集物の発生原因を鋭意検討した結果、溶融物が流延ダイから押し出される際に、リップ部周辺にも付着するが、その一部が酸化劣化して固化し、凝集物になっていることが分かった。 However, there is a problem that even if the method of Patent Document 1 is used, aggregates around the lip portion cannot be sufficiently removed, and streaky noise of the film is generated. As a result of earnestly examining the cause of agglomerates other than the adhesion of sublimates, the present inventor also adheres to the periphery of the lip when the melt is pushed out of the casting die, but a part of it deteriorates due to oxidation. It turned out to be an aggregate.
 よって、本発明の目的は、リップ部周辺に付着する溶融物が酸化劣化して凝集物を形成せず、また、溶融物からの昇華物もリップ部周辺に付着することが無く、スジ状ノイズの発生しない光学フィルムの製造方法、該製造方法で製造された光学フィルム、該光学フィルムを保護フィルムに用いた偏光板及び液晶表示装置を提供することである。 Therefore, the object of the present invention is that the melt adhering to the periphery of the lip portion does not form an agglomerate due to oxidative degradation, and the sublimate from the melt does not adhere to the periphery of the lip portion. It is providing the manufacturing method of the optical film which does not generate | occur | produce, the optical film manufactured by this manufacturing method, the polarizing plate which used this optical film for the protective film, and a liquid crystal display device.
 本発明の課題は、以下の手段により解決することができる。 The problems of the present invention can be solved by the following means.
 1.溶融した樹脂を流延ダイのリップ部よりフィルム状に押出す押出工程と、該押出工程で押し出されたフィルム状の樹脂を冷却ドラムにより冷却固化させる冷却工程とを備えた光学フィルムの製造方法において、
前記押出工程は、
前記リップ部に110℃以上300℃以下の温度の不活性ガスを供給ノズルから供給することを特徴とする光学フィルムの製造方法。
1. In an optical film manufacturing method comprising an extrusion step of extruding a molten resin into a film form from a lip portion of a casting die, and a cooling step of cooling and solidifying the film-like resin extruded in the extrusion step with a cooling drum ,
The extrusion process includes
An optical film manufacturing method, wherein an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower is supplied from a supply nozzle to the lip portion.
 2.前記不活性ガスを供給する工程は、前記供給ノズルの先端から出る前記不活性ガスの風速が、0.3m/s以上3m/s以下であることを特徴とする前記1に記載の光学フィルムの製造方法。 2. 2. The optical film according to 1 above, wherein the step of supplying the inert gas is characterized in that a wind speed of the inert gas exiting from a tip of the supply nozzle is 0.3 m / s or more and 3 m / s or less. Production method.
 3.前記供給ノズルにヒータが配置され、前記不活性ガスを加温していることを特徴とする前記1又は前記2に記載の光学フィルムの製造方法。 3. 3. The method for producing an optical film as described in 1 or 2 above, wherein a heater is disposed in the supply nozzle to heat the inert gas.
 4.前記供給ノズルの、押し出されたフィルム状の樹脂が流下する方向の下流側には、吸引ノズルが配置され、前記供給ノズルから出る不活性ガスを前記吸引ノズルが吸引することを特徴とする前記1から3の何れか1項に記載の光学フィルムの製造方法。 4. The suction nozzle is disposed downstream of the supply nozzle in the direction in which the extruded film-like resin flows down, and the suction nozzle sucks the inert gas that exits from the supply nozzle. 4. The method for producing an optical film according to any one of items 1 to 3.
 5.前記不活性ガスが窒素ガスであることを特徴とする前記1から4の何れか1項に記載の光学フィルムの製造方法。 5. 5. The method for producing an optical film according to any one of 1 to 4, wherein the inert gas is nitrogen gas.
 6.前記冷却工程は、前記冷却ドラムの上のフィルム状の樹脂を押圧するタッチロールを供え、該タッチロールで押圧することで、前記フィルム状の樹脂の表面を平滑にすることを特徴とする前記1から5の何れか1項に記載の光学フィルムの製造方法。 6. The cooling step includes providing a touch roll that presses the film-shaped resin on the cooling drum, and pressing the touch roll smoothes the surface of the film-shaped resin. 6. The method for producing an optical film according to any one of items 1 to 5.
 7.前記樹脂が、セルロースアシレートまたはシクロオレフィンポリマーであることを特徴とする前記1から6の何れか1項に記載の光学フィルムの製造方法。 7. 7. The method for producing an optical film according to any one of 1 to 6, wherein the resin is cellulose acylate or a cycloolefin polymer.
 8.前記1から7の何れか1項に記載の光学フィルムの製造方法で製造されたことを特徴とする光学フィルム。 8. 8. An optical film produced by the method for producing an optical film described in any one of 1 to 7 above.
 9.前記8に記載の光学フィルムを偏光板用保護フィルムとして用いることを特徴とする偏光板。 9. 9. A polarizing plate using the optical film according to 8 as a protective film for a polarizing plate.
 10.前記9に記載の偏光板を用いることを特徴とする液晶表示装置。 10. 10. A liquid crystal display device using the polarizing plate as described in 9 above.
 本発明によれば、溶融した樹脂を流延ダイから押し出す際に、リップ部に110℃以上300℃以下の温度の不活性ガスを供給ノズルから供給するので、リップ部周辺への昇華物の付着やリップ部に付着した溶融物の酸化劣化を防止することができ、リップ部周辺に凝集物を形成することがない。よって、スジ状ノイズの発生しない膜厚の均一な光学フィルムの製造方法、該製造方法で製造された光学フィルム、該光学フィルムを保護フィルムに用いた偏光板及び液晶表示装置を提供することができる。 According to the present invention, when extruding the molten resin from the casting die, an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower is supplied to the lip portion from the supply nozzle, so that the sublimate adheres to the periphery of the lip portion. Further, it is possible to prevent oxidative deterioration of the melt adhered to the lip portion, and no aggregate is formed around the lip portion. Therefore, it is possible to provide a method for producing an optical film having a uniform thickness that does not generate streak noise, an optical film produced by the production method, a polarizing plate using the optical film as a protective film, and a liquid crystal display device. .
本発明の光学フィルムの製造方法を実施する装置の全体構成を示す概略フローシートである。It is a schematic flow sheet which shows the whole structure of the apparatus which enforces the manufacturing method of the optical film of this invention. 流延ダイのリップ部周辺の概略断面図である。It is a schematic sectional drawing around the lip | rip part of a casting die. 溶融したフィルム状の樹脂を冷却ロールとタッチロールとで挟圧している状態の概略断面図である。It is a schematic sectional drawing of the state which has pinched the melted film-form resin with the cooling roll and the touch roll. 流延ダイ4の側面図の一部と断面の概略図である。FIG. 3 is a schematic side view and a part of a side view of a casting die 4. タッチロールの一実施形態の概略断面図である。It is a schematic sectional drawing of one Embodiment of a touch roll. タッチロールの別の実施形態の回転軸に直交する平面での中央断面図である。It is a center sectional view in the plane which intersects perpendicularly with the axis of rotation of another embodiment of a touch roll. タッチロールの別の実施形態の回転軸を含む平面での断面図である。It is sectional drawing in the plane containing the rotating shaft of another embodiment of a touch roll.
 以下、本発明の光学フィルムの製造方法について、実施形態を用いて説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, although the manufacturing method of the optical film of this invention is demonstrated using embodiment, this invention is not limited to the following embodiment.
 図1は、本発明の光学フィルムの製造方法を実施する装置の全体構成を示す概略フローシートである。押出工程として、原料樹脂などのフィルム構成材料を混合した後、押出し機1を用いて、流延ダイ4から第1冷却ロール5上に溶融したフィルム構成材料を押し出し、冷却工程として、第1冷却ロール5の表面に接触させるとともに、さらに、第2冷却ロール7、第3冷却ロール8の合計3本の冷却ロールの表面に順に接触させて、冷却固化してフィルム10とする。ついで、剥離工程として、剥離ロール9によってフィルム10を剥離し、ついで延伸工程として、縦延伸装置12aによりロール間の速度差によって縦延伸を行い、その後、横延伸装置12bによりフィルムの両端部を把持して幅方向に延伸し、その後、巻き取り工程として、巻取り装置16により巻き取る。 FIG. 1 is a schematic flow sheet showing the overall configuration of an apparatus for carrying out the method for producing an optical film of the present invention. In the extrusion process, after the film constituent materials such as the raw material resin are mixed, the melted film constituent material is extruded from the casting die 4 onto the first cooling roll 5 using the extruder 1, and the first cooling is performed as the cooling process. While making it contact with the surface of the roll 5, it is made to contact with the surface of a total of three cooling rolls, the 2nd cooling roll 7 and the 3rd cooling roll 8 in order, and is cooled and solidified, and it is set as the film 10. FIG. Next, as the peeling process, the film 10 is peeled off by the peeling roll 9, and then as the stretching process, the longitudinal stretching is performed by the speed difference between the rolls by the longitudinal stretching apparatus 12a, and then the both ends of the film are held by the lateral stretching apparatus 12b. Then, the film is stretched in the width direction, and then wound by the winding device 16 as a winding process.
 本発明の光学フィルムの製造方法においては、押出工程における流延ダイ4から溶融した樹脂を押し出す際に、流延ダイ4のリップ部に110℃以上300℃以下の温度の不活性ガスを供給ノズルから供給するものである。 In the method for producing an optical film of the present invention, an inert gas having a temperature of 110 ° C. or more and 300 ° C. or less is supplied to the lip portion of the casting die 4 when extruding molten resin from the casting die 4 in the extrusion step. Is supplied from
 図2は、本実施形態のリップ部周辺の概略断面図であり、流延ダイ4のリップ部33、34と、該リップ部33,34に不活性ガスを供給する一対の供給ノズル70、70、供給ノズル70、70から出る不活性ガスを吸引する一対の吸引ノズル80、80、リップ部33,34のスリット32から流出するフィルム状の溶融樹脂(フィルム10)と該溶融樹脂を冷却する第1冷却ロール5の配置と不活性ガスの流れを示す。 FIG. 2 is a schematic cross-sectional view of the periphery of the lip portion of the present embodiment. The lip portions 33 and 34 of the casting die 4 and a pair of supply nozzles 70 and 70 for supplying an inert gas to the lip portions 33 and 34 are shown. , A pair of suction nozzles 80, 80 for sucking the inert gas from the supply nozzles 70, 70, a film-like molten resin (film 10) flowing out from the slits 32 of the lip portions 33, 34, and a first one for cooling the molten resin The arrangement of one cooling roll 5 and the flow of inert gas are shown.
 一対の供給ノズル70、70は、流延ダイ4のリップ部33と34により形成されたスリット32から流下する溶融した樹脂のフィルム10の各表面から所定の距離dだけ離れた位置に、その先端部が来るように配置している。 The pair of supply nozzles 70, 70 are at their tips at positions separated from the respective surfaces of the melted resin film 10 flowing down from the slits 32 formed by the lip portions 33 and 34 of the casting die 4 by a predetermined distance d. It is arranged so that the part comes.
 供給ノズル70の先端部(フィルム10側)は、流延ダイ4のスリット32と同様にフィルム10の幅方向に延びる形状、具体的には細長い長方形の開口を有している。また、図2に示すように、流延ダイ4の側部とノズル側板71とから供給ノズル70の長手方向の側壁が形成されている。図示していない長手方向の端部は、別の部材で供給ノズルのガスが漏れないように封止している。この供給ノズル70に、図2のように供給管73から不活性ガスが供給される。 The tip of the supply nozzle 70 (on the film 10 side) has a shape extending in the width direction of the film 10, like the slit 32 of the casting die 4, specifically, an elongated rectangular opening. As shown in FIG. 2, a side wall in the longitudinal direction of the supply nozzle 70 is formed from the side portion of the casting die 4 and the nozzle side plate 71. The end in the longitudinal direction (not shown) is sealed by another member so that gas from the supply nozzle does not leak. As shown in FIG. 2, an inert gas is supplied to the supply nozzle 70 from a supply pipe 73.
 一対の吸引ノズル80、80は、一対の供給ノズル70、70の下方に配置されている。一対の吸引ノズル80、80の先端部は、一対の供給ノズル70、70の先端部に対して、フィルム10が流下する方向の下流側に配置されている。供給された不活性ガスは、フィルム10に沿って流れ、下流側に配置された吸引ノズル80により吸引され、排出管82により排出される。吸引ノズル80の先端部(フィルム10側)の開口部の形状は、フィルム10の幅手方向に平行な長方形をしている。また、吸引ノズル80の側部も、ノズル側板71と81により形成され、図示していない長手方向の端部は、別の部材で封止している。 The pair of suction nozzles 80, 80 are arranged below the pair of supply nozzles 70, 70. The tip portions of the pair of suction nozzles 80, 80 are disposed on the downstream side in the direction in which the film 10 flows down with respect to the tip portions of the pair of supply nozzles 70, 70. The supplied inert gas flows along the film 10, is sucked by the suction nozzle 80 disposed on the downstream side, and is discharged by the discharge pipe 82. The shape of the opening at the tip of the suction nozzle 80 (film 10 side) is a rectangle parallel to the width direction of the film 10. Further, the side portion of the suction nozzle 80 is also formed by nozzle side plates 71 and 81, and the end portion in the longitudinal direction (not shown) is sealed with another member.
 このように流延ダイ4のリップ部33、34に不活性ガスを供給ノズル70から供給することで、スリット32から出てきた溶融した樹脂がリップ部周辺に付着しても空気中の酸素と触れることが無く、よって酸化されないので固化し凝集物となることがない。また、スリット32から出てきた樹脂のなかに含まれる高温で昇華する昇華成分が昇華しても、不活性ガスの流れに乗るので、リップ部に堆積することもない。よって、リップ部周辺には、溶融樹脂の酸化劣化や、昇華成分の堆積などによる凝集物の発生が起こらず、リップ部に付着した凝集物による縦スジ状のフィルム膜厚のムラが発生せず、高品質な光学フィルムを製造することができる。 In this way, by supplying the inert gas from the supply nozzle 70 to the lip portions 33 and 34 of the casting die 4, even if the molten resin that has come out of the slit 32 adheres to the periphery of the lip portion, It is not touched and therefore not oxidized and thus solidifies and does not become aggregates. Further, even if a sublimation component sublimated at a high temperature contained in the resin coming out of the slit 32 is sublimated, it does not accumulate on the lip portion because it gets on the flow of inert gas. Therefore, there is no occurrence of aggregates around the lip due to oxidative degradation of the molten resin or accumulation of sublimation components, and no vertical streak-like film thickness unevenness due to aggregates attached to the lip. High-quality optical films can be manufactured.
 供給ノズル70からリップ部に向けて供給される不活性ガスの温度は、110℃以上300℃以下である。110℃未満になると、フィルムが冷却される結果膜厚ムラになる点で問題が発生し、300℃を越えると、フィルムが熱劣化するため問題となる。 The temperature of the inert gas supplied from the supply nozzle 70 toward the lip portion is 110 ° C. or higher and 300 ° C. or lower. When the temperature is less than 110 ° C., a problem occurs in that the film becomes uneven as a result of cooling the film.
 供給ノズル70からリップ部33、34に向けて供給する不活性ガスとしては、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン、窒素ガスなどがあるが、特に窒素ガスが、他の不活性ガスよりも安価で手に入れやすく、好ましい。 Examples of the inert gas supplied from the supply nozzle 70 toward the lip portions 33 and 34 include helium, neon, argon, krypton, xenon, radon, and nitrogen gas. In particular, nitrogen gas is more preferable than other inert gases. Is preferable because it is inexpensive and easy to obtain.
 また、図2の実施形態では、吸引ノズル80を供給ノズル70の近傍に配置しているが、離れた位置で吸引排出するようにしても良い。流延ダイ4から溶融する樹脂を第1冷却ロール5に流延する工程を行う部屋の不活性ガスの濃度が上がらないように排気することが、その部屋で作業する人の安全を確保するために好ましい。また、一対の供給ノズル70及び一対の吸引ノズル80をそれぞれ流延ダイ4の両方のリップ側に配置しているが、流延ダイ4のどちらか一方のリップ側でも本発明のリップ部への凝集物付着の抑制効果はある。しかし、流延ダイの両方のリップ側に配置する方がより効果があり好ましい。 Further, in the embodiment of FIG. 2, the suction nozzle 80 is disposed in the vicinity of the supply nozzle 70, but suction and discharge may be performed at a remote position. In order to ensure the safety of the person working in the room, exhausting the melted resin from the casting die 4 to the first cooling roll 5 so that the concentration of the inert gas in the room is not increased. Is preferable. In addition, although the pair of supply nozzles 70 and the pair of suction nozzles 80 are arranged on both lip sides of the casting die 4, the lip portion of the present invention is also provided on either lip side of the casting die 4. There is an effect of suppressing the adhesion of aggregates. However, it is more effective and preferable to arrange them on both lip sides of the casting die.
 また、不活性ガスの供給は、供給ノズル70の先端から出る不活性ガスの風速が、0.3m/s以上3m/s以下であることが好ましい。不活性ガスの風速の算出は、供給管73からの不活性ガスの供給量Wm/sを供給ノズル70の先端の開口面積Smで割った値である。 In addition, the inert gas is preferably supplied at a wind speed of 0.3 m / s or more and 3 m / s or less from the tip of the supply nozzle 70. The calculation of the wind speed of the inert gas is a value obtained by dividing the supply amount Wm 3 / s of the inert gas from the supply pipe 73 by the opening area Sm 2 of the tip of the supply nozzle 70.
 不活性ガスの風速を上記範囲内にすることで、不活性ガスの風速が小さすぎて、リップ部に酸素が混入する恐れや、昇華成分がリップ部に付着する恐れが無く、また、不活性ガスの風速が大きすぎて、押し出されるフィルム状の溶融樹脂の流れを乱す恐れが無いので、よりスジ状ノイズが無く均一な膜厚の光学フィルムを製造でき、好ましい。 By setting the wind speed of the inert gas within the above range, the inert gas wind speed is too low, so that there is no risk of oxygen mixing into the lip and no sublimation component adhering to the lip. Since the gas wind speed is too high and there is no fear of disturbing the flow of the extruded film-like molten resin, an optical film with a uniform film thickness without streak noise can be produced, which is preferable.
 風速は幅手方向に均一であることが好ましく、幅手方向での風速の偏差は±30%以内に入っていることが好ましい。さらに好ましくは10%以内である。幅手方向での風速の偏差を上記範囲内にすることで、流延ダイか押し出されるフィルム状の溶融樹脂の流れを乱す恐れが無く、好ましい。 The wind speed is preferably uniform in the width direction, and the deviation of the wind speed in the width direction is preferably within ± 30%. More preferably, it is within 10%. By making the deviation of the wind speed in the width direction within the above range, it is preferable that there is no fear of disturbing the flow of the film-like molten resin extruded from the casting die.
 また、本発明に供給ノズル70には、ヒータ72が配置されていることが好ましい。供給ノズル70に送られる不活性ガスは、予め所定の温度に加温された後、供給管73から供給ノズル70に供給されるようにしても良いが、供給ノズル70にヒータを配置することにより、供給ノズル70の先端部からリップ部に向けてでる不活性ガスの温度をより安定して制御することができる。また、予め所定の温度に加温されたガスを送り、ノズルに配置されたヒータにより再度加熱しても良い。ヒータ72の方式としては、ゴムヒータ、カートリッジヒータ、アルミ鋳込みヒータなどが好ましく使用できるが、これらに限定されない。カートリッジヒータが特に好ましい。 In the present invention, it is preferable that a heater 72 is disposed in the supply nozzle 70. The inert gas sent to the supply nozzle 70 may be heated to a predetermined temperature in advance and then supplied to the supply nozzle 70 from the supply pipe 73. However, by arranging a heater in the supply nozzle 70, In addition, the temperature of the inert gas that flows from the tip of the supply nozzle 70 toward the lip can be controlled more stably. In addition, a gas heated in advance to a predetermined temperature may be sent and heated again by a heater arranged in the nozzle. As a method of the heater 72, a rubber heater, a cartridge heater, an aluminum cast heater, or the like can be preferably used, but is not limited thereto. A cartridge heater is particularly preferred.
 また、供給ノズル70の先端部とスリット32から押し出される溶融した樹脂のフィルム10の表面との距離dは、2mm以上15mm以下が好ましい。 The distance d between the tip of the supply nozzle 70 and the surface of the molten resin film 10 extruded from the slit 32 is preferably 2 mm or more and 15 mm or less.
 2mm未満になると、供給ノズル70からの不活性ガスの風量変動により、フィルム10と供給ノズル70とが接触する可能性がある。また、15mmを越えると、不活性ガスによるリップ周辺の気流の流れが変動しやすくなり、リップ部33、34への昇華性成分の付着やリップ部33、34に付着した溶融物の酸化劣化が起こり凝集物が形成される可能性がある。 If the thickness is less than 2 mm, there is a possibility that the film 10 and the supply nozzle 70 come into contact with each other due to a change in the flow rate of the inert gas from the supply nozzle 70. On the other hand, if it exceeds 15 mm, the flow of airflow around the lip due to the inert gas tends to fluctuate, and the adhesion of sublimable components to the lip portions 33 and 34 and the oxidative deterioration of the melt adhering to the lip portions 33 and 34 occur. Occurrence of aggregates can occur.
 また、吸引ノズル80の先端部も供給ノズル70と同様に、フィルム10の表面との距離は、2mm以上15mm以下が好ましい。 Also, the distance between the tip of the suction nozzle 80 and the surface of the film 10 is preferably 2 mm or more and 15 mm or less, like the supply nozzle 70.
 また、本発明における冷却工程においては、図1に示すように、第1冷却ドラム5の上に流下されたフィルム状の樹脂を押圧するタッチロール6を供えていることが好ましい。タッチロール6で第1冷却ドラム5上の樹脂を押圧することで、より平面性の高いフィルムを形成することができる。 Further, in the cooling step in the present invention, as shown in FIG. 1, it is preferable to provide a touch roll 6 that presses the film-like resin flowing down on the first cooling drum 5. By pressing the resin on the first cooling drum 5 with the touch roll 6, a film with higher planarity can be formed.
 図3は、溶融したフィルム状の樹脂を第1冷却ロール5とタッチロール6とで挟圧している状態を説明するための概略断面の拡大図である。 FIG. 3 is an enlarged schematic cross-sectional view for explaining a state in which a melted film-like resin is sandwiched between the first cooling roll 5 and the touch roll 6.
 第1冷却ロール5に当接するタッチロール6は、表面が弾性を有し、第1冷却ロール5への押圧力によって第1冷却ロール5の表面に沿って変形し、第1ロール5との間にニップを形成する。このようにニップ部を形成してタッチロール6で挟圧することで、第1冷却ロール5上に流下される溶融樹脂の膜厚に小さなムラがあっても、平滑化することができフィルムの平面性が向上して、好ましい。 The touch roll 6 that abuts on the first cooling roll 5 has an elastic surface, and is deformed along the surface of the first cooling roll 5 by the pressing force to the first cooling roll 5. A nip is formed in By forming the nip portion and clamping with the touch roll 6 in this way, even if there is a small unevenness in the film thickness of the molten resin flowing down on the first cooling roll 5, it can be smoothed. It is preferable because of improved properties.
 以下、本発明の光学フィルムの製造方法について、本発明に好ましく用いられるセルロースアシレートフィルム及びシクロオレフィンポリマーフィルムの製造を例に詳細に説明する。
〈セルロースアシレートフィルム〉
 まず、セルロースアシレートフィルムの構成材料について説明する。
(原料樹脂)
 セルロースアシレート原料のセルロースとしては、特に限定はないが、綿花リンター、木材パルプやケフナ等がある。またこれらから得られた原料セルロースを任意の割合で混合して使用してもよい。セルロースアシレートは、アセチル基または炭素原子数が3~22のアシル基を有するセルロースアシレートであることが好ましい。炭素原子数3~22のアシル基の例には、プロピオニル(CCO-)、n-ブチリル(CCO-)、イソブチリル、バレリル(CCO-)、イソバレリル、sec-バレリル、tert-バレリル、オクタノイル、ドデカノイル、オクタデカノイル及びオレオロイルが含まれる。プロピオニル及びブチリルが好ましい。セルロースアシレートとしては、セルロースアセテートが好ましく、セルローストリアセテートが特に好ましい。アシル基のアシル化剤が酸無水物や酸クロライドである場合、反応溶媒としての有機溶媒は、有機酸(例、酢酸)やメチレンクロライドが使用される。セルロースアシレートは、セルロースの水酸基の置換度が2.6~3.0であることが好ましい。セルロースアシレートの重合度(粘度平均)は、200~700であることが好ましく、250~550であることが特に好ましい。これらのセルロースアシレートは、ダイセル化学工業(株)、コートルズ社、ヘキスト社、イーストマンコダック社により市販されている。写真用グレードのセルロースアシレートが好ましく用いられる。セルロースアシレートの含水率は、2質量%以下であることが好ましい。
Hereinafter, the production method of the optical film of the present invention will be described in detail by taking production of a cellulose acylate film and a cycloolefin polymer film preferably used in the present invention as examples.
<Cellulose acylate film>
First, the constituent materials of the cellulose acylate film will be described.
(Raw material resin)
Cellulose as a cellulose acylate raw material is not particularly limited, and examples thereof include cotton linter, wood pulp, and kefna. Moreover, you may mix and use the raw material cellulose obtained from these in arbitrary ratios. The cellulose acylate is preferably a cellulose acylate having an acetyl group or an acyl group having 3 to 22 carbon atoms. Examples of the acyl group having 3 to 22 carbon atoms include propionyl (C 2 H 5 CO—), n-butyryl (C 3 H 7 CO—), isobutyryl, valeryl (C 4 H 9 CO—), isovaleryl, Includes sec-valeryl, tert-valeryl, octanoyl, dodecanoyl, octadecanoyl and oleoloyl. Propionyl and butyryl are preferred. As the cellulose acylate, cellulose acetate is preferable, and cellulose triacetate is particularly preferable. When the acylating agent for the acyl group is an acid anhydride or acid chloride, an organic acid (eg, acetic acid) or methylene chloride is used as the organic solvent as the reaction solvent. Cellulose acylate preferably has a hydroxyl group substitution degree of 2.6 to 3.0. The degree of polymerization (average viscosity) of cellulose acylate is preferably 200 to 700, and particularly preferably 250 to 550. These cellulose acylates are marketed by Daicel Chemical Industries, Ltd., Courtles, Hoechst, and Eastman Kodak. Photographic grade cellulose acylate is preferably used. The water content of cellulose acylate is preferably 2% by mass or less.
 セルロースを構成するβ-1,4結合しているグルコース単位は、2位、3位及び6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を酢酸または他の酸によりエステル化したポリマーである。アシル置換度は、2位、3位及び6位のそれぞれについて、セルロースがエステル化している割合(100%のエステル化は、1.00)を意味する。 The β-1,4-bonded glucose unit constituting cellulose has free hydroxyl groups at the 2nd, 3rd and 6th positions. Cellulose acylate is a polymer obtained by esterifying some or all of these hydroxyl groups with acetic acid or other acids. The degree of acyl substitution means the proportion of cellulose esterified at each of the 2-position, 3-position and 6-position (100% esterification is 1.00).
 用いるセルロースアシレートは、2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88以上であるセルロースアシレートと、2位、3位のアシル置換度の合計が1.70~1.95であり、かつ6位のアシル置換度が0.88未満であるセルロースアシレートとをブレンドすることにより得られる。 The cellulose acylate used is a cellulose acylate having a total acyl substitution degree of 2-position and 3-position of 1.70 to 1.95 and an acyl substitution degree of 6-position of 0.88 or more, and 2-position. It is obtained by blending with a cellulose acylate having a total 3-position acyl substitution degree of 1.70 to 1.95 and a 6-position acyl substitution degree of less than 0.88.
 次に、セルロースアシレートフィルムに含有させる添加剤について説明する。
(可塑剤)
 セルロースアシレートフィルムに含有させる可塑剤としては、下記のものが挙げられる。
Next, the additive contained in the cellulose acylate film will be described.
(Plasticizer)
The following are mentioned as a plasticizer contained in a cellulose acylate film.
 多価アルコールと1価のカルボン酸からなるエステル系可塑剤、多価カルボン酸と1価のアルコールからなるエステル系可塑剤はセルロースエステルと親和性が高く好ましい。 An ester plasticizer comprising a polyhydric alcohol and a monovalent carboxylic acid, and an ester plasticizer comprising a polyvalent carboxylic acid and a monohydric alcohol are preferred because of their high affinity with the cellulose ester.
 多価アルコールエステル系の一つであるエチレングリコールエステル系の可塑剤:具体的には、エチレングリコールジアセテート、エチレングリコールジブチレート等のエチレングリコールアルキルエステル系の可塑剤、エチレングリコールジシクロプロピルカルボキシレート、エチレングリコールジシクロヘキルカルボキシレート等のエチレングリコールシクロアルキルエステル系の可塑剤、エチレングリコールジベンゾエート、エチレングリコールジ-4-メチルベンゾエート等のエチレングリコールアリールエステル系の可塑剤が挙げられる。これらアルキレート基、シクロアルキレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にエチレングリコール部も置換されていてもよく、エチレングリコールエステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 An ethylene glycol ester plasticizer that is one of polyhydric alcohol esters: specifically, ethylene glycol alkyl ester plasticizers such as ethylene glycol diacetate and ethylene glycol dibutyrate, ethylene glycol dicyclopropylcarboxylate And ethylene glycol cycloalkyl ester plasticizers such as ethylene glycol dicyclohexylcarboxylate, and ethylene glycol aryl ester plasticizers such as ethylene glycol dibenzoate and ethylene glycol di-4-methylbenzoate. These alkylate groups, cycloalkylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mix of alkylate group, cycloalkylate group and arylate group, and these substituents may be covalently bonded. Further, the ethylene glycol part may be substituted, and the ethylene glycol ester partial structure may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber, etc. It may be introduced into a part of the molecular structure of the additive.
 多価アルコールエステル系の一つであるグリセリンエステル系の可塑剤:具体的にはトリアセチン、トリブチリン、グリセリンジアセテートカプリレート、グリセリンオレートプロピオネート等のグリセリンアルキルエステル、グリセリントリシクロプロピルカルボキシレート、グリセリントリシクロヘキシルカルボキシレート等のグリセリンシクロアルキルエステル、グリセリントリベンゾエート、グリセリン-4-メチルベンゾエート等のグリセリンアリールエステル、ジグリセリンテトラアセチレート、ジグリセリンテトラプロピオネート、ジグリセリンアセテートトリカプリレート、ジグリセリンテトララウレート、等のジグリセリンアルキルエステル、ジグリセリンテトラシクロブチルカルボキシレート、ジグリセリンテトラシクロペンチルカルボキシレート等のジグリセリンシクロアルキルエステル、ジグリセリンテトラベンゾエート、ジグリセリン-3-メチルベンゾエート等のジグリセリンアリールエステル等が挙げられる。これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にグリセリン、ジグリセリン部も置換されていてもよく、グリセリンエステル、ジグリセリンエステルの部分構造がポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Glycerin ester plasticizer that is one of polyhydric alcohol esters: Specifically, glycerol alkyl esters such as triacetin, tributyrin, glycerol diacetate caprylate, glycerol oleate propionate, glycerol tricyclopropylcarboxylate, glycerol Glycerin cycloalkyl esters such as tricyclohexylcarboxylate, glycerol aryl esters such as glycerol tribenzoate and glycerol-4-methylbenzoate, diglycerol tetraacetylate, diglycerol tetrapropionate, diglycerol acetate tricaprylate, diglycerol tetra Diglycerol alkyl esters such as laurate, diglycerol tetracyclobutylcarboxylate, diglycerol tetra Diglycerol cycloalkyl esters such as Russia pentyl carboxylate, diglycerin tetrabenzoate, diglycerin aryl ester such as diglycerin 3-methylbenzoate or the like. These alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond. Furthermore, the glycerin and diglycerin part may be substituted, the partial structure of the glycerin ester and the diglycerin ester may be part of the polymer or regularly pendant, and the antioxidant, acid scavenger, You may introduce | transduce into a part of molecular structure of additives, such as a ultraviolet absorber.
 その他の多価アルコールエステル系の可塑剤としては、具体的には特開2003-12823号公報の段落30~33記載の多価アルコールエステル系可塑剤が挙げられる。 Specific examples of other polyhydric alcohol ester plasticizers include polyhydric alcohol ester plasticizers described in paragraphs 30 to 33 of JP-A No. 2003-12823.
 これらアルキレート基、シクロアルキルカルボキシレート基、アリレート基は、同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキレート基、シクロアルキルカルボキシレート基、アリレート基のミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更に多価アルコール部も置換されていてもよく、多価アルコールの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 These alkylate groups, cycloalkylcarboxylate groups, and arylate groups may be the same or different, and may be further substituted. Further, it may be a mixture of alkylate group, cycloalkylcarboxylate group, and arylate group, and these substituents may be bonded by a covalent bond. Furthermore, the polyhydric alcohol part may be substituted, and the partial structure of the polyhydric alcohol may be part of the polymer or regularly pendant, and may be an antioxidant, an acid scavenger, an ultraviolet absorber. May be introduced into a part of the molecular structure of the additive.
 上記多価アルコールと1価のカルボン酸からなるエステル系可塑剤の中では、アルキル多価アルコールアリールエステルが好ましく、具体的には上記のエチレングリコールジベンゾエート、グリセリントリベンゾエート、ジグリセリンテトラベンゾエート、特開2003-12823号公報の段落32記載例示化合物16が挙げられる。 Among the ester plasticizers composed of the polyhydric alcohol and the monovalent carboxylic acid, alkyl polyhydric alcohol aryl esters are preferred. Specifically, the above-mentioned ethylene glycol dibenzoate, glycerin tribenzoate, diglycerin tetrabenzoate, Examples thereof include the exemplified compound 16 described in paragraph 32 of Kaikai 2003-12823.
 多価カルボン酸エステル系の一つであるジカルボン酸エステル系の可塑剤:具体的には、ジドデシルマロネート(C1)、ジオクチルアジペート(C4)、ジブチルセバケート(C8)等のアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロペンチルサクシネート、ジシクロヘキシルアジーペート等のアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルサクシネート、ジ-4-メチルフェニルグルタレート等のアルキルジカルボン酸アリールエステル系の可塑剤、ジヘキシル-1,4-シクロヘキサンジカルボキシレート、ジデシルビシクロ[2.2.1]ヘプタン-2,3-ジカルボキシレート等のシクロアルキルジカルボン酸アルキルエステル系の可塑剤、ジシクロヘキシル-1,2-シクロブタンジカルボキシレート、ジシクロプロピル-1,2-シクロヘキシルジカルボキシレート等のシクロアルキルジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニル-1,1-シクロプロピルジカルボキシレート、ジ-2-ナフチル-1,4-シクロヘキサンジカルボキシレート等のシクロアルキルジカルボン酸アリールエステル系の可塑剤、ジエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジ-2-エチルヘキシルフタレート等のアリールジカルボン酸アルキルエステル系の可塑剤、ジシクロプロピルフタレート、ジシクロヘキシルフタレート等のアリールジカルボン酸シクロアルキルエステル系の可塑剤、ジフェニルフタレート、ジ-4-メチルフェニルフタレート等のアリールジカルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また一置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造が、ポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Dicarboxylic acid ester plasticizer that is one of polyvalent carboxylic acid esters: Specifically, alkyl dicarboxylic acid alkyl such as didodecyl malonate (C1), dioctyl adipate (C4), dibutyl sebacate (C8), etc. Ester plasticizers, alkyl dicarboxylic acid cycloalkyl ester plasticizers such as dicyclopentyl succinate and dicyclohexyl adipate, and alkyl dicarboxylic acid aryl ester plasticizers such as diphenyl succinate and di-4-methylphenyl glutarate Dialkyl-1,4-cyclohexanedicarboxylate, didecylbicyclo [2.2.1] heptane-2,3-dicarboxylate, and the like, cycloalkyldicarboxylic acid alkyl ester plasticizers, dicyclohexyl-1,2- Cyclobutane deca Cycloalkyldicarboxylic acid cycloalkyl ester type plasticizers such as boxylate, dicyclopropyl-1,2-cyclohexyl dicarboxylate, diphenyl-1,1-cyclopropyldicarboxylate, di-2-naphthyl-1,4- Cycloalkyl dicarboxylic acid aryl ester plasticizers such as cyclohexane dicarboxylate, aryl dicarboxylic acid alkyl ester plasticizers such as diethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl phthalate, and di-2-ethylhexyl phthalate, dicyclopropyl Aryl dicarboxylic acid cycloalkyl ester plasticizers such as phthalate and dicyclohexyl phthalate, and aryl dicarboxylic acid esters such as diphenyl phthalate and di-4-methylphenyl phthalate Ruesuteru based plasticizers. These alkoxy groups and cycloalkoxy groups may be the same or different, may be mono-substituted, and these substituents may be further substituted. The alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond. Furthermore, the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used. Also, the partial structure of phthalate ester may be part of the polymer or regularly pendant to the polymer, and it may be part of the molecular structure of additives such as antioxidants, acid scavengers, and UV absorbers. It may be introduced.
 その他の多価カルボン酸エステル系の可塑剤としては、具体的にはトリドデシルトリカルバレート、トリブチル-meso-ブタン-1,2,3,4-テトラカルボキシレート等のアルキル多価カルボン酸アルキルエステル系の可塑剤、トリシクロヘキシルトリカルバレート、トリシクロプロピル-2-ヒドロキシ-1,2,3-プロパントリカルボキシレート等のアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル-2-ヒドロキシ-1,2,3-プロパントリカルボキシレート、テトラ-3-メチルフェニルテトラヒドロフラン-2,3,4,5-テトラカルボキシレート等のアルキル多価カルボン酸アリールエステル系の可塑剤、テトラヘキシル-1,2,3,4-シクロブタンテトラカルボキシレート、テトラブチル-1,2,3,4-シクロペンタンテトラカルボキシレート等のシクロアルキル多価カルボン酸アルキルエステル系の可塑剤、テトラシクロプロピル-1,2,3,4-シクロブタンテトラカルボキシレート、トリシクロヘキシル-1,3,5-シクロヘキシルトリカルボキシレート等のシクロアルキル多価カルボン酸シクロアルキルエステル系の可塑剤、トリフェニル-1,3,5-シクロヘキシルトリカルボキシレート、ヘキサ-4-メチルフェニル-1,2,3,4,5,6-シクロヘキシルヘキサカルボキシレート等のシクロアルキル多価カルボン酸アリールエステル系の可塑剤、トリドデシルベンゼン-1,2,4-トリカルボキシレート、テトラオクチルベンゼン-1,2,4,5-テトラカルボキシレート等のアリール多価カルボン酸アルキルエステル系の可塑剤、トリシクロペンチルベンゼン-1,3,5-トリカルボキシレート、テトラシクロヘキシルベンゼン-1,2,3,5-テトラカルボキシレート等のアリール多価カルボン酸シクロアルキルエステル系の可塑剤トリフェニルベンゼン-1,3,5-テトラカルトキシレート、ヘキサ-4-メチルフェニルベンゼン-1,2,3,4,5,6-ヘキサカルボキシレート等のアリール多価カルボン酸アリールエステル系の可塑剤が挙げられる。これらアルコキシ基、シクロアルコキシ基は、同一でもあっても異なっていてもよく、また1置換でもよく、これらの置換基は更に置換されていてもよい。アルキル基、シクロアルキル基はミックスでもよく、またこれら置換基同志が共有結合で結合していてもよい。更にフタル酸の芳香環も置換されていてよく、ダイマー、トリマー、テトラマー等の多量体でもよい。またフタル酸エステルの部分構造がポリマーの一部、或いは規則的にポリマーへペンダントされていてもよく、酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。 Other polycarboxylic acid ester plasticizers include alkyl polycarboxylic acid alkyl esters such as tridodecyl tricarbarate and tributyl-meso-butane-1,2,3,4-tetracarboxylate. Plasticizers, alkylpolycarboxylic acid cycloalkyl ester plasticizers such as tricyclohexyltricarbarate, tricyclopropyl-2-hydroxy-1,2,3-propanetricarboxylate, triphenyl-2-hydroxy -1,2,3-propanetricarboxylate, tetra-3-methylphenyltetrahydrofuran-2,3,4,5-tetracarboxylate and other alkyl polyvalent carboxylic acid aryl ester plasticizers, tetrahexyl-1, 2,3,4-cyclobutanetetracarboxylate, te Cycloalkyl polycarboxylic acid alkyl ester plasticizers such as rabutyl-1,2,3,4-cyclopentanetetracarboxylate, tetracyclopropyl-1,2,3,4-cyclobutanetetracarboxylate, tricyclohexyl- Cycloalkyl polycarboxylic acid cycloalkyl ester plasticizers such as 1,3,5-cyclohexyl tricarboxylate, triphenyl-1,3,5-cyclohexyl tricarboxylate, hexa-4-methylphenyl-1,2 , 3,4,5,6-cyclohexylhexacarboxylate and other cycloalkyl polycarboxylic acid aryl ester plasticizers, tridodecylbenzene-1,2,4-tricarboxylate, tetraoctylbenzene-1,2, Ants such as 4,5-tetracarboxylate Polyvalent carboxylic acid alkyl ester plasticizer, aryl polyvalent carboxylic acid cycloalkyl such as tricyclopentylbenzene-1,3,5-tricarboxylate, tetracyclohexylbenzene-1,2,3,5-tetracarboxylate Aryl polyvalent carboxylic acids such as ester plasticizers triphenylbenzene-1,3,5-tetracartoxylate, hexa-4-methylphenylbenzene-1,2,3,4,5,6-hexacarboxylate Examples include aryl ester plasticizers. These alkoxy groups and cycloalkoxy groups may be the same or different, and may be mono-substituted, and these substituents may be further substituted. The alkyl group and cycloalkyl group may be mixed, and these substituents may be bonded together by a covalent bond. Furthermore, the aromatic ring of phthalic acid may be substituted, and a multimer such as a dimer, trimer or tetramer may be used. Also, the partial structure of phthalate ester may be part of the polymer or regularly pendant into the polymer, and introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be.
 上記多価カルボン酸と1価のアルコールからなるエステル系可塑剤の中では、ジアルキルカルボン酸アルキルエステルが好ましく、具体的には上記のジオクチルアジペート、トリデシルトリカルバレートが挙げられる。 Among the ester plasticizers composed of the polyvalent carboxylic acid and the monohydric alcohol, dialkyl carboxylic acid alkyl esters are preferred, and specific examples include the dioctyl adipate and tridecyl tricarbalate.
 更にリン酸エステル系可塑剤、炭水化物エステル系可塑剤、ポリマー可塑剤等が挙げられる。 Further examples include phosphate ester plasticizers, carbohydrate ester plasticizers, and polymer plasticizers.
 リン酸エステル系の可塑剤:具体的には、トリアセチルホスフェート、トリブチルホスフェート等のリン酸アルキルエステル、トリシクロベンチルホスフェート、シクロヘキシルホスフェート等のリン酸シクロアルキルエステル、トリフェニルホスフェート、トリクレジルホスフェート、クレジルフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、トリナフチルホスフェート、トリキシリルオスフェート、トリスオルト-ビフェニルホスフェート等のリン酸アリールエステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。 Phosphate ester plasticizers: specifically, phosphoric acid alkyl esters such as triacetyl phosphate and tributyl phosphate, phosphoric acid cycloalkyl esters such as tricyclobenthyl phosphate and cyclohexyl phosphate, triphenyl phosphate, tricresyl phosphate And phosphoric acid aryl esters such as cresylphenyl phosphate, octyl diphenyl phosphate, diphenyl biphenyl phosphate, trioctyl phosphate, tributyl phosphate, trinaphthyl phosphate, trixylyl phosphate, tris ortho-biphenyl phosphate. These substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple | bond together by the covalent bond.
 またエチレンビス(ジメチルホスフェート)、ブチレンビス(ジエチルホスフェート)等のアルキレンビス(ジアルキルホスフェート)、エチレンビス(ジフェニルホスフェート)、プロピレンビス(ジナフチルホスフェート)等のアルキレンビス(ジアリールホスフェート)、フェニレンビス(ジブチルホスフェート)、ビフェニレンビス(ジオクチルホスフェート)等のアリーレンビス(ジアルキルホスフェート)、フェニレンビス(ジフェニルホスフェート)、ナフチレンビス(ジトルイルホスフェート)等のアリーレンビス(ジアリールホスフェート)等のリン酸エステルが挙げられる。これらの置換基は同一でもあっても異なっていてもよく、更に置換されていてもよい。またアルキル基、シクロアルキル基、アリール基のミックスでもよく、また置換基同志が共有結合で結合していてもよい。 Also, alkylene bis (dialkyl phosphate) such as ethylene bis (dimethyl phosphate), butylene bis (diethyl phosphate), alkylene bis (diaryl phosphate) such as ethylene bis (diphenyl phosphate), propylene bis (dinaphthyl phosphate), phenylene bis (dibutyl phosphate) ), Arylene bis (dialkyl phosphate) such as biphenylene bis (dioctyl phosphate), phosphate esters such as arylene bis (diaryl phosphate) such as phenylene bis (diphenyl phosphate) and naphthylene bis (ditoluyl phosphate). These substituents may be the same or different, and may be further substituted. Moreover, the mix of an alkyl group, a cycloalkyl group, and an aryl group may be sufficient, and substituents may couple | bond together by the covalent bond.
 更にリン酸エステルの部分構造が、ポリマーの一部、或いは規則的にペンダントされていてもよく、また酸化防止剤、酸掃去剤、紫外線吸収剤等の添加剤の分子構造の一部に導入されていてもよい。上記化合物の中では、リン酸アリールエステル、アリーレンビス(ジアリールホスフェート)が好ましく、具体的にはトリフェニルホスフェート、フェニレンビス(ジフェニルホスフェート)が好ましい。 Furthermore, the partial structure of phosphate ester may be part of the polymer, or may be regularly pendant, and also introduced into part of the molecular structure of additives such as antioxidants, acid scavengers, UV absorbers, etc. May be. Among the above-mentioned compounds, phosphoric acid aryl ester and arylene bis (diaryl phosphate) are preferable, and specifically, triphenyl phosphate and phenylene bis (diphenyl phosphate) are preferable.
 次に、炭水化物エステル系可塑剤について説明する。炭水化物とは、糖類がピラノース又はフラノース(6員環又は5員環)の形態で存在する単糖類、二糖類又は三糖類を意味する。炭水化物の非限定的例としては、グルコース、サッカロース、ラクトース、セロビオース、マンノース、キシロース、リボース、ガラクトース、アラビノース、フルクトース、ソルボース、セロトリオース及びラフィノースなどが挙げられる。炭水化物エステルとは、炭水化物の水酸基とカルボン酸が脱水縮合してエステル化合物を形成したものを指し、詳しくは、炭水化物の脂肪族カルボン酸エステル、或いは芳香族カルボン酸エステルを意味する。脂肪族カルボン酸として、例えば酢酸、プロピオン酸等を挙げることができ、芳香族カルボン酸として、例えば安息香酸、トルイル酸、アニス酸等を挙げることができる。炭水化物は、その種類に応じた水酸基の数を有するが、水酸基の一部とカルボン酸が反応してエステル化合物を形成しても、水酸基の全部とカルボン酸が反応してエステル化合物を形成してもよい。本発明においては、水酸基の全部とカルボン酸が反応してエステル化合物を形成するのが好ましい。 Next, the carbohydrate ester plasticizer will be described. The carbohydrate means a monosaccharide, disaccharide or trisaccharide in which the saccharide is present in the form of pyranose or furanose (6-membered ring or 5-membered ring). Non-limiting examples of carbohydrates include glucose, saccharose, lactose, cellobiose, mannose, xylose, ribose, galactose, arabinose, fructose, sorbose, cellotriose and raffinose. The carbohydrate ester refers to an ester compound formed by dehydration condensation of a carbohydrate hydroxyl group and a carboxylic acid, and specifically means an aliphatic carboxylic acid ester or an aromatic carboxylic acid ester of a carbohydrate. Examples of the aliphatic carboxylic acid include acetic acid and propionic acid, and examples of the aromatic carboxylic acid include benzoic acid, toluic acid, and anisic acid. Carbohydrates have a number of hydroxyl groups depending on the type, but even if a part of the hydroxyl group reacts with the carboxylic acid to form an ester compound, the whole hydroxyl group reacts with the carboxylic acid to form an ester compound. Also good. In the present invention, it is preferable that all of the hydroxyl groups react with the carboxylic acid to form an ester compound.
 炭水化物エステル系可塑剤として、具体的には、グルコースペンタアセテート、グルコースペンタプロピオネート、グルコースペンタブチレート、サッカロースオクタアセテート、サッカロースオクタベンゾエート等を好ましく挙げることができ、この内、サッカロースオクタアセテートがより好ましい。 Specific examples of the carbohydrate ester plasticizer include glucose pentaacetate, glucose pentapropionate, glucose pentabtylate, saccharose octaacetate, saccharose octabenzoate, and of these, saccharose octaacetate is more preferred. preferable.
 ポリマー可塑剤:具体的には、脂肪族炭化水素系ポリマー、脂環式炭化水素系ポリマー、ポリアクリル酸エチル、ポリメタクリル酸メチル、メタクリル酸メチルとメタクリル酸-2-ヒドロキシエチルとの共重合体(例えば、共重合比1:99~99:1の間の任意の比率)等のアクリル系ポリマー、ポリビニルイソブチルエーテル、ポリN-ビニルピロリドン等のビニル系ポリマー、ポリスチレン、ポリ4-ヒドロキシスチレン等のスチレン系ポリマー、ポリブチレンサクシネート、ポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル、ポリアミド、ポリウレタン、ポリウレア等が挙げられる。数平均分子量は1,000~500,000程度が好ましく、特に好ましくは、5000~200000である。1000以下では揮発性に問題が生じ、500000を超えると可塑化能力が低下し、セルロースエステルフィルムの機械的性質に悪影響を及ぼす。これらポリマー可塑剤は1種の繰り返し単位からなる単独重合体でも、複数の繰り返し構造体を有する共重合体でもよい。また、上記ポリマーを2種以上併用して用いてもよい。 Polymer plasticizer: Specifically, aliphatic hydrocarbon polymer, alicyclic hydrocarbon polymer, polyethyl acrylate, polymethyl methacrylate, copolymer of methyl methacrylate and 2-hydroxyethyl methacrylate (For example, an arbitrary ratio between copolymer ratios 1:99 to 99: 1), vinyl polymers such as polyvinyl isobutyl ether, poly N-vinyl pyrrolidone, polystyrene, poly 4-hydroxystyrene, etc. Examples thereof include styrene-based polymers, polybutylene succinates, polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyethers such as polyethylene oxide and polypropylene oxide, polyamides, polyurethanes, and polyureas. The number average molecular weight is preferably about 1,000 to 500,000, particularly preferably 5000 to 200,000. If it is 1000 or less, a problem arises in volatility, and if it exceeds 500000, the plasticizing ability is lowered, and the mechanical properties of the cellulose ester film are adversely affected. These polymer plasticizers may be a homopolymer composed of one type of repeating unit or a copolymer having a plurality of repeating structures. Two or more of the above polymers may be used in combination.
 なお本発明のセルロースアシレートフィルムは、着色すると光学用途として影響を与えるため、好ましくは黄色度(イエローインデックス、YI)が3.0以下、より好ましくは1.0以下である。黄色度はJIS-K7103に基づいて測定することができる。 In addition, since the cellulose acylate film of the present invention has an effect as an optical application when colored, the yellowness (yellow index, YI) is preferably 3.0 or less, more preferably 1.0 or less. Yellowness can be measured based on JIS-K7103.
 可塑剤は、前述のセルロースエステル同様に、製造時から持ち越される、或いは保存中に発生する残留酸、無機塩、有機低分子等の不純物を除去する事が好ましく、より好ましくは純度99%以上である。残留酸、及び水としては、0.01~100ppmであることが好ましく、セルロース樹脂を溶融製膜する上で、熱劣化を抑制でき、製膜安定性、フィルムの光学物性、機械物性が向上する。
(酸化防止剤)
 セルロースエステルは、溶融製膜が行われるような高温環境下では熱だけでなく酸素によっても分解が促進されるため、本発明のセルロースアシレートフィルムにおいては安定化剤として酸化防止剤を使用することも好ましい。
It is preferable that the plasticizer removes impurities such as residual acids, inorganic salts, organic low molecules, etc. that are carried over from the time of manufacture or generated during storage, and more preferably has a purity of 99% or more. is there. Residual acid and water are preferably 0.01 to 100 ppm, and when melt-forming cellulose resin, thermal deterioration can be suppressed, and film-forming stability, optical physical properties and mechanical properties of the film are improved. .
(Antioxidant)
In the cellulose acylate film of the present invention, an antioxidant is used as a stabilizer because cellulose ester is decomposed not only by heat but also by oxygen in a high temperature environment where melt film formation is performed. Is also preferable.
 本発明において有用な酸化防止剤としては、酸素による溶融成形材料の劣化を抑制する化合物であれば制限なく用いることができるが、中でも有用な酸化防止剤としては、フェノール系化合物、ヒンダードアミン系化合物、リン系化合物、イオウ系化合物、耐熱加工安定剤、酸素スカベンジャー等が挙げられ、これらの中でも、特にフェノール系化合物、ヒンダードアミン系化合物、リン系化合物、ラクトン系化合物が好ましい。 The antioxidant useful in the present invention can be used without limitation as long as it is a compound that suppresses deterioration of the melt-molded material due to oxygen, but among the useful antioxidants, phenolic compounds, hindered amine compounds, Examples thereof include phosphorus compounds, sulfur compounds, heat-resistant processing stabilizers, oxygen scavengers, etc. Among these, phenol compounds, hindered amine compounds, phosphorus compounds, and lactone compounds are particularly preferable.
 ヒンダードアミン化合物(HALS)としては、例えば、米国特許第4,619,956号明細書の第5~11欄及び米国特許第4,839,405号明細書の第3~5欄に記載されているように、2,2,6,6-テトラアルキルピペリジン化合物、またはそれらの酸付加塩もしくはそれらと金属化合物との錯体が好ましい。市販品としては、LA52(旭電化社製)を挙げることができる。 The hindered amine compound (HALS) is described, for example, in US Pat. No. 4,619,956, columns 5 to 11 and US Pat. No. 4,839,405, columns 3 to 5. Thus, 2,2,6,6-tetraalkylpiperidine compounds, or their acid addition salts or complexes of them with metal compounds are preferred. As a commercial item, LA52 (made by Asahi Denka Co., Ltd.) can be mentioned.
 ラクトン系化合物としては、特開平7-233160号公報、特開平7-247278号公報記載の化合物が好ましい。 As the lactone compound, compounds described in JP-A-7-233160 and JP-A-7-247278 are preferable.
 これらの安定剤は、それぞれ1種或いは2種以上組み合わせて用いることができ、その配合量は本発明の目的を損なわない範囲で適宜選択されるが、セルロースエステル100質量部に対して、通常0.001~10.0質量部、好ましくは0.01~5.0質量部、更に好ましくは、0.1~3.0質量部である。 These stabilizers can be used singly or in combination of two or more, and the blending amount is appropriately selected within a range not impairing the object of the present invention, but is usually 0 with respect to 100 parts by mass of the cellulose ester. 0.001 to 10.0 parts by mass, preferably 0.01 to 5.0 parts by mass, and more preferably 0.1 to 3.0 parts by mass.
 これらの化合物を配合することにより、透明性、耐熱性等を低下させることなく、溶融成型時の熱や熱酸化劣化等による成形体の着色や強度低下を防止できる。 By blending these compounds, it is possible to prevent coloring and strength reduction of the molded product due to heat and thermal oxidative degradation during melt molding without reducing transparency and heat resistance.
 酸化防止剤の添加量は、セルロースエステル100質量部に対して、通常0.01~10質量部、好ましくは0.05~5質量部、更に好ましくは0.1~3質量部である。
(酸掃去剤)
 酸掃去剤とは製造時から持ち込まれるセルロースエステル中に残留する酸(プロトン酸)をトラップする役割を担う剤である。また、セルロースエステルを溶融するとポリマー中の水分と熱により側鎖の加水分解が促進し、CAPならば酢酸やプロピオン酸が生成する。酸と化学的に結合できればよく、エポキシ、3級アミン、エーテル構造等を有する化合物が挙げられるが、これに限定されるものでない。
The addition amount of the antioxidant is usually 0.01 to 10 parts by mass, preferably 0.05 to 5 parts by mass, and more preferably 0.1 to 3 parts by mass with respect to 100 parts by mass of the cellulose ester.
(Acid scavenger)
The acid scavenger is an agent that plays a role of trapping an acid (protonic acid) remaining in the cellulose ester brought in from the production. When the cellulose ester is melted, side chain hydrolysis is promoted by moisture and heat in the polymer, and acetic acid and propionic acid are generated in the case of CAP. A compound having an epoxy structure, a tertiary amine, an ether structure, or the like may be used as long as it can be chemically bonded to an acid, but is not limited thereto.
 具体的には、米国特許第4,137,201号明細書に記載されている酸掃去剤としてのエポキシ化合物を含んでなるのが好ましい。このような酸掃去剤としてのエポキシ化合物は当該技術分野において既知であり、種々のポリグリコールのジグリシジルエーテル、特にポリグリコール1モル当たりに約8~40モルのエチレンオキシドなどの縮合によって誘導されるポリグリコール、グリセロールのジグリシジルエーテルなど、金属エポキシ化合物(例えば、塩化ビニルポリマー組成物において、及び塩化ビニルポリマー組成物と共に、従来から利用されているもの)、エポキシ化エーテル縮合生成物、ビスフェノールAのジグリシジルエーテル(即ち、4,4′-ジヒドロキシジフェニルジメチルメタン)、エポキシ化不飽和脂肪酸エステル(特に、2~22この炭素原子の脂肪酸の4~2個程度の炭素原子のアルキルのエステル(例えば、ブチルエポキシステアレート)など)、及び種々のエポキシ化長鎖脂肪酸トリグリセリドなど(例えば、エポキシ化大豆油などの組成物によって代表され、例示され得る、エポキシ化植物油及び他の不飽和天然油(これらは時としてエポキシ化天然グリセリドまたは不飽和脂肪酸と称され、これらの脂肪酸は一般に12~22個の炭素原子を含有している))が含まれる。
(紫外線吸収剤)
 紫外線吸収剤としては、偏光子や表示装置の紫外線に対する劣化防止の観点から、波長370nm以下の紫外線の吸収能に優れており、且つ液晶表示性の観点から、波長400nm以上の可視光の吸収が少ないものが好ましい。
Specifically, it is preferable to comprise an epoxy compound as an acid scavenger described in US Pat. No. 4,137,201. Epoxy compounds as such acid scavengers are known in the art and are derived by condensation of diglycidyl ethers of various polyglycols, particularly about 8 to 40 moles of ethylene oxide per mole of polyglycol. Metal glycol compounds such as polyglycols, diglycidyl ethers of glycerol (eg, those conventionally used in and together with vinyl chloride polymer compositions), epoxidized ether condensation products, bisphenol A Diglycidyl ethers (ie, 4,4'-dihydroxydiphenyldimethylmethane), epoxidized unsaturated fatty acid esters (especially esters of alkyls of about 2 to 2 carbon atoms of fatty acids of 2 to 22 carbon atoms (eg Butyl epoxy stearate ), And various epoxidized long chain fatty acid triglycerides and the like (e.g., epoxidized vegetable oils and other unsaturated natural oils, which may be represented and exemplified by compositions such as epoxidized soybean oil, sometimes epoxidized natural) These are referred to as glycerides or unsaturated fatty acids and these fatty acids generally contain 12 to 22 carbon atoms)).
(UV absorber)
As an ultraviolet absorber, from the viewpoint of preventing deterioration of a polarizer or a display device with respect to ultraviolet rays, the ultraviolet absorber has an excellent ability to absorb ultraviolet rays having a wavelength of 370 nm or less, and from the viewpoint of liquid crystal display properties, absorption of visible light having a wavelength of 400 nm or more is absorbed. Less is preferred.
 例えば、サリチル酸系紫外線吸収剤(フェニルサリシレート、p-tert-ブチルサリシレート等)あるいはベンゾフェノン系紫外線吸収剤(2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4,4′-ジメトキシベンゾフェノン等)、ベンゾトリアゾール系紫外線吸収剤(2-(2′-ヒドロキシ-3′-tert-ブチル-5′-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-ブチルフェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-ドデシル-5′-メチルフェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′-tert-ブチル-5′-(2-オクチルオキシカルボニルエチル)-フェニル)-5-クロロベンゾトリアゾール、2-(2′-ヒドロキシ-3′-(1-メチル-1-フェニルエチル)-5′-(1,1,3,3-テトラメチルブチル)-フェニル)ベンゾトリアゾール、2-(2′-ヒドロキシ-3′,5′-ジ-(1-メチル-1-フェニルエチル)-フェニル)ベンゾトリアゾール等)、シアノアクリレート系紫外線吸収剤(2′-エチルヘキシル-2-シアノ-3,3-ジフェニルアクリレート、エチル-2-シアノ-3-(3′,4′-メチレンジオキシフェニル)-アクリレート等)、トリアジン系紫外線吸収剤、あるいは特開昭58-185677号、同59-149350号記載の化合物、ニッケル錯塩系化合物、無機粉体等が挙げられる。 For example, salicylic acid ultraviolet absorbers (phenyl salicylate, p-tert-butyl salicylate, etc.) or benzophenone ultraviolet absorbers (2,4-dihydroxybenzophenone, 2,2′-dihydroxy-4,4′-dimethoxybenzophenone, etc.), Benzotriazole UV absorber (2- (2'-hydroxy-3'-tert-butyl-5'-methylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di) -Tert-butylphenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert-amylphenyl) benzotriazole, 2- (2'-hydroxy-3'-dodecyl- 5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-3'-t rt-butyl-5 '-(2-octyloxycarbonylethyl) -phenyl) -5-chlorobenzotriazole, 2- (2'-hydroxy-3'-(1-methyl-1-phenylethyl) -5'- (1,1,3,3-tetramethylbutyl) -phenyl) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di- (1-methyl-1-phenylethyl) -phenyl) benzotriazole ), Cyanoacrylate ultraviolet absorbers (2′-ethylhexyl-2-cyano-3,3-diphenyl acrylate, ethyl-2-cyano-3- (3 ′, 4′-methylenedioxyphenyl) -acrylate, etc.) , Triazine ultraviolet absorbers, compounds described in JP-A Nos. 58-185777 and 59-149350, nickel complex compounds, inorganic powders Etc. The.
 紫外線吸収剤としては、透明性が高く、偏光板や液晶素子の劣化を防ぐ効果に優れたベンゾトリアゾール系紫外線吸収剤やトリアジン系紫外線吸収剤が好ましく、分光吸収スペクトルがより適切なベンゾトリアゾール系紫外線吸収剤が特に好ましい。 As the UV absorber, a benzotriazole UV absorber and a triazine UV absorber that are highly transparent and excellent in preventing deterioration of a polarizing plate and a liquid crystal element are preferable, and a benzotriazole UV light having a more appropriate spectral absorption spectrum. Absorbents are particularly preferred.
 また、従来公知の紫外線吸収性ポリマーと組み合わせて用いることもできる。従来公知の紫外線吸収性ポリマーとしては、特に限定されないが、例えば、RUVA-93(大塚化学社製)を単独重合させたポリマー及びRUVA-93と他のモノマーとを共重合させたポリマー等が挙げられる。具体的には、RUVA-93とメチルメタクリレートを3:7の比(質量比)で共重合させたPUVA-30M、5:5の比(質量比)で共重合させたPUVA-50M等が挙げられる。更に、特開2003-113317号公報に記載のポリマー等が挙げられる。 Also, it can be used in combination with a conventionally known ultraviolet absorbing polymer. The conventionally known UV-absorbing polymer is not particularly limited, and examples thereof include a polymer obtained by homopolymerizing RUVA-93 (manufactured by Otsuka Chemical Co., Ltd.) and a polymer obtained by copolymerizing RUVA-93 and other monomers. It is done. Specifically, PUVA-30M obtained by copolymerizing RUVA-93 and methyl methacrylate in a ratio (mass ratio) of 3: 7, and PUVA-50M copolymerized in a ratio of 5: 5 (mass ratio). It is done. Furthermore, the polymer etc. which are described in Unexamined-Japanese-Patent No. 2003-113317 are mentioned.
 また、市販品として、チヌビン(TINUVIN)109、チヌビン(TINUVIN)171、チヌビン(TINUVIN)360、チヌビン(TINUVIN)900、チヌビン(TINUVIN)928(いずれもチバ・ジャパン社製)、LA-31(旭電化社製)、RUVA-100(大塚化学社製)を用いることもできる。 As commercially available products, TINUVIN 109, TINUVIN 171, TINUVIN 360, TINUVIN 900, TINUVIN 928 (all manufactured by Ciba Japan), LA-31 (Asahi) Denka Co., Ltd.) and RUVA-100 (Otsuka Chemical Co., Ltd.) can also be used.
 ベンゾフェノン系化合物の具体例として、2,4-ジヒドロキシベンゾフェノン、2,2′-ジヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニルメタン)等を挙げることができるが、これらに限定されるものではない。 Specific examples of benzophenone compounds include 2,4-dihydroxybenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-5-sulfobenzophenone, bis (2-methoxy-4-hydroxy-) 5-benzoylphenylmethane) and the like, but are not limited thereto.
 紫外線吸収剤は0.1~20質量%添加することが好ましく、更に0.5~10質量%添加することが好ましく、更に1~5質量%添加することが好ましい。これらは2種以上を併用してもよい。
(粘度低下剤)
 溶融粘度を低減する目的として、水素結合性溶媒を添加する事ができる。水素結合性溶媒とは、J.N.イスラエルアチビリ著、「分子間力と表面力」(近藤保、大島広行訳、マグロウヒル出版、1991年)に記載されるように、電気的に陰性な原子(酸素、窒素、フッ素、塩素)と電気的に陰性な原子と共有結合した水素原子間に生ずる、水素原子媒介「結合」を生ずることができるような有機溶媒、すなわち、結合モーメントが大きく、かつ水素を含む結合、例えば、O-H(酸素水素結合)、N-H(窒素水素結合)、F-H(フッ素水素結合)を含むことで近接した分子同士が配列できるような有機溶媒をいう。これらは、セルロース樹脂の分子間水素結合よりもセルロースとの間で強い水素結合を形成する能力を有するもので、本発明で行う溶融流延法においては、用いるセルロース樹脂単独のガラス転移温度よりも、水素結合性溶媒の添加によりセルロース樹脂組成物の溶融温度を低下する事ができる、または同じ溶融温度においてセルロース樹脂よりも水素結合性溶媒を含むセルロース樹脂組成物の溶融粘度を低下する事ができる。
The ultraviolet absorber is preferably added in an amount of 0.1 to 20% by mass, more preferably 0.5 to 10% by mass, and further preferably 1 to 5% by mass. Two or more of these may be used in combination.
(Viscosity reducing agent)
For the purpose of reducing the melt viscosity, a hydrogen bonding solvent can be added. The hydrogen bonding solvent is J.I. N. As described in Israel Ativili, “Intermolecular Forces and Surface Forces” (Takeshi Kondo, Hiroyuki Oshima, Maglow Hill Publishing, 1991) and electrically negative atoms (oxygen, nitrogen, fluorine, chlorine) An organic solvent capable of producing a hydrogen atom-mediated “bond” that occurs between an electronegative atom and a covalently bonded hydrogen atom, that is, a bond having a large bonding moment and containing hydrogen, such as OH (Oxygen hydrogen bond), N—H (nitrogen hydrogen bond), FH (fluorine hydrogen bond), and an organic solvent that can arrange adjacent molecules. These have the ability to form stronger hydrogen bonds with cellulose than intermolecular hydrogen bonds of cellulose resin. In the melt casting method performed in the present invention, the glass transition temperature of the cellulose resin used alone is higher than that. The melting temperature of the cellulose resin composition can be lowered by the addition of a hydrogen bonding solvent, or the melt viscosity of the cellulose resin composition containing a hydrogen bonding solvent can be lowered at the same melting temperature as the cellulose resin. .
 水素結合性溶媒としては、例えば、アルコール類:例えば、メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、sec-ブタノール、t-ブタノール、2-エチルヘキサノール、ヘプタノール、オクタノール、ノナノール、ドデカノール、エチレングリコール、プロピレングリコール、ヘキシレングリコール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、ヘキシルセロソルブ、グリセリン等、ケトン類:アセトン、メチルエチルケトン等、カルボン酸類:例えば蟻酸、酢酸、プロピオン酸、酪酸等、エーテル類:例えば、ジエチルエーテル、テトラヒドロフラン、ジオキサン等、ピロリドン類:例えば、N-メチルピロリドン等、アミン類:例えば、トリメチルアミン、ピリジン等、等を例示することができる。これら水素結合性溶媒は、単独で、又は2種以上混合して用いることができる。これらのうちでも、アルコール、ケトン、エーテル類が好ましく、特にメタノール、エタノール、プロパノール、イソプロパノール、オクタノール、ドデカノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランが好ましい。さらに、メタノール、エタノール、プロパノール、イソプロパノール、エチレングリコール、グリセリン、アセトン、テトラヒドロフランのような水溶性溶媒が特に好ましい。ここで水溶性とは、水100gに対する溶解度が10g以上のものをいう。
(リターデーション制御剤)
 セルロースアシレートフィルムにおいて配向膜を形成して液晶層を設け、セルロースアシレートフィルムと液晶層由来のリターデーションを複合化して光学補償能を付与した偏光板加工を行ってもよい。リターデーションを制御するために添加する化合物は、欧州特許第911,656A2号明細書に記載されているような、二つ以上の芳香族環を有する芳香族化合物をリターデーション制御剤として使用することもできる。また2種類以上の芳香族化合物を併用してもよい。該芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族性ヘテロ環であることが特に好ましく、芳香族性ヘテロ環は一般に不飽和ヘテロ環である。中でも1,3,5-トリアジン環を有する化合物が特に好ましい。
(マット剤)
 セルロースアシレートフィルムには、滑り性を付与するためにマット剤等の微粒子を添加することができ、微粒子としては、無機化合物の微粒子または有機化合物の微粒子が挙げられる。マット剤はできるだけ微粒子のものが好ましく、微粒子としては、例えば、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、カオリン、タルク、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、リン酸カルシウム等の無機微粒子や架橋高分子微粒子を挙げることができる。中でも、二酸化ケイ素がフィルムのヘイズを低くできるので好ましい。二酸化ケイ素のような微粒子は有機物により表面処理されている場合が多いが、このようなものはフィルムのヘイズを低下できるため好ましい。
Examples of the hydrogen bonding solvent include alcohols such as methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, t-butanol, 2-ethylhexanol, heptanol, octanol, nonanol, dodecanol, ethylene glycol, Propylene glycol, hexylene glycol, dipropylene glycol, polyethylene glycol, polypropylene glycol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, hexyl cellosolve, glycerin, etc., ketones: acetone, methyl ethyl ketone, etc., carboxylic acids: eg formic acid, acetic acid, propionic acid, Butyric acid, etc., ethers: eg, diethyl ether, tetrahydrofuran, dioxane, etc., Pyrrolidones: eg, N-methyl Pyrrolidone, etc., amines: for example, can be exemplified trimethylamine, pyridine, etc., and the like. These hydrogen bonding solvents can be used alone or in admixture of two or more. Among these, alcohol, ketone, and ether are preferable, and methanol, ethanol, propanol, isopropanol, octanol, dodecanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Furthermore, water-soluble solvents such as methanol, ethanol, propanol, isopropanol, ethylene glycol, glycerin, acetone, and tetrahydrofuran are particularly preferable. Here, water-soluble means that the solubility in 100 g of water is 10 g or more.
(Retardation control agent)
An alignment film may be formed in the cellulose acylate film, a liquid crystal layer may be provided, and polarizing plate processing may be performed in which the cellulose acylate film and the retardation derived from the liquid crystal layer are combined to provide an optical compensation capability. The compound to be added to control the retardation is an aromatic compound having two or more aromatic rings as described in EP 911,656A2, which is used as a retardation control agent. You can also. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic heterocyclic ring in addition to the aromatic hydrocarbon ring. An aromatic heterocyclic ring is particularly preferred, and the aromatic heterocyclic ring is generally an unsaturated heterocyclic ring. Of these, compounds having a 1,3,5-triazine ring are particularly preferred.
(Matting agent)
Fine particles such as a matting agent can be added to the cellulose acylate film in order to impart slipperiness, and examples of the fine particles include inorganic compound fine particles and organic compound fine particles. The matting agent is preferably as fine as possible. Examples of the fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, kaolin, talc, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include inorganic fine particles such as magnesium silicate and calcium phosphate, and crosslinked polymer fine particles. Among these, silicon dioxide is preferable because it can reduce the haze of the film. In many cases, fine particles such as silicon dioxide are surface-treated with an organic material, but such a material is preferable because it can reduce the haze of the film.
 表面処理で好ましい有機物としては、ハロシラン類、アルコキシシラン類、シラザン、シロキサンなどが挙げられる。微粒子の平均粒径が大きい方が滑り性効果は大きく、反対に平均粒径の小さい方は透明性に優れる。また、微粒子の二次粒子の平均粒径は0.05~1.0μmの範囲である。好ましい微粒子の二次粒子の平均粒径は5~50nmが好ましく、更に好ましくは7~14nmである。これらの微粒子はセルロースアシレートフィルム中では、セルロースアシレートフィルム表面に0.01~1.0μmの凹凸を生成させる為に好ましく用いられる。微粒子のセルロースエステル中の含有量はセルロースエステルに対して0.005~0.3質量%が好ましい。 Preferred organic materials for the surface treatment include halosilanes, alkoxysilanes, silazanes, siloxanes, and the like. The larger the average particle size of the fine particles, the greater the sliding effect, and the smaller the average particle size, the better the transparency. The average particle size of the secondary particles of the fine particles is in the range of 0.05 to 1.0 μm. The average particle size of secondary particles of preferable fine particles is preferably 5 to 50 nm, more preferably 7 to 14 nm. These fine particles are preferably used in the cellulose acylate film in order to produce an unevenness of 0.01 to 1.0 μm on the surface of the cellulose acylate film. The content of the fine particles in the cellulose ester is preferably 0.005 to 0.3% by mass with respect to the cellulose ester.
 二酸化ケイ素の微粒子としては、日本アエロジル(株)製のアエロジル(AEROSIL)200、200V、300、R972、R972V、R974、R202、R812、OX50、TT600等を挙げることができ、好ましくはアエロジル200V、R972、R972V、R974、R202、R812である。これらの微粒子は2種以上併用してもよい。2種以上併用する場合、任意の割合で混合して使用することができる。この場合、平均粒径や材質の異なる微粒子、例えば、アエロジル200VとR972Vを質量比で0.1:99.9~99.9:0.1の範囲で使用できる。 Examples of the fine particles of silicon dioxide include Aerosil 200, 200V, 300, R972, R972V, R974, R202, R812, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd., preferably Aerosil 200V, R972. , R972V, R974, R202, R812. Two or more kinds of these fine particles may be used in combination. When using 2 or more types together, it can mix and use in arbitrary ratios. In this case, fine particles having different average particle sizes and materials, for example, Aerosil 200V and R972V can be used in a mass ratio of 0.1: 99.9 to 99.9: 0.1.
 上記マット剤として用いられるフィルム中の微粒子の存在は、別の目的としてフィルムの強度向上のために用いることもできる。また、フィルム中の上記微粒子の存在は、本発明のセルロースアシレートフィルムを構成するセルロースエステル自身の配向性を向上することも可能である。
(高分子材料)
 セルロースアシレートフィルムはセルロースエステル以外の高分子材料やオリゴマーを適宜選択して混合してもよい。前述の高分子材料やオリゴマーはセルロースエステルと相溶性に優れるものが好ましく、フィルムにしたときの透過率が80%以上、更に好ましくは90%以上、更に好ましくは92%以上であることが好ましい。セルロースエステル以外の高分子材料やオリゴマーの少なくとも1種以上を混合する目的は、加熱溶融時の粘度制御やフィルム加工後のフィルム物性を向上するために行う意味を含んでいる。
The presence of fine particles in the film used as the matting agent can be used for another purpose to improve the strength of the film. In addition, the presence of the fine particles in the film can improve the orientation of the cellulose ester constituting the cellulose acylate film of the present invention.
(Polymer material)
For the cellulose acylate film, polymer materials other than cellulose esters and oligomers may be appropriately selected and mixed. The above polymer materials and oligomers are preferably those having excellent compatibility with the cellulose ester, and the transmittance when formed into a film is 80% or more, more preferably 90% or more, and further preferably 92% or more. The purpose of mixing at least one of polymer materials and oligomers other than cellulose ester includes meanings for controlling viscosity at the time of heating and melting and improving film physical properties after film processing.
 このようにセルロースアシレートフィルムの原料樹脂に各種の添加剤を加えたものを図1に示す溶融流延法を用いた製膜装置により製膜し、セルロースアシレートフィルムを製造する。
(押出工程)
 原材料となるセルロース樹脂と、その他必要により添加される安定化剤等の添加剤は、溶融する前に混合しておくことが好ましい。混合は、V型混合機、円錐スクリュー型混合機、水平円筒型混合機等、ヘンシェルミキサー、リボンミキサーなど一般的な混合機を用いることができる。混合したフィルム構成材料を押出し機1を用いて、押し出し温度200~300℃程度で溶融し、リーフディスクタイプのフィルター2などで濾過し、異物を除去する。可塑剤などの添加剤を予め混合しない場合は、押出し機の途中で練り込んでもよい。均一に添加するために、スタチックミキサー3などの混合装置を用いることが好ましい。
Thus, what added various additives to the raw material resin of a cellulose acylate film is formed into a film with the film forming apparatus using the melt casting method shown in FIG. 1, and a cellulose acylate film is manufactured.
(Extrusion process)
It is preferable to mix the cellulose resin as a raw material and other additives such as a stabilizer added as necessary before melting. For mixing, a general mixer such as a V-type mixer, a conical screw type mixer, a horizontal cylindrical type mixer, a Henschel mixer, or a ribbon mixer can be used. The mixed film constituent material is melted at an extrusion temperature of about 200 to 300 ° C. using the extruder 1 and filtered through a leaf disk type filter 2 to remove foreign matters. When additives such as a plasticizer are not mixed in advance, they may be kneaded in the middle of the extruder. In order to add uniformly, it is preferable to use a mixing apparatus such as a static mixer 3.
 押出し機1から押し出され、金属フィルター2でろ過されたフィルム構成材料は、流延ダイ4に送られ、流延ダイ4のスリットからフィルム状に押し出される。流延ダイ4はシートやフィルムを製造するために用いられるものであれば特に限定はされない。流延ダイ4の材質としては、ハードクロム、炭化クロム、窒化クロム、炭化チタン、炭窒化チタン、窒化チタン、超鋼、セラミック(タングステンカーバイド、酸化アルミ、酸化クロム)などを溶射もしくはメッキし、表面加工としてバフ、#1000番手以上の砥石を用いるラッピング、#1000番手以上のダイヤモンド砥石を用いる平面切削(切削方向は樹脂の流れ方向に垂直な方向)、電解研磨、電解複合研磨などの加工を施したものなどがあげられる。流延ダイ4のリップ部の好ましい材質は、流延ダイ4と同様である。またリップ部の表面精度は0.5S以下が好ましく、0.2S以下がより好ましい。 The film constituent material extruded from the extruder 1 and filtered by the metal filter 2 is sent to the casting die 4 and extruded from the slit of the casting die 4 into a film shape. The casting die 4 is not particularly limited as long as it is used for producing a sheet or a film. The material of the casting die 4 is sprayed or plated with hard chromium, chromium carbide, chromium nitride, titanium carbide, titanium carbonitride, titanium nitride, super steel, ceramic (tungsten carbide, aluminum oxide, chromium oxide), etc. Processing such as buffing, lapping using a # 1000 or higher grinding wheel, surface cutting using a # 1000 or higher diamond grinding wheel (the cutting direction is perpendicular to the resin flow direction), electrolytic polishing, electrolytic composite polishing, etc. And so on. A preferred material for the lip portion of the casting die 4 is the same as that of the casting die 4. The surface accuracy of the lip is preferably 0.5S or less, and more preferably 0.2S or less.
 この流延ダイ4のスリットは、そのギャップが調整可能なように構成されている。 The slit of the casting die 4 is configured so that the gap can be adjusted.
 図4は、流延ダイ4の概略図を示し、図4(a)は、側面図の一部、図4(b)は、断面図を示す。流延ダイ4のスリット32を形成する一対のリップ33、34のうち、一方は剛性の低い変形しやすいフレキシブルなリップ33であり、他方は固定されたリップ34である。そして、多数のヒートボルト35が流延ダイ4の幅方向すなわちスリット32の長さ方向に一定ピッチで配列されている。各ヒートボルト5には、埋め込み電気ヒータ37と冷却媒体通路とを具えたブロック36が設けられ、各ヒートボルト35が各ブロック36を縦に貫通している。ヒートボルト35の基部はダイ本体31に固定され、先端はフレキシブルなリップ33の外面に当接している。そしてブロック36を常時空冷しながら、埋め込み電気ヒータ37の入力を増減してブロック36の温度を上下させ、これによりヒートボルト35を熱伸縮させて、フレキシブルなリップ33を変位させてフィルムの厚さを調整する。ダイ後流の所要箇所に厚さ計を設け、これによって検出されたウェブ厚さ情報を制御装置にフィードバックし、この厚さ情報を制御装置で設定厚み情報と比較し、同装置から来る補正制御量の信号によってヒートボルト35の発熱体の電力又はオン率を制御するようにすることもできる。ヒートボルト35は、好ましくは、長さ20~40cm、直径7~14mmを有し、複数、例えば数十本のヒートボルトが、好ましくはピッチ20~40mmで配列されている。ヒートボルト35の代わりに、手動で軸方向に前後動させることによりスリット32のギャップを調節するボルトを主体とするギャップ調節部材を設けてもよい。ギャップ調節部材によって調節されたスリット32のギャップは、通常500~1500μm、好ましくは800~1300μm、より好ましくは900~1200μmである。 4 shows a schematic view of the casting die 4, FIG. 4 (a) shows a part of a side view, and FIG. 4 (b) shows a cross-sectional view. Of the pair of lips 33, 34 forming the slit 32 of the casting die 4, one is a flexible lip 33 that has low rigidity and is easily deformed, and the other is a fixed lip 34. A large number of heat bolts 35 are arranged at a constant pitch in the width direction of the casting die 4, that is, in the length direction of the slits 32. Each heat bolt 5 is provided with a block 36 having an embedded electric heater 37 and a cooling medium passage, and each heat bolt 35 penetrates each block 36 vertically. The base of the heat bolt 35 is fixed to the die body 31, and the tip is in contact with the outer surface of the flexible lip 33. While the block 36 is always air-cooled, the input of the embedded electric heater 37 is increased or decreased to raise or lower the temperature of the block 36, thereby causing the heat bolt 35 to thermally expand and contract, thereby displacing the flexible lip 33 to change the film thickness. Adjust. Thickness gauges are installed at the required locations in the wake of the die, and the web thickness information detected thereby is fed back to the control device. The thickness information is compared with the set thickness information by the control device, and correction control comes from the same device. It is also possible to control the power or ON rate of the heating element of the heat bolt 35 by the amount signal. The heat bolt 35 preferably has a length of 20 to 40 cm and a diameter of 7 to 14 mm, and a plurality of, for example, several tens of heat bolts are preferably arranged at a pitch of 20 to 40 mm. Instead of the heat bolt 35, a gap adjusting member mainly composed of a bolt for adjusting the gap of the slit 32 by manually moving back and forth in the axial direction may be provided. The gap of the slit 32 adjusted by the gap adjusting member is usually 500 to 1500 μm, preferably 800 to 1300 μm, more preferably 900 to 1200 μm.
 本発明の光学フィルムの製造方法においては、流延ダイ4のリップ33、34部近傍に、リップ部に不活性ガスを供給する供給ノズル70を備え、流延ダイ4のスリット32から溶融した樹脂を押出しながら、供給ノズル70から110℃以上300℃以下の温度の不活性ガスをリップ部に供給する工程を有している。詳細については、先に説明しているのでここでは省く。
(冷却工程)
 押出工程で流延ダイ4から押し出されたフィルム状の樹脂は、第1冷却ローラ5とタッチロール6とに挟圧されて、冷却されると共に表面が平坦化される。
In the method for producing an optical film of the present invention, a resin that is provided with a supply nozzle 70 for supplying an inert gas to the lip portion in the vicinity of the lips 33 and 34 of the casting die 4 and is melted from the slit 32 of the casting die 4. The step of supplying an inert gas having a temperature of 110 ° C. or more and 300 ° C. or less from the supply nozzle 70 to the lip portion is extruded. Details are described here and are omitted here.
(Cooling process)
The film-like resin extruded from the casting die 4 in the extrusion process is sandwiched between the first cooling roller 5 and the touch roll 6 to be cooled and the surface thereof is flattened.
 図5は、タッチロール6の一実施形態(以下、タッチロールA)の概略断面を示す。図に示すように、タッチロールAは、可撓性の金属スリーブ41の内部に弾性ローラ42を配したものである。 FIG. 5 shows a schematic cross section of an embodiment of the touch roll 6 (hereinafter, touch roll A). As shown in the drawing, the touch roll A has an elastic roller 42 disposed inside a flexible metal sleeve 41.
 金属スリーブ41は厚さ0.3mmのステンレス製であり、可撓性を有する。金属スリーブ41が薄すぎると強度が不足し、逆に厚すぎると弾性が不足する。これらのことから、金属スリーブ41の厚さとしては、0.1mm以上1.5mm以下が好ましい。弾性ローラ42は、軸受を介して回転自在な金属製の内筒43の表面にゴム44を設けてロール状としたものである。そして、タッチロールAが第1冷却ロール5に向けて押圧されると、弾性ローラ42が金属スリーブ41を第1冷却ロール5に押しつけ、金属スリープ41及び弾性ローラ42は第1冷却ロール5の形状になじんだ形状に対応しつつ変形し、第1冷却ロールとの間にニップを形成する。金属スリーブ41の内部で弾性ローラ42との間に形成される空間には、冷却液45が流される。 The metal sleeve 41 is made of stainless steel having a thickness of 0.3 mm and has flexibility. If the metal sleeve 41 is too thin, the strength is insufficient, whereas if it is too thick, the elasticity is insufficient. For these reasons, the thickness of the metal sleeve 41 is preferably 0.1 mm or more and 1.5 mm or less. The elastic roller 42 is formed in a roll shape by providing a rubber 44 on the surface of a metal inner cylinder 43 that is rotatable via a bearing. When the touch roll A is pressed toward the first cooling roll 5, the elastic roller 42 presses the metal sleeve 41 against the first cooling roll 5, and the metal sleep 41 and the elastic roller 42 have the shape of the first cooling roll 5. It deforms corresponding to the familiar shape, and forms a nip with the first cooling roll. A cooling liquid 45 flows in a space formed between the metal sleeve 41 and the elastic roller 42.
 図6、図7はタッチロールの別の実施形態であるタッチロールBを示している。図6は、回転軸に直交する平面での中央断面図であり、図7は、回転軸を含む平面での断面図である。 6 and 7 show a touch roll B which is another embodiment of the touch roll. 6 is a central sectional view in a plane orthogonal to the rotation axis, and FIG. 7 is a sectional view in a plane including the rotation axis.
 タッチロールBは、可撓性を有する、シームレスなステンレス鋼管製(例えば厚さ4mm)の外筒51と、この外筒51の内側に同一軸心状に配置された高剛性の金属内筒52とから概略構成されている。外筒51と内筒52との間の空間53には、冷却液45が流される。 The touch roll B includes a flexible and seamless stainless steel pipe (for example, 4 mm thick) outer cylinder 51 and a highly rigid metal inner cylinder 52 arranged on the same axis as the inner side of the outer cylinder 51. It is roughly composed of The cooling liquid 45 flows in the space 53 between the outer cylinder 51 and the inner cylinder 52.
 このタッチロールA,Bは不図示の付勢手段により第1冷却ロールに向けて付勢される。その付勢手段の付勢力をF、ニップにおけるフィルムの、第1冷却ロール5の回転軸に沿った方向の幅Wを除した値F/W(線圧)は、1N/cm以上150N/cmに設定される。本実施の形態によれば、タッチロールA,Bと第1冷却ロール5との間にニップが形成され、当該ニップをフィルムが通過する間に平面性を矯正すればよい。従って、タッチロールが剛体で構成され、第1冷却ロールとの間にニップが形成されない場合と比べて、小さい線圧で長時間かけてフィルムを挟圧するので、平面性をより確実に矯正することができる。すなわち、線圧が1N/cmよりも小さいと、ダイライン(フィルム搬送方向と平行な縦スジ状の膜厚ムラ)を十分に解消することができなくなる。逆に、線圧が150N/cmよりも大きいと、フィルムがニップを通過しにくくなり、フィルムの厚さにかえってムラができてしまう。 The touch rolls A and B are urged toward the first cooling roll by urging means (not shown). The urging force of the urging means is F, and the value F / W (linear pressure) obtained by dividing the width W of the film in the nip along the rotation axis of the first cooling roll 5 is 1 N / cm or more and 150 N / cm. Set to According to the present embodiment, a nip is formed between the touch rolls A and B and the first cooling roll 5, and planarity may be corrected while the film passes through the nip. Accordingly, since the film is sandwiched over a long time with a small linear pressure compared to the case where the touch roll is formed of a rigid body and no nip is formed between the first cooling roll and the flatness is more reliably corrected. Can do. That is, when the linear pressure is less than 1 N / cm, it is impossible to sufficiently eliminate the die line (vertical stripe-like film thickness unevenness parallel to the film conveyance direction). On the other hand, if the linear pressure is greater than 150 N / cm, the film is difficult to pass through the nip, resulting in unevenness in place of the film thickness.
 また、タッチロールA,Bの表面を金属で構成することにより、タッチロールの表面がゴムである場合よりもタッチロールA,Bの表面を平滑にすることができるので、平滑性の高いフィルムを得ることができる。なお、弾性ローラ42の弾性体44の材質としては、エチレンプロピレンゴム、ネオプレンゴム、シリコンゴム等を用いることができる。 In addition, since the surfaces of the touch rolls A and B are made of metal, the surfaces of the touch rolls A and B can be made smoother than when the surface of the touch roll is rubber. Obtainable. In addition, as a material of the elastic body 44 of the elastic roller 42, ethylene propylene rubber, neoprene rubber, silicon rubber, or the like can be used.
 さて、タッチロール6によってダイラインを良好に解消するためには、タッチロール6がフィルムを挟圧するときのフィルムの粘度が適切な範囲であることが重要となる。また、セルロース樹脂は温度による粘度の変化が比較的大きいことが知られている。従って、タッチロール6がフィルムを挟圧するときの粘度を適切な範囲に設定するためには、タッチロール6がフィルムを挟圧するときのフィルムの温度を適切な範囲に設定することが重要となる。また、セルロースアシレートフィルムのガラス転移温度をTgとしたとき、フィルムがタッチロール6に挟圧される直前のフィルムの温度Tを、Tg+80℃<T<Tg+140℃を満たすように設定すればよい。フィルム温度TがTgよりも低いとフィルムの粘度が高すぎて、ダイラインを矯正できなくなる。逆に、フィルムの温度TがTg+140℃よりも高いと、フィルム表面とロールが均一に接着せず、やはりダイラインを矯正することができない。好ましくはTg+100℃<T<Tg+130℃、さらに好ましくはTg+110℃<T<Tg+130℃である。タッチロール6がフィルムを挟圧するときのフィルムの温度を適切な範囲に設定するには、流延ダイ4から押し出された溶融物が第1冷却ロール5に接触する位置P1から第1冷却ロール5とタッチロール6とのニップの、第1冷却ロール5の回転方向に沿った長さLを調整すればよい。 Now, in order to satisfactorily eliminate the die line by the touch roll 6, it is important that the viscosity of the film when the touch roll 6 clamps the film is in an appropriate range. Cellulose resins are known to have a relatively large change in viscosity with temperature. Therefore, in order to set the viscosity when the touch roll 6 clamps the film to an appropriate range, it is important to set the film temperature when the touch roll 6 clamps the film to an appropriate range. Further, when the glass transition temperature of the cellulose acylate film is Tg, the temperature T of the film immediately before the film is sandwiched between the touch rolls 6 may be set so as to satisfy Tg + 80 ° C. <T <Tg + 140 ° C. If the film temperature T is lower than Tg, the viscosity of the film is too high and the die line cannot be corrected. On the contrary, when the temperature T of the film is higher than Tg + 140 ° C., the film surface and the roll do not adhere uniformly, and the die line cannot be corrected. Preferably Tg + 100 ° C. <T <Tg + 130 ° C., more preferably Tg + 110 ° C. <T <Tg + 130 ° C. In order to set the temperature of the film when the touch roll 6 sandwiches the film to an appropriate range, the first cooling roll 5 from the position P1 at which the melt extruded from the casting die 4 contacts the first cooling roll 5 is used. What is necessary is just to adjust the length L along the rotation direction of the 1st cooling roll 5 of the nip with the touch roll 6.
 第1ロール5、第2ロール6に好ましい材質は、炭素鋼、ステンレス鋼、樹脂、などが挙げられる。また、表面精度は高くすることが好ましく表面粗さとして0.3S以下、より好ましくは0.01S以下とする。 Preferred materials for the first roll 5 and the second roll 6 include carbon steel, stainless steel, resin, and the like. The surface accuracy is preferably increased, and the surface roughness is set to 0.3 S or less, more preferably 0.01 S or less.
 流延ダイ4から溶融状態のフィルム状のセルロースエステル系樹脂を、第1ロール(第1冷却ロール)5、第2冷却ロール7、及び第3冷却ロール8に順次密着させて搬送しながら冷却固化させ、未延伸のセルロースエステル系樹脂フィルム10を得る。
(剥離工程)
 剥離工程として、第3冷却ロール8から剥離ロール9によって、冷却固化したフィルム10を剥離する。
(延伸工程)
 剥離した冷却固化された未延伸のフィルム10は、ダンサーロール(フィルム張力調整ロール)11を経て縦延伸機12aに導き、そこで縦延伸される。続いて横延伸機12bに導き、そこでフィルム10を横方向(幅方向)に延伸する。この延伸により、フィルム中の分子が配向される。
The film-like cellulose ester-based resin in a molten state from the casting die 4 is brought into close contact with the first roll (first cooling roll) 5, the second cooling roll 7, and the third cooling roll 8 in order to be cooled and solidified. An unstretched cellulose ester resin film 10 is obtained.
(Peeling process)
As the peeling step, the cooled and solidified film 10 is peeled off from the third cooling roll 8 by the peeling roll 9.
(Stretching process)
The peeled and solidified unstretched film 10 is guided to a longitudinal stretching machine 12a through a dancer roll (film tension adjusting roll) 11, where it is longitudinally stretched. Subsequently, the film is guided to the transverse stretching machine 12b, where the film 10 is stretched in the transverse direction (width direction). By this stretching, the molecules in the film are oriented.
 フィルムを縦延伸する方法は、2本のロール間の速度差により延伸する方法を好ましく用いることができる。 As a method of longitudinally stretching the film, a method of stretching by a speed difference between two rolls can be preferably used.
 フィルムを幅方向に延伸する方法は、公知のテンターなどを好ましく用いることができる。 For the method of stretching the film in the width direction, a known tenter or the like can be preferably used.
 フィルム構成材料のガラス転移温度Tgはフィルムを構成する材料種及び構成する材料の比率を異ならしめることにより制御できる。光学フィルムとして位相差フィルムを作製する場合、Tgは120℃以上、好ましくは135℃以上とすることが好ましい。液晶表示装置においては、画像の表示状態において、装置自身の温度上昇、例えば光源由来の温度上昇によってフィルムの温度環境が変化する。このときフィルムの使用環境温度よりもフィルムのTgが低いと、延伸によってフィルム内部に固定された分子の配向状態に由来するリターデーション値及びフィルムとしての寸法形状に大きな変化を与えることとなる。フィルムのTgが高過ぎると、フィルム構成材料をフィルム化するとき温度が高くなるために加熱するエネルギー消費が高くなり、またフィルム化するときの材料自身の分解、それによる着色が生じることがあり、従って、Tgは250℃以下が好ましい。 The glass transition temperature Tg of the film constituting material can be controlled by making the material type constituting the film and the ratio of the constituting material different. When a retardation film is produced as an optical film, Tg is preferably 120 ° C. or higher, preferably 135 ° C. or higher. In the liquid crystal display device, in the image display state, the temperature environment of the film changes due to the temperature rise of the device itself, for example, the temperature rise derived from the light source. At this time, if the Tg of the film is lower than the use environment temperature of the film, the retardation value derived from the orientation state of the molecules fixed inside the film by stretching and the dimensional shape as the film are greatly changed. If the Tg of the film is too high, the temperature is increased when the film constituent material is made into a film, so that the energy consumption for heating is increased, and the material itself may be decomposed when it is made into a film, resulting in coloring. Therefore, Tg is preferably 250 ° C. or lower.
 また延伸工程には公知の熱固定条件、冷却、緩和処理を行ってもよく、目的とする光学フィルムに要求される特性を有するように適宜調整すればよい。 In the stretching step, known heat setting conditions, cooling, and relaxation treatment may be performed, and it may be appropriately adjusted so as to have characteristics required for the target optical film.
 位相フィルムの物性と液晶表示装置の視野角拡大のための位相フィルムの機能付与するために、上記延伸工程、熱固定処理は適宜選択して行われている。このような延伸工程、熱固定処理を含む場合、本発明の加熱加圧工程は、それらの延伸工程、熱固定処理の前に行うようにする。 In order to provide the physical properties of the phase film and the function of the phase film for expanding the viewing angle of the liquid crystal display device, the stretching step and the heat setting treatment are appropriately selected and performed. When such a stretching step and heat setting treatment are included, the heating and pressing step of the present invention is performed before the stretching step and heat setting treatment.
 光学フィルムとして位相差フィルムを製造し、さらに偏光板保護フィルムの機能を複合させる場合、屈折率制御を行う必要が生じるが、その屈折率制御は延伸操作により行うことが可能であり、また延伸操作が好ましい方法である。以下、その延伸方法について説明する。 When producing a retardation film as an optical film and further combining the functions of a polarizing plate protective film, it is necessary to control the refractive index. However, the refractive index can be controlled by a stretching operation. Is a preferred method. Hereinafter, the stretching method will be described.
 位相差フィルムの延伸工程において、セルロース樹脂の1方向に1.0~2.0倍及びフィルム面内にそれと直交する方向に1.01~2.5倍延伸することで、必要とされるリターデーションRo及びRtを制御することができる。ここで、Roとは面内リターデーションを示し、面内の長手方向MDの屈折率と幅方向TDの屈折率との差に厚みを乗じたもの、Rtとは厚み方向リターデーションを示し、面内の屈折率(長手方向MDと幅方向TDの平均)と厚み方向の屈折率との差に厚みを乗じたものである。 In the retardation film stretching step, the required litter is stretched by 1.0 to 2.0 times in one direction of the cellulose resin and 1.01 to 2.5 times in the direction perpendicular to the film plane. The foundation Ro and Rt can be controlled. Here, Ro indicates in-plane retardation, the difference between the refractive index in the longitudinal direction MD in the plane and the refractive index in the width direction TD is multiplied by the thickness, and Rt indicates the thickness direction retardation, The difference between the refractive index (average of the longitudinal direction MD and the width direction TD) and the refractive index in the thickness direction is multiplied by the thickness.
 延伸は、例えばフィルムの長手方向及びそれとフィルム面内で直交する方向、即ち幅方向に対して、逐次または同時に行うことができる。このとき少なくとも1方向に対しての延伸倍率が小さ過ぎると十分な位相差が得られず、大き過ぎると延伸が困難となりフィルム破断が発生してしまう場合がある。 Stretching can be performed sequentially or simultaneously with respect to, for example, the longitudinal direction of the film and the direction orthogonal to the longitudinal direction of the film, that is, the width direction. At this time, if the stretching ratio in at least one direction is too small, a sufficient phase difference cannot be obtained, and if it is too large, stretching becomes difficult and film breakage may occur.
 互いに直交する2軸方向に延伸することは、フィルムの屈折率nx、ny、nzを所定の範囲に入れるために有効な方法である。ここで、nxとは長手MD方向の屈折率、nyとは幅手TD方向の屈折率、nzとは厚み方向の屈折率である。 Stretching in biaxial directions perpendicular to each other is an effective method for putting the refractive indexes nx, ny, and nz of the film within a predetermined range. Here, nx is the refractive index in the longitudinal MD direction, ny is the refractive index in the width TD direction, and nz is the refractive index in the thickness direction.
 例えば溶融流延方向に延伸した場合、幅方向の収縮が大き過ぎると、nzの値が大きくなり過ぎてしまう。この場合、フィルムの幅収縮を抑制、あるいは幅方向にも延伸することで改善できる。幅方向に延伸する場合、幅方向で屈折率に分布が生じることがある。この分布は、テンター法を用いた場合に現れることがあり、フィルムを幅方向に延伸したことで、フィルム中央部に収縮力が発生し、端部は固定されていることにより生じる現象で、いわゆるボーイング現象と呼ばれるものと考えられる。この場合でも、流延方向に延伸することで、ボーイング現象を抑制でき、幅方向の位相差の分布を少なくできる。 For example, when the film is stretched in the melt casting direction, if the shrinkage in the width direction is too large, the value of nz becomes too large. In this case, it can be improved by suppressing the width shrinkage of the film or stretching in the width direction. When stretching in the width direction, the refractive index may be distributed in the width direction. This distribution may appear when the tenter method is used. By stretching the film in the width direction, a shrinkage force is generated at the center of the film, and the phenomenon is caused by the end being fixed. It is thought to be called the Boeing phenomenon. Even in this case, by stretching in the casting direction, the bowing phenomenon can be suppressed and the distribution of the phase difference in the width direction can be reduced.
 互いに直行する2軸方向に延伸することにより、得られるフィルムの膜厚変動が減少できる。位相差フィルムの膜厚変動が大き過ぎると位相差のムラとなり、液晶ディスプレイに用いたとき着色等のムラが問題となることがある。 The film thickness variation of the obtained film can be reduced by stretching in the biaxial directions perpendicular to each other. When the film thickness variation of the retardation film is too large, the retardation becomes uneven, and unevenness such as coloring may be a problem when used in a liquid crystal display.
 セルロース樹脂フィルムの膜厚変動は、±3%、さらに±1%の範囲とすることが好ましい。
(巻き取り工程)
 延伸工程の後、フィルムの端部をスリッター13により製品となる幅にスリットして裁ち落とし、エンボスリング14及びバックロール15よりなるナール加工装置によりナール加工(エンボッシング加工)をフィルム両端部に施す。その後、巻き取り工程として、巻取り機16によって巻き取り、セルロースアシレートフィルム(元巻き)Fを得る。ナール加工の方法は、凸凹のパターンを側面に有する金属リングを加熱や加圧により加工することができる。なお、フィルム両端部のクリップの把持部分は通常、変形しており、フィルム製品として使用できないので、切除されて、原料として再利用される。
〈シクロオレフィンポリマーフィルム〉
 まず、シクロオレフィンポリマーフィルムの構成材料について説明する。
The film thickness variation of the cellulose resin film is preferably in the range of ± 3%, more preferably ± 1%.
(Winding process)
After the stretching step, the end of the film is slit into a product width by the slitter 13 and cut off, and knurled (embossing) is applied to both ends of the film by a knurling device including the embossing ring 14 and the back roll 15. Thereafter, as a winding process, the film is wound by the winder 16 to obtain a cellulose acylate film (original winding) F. The knurling method can process a metal ring having an uneven pattern on its side surface by heating or pressing. In addition, since the grip part of the clip of the both ends of a film is deform | transforming normally and cannot be used as a film product, it is cut out and reused as a raw material.
<Cycloolefin polymer film>
First, the constituent material of a cycloolefin polymer film is demonstrated.
 本発明に用いられるシクロオレフィンポリマーは脂環式構造を含有する重合体樹脂からなるものである。 The cycloolefin polymer used in the present invention is made of a polymer resin containing an alicyclic structure.
 好ましいシクロオレフィンポリマーは、環状オレフィンを重合または共重合した樹脂である。環状オレフィンとしては、ノルボルネン、ジシクロペンタジエン、テトラシクロドデセン、エチルテトラシクロドデセン、エチリデンテトラシクロドデセン、テトラシクロ〔7.4.0.110,13.02,7〕トリデカ-2,4,6,11-テトラエンなどの多環構造の不飽和炭化水素及びその誘導体;シクロブテン、シクロペンテン、シクロヘキセン、3,4-ジメチルシクロペンテン、3-メチルシクロヘキセン、2-(2-メチルブチル)-1-シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデン、シクロヘプテン、シクロペンタジエン、シクロヘキサジエンなどの単環構造の不飽和炭化水素及びその誘導体等が挙げられる。これら環状オレフィンには置換基として極性基を有していてもよい。極性基としては、ヒドロキシル基、カルボキシル基、アルコキシル基、エポキシ基、グリシジル基、オキシカルボニル基、カルボニル基、アミノ基、エステル基、カルボン酸無水物基などが挙げられ、特に、エステル基、カルボキシル基またはカルボン酸無水物基が好適である。 A preferred cycloolefin polymer is a resin obtained by polymerizing or copolymerizing a cyclic olefin. Examples of the cyclic olefin include norbornene, dicyclopentadiene, tetracyclododecene, ethyltetracyclododecene, ethylidenetetracyclododecene, tetracyclo [7.4.0.110, 13.02,7] trideca-2,4, Polycyclic unsaturated hydrocarbons such as 6,11-tetraene and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, 3,4-dimethylcyclopentene, 3-methylcyclohexene, 2- (2-methylbutyl) -1-cyclohexene, cyclo Examples thereof include monocyclic unsaturated hydrocarbons such as octene, 3a, 5,6,7a-tetrahydro-4,7-methano-1H-indene, cycloheptene, cyclopentadiene, cyclohexadiene, and derivatives thereof. These cyclic olefins may have a polar group as a substituent. Examples of the polar group include a hydroxyl group, a carboxyl group, an alkoxyl group, an epoxy group, a glycidyl group, an oxycarbonyl group, a carbonyl group, an amino group, an ester group, and a carboxylic acid anhydride group. Or a carboxylic anhydride group is preferred.
 好ましいシクロオレフィンポリマーは、環状オレフィン以外の単量体を付加共重合したものであってもよい。付加共重合可能な単量体としては、エチレン、プロピレン、1-ブテン、1-ペンテンなどのエチレンまたはα-オレフィン;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどのジエン等が挙げられる。 Preferred cycloolefin polymers may be those obtained by addition copolymerization of monomers other than cyclic olefins. Addition copolymerizable monomers include ethylene or α-olefins such as ethylene, propylene, 1-butene and 1-pentene; 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl- And dienes such as 1,4-hexadiene and 1,7-octadiene.
 環状オレフィンは、付加重合反応或いはメタセシス開環重合反応によって得られる。重合は触媒の存在下で行われる。付加重合用触媒として、例えば、バナジウム化合物と有機アルミニウム化合物とからなる重合触媒などが挙げられる。開環重合用触媒として、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金などの金属のハロゲン化物、硝酸塩またはアセチルアセトン化合物と、還元剤とからなる重合触媒;或いは、チタン、バナジウム、ジルコニウム、タングステン、モリブデンなどの金属のハロゲン化物またはアセチルアセトン化合物と、有機アルミニウム化合物とからなる重合触媒などが挙げられる。重合温度、圧力等は特に限定されないが、通常-50℃~100℃の重合温度、0~490N/cmの重合圧力で重合させる。 The cyclic olefin is obtained by an addition polymerization reaction or a metathesis ring-opening polymerization reaction. The polymerization is carried out in the presence of a catalyst. Examples of the addition polymerization catalyst include a polymerization catalyst composed of a vanadium compound and an organoaluminum compound. As a catalyst for ring-opening polymerization, a polymerization catalyst comprising a metal halide such as ruthenium, rhodium, palladium, osmium, iridium, platinum, nitrate or acetylacetone compound, and a reducing agent; or titanium, vanadium, zirconium, tungsten, molybdenum Examples thereof include a polymerization catalyst comprising a metal halide such as acetylacetone compound and an organoaluminum compound. The polymerization temperature, pressure and the like are not particularly limited, but the polymerization is usually carried out at a polymerization temperature of −50 ° C. to 100 ° C. and a polymerization pressure of 0 to 490 N / cm 2 .
 本発明に用いるシクロオレフィンポリマーは、環状オレフィンを重合または共重合させた後、水素添加反応させて、分子中の不飽和結合を飽和結合に変えたものであることが好ましい。水素添加反応は、公知の水素化触媒の存在下で、水素を吹き込んで行う。水素化触媒としては、酢酸コバルト/トリエチルアルミニウム、ニッケルアセチルアセトナート/トリイソブチルアルミニウム、チタノセンジクロリド/n-ブチルリチウム、ジルコノセンジクロリド/sec-ブチルリチウム、テトラブトキシチタネート/ジメチルマグネシウムの如き遷移金属化合物/アルキル金属化合物の組み合わせからなる均一系触媒;ニッケル、パラジウム、白金などの不均一系金属触媒;ニッケル/シリカ、ニッケル/けい藻土、ニッケル/アルミナ、パラジウム/カーボン、パラジウム/シリカ、パラジウム/けい藻土、パラジウム/アルミナの如き金属触媒を担体に担持してなる不均一系固体担持触媒などが挙げられる。 The cycloolefin polymer used in the present invention is preferably a polymer obtained by polymerizing or copolymerizing a cyclic olefin, followed by a hydrogenation reaction to change the unsaturated bond in the molecule to a saturated bond. The hydrogenation reaction is performed by blowing hydrogen in the presence of a known hydrogenation catalyst. Examples of hydrogenation catalysts include cobalt acetate / triethylaluminum, nickel acetylacetonate / triisobutylaluminum, transition metal compounds such as titanocene dichloride / n-butyllithium, zirconocene dichloride / sec-butyllithium, tetrabutoxytitanate / dimethylmagnesium / alkyl. Homogeneous catalyst consisting of a combination of metal compounds; heterogeneous metal catalyst such as nickel, palladium, platinum; nickel / silica, nickel / diatomaceous earth, nickel / alumina, palladium / carbon, palladium / silica, palladium / diatomaceous earth And a heterogeneous solid-supported catalyst in which a metal catalyst such as palladium / alumina is supported on a carrier.
 或いは、シクロオレフィンポリマーとして、下記のノルボルネン系ポリマーも挙げられる。ノルボルネン系ポリマーは、ノルボルネン骨格を繰り返し単位として有していることが好ましく、その具体例としては、特開昭62-252406号公報、特開昭62-252407号公報、特開平2-133413号公報、特開昭63-145324号公報、特開昭63-264626号公報、特開平1-240517号公報、特公昭57-8815号公報、特開平5-39403号公報、特開平5-43663号公報、特開平5-43834号公報、特開平5-70655号公報、特開平5-279554号公報、特開平6-206985号公報、特開平7-62028号公報、特開平8-176411号公報、特開平9-241484号公報等に記載されたものが好ましく利用出来るが、これらに限定されるものではない。また、これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Alternatively, examples of the cycloolefin polymer include the following norbornene polymers. The norbornene-based polymer preferably has a norbornene skeleton as a repeating unit, and specific examples thereof include JP-A-62-252406, JP-A-62-2252407, and JP-A-2-133413. JP-A-63-145324, JP-A-63-264626, JP-A-1-240517, JP-B-57-8815, JP-A-5-39403, JP-A-5-43663 JP-A-5-43834, JP-A-5-70655, JP-A-5-279554, JP-A-6-206985, JP-A-7-62028, JP-A-8-176411, Although what was described in Kaihei 9-241484 etc. can be utilized preferably, it is not limited to these. Moreover, these may be used individually by 1 type and may use 2 or more types together.
 本発明においては、前記ノルボルネン系ポリマーの中でも、下記構造式(I)~(IV)のいずれかで表される繰り返し単位を有するものが好ましい。 In the present invention, among the norbornene-based polymers, those having a repeating unit represented by any of the following structural formulas (I) to (IV) are preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 前記構造式(I)~(IV)中、A、B、C及びDは、各々独立して、水素原子または1価の有機基を表す。 In the structural formulas (I) to (IV), A, B, C and D each independently represent a hydrogen atom or a monovalent organic group.
 また、前記ノルボルネン系ポリマーの中でも、下記構造式(V)または(VI)で表される化合物の少なくとも1種と、これと共重合可能な不飽和環状化合物とをメタセシス重合して得られる重合体を水素添加して得られる水添重合体も好ましい。 Among the norbornene-based polymers, a polymer obtained by metathesis polymerization of at least one compound represented by the following structural formula (V) or (VI) and an unsaturated cyclic compound copolymerizable therewith. A hydrogenated polymer obtained by hydrogenating is also preferred.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 前記構造式中、A、B、C及びDは、各々独立して、水素原子または1価の有機基を表す。 In the structural formula, A, B, C and D each independently represent a hydrogen atom or a monovalent organic group.
 ここで、上記A、B、C及びDは特に限定されないが、好ましくは水素原子、ハロゲン原子、一価の有機基、または、少なくとも2価の連結基を介して有機基が連結されてもよく、これらは同じであっても異なっていてもよい。また、AまたはBとCまたはDは単環または多環構造を形成してもよい。ここで、上記少なくとも2価の連結基とは、酸素原子、イオウ原子、窒素原子に代表されるヘテロ原子を含み、例えばエーテル、エステル、カルボニル、ウレタン、アミド、チオエーテル等が挙げられるが、これらに限定されるものではない。また、上記連結基を介し、上記有機基は更に置換されてもよい。 Here, A, B, C and D are not particularly limited, but preferably an organic group may be linked via a hydrogen atom, a halogen atom, a monovalent organic group, or at least a divalent linking group. These may be the same or different. A or B and C or D may form a monocyclic or polycyclic structure. Here, the at least divalent linking group includes a hetero atom typified by an oxygen atom, a sulfur atom, and a nitrogen atom, and examples thereof include ethers, esters, carbonyls, urethanes, amides, and thioethers. It is not limited. In addition, the organic group may be further substituted via the linking group.
 また、ノルボルネン系モノマーと共重合可能なその他のモノマーとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、1-エイコセンなどの炭素数2~20のα-オレフィン、及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセン、シクロオクテン、3a,5,6,7a-テトラヒドロ-4,7-メタノ-1H-インデンなどのシクロオレフィン、及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、1,7-オクタジエンなどの非共役ジエン;などが用いられる。これらの中でも、α-オレフィン、特にエチレンが好ましい。 Other monomers copolymerizable with the norbornene monomer include, for example, ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, Α-olefins having 2 to 20 carbon atoms such as 1-hexadecene, 1-octadecene, 1-eicocene, and derivatives thereof; cyclobutene, cyclopentene, cyclohexene, cyclooctene, 3a, 5,6,7a-tetrahydro-4,7 Cycloolefins such as methano-1H-indene, and derivatives thereof; non-such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 1,7-octadiene, etc. Conjugated dienes; and the like are used. Of these, α-olefins, particularly ethylene, are preferred.
 これらの、ノルボルネン系モノマーと共重合可能なその他のモノマーは、それぞれ単独で、或いは2種以上を組み合わせて使用することが出来る。ノルボルネン系モノマーとこれと共重合可能なその他のモノマーとを付加共重合する場合は、付加共重合体中のノルボルネン系モノマー由来の構造単位と共重合可能なその他のモノマー由来の構造単位との割合が、質量比で通常30:70~99:1、好ましくは50:50~97:3、より好ましくは70:30~95:5の範囲となるように適宜選択される。 These other monomers copolymerizable with the norbornene-based monomer can be used alone or in combination of two or more. In the case of addition copolymerization of a norbornene monomer and another monomer copolymerizable therewith, the ratio of the structural unit derived from the norbornene monomer and the structural unit derived from the other monomer copolymerizable in the addition copolymer However, it is appropriately selected so that the mass ratio is usually 30:70 to 99: 1, preferably 50:50 to 97: 3, and more preferably 70:30 to 95: 5.
 合成したポリマーの分子鎖中に残留する不飽和結合を水素添加反応により飽和させる場合には、耐光劣化や耐候劣化性などの観点から、水素添加率を90%以上、好ましくは95%以上、特に好ましくは99%以上とする。 When the unsaturated bond remaining in the molecular chain of the synthesized polymer is saturated by a hydrogenation reaction, the hydrogenation rate is 90% or more, preferably 95% or more, particularly from the viewpoint of light resistance deterioration, weather resistance deterioration, etc. Preferably it is 99% or more.
 この他、本発明で用いられるシクロオレフィンポリマーとしては、特開平5-2108号公報段落番号[0014]~[0019]記載の熱可塑性飽和ノルボルネン系樹脂、特開2001-277430号公報段落番号[0015]~[0031]記載の熱可塑性ノルボルネン系ポリマー、特開2003-14901号公報段落番号[0008]~[0045]記載の熱可塑性ノルボルネン系樹脂、特開2003-139950号公報段落番号[0014]~[0028]記載のノルボルネン系樹脂組成物、特開2003-161832号公報段落番号[0029]~[0037]記載のノルボルネン系樹脂、特開2003-195268号公報段落番号[0027]~[0036]記載のノルボルネン系樹脂、特開2003-211589号公報段落番号[0009]~[0023]脂環式構造含有重合体樹脂、特開2003-211588号公報段落番号[0008]~[0024]記載のノルボルネン系重合体樹脂若しくはビニル脂環式炭化水素重合体樹脂などが挙げられる。 In addition, examples of the cycloolefin polymer used in the present invention include thermoplastic saturated norbornene resins described in paragraph Nos. [0014] to [0019] of JP-A-5-2108, and paragraph Nos. [0015] of JP-A-2001-277430. ] To [0031] thermoplastic norbornene polymers, JP 2003-14901 paragraph Nos. [0008] to [0045] thermoplastic norbornene resins, JP 2003-139950 paragraph Nos. [0014] to [0028] The norbornene-based resin composition described in JP-A-2003-161832, the norbornene-based resins described in paragraph numbers [0029] to [0037], and the paragraph numbers [0027] to [0036] described in JP-A-2003-195268. Norbornene-based resin, JP2003-21158 Paragraph Nos. [0009] to [0023] cycloaliphatic structure-containing polymer resin, norbornene polymer resin or vinyl alicyclic hydrocarbon described in JP-A-2003-212588, paragraph Nos. [0008] to [0024] Polymer resin etc. are mentioned.
 具体的には、日本ゼオン(株)製ゼオネックス、ゼオノア、JSR(株)製アートン、三井化学(株)製アペル(APL8008T、APL6509T、APL6013T、APL5014DP、APL6015T)などが好ましく用いられる。 Specifically, ZEONEX, ZEONOR manufactured by Nippon Zeon Co., Ltd., Arton manufactured by JSR Corporation, APPEL manufactured by Mitsui Chemicals, Inc. (APL8008T, APL6509T, APL6013T, APL5014DP, APL6015T) and the like are preferably used.
 本発明で使用されるシクロオレフィンポリマーの分子量は、使用目的に応じて適宜選択されるが、シクロヘキサン溶液(重合体樹脂が溶解しない場合はトルエン溶液)のゲル・パーミエーション・クロマトグラフ法で測定したポリイソプレンまたはポリスチレン換算の重量平均分子量で、通常、5000~500000、好ましくは8000~200000、より好ましくは10000~100000の範囲である時に、成形体の機械的強度、及び成形加工性とが高度にバランスされて好適である。 The molecular weight of the cycloolefin polymer used in the present invention is appropriately selected according to the purpose of use, and was measured by a gel permeation chromatography method of a cyclohexane solution (or a toluene solution when the polymer resin does not dissolve). When the weight average molecular weight in terms of polyisoprene or polystyrene is usually in the range of 5,000 to 500,000, preferably 8,000 to 200,000, more preferably 10,000 to 100,000, the mechanical strength and molding processability of the molded body are high. Balanced and suitable.
 また、シクロオレフィンポリマー100質量部に対して、低揮発性の酸化防止剤を0.01~5質量部の割合で配合すると、成形加工時のポリマーの分解や着色を効果的に防止することが出来る。 In addition, when a low-volatile antioxidant is blended in an amount of 0.01 to 5 parts by mass with respect to 100 parts by mass of the cycloolefin polymer, it can effectively prevent the polymer from being decomposed or colored during the molding process. I can do it.
 シクロオレフィンポリマーフィルムには、フィルムの特性を改良するために、セルロースアシレートフィルムと同様に種々の添加剤を含有させている。 The cycloolefin polymer film contains various additives in the same manner as the cellulose acylate film in order to improve the film characteristics.
 このようなシクロオレフィンポリマーフィルムの構成材料を用いたシクロオレフィンポリマーフィルムの製造方法については、セルロースアシレートフィルムと同様であるので、ここでは説明を省く。 Since the production method of the cycloolefin polymer film using the constituent material of the cycloolefin polymer film is the same as that of the cellulose acylate film, the explanation is omitted here.
 以上のように本発明の光学フィルムの製造方法を用いることにより、流延ダイ4のリップ部33、34に凝集物が付着することが無く、フィルム内に混入する異物が少なく、また、フィルム搬送方向のスジ状の膜厚ムラのない、フィルムを製造することができる。特に本発明の光学フィルムとしてのセルロースアシレートフィルムは、照射光により白色に反射する異物の発生が無く、また、フィルムのスジ状の膜厚ムラが原因となるフィルム面に写る反射光の波打ちがない品質の高いフィルムを製造できる。よって、本発明の光学フィルムを偏光板用の保護フィルムとして偏光板に用いることで、表示品質の高い液晶表示装置を得ることができる。 As described above, by using the method for producing an optical film of the present invention, no agglomerates adhere to the lip portions 33 and 34 of the casting die 4, there is little foreign matter mixed in the film, and the film is conveyed. It is possible to produce a film having no directional stripe-shaped film thickness unevenness. In particular, the cellulose acylate film as the optical film of the present invention has no generation of foreign matter that is reflected in white by irradiation light, and there is a wave of reflected light reflected on the film surface due to the stripe-like film thickness unevenness of the film. High quality film can be produced. Therefore, a liquid crystal display device with high display quality can be obtained by using the optical film of the present invention for a polarizing plate as a protective film for a polarizing plate.
 また、本発明の光学フィルムの製造方法を用いて製造した光学フィルムは、液晶表示装置、プラズマ表示装置、有機EL表示装置等の各種表示装置に用いることができ、偏向板用の保護フィルムの他に位相差フィルム、反射防止フィルム、輝度向上フィルム、視野角拡大等の光学補償フィルムとして用いることもできる。 Moreover, the optical film manufactured using the method for manufacturing an optical film of the present invention can be used for various display devices such as a liquid crystal display device, a plasma display device, and an organic EL display device. It can also be used as an optical compensation film such as a retardation film, an antireflection film, a brightness enhancement film, and a viewing angle expansion.
 次に、本発明の光学フィルムを保護フィルムとして用いた偏光板及び該偏光板を用いた液晶表示装置について説明する。
(偏光板)
 本発明の光学フィルムを偏光板用の保護フィルムとして用いる場合、偏光板は一般的な方法で作製することが出来る。本発明の光学フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
Next, a polarizing plate using the optical film of the present invention as a protective film and a liquid crystal display device using the polarizing plate will be described.
(Polarizer)
When using the optical film of this invention as a protective film for polarizing plates, a polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the optical film of the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
 もう一方の面には本発明の光学フィルムを用いても、別の偏光板保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。 On the other surface, the optical film of the present invention may be used, or another polarizing plate protective film may be used. For example, a commercially available cellulose ester film (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that transmits only light having a plane of polarization in a certain direction. A typical polarizing film known at present is a polyvinyl alcohol polarizing film, which is a polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10Pa~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体または架橋構造を形成する硬化型粘着剤が好適に用いられる。 As the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer, a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 Pa to 1.0 × 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
 上記粘着剤としては1液型であっても良いし、使用前に2液以上を混合して使用する型であっても良い。 The above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
 また上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。
(液晶表示装置)
 本発明の光学フィルムを貼合した偏光板を液晶表示装置に組み込むことによって、種々の視認性に優れた液晶表示装置を作製することが出来るが、特に大型の液晶表示装置やデジタルサイネージ等の屋外用途の液晶表示装置に好ましく用いられる。本発明に係る偏光板は、前記粘着層等を介して液晶セルに貼合する。
The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solvent type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
(Liquid crystal display device)
By incorporating the polarizing plate bonded with the optical film of the present invention into a liquid crystal display device, it is possible to produce various liquid crystal display devices with excellent visibility, but particularly outdoors such as large liquid crystal display devices and digital signage. It is preferably used for a liquid crystal display device for use. The polarizing plate according to the present invention is bonded to a liquid crystal cell via the adhesive layer or the like.
 本発明に係る偏光板は反射型、透過型、半透過型LCDまたはTN型、STN型、OCB型、HAN型、VA型(PVA型、MVA型)、IPS型(FFS方式も含む)等の各種駆動方式のLCDで好ましく用いられる。 The polarizing plate according to the present invention includes a reflective type, a transmissive type, a transflective type LCD or a TN type, an STN type, an OCB type, a HAN type, a VA type (PVA type, MVA type), an IPS type (including an FFS type), and the like. It is preferably used in various drive LCDs.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1~6、比較例1、2)
(ペレットの作成)
 セルロースアセテートプロピオネート          100質量部
(アセチル基の置換度1.95、プロピオニル基の置換度0.7、数平均分子量75000、温度130℃で5時間乾燥、ガラス転移温点Tg=174℃)
 トリメチロールプロパントリス(3,4,5-トリメトキシベンゾエート)                            10質量部
 IRGANOX-1010(チバ・ジャパン社製)      1質量部
 SumilizerGP(住友化学社製)          1質量部
 上記材料に、マット剤としてシリカ粒子(アエロジルR972V(日本アエロジル社製))0.05質量部、紫外線吸収剤として、TINUVIN360(チバ・ジャパン社製)0.5質量部を加え、窒素ガスを封入したV型混合機で30分混合した後、ストランドダイを取り付けた2軸押し出し機(PCM30(株)池貝社製)を用いて240℃で溶融させ、長さ4mm、直径3mmの円筒形のペレットを作製した。この時のせん断速度は、25(/s)に設定した。
(フィルムの作製)
 フィルムの製造は、図1に示す製造装置で行った。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
(Examples 1 to 6, Comparative Examples 1 and 2)
(Pellet creation)
100 parts by mass of cellulose acetate propionate (acetyl group substitution degree 1.95, propionyl group substitution degree 0.7, number average molecular weight 75000, dried at 130 ° C. for 5 hours, glass transition temperature Tg = 174 ° C.)
Trimethylolpropane tris (3,4,5-trimethoxybenzoate) 10 parts by weight IRGANOX-1010 (manufactured by Ciba Japan) 1 part by weight Sumizer GP (manufactured by Sumitomo Chemical) 1 part by weight Silica particles as a matting agent in the above materials (Aerosil R972V (manufactured by Nippon Aerosil Co., Ltd.)) 0.05 parts by mass, 0.5 part by mass of TINUVIN 360 (manufactured by Ciba Japan Co., Ltd.) is added as an ultraviolet absorber, and mixed for 30 minutes with a V-type mixer containing nitrogen gas. After that, it was melted at 240 ° C. using a twin screw extruder (PCM30, Ikegai Co., Ltd.) attached with a strand die to produce a cylindrical pellet having a length of 4 mm and a diameter of 3 mm. The shear rate at this time was set to 25 (/ s).
(Production of film)
The film was manufactured using the manufacturing apparatus shown in FIG.
 作製したペレット(水分率50ppm)を、1軸押出機において溶融させ、リーフディスク型金属フィルターを用いて加圧ろ過を行った。 The produced pellets (water content 50 ppm) were melted in a single screw extruder and subjected to pressure filtration using a leaf disk type metal filter.
 流延ダイからフィルム状に表面温度100℃の第1冷却ロール上に溶融温度250℃でフィルム状に溶融押し出しして、膜厚100μmのキャストフィルムを得た。この際、流延ダイ4のスリット32の間隙は1.0mm、リップ部33、34の平均表面粗さRaは、0.01μmとした。また押出機1の中間部のホッパー開口部から、滑り剤としてシリカ微粒子を、0.1質量部となるよう添加した。 A cast film having a film thickness of 100 μm was obtained by melting and extruding the film from a casting die into a film at a melting temperature of 250 ° C. on a first cooling roll having a surface temperature of 100 ° C. At this time, the gap between the slits 32 of the casting die 4 was 1.0 mm, and the average surface roughness Ra of the lip portions 33 and 34 was 0.01 μm. Further, silica fine particles as a slip agent were added from the hopper opening in the middle of the extruder 1 so as to be 0.1 part by mass.
 供給ノズル70によるリップ部への不活性ガスの供給は、図2の装置を用い、ガスとしては、窒素ガスを用いた。供給ノズル70の先端部とフィルムとの間隙dは5mmとし、カートリッジヒータ72を用いて、表1に示す温度の窒素ガスが供給ノズル70の先端部から出るように加熱した。また、窒素ガスは、供給ノズル70の先端部から表1に示す風速で出るように不図示の調整弁で調整した。 The supply of the inert gas to the lip portion by the supply nozzle 70 was performed using the apparatus shown in FIG. 2, and nitrogen gas was used as the gas. The gap d between the tip of the supply nozzle 70 and the film was 5 mm, and the cartridge heater 72 was used to heat the nitrogen gas having the temperature shown in Table 1 so that it would come out of the tip of the supply nozzle 70. Further, the nitrogen gas was adjusted by a regulating valve (not shown) so as to come out from the tip of the supply nozzle 70 at the wind speed shown in Table 1.
 吸引ノズル80は、その先端部がフィルムと5mmの間隙を持って配置し、吸引ノズル80の先端部での吸引力は、その風速が供給ノズル70の先端部の風速と同じになるように不図示の調整弁で調整して、吸引した。 The suction nozzle 80 is arranged so that the tip of the suction nozzle 80 has a gap of 5 mm from the film, and the suction force at the tip of the suction nozzle 80 is not so high that the wind speed is the same as the wind speed of the tip of the supply nozzle 70. It adjusted with the adjustment valve of illustration and sucked.
 第1冷却ロール及び第2冷却ロールは直径40cmの炭素鋼製とし、表面にハードクロムメッキを施した。又、内部には温度調整用のオイル(冷却用流体)を循環させて、ロール表面温度を制御した。弾性タッチロールは、直径35cmとし、内筒と外筒は炭素鋼製とし、外筒の表面にはハードクロムメッキを施した。外筒の肉厚は2mmとし、内筒と外筒との間の空間に温度調整用のオイル(冷却用流体)を循環させて弾性タッチロールの表面温度を制御した。 The first cooling roll and the second cooling roll were made of carbon steel having a diameter of 40 cm, and the surface was hard chrome plated. In addition, temperature adjusting oil (cooling fluid) was circulated inside to control the roll surface temperature. The elastic touch roll had a diameter of 35 cm, the inner cylinder and the outer cylinder were made of carbon steel, and the outer cylinder surface was hard chrome plated. The wall thickness of the outer cylinder was 2 mm, and oil for cooling (cooling fluid) was circulated in the space between the inner cylinder and the outer cylinder to control the surface temperature of the elastic touch roll.
 更に、第1冷却ロール5上のフィルムを図6、図7で示したタッチロールBを用いて押圧した。タッチロールBの外筒51は2mm厚の炭素鋼管を用い、線圧5N/cmで押圧した。押圧時のタッチロールB側のフィルム温度は、245℃±1℃であった。(ここでいう押圧時のタッチロールB側のフィルム温度は、第1冷却ロール5上のタッチロールBが接する位置のフィルムの温度を、非接触温度計を用いて、タッチロールBを後退させてタッチロールBがない状態で50cm離れた位置から幅方向に10点測定したフィルム表面温度の平均値を指す。)このフィルムのガラス転移温度Tgは136℃であった。(セイコー(株)製、DSC6200を用いてDSC法(窒素中、昇温温度10℃/分)によりダイスから押し出されたフィルムのガラス転移温度を測定した。)
 なお、タッチロールBの表面温度は100℃、第2冷却ロール7の表面温度は80℃とした。タッチロールB、第1冷却ロール5、第2冷却ロール7の各ロールの表面温度は、ロールにフィルムが最初に接する位置から回転方向に対して90°手前の位置のロール表面の温度を非接触温度計を用いて幅方向に10点測定した平均値を各ロールの表面温度とした。
Furthermore, the film on the 1st cooling roll 5 was pressed using the touch roll B shown in FIG. 6, FIG. The outer cylinder 51 of the touch roll B was a carbon steel pipe having a thickness of 2 mm and was pressed at a linear pressure of 5 N / cm. The film temperature on the touch roll B side during pressing was 245 ° C. ± 1 ° C. (The film temperature on the side of the touch roll B at the time of pressing here refers to the temperature of the film at the position where the touch roll B on the first cooling roll 5 is in contact with the touch roll B by using a non-contact thermometer. The average value of the film surface temperature measured at 10 points in the width direction from a position 50 cm away without the touch roll B.) The glass transition temperature Tg of this film was 136 ° C. (The glass transition temperature of the film extruded from the die was measured by DSC method (in nitrogen, temperature rising temperature 10 ° C./min) using DSC6200 manufactured by Seiko Corporation.)
The surface temperature of the touch roll B was 100 ° C., and the surface temperature of the second cooling roll 7 was 80 ° C. The surface temperature of each roll of the touch roll B, the first cooling roll 5, and the second cooling roll 7 is the non-contact temperature of the roll surface at a position 90 ° before the rotation direction from the position where the film first contacts the roll. The average value measured at 10 points in the width direction using a thermometer was defined as the surface temperature of each roll.
 製膜スピードは、20m/minとした。 The film forming speed was 20 m / min.
 得られたフィルムを延伸装置であるテンターに導入し、巾方向に160℃で1.3倍延伸し、ロール状に巻きとって光学フィルムを作製した。
(評価)
 光学フィルムを図1の製造装置で連続して作製し、目視により巻き取り工程前のフィルム表面の縦スジ状のノイズを観察し、ノイズの発生が観察されるまでの連続製膜時間で評価した。評価ランクは、400時間を超えるものを◎、50時間を超えて400時間以下を○、50時間以下を×とした。50時間以下になると、装置を頻繁に止めて、流延ダイのリップ部を清掃する必要があり、生産性が極端に落ちて製造装置としては問題がある。
The obtained film was introduced into a tenter as a stretching apparatus, stretched 1.3 times at 160 ° C. in the width direction, and wound into a roll to produce an optical film.
(Evaluation)
The optical film was continuously produced with the manufacturing apparatus of FIG. 1, and the vertical streak-like noise on the film surface before the winding process was visually observed, and the continuous film formation time until the occurrence of noise was observed was evaluated. . As for the evaluation rank, those exceeding 400 hours were marked with ◎, those exceeding 50 hours were marked with ◯, and those with 50 hours or less were marked with ×. When the time is less than 50 hours, it is necessary to frequently stop the apparatus and clean the lip portion of the casting die, which causes a problem as a manufacturing apparatus due to extremely low productivity.
 評価結果を表1に示す。 Evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1の結果から、流延ダイのリップ部に110℃以上300℃以下の温度の不活性ガスを供給ノズルから供給することにより、フィルム表面の縦スジ状ノイズが長時間に渡って発生していないことが分かる。実施例3~6を比較すると、ガス風速として、0.3m/s以上3m/s以下が好ましいことが分かる。
(実施例7)
 実施例7としては、実施例4の光学フィルムの製造において、タッチロールBを用いなかった他は、実施例4と同一にして光学フィルムを製造し、評価した。評価結果は、ランク○となり、実施例4より、縦スジ状のノイズの発生する時間が短くなっている。このことから、タッチロールを用いることにより、縦スジ状のノイズが発生しにくく、好ましいことが分かる。
(偏光子の作製)
 厚さ120μmの長尺ロールポリビニルアルコールフィルムを沃素1質量部、ホウ酸4質量部を含む水溶液100質量部に浸漬し、50℃で6倍に搬送方向に延伸して偏光子を作製した。
From the results shown in Table 1, by supplying an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower to the lip portion of the casting die from the supply nozzle, vertical streak-like noise on the film surface is generated for a long time. I understand that there is no. Comparing Examples 3 to 6, it can be seen that the gas wind speed is preferably 0.3 m / s or more and 3 m / s or less.
(Example 7)
As Example 7, the optical film was manufactured and evaluated in the same manner as Example 4 except that the touch roll B was not used in the manufacture of the optical film of Example 4. The evaluation result is rank ◯, and the length of time during which vertical streak-like noise is generated is shorter than in Example 4. From this, it can be seen that it is preferable to use a touch roll, because it is difficult to generate vertical stripe noise.
(Production of polarizer)
A 120 μm-thick long roll polyvinyl alcohol film was immersed in 100 parts by mass of an aqueous solution containing 1 part by mass of iodine and 4 parts by mass of boric acid, and stretched in the transport direction 6 times at 50 ° C. to produce a polarizer.
 偏光子の両側に実施例1で作製したセルロースアシレートフィルムを、アルカリケン化処理面を偏光子側とし完全鹸化型ポリビニルアルコール5質量%水溶液を接着剤として両面から貼合し、偏光板用保護フィルムが貼合された偏光板を作製した。
(液晶表示装置としての特性評価)
 32型TFT型カラー液晶ディスプレイベガ(ソニー社製)の偏光板を剥がし、上記で作製した各々の偏光板を液晶セルのサイズに合わせて断裁した。液晶セルを挟むようにして、前記作製した偏光板2枚を偏光板の偏光軸がもとと変わらないように互いに直交するように貼り付け、32型TFT型カラー液晶ディスプレイを作製し、セルロースアシレートフィルムの偏光板としての特性を評価したところ、本発明の光学フィルムであるセルロースアシレートフィルムから作製した偏光板は、スジ状の色ムラや画像の歪みもなく、優れた表示性を示した。これにより、画像表示装置用の偏光板として優れていることが確認された。
The cellulose acylate film produced in Example 1 was bonded to both sides of the polarizer from both sides with the alkali saponified surface as the polarizer side and a 5% by mass aqueous solution of a fully saponified polyvinyl alcohol as an adhesive. A polarizing plate to which a film was bonded was produced.
(Characteristic evaluation as a liquid crystal display device)
The polarizing plate of 32 type TFT type color liquid crystal display Vega (manufactured by Sony Corporation) was peeled off, and each polarizing plate produced above was cut according to the size of the liquid crystal cell. A liquid crystal cell is sandwiched, and the two polarizing plates thus prepared are pasted so as to be orthogonal to each other so that the polarizing axes of the polarizing plates are not changed from each other, thereby producing a 32-type TFT color liquid crystal display, and a cellulose acylate film. When the characteristics of the polarizing plate were evaluated, the polarizing plate produced from the cellulose acylate film, which is the optical film of the present invention, exhibited excellent display properties without streak-like color unevenness and image distortion. Thereby, it was confirmed that it is excellent as a polarizing plate for image display devices.
 1 押出し機
 2 フィルター
 3 スタチックミキサー
 4 流延ダイ
 5 第1冷却ロール
 6 タッチロール
 7 第2冷却ロール
 8 第3冷却ロール
 9 剥離ロール
 11、13、14、15 搬送ロール
 12a 縦延伸装置
 12b 横延伸装置
 10 フィルム
 16 巻取り装置
 32 スリット
 33、34 リップ部
 41 金属スリーブ
 42 弾性ローラ
 43 金属製の内筒
 44 ゴム
 45 冷却水
 51 外筒
 52 内筒
 53 空間
 70 供給ノズル
 71、81 ノズル側板
 72 ヒータ
 73 供給管
 82 排出管
DESCRIPTION OF SYMBOLS 1 Extruder 2 Filter 3 Static mixer 4 Casting die 5 1st cooling roll 6 Touch roll 7 2nd cooling roll 8 3rd cooling roll 9 Peeling roll 11, 13, 14, 15 Conveyance roll 12a Longitudinal stretching apparatus 12b Horizontal stretching Device 10 Film 16 Winding device 32 Slit 33, 34 Lip part 41 Metal sleeve 42 Elastic roller 43 Metal inner cylinder 44 Rubber 45 Cooling water 51 Outer cylinder 52 Inner cylinder 53 Space 70 Supply nozzle 71, 81 Nozzle side plate 72 Heater 73 Supply pipe 82 Discharge pipe

Claims (10)

  1. 溶融した樹脂を流延ダイのリップ部よりフィルム状に押出す押出工程と、該押出工程で押し出されたフィルム状の樹脂を冷却ドラムにより冷却固化させる冷却工程とを備えた光学フィルムの製造方法において、
    前記押出工程は、
    前記リップ部に110℃以上300℃以下の温度の不活性ガスを供給ノズルから供給することを特徴とする光学フィルムの製造方法。
    In an optical film manufacturing method comprising an extrusion step of extruding a molten resin into a film form from a lip portion of a casting die, and a cooling step of cooling and solidifying the film-like resin extruded in the extrusion step with a cooling drum ,
    The extrusion process includes
    An optical film manufacturing method, wherein an inert gas having a temperature of 110 ° C. or higher and 300 ° C. or lower is supplied from a supply nozzle to the lip portion.
  2. 前記不活性ガスを供給する工程は、前記供給ノズルの先端から出る前記不活性ガスの風速が、0.3m/s以上3m/s以下であることを特徴とする請求項1に記載の光学フィルムの製造方法。 2. The optical film according to claim 1, wherein in the step of supplying the inert gas, a wind speed of the inert gas exiting from a tip of the supply nozzle is 0.3 m / s or more and 3 m / s or less. Manufacturing method.
  3. 前記供給ノズルにヒータが配置され、前記不活性ガスを加温していることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1, wherein a heater is disposed in the supply nozzle to heat the inert gas.
  4. 前記供給ノズルの、押し出されたフィルム状の樹脂が流下する方向の下流側には、吸引ノズルが配置され、前記供給ノズルから出る不活性ガスを前記吸引ノズルが吸引することを特徴とする請求項1から3の何れか1項に記載の光学フィルムの製造方法。 The suction nozzle is disposed downstream of the supply nozzle in the direction in which the extruded film-like resin flows down, and the suction nozzle sucks an inert gas from the supply nozzle. The method for producing an optical film according to any one of 1 to 3.
  5. 前記不活性ガスが窒素ガスであることを特徴とする請求項1から4の何れか1項に記載の光学フィルムの製造方法。 The method for producing an optical film according to any one of claims 1 to 4, wherein the inert gas is nitrogen gas.
  6. 前記冷却工程は、前記冷却ドラムの上のフィルム状の樹脂を押圧するタッチロールを供え、該タッチロールで押圧することで、前記フィルム状の樹脂の表面を平滑にすることを特徴とする請求項1から5の何れか1項に記載の光学フィルムの製造方法。 The cooling step includes a touch roll that presses the film-like resin on the cooling drum, and the surface of the film-like resin is smoothed by pressing with the touch roll. The method for producing an optical film according to any one of 1 to 5.
  7. 前記樹脂が、セルロースアシレートまたはシクロオレフィンポリマーであることを特徴とする請求項1から6の何れか1項に記載の光学フィルムの製造方法。 The said resin is a cellulose acylate or a cycloolefin polymer, The manufacturing method of the optical film of any one of Claim 1 to 6 characterized by the above-mentioned.
  8. 請求項1から7の何れか1項に記載の光学フィルムの製造方法で製造されたことを特徴とする光学フィルム。 An optical film manufactured by the method for manufacturing an optical film according to claim 1.
  9. 請求項8に記載の光学フィルムを偏光板用保護フィルムとして用いることを特徴とする偏光板。 A polarizing plate using the optical film according to claim 8 as a protective film for a polarizing plate.
  10. 請求項9に記載の偏光板を用いることを特徴とする液晶表示装置。 A liquid crystal display device using the polarizing plate according to claim 9.
PCT/JP2010/051605 2009-02-23 2010-02-04 Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device WO2010095518A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800083023A CN102325640A (en) 2009-02-23 2010-02-04 Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
JP2011500559A JPWO2010095518A1 (en) 2009-02-23 2010-02-04 Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-039226 2009-02-23
JP2009039226 2009-02-23

Publications (1)

Publication Number Publication Date
WO2010095518A1 true WO2010095518A1 (en) 2010-08-26

Family

ID=42633802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051605 WO2010095518A1 (en) 2009-02-23 2010-02-04 Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device

Country Status (4)

Country Link
JP (1) JPWO2010095518A1 (en)
CN (1) CN102325640A (en)
TW (1) TW201043442A (en)
WO (1) WO2010095518A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132808A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
WO2016132807A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
WO2016132806A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
JP2016175310A (en) * 2015-03-20 2016-10-06 日本ゼオン株式会社 Production method of optical film
CN116198069A (en) * 2023-05-04 2023-06-02 合肥长阳新材料科技有限公司 Diaphragm heat-insulation tape casting extrusion system and production process thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361806B (en) * 2019-07-25 2021-04-02 Tcl华星光电技术有限公司 Iodine-based polarizing plate and display device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194924A (en) * 1987-02-10 1988-08-12 Kanegafuchi Chem Ind Co Ltd Condensation-proof flat extruder die
JPH01180317A (en) * 1988-01-13 1989-07-18 Fuji Photo Film Co Ltd Extruding method for thermoplastic resin
JPH05220813A (en) * 1992-02-10 1993-08-31 Toray Ind Inc Discharging method of resin composition for molding
JPH05286019A (en) * 1992-04-16 1993-11-02 Teijin Ltd Manufacture of thermoplastic resin film
JPH10264227A (en) * 1997-03-26 1998-10-06 Mitsui Chem Inc Extrusion molding method and die
JPH115242A (en) * 1997-06-16 1999-01-12 Shin Etsu Polymer Co Ltd Manufacture of synthetic resin sheet
JPH11115033A (en) * 1997-10-16 1999-04-27 Mitsubishi Heavy Ind Ltd Device for preventing foreign matter from condensing/ sticking at lip outlet of flat die for extrusion molding
JP2001071370A (en) * 1999-09-07 2001-03-21 Teijin Ltd Die for extrusion molding and production of thermoplastic resin film using the die
JP2003305761A (en) * 2002-04-11 2003-10-28 Japan Steel Works Ltd:The Method and device for extruding resin composition
JP2004322346A (en) * 2003-04-22 2004-11-18 Jsr Corp Method for manufacturing melt extrusion film
JP2006335050A (en) * 2005-06-06 2006-12-14 Fujifilm Holdings Corp Method and apparatus for manufacturing thermoplastic film and cellulose acylate film
JP2008087398A (en) * 2006-10-04 2008-04-17 Konica Minolta Opto Inc Manufacturing method of cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display
WO2009063694A1 (en) * 2007-11-16 2009-05-22 Konica Minolta Opto, Inc. Method for producing cellulose ester film and cellulose ester film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2910931B2 (en) * 1990-03-26 1999-06-23 昭和電工株式会社 Blow molding method and apparatus
JP2006142773A (en) * 2004-11-24 2006-06-08 Sekisui Chem Co Ltd Method for forming thermoplastic resin film, thermoplastic resin film, retardation film and polarizing plate
JP2006305909A (en) * 2005-04-28 2006-11-09 Sekisui Chem Co Ltd Method for producing thermoplastic resin film
JP2010012696A (en) * 2008-07-03 2010-01-21 Fujifilm Corp Method for producing norbornene-based resin film, norbornene-based resin film, polarizing plate, optical compensation film for liquid crystal display plate and antireflection film

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63194924A (en) * 1987-02-10 1988-08-12 Kanegafuchi Chem Ind Co Ltd Condensation-proof flat extruder die
JPH01180317A (en) * 1988-01-13 1989-07-18 Fuji Photo Film Co Ltd Extruding method for thermoplastic resin
JPH05220813A (en) * 1992-02-10 1993-08-31 Toray Ind Inc Discharging method of resin composition for molding
JPH05286019A (en) * 1992-04-16 1993-11-02 Teijin Ltd Manufacture of thermoplastic resin film
JPH10264227A (en) * 1997-03-26 1998-10-06 Mitsui Chem Inc Extrusion molding method and die
JPH115242A (en) * 1997-06-16 1999-01-12 Shin Etsu Polymer Co Ltd Manufacture of synthetic resin sheet
JPH11115033A (en) * 1997-10-16 1999-04-27 Mitsubishi Heavy Ind Ltd Device for preventing foreign matter from condensing/ sticking at lip outlet of flat die for extrusion molding
JP2001071370A (en) * 1999-09-07 2001-03-21 Teijin Ltd Die for extrusion molding and production of thermoplastic resin film using the die
JP2003305761A (en) * 2002-04-11 2003-10-28 Japan Steel Works Ltd:The Method and device for extruding resin composition
JP2004322346A (en) * 2003-04-22 2004-11-18 Jsr Corp Method for manufacturing melt extrusion film
JP2006335050A (en) * 2005-06-06 2006-12-14 Fujifilm Holdings Corp Method and apparatus for manufacturing thermoplastic film and cellulose acylate film
JP2008087398A (en) * 2006-10-04 2008-04-17 Konica Minolta Opto Inc Manufacturing method of cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display
WO2009063694A1 (en) * 2007-11-16 2009-05-22 Konica Minolta Opto, Inc. Method for producing cellulose ester film and cellulose ester film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016132808A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
WO2016132807A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
WO2016132806A1 (en) * 2015-02-20 2016-08-25 東レバッテリーセパレータフィルム株式会社 Method for producing microporous plastic film
JPWO2016132806A1 (en) * 2015-02-20 2017-11-30 東レ株式会社 Method for producing microporous plastic film
JP2016175310A (en) * 2015-03-20 2016-10-06 日本ゼオン株式会社 Production method of optical film
CN116198069A (en) * 2023-05-04 2023-06-02 合肥长阳新材料科技有限公司 Diaphragm heat-insulation tape casting extrusion system and production process thereof
CN116198069B (en) * 2023-05-04 2023-08-08 合肥长阳新材料科技有限公司 Diaphragm heat-insulation tape casting extrusion system and production process thereof

Also Published As

Publication number Publication date
CN102325640A (en) 2012-01-18
JPWO2010095518A1 (en) 2012-08-23
TW201043442A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP5184806B2 (en) Method for producing transparent thermoplastic film and transparent thermoplastic film
US20090169772A1 (en) Retardation film, method for producing retardation film, polarizing plate and liquid crystal display
KR20080075857A (en) Process for producing polarizer, polarizer, and liquid- crystal display
JP4975504B2 (en) Transparent thermoplastic film and method for producing the same
KR101492660B1 (en) Optical film and process for producing the same
JP5023837B2 (en) Cellulose ester film, method for producing cellulose ester film, polarizing plate using the same, and liquid crystal display device
WO2010095518A1 (en) Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
KR20120070566A (en) Method of manufacturing optical film, optical film, deflection plate, and liquid crystal display device
WO2009107405A1 (en) Optical film, process for producing optical film, polarizer comprising the same, liquid-crystal display, and compound
JP4947050B2 (en) Optical film, method for manufacturing optical film, polarizing plate using the same, and liquid crystal display device
JP5348832B2 (en) Optical film and manufacturing method thereof, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
CN108351463B (en) Polarizing plate, method for producing polarizing plate, and liquid crystal display device
JPWO2010016456A1 (en) Optical film, manufacturing method thereof, polarizing plate using optical film, and display device
JP5093227B2 (en) Optical film, optical film manufacturing method, polarizing plate, and liquid crystal display device
JP4747985B2 (en) Optical film, polarizing plate and liquid crystal display device using the same
JP4957727B2 (en) Manufacturing method of optical film
JP2008023986A (en) Thermoplastic film, its manufacturing method, polarizing plate, reflection preventing film and liquid crystal display device
JP5321190B2 (en) Optical film manufacturing method, optical film, polarizing plate, and liquid crystal display device
JP2012128232A (en) Laminate film
JP5018372B2 (en) Manufacturing method of resin film
JP2008080691A (en) Manufacturing process of cellulose acylate film, cellulose acylate film, polarizing plate, and liquid crystal display
JP4935415B2 (en) Optical film and manufacturing method thereof, polarizing plate and liquid crystal display device
JP2007056093A (en) Optical cellulose ester film for display, method for manufacturing the same, polarizing plate and liquid crystal display
JP2008087398A (en) Manufacturing method of cellulose acylate film, cellulose acylate film, polarizing plate and liquid crystal display
JP4770620B2 (en) Optical film, polarizing plate and liquid crystal display device using the same, and method for producing optical film

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008302.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743646

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011500559

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743646

Country of ref document: EP

Kind code of ref document: A1