WO2010095513A1 - 近接容量検出回路及び容量センサモジュール - Google Patents

近接容量検出回路及び容量センサモジュール Download PDF

Info

Publication number
WO2010095513A1
WO2010095513A1 PCT/JP2010/051509 JP2010051509W WO2010095513A1 WO 2010095513 A1 WO2010095513 A1 WO 2010095513A1 JP 2010051509 W JP2010051509 W JP 2010051509W WO 2010095513 A1 WO2010095513 A1 WO 2010095513A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge
charge amount
capacitance
capacitor
detected
Prior art date
Application number
PCT/JP2010/051509
Other languages
English (en)
French (fr)
Inventor
達巳 藤由
希世 廣部
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010095513A1 publication Critical patent/WO2010095513A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960705Safety of capacitive touch and proximity switches, e.g. increasing reliability, fail-safe

Definitions

  • the present invention relates to a proximity capacitance detection circuit and a capacitance sensor module that detect minute changes in capacitance due to the proximity of a finger or the like.
  • FIG. 12 is a circuit diagram of the proximity capacitance detection circuit described in Patent Document 1.
  • Cx is a sensor capacitance including a finger and other parasitic capacitances
  • Cs is a fixed capacitance element that actually measures a voltage.
  • the switch SW1 is turned on and the other switches SW2, 3 are turned off to charge the sensor capacitor Cx to the power supply voltage Vdd.
  • all the switches SW1, 2, and 3 are turned off again, and then the switch SW2 is turned on and the other switches SW1, 3 are turned off to transfer the charge amount of the sensor capacitor Cx to the fixed capacitor element Cs.
  • the amount of charge transferred to the fixed capacitance element Cs at that time is determined by the condition that the voltage is balanced according to the amount of charge of the sensor capacitor Cs before transfer.
  • the comparison voltage Vref is set as shown in FIG. 14 with respect to the measured voltage Vs.
  • the rise time of the voltage Vs differs between the sensor capacitance Cx (11 pF) when the finger is present and the sensor capacitance Cx (10 pF) when the finger is absent, and the intersection with the comparison voltage Vref is different. Therefore, the difference in the sensor capacitance Cx depending on the presence / absence of a finger (touch / non-touch) can be determined as the difference in the number T of charge sequences when the comparison voltage Vref is exceeded.
  • the voltage Vs is expressed by the following equation.
  • the number of charge sequences required to exceed the comparison voltage Vref due to the presence / absence of the finger is substantially proportional to the size of the sensor capacitance Cx, and the charge sequence exceeding the comparison voltage Vref is assumed if there is a difference of 10% depending on the presence / absence of the finger.
  • the difference in the number of times is also about 10%.
  • FIG. 15 is a circuit diagram of a sensor capacitance detection circuit described in Patent Document 2.
  • the switches SW1 and SW2 for charging and discharging the fixed capacitance elements Ca and Ca through the resistors, the sensor capacitance Cx, and Ca and Cs are redistributed in order to redistribute the electric charge after the discharge to the sensor capacitance Cx and the fixed capacitance element Cs.
  • a switch SW3 that is connected in series and resets the charges of Ca and Cs is provided.
  • the switch SW1 is turned on and the other switches SW2, 3 are turned off, and one fixed capacitor Ca is charged to the power supply voltage Vdd.
  • all the switches SW1, 2, and 3 are all turned OFF, the switch SW1 is turned OFF, the switches SW2 and SW3 are turned ON, and the charges of the fixed capacitor Cs and the sensor capacitor Cx connected in series are reset.
  • the electric charge of the fixed capacitance element Ca is discharged to the ground through the discharge resistor R.
  • all the switches SW1, 2, and 3 are turned off, and the voltage Vx that is the voltage across the terminals of the sensor capacitor Cx is measured.
  • the measured voltage Vx becomes an envelope as shown in FIG. While comparing the voltage Vx with the comparison voltage Vref, the sequence of discharging one fixed capacitor Ca is repeated, and the number of discharge sequences in which the voltage Vx becomes smaller than the comparison voltage Vref is measured as shown in FIG.
  • the presence or absence of a finger is determined based on the difference in the number of discharge sequences. In this case, by appropriately setting the magnitudes of Ca, Cs, and Vref, the total number of discharge sequences T can be made shorter than that of the conventional circuit of Patent Document 1.
  • An object of the present invention is to provide a proximity capacitance detection circuit and a capacitance sensor module capable of realizing sensitivity.
  • the proximity capacitance detection circuit includes a charging mechanism for charging the detected capacitance, a charge amplifier that converts the transferred charge amount into a voltage among the charge amount charged in the detected capacitance, and the detected capacitance And a base charge amount canceling mechanism that extracts a charge amount corresponding to a fixed charge amount that exists in a fixed manner regardless of the presence or absence of the detected object in the process of transferring to the charge amplifier. It is characterized by.
  • the capacity sensor module of the present invention includes a sensor unit having a detected capacity that changes depending on the presence or absence of a detected object, a charging mechanism that charges the detected capacity, and a transfer amount out of the amount of charge charged in the detected capacity.
  • a charge amplifier that converts the amount of charge that has been generated into a voltage, and a charge amount corresponding to a fixed charge amount that is fixedly present regardless of the presence or absence of a detected object among the amount of charge charged in the detected capacitor,
  • a base charge amount cancellation mechanism that is pulled out in the process of transferring to the charge amplifier, and a control unit that outputs a determination signal related to the presence or absence of the detection target based on the output of the charge amplifier.
  • the charge amount obtained by extracting the charge amount corresponding to the fixed charge amount that is fixedly present regardless of the presence or absence of the detected object out of the charge amount charged in the detected capacitor is the voltage in the charge amplifier. Therefore, even if the fixed capacitance component of the sensor capacitance is large, the influence can be eliminated and the minute capacitance can be detected. High detection sensitivity can be realized even if the change in capacitance is small.
  • the charging mechanism may include a range adjustment mechanism that adjusts a constant voltage for applying a charge to the detected capacitance.
  • the charge applied from the charging mechanism to the detected capacitance is appropriately determined according to the absolute value of the detected capacitance, the magnitude of the capacitance difference between the presence and absence of the detection target (for example, touch / non-touch), and the like. Can be set.
  • the base charge amount cancellation mechanism may include a capacitance adjustment mechanism capable of setting a capacitance equivalent to the charge amount corresponding to the fixed charge amount.
  • a capacitance adjustment mechanism capable of setting a capacitance equivalent to the charge amount corresponding to the fixed charge amount.
  • the influence of the fixed capacitance component of the sensor capacitance can be more accurately eliminated by adjusting the extracted charge amount in accordance with the charge amount corresponding to the fixed capacitance component of the capacitance sensor after assembly to the device.
  • the detection sensitivity can be further increased.
  • it may be configured to include a capacity adjustment mechanism capable of setting a capacity equivalent to the charge amount corresponding to the fixed charge amount generated at the charging voltage adjusted by the range adjustment mechanism.
  • the fixed capacitance component can be accurately removed even if the base charge amount is changed when the charging voltage is changed to obtain the required sensitivity.
  • the capacitance adjusting mechanism can use a capacitor array in which a plurality of capacitors having different capacities are combined so as to be able to contact and separate. According to such a configuration, it becomes easy to accurately set a capacitance equivalent to the charge amount corresponding to the fixed charge amount, and the influence of the fixed capacitance component of the sensor capacitor can be more accurately eliminated, and detection can be performed. Sensitivity can be further increased.
  • a comparator is connected to the subsequent stage of the charge amplifier, the output of the comparator is converted into a charge amount via a delay element, and fed back to the input of the charge amplifier, thereby being a ⁇ AD converter May be configured. According to such a configuration, it is possible to convert into digital data that is easy to handle and has a necessary dynamic range by adding a simpler circuit.
  • the proximity capacitance detection method of the present invention is a proximity capacitance detection method using the proximity capacitance detection circuit, wherein a charge step of charging the detected capacitor from the charging mechanism, and an amount of charge charged in the detected capacitor Is transferred to the charge amplifier, and a sequence of one or a plurality of charge transfer and fixed charge cancellation steps for extracting a charge amount corresponding to the fixed charge amount in the process is repeated. According to this configuration, a necessary output level can be ensured even when the difference in capacitance due to the presence or absence of the detection target is very small.
  • the present invention even if the fixed capacitance component of the sensor capacitance is large, the influence can be eliminated and a minute capacitance can be detected, and high detection sensitivity can be realized even if the change in the sensor capacitance is small.
  • FIG. 1 is a block diagram of a proximity capacitance detection circuit according to an embodiment of the present invention.
  • Configuration diagram of charging mechanism in one embodiment Configuration diagram of base charge amount canceling mechanism in one embodiment The figure which shows the other structural example of the base electric charge amount cancellation mechanism in one embodiment.
  • Circuit diagram of sensor capacitance detection circuit described in Patent Document 2 Envelope diagram of voltage Vx when the sequence for discharging fixed capacitance element Ca is repeated The figure which shows a mode that the voltage Vx measures the discharge sequence frequency which becomes smaller than the comparison voltage Vref.
  • FIG. 1 is a block diagram of a proximity capacitance detection circuit according to an embodiment of the present invention.
  • the detected capacitance Cx which is a sensor portion, is connected to the charging mechanism 11, and the charging mechanism 11 outputs a constant voltage in order to give a charge to the detected capacitance Cx.
  • the detected capacitance Cx has a fixed capacitance component that does not change depending on the presence / absence of a finger (touch / non-touch).
  • the range adjustment mechanism 12 is provided to appropriately set the magnitude of the constant voltage output from the charging mechanism 11 based on the absolute value of the detected capacitance Cx, the magnitude of the capacitance change with or without a finger (touch / non-touch), and the like.
  • one terminal of the detected capacitor Cx is connected to one input terminal of the charge amplifier 13.
  • the charge amplifier 13 has an operational amplifier configuration, applies a constant voltage (V_ref) to the other input terminal, and converts the charge amount to a voltage while clamping the one input terminal to the constant voltage (V_ref) by a feedback function. To do.
  • One terminal of the detected capacitor Cx connected to one input terminal of the charge amplifier 13 becomes a detection node 14.
  • a base charge amount cancellation mechanism 15 is connected to the detection node 14.
  • the base charge amount cancellation mechanism 15 functions to extract a constant charge amount from the detection node 14 by utilizing the fact that the detection node 14 is clamped to V_ref.
  • the charge amplifier 13 converts only the charge amount obtained by subtracting a constant charge amount from the detected capacitance Cx by the base charge amount cancellation mechanism 15 into a voltage and outputs the voltage.
  • FIG. 2 is a diagram showing a specific configuration of the charging mechanism 11.
  • a drive amplifier AMP_dr for charging the detected capacitor Cx to a constant voltage is provided.
  • the drive amplifier AMP_dr is composed of an operational amplifier, and has a DAC (digital-analog converter) composed of a resistance ladder VR_dr so that several voltages can be selected at its input.
  • a damping resistor R_dr is added to the output of the drive amplifier AMP_dr in order to ensure stability when driving a capacitive load as required. Either the switch SW_vd or SW_dr is turned on at the timing of charging the detected capacitor Cx.
  • the switch SW_vd is for driving the detected capacitor Cx without going through the drive amplifier AMP_dr when it is necessary to charge the detected capacitor Cx to the level of the power supply voltage Vdd.
  • the switch SW_dr is for driving the detected capacitor Cx via the drive amplifier AMP_dr when it is necessary to charge the detected capacitor Cx to a desired voltage level set by the resistance ladder VR_dr.
  • a switch SW_de that is turned on only for a time necessary for reducing excessive current consumption is provided. The higher the charging voltage, the higher the detection sensitivity, but the amount of base charge that must be canceled also increases, so it is set according to the situation.
  • FIG. 3 is a diagram showing a specific configuration of the base charge amount cancellation mechanism 15.
  • the base charge amount canceling mechanism 15 includes a capacitor array 21 that includes a capacitor adjustment mechanism 21 that can set a capacity equivalent to the charge amount corresponding to the fixed charge amount generated at the charging voltage adjusted by the range adjusting mechanism 12.
  • Capacitor array 21 is connected to detection node 14 via switch SW_cc.
  • the capacitor array 21 is composed of a plurality of capacitors (C_c1, C_c2,%) Connected in parallel, and each capacitor (C_c1, C_c2,. It is configured to be able to contact and separate.
  • a fixed capacitance component that does not change depending on the presence / absence of a finger is referred to as a base charge amount.
  • pre-weighted capacitors C_c1, C_c2, etc.
  • Weighting is normally performed by 2 n , and the capacity is weighted according to the same principle as C-DAC.
  • the number of weighted capacitors can be determined by the resolution for canceling the assumed base charge amount with the required accuracy.
  • the amount of charge to be canceled is determined by the combination of the switches SW_c1.
  • SW_c1... SW_cn and SW_cr are turned ON to set the charge amount of the capacitor array to zero.
  • the switch SW_cc is turned ON at the charge extraction timing.
  • Q_cancel C_cancel ⁇ V_ref
  • C_cancel is a capacitance value of the capacitor array 21 determined by the setting of SW_c 1... SW_cn
  • V_ref is a clamp voltage of the detection node 14.
  • the base charge amount included in the detected capacitor Cx can be canceled by moving the charge amount corresponding to Q_cancel from the detected capacitor Cx to the capacitor array 21.
  • the influence of the fixed capacitance component of the sensor capacitance is more accurately eliminated by adjusting the extracted charge amount according to the charge amount corresponding to the fixed capacitance component of the capacitance sensor after assembly to the device.
  • the detection sensitivity can be further increased. Further, when the charge voltage is changed to obtain the required sensitivity, the fixed capacitance component can be accurately removed even if the base charge amount changes.
  • FIG. 4 is a diagram showing another configuration example of the base charge amount cancellation mechanism.
  • the occupation area of the capacitor array constituting the base charge amount canceling mechanism can be reduced (efficient).
  • the capacitor array 31 includes a plurality of capacitors (C_c1, C_c2,%) Connected in parallel, and each capacitor (C_c1, C_c2,%) Is detected by a switch SW_cp1. 14 and connected to the ground by switches SW_pr1... SW_prn.
  • Each capacitor (C_c1, C_c2,...) Has the other terminal connected to the ground by a corresponding switch SW_cn1,.
  • a set is selected and connected to the detection node 14. 3 is different from the base charge amount cancellation mechanism shown in FIG. 3 in that the charge of the capacitor array 31 is not zeroed before the charge extraction, but a negative charge is precharged.
  • the switches SW_pr1... SW_prn and SW_nr1... SW_nrn corresponding to the selected capacitors C_c1... C_cn are turned on and precharge is performed in the reverse direction using the constant voltage Vdd. If the constant voltage Vdd for precharging the capacitors C_c1... C_cn in the opposite direction is higher than V_ref, the applied voltage of the capacitors C_c1.
  • the capacitor array 31 has a charge larger than Q_cancel and having a polarity opposite to that of the capacitor C31. Will be charged. Thereafter, after all the switches SW for precharging are turned off, the switch SW_cc is turned on, so that the charge for Q_cancel more than twice can be extracted.
  • the capacitor array 31 can be realized with half the size of the base charge amount cancellation mechanism shown in FIG. Also, the other configuration example shown in FIG. 4 can perform the same operation as the configuration shown in FIG. 3, so that the operation can be switched between a case where resolution is required and a case where a larger amount of extracted charge is desired.
  • the step of operating the base charge amount canceling mechanism can be performed a plurality of times in one charging step, and the capacitor array can be reduced or the canceling charge amount range can be expanded by performing it a plurality of times.
  • FIG. 5 is a diagram showing the configuration of the charge amplifier 13.
  • the charge amplifier 13 is composed of an operational amplifier OP_i.
  • a constant voltage V_ref serving as a reference potential is applied to the + input terminal of the operational amplifier OP_i, and the detection node 14 is connected to the ⁇ input terminal via the switch SW_t.
  • the output terminal of the operational amplifier OP_i is connected to the negative input terminal via the capacitor C_i.
  • a reset switch SW_i is connected between both ends of the capacitor C_i.
  • the switch SW_i is turned on to reset the charge of the capacitor C_i.
  • the switch SW_t is turned on to detect -input terminal. Connect the node 14.
  • the operational amplifier OP_i outputs a potential while applying feedback through the capacitor C_i so that the negative input terminal has the same potential V_ref as the positive input terminal. Since the detection node 14 is clamped to V_ref, the charge cancellation operation is simultaneously performed by the base charge amount cancellation mechanism 15.
  • FIG. 6 is a timing chart showing a series of operation sequences in the proximity capacitance detection circuit according to the present embodiment.
  • the example shown in the figure is an example in which the base charge amount canceling step is performed twice with respect to one charging step, and the optimum number of times is set appropriately depending on the magnitude of the base charge amount.
  • the voltage after the base charge amount is extracted from the charge amount charged in the detected capacitor Cx is output as V_i.
  • V_i When this voltage range is small, the charging step and the subsequent base charge amount canceling operation and voltage The necessary output voltage can be ensured by performing the conversion step (number of integrations) a plurality of times and accumulating the charge amount in the capacitor C_i.
  • a reset timing is provided immediately before the timing of charging the detected capacitor Cx. At the reset timing, the switch SW_i of the charge amplifier 13 is turned on to reset the charge of the capacitor C_i.
  • either the switch SW_vd or SW_dr is turned on.
  • the switch SW_vd When charging the detected capacitor Cx to the level of the power supply voltage Vdd, the switch SW_vd is turned on and the switch SW_dr is turned off. Further, when the detected capacitor Cx is charged to a desired voltage level lower than the power supply voltage Vdd by the resistance ladder VR_dr, the switch SW_vd is turned off and the switches SW_dr and SW_de are turned on.
  • the voltage of the detection node 14 increases with the start of charging of the detected capacitor Cx, and saturates when the voltage is raised to the level of the power supply voltage Vdd or the set voltage level of the resistance ladder VR_dr.
  • the base charge amount is canceled in the process of transferring the charge charged in the detected capacitor Cx to the charge amplifier 13, and the charge amount corresponding to the detected capacitor Cx whose base charge amount has been canceled is converted into a voltage. Therefore, when charging is completed, the switch SW_vd (or SW_dr) is turned off to disconnect the detected capacitor Cx from the power supply voltage. Then, the switch SW_t provided at the detection node 14 is turned on to transfer the charge charged in the detected capacitor Cx to the charge amplifier 13.
  • the switches SW_c1... SW_cn and SW_cr in the base charge amount cancellation mechanism 15 are turned on to set the charge amount of the capacitor array 21 to zero.
  • the switch SW_cr is turned OFF and the switches SW_c1... SW_cn and SW_cc are turned ON.
  • the base charge amount cancellation mechanism 15 selects a capacitor in advance corresponding to the base charge amount to be canceled from the transfer charge of the detected capacitor Cx, and turns on only the switches SW_c1 and SW_cn of the selected capacitor. become.
  • the base charge amount is extracted by the base charge amount cancellation mechanism 15 and charged to the capacitor array 21.
  • the voltage of the detection node 14 is lowered to the constant voltage V_ref clamped by the charge amplifier 13 along with the charge transfer of the detected capacitor Cx.
  • charge extraction by the base charge amount cancellation mechanism 15 is performed twice in one charge transfer sequence. Therefore, during the charge transfer period, one of the switches SW_c1...
  • SW_cn corresponding to the amount of charge to be canceled remains ON, the switch SW_cc is turned OFF, the switch SW_cr is turned ON, and the capacitor array 21 is reset. Furthermore, the switch SW_cr is turned off and the switch SW_cc is turned on while any one of the switches SW_c1 to SW_cn corresponding to the amount of charge to be canceled remains on.
  • the voltage after the base charge amount is extracted from the charge amount charged in the detected capacitor Cx is output as V_i.
  • the charging step and the subsequent base charge amount canceling operation and voltage conversion are performed. This step (number of integrations) is performed a plurality of times to accumulate the charge amount in the capacitor C_i.
  • FIG. 7 is a flowchart showing the procedure for setting the size of the capacitor array (base charge amount cancellation value) for canceling the charge voltage and the base charge amount.
  • the number of integrations (the number of charge steps followed by the base charge amount canceling operation and the voltage conversion step) is set to 1 (step S1).
  • the charge voltage of the detected capacitor Cx is set to a minimum value (step S2)
  • the capacitance sensor is set to a fingerless state (non-touch) (step S3)
  • the base charge amount cancellation mechanism 15 in the base charge amount cancellation mechanism 15 is set.
  • the value is set to the minimum value (step S4).
  • the output of the operational amplifier OP_i is compared with the constant voltage V_ref of the positive input terminal of the operational amplifier OP_i (step S5).
  • the base charge amount cancellation value in the base charge amount cancellation mechanism 15 is increased by one step until OP_i output> V_ref (step S6).
  • step S7 When the output of the operational amplifier OP_i becomes larger than V_ref, the base charge amount cancellation value is set to one smaller value (step S7), and the finger is moved from the fingerless state by bringing a finger-like object closer to the capacitance sensor.
  • a state (touch) is set (step S8). If the output level of the operational amplifier OP_i at this time can obtain sufficient accuracy (step S9), the setting is completed. On the other hand, if the output level of the operational amplifier OP_i is not sufficient (step S9), the charging voltage is checked to check the state and if it is not the maximum value (step S10), the charging voltage is set to one larger value (step S11). Then, the process proceeds to step S3.
  • step S10 If it is determined in step S10 that the charging voltage has increased to the maximum value, the number of integrations is increased by one (step S12).
  • the output level of the operational amplifier OP_i after increasing the number of integrations by 1 is checked (step S13), and the number of integrations is sequentially increased until the output level of the operational amplifier OP_i becomes sufficient.
  • step S14 if the output of the operational amplifier OP_i is not saturated (step S14), the setting process is completed, but when the output of the operational amplifier OP_i is saturated, the charging voltage is reduced by half. (Step S15) 2 and the process proceeds to step S3.
  • the charging amount is set too high, and the amount of charges that can be set by the capacitor arrays 21 and 31 is exceeded, so that the base charge amount canceling value can be set without being cancelled. Can be set.
  • the number of integrations while sequentially increasing it is possible to perform processing with the minimum number of integrations, and the measurement time can be kept short. In this way, the size of the output level is optimized while increasing the size of the capacitor array in order to cancel the base charge amount as much as possible.
  • the setting procedure shown in FIG. 7 is an example, and other methods that can cancel the base charge amount as much as possible and optimally adjust the output level may be used.
  • Such setting is performed after being assembled in an environment where the capacitance detection circuit is used, so that the base charge amount can be canceled accurately. Also, if the base capacitance changes depending on the environment in which the device is placed, such as when the capacitance detection circuit is mounted on a very small portable device, only reset the cancellation value of the base charge amount immediately before use ( It is also possible to perform S4 to S7) as calibration.
  • the charge amount corresponding to the base charge amount irrelevant to the presence or absence of the finger out of the charge amount charged in the detected capacitor Cx is extracted by the base charge amount cancellation mechanism 15 and Since the charge amount from which the charge amount has been extracted is converted into a voltage by the charge amplifier 13, by canceling apparently a large fixed component included in the detected capacitance Cx, the base capacitance of the sensor is very large and depends on the presence or absence of a finger The required output level can be obtained even with a sensor having a small difference in capacitance.
  • the base charge amount cancellation mechanism 15 has an adjustment function for generating a charge amount equivalent to the charge amount corresponding to the fixed component of the sensor. Even when the sizes of the fixed capacitors are different, the cancel charge amount can be set in accordance with the size, and a necessary output level can always be obtained.
  • a small change in sensor capacitance can be achieved by repeatedly performing a sequence including a charging step followed by one or more base capacitance cancellation steps and a charge transfer step to the charge amplifier. It can be efficiently converted into a required level of voltage and output.
  • the charge amplifier output voltage is converted into a digital value by the AD converter 16 connected to the subsequent stage of the charge amplifier 13, but the comparator and the output of the comparator are connected to the downstream of the charge amplifier 13 via the delay element.
  • a configuration may be adopted in which a ⁇ type AD converter is realized by converting the amount of charge into a charge amplifier 13 and feeding it back to the input of the charge amplifier 13.
  • FIG. 8 is a view showing a modification in which a ⁇ type AD converter is realized in the subsequent stage of the charge amplifier 13.
  • the digital filter 17 configured by a logic circuit is provided to multi-bit the 0 and 1 bit streams, thereby allowing a ⁇ AD converter to Realized.
  • a feedback mechanism is provided so that a constant charge is subtracted from the output of the comparator CMP_ad via a delay element D by a charge generation mechanism including a capacitor C_fb, a switch SW_fr, and a constant voltage source V_th, and a primary ⁇ AD converter works as.
  • C_fb is a capacitor array
  • constant voltage source V_th is the same as the range adjustment mechanism 12 included in the charging mechanism 11 so that the size of the capacitance C_fb and the size of V_th can be set with the necessary resolution. It is realized with the configuration.
  • FIG. 9 is a diagram illustrating a schematic configuration example of a capacitive sensor module that performs proximity detection of a human finger.
  • the capacitance sensor module shown in the figure includes a sensor unit 20, a capacitance detection circuit 22, and a control unit 23.
  • the capacitance sensor module converts a physical quantity of capacitance into an electric signal and sends it to the host 24 side.
  • the control unit 23 is configured by hardware or software and includes a signal noise removal function.
  • Cx The capacitance when the sensor unit 20 is viewed from the capacitance detection circuit 22 is defined as Cx.
  • the capacitance between the sensor unit 20 and the ground is the capacitance Cb between the sensor electrode and the circuit to the sensor electrode and the ground, and the capacitance between the electrode of the sensor unit 20 and the finger is Cf
  • Cx Cb + (Cf ⁇ Cbd) / (Cf + Cbd) Since Cf ⁇ Cbd in the second term on the right side, the actual right side is Cb + Cf.
  • FIG. 10 shows an example in which electrostatic switches (capacitance sensors) are arranged in the image frame portion of the LCD module.
  • the LCD module is usually made of a metal chassis 31 and grounded for noise countermeasures.
  • the operation part of the electrostatic switch (sensor unit 20) arranged in the image frame part of the LCD module must be thinned.
  • the sensor unit 20 is arranged to be attached to the chassis 31.
  • the distance between the sensor unit 20 and the ground is 1 mm or less, and the size of Cb is as large as several tens of pF, while Cf is 0.1 pF or less. Considering this, the necessary sensitivity and dynamic range may not be obtained.
  • the base charge amount cancellation mechanism 15 efficiently excludes Cb as the base charge amount from the detection target, and repeats the base charge amount cancellation and voltage conversion steps (number of integrations). The necessary sensitivity can be obtained.
  • FIG. 11 shows a comparison result of comparing output values between the present embodiment and the conventional method with the same configuration of the sensor unit.
  • the dynamic range could not be obtained due to the base capacitance of 15 pF and the capacitance change of 0.1 pF, and measurement was impossible, but this method of the measurement was possible. Overall, the dynamic range was more than twice that of the conventional method.
  • the present invention can be applied to a proximity capacitance detection circuit and a capacitance sensor module that require detection of a very small capacitance.

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

 センサ容量の固定容量成分が大きくてもその影響を排除して微小な静電容量を検出でき、センサ容量の変化が小さくても高い検出感度を実現すること。被検出容量Cxを充電する充電機構(11)と、被検出容量Cxに充電された電荷量のうち転送されてきた電荷量を電圧に変換するチャージアンプ(13)と、被検出容量Cxに充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を、チャージアンプ(13)へ転送する過程で引き抜くベース電荷量キャンセル機構(15)とを具備した近接容量検出回路である。充電機構(11)は、被検出容量Cxに電荷を与えるための定電圧を調整するレンジ調整機構(12)を備え、ベース電荷量キャンセル機構(15)は、固定電荷量に対応する電荷量と同等の容量を設定可能なコンデンサアレイ(21)を備える。

Description

近接容量検出回路及び容量センサモジュール
 本発明は、指の近接などによる微小な静電容量の変化を検出する近接容量検出回路及び容量センサモジュールに関する。
 従来、未知のセンサ容量を充電し、その電荷量を別な固定容量素子に転送しながらその電圧をモニターしてセンサ容量の変化を検出する回路がある(例えば、特許文献1参照)。図12は特許文献1に記載の近接容量検出回路の回路図である。Cxが指とその他の寄生容量を含むセンサ容量であり、Csは実際に電圧を計測する固定容量素子である。最初にスイッチSW1とSW2をともにOFF、スイッチSW3をONにすることにより固定容量素子Csの電荷量をリセットする。次に全てのスイッチSW1、2、3をすべてOFFにした後、スイッチSW1をONすると共に他のスイッチSW2、3をOFFし、センサ容量Cxへ電源電圧Vddまで充電する。その後、再度全てのスイッチSW1、2、3をすべてOFFにした後、スイッチSW2をONすると共に他のスイッチSW1、3をOFFして、センサ容量Cxの電荷量を固定容量素子Csへ転送する。そのときの固定容量素子Csへ転送される電荷量は転送前のセンサ容量Csの電荷量に応じて電圧が平衡になる条件で決まる。センサ容量Csの電荷をリセットせずにスイッチSW1、SW2を交互にONする充電シーケンスを繰り返すと、固定容量素子Csの電圧Vsは図13のように上昇していくことになる。
 そこで、指の有無(タッチ/非タッチ)によるセンサ容量Cxの大きさの違いを判別するために、計測された電圧Vsに対して比較電圧Vrefを図14のように設定する。指があるときのセンサ容量Cx(11pF)と無いときのセンサ容量Cx(10pF)とで電圧Vsの上昇時間が異なり、比較電圧Vrefとの交点が異なる。そこで、比較電圧Vrefを超えたときの充電シーケンスの回数Tの違いとして、指の有無(タッチ/非タッチ)によるセンサ容量Cxの大きさの違いを判別できる。電圧Vsを式で表すと以下のようになる。
Figure JPOXMLDOC01-appb-M000001
 この場合、指の有無による比較電圧Vrefを超えるのに必要な充電シーケンス回数はほぼセンサ容量Cxの大きさに比例し、指の有無で10%の違いがあったとして比較電圧Vrefを超える充電シーケンスの回数の差も10%程度となる。
 ところで、近年タッチセンサの用途として携帯電話、フラットパネルTVなどへも広がってきている。これらの用途では、グラウンドに接地したシールド板や筐体フレームに近接した場所を、センサの設置場所とすることが求められている。その条件においてはセンサの容量はグラウンドに対する固定的な接地容量(ベース容量)の割合が非常に大きくなり、センサ容量Cxの指の有無による差が数%まで低下してしまうときがある。さらにデザイン重視の要求からセンサ電極上面に厚さ5mm以上のカバープレートもしくは筐体樹脂を覆いかぶせるニーズもあり、かかる場合にはセンサ容量Cxの指の有無による差の比率が更に小さくなる傾向にある。
 したがって、図12の従来例においては固定容量素子Csを大きくして、指の有無の差による比較電圧Vrefを超える充電シーケンスの回数の差を稼ぐ必要があるが、そうすると全体の充電シーケンス回数が非常に大きくなってしまうという問題点があった。
 また、固定容量素子に充電した電荷量をセンサ容量によって放電させながらセンサ容量の電圧を固定電圧と比較することでセンサの容量の変化を検出するセンサ容量検出回路がある(例えば、特許文献2参照)。図15は特許文献2記載のセンサ容量検出回路の回路図である。固定容量素子CaとCaを抵抗を介して充放電させるためのスイッチSW1、SW2とセンサ容量CxとCaの放電後の電荷をセンサ容量Cxと固定容量素子Csに再分配するためにCaとCsを直列接続し、Ca及びCsの電荷をリセットするためのスイッチSW3が設けてある。その最初にスイッチSW1をONすると共に他のスイッチSW2、3をOFFし、一方の固定容量素子Caを電源電圧Vddまで充電する。その後、全てのスイッチSW1、2、3をすべてOFFにした後、スイッチSW1をOFF、スイッチSW2、SW3をONにして直列接続した固定容量素子Cs及びセンサ容量Cxの電荷をリセットし、かつ一方の固定容量素子Caの電荷を、放電抵抗Rを介してグランドに放電する。その後、全てのスイッチSW1、2、3をOFFにして、センサ容量Cxの端子間電圧である電圧Vxを計測する。固定容量素子Caを放電するシーケンスを繰り返すことで、計測される電圧Vxが図16に示すような包絡線となる。電圧Vxを比較電圧Vrefと比較しながら、一方の固定容量素子Caを放電するシーケンスを繰り返し、図17に示すように電圧Vxが比較電圧Vrefより小さくなる放電シーケンス回数を計測する。放電シーケンス回数の違いにより、指の有無(タッチ/非タッチ)を判定する。この場合、Ca、Cs、Vrefの大きさを適当に設定することで、全体の放電シーケンス回数Tを特許文献1の従来回路より短くすることが可能となる。
特表2002-530680号公報 特開2006-78292号公報
 しかしながら、特許文献2記載のセンサ容量検出回路であっても、センサ容量Cxのベース容量が大きくなることによる影響や、指の有無に対するセンサ容量Cxの変化量が小さくなると放電シーケンス回数の差を大きくすることができず、検出感度に限界があった。
 本発明は、かかる点に鑑みてなされたものであり、センサ容量の固定容量成分が大きくてもその影響を排除して微小な静電容量を検出でき、センサ容量の変化が小さくても高い検出感度を実現可能な近接容量検出回路及び容量センサモジュールを提供することを目的とする。
 本発明の近接容量検出回路は、被検出容量を充電する充電機構と、前記被検出容量に充電された電荷量のうち転送されてきた電荷量を電圧に変換するチャージアンプと、前記被検出容量に充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を、前記チャージアンプへ転送する過程で引き抜くベース電荷量キャンセル機構とを具備したことを特徴とする。
 また本発明の容量センサモジュールは、被検出体の有無により変化する被検出容量を有するセンサ部と、前記被検出容量を充電する充電機構と、前記被検出容量に充電された電荷量のうち転送されてきた電荷量を電圧に変換するチャージアンプと、前記被検出容量に充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を、前記チャージアンプへ転送する過程で引き抜くベース電荷量キャンセル機構と、前記チャージアンプ出力に基づいて被検出体の有無に関する判定信号を出力する制御部とを具備したことを特徴とする。
 これらの構成によれば、被検出容量に充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を引き抜いた電荷量が、チャージアンプにおいて電圧に変換されるので、被検出体の有無に応じて変化する容量差を効率よく検出でき、センサ容量の固定容量成分が大きくてもその影響を排除して微小な静電容量を検出でき、センサ容量の変化が小さくても高い検出感度を実現可能である。
 上記近接容量検出回路において、前記充電機構は、前記被検出容量に電荷を与えるための定電圧を調整するレンジ調整機構を備えた構成とすることができる。このような構成によれば、被検出容量の絶対値、被検出体の有無(例えばタッチ/非タッチ)での容量差の大きさなどに応じて、充電機構から被検出容量に与える電荷を適宜設定できる。
 また上記近接容量検出回路において、前記ベース電荷量キャンセル機構は、前記固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構を備えた構成とすることができる。このような構成によれば、機器への組み付け後に容量センサの固定容量成分に対応する電荷量にあわせて引き抜き電荷量を調整することにより、センサ容量の固定容量成分の影響をより正確に排除することができ、検出感度をさらに高めることができる。
 また、前記レンジ調整機構によって調整された充電電圧において発生する固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構を備えた構成とすることができる。このような構成によれば、必要な感度を得るために充電電圧を変化させた場合にベース電荷量が変わっても、正確に固定容量成分を除去することができる。
 また、前記容量調整機構は、異なる容量を持つ複数のコンデンサが接離可能に組み合わされたコンデンサアレイを用いることができる。このような構成によれば、前記固定電荷量に対応する電荷量と同等の容量を正確に設定することが容易となり、センサ容量の固定容量成分の影響をさらに正確に排除することができ、検出感度をさらに高めることができる。
 また上記近接容量検出回路において、前記チャージアンプの後段にコンパレータを接続し、そのコンパレータの出力をディレイ素子を介して電荷量に変換し、前記チャージアンプの入力にフィードバックすることでΔΣ型のADコンバータを構成しても良い。このような構成によれば、より簡単な回路の付加により取り扱いが容易で必要なダイナミックレンジをもったディジタルデータに変換が可能となる。
 本発明の近接容量検出方法は、上記近接容量検出回路を用いた近接容量検出方法であって、前記充電機構から前記被検出容量に充電する充電ステップと、前記被検出容量に充電された電荷量を前記チャージアンプへ電荷転送すると共にその過程で固定電荷量に対応する電荷量を引き抜く1回又は複数回の電荷転送及び固定電荷キャンセルステップを1組とするシーケンスを繰り返し行うことを特徴とする。
 この構成によれば、被検出体の有無による容量差が非常に小さな場合においても必要な出力レベルが確保できる。
 本発明によれば、センサ容量の固定容量成分が大きくてもその影響を排除して微小な静電容量を検出でき、センサ容量の変化が小さくても高い検出感度を実現できる。
本発明の一実施の形態に係る近接容量検出回路のブロック図 一実施の形態における充電機構の構成図 一実施の形態におけるベース電荷量キャンセル機構の構成図 一実施の形態におけるベース電荷量キャンセル機構の他の構成例を示す図 一実施の形態におけるチャージアンプの構成図 一実施の形態における一連の動作シーケンスを表したタイミングチャート 充電電圧やベース電荷量のキャンセルを行うためのコンデンサアレイの大きさの設定手順を示すフローチャート チャージアンプの後段にΔΣ型のADコンバータを実現した変形例を示す図 人の指の近接検知を行う容量センサモジュールの概略的な構成例を示す図 LCDモジュールの画枠部分に静電スイッチを配置した図 実施の形態方式と従来方式での出力値を比較した比較結果を示す図 特許文献1に記載の近接容量検出回路の回路図 充電シーケンスを繰り返した際の固定容量素子Csの電圧Vs上昇を示す図 タッチ/非タッチによるセンサ容量Cxの違いを判別するための比較電圧Vrefの設定例を示す図 特許文献2記載のセンサ容量検出回路の回路図 固定容量素子Caを放電するシーケンスを繰り返した際の電圧Vxの包絡線図 電圧Vxが比較電圧Vrefより小さくなる放電シーケンス回数を計測する様子を示す図
 以下、本発明の実施の形態について添付図面を参照して詳細に説明する。
 図1は本発明の一実施の形態に係る近接容量検出回路のブロック図である。
 センサ部分である被検出容量Cxは充電機構11に接続されており、充電機構11は被検出容量Cxに電荷を与えるために定電圧を出力する。被検出容量Cxは、指の有無(タッチ/非タッチ)によっては変化しない固定容量成分を有する。充電機構11の出力する定電圧の大きさは被検出容量Cxの絶対値、指の有無(タッチ/非タッチ)での容量変化の大きさなどで適宜設定するためにレンジ調整機構12を備える。被検出容量Cxに蓄えられた電荷を検出するために、被検出容量Cxの一方の端子はチャージアンプ13の一方の入力端子に接続される。チャージアンプ13はオペアンプ構成を有し、他方の入力端子に定電圧(V_ref)を印加すると共にフィードバック機能により一方の入力端子は定電圧(V_ref)にクランプしながら電荷量を電圧に変換して出力する。チャージアンプ13の一方の入力端子に接続された被検出容量Cxの一方の端子が検出ノード14となる。検出ノード14にベース電荷量キャンセル機構15が接続される。ベース電荷量キャンセル機構15は、検出ノード14がV_refにクランプされることを利用して、一定電荷量を検出ノード14から引き抜く働きをする。チャージアンプ13は被検出容量Cxからベース電荷量キャンセル機構15により一定電荷量を差し引かれた電荷量のみを電圧に変換して出力する。
 図2は充電機構11の具体的な構成を示す図である。
 被検出容量Cxを一定電圧となるように充電するための駆動アンプAMP_drを備える。駆動アンプAMP_drはオペアンプで構成され、その入力にはいくつかの電圧が選択できるよう抵抗ラダーVR_drで構成されたDAC(デジタル-アナログコンバータ)を備える。また必要に応じて容量負荷を駆動するときに安定性を確保するため、ダンピング抵抗R_drを駆動アンプAMP_drの出力に付加している。被検出容量Cxを充電するタイミングにおいてスイッチSW_vdまたはSW_drのどちらかがONする。スイッチSW_vdは電源電圧Vddのレベルまで被検出容量Cxを充電する必要がある場合に駆動アンプAMP_drを介さずに被検出容量Cxを駆動するためのものである。スイッチSW_drは抵抗ラダーVR_drにより設定した所望の電圧レベルに被検出容量Cxを充電する必要がある場合に駆動アンプAMP_drを介して被検出容量Cxを駆動するためのものである。また充電電圧を設定するDACを抵抗ラダーで実現する場合、余分な消費電流を削減するために必要な時間のみONするスイッチSW_deを備える。充電電圧は高いほど検出感度が高まるが、キャンセルしなければならないベース電荷量も増大するため、状況に応じて設定する。
 図3はベース電荷量キャンセル機構15の具体的な構成を示す図である。
 ベース電荷量キャンセル機構15は、レンジ調整機構12によって調整された充電電圧において発生する固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構をコンデンサアレイ21で構成している。コンデンサアレイ21は、検出ノード14に対して、スイッチSW_ccを介して接続される。コンデンサアレイ21は、並列接続された複数の容量(C_c1、C_c2・・)で構成されており、各容量(C_c1、C_c2・・)は各々対応するスイッチSW_c1・・SW_cnによって検出ノード14に対して接離可能に構成されている。
 ここで、被検出容量Cxのうち、指の有無(タッチ/非タッチ)によっては変化しない固定容量成分をベース電荷量と呼ぶものとする。ベース電荷量に対応する引き抜き電荷量を設定するために、予め重み付けされた容量(C_c1、C_c2・・)を準備しておく。重み付けは通常2nで行い、C-DACと同様の原理で容量が重み付けられる。重み付けされたコンデンサの数は想定されるベース電荷量を必要な精度でキャンセルするための分解能により決めることができる。キャンセルする電荷量(引き抜き電荷量)の大きさはONするスイッチSW_c1・・SW_cnの組み合わせで決定する。
 ベース電荷量の引き抜きを行う前に、SW_c1・・SW_cn及びSW_crをONにしてコンデンサアレイの電荷量を0にしておく。次に、電荷引き抜きタイミングにおいてスイッチSW_ccをONにする。そのとき、検出ノード14はチャージアンプ13のフィードバック機能によりV_refにクランプされるので、引き抜かれる電荷量Q_cancelは、次式で表わされる。
   Q_cancel=C_cancel×V_ref
 C_cancelは、SW_c1・・SW_cnの設定で決まるコンデンサアレイ21の容量値、V_refは検出ノード14のクランプ電圧である。結果的にQ_cancel分の電荷量を、被検出容量Cxからコンデンサアレイ21に移動させることにより、被検出容量Cxに含まれるベース電荷量をキャンセルすることができる。
 このようなコンデンサアレイ21により、機器への組み付け後に容量センサの固定容量成分に対応する電荷量にあわせて引き抜き電荷量を調整することにより、センサ容量の固定容量成分の影響をより正確に排除することができ、検出感度をさらに高めることができる。また、必要な感度を得るために充電電圧を変化させた場合に、ベース電荷量が変わっても、正確に固定容量成分を除去することができる。
 図4はベース電荷量キャンセル機構の他の構成例を示す図である。
 ベース電荷量キャンセル機構を構成するコンデンサアレイの占有面積を縮小(効率化)できるようにしている。コンデンサアレイ31は、並列接続された複数の容量(C_c1、C_c2・・)で構成されており、各容量(C_c1、C_c2・・)は一方の端子が各々対応するスイッチSW_cp1・・SW_cpnによって検出ノード14に接続されると共に、スイッチSW_pr1・・SW_prnによってグラウンドに接続されている。また、各容量(C_c1、C_c2・・)は他方の端子が各々対応するスイッチSW_cn1・・SW_cnnによってグラウンドに接続されると共に、スイッチSW_nr1・・SW_nrnによって定電圧Vddが印加されるようにしている。
 各容量C_c1・・C_cnは必要な大きさ、分解能の数だけ準備され重み付けされるものとし、キャンセルに必要な容量を形成するため、スイッチSW_cn1・・SW_cnnおよびSW_cp1・・SW_cpnのなかのいくつかの組が選択され検出ノード14と接続される。図3に示すベース電荷量キャンセル機構と異なる点は、電荷の引き抜きを行う前にコンデンサアレイ31の電荷を、0にするのではなく、負の電荷をプリチャージする点である。実際には選択された容量C_c1・・C_cnに対応したスイッチSW_pr1・・SW_prnとSW_nr1・・SW_nrnをONして定電圧Vddを使って逆向きにプリチャージを行う。容量C_c1・・C_cnを逆向きにプリチャージする定電圧VddがV_refより高い電圧であれば、容量C_c1・・C_cnの印加電圧が高くなるので、蓄積される電荷量を増大できることになる。
 このように、V_refより高い電圧である定電圧Vddで、容量C_c1・・C_cnに対して逆向きにプリチャージを行うことで、コンデンサアレイ31に、Q_cancelより大きく、かつ、極性が逆となる電荷が充電されることになる。その後、プリチャージのためのスイッチSWをすべてOFFにした後に、スイッチSW_ccをONすることで2倍以上のQ_cancel分の電荷を引き抜くことができる。
 したがって、図3に示すコンデンサアレイ21と同一面積であれば、2倍以上のベース電荷量を引き抜くことも可能である。また、図3に示す最大の電荷引き抜き量が同一であれば、図3に示すベース電荷量キャンセル機構の半分の大きさで、コンデンサアレイ31を実現できることになる。また、図4に示す他の構成例でも図3に示す構成とまったく同じ動作が可能なので、分解能が必要な場合と引き抜き電荷量を大きくとりたい場合とで動作を切り替えることも可能となる。
 更に、ベース電荷量キャンセル機構を動作させるステップは、1回の充電ステップで複数回行うことも可能であり、複数回行うことでコンデンサアレイの縮小もしくはキャンセル電荷量範囲の拡大を行うことができる。
 図5はチャージアンプ13の構成を示す図である。
 チャージアンプ13は、オペアンプOP_iで構成されている。オペアンプOP_iの+入力端には基準電位となる定電圧V_refが印加され、-入力端にはスイッチSW_tを介して検出ノード14が接続される。オペアンプOP_iの出力端子はコンデンサC_iを介して-入力端に接続されている。コンデンサC_iの両端間にはリセット用のスイッチSW_iが接続されている。
 チャージアンプ13では、被検出容量Cxから電荷を吸収する前に、スイッチSW_iをONしてコンデンサC_iの電荷をリセットし、その後、充電ステップが完了した後にスイッチSW_tをONして-入力端と検出ノード14とを接続する。
 このとき、オペアンプOP_iは-入力端が+入力端と同じ電位V_refとなるようにコンデンサC_iを介してフィードバックをかけながら電位出力を行う。検出ノード14がV_refにクランプされるので、同時に電荷キャンセル動作をベース電荷量キャンセル機構15により行う。
 図6は本実施の形態に係る近接容量検出回路における一連の動作シーケンスを表したタイミングチャートである。同図に示す例は、ベース電荷量キャンセルステップを1回の充電ステップに対して2回行った例であり、この回数はベース電荷量の大きさにより適宜最適な回数が設定される。また被検出容量Cxに充電された電荷量からベース電荷量を引き抜いた後の電圧はV_iとして出力されるが、この電圧のレンジが小さい場合には充電ステップとそれに続くベース電荷量キャンセル動作及び電圧変換のステップ(積分回数)を複数回実施してコンデンサC_iに電荷量を累積させることで必要な出力電圧を確保することができる。
 被検出容量Cxを充電するタイミングの直前にリセットタイミングを設けている。リセットタイミングにおいて、チャージアンプ13のスイッチSW_iをONしてコンデンサC_iの電荷をリセットする。
 次に、充電タイミングにおいて、スイッチSW_vdまたはSW_drのどちらかをONする。被検出容量Cxを電源電圧Vddのレベルまで充電する場合は、スイッチSW_vdをON、スイッチSW_drをOFFとする。また、被検出容量Cxを抵抗ラダーVR_drにより電源電圧Vddよりも低い所望の電圧レベルに充電する場合は、スイッチSW_vdをOFF、スイッチSW_dr及びSW_deをONとする。被検出容量Cxの充電開始とともに検出ノード14の電圧が上昇し、電源電圧Vddのレベル又は抵抗ラダーVR_drによる設定電圧のレベルまで昇圧したところで飽和する。
 次に、被検出容量Cxに充電した電荷をチャージアンプ13へ転送する過程でベース電荷量をキャンセルすると共に、ベース電荷量をキャンセルした被検出容量Cxに対応する電荷量を電圧に変換する。そのため、充電が終了すると、スイッチSW_vd(又はSW_dr)をOFFして被検出容量Cxを電源電圧から切り離す。そして、検出ノード14に設けられたスイッチSW_tをONにして被検出容量Cxに充電した電荷をチャージアンプ13へ転送する。
 電荷転送タイミングの直前に、ベース電荷量キャンセル機構15におけるスイッチSW_c1・・SW_cn及びSW_crをONにしてコンデンサアレイ21の電荷量を0にする。電荷転送開始直後に開始される電荷引き抜きタイミングでは、スイッチSW_crをOFF、スイッチSW_c1・・SW_cn及びSW_ccをONにする。このとき、ベース電荷量キャンセル機構15において被検出容量Cxの転送電荷からキャンセルするベース電荷量に対応して予めコンデンサが選択されており、選択されたコンデンサのスイッチSW_c1・・SW_cnだけをONすることになる。
 検出ノード14を転送される被検出容量Cxの充電電荷のうち、ベース電荷量がベース電荷量キャンセル機構15に引き抜かれてコンデンサアレイ21に充電される。この結果、チャージアンプ13へはベース電荷量の引き抜かれた電荷だけが転送される。被検出容量Cxの電荷転送に伴い検出ノード14の電圧はチャージアンプ13でクランプされた定電圧V_refまで降圧する。図6に示すように、1回の電荷転送シーケンスにおいて、ベース電荷量キャンセル機構15による電荷引き抜きを2回実施している。そのため、電荷転送期間中に、キャンセルする電荷量に対応させたスイッチSW_c1・・SW_cnのいずれかはONのまま、スイッチSW_ccをOFF、スイッチSW_crをONにしてコンデンサアレイ21をリセットする。さらに、キャンセルする電荷量に対応させたスイッチSW_c1・・SW_cnのいずれかはONのまま、スイッチSW_crをOFF、スイッチSW_ccをONにする。
 被検出容量Cxに充電された電荷量からベース電荷量を引き抜いた後の電圧はV_iとして出力されるが、この電圧のレンジが小さい場合には充電ステップとそれに続くベース電荷量キャンセル動作及び電圧変換のステップ(積分回数)を複数回実施してコンデンサC_iに電荷量を累積させる。
 図7は、充電電圧やベース電荷量のキャンセルを行うためのコンデンサアレイの大きさ(ベース電荷量キャンセル値)の設定手順を示すフローチャートである。まず、積分回数(充電ステップとそれに続くベース電荷量キャンセル動作及び電圧変換ステップの回数)を1回に設定する(ステップS1)。また、被検出容量Cxの充電電圧を最小値に設定し(ステップS2)、容量センサを指無しの状態(非タッチ)に設定し(ステップS3)、ベース電荷量キャンセル機構15におけるベース電荷量キャンセル値を最小値に設定する(ステップS4)。
 このような条件のもとでオペアンプOP_iの出力とオペアンプOP_iの+入力端子の定電圧V_refとを比較する(ステップS5)。OP_i出力>V_refとなるまで、ベース電荷量キャンセル機構15におけるベース電荷量キャンセル値を1ステップずつ大きくする(ステップS6)。
 オペアンプOP_iの出力がV_refよりも大きくなったところで、ベース電荷量キャンセル値を1つ小さい値に設定し(ステップS7)、容量センサに指を模した物体を近づけるなどして指なしの状態から指ありの状態(タッチ)に設定する(ステップS8)。このときのオペアンプOP_iの出力レベルが十分な精度を得られるものであれば(ステップS9)、設定完了する。一方、オペアンプOP_iの出力レベルが十分でない場合は(ステップS9)、充電電圧が状態をチェックして最大値でなければ(ステップS10)、充電電圧を1つ大きな値に設定して(ステップS11)、上記ステップS3の処理へ移行する。ステップS10の判定で充電電圧が最大値まで上げていることが判明した場合は、積分回数を1つ大きくする(ステップS12)。積分回数を1回増加した後のオペアンプOP_iの出力レベルをチェックし(ステップS13)、オペアンプOP_iの出力レベルが十分となるまで積分回数を順次増加させる。オペアンプOP_iの出力が十分な出力レベルとなったところで、オペアンプOP_iの出力が飽和していなければ(ステップS14)、設定処理を完了するが、オペアンプOP_i出力が飽和した場合には、充電電圧を半分に再設定して(ステップS15)2、上記ステップS3へ移行する。
 このように充電電圧を順次上げながら設定を行うことにより、充電電圧を高くしすぎることによってコンデンサアレイ21、31で設定可能な電荷量を上回ってしまいキャンセル不能となることなくベース電荷量キャンセル値を設定することができる。また、積分回数を順次上げながら設定することにより、必要最低限の積分回数で処理を行うことが可能となり、測定時間を短く保つことができる。このようにして、ベース電荷量をできるだけキャンセルするためにコンデンサアレイの大きさを大きくしながら、出力レベルの大きさを最適にする。ただし、図7に示す設定手順は一例であり、ベース電荷量をできるだけキャンセルし、出力レベルを最適に調整できる他の方法を用いてもよい。このような設定は、容量検出回路を使用する環境に組み付けてから行うことにより、正確にベース電荷量をキャンセルすることができる。また、容量検出回路を非常に小型の携帯機器などに搭載した場合など、機器が置かれた環境によってベース容量が変化する場合には、使用する直前にベース電荷量のキャンセル値の再設定のみ(S4~S7)をキャリブレーションとして行うことも可能である。
 以上のように本実施の形態によれば、被検出容量Cxに充電された電荷量のうち指の有無に関係の無いベース電荷量に対応する電荷量をベース電荷量キャンセル機構15で引き抜き、ベース電荷量が引き抜かれた電荷量をチャージアンプ13で電圧に変換するので、被検出容量Cxに含まれる大きな固定成分を見かけ上キャンセルすることで、センサのベース容量が非常に大きくかつ指の有無による容量の差が小さなセンサでも必要な出力レベルを得ることができる。
 また、本実施の形態によれば、ベース電荷量キャンセル機構15はセンサの固定成分に対応する電荷量と同等の電荷量を発生させるための調整機能を備えたので、センサの配置場所の違いにより固定容量の大きさが異なる場合でも、その大きさに合わせたキャンセル電荷量を設定することができ、常に必要な出力レベルを得ることができる。
 また、本実施の形態によれば、充電ステップおよびそれに続く1回もしくは複数回のベース容量キャンセルステップおよびチャージアンプへの電荷転送ステップを1組とするシーケンスを繰り返し行うことで、少ないセンサ容量変化を効率よく必要なレベルの電圧に変換して出力することができる。
 なお、以上の説明では、チャージアンプ13の後段に接続したADコンバータ16でチャージアンプ出力電圧をデジタル値に変換しているが、チャージアンプ13の後段にコンパレータとコンパレータの出力をディレイ素子を介して電荷量に変換し、チャージアンプ13の入力にフィードバックする構成とすることで、ΔΣ型のADコンバータを実現する構成としても良い。
 図8はチャージアンプ13の後段にΔΣ型のADコンバータを実現した変形例を示す図である。オペアンプOP_iの出力をコンパレータCMP_adにより0、1の信号に変換した後、ロジック回路で構成されたディジタルフィルタ17を備えて0、1のビットストリームを多ビット化することにより、ΔΣ型のADコンバータを実現している。
 この場合、コンパレータCMP_adの出力をディレイ素子Dを介して容量C_fb、スイッチSW_fr、定電圧源V_thで構成された電荷発生機構により一定電荷を差し引く様にフィードバック機構を備え、1次のΔΣ型ADコンバータとして動作する。出力のダイナミックレンジを最適にするため、容量C_fbの大きさとV_thの大きさは必要な分解能で設定できるようにC_fbはコンデンサアレイ、定電圧源V_thは充電機構11に含まれるレンジ調整機構12と同様の構成で実現する。
 次に、以上のように構成された近接容量検出回路が適用された容量センサモジュールについて説明する。
 図9は人の指の近接検知を行う容量センサモジュールの概略的な構成例を示す図である。
 同図に示す容量センサモジュールは、センサ部20、容量検出回路22と、制御部23とからなり、静電容量の物理量を電気信号に変換してホスト24側に送出する。制御部23はハードウェアもしくはソフトウェアから構成され、信号のノイズ除去機能も含まれる。
 容量検出回路22からセンサ部20を見たときの静電容量の大きさをCxとする。このとき、センサ部20と接地との静電容量は、センサ電極および回路から当該センサ電極までの配線と接地との容量Cbとなり、センサ部20の電極と指と間の静電容量をCf、人体と接地との静電容量をCbdとすると、以下の関係式で表わされる。
   Cx=Cb+(Cf×Cbd)/(Cf+Cbd)
右辺の第2項ではCf<<Cbdなので実質右辺はCb+Cfとなる。
 ここで、センサ部20に指が近接する場合、Cfが存在することになるが、指が無い場合はCbのみが検出される。たとえば、容量センサモジュールを静電スイッチとして使う場合、静電スイッチがLCDモニタの周辺に設置される。図10にLCDモジュールの画枠部分に静電スイッチ(容量センサ)を配置した例を示す。LCDモジュールは通常金属のシャーシ31で筐体ができており、かつノイズ対策のため接地されている。LCDモニタの薄型化に対応して、LCDモジュールの画枠部分に配置する静電スイッチ(センサ部20)の操作部分も薄型化が必須となる。図10に示すように、センサ部20をシャーシ31に貼り付けるように配置することになる。そのため、センサ部20と接地との距離が1mm以下となり、Cbの大きさが数10pFと大きくなる一方、Cfが0.1pF以下となる場合も想定される。このことを考えると必要な感度、ダイナミックレンジが得られない可能性がある。
 そこで、上述した近接容量検出回路を用いてベース電荷量キャンセル機構15でベース電荷量となるCbを効率的に検出対象から排除すると共に、ベース電荷量キャンセル及び電圧変換のステップ(積分回数)を繰り返すことで必要な感度を得ることができる。
 次に、本実施の形態方式と従来方式での出力値の比較例について説明する。
 図11はセンサ部の構成を同じにして、本実施の形態方式と従来方式での出力値を比較した比較結果を示している。従来方式の場合にはベース容量15pFの場合および0.1pFの静電容量変化ではダイナミックレンジがとれず計測不能であったが、本実施の形態方式では計測可能であった。全体的には従来方式に比べて2倍以上のダイナミックレンジが取れる結果となった。
 本発明は、非常に微小な静電容量の検出が要求される近接容量検出回路及び容量センサモジュールに適用可能である。
 本出願は、2009年2月20日出願の特願2009-037925に基づく。この内容は、全てここに含めておく。

Claims (9)

  1.  被検出容量を充電する充電機構と、
     前記被検出容量に充電された電荷量のうち転送されてきた電荷量を電圧に変換するチャージアンプと、
     前記被検出容量に充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を、前記チャージアンプへ転送する過程で引き抜くベース電荷量キャンセル機構と、
    を具備したことを特徴とする近接容量検出回路。
  2.  前記充電機構は、前記被検出容量に電荷を与えるための定電圧を調整するレンジ調整機構を備えることを特徴とする請求項1記載の近接容量検出回路。
  3.  前記ベース電荷量キャンセル機構は、前記固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構を備えたことを特徴とする請求項1記載の近接容量検出回路。
  4.  前記ベース電荷量キャンセル機構は、前記レンジ調整機構によって調整された充電電圧において発生する前記固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構を備えたことを特徴とする請求項2記載の近接容量検出回路。
  5.  前記容量調整機構は、異なる容量を持つ複数のコンデンサが接離可能に組み合わされたコンデンサアレイであることを特徴とする請求項3又は請求項4記載の近接容量検出回路。
  6.  前記チャージアンプの後段に接続されたコンパレータの出力をディレイ素子を介して電荷量に変換し、前記チャージアンプの入力にフィードバックすることでΔΣ型のADコンバータを構成したことを特徴とする請求項1記載の近接容量検出回路。
  7.  請求項1記載の近接容量検出回路を用いた近接容量検出方法であって、
     前記充電機構から前記被検出容量に充電する充電ステップと、前記被検出容量に充電された電荷量を前記チャージアンプへ電荷転送すると共にその過程で固定電荷量に対応する電荷量を引き抜く1回又は複数回の電荷転送及び固定電荷キャンセルステップを1組とするシーケンスを繰り返し行うことを特徴とする近接容量検出方法。
  8.  被検出体の有無により変化する被検出容量を有するセンサ部と、
     前記被検出容量を充電する充電機構と、
     前記被検出容量に充電された電荷量のうち転送されてきた電荷量を電圧に変換するチャージアンプと、
     前記被検出容量に充電された電荷量のうち被検出体の有無に関係なく固定的に存在する固定電荷量に対応する電荷量を、前記チャージアンプへ転送する過程で引き抜くベース電荷量キャンセル機構と、
     前記チャージアンプ出力に基づいて被検出体の有無に関する判定信号を出力する制御部と、
    を具備したことを特徴とする容量センサモジュール。
  9.  前記充電機構は、前記被検出容量に電荷を与えるための定電圧を調整するレンジ調整機構を備えており、
     前記ベース電荷量キャンセル機構は、前記レンジ調整機構によって設定された充電電圧において発生する前記固定電荷量に対応する電荷量と同等の容量を設定可能な容量調整機構を備えていることを特徴とする請求項8記載の容量センサモジュール。
     
PCT/JP2010/051509 2009-02-20 2010-02-03 近接容量検出回路及び容量センサモジュール WO2010095513A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009037925 2009-02-20
JP2009-037925 2009-02-20

Publications (1)

Publication Number Publication Date
WO2010095513A1 true WO2010095513A1 (ja) 2010-08-26

Family

ID=42633798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051509 WO2010095513A1 (ja) 2009-02-20 2010-02-03 近接容量検出回路及び容量センサモジュール

Country Status (1)

Country Link
WO (1) WO2010095513A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139637A1 (de) * 2012-03-21 2013-09-26 Huf Hülsbeck & Fürst Gmbh & Co. Kg Kapazitive sensoranordnung zur schaltung einer türöffnung an einem kraftfahrzeug und zugehöriges verfahren
CN113031081A (zh) * 2021-03-10 2021-06-25 维沃移动通信有限公司 接近传感检测电路、电容校准方法、装置及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383358A (ja) * 1989-08-28 1991-04-09 Horiba Ltd 容量測定回路
JPH11326409A (ja) * 1998-05-11 1999-11-26 Mitsubishi Electric Corp 容量検出回路
JP2001249028A (ja) * 2000-03-02 2001-09-14 Denso Corp 信号処理装置
JP2008157920A (ja) * 2006-11-29 2008-07-10 Aisin Seiki Co Ltd 静電容量検出装置
JP2008252520A (ja) * 2007-03-30 2008-10-16 Nec Electronics Corp ディザ回路及びディザ回路を備えたアナログデジタル変換器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383358A (ja) * 1989-08-28 1991-04-09 Horiba Ltd 容量測定回路
JPH11326409A (ja) * 1998-05-11 1999-11-26 Mitsubishi Electric Corp 容量検出回路
JP2001249028A (ja) * 2000-03-02 2001-09-14 Denso Corp 信号処理装置
JP2008157920A (ja) * 2006-11-29 2008-07-10 Aisin Seiki Co Ltd 静電容量検出装置
JP2008252520A (ja) * 2007-03-30 2008-10-16 Nec Electronics Corp ディザ回路及びディザ回路を備えたアナログデジタル変換器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139637A1 (de) * 2012-03-21 2013-09-26 Huf Hülsbeck & Fürst Gmbh & Co. Kg Kapazitive sensoranordnung zur schaltung einer türöffnung an einem kraftfahrzeug und zugehöriges verfahren
CN104137419A (zh) * 2012-03-21 2014-11-05 胡夫·许尔斯贝克和福斯特有限及两合公司 控制汽车门开启的电容传感器组件及相应操作方法
CN104137419B (zh) * 2012-03-21 2019-01-11 胡夫·许尔斯贝克和福斯特有限及两合公司 控制汽车门开启的电容传感器组件及相应操作方法
CN113031081A (zh) * 2021-03-10 2021-06-25 维沃移动通信有限公司 接近传感检测电路、电容校准方法、装置及电子设备
CN113031081B (zh) * 2021-03-10 2024-06-04 维沃移动通信有限公司 接近传感检测电路、电容校准方法、装置及电子设备

Similar Documents

Publication Publication Date Title
CN108124474B (zh) 检测电容的装置、电子设备和检测压力的装置
US9702914B2 (en) Capacitance measurement device and electronic device thereof
US10949041B2 (en) Capacitance detection circuit, capacitance detection method, touch detection apparatus, and terminal device
KR101908286B1 (ko) 커패시턴스 검출 방법 및 이를 이용하는 커패시턴스 검출 장치
JP5980922B2 (ja) タッチ感知方法及び装置
CN105574520B (zh) 用于指纹传感器的信号处理电路及方法
EP2063535B1 (en) Ad converter circuit and optical sensor
US20090032312A1 (en) Touch Position Detector of Capacitive Touch Panel and Method for Detecting the Touch Position
CN107092407B (zh) 感应电容测量装置
US20050024065A1 (en) capacitance detector, method of detecting capacitance, and fingerprint sensor
US20120256868A1 (en) Apparatus for sensing a touch
WO2018085972A1 (zh) 电容检测电路及其控制方法
CN107615226B (zh) 积分电路及电容感测电路
EP3291070B1 (en) Integrator circuit device and operating method thereof
KR102244215B1 (ko) 터치 감지 장치
CN111460882B (zh) 电容式图像感测装置与电容式图像感测方法
US8384689B2 (en) Switched-capacitor tracking apparatus of touch panel and operating method thereof
TWI474233B (zh) 感測裝置、觸控感測系統及顯示裝置
EP3971694B1 (en) Noise measurement circuit, self-capacitance measurement method, touch chip and electronic device
US20110273193A1 (en) Touch detection method and related touch control device
EP3446253A1 (en) Fingerprint sensing system with adaptive power control
WO2010095513A1 (ja) 近接容量検出回路及び容量センサモジュール
CN110720212B (zh) 用于像素阵列的信号处理电路和方法以及图像传感器
US9658724B2 (en) Touch sensing circuit and method thereof
US10778238B1 (en) Dual-slope analog to digital converter having parallel counting structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP