CN107615226B - 积分电路及电容感测电路 - Google Patents

积分电路及电容感测电路 Download PDF

Info

Publication number
CN107615226B
CN107615226B CN201680010451.0A CN201680010451A CN107615226B CN 107615226 B CN107615226 B CN 107615226B CN 201680010451 A CN201680010451 A CN 201680010451A CN 107615226 B CN107615226 B CN 107615226B
Authority
CN
China
Prior art keywords
switch
coupled
circuit
capacitor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201680010451.0A
Other languages
English (en)
Other versions
CN107615226A (zh
Inventor
文亚南
杨富强
梁颖思
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Goodix Technology Co Ltd
Original Assignee
Shenzhen Goodix Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Goodix Technology Co Ltd filed Critical Shenzhen Goodix Technology Co Ltd
Publication of CN107615226A publication Critical patent/CN107615226A/zh
Application granted granted Critical
Publication of CN107615226B publication Critical patent/CN107615226B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/0418Control or interface arrangements specially adapted for digitisers for error correction or compensation, e.g. based on parallax, calibration or alignment
    • G06F3/04182Filtering of noise external to the device and not generated by digitiser components
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/005Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

一种适用于触控技术领域的积分电路,包含有阻抗单元(142)、放大器(Amp)、积分电容(CI)、放电电容(CF)、第一开关(SW1)和第二开关(SW2);放大器(Amp)包含有第一输入端;第二输入端,以及输出端,用来输出一输出信号;积分电容(CI)耦接于第一输入端与输出端之间;放电电容(CF)包含有第一端和第二端,第一端用来接收第一电压(VS);第一开关(SW1),耦接于放大器(Amp)的第一输入端与放电电容(CF)的第二端之间;以及第二开关(SW2),耦接于放电电容(CF)的第一端与该第二端之间。本申请提供的积分电路能有效感测电容的变化。

Description

积分电路及电容感测电路
技术领域
本申请适用于触控技术领域,尤其涉及一种能有效感测电容变化的积分电路及电容感测电路。
背景技术
随着科技日益进步,近年来各种电子产品的操作接口逐渐人性化。举例而言,透过触控面板,使用者可直接以手指或触控笔在屏幕上操作、输入信息/文字/图样,省去使用键盘或按键等输入装置的麻烦。实际上,触控面板通常是由感应面板和设置于感应面板后方的显示器组成。电子装置是根据使用者在感应面板上所触碰的位置,以及当时显示器所呈现的画面,来判断该次触碰的意涵,并执行相对应的操作结果。
电容式触控技术利用感测待测电路中待测电容的电容变化量来判读触碰事件,现有的电容式触控技术可分为自容式(Self-Capacitance)和互容式(Mutual-Capacitance)两种,自容式触控面板或互容式触控面板中的电容感测电路可将待测电容的电容转换成模拟输出信号,并利用模拟数字转换器将模拟输出信号转换成数字信号,以供后端电容判断电路进行判读。然而,无论是自容式触控面板或是互容式触控面板,其待测电容的电容变化量都相当微小,而使得该模拟输出信号受到电容变化而产生的信号变化量也相应地微小。从另一角度来说,该模拟输出信号可包含有固定信号和变动信号,其中该变动信号为该模拟输出信号受到电容变化而产生的信号变化量,电容感测电路根据该模拟输出信号中变动信号的大小来判断待测电容的电容变化量。换句话说,变动信号对电容感测具有关键性影响。为了正确地解析待测电容的电容变化,现有技术利用具有大动态范围(Dynamic Range)以及高分辨率的模拟数字转换器来解析该模拟输出信号,造成电路复杂度以及生产成本增加;另一方面,模拟数字转换器的大动态范围及高分辨率大多耗费在解析该模拟输出信号的固定信号部份,而对于对电容感测产生关键影响的变动信号反而无法有效地解析。因此,现有技术实有改善的必要。
发明内容
本发明部分实施例所要解决的技术问题在于提供一种积分电路,以有效感测电容的变化。
为了解决上述技术问题,本申请部分实施例提供了一种积分电路,包括:
阻抗单元;放大器,包含有:
第一输入端,耦接于所述阻抗单元;第二输入端;以及
输出端,用来输出一输出信号;积分电容,耦接于所述第一输入端与所述输出端之间;放电电容,包含有:
第一端,用来接收第一电压;以及
第二端;
第一开关,耦接于所述放大器的第一输入端与所述放电电容的第二端之间;以及
第二开关,耦接于所述放电电容的第一端与第二端之间。
为了解决上述技术问题,本申请还提供了电容感测电路,用来感测待测电路的待测电容,包括:
第一模拟信号转换器,用来产生第一数字信号;
电容判断电路,耦接于所述第一模拟信号转换器,用来根据所述第一数字信号,判断所述待测电容的电容变化;以及
第一积分电路,耦接于所述待测电路与所述第一模拟信号转换器之间,所述第一积分电路包括:
第一放大器,包含有:
第一输入端;第二输入端;以及
输出端,用来输出第一输出信号至所述第一模拟信号转换器;
第一积分电容,耦接于所述第一放大器的第一输入端与输出端之间;
第一放电电容,包括:
第一端,用来接收第一电压;以及
第二端;
第一开关,耦接于所述第一放大器的第一输入端与所述放电电容的第二端之间;以及
第二开关,耦接于所述第一放电电容的第一端与第二端之间。
本申请部分实施例提供的积分电路利用放电电容及连接于放电电容的开关,将输出信号限制在最大电压与最小电压之间,如此一来,即使积分电路在进行长时间之后,总积分电压可远大于模拟信号转换器之动态范围,而不会造成模拟信号转换器进入饱和状态。因此,本申请的积分电路可降低对模拟信号转换器之动态范围的要求,进而降低电路复杂度及生产成本,且可以有效感测电容的变化。对于具有一定精度的模拟信号转换器,本申请也能提高电容感测电路的精度,从而提高系统的信噪比(Signal to Noise Ratio,SNR)。另外,由于放电电容能有效减小积分的最大电压,因此积分电路中的积分电容可用相对较小的电容,从而减小电路面积。
附图说明
图1为本申请实施例一提供的电容感测电路的示意图;
图2为本申请部分实施例提供的多个波形图;
图3为本申请实施例一提供的图1中的积分电路的示意图;
图4为本申请实施例二提供的电容感测电路的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及部分实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
请参考图1,图1为本申请实施例电容感测电路10的示意图。电容感测电路10将信号TX施加于待测电路100,并从待测电路100接收信号RX,电容感测电路10根据信号TX和信号RX感测待测电路100的待测电容CUT
电容感测电路10包含有一积分电路104、模拟信号转换器108、电容判断电路102、前端电路112和混波器106。混波器106耦接于待测电路100与积分电路104之间,包含乘法器MP和波形产生器160,混波器106将一输入信号VIN输入至积分电路104;积分电路104根据输入信号VIN产生输出信号VOUT;模拟信号转换器108耦接于积分电路104,模拟信号转换器108用来将输出信号VOUT转换成数字信号VD;电容判断电路102耦接于模拟信号转换器108,用来根据数字信号VD判断待测电容CUT的电容变化。
前端电路112包含由主动组件所构成的放大器和滤波器,前端电路112可借由调整放大器的增益来调整信号RX的大小,使得信号RX不超过后端电路组件的操作范围,滤波器用来滤除噪声。整体而言,前端电路112可灵活针对噪声和干扰信号进行滤波放大等操作,增强了电容感测电路10对噪声的抵抗性,进一步提升电容感测电路10的信噪比;另外,含有主动组件的前端电路112也可以增强电路的驱动能力,减少后端电路对前端待测电路的100的影响(现有技术中,利用被动组件以电荷转移或者电荷分享的方式撷取出待测电路中待测电容所储存的电荷,需要电路中有一电容和待测电容的大小相当或者更大,由此会使电路的面积增大),含有主动组件时可调节信号大小,由此后端的电容不需要和待测电容匹配,可有效减小电路的面积。
积分电路104包含有:放大器Amp、积分电容CI、放电电容CF、阻抗单元142、控制信号产生器140和开关SW1、SW2。放大器Amp包含有负输入端(即第一输入端,标示有「-」号)、正输入端(即第二输入端,标示有「+」号)和输出端。放大器Amp的正输入端接收参考电压VREF,输出端用来输出输出信号VOUT。阻抗单元142可包含一电阻R,电阻R的一端耦接于放大器Amp的负输入端,另一端接收输入信号VIN,电阻R用来调整积分电路104的积分/滤波特性以及输入信号VIN与输出信号VOUT之间的比例/增益,使得输出信号VOUT-可准确地位于模拟信号转换器108的动态范围中。积分电容CI耦接于放大器Amp的负输入端与输出端之间,放电电容CF的第一端用来接收电压VS,第二端耦接于开关SW1,其中,电压VS小于参考电压VREF。开关SW1耦接于放大器Amp的负输入端与放电电容CF的第二端之间,而开关SW2耦接于放电电容CF的第一端与第二端之间。开关SW1、SW2受控于控制信号产生器140,即控制信号产生器140产生控制信号CTL1、CTL2,以分别控制开关SW1、SW2的导通状态。
电容感测电路10与积分电路104的操作原理叙述如下。在第一阶段T1中,控制信号产生器140产生控制信号CTL1使开关SW1为断开,此时积分电路104持续地对输入信号VIN进行积分,即积分电容CI持续地累积电荷,输出信号VOUT也持续地下降。另外,在第一阶段T1的一段时间中,控制信号产生器140产生控制信号CTL2使开关SW2为导通,放电电容CF受到开关SW2为导通的影响而没有储存电荷。在第二阶段T2中,控制信号产生器140产生控制信号CTL1、CTL2使开关SW1导通而开关SW2为断开。此时因电压VS小于参考电压VREF,累积于积分电容CI的电荷会释放到放电电容CF,即对放电电容CF充电,待放电电容CF充电至饱和后,即可继续对输入信号VIN进行积分。其中,因积分电容CI耦接至放大器Amp的负输入端,当累积于积分电容CI的电荷释放到放电电容CF时,会造成输出信号VOUT瞬间被拉高,直到放电电容CF充电至饱和,其中,输出信号VOUT瞬间被拉高的幅度为
Figure GPA0000246126810000071
在放电电容CF充电至饱和后,输出信号VOUT才会继续因积分电路104对输入信号VIN进行积分而持续地下降。
具体来说,请参考图2,图2为输出信号VOUT和控制信号CTL1、CTL2随时间变化的波形图,其中当控制信号CTL1、CTL2为高电位时,开关SW1、SW2为导通,当控制信号CTL1、CTL2为低电位时,开关SW1、SW2为断开。积分电路104在时间t0时开始运作,此时输出信号VOUT的电压为电压VREF。积分电路104开始运作后,控制信号产生器140控制开关SW1、SW2使得积分电路104第一次进入第一阶段T1。在第一阶段T1中,积分电路104清除放电电容CF的电荷,且积分电路104持续地对输入信号VIN进行积分,积分电容CI持续地累积电荷,输出信号VOUT持续地下降。在时间t1时,控制信号产生器140控制开关SW1、SW2使得积分电路104第一次进入第二阶段T2,在第二阶段T2中,因累积于积分电容CI的电荷释放到放电电容CF,使得输出信号VOUT被拉高,直到放电电容CF充电至饱和(对应至时间t2)。在时间t2后,控制信号产生器140可控制开关SW1使积分电路104第二次进入第一阶段T1,期间积分电路104继续地对输入信号VIN进行积分,而输出信号VOUT继续下降,在积分电路104对输入信号VIN进行积分的过程中,控制信号产生器140可控制开关SW2以清除放电电容CF的电荷。控制信号产生器140周而复始地控制开关SW1使得积分电路104来回操作于第一阶段T1与第二阶段T2之间,而于每一次的第一阶段T1中,控制信号产生器140控制开关SW2以清除放电电容CF的电荷,直到时间t3时,输出信号VOUT的信号值为电压Vt,且在操作时间区间TOP之内(操作时间区间TOP为从时间t0到时间t3之间的时间区间),积分电路104进入第二阶段T2的次数为N次,即在操作时间区间TOP内积分电路104总共计有N次进入第二阶段T2。其中,控制信号产生器140可根据频率信号周期性地使积分电路104来回操作于第一阶段T1与第二阶段T2之间。另外,电压Vini代表积分电路104从开始运作到第一次进入第二阶段T2之间输出信号VOUT因进行积分而下降的变化量。
由图2可知,自第一次进入第二阶段T2后,输出信号VOUT的变化范围落在最大电压Vmax与最小电压Vmin之间,且最大电压Vmax与最小电压Vmin之间的电压幅度差为
Figure GPA0000246126810000081
而积分电路104从时间t0到时间t3之间的总积分电压V0
Figure GPA0000246126810000082
(即从时间t0到时间t3之间积分电容CI所累积的总积分电荷量为CI(V0-VREF))。
为了感测待测电容CUT的电容变化,电容感测电路10可于第一时间通过积分电路104进行前述操作,而得到第一总积分电压VO1
Figure GPA0000246126810000091
电容感测电路10可另外于第二时间再一次通过积分电路104进行前述操作,而得到第二总积分电压VO2
Figure GPA0000246126810000092
其中电压Vt1和电压Vt2分别为积分电路104在第一时间和第二时间进行操作时间区间TOP的积分操作后输出信号VOUT的电压值,次数N1与次数N2分别为积分电路104在第一时间和第二时间进行操作时间区间TOP的积分操作后积分电路104进入第二阶段T2的次数。
需注意的是,待测电容CUT的电容变化相关于第一总积分电压VO1与第二总积分电压VO2的电压差值VDIFF,而电压差值VDIFF
Figure GPA0000246126810000093
换句话说,待测电容CUT的电容变化仅与次数N1、次数N2、电压Vt1和电压Vt2相关,若适当设计使得次数N1与次数N2相等,则电压差值VDIFF仅与电压Vt1和电压Vt2相关,即待测电容CUT的电容变化仅与电压Vt1和电压Vt2相关。另外,电压Vt1和电压Vt2的范围落在最大电压Vmax与最小电压Vmin之间,换句话说,模拟信号转换器108的动态范围(Dynamic Range)仅需要在最大电压Vmax与最小电压Vmin之间,即降低了对模拟信号转换器108的动态范围的要求。
由上述可知,本申请实施例利用积分电路104,将输出信号VOUT限制在最大电压Vmax与最小电压Vmin之间,即使积分电路104在进行积分操作时间区间TOP之后,总积分电压V0可远大于模拟信号转换器108的动态范围,而不会造成模拟信号转换器108进入饱和状态。相较于现有技术,本申请降低对模拟信号转换器108的动态范围的要求,进而降低电路复杂度和生产成本。对于具有一定精度的模拟信号转换器,本申请也能提高电容感测电路的精度和系统的信噪比。另外,由于放电电容能有效减小积分的最大电压,因此积分电路104中的积分电容CI可用相对较小的电容,从而减小电路面积。
需注意的是,前述实施例是用以说明本申请的概念,本领域技术人员当可据以做不同的修饰,而不限于此。举例来说,控制信号产生器140不限于根据频率信号周期性地使积分电路104来回操作于第一阶段T1与第二阶段T2之间,控制信号产生器140可根据输出信号VOUT来作为产生控制信号CTL1、CTL2的判断依据。例如,当输出信号VOUT低于最小电压Vmin时,控制信号产生器140产生控制信号CTL1、CTL2使积分电路104进入第二阶段T2,以对放电电容CF充电及拉高输出信号VOUT
另外,在积分电路104中利用电阻R来调整输入信号VIN与输出信号VOUT之间的比例,而不限于此,另可利用切换式电容模组来调整输入信号VIN与输出信号VOUT之间的比例,即可利用切换式电容模组取代积分电路104中的电阻R。举例来说,请参考图3,图3为本申请实施例提供的积分电路304的示意图。积分电路304与积分电路104类似,故相同组件沿用相同符号。与积分电路104不同的是,积分电路304包含阻抗单元,而阻抗单元包含切换式电容模组302,切换式电容模组302的一端耦接于放大器Amp的负输入端,另一端用来接收输入信号VIN
切换式电容模组302包含电容CS和开关S1、S2、S3、S4,开关S1耦接于电容CS的第一端,用来接收输入信号VIN,开关S2耦接于电容CS的第一端与接地端之间,开关S3耦接于电容CS的第二端与放大器Amp的负输入端之间,开关S4耦接于电容CS的第二端与接地端之间。开关S1、S2、S3、S4可受控于频率控制信号ph1、ph2,其中频率控制信号ph1、ph2为相互正交的频率控制信号(即频率控制信号ph1、ph2为高电位的时间不相互重叠)。具体来说,在一实施例中,频率控制信号ph1可用来控制开关S1、S3的导通状态,而频率控制信号ph2可用来控制开关S2、S4的导通状态;于另一实施例中,频率控制信号ph1可用来控制开关S1、S4的导通状态,而频率控制信号ph2可用来控制开关S2、S3的导通状态。只要利用切换式电容模组302调整输入信号VIN与输出信号VOUT之间的比例,并利用相互正交的频率控制信号ph1、ph2控制开关S1、S2、S3、S4的导通状态,皆属于本申请的范畴。
另外,在电容感测电路10中,仅针对信号RX的同相分量(In Phase Component)进行积分,而不限于此,亦可针对信号RX的同相分量以及正交分量(Quadrature Component)同时进行积分,以对待测电容CUT达到更精准的判读。举例来说,请参考图4,图4为本申请实施例提供的电容感测电路40的示意图。电容感测电路40与电容感测电路10类似,故相同组件沿用相同符号。与电容感测电路10相同的是,电容感测电路40利用积分电路404_a对信号RX的同相分量进行积分;而与电容感测电路10不同的是,电容感测电路40利用包含于混波器406的相位旋转器462和乘法器MP2撷取出信号RX的正交分量,并利用积分电路404_b对信号RX的正交分量进行积分。积分电路404_a、404_b分别耦接于模拟信号转换器408_a、408_b,模拟信号转换器408_a、408_b用来将积分电路404_a、404_b所产生的输出信号VOUT1、VOUT2分别转换成数字信号VD1、VD2,电容判断电路102即可根据数字信号VD1、VD2判断待测电容CUT的电容变化,使得电容判读更为准确。
另外,控制信号产生器440产生控制信号CTL1、CTL2、CTL3、CTL4,以分别控制开关SW1、SW2、SW3、SW4的导通状态,其控制开关导通机制可参考前述相关段落,在此不再赘述。需注意的是,在图4中,积分电路404_a、404_b与积分电路104之间具有相同的电路架构,而不限于此。本实施例的积分电路可与积分电路304之间具有相同的电路架构(即以切换式电容模组302取代积分电路404_a、404_b中的电阻R1、R2),亦属于本申请的范畴。
由上述可知,本申请实施例的积分电路及电容感测电路利用放电电容及耦接于放电电容的开关,将输出信号限制在最大电压与最小电压之间,如此一来,即使积分电路在进行长时间积分之后,总积分电压可远大于模拟信号转换器的动态范围,而不会造成模拟信号转换器进入饱和状态。因此,本申请的积分电路及电容感测电路可降低对模拟信号转换器的动态范围的要求,进而降低电路复杂度和生产成本。对于具有一定精度的模拟信号转换器,本申请也能提高电容感测电路的精度和系统的信噪比。另外,由于放电电容能有效减小积分的最大电压,因此积分电路中的积分电容可用相对较小的电容,从而减小电路面积。
以上所述仅为本发明的部分实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (22)

1.一种积分电路,其中,包括:
阻抗单元;
放大器,包含有:
第一输入端,耦接于所述阻抗单元;
第二输入端;以及
输出端,用来输出一输出信号;
积分电容,耦接于所述第一输入端与所述输出端之间;
放电电容,包含有:
第一端,用来接收第一电压;以及
第二端;
第一开关,耦接于所述放大器的第一输入端与所述放电电容的第二端之间;以及
第二开关,耦接于所述放电电容的第一端与第二端之间;
在一阶段中一电流流过所述积分电容且无电流流过所述放电电容;
其中,所述放大器的第二输入端接收参考电压,所述第一电压小于所述参考电压,所述输出信号的变化范围大小正比于所述放电电容与所述积分电容的一电容值比与所述参考电压与所述第一电压的一电压差。
2.如权利要求1所述的积分电路,其中,还包括:控制信号产生器,用来产生第一控制信号和第二控制信号,以分别控制所述第一开关和所述第二开关的导通状态。
3.如权利要求2所述的积分电路,其中,所述控制信号产生器根据频率信号或所述输出信号,产生所述第一控制信号和所述第二控制信号。
4.如权利要求1所述的积分电路,其中,所述阻抗单元包括电阻,所述电阻的一端耦接于所述放大器的第一输入端,电阻的另一端用来接收输入信号。
5.如权利要求1所述的积分电路,其中,所述阻抗单元包括切换式电容模组,切换式电容模组的一端耦接于所述放大器的第一输入端,切换式电容模组的另一端用来接收输入信号。
6.如权利要求5所述的积分电路,其中,所述切换式电容模组包括:
第一切换电容、第三开关、第四开关、第五开关和第六开关;所述第三开关和所述第四开关耦接于所述第一切换电容的第一端,所述第五开关和所述第六开关耦接于所述第一切换电容的第二端,所述第三开关接收所述输入信号,所述第五开关耦接于所述放大器的第一输入端,所述第四开关和所述第六开关耦接于接地端。
7.一种电容感测电路,用来感测待测电路的待测电容,其中,包括:
前端电路,耦接于所述待测电路,包含有至少一主动组件;
第一模拟信号转换器,用来产生第一数字信号;
电容判断电路,耦接于所述第一模拟信号转换器,用来根据所述第一数字信号,判断所述待测电容的电容变化;以及
第一积分电路,耦接于所述待测电路与所述第一模拟信号转换器之间,所述第一积分电路包括:
阻抗单元;
第一放大器,包含有:
第一输入端,耦接于所述阻抗单元;
第二输入端;以及
输出端,用来输出第一输出信号至所述第一模拟信号转换器;
第一积分电容,耦接于所述第一放大器的第一输入端与输出端之间;
第一放电电容,包括:
第一端,用来接收第一电压;以及
第二端;
第一开关,耦接于所述第一放大器的第一输入端与所述放电电容的第二端之间;以及
第二开关,耦接于所述第一放电电容的第一端与第二端之间;
在一阶段中一电流流过所述第一积分电容且无电流流过所述第一放电电容;
其中,所述第一放大器的第二输入端接收参考电压,所述第一电压小于所述参考电压,所述输出信号的变化范围大小正比于所述放电电容与所述积分电容的一电容值比与所述参考电压与所述第一电压的一电压差。
8.如权利要求7所述的电容感测电路,其中,所述第一积分电路还包括:控制信号产生器,用来产生第一控制信号和第二控制信号,以分别控制所述第一开关和所述第二开关的导通状态。
9.如权利要求8所述的电容感测电路,其中,所述控制信号产生器根据频率信号或所述第一输出信号,产生所述第一控制信号和所述第二控制信号。
10.如权利要求7所述的电容感测电路,其中,还包括混波器,耦接于所述前端电路与所述第一积分电路之间。
11.如权利要求10所述的电容感测电路,其中,所述阻抗单元包括第一电阻,所述第一电阻的一端耦接于所述第一放大器的第一输入端,所述第一电阻的另一端耦接于所述混波器。
12.如权利要求10所述的电容感测电路,其中,所述阻抗单元包括第一切换式电容模组,所述第一切换式电容模组的一端耦接于所述第一放大器的第一输入端,所述第一切换式电容模组的另一端耦接于所述混波器。
13.如权利要求12所述的电容感测电路,其中,所述第一切换式电容模组包括:第一切换电容、第三开关、第四开关、第五开关和第六开关;所述第三开关和所述第四开关耦接于所述第一切换电容的第一端,所述第五开关和所述第六开关耦接于所述第一切换电容的第二端,所述第三开关接收输入信号,所述第五开关耦接于所述放大器的第一输入端,所述第四开关和所述第六开关耦接于接地端。
14.如权利要求10所述的电容感测电路,其中,所述混波器包括第一乘法器和波形产生器;所述第一乘法器耦接于所述待测电路与所述第一积分电路之间,所述波形产生器耦接于所述第一乘法器。
15.如权利要求14所述的电容感测电路,其中,所述混波器还包括相位旋转器和第二乘法器;所述相位旋转器耦接于所述波形产生器与所述第二乘法器之间。
16.如权利要求15所述的电容感测电路,其中,还包括:
第二模拟信号转换器,耦接于所述电容判断电路,用来产生第二数字信号;以及
第二积分电路,耦接于所述混波器的第二乘法器与所述第二模拟信号转换器之间,所述第二积分电路包括:
第二放大器,包含有:
第一输入端;
第二输入端;以及
输出端,用来输出第二输出信号至所述第二模拟信号转换器;
第二积分电容,耦接于所述第二放大器的第一输入端与输出端之间;
第二放电电容,包括:
第一端,用来接收所述第一电压;以及
第二端;
第七开关,耦接于所述第二放大器的第一输入端与所述第二放电电容的第二端之间;以及
第八开关,耦接于所述第二放电电容的第一端与第二端之间;
其中,所述电容判断电路根据所述第一数字信号和所述第二数字信号,判断所述待测电容的电容变化。
17.如权利要求16所述的电容感测电路,其中,还包括:控制信号产生器,用来产生第三控制信号和第四控制信号,以分别控制所述第七开关和所述第八开关的导通状态。
18.如权利要求17所述的电容感测电路,其中,所述控制信号产生器根据频率信号或所述第二输出信号,产生所述第三控制信号和所述第四控制信号。
19.如权利要求16所述的电容感测电路,其中,还包括第二电阻,所述第二电阻的一端耦接于所述第二放大器的第一输入端,所述第二电阻的另一端耦接于所述混波器的第二乘法器。
20.如权利要求16所述的电容感测电路,其中,还包括第二切换式电容模组,第二切换式电容模组的一端耦接于所述第二放大器的第一输入端,第二切换式电容模组的另一端耦接于所述第二乘法器。
21.如权利要求20所述的电容感测电路,其中,所述第二切换式电容模组包括:第二切换电容、第九开关、第十开关、第十一开关和第十二开关;所述第九开关和所述第十开关耦接于所述第二切换电容的第一端,所述第十一开关和所述第十二开关耦接于所述第二切换电容的第二端,所述第九开关接收输入信号,所述第十一开关耦接于所述放大器的第一输入端,所述第十开关和所述第十二开关耦接于接地端。
22.如权利要求16所述的电容感测电路,其中,所述第二放大器的第二输入端接收所述参考电压。
CN201680010451.0A 2015-12-31 2016-12-30 积分电路及电容感测电路 Active CN107615226B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2015110317281 2015-12-31
CN201511031728.1A CN106775143B (zh) 2015-12-31 2015-12-31 积分电路及电容感测电路
PCT/CN2016/113974 WO2017114514A1 (zh) 2015-12-31 2016-12-30 积分电路及电容感测电路

Publications (2)

Publication Number Publication Date
CN107615226A CN107615226A (zh) 2018-01-19
CN107615226B true CN107615226B (zh) 2021-06-04

Family

ID=58965334

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201511031728.1A Active CN106775143B (zh) 2015-12-31 2015-12-31 积分电路及电容感测电路
CN201680010451.0A Active CN107615226B (zh) 2015-12-31 2016-12-30 积分电路及电容感测电路

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201511031728.1A Active CN106775143B (zh) 2015-12-31 2015-12-31 积分电路及电容感测电路

Country Status (5)

Country Link
US (1) US10990215B2 (zh)
EP (1) EP3252580A4 (zh)
KR (1) KR101964105B1 (zh)
CN (2) CN106775143B (zh)
WO (2) WO2017113760A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3078596B1 (fr) * 2018-03-02 2020-02-14 Ulis Dispositif haute dynamique pour l'integration d'un courant electrique
CN110506394B (zh) * 2018-03-20 2023-05-05 深圳市汇顶科技股份有限公司 频率产生器
GB201810602D0 (en) * 2018-06-28 2018-08-15 Nordic Semiconductor Asa Mutual capacitance measurement
CN111147052B (zh) * 2019-12-27 2023-08-15 兰州空间技术物理研究所 一种产生相同上升、下降斜率模拟波形的发生电路
CN111595494B (zh) * 2020-05-21 2022-04-19 芯海科技(深圳)股份有限公司 电容检测电路、集成电路、电子设备以及电容检测方法
CN112881810B (zh) * 2021-01-22 2023-06-09 深圳市汇顶科技股份有限公司 检测电路、芯片及相关电子装置
CN113884763B (zh) * 2021-09-30 2022-09-30 深圳市汇顶科技股份有限公司 检波电路及相关电子装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207804A (zh) * 2010-03-31 2011-10-05 意法半导体亚太私人有限公司 电容式感测模拟前端
CN103034364A (zh) * 2011-10-10 2013-04-10 三星电子株式会社 驱动触摸显示面板的方法和执行该方法的触摸显示装置
CN103097994A (zh) * 2010-05-14 2013-05-08 津尼蒂克斯有限公司 具有反相积分器和非反相积分器的积分器电路
CN103676272A (zh) * 2012-09-24 2014-03-26 株式会社日本显示器 液晶显示装置
CN103902123A (zh) * 2014-01-30 2014-07-02 敦泰科技有限公司 能够减小基底电容的自电容触摸传感装置
WO2014208897A1 (ko) * 2013-06-27 2014-12-31 크루셜텍 주식회사 터치 검출 장치 및 방법
CN104615315A (zh) * 2013-11-01 2015-05-13 乐金显示有限公司 触摸感测系统及其驱动方法
CN104731425A (zh) * 2013-12-23 2015-06-24 联阳半导体股份有限公司 电容式传感器电路
CN104808880A (zh) * 2014-01-29 2015-07-29 辛纳普蒂克斯显像装置株式会社 触摸检测电路以及具备该触摸检测电路的半导体集成电路
CN104932762A (zh) * 2014-03-19 2015-09-23 原相科技股份有限公司 可重送驱动信号的并行驱动电容式触控感测装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365204A (en) * 1980-09-08 1982-12-21 American Microsystems, Inc. Offset compensation for switched capacitor integrators
JP5099630B2 (ja) * 2007-11-16 2012-12-19 ルネサスエレクトロニクス株式会社 半導体装置
US8358142B2 (en) * 2008-02-27 2013-01-22 Cypress Semiconductor Corporation Methods and circuits for measuring mutual and self capacitance
US7884662B1 (en) * 2009-09-17 2011-02-08 Himax Technologies Limited Multi-channel integrator
EP2499740A1 (en) * 2009-11-11 2012-09-19 Anagear B.V. Oscillator circuit and method of providing an oscillator output signal
CN102072739A (zh) * 2009-11-23 2011-05-25 奕力科技股份有限公司 电容感测电路以及电容差异感测方法
US20110163768A1 (en) * 2010-01-05 2011-07-07 Sain Infocom Touch screen device, capacitance measuring circuit thereof, and method of measuring capacitance
US9246391B2 (en) * 2010-01-22 2016-01-26 Power Systems Technologies Ltd. Controller for providing a corrected signal to a sensed peak current through a circuit element of a power converter
US9244569B2 (en) * 2010-03-31 2016-01-26 Stmicroelectronics Asia Pacific Pte Ltd Capacitive sensing analog front end
US8390361B2 (en) * 2010-12-28 2013-03-05 Stmicroelectronics Asia Pacific Pte Ltd Capacitive to voltage sensing circuit
KR101202745B1 (ko) * 2011-04-21 2012-11-19 주식회사 실리콘웍스 터치감지회로
JP6043679B2 (ja) * 2012-08-01 2016-12-14 アルプス電気株式会社 静電容量検出回路及び入力デバイス
US9310924B2 (en) * 2012-09-26 2016-04-12 Atmel Corporation Increasing the dynamic range of an integrator based mutual-capacitance measurement circuit
CN103294297B (zh) * 2012-10-11 2016-04-20 上海天马微电子有限公司 信号处理及前置放大电路和触摸屏
CN103837163A (zh) * 2012-11-26 2014-06-04 矽创电子股份有限公司 电容感测电路
CN102968236B (zh) * 2012-11-28 2015-12-23 旭曜科技股份有限公司 电容式触控面板的感测电路及其感测方法
KR101444580B1 (ko) * 2013-02-13 2014-09-25 삼성전기주식회사 정전용량 감지 장치 및 터치 스크린 장치
CN104009625A (zh) * 2013-02-26 2014-08-27 英特希尔美国公司 响应于电容器上电荷来确定信号的特征
CN103713784B (zh) * 2013-04-12 2015-11-25 深圳市汇春科技有限公司 电容式触摸检测电路、装置及其防污渍致误识别的方法
KR20150001489A (ko) * 2013-06-27 2015-01-06 크루셜텍 (주) 터치 검출 장치 및 방법
CN104348448B (zh) * 2013-07-29 2017-03-29 英属开曼群岛商恒景科技股份有限公司 斜坡信号产生装置
JP6211409B2 (ja) * 2013-12-09 2017-10-11 株式会社ジャパンディスプレイ 表示装置
KR20150091731A (ko) * 2014-02-03 2015-08-12 주식회사 센트론 저주파 노이즈를 제거하는 터치입력장치
CN105099426A (zh) * 2014-05-05 2015-11-25 盛群半导体股份有限公司 电容式触控感测电路
JP6400944B2 (ja) * 2014-05-26 2018-10-03 シナプティクス・ジャパン合同会社 容量検出回路、タッチ検出回路及びそれを備える半導体集積回路
CN104020914A (zh) * 2014-06-06 2014-09-03 深圳市汇顶科技股份有限公司 自电容触摸检测电路
CN105046194B (zh) * 2015-06-08 2020-04-10 苏州迈瑞微电子有限公司 一种包含积分器的电容指纹传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102207804A (zh) * 2010-03-31 2011-10-05 意法半导体亚太私人有限公司 电容式感测模拟前端
CN103097994A (zh) * 2010-05-14 2013-05-08 津尼蒂克斯有限公司 具有反相积分器和非反相积分器的积分器电路
CN103034364A (zh) * 2011-10-10 2013-04-10 三星电子株式会社 驱动触摸显示面板的方法和执行该方法的触摸显示装置
CN103676272A (zh) * 2012-09-24 2014-03-26 株式会社日本显示器 液晶显示装置
WO2014208897A1 (ko) * 2013-06-27 2014-12-31 크루셜텍 주식회사 터치 검출 장치 및 방법
CN104615315A (zh) * 2013-11-01 2015-05-13 乐金显示有限公司 触摸感测系统及其驱动方法
CN104731425A (zh) * 2013-12-23 2015-06-24 联阳半导体股份有限公司 电容式传感器电路
CN104808880A (zh) * 2014-01-29 2015-07-29 辛纳普蒂克斯显像装置株式会社 触摸检测电路以及具备该触摸检测电路的半导体集成电路
CN103902123A (zh) * 2014-01-30 2014-07-02 敦泰科技有限公司 能够减小基底电容的自电容触摸传感装置
CN104932762A (zh) * 2014-03-19 2015-09-23 原相科技股份有限公司 可重送驱动信号的并行驱动电容式触控感测装置

Also Published As

Publication number Publication date
CN106775143A (zh) 2017-05-31
WO2017114514A1 (zh) 2017-07-06
WO2017113760A1 (zh) 2017-07-06
CN107615226A (zh) 2018-01-19
KR20170110709A (ko) 2017-10-11
KR101964105B1 (ko) 2019-04-01
US10990215B2 (en) 2021-04-27
US20170364180A1 (en) 2017-12-21
EP3252580A4 (en) 2018-04-18
EP3252580A1 (en) 2017-12-06
CN106775143B (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
CN107615226B (zh) 积分电路及电容感测电路
US10641805B2 (en) Capacitance detection method and capacitance detection apparatus using the same
US20110068810A1 (en) Sensing method and driving circuit of capacitive touch screen
US10788380B2 (en) Apparatus for detecting capacitance, electronic device and apparatus for detecting force
US8665224B2 (en) Capacitance touch sensor
EP3617720B1 (en) Touch device and terminal device
US8436263B2 (en) Noise resistant capacitive sensor
KR101514533B1 (ko) 호버 센싱을 지원하는 터치 센싱 장치 및 방법
CN111801584B (zh) 电容检测电路、触控装置和终端设备
CN208013309U (zh) 电容检测电路、触控装置和终端设备
US8344928B2 (en) Method and apparatus for capacitance sensing
EP3543668B1 (en) Capacitance detection circuit, touch detection apparatus and terminal device
KR101950631B1 (ko) 전기 용량 감지 회로 및 터치 패널
US20120043972A1 (en) Method and circuit for reducing noise in a capacitive sensing device
US8384689B2 (en) Switched-capacitor tracking apparatus of touch panel and operating method thereof
CN211375581U (zh) 一种电容检测电路、触控装置、终端设备
Park et al. A 6.3 mW high-SNR frame-rate scalable touch screen panel readout IC with column-parallel Σ-Δ ADC structure for mobile devices
CN113287027A (zh) 一种电容检测电路、触控装置、终端设备和电容检测方法
CN108780372B (zh) 电容感测电路及触控终端
WO2009019632A1 (en) Signal processor comprising an integrating analog-to-digital converter
CN117590968A (zh) 一种差分触摸感测单元及系统
CN113448458A (zh) 电容感测电路

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant