WO2010095341A1 - 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム - Google Patents
画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム Download PDFInfo
- Publication number
- WO2010095341A1 WO2010095341A1 PCT/JP2009/071671 JP2009071671W WO2010095341A1 WO 2010095341 A1 WO2010095341 A1 WO 2010095341A1 JP 2009071671 W JP2009071671 W JP 2009071671W WO 2010095341 A1 WO2010095341 A1 WO 2010095341A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- region
- division method
- small
- tree structure
- zero
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/134—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
- H04N19/157—Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/119—Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/12—Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
- H04N19/122—Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/129—Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/102—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
- H04N19/13—Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/10—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
- H04N19/169—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
- H04N19/17—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
- H04N19/176—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/61—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/60—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
- H04N19/63—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets
- H04N19/64—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission
- H04N19/647—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding using sub-band based transform, e.g. wavelets characterised by ordering of coefficients or of bits for transmission using significance based coding, e.g. Embedded Zerotrees of Wavelets [EZW] or Set Partitioning in Hierarchical Trees [SPIHT]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N19/00—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
- H04N19/90—Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
- H04N19/96—Tree coding, e.g. quad-tree coding
Definitions
- the present invention relates to an image encoding device, method and program, and an image decoding device, method and program.
- image data is conventionally compressed by a compression encoding technique.
- compression encoding technology for example, in the case of moving image data, MPEG1 to 4 or H.264 is used. 261-H. A method such as H.264 is widely used.
- image data to be encoded is divided into a plurality of blocks and then encoded.
- prediction signal with respect to the pixel signal in the object block used as encoding object is produced
- prediction methods for generating a prediction signal include intra-screen prediction that is predicted from a decoded signal in an encoded area in the screen and inter-screen prediction that is predicted from a decoded signal of a previously encoded screen. .
- intra prediction includes a method of generating a prediction signal by extrapolating already reproduced pixel values adjacent to an encoding target block in a predetermined direction (for example, refer to Patent Document 1 below).
- a prediction signal is generated by a method in which a signal similar to the pixel signal is searched from a screen that has already been reproduced for an encoding target block. Then, a motion vector that is a spatial displacement amount between the region formed by the searched signal and the target block is encoded.
- H.264 the target block (for example, 16 ⁇ 16) is added to a different block size (16 ⁇ 16, for example, 8 ⁇ 8, 8 ⁇ 16, 16 ⁇ 8, 8 in order to cope with a change in a local feature of the image. ⁇ 4, 4 ⁇ 8, 4 ⁇ 4, etc.), and a method of generating a prediction signal for each small block is used.
- the predicted block size in H.264 is described in Patent Document 2, for example.
- a residual signal is generated by subtracting the pixel signal of the target block from the prediction signal of the target block, and frequency conversion is performed by discrete cosine transform or the like.
- the greater the block size for frequency transform the higher the transform efficiency.
- the frequency conversion is performed in the same block unit as when the prediction signal is generated or in a block unit smaller than that when the prediction signal is generated.
- the frequency-transformed transform coefficients are quantized and entropy-coded as quantized transform coefficients.
- the quantized transform coefficient of each block tends to include many 0 values, and this tendency becomes stronger as the prediction efficiency increases.
- As a method for efficiently coding the zero value coefficient there is zero tree coding.
- the number of quantization transformations in a block is mapped to a tree-structured leaf (bottom edge of the tree structure), and based on the coefficient value of the leaf, a tree-structured node (a branch point in the middle of the tree structure) and a leaf Update state (0 or 1). Then, the tree structure state and the non-zero quantized transform coefficient value are encoded.
- prediction efficiency is improved by performing prediction processing with various prediction methods with different block shapes and block sizes.
- prediction processing with various prediction methods with different block shapes and block sizes.
- it is better to collect data with similar statistical properties and process them with a uniform probability model to perform coding processing with fewer coding elements or smaller coding tables. Can do.
- the present invention has been made to solve the above problems, and an object thereof is to efficiently perform entropy coding of a residual signal while performing prediction processing with an appropriate size and shape of a prediction block. .
- a quantized transform coefficient having different statistical properties because a prediction signal is generated with a different block size or block shape is converted into a common tree-structured node and leaf state. Then, zero tree encoding is performed with a probability model common to the different block sizes or different block shapes.
- a map for mapping the quantized transform coefficients in the block to the leaf of the tree structure is separately prepared for blocks of different sizes and shapes, so that the state of each node and leaf of the tree structure can be determined. Suppress statistical variations.
- An image encoding apparatus includes: an area dividing unit that divides an input image into a plurality of areas; and a dividing method that selects a dividing method of a target area that is a processing target among the plurality of areas from a plurality of dividing methods.
- Selection means division method encoding means for encoding information for identifying the selected division method, small area dividing means for dividing the target area into a plurality of small areas by the selected division method, and the small areas
- a prediction means for generating a prediction signal for a pixel signal included in the signal, a residual signal generation means for generating a residual signal between the prediction signal of the small area and the pixel signal, and a frequency conversion of the residual signal of the small area
- One map determined based on the attribute information of the small region is selected from a plurality of maps for mapping to the leaves of the tree structure, and the quantization transform coefficient of the small region is calculated based on the selected map.
- the zero tree mapping means for mapping to the leaf of the tree structure and updating the state of the node and leaf of the tree structure according to the coefficient value of each leaf, and the state of the node and leaf of the tree structure are common to the plurality of division methods
- a zero tree encoding means for entropy encoding with a probability model, a non-zero coefficient encoding means for entropy encoding non-zero quantized transform coefficients in the small region, and encoding of information for identifying the selected division method Output data, encoded data of the nodes and leaves of the tree structure, and encoded data of non-zero quantized transform coefficients of the small region Characterized in that and an output unit.
- the attribute information of the small area is preferably the selected division method of the target area.
- the image decoding apparatus extracts, from compressed data, encoded data instructing a method for dividing a target area to be processed and encoded data of a residual signal of a small area obtained by dividing the target area.
- the division method decoding means for entropy decoding the information for identifying the division method of the target area among the plurality of division methods, from the encoded data instructing the division method of the target area, and the division method
- a zero tree decoding means for entropy decoding the node and leaf states of the tree structure with a probability model common to the plurality of division methods, from the encoded data of the residual signal of the small region
- Non-zero coefficient decoding means for entropy decoding a decoded value of a quantized transform coefficient having a decoded leaf state of 1 from encoded data of a residual signal of a small region;
- One map determined based on the decoded attribute information of the small region is selected from a plurality of maps for mapping the quantized transform coefficients of the
- the image coding apparatus can employ the following modes in addition to the image coding apparatus described above. That is, the image coding apparatus according to the present invention selects an area dividing unit that divides an input image into a plurality of areas, and a method for dividing a target area that is a processing target of the plurality of areas, from the plurality of dividing methods.
- a division method selection means ; a division method encoding means for encoding information for identifying the selected division method; a small area dividing means for dividing the target area into a plurality of small areas by the selected division method; A prediction unit that generates a prediction signal for a pixel signal included in each subregion of the target region; a residual signal generation unit that generates a residual signal between the prediction signal and the pixel signal of each subregion of the target region; A transforming means for generating a transform coefficient by frequency transforming the residual signal of each small area of the target area; a quantizing means for generating a quantized transform coefficient by quantizing the transform coefficient of each small area of the target area; The plurality of division methods A common tree structure is prepared, and one map determined based on the attribute information of the target area is selected from a plurality of maps for mapping the quantized transform coefficients in the target area to the leaves of the tree structure.
- zero tree mapping means for mapping the quantized transform coefficient in the target region to the leaf of the tree structure based on the selected map and updating the state of the node and leaf of the tree structure according to the coefficient value of each leaf
- the attribute information of the target area is preferably the selected division method of the target area.
- the image decoding apparatus can employ the following modes in addition to the image decoding apparatus described above. That is, the image decoding apparatus according to the present invention is a data analysis unit that extracts, from compressed data, encoded data for instructing a method for dividing a target region to be processed and encoded data of a residual signal of the target region.
- Non-zero coefficient decoding means for entropy decoding a decoded value of a quantized transform coefficient whose decoded tree-structure leaf state is 1 from encoded data of a residual signal;
- One map determined based on the decoded attribute information of the target region is selected from a plurality of maps for mapping the quantized transform coefficient of the region to the leaf of the tree structure, and based on the selected map, the map Zero tree quantized transform coefficient mapping means for transforming the decoded tree-structured node and leaf states and the decoded value of the quantized transform coefficient of the target region into the
- the invention relating to the above-described image encoding device can also be regarded as an invention relating to an image encoding method and an invention relating to an image encoding program, and can be described as follows.
- An image encoding method is an image encoding method executed by an image encoding apparatus, and includes an area dividing step for dividing an input image into a plurality of areas, and a processing target among the plurality of areas.
- a signal generating step a transform step of generating a transform coefficient by frequency transforming the residual signal of the small region, and a quantized transform coefficient by generating a transform coefficient of the small region
- a common tree structure is prepared for the child step and the plurality of division methods, and the selected region of the target region is selected from a plurality of maps for mapping the quantization transform coefficients of the small region to the leaf of the tree structure.
- One map determined based on a division method is selected, and based on the selected map, the quantization transform coefficient of the small region is mapped to the leaf of the tree structure, and the tree structure node according to the coefficient value of each leaf
- a zero-tree mapping step for updating a leaf state a zero-tree coding step for entropy-coding the tree-structured node and leaf states with a probability model common to the plurality of division methods, Non-zero coefficient encoding step for entropy encoding zero quantized transform coefficients, and encoded data of information for identifying the selected division method Characterized by comprising the encoded data of the nodes and leaves of the state of the tree structure, wherein an output step of outputting the coded data of the quantized transform coefficients of non-zero sub-region.
- An image encoding program selects, from a plurality of division methods, a region dividing unit that divides an input image into a plurality of regions, and a method for dividing a target region that is a processing target of the plurality of regions.
- a division method selection unit that performs the division method encoding unit that encodes information for identifying the selected division method; a small region division unit that divides the target region into a plurality of small regions by the selected division method; Prediction means for generating a prediction signal for a pixel signal included in the small area, residual signal generation means for generating a residual signal between the prediction signal of the small area and the pixel signal, and a residual signal of the small area Preparing a common tree structure for the plurality of division methods, transform means for generating a transform coefficient by frequency transform, quantizing means for quantizing the transform coefficient of the small region and generating a quantized transform coefficient, One map determined based on the selected division method of the target region is selected from a plurality of maps for mapping the quantized transform coefficient of the region to the leaf of the tree structure, and based on the selected map, Zero tree mapping means for mapping the small region quantized transform coefficients to the leaves of the tree structure and updating the state of the nodes and leaves of the tree structure according to the coefficient values of each leaf;
- an image encoding method according to the present invention can employ the following modes in addition to the image encoding method described above. That is, an image encoding method according to the present invention is an image encoding method executed by an image encoding apparatus, and includes an area dividing step for dividing an input image into a plurality of areas, and processing among the plurality of areas.
- a division method selection step of selecting a division method of a target region as a target from a plurality of division methods; a division method encoding step of encoding information for identifying the selected division method; and the target by the selected division method A small region dividing step for dividing the region into a plurality of small regions, a prediction step for generating a prediction signal for a pixel signal included in each small region of the target region, a prediction signal and a pixel signal for each small region of the target region A residual signal generating step for generating a residual signal, a transform step for generating a transform coefficient by frequency transforming the residual signal of each small region of the target region, and each of the target region
- a quantization step for quantizing a region transform coefficient to generate a quantized transform coefficient and a common tree structure for the plurality of division methods are prepared, and the quantized transform coefficient in the target region is stored in the leaf of the tree structure.
- One map determined based on the selected division method of the target area is selected from a plurality of maps for mapping, and the quantization transform coefficient in the target area is selected from the tree structure based on the selected map.
- a zero-tree mapping step of mapping the nodes and leaves of the tree structure according to coefficient values of each leaf, and a probability common to the plurality of division methods for the states of the nodes and leaves of the tree structure A zero tree encoding step for entropy encoding with a model, and a non-zero encoding for entropy encoding the non-zero quantized transform coefficients of each small region of the target region.
- a coefficient encoding step encoded data of information identifying the selected division method, encoded data of nodes and leaf states of the tree structure, and non-zero quantization transform of each small region of the target region
- an image encoding program according to the present invention can adopt the following modes in addition to the image encoding program described above. That is, an image encoding program according to the present invention includes: a plurality of division methods for dividing the input image into a plurality of regions; and a method for dividing a target region that is a processing target of the plurality of regions.
- a prediction means for generating a prediction signal for a pixel signal included in each small area of the target area, and a residual signal generation means for generating a residual signal between the prediction signal and the pixel signal of each small area of the target area
- a transforming means for generating a transform coefficient by frequency transforming the residual signal of each small area of the target area, and a quantization for quantizing the transform coefficient of each small area of the target area to generate a quantized transform coefficient hand
- the invention relating to the above-described image decoding apparatus can also be regarded as an invention relating to an image decoding method and an invention relating to an image decoding program, and can be described as follows.
- An image decoding method is an image decoding method executed by an image decoding device, wherein encoded data for instructing a method for dividing a target area to be processed and the target area are divided from compressed data.
- Information for identifying the division method of the target region among a plurality of division methods from the data analysis step of extracting the encoded data of the residual signal of the small region and the encoded data instructing the division method of the target region A division method decoding step for entropy decoding, and a tree structure common to the division method are prepared, and the state of the nodes and leaves of the tree structure is converted into the plurality of division methods from the encoded data of the residual signal of the small region.
- a non-zero coefficient decoding step for entropy decoding the decoded value of the transformed transform coefficient, and a method of dividing the decoded target area from a plurality of maps for mapping the quantized transform coefficient of the small area to the leaf of the tree structure One map determined based on the selected map, and based on the selected map, the decoded tree structure node and leaf state and the decoded value of the decoded small region quantization transform coefficient
- the image decoding program allows a computer to specify, from among compressed data, encoded data for instructing a method of dividing a target area to be processed, and encoded data of a residual signal of a small area obtained by dividing the target area.
- a non-zero coefficient decoding means and a map determined based on the decoding method of the decoded target area is selected from a plurality of maps for mapping the small area quantized transform coefficients to the leaves of the tree structure.
- the zero tree quantum that restores the decoded state of the decoded tree-structured nodes and leaves and the decoded small region quantized transform coefficient to the reproduced quantized transform coefficient of the small region Transform coefficient mapping means, inverse quantization means for inversely quantizing the reproduction quantized transform coefficient in the small area to generate a reproduction frequency transform coefficient, and reproduction residual by inverse transforming the reproduction frequency transform coefficient in the small area
- An inverse transform means for restoring a signal a prediction means for generating a prediction signal for a pixel signal included in the small area; and adding the prediction signal and the reproduction residual signal of the small area It allows, characterized in that to operate as the image restoring means, for restoring the pixel signal of the small region.
- the image decoding method according to the present invention can employ the following modes in addition to the image decoding method described above. That is, the image decoding method according to the present invention is an image decoding method executed by an image decoding device, and includes encoded data that indicates a method for dividing a target area to be processed from compressed data and the target area.
- a zero-tree quantized transform coefficient mapping step for transforming into a reproduction quantized transform coefficient of the region, and an inverse quantization step for dequantizing the reproduced quantized transform coefficient of each small region of the target region to generate a reproduced frequency transform coefficient;
- An inverse transform step for reconstructing a reproduction residual signal by inversely transforming a reproduction frequency transform coefficient of each small area of the target area, and included in the small area of the target area
- a prediction step of generating a prediction signal for the elementary signal and the prediction signal of each small area of the target area and the reproduction residual signal are added to restore and reproduce the pixel signal of each small area of the target area
- An image restoration step for generating an image signal and a region integration step for generating a reproduction image signal of the target region by integrating the reproduction image signals of the small regions of the target region are provided.
- the image decoding program according to the present invention can adopt the following modes in addition to the image decoding program described above. That is, the image decoding program according to the present invention extracts, from the compressed data, encoded data instructing a method of dividing a target area to be processed and encoded data of a residual signal of the target area.
- the division method decoding means for entropy decoding the information for identifying the division method of the target area among the plurality of division methods, from the encoded data instructing the division method of the target area, and the division method
- a zero tree decoding means for entropy decoding a node and a leaf state of the tree structure with a probability model common to the plurality of division methods, from the encoded data of the residual signal of the target region, Non-zero for entropy decoding a decoded value of a quantized transform coefficient whose leaf state of the decoded tree structure is 1 from encoded data of a residual signal in a target region
- a number decoding means and selecting one map determined based on the decoded method of dividing the target region from a plurality of maps for mapping the quantized transform coefficient of the target region to the leaf of the tree structure, Based on the selected map, the decoded node state and leaf state of the tree structure and the decoded value of the decoded transform coefficient of the target region are converted into
- Zero tree quantization transform coefficient mapping means for inversely quantizing the reproduction quantization transform coefficient of each small area of the target area to generate a reproduction frequency transform coefficient, and the reproduction frequency of each small area of the target area
- An inverse transform unit that inversely transforms a transform coefficient to restore a reproduction residual signal; a prediction unit that generates a prediction signal for a pixel signal included in a small region of the target region; and the target region
- the image restoration means for restoring the pixel signal of each small area of the target area to generate a reproduced image signal by adding the prediction signal of each small area and the reproduction residual signal, and each of the target areas By integrating the reproduced image signals of the small area, the area integration means for generating the reproduced image signal of the target area is operated.
- zero tree coding can be performed on a prediction signal generated by a plurality of division methods using a common tree structure. It becomes possible to efficiently perform entropy coding of the difference signal.
- FIG. 1 shows a block diagram of an image encoding device 100 according to the present invention.
- the image encoding apparatus 100 includes an input terminal 101, a block divider 102, a division method switch 103, a division method 1 prediction encoder 104a, a division method 2 prediction encoder 104b, a division method 3 prediction encoder 104c, and a zero.
- Tree entropy encoder 105 non-zero coefficient entropy encoder 106, output terminal 107, frame memory 108, division method 1 prediction decoder 109a, division method 2 prediction decoder 109b, division method 3 prediction decoder 109c, division method A selector 110 and a division method entropy encoder 111 are provided.
- the division method 1 prediction encoder 104a, the division method 2 prediction encoder 104b, and the division method 3 prediction encoder 104c are collectively referred to as a “division method p prediction encoder 104” below.
- the division method 1 prediction decoder 109a, the division method 2 prediction decoder 109b, and the division method 3 prediction decoder 109c are collectively referred to as “division method p prediction decoder 109” below.
- a moving image signal composed of a plurality of images is input to the input terminal 101.
- An image to be encoded is divided into a plurality of regions by the block divider 102.
- the block is divided into 8 ⁇ 8 pixels, but may be divided into other block sizes or shapes.
- target block an area to be encoded (hereinafter referred to as “target block”) is input to the division method switching unit 103.
- the division method selector 110 determines the division method of the target block from the plurality of division methods, and outputs the identification information of the determined division method to the division method switch 103.
- a method for selecting the division method will be described later (described in the flowchart of FIG. 10).
- the division method selector 110 outputs the identification information of the selected division method to the division method entropy encoder 111.
- the division method entropy encoder 111 encodes the input identification information of the division method and outputs it to the output terminal 107. In the following description, three types of division methods will be described. However, the number of division methods for the target block is not limited in the present invention.
- the division method switching unit 103 converts the pixel signal of the target block into the division method 1 prediction encoder 104a.
- the pixel signal of the target block is output to the division method 2 prediction encoder 104b, and in the case of the division method 3, the pixel signal of the target block is output to the division method 3 prediction encoder 104c. To do.
- the division method 1 predictive encoder 104a divides the input target block into small regions (hereinafter referred to as “sub-blocks”), generates a prediction signal for each sub-block, The residual signal between is frequency-transformed and quantized. Then, the division method 1 predictive encoder 104a maps the quantized transform coefficient of each sub-block to a predetermined tree-structure leaf, updates the tree-structure state according to the coefficient of each leaf, and performs zero-tree entropy coding. Is output to the device 105 (details will be described later). In this case, in the present invention, a common tree structure that does not depend on the target block division method is used as the tree structure. At the same time, the node and leaf state of the tree structure and the non-zero quantized transform coefficients of each sub-block are output to the division method 1 predictive decoder 109a for local decoding processing.
- the operation of the division method 1 prediction encoder 104a as described above is the same in the division method 2 prediction encoder 104b and the division method 3 prediction encoder 104c. Details of the division method p predictive encoder 104 will be described later with reference to FIG.
- the block size and block shape of each sub-block are not limited to specific ones.
- the first tree structure is a tree structure including all quantized transform coefficients in the target block.
- the second tree structure is a tree structure including only quantized transform coefficients of a sub-block having a certain number of pixels.
- the first tree structure does not depend on the target block division method, it can be applied to any sub-block. This example will be described later, and here, an example of the second tree structure will be described.
- the target block is divided into sub-blocks having the same number of pixels regardless of the division method, and a tree structure based on the number of pixels is used.
- a method of dividing the target block into four sub-blocks each having 8 ⁇ 8 pixels and 16 pixels will be described as an example.
- the tree structure shown in the tree 62 (the tree 72 in FIG. 7 and the tree 82 in FIG. 8 have the same structure) is used.
- the branch point indicated by the x mark is called a “node”, and the lower end of the tree indicated by a number is called a “leaf”.
- the state of the node and the leaf is indicated by a value of 0 or 1, and the state of each node is determined by the states of the two branch destination nodes or leaves.
- target node When a certain node (target node) indicated by x, when the states of the two branch destination nodes (or leaves) are both 0, the target node status is 0, and the states of the two branch destination nodes (or leaves) When one or both of these are 1, the state of the target node is 1.
- the number of the sub-block 61 indicates the position in the sub-block of each quantized transform coefficient, and corresponds to the number of the tree 62 having a tree structure.
- Each quantized transform coefficient in sub-block 61 is mapped to the same number leaf in tree 62.
- the state of each leaf is 1 when the mapped quantized transform coefficient is non-zero, and 0 when it is zero.
- the state of the leaf is determined, the state of the node marked by x is sequentially determined from the lower right to the upper left of the tree structure. Therefore, when the state of x is 0, it can be seen that the values of the quantized transform coefficients corresponding to the leaves belonging to the tree starting from the node are all 0.
- the nodes and leaves of the tree structure are coded by a predetermined procedure (for example, searching for the x mark in order from the upper left to the lower right).
- a predetermined procedure for example, searching for the x mark in order from the upper left to the lower right.
- the tree structure is common to each division method.
- the rule for mapping the quantized transform coefficient to each leaf is determined individually for each division method.
- the rule for assigning the quantized transform coefficient in the sub-block to the tree-structured leaf in FIGS. 6, 7, and 8 is called “map”, and the quantized transform coefficient in the sub-block is assigned to the tree-structured leaf. The process is called “mapping”.
- the zero tree entropy encoder 105 performs entropy encoding on the input node and leaf states using a common probability model that does not depend on the target block division method. Then, the zero tree entropy encoder 105 outputs the encoded data of the node and leaf states in the target block and the value of the non-zero quantized transform coefficient to the non-zero coefficient entropy encoder 106.
- the probability model is a probability that one node becomes 0 (or a probability that becomes 1) for each node and leaf, and the probability model is used when encoding the state of a node or leaf. Decide the output code. If predetermined, the same probability model may be used for encoding a plurality of nodes and leaf states. In the case of an arithmetic code, the probability model of each node or leaf may be updated based on the generated code.
- the non-zero coefficient entropy encoder 106 encodes the non-zero quantized transform coefficient in the sub-block in the input target block in a predetermined procedure (for example, raster scan order), and obtains the encoded data obtained as a node.
- the encoded data in the leaf state is output to the output terminal 107 together.
- the entropy encoding method may be arithmetic encoding or variable length encoding.
- the division method 1 predictive decoder 109a restores the quantized transform coefficient of each sub-block from the input node and leaf state of the tree structure and the decoded value of the non-zero quantized transform coefficient of each sub-block.
- the quantization transform coefficient of each sub-block is inversely quantized and inversely transformed to generate a reproduction residual signal.
- the division method 1 prediction decoder 109a generates a prediction signal for each sub-block by the same means as the division method 1 prediction encoder 104a. Finally, the reproduction residual signal of each sub-block and the prediction signal are added to restore the reproduction signal.
- the operation of the division method 1 prediction decoder 109a as described above is the same in the division method 2 prediction decoder 109b and the division method 3 prediction decoder 109c. Details of the division method p predictive decoder 109 will be described later with reference to FIG.
- the restored reproduction signal is output to the frame memory 108 and stored as a reference image used for prediction processing.
- the division method p prediction decoder 109 is not necessary.
- the division method p prediction encoder 104 (Regarding the division method p predictive encoder 104)
- the division method p prediction encoder 104 has the common configuration shown in FIG.
- the configuration of the division method p predictive encoder 104 will be described.
- the division method p predictive encoder 104 includes a small region divider 201, a predictor 202, a difference unit 203, a converter 204, a quantizer 205, and a quantized transform coefficient zero tree mapper 206. It has.
- the small region divider 201 divides the input target block into sub-blocks according to the division method p, and outputs it to the subtractor 203.
- the predictor 202 generates a prediction signal for the pixel signal of each sub-block and outputs it to the differencer 203.
- Prediction methods include inter-screen prediction and intra-screen prediction.
- inter-screen prediction a reproduction image that has been encoded in the past and restored as a reference image is used to obtain motion information that gives a prediction signal with the smallest error with respect to the sub-block from the reference image.
- intra-screen prediction an intra-screen prediction signal is obtained by copy processing (copy processing to the position of each pixel in a sub-block) based on a predetermined method using already reproduced pixel values spatially adjacent to the sub-block. Generate.
- the specific prediction signal generation method is not limited in the present invention.
- a plurality of prediction methods may be prepared for each division method, a prediction method may be selected for each target block or subblock from the plurality of prediction methods, and information on the selected prediction method may be encoded.
- a prediction method may be determined in advance for the division method, or a prediction method may be determined in advance for the position of each sub-block in the target block.
- the difference unit 203 generates a residual signal of each sub block by calculating a difference between the input image signal of each sub block and the prediction signal, and outputs the residual signal to the converter 204.
- the residual signal of each subblock is subjected to discrete cosine transform by the transformer 204, and the transform coefficient of each subblock after transformation is output to the quantizer 205.
- the quantizer 205 generates a quantized transform coefficient by quantizing the transform coefficient of each sub-block, and outputs it to the quantized transform coefficient zero tree mapper 206.
- the quantized transform coefficient zero tree mapper 206 maps the sub-block quantized transform coefficient to a common tree-structured leaf that does not depend on the division method of the target block, and the tree value according to the coefficient value of each leaf. Update the state of the nodes and leaves of the structure (details will be described later). Then, the quantized transform coefficient zero tree mapper 206 sends the tree-structured node and leaf state and the quantized transform coefficient corresponding to the leaf of the state 1 to the zero tree entropy encoder 105 for each sub-block. Output.
- the division method p predictive encoder 104 is prepared for each of the division methods 1, 2, and 3.
- the small region divider 201, the predictor 202, the difference unit 203, and the converter shown in FIG. 204, the quantizer 205, and the quantized transform coefficient zero tree mapper 206 each include the functions of the division methods 1 to 3 and have the function of switching the processing according to the division method.
- the division method 1 prediction encoder 104a, the division method 2 prediction encoder 104b, and the division method 3 prediction encoder 104c can be replaced with one division method p prediction encoder 104.
- one division method 1 prediction encoder 104a functions as three division method p prediction encoders 104, and the division method identification information is stored in the division method 1 prediction encoder 104a. It is input from.
- the division method 2 prediction encoder 104b and the division method 3 prediction encoder 104c are not necessary.
- step S302 the quantized transform coefficient zero tree mapper 206 initially sets the value of k (subblock identification number) to 0 and the value of KK (number of subblocks in the target block) to 4, respectively.
- step S303 quantized transform coefficients in the kth (initially 0th) sub-block are acquired in the raster scan order.
- step S304 the quantized transform coefficient zero tree mapper 206 determines that the target block division method p (p is a value from 1 to 3; division method 1 is 4 ⁇ 4 in FIG. 6 and division method 2 is 2 in FIG. A map corresponding to ⁇ 8, the division method 3 indicates 8 ⁇ 2 in FIG. 8) is selected.
- the quantized transform coefficient zero tree mapper 206 converts the quantized transform coefficient into a tree common to a plurality of division methods. Map to the leaf of the structure, according to the coefficient value of each leaf, determine the state of each leaf to 0 (if the coefficient value is 0) or 1 (if the coefficient value is other than 0), and then each determined leaf The state of each node is updated according to the state.
- the quantized transform coefficient zero tree mapper 206 increments the value of k by 1 in S306, and performs the above-described processing of S303 to S305 for the kth (first) block. Thereafter, the processing of S303 to S306 is repeated until the processing is completed for the four sub-blocks (S307).
- the quantization transform coefficient can be mapped to the leaf of the common tree structure. There is no need to prepare a tree structure. In addition, it is possible to perform zero tree encoding using a common probability model that does not depend on the target block division method.
- the target block is divided into three methods of 4 ⁇ 4, 2 ⁇ 8, and 8 ⁇ 2, but the number and number of division methods are fixed. Other than that, it is not limited.
- the division method p prediction decoder 109 (Regarding the division method p predictive decoder 109)
- the division method p prediction decoder 109 (the division method 1 prediction decoder 109a, the division method 2 prediction decoder 109b, and the division method 3 prediction decoder 109c) has the common configuration shown in FIG.
- the configuration of the division method p predictive decoder 109 will be described.
- the division method p predictive decoder 109 includes a zero-tree quantized transform coefficient mapper 401, an inverse quantizer 402, an inverse transformer 403, a predictor 202, an adder 404, and a block integrator 405. I have. Note that the predictor 202 in FIG. 4 is the same as that in FIG. 2 described above.
- the zero-tree quantized transform coefficient mapper 401 has, for each sub-block, a common tree-structured node and leaf state that does not depend on the division method of the target block, and a leaf having a state of 1 (that is, the quantized transform coefficient is not set). Zero) and the decoded value of the quantized transform coefficient.
- the zero-tree quantized transform coefficient mapper 401 restores the quantized transform coefficients of each sub-block from the input tree-structured node and leaf states and the decoded values of the non-zero quantized coefficients (details will be described later).
- the inverse quantizer 402 dequantizes the quantized transform coefficient of each sub-block to restore the transform coefficient, and outputs it to the inverse transformer 403.
- the inverse transformer 403 restores the residual signal by inversely transforming the transform coefficient of each sub-block, and outputs it to the adder 404.
- the predictor 202 generates a prediction signal for the pixel signal of each sub-block, and outputs it to the adder 404, similarly to the predictor 202 in the predictive encoder 104 of FIG.
- the adder 404 adds the residual signal restored from each sub-block and the prediction signal to restore the reproduction signal of each sub-block, and outputs it to the block integrator 405.
- the block integrator 405 restores the reproduction signal of the target block by integrating the reproduction signals of the sub-blocks according to the division method p.
- the division method p predictive decoder 109 is prepared for each of the division methods 1, 2, and 3. However, the zero tree quantization transform coefficient mapper 401, the inverse quantizer 402, and the inverse transform shown in FIG.
- the unit 403, the predictor 202, the adder 404, and the block integrator 405 have the functions of the division methods 1 to 3, respectively, and have the function of switching the processing according to the division method, the division of FIG.
- the method 1 prediction decoder 109a, the division method 2 prediction decoder 109b, and the division method 3 prediction decoder 109c can be replaced with one division method p prediction decoder 109.
- one division method 1 prediction decoder 109a performs the function of three division method p prediction decoders 109, and division method identification information is input from the division method selector 110 to the division method 1 prediction decoder 109a.
- the division method 2 prediction decoder 109b and the division method 3 prediction decoder 109c are not necessary.
- the zero tree quantized transform coefficient mapper 401 initially sets the value of k (subblock identification number) to 0 and the value of KK (number of subblocks in the target block) to 4.
- step S503 for the k-th (initially 0th) sub-block, the state of the decoded tree-structured nodes and leaves is obtained, and the leaf of the state 1 (non-zero quantized transform coefficient) ) To obtain the decoded value of the quantized transform coefficient.
- step S504 the zero-tree quantized transform coefficient mapper 401 determines the target block division method p (p is a value from 1 to 3; division method 1 is 4 ⁇ 4 in FIG. 6 and division method 2 is 2 in FIG. A map corresponding to ⁇ 8, the division method 3 indicates 8 ⁇ 2 in FIG. 8) is selected.
- the zero tree quantized transform coefficient mapper 401 converts the tree-structured node and leaf states and leaves having a state of 1 based on the selected map (the tree 62, 72, or 82 in FIGS. 6 to 8).
- the quantized transform coefficient of the kth (initially 0th) sub-block is restored from the decoded value of the corresponding quantized transform coefficient.
- the zero tree quantized transform coefficient mapper 401 increments the value of k by 1 in S506, and performs the above-described processing of S503 to S505 for the kth (here, 1st) sub-block. Thereafter, the processing of S503 to S506 is repeated until the processing for the four sub-blocks is completed (S507).
- FIG. 9 shows a block diagram of an image decoding apparatus 900 according to the present invention.
- the image decoding apparatus 900 includes an input terminal 901, a data analyzer 902, a zero tree entropy decoder 903, a non-zero coefficient entropy decoder 904, a division method entropy decoder 905, a division method switch 906, and an output terminal 907. Yes.
- the frame memory 108 in FIG. 9 is the same as the frame memory 108 in FIG. 1 described above, and the division method p prediction decoder 109 in FIG. 9 is the same as the division method p prediction decoder 109 in FIG. 1 described above.
- the data analyzer 902 cuts out encoded data necessary for decoding the target block to be processed from the bit stream. Then, the data analyzer 902 converts the obtained encoded data into encoded data of a residual signal (that is, encoded data obtained by zero tree encoding of tree-structured nodes and leaves, and non-zero quantum data). Coding data of the transform transform coefficient) and coded data of the information for identifying the division method, and output the coded data of the residual signal to the zero tree entropy decoder 903, and the identification information of the division method The encoded data is output to the division method entropy decoder 905.
- a residual signal that is, encoded data obtained by zero tree encoding of tree-structured nodes and leaves, and non-zero quantum data. Coding data of the transform transform coefficient) and coded data of the information for identifying the division method, and output the coded data of the residual signal to the zero tree entropy decoder 903, and the identification information of the division method
- the encoded data is
- the division method entropy decoder 905 decodes the encoded data of the input identification information of the division method, and restores the identification information of the sub-block division method in the target block.
- the restored identification information is output to the division method switch 906.
- the zero-tree entropy decoder 903 entropy-decodes the tree-structured nodes and leaf states of each sub-block in the target block using a common probability model that does not depend on the target block division method.
- the zero-tree entropy decoder 903 then decodes the decoded tree-structured node and leaf states and the quantized transform coefficients (non-zero quantized transform coefficients) in which the decoded leaf state is 1.
- the encoded data of the value is output to the non-zero coefficient entropy decoder 904.
- the non-zero coefficient entropy decoder 904 entropy-decodes the encoded data of the input non-zero quantized transform coefficient, and restores the value of the quantized transform coefficient.
- the decoded value of the restored non-zero quantized transform coefficient and the input node and leaf state of the tree structure are output to the division method switch 906.
- the division method switcher 906 converts the decoded values of the tree-structured nodes and leaves and the non-zero quantized transform coefficients of each sub-block into three division method p predictive decoders 109. Are output to any one of them.
- the division method 1 prediction decoder 109a when the division method 1 is decoded as the identification information of the division method, the decoded values of the tree-structured node and leaf states and the non-zero quantized transform coefficients of each sub-block are sent to the division method 1 prediction decoder 109a.
- the division method 1 predictive decoder 109a that is output restores the quantized transform coefficient of each sub-block from the input node and leaf state of the tree structure and the decoded value of the non-zero quantized transform coefficient of each sub-block. To do. Then, the division method 1 predictive decoder 109a dequantizes the quantized transform coefficient of each subblock, and then performs inverse transform to generate a reproduction residual signal.
- the division method 1 prediction decoder 109a generates a prediction signal for each sub-block in the same manner as the division method 1 prediction encoder 104a in FIG.
- the division method 1 prediction decoder 109a adds the reproduction residual signal of each sub-block and the prediction signal to restore the reproduction signal.
- the restored reproduction signal is output to the frame memory 108 and stored as a reference image used for prediction processing.
- the division method p predictive decoder 109 is prepared for each of the division methods 1, 2, and 3.
- the unit 403, the predictor 202, the adder 404, and the block integrator 405 have the functions of the division methods 1 to 3, respectively, and have the function of switching processing according to the division method, the division of FIG.
- the method 1 prediction decoder 109a, the division method 2 prediction decoder 109b, and the division method 3 prediction decoder 109c can be replaced with one division method p prediction decoder 109.
- one division method 1 prediction decoder 109 a functions as three division method p prediction decoders 109, and division method identification information is input from the division method entropy decoder 905 to the division method 1 prediction decoder 109 a. Is done.
- the division method 2 prediction decoder 109b and the division method 3 prediction decoder 109c are not necessary.
- the target block is an 8 ⁇ 8 pixel block.
- the division method selector 110 sets the counter p for identifying the division method of the target block to 1 (here, for example, 1 is 4 ⁇ 4 pixels, 2 is 2 ⁇ 8 pixels, 3 Is set to 8 ⁇ 2 pixels), and the number of division methods PP is initialized to 3, respectively (S102).
- the division method switching unit 103 receives the selection signal of the division method 1 from the division method selector 110, and the target block divided by the block divider 102 is divided from the division method switching unit 103 into the division method 1 prediction code. Output to the generator 104a.
- the division method 1 predictive encoder 104a divides the target block into 4 ⁇ 4 pixel sub-blocks (small regions) by the division method 1 (S103).
- segmentation method 1 prediction encoder 104a produces
- the division method 1 predictive encoder 104a generates a residual signal between the prediction signal and the image signal for each sub-block, performs transformation and quantization on the residual signal, and performs quantization of each sub-block. A conversion coefficient is generated (S105).
- the division method 1 predictive encoder 104a maps the quantized transform coefficient of the target block to the leaf of the tree structure by the process of S300 described in FIG. 3, and according to the coefficient value of each leaf, The state of the node and leaf is updated (S300).
- the zero tree entropy encoder 105 uses the common probability model independent of the target block division method to perform zero tree encoding on the generated leaf and node states of the tree structure, and the state is 1
- the value of the quantized transform coefficient is encoded for each leaf (non-zero quantized transform coefficient) (S106).
- the dividing method 1 predictive decoder 109a performs the processing of S500 described with reference to FIG. 5 on the sub-blocks of the target block from the tree-structured node and leaf states and the non-zero quantized transform coefficient values. Then, the quantized transform coefficient of each sub-block is restored, and the quantized transform coefficient of each sub-block is subjected to inverse quantization and inverse transform to generate a residual signal of each sub-block. At the same time, the division method 1 prediction decoder 109a generates a prediction signal for each subblock in the same manner as the division method 1 prediction encoder 104a, and adds the prediction signal and the residual signal to each subblock. Restore the playback signal.
- the image encoding apparatus 100 converts the reproduction signal of the restored target block and the rate distortion cost of the encoded data into a predetermined calculation formula (for example, the number of bits of the encoded data with quantization accuracy).
- the value obtained by multiplying the determined coefficient is added to the sum of squares of the difference signal obtained by subtracting the image signal from the reproduction signal of the target block (S107).
- the image coding apparatus 100 adds 1 to the value of the counter p, and then performs the above-described processing from S103 to S107 for the division method p (that is, the division method 2).
- the value of the counter p becomes “4” in S108, and the value of the counter p is divided in S109.
- the number of methods becomes larger than PP (here, “3”), and the process proceeds to S110. At this time, the rate distortion cost in each of the division methods 1, 2, and 3 is obtained.
- the division method selector 110 selects a division method having the lowest rate distortion cost among the three division methods, and the reproduction signal of the target block generated for the selected division method is stored in the frame memory 108. Temporarily stored. Also, the division method entropy encoder 111 entropy encodes the identification information of the selected division method (S111).
- the image encoding apparatus 100 generates encoded division method identification information, tree-structured zero tree encoded data and non-zero quantized transform coefficient encoded data related to the selected division method, and generation of a prediction signal.
- the encoded data of the additional information used for the output is output from the output terminal 107 (S112).
- the target block is an 8 ⁇ 8 pixel block.
- the compressed data is input, the data analyzer 902 extracts the encoded data of the target block (S902), the zero tree entropy decoder 903, the non-zero coefficient entropy decoder 904, and the division method entropy.
- the decoder 905 By performing entropy decoding of the extracted data by the decoder 905, the division method of the target block, the tree-structured node and leaf states for each sub-block of the target block, and the non-zero quantization of the target block
- a decoded value corresponding to a transform coefficient (coefficient corresponding to a leaf having a tree structure and a state of 1) and additional information required for generating a prediction signal (additional information is not shown in FIG. 9) are decoded (S903).
- a common probabilistic model that does not depend on the division method of the target block is used for the zero tree decoding of the node and leaf state of the tree structure.
- the division method p prediction decoder 109 generates a prediction signal of the target block based on the restored division method and additional information (S904).
- the division method p predictive decoder 109 converts the tree-structured node and leaf states and the quantized transform coefficients (non-zero quantized transform coefficients) in which the leaf state is 1 obtained by the above decoding.
- the corresponding decoded value is converted into a quantized transform coefficient of each sub-block by the process of S500 shown in FIG.
- the division method p predictive decoder 109 performs inverse quantization and inverse transform on the quantized transform coefficient of each sub-block to restore the residual signal (S905).
- the division method p predictive decoder 109 generates a reproduction signal for each subblock by adding the prediction signal to the reconstructed residual signal, and integrates the generated reproduction signal for each subblock. Restore the playback signal.
- the restored reproduction signal is temporarily stored in the frame memory 108 (S906).
- a map to be used for mapping the quantized transform coefficient to the leaf of the tree structure is selected from a plurality of maps based on the sub-block division method of the target block.
- the present invention is not limited to this selection method. As long as the information can be identified by the image decoding apparatus, attribute information associated with the target block and sub-block, decoding information of adjacent blocks, and the like can also be used for map selection.
- a map to be classified may be prepared. These may be combined with the division method. Further, which map is used in the image encoding apparatus may be selected, and the selection information may be encoded in units of frames or blocks.
- the number of pixels in the sub-block is constant for the three types of division methods, but the present invention can be applied to any number of sub-blocks or any number of pixels in the sub-block. it can.
- the target block 1401 in FIG. 14 is divided into four sub blocks, whereas the target block 1501 in FIG. 15 and the target block 1601 in FIG. 16 are divided into three sub blocks. Yes. Also included are cases where the number of pixels in the sub-block is 16 or 32.
- FIG. 12 is a flowchart S300-2 showing a process of updating the node and leaf state of the tree structure in the quantized transform coefficient zero tree mapper 206 of FIG. 2 when the target block unit tree structure is used.
- FIG. 12 will be described.
- the quantized transform coefficient zero tree mapper 206 sets the value of k (subblock identification number) to 0 and the value of KK (number of subblocks in the target block) to 4 (in FIG. 14). Initialization is performed for each of the division methods 1) and 3 (the division method 4 in FIG. 15 and the division method 5 in FIG. 16), and quantized transform coefficients in the 0th sub-block are acquired in raster scan order in S303.
- the quantized transform coefficient zero tree mapper 206 increments the value of k by 1 in S306, and performs the process of S303 for the kth (first) block. Thereafter, the processing of S303 and S306 is repeated until the processing of S303 is completed for all the sub-blocks (S307).
- the quantized transform coefficient zero tree mapper 206 determines the target block division method p (p is 1 or 4 or 5; see FIGS. 14 to 16). ), And in the next step S1203, based on the selected map (the tree 62, 72, or 82 in FIGS. 6 to 8), the quantized transform coefficients in the target block are mapped to the tree-structured leaves. Then, the state of the nodes and leaves of the tree structure is updated according to the coefficient value of each leaf.
- the quantization transform coefficient is applied to the leaf of the common tree structure that does not depend on the target block division method. Since mapping is possible, it is possible to encode a zero tree with the same tree structure and the same probability model.
- FIG. 13 is a flowchart S500-2 illustrating a quantized transform coefficient restoration process in the zero-tree quantized transform coefficient mapper 401 in FIG. Hereinafter, the processing of FIG. 13 will be described.
- the zero tree quantized transform coefficient mapper 401 obtains a tree-structured node and leaf state common to a plurality of division methods for the quantized transform coefficients in the target block, and in S1302, the target A map corresponding to the block division method p (p is 1 or 4 or 5; see FIGS. 14 to 16) is selected.
- the zero-tree quantized transform coefficient mapper 401 sets the value of k (subblock identification number) to 0 and the value of KK (number of subblocks in the target block) to 4 (in FIG. 14). Initialization is performed respectively for the division method 1) or 3 (the division method 4 in FIG. 15 and the division method 5 in FIG. 16).
- the zero-tree quantized transform coefficient mapper 401 obtains a decoded value for the coefficient in the 0th sub-block corresponding to the leaf of the tree structure whose state is 1 in S1304, and in S1305 Based on the map selected in S1302, the quantization coefficient in the sub-block is restored from the leaf state in the tree structure and the decoded value of the non-zero quantization transform coefficient.
- the zero-tree quantized transform coefficient mapper 401 increments the value of k by 1 in S506, and performs the processes of S1304 to S1305 for the kth (here, 1st) sub-block. Thereafter, the processes of S1304, S1305, and S506 are repeated until the processes of S1304 to S1305 are completed for all the sub-blocks (S507).
- the 64 quantized transform coefficients in the target block are mapped to the leaf of the tree structure, but a tree structure of each sub-block is used by using a part of the tree structure.
- the map may be generated to generate If the nodes and leaves to be used are determined in advance for each sub-block based on the block size and shape, the image encoding device and the image decoding device can be operated in the same manner.
- the sub-block unit tree structure shown in FIGS. 6 to 8 and the target block unit tree structure shown in FIGS. 14 to 16 can be used in combination.
- the intra-block prediction block may use a sub-block unit tree structure
- the inter-screen prediction block may use a target block unit tree structure.
- it may be determined for each target block which one of the tree structure of the sub-block unit and the tree structure of the target block is used, and the identification information of the tree structure to be used may be sent from the image encoding device to the image decoding device. .
- the tree structure and the probability model for encoding the state of each node and leaf of the tree structure are common regardless of the division method of the target block, but only one of them may be common. Good.
- a common tree structure is used regardless of the target block division method, but the probability model for encoding the state of each node and leaf of the tree structure is different for each target block division method. It may be defined.
- the probabilistic model for encoding the state of each node and leaf is common regardless of the target block division method, but a different tree structure may be used for each target block division method. Good.
- a probability model to be used is selected in advance from one or more prepared probability models, and the selection information is encoded at a frame level or a block level, and image encoding is performed.
- the image may be sent from the device to the image decoding device.
- the invention relating to the image encoding device can be understood as an invention relating to an image encoding program for causing a computer to function as an image encoding device.
- the image encoding method according to the present embodiment can be provided as a program stored in a recording medium.
- the invention relating to the image decoding device can be understood as an invention relating to an image decoding program for causing a computer to function as an image decoding device.
- the image decoding method according to the present embodiment can be provided as a program stored in a recording medium.
- the image encoding program and the image decoding program are provided by being stored in a recording medium, for example.
- the recording medium include a recording medium such as a flexible disk, a CD-ROM, a DVD, a recording medium such as a ROM, or a semiconductor memory.
- FIG. 19 shows a module of an image encoding program for causing a computer to function as an image encoding device.
- the image encoding program P100 includes a block division module P101, a prediction encoding module P102, a prediction decoding module P103, a division method selection module P104, a storage module P105, a switching module P106, a zero tree encoding module P107, A non-zero coefficient encoding module P108, a division method encoding module P109, and an output module P110 are provided.
- the predictive coding module P102 can be regarded as one program.
- the sub-block division module P201, the predictive module P202, the difference module P203, the transform module P204, the quantization module P205, and A quantized transform coefficient zero tree mapping module P206 is included.
- each module The function realized by executing each module is the same as the function of the image encoding device 100 in FIG. That is, in terms of functions, the block division module P101 in FIG. 19 is the block divider 102 in FIG. 1, the prediction encoding module P102 is in the division method p prediction encoder 104, and the prediction decoding module P103 is in the division method p prediction decoder. 109, the division method selection module P104 is in the division method selector 110, the storage module P105 is in the frame memory 108, the switching module P106 is in the division method switch 103, and the zerotree encoding module P107 is in the zerotree entropy encoder 105.
- the non-zero coefficient encoding module P108 corresponds to the non-zero coefficient entropy encoder 106
- the division method encoding module P109 corresponds to the division method entropy encoder 111
- the output module P110 corresponds to the output terminal 107.
- the sub-block division module P201 of FIG. 20 is quantized to the small region divider 201 of FIG. 2
- the prediction module P202 is to the predictor 202
- the difference module P203 is to the differencer 203
- the transform module P204 is to the transformer 204.
- the module P205 corresponds to the quantizer 205
- the quantized transform coefficient zero tree mapping module P206 corresponds to the quantized transform coefficient zero tree mapper 206.
- FIG. 21 shows a module of an image decoding program for causing a computer to function as an image decoding device.
- the image decoding program P900 includes a data analysis module P901, a zero tree decoding module P902, a non-zero coefficient decoding module P903, a switching module P904, a division method decoding module P905, a prediction decoding module P103, and a storage module P105.
- the prediction decoding module P103 can be regarded as one program.
- the zero tree quantization transform coefficient mapping module P401, the inverse quantization module P402, the inverse transform module P403, the prediction module P202, and the addition A module P404 and a block integration module P405 are included.
- the data analysis module P901 of FIG. 21 is the data analyzer 902 of FIG. 9, the zerotree decoding module P902 is the zerotree entropy decoder 903, and the nonzero coefficient decoding module P903 is the nonzero coefficient entropy decoder 904.
- the switching module P904 is in the division method switching unit 906, the division method decoding module P905 is in the division method entropy decoder 905, the prediction decoding module P103 is in the division method p prediction decoder 109, and the storage module P105 is in the frame memory 108. Each corresponds.
- the zero tree quantized transform coefficient mapping module P401 in FIG. 22 is the zero tree quantized transform coefficient mapper 401 in FIG. 4, the inverse quantization module P402 is in the inverse quantizer 402, and the inverse transform module P403 is in the inverse transformer 403.
- the prediction module P202 corresponds to the predictor 202
- the adder module P404 corresponds to the adder 404
- the block integration module P405 corresponds to the block integrator 405.
- the image encoding program P100 and the image decoding program P900 configured as described above are stored in the recording medium 10 shown in FIG. 17 and executed by the computer 30 described later.
- FIG. 17 is a diagram illustrating a hardware configuration of a computer for executing a program recorded in a recording medium
- FIG. 18 is a perspective view of the computer for executing a program stored in the recording medium.
- Examples of the computer include a DVD player, a set-top box, a mobile phone, and the like that have a CPU and perform processing and control by software.
- the computer 30 includes a reading device 12 such as a flexible disk drive device, a CD-ROM drive device, a DVD drive device, a working memory (RAM) 14 in which an operating system is resident, and a recording medium 10.
- the computer 30 can access the image encoding program P100 and the image decoding program P900 stored in the recording medium 10 from the reading device 12, and the image encoding program P100.
- the image decoding program P900 can operate as an image encoding device or an image decoding device according to the present invention.
- the image encoding program or the image decoding program may be provided as a computer data signal 40 superimposed on a carrier wave via a network.
- the computer 30 can store the image encoding program or image decoding program received by the communication device 24 in the memory 16 and execute the image encoding program or image decoding program.
- zero tree coding can be performed with a common tree structure on prediction signals generated by a plurality of division methods, so that prediction processing is performed with an appropriate prediction block size and shape. And entropy coding of the residual signal can be performed efficiently.
- Dividing method entropy encoder 201 ... Small region divider, 202 ... Predictor, 203 ... Differencer, 204 ... Transformer, 205 ... Quantization 206: Quantized transform coefficient zero tree mapper, 401 ... Zero tree quantized transform coefficient mapper, 402 ... Inverse quantization , 403 ... Inverse converter, 404 ... Adder, 405 ... Block integrator, 902 ... Data analyzer, 903 ... Zero tree entropy decoder, 904 ... Non-zero coefficient entropy decoder, 905 ... Division method entropy decoder, 906 ... Division method changer.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
- Compression Of Band Width Or Redundancy In Fax (AREA)
Abstract
画像符号化装置(100)は、複数の分割方法から対象領域の分割方法を選択する手段(110)と、該分割方法で対象領域を複数の小領域に分割し、小領域の画素信号に対する予測信号を生成し、小領域の予測信号と画素信号との残差信号を生成し、残差信号に周波数変換・量子化を施して量子化変換係数を生成し、複数の分割方法に共通する木構造のリーフに小領域の量子化変換係数をマッピングするための複数のマップから、小領域の属性情報に応じてマップを選択し、該マップに基づいて小領域の量子化変換係数を木構造のリーフにマッピングし、各リーフの係数値に従って木構造のノードとリーフの状態を更新する手段(104)と、該ノードとリーフの状態を複数の分割方法に共通の確率モデルで符号化する手段(105)と、小領域の非ゼロの量子化変換係数を符号化する手段(106)とを備える。
Description
本発明は、画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラムに関する。
画像データ(静止画像データおよび動画像データ)の伝送や蓄積を効率よく行うために、従来から画像データを圧縮符号化技術により圧縮することが行われている。このような圧縮符号化技術としては、例えば、動画像データの場合はMPEG1~4やH.261~H.264等の方式が広く用いられている。
これらの符号化方式では、符号化の対象となる画像データを複数のブロックに分割した上で符号化処理を行う。そして、符号化対象となる対象ブロック内の画素信号に対する予測信号を生成する。ここで予測信号を生成するための予測方法には、画面内の符号化済み領域の復号信号から予測する画面内予測と、過去に符号化した画面の復号信号から予測する画面間予測とがある。
このうち画面内予測としては、符号化の対象ブロックに隣接する既再生の画素値を所定の方向に外挿して予測信号を生成する方法がある(例えば、下記特許文献1参照)。
一方、通常の画面間予測では、符号化の対象ブロックについて、その画素信号に類似する信号を既に再生済みの画面から探索するという方法で予測信号を生成する。そして、探索した信号が構成する領域と対象ブロックとの間の空間的な変位量である動きベクトルを符号化する。
H.264では、画像の局所的な特徴の変化に対応するため、対象ブロック(例えば16×16)を異なるブロックサイズ(16×16に加えて、例えば8×8、8×16、16×8、8×4、4×8、4×4など)の小ブロックに分割し、小ブロック毎に予測信号を生成する方法が用いられている。H.264における予測ブロックサイズについては、例えば特許文献2に記載されている。
次に、対象ブロックの予測信号から対象ブロックの画素信号を差し引いた残差信号を生成し、離散コサイン変換等により周波数変換する。一般に、変換ブロック内の残差信号に起伏がなければ、周波数変換のブロックサイズは大きいほど変換効率が高い。しかしながら、予測ブロック境界は信号が不連続となるため、予測ブロック境界を跨ぐ残差信号をまとめた大きな残差ブロックに周波数変換を施すと、高周波成分が増加し、それにより符号化効率が低下する。そのため、周波数変換は、予測信号生成時と同じブロック単位又は予測信号生成時よりも小さいブロック単位で実施される。
そして、周波数変換された変換係数は量子化され、量子化変換係数としてエントロピー符号化される。各ブロックの量子化変換係数には0値が多く含まれる傾向があり、この傾向は予測効率が高くなるほど強くなる。0値係数を効率良く符号化する方法には、ゼロツリー符号化がある。この方法では、ブロック内の量子化変換数を木構造のリーフ(木構造の下端)にマッピングし、リーフの係数値に基づいて、木構造のノード(木構造の途中の分岐点)とリーフの状態(0または1)を更新する。そして、木構造の状態と非ゼロの量子化変換係数の値を符号化する。そのため、木構造のあるノードより下のノードとリーフが0値となるように、ブロック内の量子化変換係数を木構造のリーフにマップすることにより、値0の量子化変換係数を少ない符号量で纏めて符号化することが可能になる。ゼロツリー符号化については、例えば下記特許文献3に記載されている。
背景技術に示したとおり、ブロック形状やブロックサイズの異なる多様な予測方法で予測処理を実施することにより予測効率は向上する。一方、残差信号のエントロピー符号化については、統計的性質が類似するデータを集めて一様な確率モデルで処理した方が、少ない符号化要素又は小さい符号化テーブルで符号化処理を実施することができる。
ところが、多様な方法(多様なブロックサイズ)で予測信号を生成する場合に、少ない符号化要素でエントロピー符号化を行うと、各符号化要素の統計的な自由度が大きくなるため、残差信号のエントロピー符号化に適した一様な確率モデルを得ることが困難になり、結果的に、残差信号のエントロピー符号化を効率良く実施することが困難になる。
本発明は、上記課題を解決するために成されたものであり、適切な予測ブロックのサイズや形状で予測処理を行いつつ、残差信号のエントロピー符号化を効率良く実施することを目的とする。
本発明では、上記の課題を解決すべく、異なるブロックサイズまたは異なるブロック形状で予測信号を生成したために異なる統計的性質を有する量子化変換係数を、共通の木構造のノードとリーフの状態に変換し、上記異なるブロックサイズまたは異なるブロック形状に共通の確率モデルでゼロツリー符号化する。また、本発明では、ブロック内の量子化変換係数を木構造のリーフにマッピングするためのマップを、サイズや形状が異なるブロックについて個別に用意することにより、木構造の各ノードとリーフの状態の統計的なバラツキを抑制する。
本発明に係る画像符号化装置は、入力画像を複数の領域に分割する領域分割手段と、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、前記小領域の残差信号を周波数変換して変換係数を生成する変換手段と、前記小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記小領域の属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段と、を備えることを特徴とする。なお、前記小領域の属性情報は、前記対象領域の前記選択した分割方法であることが望ましい。
本発明に係る画像復号装置は、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析手段と、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記小領域の復号済み属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピング手段と、前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元手段と、を備えることを特徴とする。なお、前記小領域の復号済み属性情報は、復号した前記対象領域の分割方法であることが望ましい。
本発明に係る画像符号化装置は、前述した画像符号化装置以外に、以下の態様を採用することができる。即ち、本発明に係る画像符号化装置は、入力画像を複数の領域に分割する領域分割手段と、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換手段と、前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記対象領域の各小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段と、を備えることを特徴とする。なお、前記対象領域の属性情報は、前記対象領域の前記選択した分割方法であることが望ましい。
本発明に係る画像復号装置は、前述した画像復号装置以外に、以下の態様を採用することができる。即ち、本発明に係る画像復号装置は、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析手段と、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の復号済み属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピング手段と、前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元手段と、前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合手段と、を備えることを特徴とする。なお、前記対象領域の復号済み属性情報は、復号した前記対象領域の分割方法であることが望ましい。
上述した画像符号化装置に係る発明は、画像符号化方法に係る発明および画像符号化プログラムに係る発明として捉えることもでき、以下のように記述することができる。
本発明に係る画像符号化方法は、画像符号化装置により実行される画像符号化方法であって、入力画像を複数の領域に分割する領域分割ステップと、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択ステップと、前記選択した分割方法を識別する情報を符号化する分割方法符号化ステップと、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割ステップと、前記小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成ステップと、前記小領域の残差信号を周波数変換して変換係数を生成する変換ステップと、前記小領域の変換係数を量子化して量子化変換係数を生成する量子化ステップと、前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピングステップと、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化ステップと、前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化ステップと、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力ステップと、を備えることを特徴とする。
本発明に係る画像符号化プログラムは、コンピュータを、入力画像を複数の領域に分割する領域分割手段と、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、前記小領域の残差信号を周波数変換して変換係数を生成する変換手段と、前記小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段、として動作させることを特徴とする。
本発明に係る画像符号化方法は、前述した画像符号化方法以外に、以下の態様を採用することができる。即ち、本発明に係る画像符号化方法は、画像符号化装置により実行される画像符号化方法であって、入力画像を複数の領域に分割する領域分割ステップと、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択ステップと、前記選択した分割方法を識別する情報を符号化する分割方法符号化ステップと、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割ステップと、前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成ステップと、前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換ステップと、前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化ステップと、前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピングステップと、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化ステップと、前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化ステップと、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記対象領域の各小領域の非ゼロの量子化変換係数の符号化データとを出力する出力ステップと、を備えることを特徴とする。
本発明に係る画像符号化プログラムは、前述した画像符号化プログラム以外に、以下の態様を採用することができる。即ち、本発明に係る画像符号化プログラムは、コンピュータを、入力画像を複数の領域に分割する領域分割手段と、前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換手段と、前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段、として動作させることを特徴とする。
上述した画像復号装置に係る発明は、画像復号方法に係る発明および画像復号プログラムに係る発明として捉えることもでき、以下のように記述することができる。
本発明に係る画像復号方法は、画像復号装置により実行される画像復号方法であって、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析ステップと、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号ステップと、前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号ステップと、前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号ステップと、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピングステップと、前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化ステップと、前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換ステップと、前記小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元ステップと、を備えることを特徴とする。
本発明に係る画像復号プログラムは、コンピュータを、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析手段と、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピング手段と、前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元手段、として動作させることを特徴とする。
本発明に係る画像復号方法は、前述した画像復号方法以外に、以下の態様を採用することができる。即ち、本発明に係る画像復号方法は、画像復号装置により実行される画像復号方法であって、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析ステップと、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号ステップと、前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号ステップと、前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号ステップと、前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピングステップと、前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化ステップと、前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換ステップと、前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元ステップと、前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合ステップと、を備えることを特徴とする。
本発明に係る画像復号プログラムは、前述した画像復号プログラム以外に、以下の態様を採用することができる。即ち、本発明に係る画像復号プログラムは、コンピュータを、圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析手段と、対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピング手段と、前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測手段と、前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元手段と、前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合手段、として動作させることを特徴とする。
本発明によれば、複数の分割方法にて生成された予測信号に対して、共通の木構造でゼロツリー符号化を実施できるため、適切な予測ブロックのサイズや形状で予測処理を行い、かつ残差信号のエントロピー符号化を効率良く実施することが可能となる。
以下、本発明の実施の形態について、図1~図22を用いて説明する。
(画像符号化装置について)
図1には、本発明に係る画像符号化装置100のブロック図を示す。画像符号化装置100は、入力端子101、ブロック分割器102、分割方法切り替え器103、分割方法1予測符号化器104a、分割方法2予測符号化器104b、分割方法3予測符号化器104c、ゼロツリーエントロピー符号化器105、非ゼロ係数エントロピー符号化器106、出力端子107、フレームメモリ108、分割方法1予測復号器109a、分割方法2予測復号器109b、分割方法3予測復号器109c、分割方法選択器110、および分割方法エントロピー符号化器111を備えている。なお、分割方法1予測符号化器104a、分割方法2予測符号化器104b、および分割方法3予測符号化器104cは、以下において「分割方法p予測符号化器104」と総称する。分割方法1予測復号器109a、分割方法2予測復号器109b、および分割方法3予測復号器109cは、以下において「分割方法p予測復号器109」と総称する。
(画像符号化装置について)
図1には、本発明に係る画像符号化装置100のブロック図を示す。画像符号化装置100は、入力端子101、ブロック分割器102、分割方法切り替え器103、分割方法1予測符号化器104a、分割方法2予測符号化器104b、分割方法3予測符号化器104c、ゼロツリーエントロピー符号化器105、非ゼロ係数エントロピー符号化器106、出力端子107、フレームメモリ108、分割方法1予測復号器109a、分割方法2予測復号器109b、分割方法3予測復号器109c、分割方法選択器110、および分割方法エントロピー符号化器111を備えている。なお、分割方法1予測符号化器104a、分割方法2予測符号化器104b、および分割方法3予測符号化器104cは、以下において「分割方法p予測符号化器104」と総称する。分割方法1予測復号器109a、分割方法2予測復号器109b、および分割方法3予測復号器109cは、以下において「分割方法p予測復号器109」と総称する。
以下、上記のように構成された画像符号化装置100の動作を述べる。複数枚の画像からなる動画像の信号は入力端子101に入力される。符号化の対象となる画像はブロック分割器102にて、複数の領域に分割される。本実施形態では一例として、8×8の画素からなるブロックに分割されるが、それ以外のブロックの大きさまたは形に分割してもよい。
次に、符号化処理の対象となる領域(以下「対象ブロック」とよぶ)は、分割方法切り替え器103に入力される。
これと同時に、分割方法選択器110は、複数の分割方法から対象ブロックの分割方法を決定し、決定した分割方法の識別情報を分割方法切り替え器103に出力する。分割方法の選択方法は後述する(図10のフローチャートにて説明)。さらに分割方法選択器110は、選択した分割方法の識別情報を分割方法エントロピー符号化器111に出力する。分割方法エントロピー符号化器111は、入力された分割方法の識別情報を符号化し、出力端子107に出力する。なお、以下では分割方法を3種類として説明するが、対象ブロックの分割方法の数については本発明では限定されない。
一方、分割方法切り替え器103は、分割方法選択器110にて3種類の分割方法から選択された分割方法が、分割方法1の場合には対象ブロックの画素信号を分割方法1予測符号化器104aに、分割方法2の場合には対象ブロックの画素信号を分割方法2予測符号化器104bに、分割方法3の場合には対象ブロックの画素信号を分割方法3予測符号化器104cに、それぞれ出力する。
ここでは、分割方法1を選択した場合を例に説明する。分割方法1予測符号化器104aは、入力された対象ブロックを小領域(以下「サブブロック」とよぶ)に分割し、サブブロック毎に予測信号を生成し、サブブロックの画素信号と予測信号との間の残差信号を周波数変換して量子化する。そして、分割方法1予測符号化器104aは、各サブブロックの量子化変換係数を予め定めた木構造のリーフにマッピングし、各リーフの係数に従って木構造の状態を更新してゼロツリーエントロピー符号化器105に出力する(詳細は後述)。この際、本発明では、木構造として、対象ブロックの分割方法に依存しない共通の木構造を用いる。同時に、局部復号処理のため、木構造のノードとリーフの状態と各サブブロックの非ゼロの量子化変換係数を分割方法1予測復号器109aに出力する。
以上のような分割方法1予測符号化器104aの動作は、分割方法2予測符号化器104b、分割方法3予測符号化器104cでも同様である。これら分割方法p予測符号化器104の詳細については、図2を用いて後述する。
なお、本発明では、各サブブロックのブロックサイズとブロック形状は、特定のものには限定されない。
(木構造とゼロツリー符号化の説明)
ここで、木構造、サブブロック分割およびゼロツリー符号化について説明する。本発明における共通の木構造には大きく分けて2種類ある。第1の木構造は、対象ブロック内のすべての量子化変換係数を包含する木構造である。第2の木構造は、一定の画素数のサブブロックの量子化変換係数のみを含む木構造である。
ここで、木構造、サブブロック分割およびゼロツリー符号化について説明する。本発明における共通の木構造には大きく分けて2種類ある。第1の木構造は、対象ブロック内のすべての量子化変換係数を包含する木構造である。第2の木構造は、一定の画素数のサブブロックの量子化変換係数のみを含む木構造である。
第1の木構造は、対象ブロックの分割方法に依存しないので、どのようなサブブロックにも適用できる。この例については後述することとし、ここでは第2の木構造の例について説明する。
第2の木構造を用いるケースでは、分割方法によらず対象ブロックを同じ画素数のサブブロックに分割し、その画素数に基づいた木構造を用いる。本実施形態では、対象ブロックが8×8画素で対象ブロックを16画素から成る4つのサブブロックに分割する方法を例にして説明する。分割方法は、4×4画素(図6のサブブロック61)、2×8画素(図7のサブブロック71)、8×2画素(図8のサブブロック81)の3種類とし、図6のツリー62(図7のツリー72と図8のツリー82も同じ構造)に示した木構造を用いる。
木構造の生成方法を説明するため、図6に注目する。木構造では、x印でしめす分岐点を「ノード」と呼び、数字で示す木の下端を「リーフ」と呼ぶ。ノードとリーフの状態は0または1の値で示され、各ノードの状態は、2つの枝先のノードあるいはリーフの状態によって決定する。xで示したあるノード(対象ノード)について、枝先の2つのノード(あるいはリーフ)の状態が共に0のときは対象ノードの状態は0となり、2つの枝先のノード(あるいはリーフ)の状態のいずれか一方あるいは両方が1のときは対象ノードの状態は1となる。
サブブロック61の数字は各量子化変換係数のサブブロック内の位置を示しており、木構造のツリー62の数字に対応する。サブブロック61の各量子化変換係数をツリー62の同じ数字のリーフにマッピングする。各リーフの状態は、マッピングされた量子化変換係数が非ゼロの場合は1、ゼロの場合は0となる。リーフの状態が決まると、木構造の右下から左上に向かってx印のノードの状態は順に決まる。よって、xの状態が0の場合には、当該ノードを起点とする木に属するリーフに対応する量子化変換係数の値がすべて0であることが分かる。
ゼロツリー符号化では、木構造のノードとリーフの状態を予め定めた手順(例えば、x印を左上から右下に向かって順にサーチすること)で符号化する。この際、あるノードの状態が0であれば、そのノードを起点とする木に属するノードとリーフの状態はすべて0となるので、それらのノードとリーフの状態は符号化する必要がない。したがって、木構造のリーフと各量子化変換係数の対応を示すマップは、量子化変換係数のゼロ係数が少ない符号量で効率良く符号化されるように、決定される。
本発明では、木構造は各分割方法について共通である。そして、サブブロック内の各量子化変換係数がゼロ値になる確率に基づいて、各リーフへの量子化変換係数のマッピングの規則を各分割方法について個別に決めている。ここでは、図6、図7、図8におけるサブブロック内の量子化変換係数を木構造のリーフに割り当てる規則を「マップ」と呼び、サブブロック内の量子化変換係数を木構造のリーフに割り当てる処理を「マッピング」と呼ぶ。
(図1の説明の続き)
ゼロツリーエントロピー符号化器105は、入力されたノードとリーフの状態を対象ブロックの分割方法に依らない共通の確率モデルを用いてエントロピー符号化する。そして、ゼロツリーエントロピー符号化器105は、対象ブロックにおけるノードとリーフの状態の符号化データと、非ゼロの量子化変換係数の値とを非ゼロ係数エントロピー符号化器106に出力する。
ゼロツリーエントロピー符号化器105は、入力されたノードとリーフの状態を対象ブロックの分割方法に依らない共通の確率モデルを用いてエントロピー符号化する。そして、ゼロツリーエントロピー符号化器105は、対象ブロックにおけるノードとリーフの状態の符号化データと、非ゼロの量子化変換係数の値とを非ゼロ係数エントロピー符号化器106に出力する。
ここで、確率モデルとは、1つのノードが0になる確率(あるいは1になる確率)を各ノードならびにリーフについて設定したものであり、確率モデルは、ノードあるいはリーフの状態を符号化するときに出力する符号を決める。なお、予め定めておけば、複数のノードとリーフの状態の符号化に同じ確率モデルを用いても良い。また、算術符号の場合には、各ノードまたはリーフの確率モデルは、発生した符号に基づいて更新されてもよい。
非ゼロ係数エントロピー符号化器106は、入力された対象ブロックにおけるサブブロック内の非ゼロ量子化変換係数を所定の手順(例えばラスタスキャン順)で符号化し、得られた符号化データを、ノードとリーフの状態の符号化データとまとめて出力端子107に出力する。エントロピー符号化の方法は算術符号化でも良いし、可変長符号化でもよい。
分割方法1予測復号器109aは、入力された木構造のノードとリーフの状態と各サブブロックの非ゼロの量子化変換係数の復号値から、各サブブロックの量子化変換係数を復元する。各サブブロックの量子化変換係数は、逆量子化、逆変換され再生残差信号が生成される。同時に、分割方法1予測復号器109aは、分割方法1予測符号化器104aと同じ手段で各サブブロックの予測信号を生成する。最後に、各サブブロックの再生残差信号と予測信号とが加算されて再生信号が復元される。以上のような分割方法1予測復号器109aの動作は、分割方法2予測復号器109b、分割方法3予測復号器109cでも同様である。これら分割方法p予測復号器109の詳細については、図4を用いて後述する。
復元された再生信号は、フレームメモリ108に出力され、予測処理に用いる参照画像として保存される。
なお、分割方法p予測符号化器104における予測方法がフレームメモリ108に保存された画像信号を参照しない場合には、分割方法p予測復号器109は不要である。
(分割方法p予測符号化器104について)
分割方法p予測符号化器104(分割方法1予測符号化器104a、分割方法2予測符号化器104b、および分割方法3予測符号化器104c)は、図2に示す共通の構成を備える。以下、分割方法p予測符号化器104の構成につき説明する。図2に示すように、分割方法p予測符号化器104は、小領域分割器201、予測器202、差分器203、変換器204、量子化器205、および量子化変換係数ゼロツリーマッピング器206を備えている。
分割方法p予測符号化器104(分割方法1予測符号化器104a、分割方法2予測符号化器104b、および分割方法3予測符号化器104c)は、図2に示す共通の構成を備える。以下、分割方法p予測符号化器104の構成につき説明する。図2に示すように、分割方法p予測符号化器104は、小領域分割器201、予測器202、差分器203、変換器204、量子化器205、および量子化変換係数ゼロツリーマッピング器206を備えている。
小領域分割器201は、入力された対象ブロックを分割方法pに従ってサブブロックに分割し、差分器203に出力する。
予測器202は、各サブブロックの画素信号に対する予測信号を生成し、差分器203に出力する。予測方法には、画面間予測と画面内予測がある。画面間予測では、過去に符号化されたのちに復元された再生画像を参照画像として、当該参照画像から、サブブロックに対する誤差の最も小さい予測信号を与える動き情報を求める。一方、画面内予測では、サブブロックに空間的に隣接する既再生の画素値を用いた所定の方法に基づくコピー処理(サブブロック内の各画素の位置へのコピー処理)により画面内予測信号を生成する。具体的な予測信号の生成方法については本発明では限定しない。各分割方法に対して複数の予測方法を用意し、該複数の予測方法から対象ブロック毎に又はサブブロック毎に予測方法を選択し、選択した予測方法の情報を符号化してもよいし、各分割方法について予め予測方法を決めておいてもよいし、対象ブロック内の各サブブロックの位置について予め予測方法を決めておいてもよい。
差分器203は、入力された各サブブロックの画像信号と予測信号との差分を算出することで各サブブロックの残差信号を生成し、変換器204に出力する。
各サブブロックの残差信号は、変換器204にて離散コサイン変換され、変換後の各サブブロックの変換係数は量子化器205に出力される。
量子化器205は、各サブブロックの変換係数を量子化することで量子化変換係数を生成し、量子化変換係数ゼロツリーマッピング器206に出力する。
量子化変換係数ゼロツリーマッピング器206は、各サブブロックについて、サブブロックの量子化変換係数を、対象ブロックの分割方法に依らない共通の木構造のリーフにマッピングし、各リーフの係数値に従って木構造のノードとリーフの状態を更新する(詳細は後述する)。そして、量子化変換係数ゼロツリーマッピング器206は、各サブブロックについて、木構造のノードとリーフの状態と、状態が1のリーフに対応する量子化変換係数とをゼロツリーエントロピー符号化器105に出力する。
なお、図1では、分割方法p予測符号化器104を分割方法1、2、3についてそれぞれ用意しているが、図2に示す小領域分割器201、予測器202、差分器203、変換器204、量子化器205、および量子化変換係数ゼロツリーマッピング器206が、それぞれ、分割方法1~3の機能を含み、分割方法によって処理を切り替える機能を有している場合には、図1の分割方法1予測符号化器104a、分割方法2予測符号化器104bおよび分割方法3予測符号化器104cは、1つの分割方法p予測符号化器104に置き換えることができる。例えば、1つの分割方法1予測符号化器104aが、3つの分割方法p予測符号化器104の機能を果たし、分割方法1予測符号化器104aには分割方法の識別情報が分割方法選択器110から入力される。分割方法2予測符号化器104bと分割方法3予測符号化器104cは不要となる。
次に、図3を用いて、図2の量子化変換係数ゼロツリーマッピング器206により実行される、ゼロと非ゼロ係数の生成処理を説明する。
量子化変換係数ゼロツリーマッピング器206は、最初にS302にて、kの値(サブブロックの識別番号)を0に、KKの値(対象ブロック内のサブブロックの数)を4に、それぞれ初期設定し、次のS303にて、k番目(最初は0番目)のサブブロック内の量子化変換係数をラスタスキャン順に取得する。それからS304にて、量子化変換係数ゼロツリーマッピング器206は、対象ブロックの分割方法p(pは1~3の値;分割方法1は図6の4×4、分割方法2は図7の2×8、分割方法3は図8の8×2を示す)に対応するマップを選択する。次のS305で量子化変換係数ゼロツリーマッピング器206は、選択したマップ(図6~図8のツリー62または72または82)に基づいて、量子化変換係数を、複数の分割方法に共通の木構造のリーフにマッピングし、各リーフの係数値にしたがって、各リーフの状態を0(係数値が0の場合)か1(係数値が0以外の場合)に決定し、そして、決定した各リーフの状態にしたがって、各ノードの状態を更新する。
次に、量子化変換係数ゼロツリーマッピング器206は、S306にてkの値を1つ増やし、k番目(ここでは1番目)のサブブロックについて上記のS303~S305の処理を実施する。以降、4個のサブブロックについて処理が終了するまで、S303~S306の処理を繰り返す(S307)。
このように、本発明によれば、対象ブロックを複数の異なる分割方法で分割して予測信号の生成を行う場合においても、共通の木構造のリーフに量子化変換係数をマッピングできるため、複数の木構造を用意する必要がない。また、対象ブロックの分割方法に依らない共通の確率モデルでゼロツリーの符号化を行うことが可能となる。
なお、この実施形態では、対象ブロックの分割方法を4×4、2×8、8×2の3通りとしたが、分割方法の種類と数については、サブブロック内の画素数が固定である以外は限定されない。
(分割方法p予測復号器109について)
分割方法p予測復号器109(分割方法1予測復号器109a、分割方法2予測復号器109b、分割方法3予測復号器109c)は、図4に示す共通の構成を備える。以下、分割方法p予測復号器109の構成につき説明する。図4に示すように、分割方法p予測復号器109は、ゼロツリー量子化変換係数マッピング器401、逆量子化器402、逆変換器403、予測器202、加算器404、およびブロック統合器405を備えている。なお、図4の予測器202は、前述した図2と同じものである。
分割方法p予測復号器109(分割方法1予測復号器109a、分割方法2予測復号器109b、分割方法3予測復号器109c)は、図4に示す共通の構成を備える。以下、分割方法p予測復号器109の構成につき説明する。図4に示すように、分割方法p予測復号器109は、ゼロツリー量子化変換係数マッピング器401、逆量子化器402、逆変換器403、予測器202、加算器404、およびブロック統合器405を備えている。なお、図4の予測器202は、前述した図2と同じものである。
ゼロツリー量子化変換係数マッピング器401には、各サブブロックについて、対象ブロックの分割方法に依らない共通の木構造のノードとリーフの状態と、状態が1のリーフ(即ち、量子化変換係数が非ゼロ)の量子化変換係数の復号値とが入力される。ゼロツリー量子化変換係数マッピング器401は、入力された木構造のノードとリーフの状態と非ゼロの量子化係数の復号値から、各サブブロックの量子化変換係数を復元し(詳細は後述)、逆量子化器402に出力する。
逆量子化器402は、各サブブロックの量子化変換係数を逆量子化して変換係数を復元し、逆変換器403に出力する。
逆変換器403は、各サブブロックの変換係数を逆変換して残差信号を復元し、加算器404に出力する。
予測器202は、前述した図2の予測符号化器104における予測器202と同様に、各サブブロックの画素信号に対する予測信号を生成し、加算器404に出力する。
加算器404は、各サブブロックの復元した残差信号と予測信号とを加算して各サブブロックの再生信号を復元し、ブロック統合器405に出力する。
ブロック統合器405は、分割方法pに従って、各サブブロックの再生信号を統合して対象ブロックの再生信号を復元する。
なお、図1では、分割方法p予測復号器109を分割方法1、2、3についてそれぞれ用意しているが、図4に示すゼロツリー量子化変換係数マッピング器401、逆量子化器402、逆変換器403、予測器202、加算器404、およびブロック統合器405が、それぞれ、分割方法1~3の機能を含み、分割方法によって処理を切り替える機能を有している場合には、図1の分割方法1予測復号器109a、分割方法2予測復号器109bおよび分割方法3予測復号器109cは、1つの分割方法p予測復号器109に置き換えることができる。例えば、1つの分割方法1予測復号器109aが、3つの分割方法p予測復号器109の機能を果たし、分割方法1予測復号器109aには分割方法の識別情報が分割方法選択器110から入力される。分割方法2予測復号器109bと分割方法3予測復号器109cは不要となる。
次に、図5を用いて、図4のゼロツリー量子化変換係数マッピング器401により実行される量子化変換係数の復元処理を説明する。
ゼロツリー量子化変換係数マッピング器401は、最初にS502にて、kの値(サブブロックの識別番号)を0に、KKの値(対象ブロック内のサブブロックの数)を4に、それぞれ初期設定し、次のS503にて、k番目(最初は0番目)のサブブロックについて、復号された木構造のノードとリーフの状態を取得するとともに、状態が1のリーフ(非ゼロの量子化変換係数)に対応する量子化変換係数の復号値を取得する。
それから、ゼロツリー量子化変換係数マッピング器401は、S504にて、対象ブロックの分割方法p(pは1~3の値;分割方法1は図6の4×4、分割方法2は図7の2×8、分割方法3は図8の8×2を示す)に対応するマップを選択する。次のS505でゼロツリー量子化変換係数マッピング器401は、選択したマップ(図6~図8のツリー62または72または82)に基づいて、木構造のノードとリーフの状態ならびに状態が1のリーフに対応する量子化変換係数の復号値から、k番目(最初は0番目)のサブブロックの量子化変換係数を復元する。
次に、ゼロツリー量子化変換係数マッピング器401は、S506にてkの値を1つ増やし、k番目(ここでは1番目)のサブブロックについて上記のS503~S505の処理を実施する。以降、4個のサブブロックについて処理が終了するまで、S503~S506の処理を繰り返す(S507)。
(画像復号装置について)
図9には、本発明に係る画像復号装置900のブロック図を示す。画像復号装置900は、入力端子901、データ解析器902、ゼロツリーエントロピー復号器903、非ゼロ係数エントロピー復号器904、分割方法エントロピー復号器905、分割方法切り替え器906、および出力端子907を備えている。図9のフレームメモリ108は、前述した図1のフレームメモリ108と同じであり、図9の分割方法p予測復号器109は、前述した図1の分割方法p予測復号器109と同じである。
図9には、本発明に係る画像復号装置900のブロック図を示す。画像復号装置900は、入力端子901、データ解析器902、ゼロツリーエントロピー復号器903、非ゼロ係数エントロピー復号器904、分割方法エントロピー復号器905、分割方法切り替え器906、および出力端子907を備えている。図9のフレームメモリ108は、前述した図1のフレームメモリ108と同じであり、図9の分割方法p予測復号器109は、前述した図1の分割方法p予測復号器109と同じである。
以下、上記のように構成された画像復号装置900の動作を述べる。符号化されたビットストリームが入力端子901に入力されると、データ解析器902は、処理対象の対象ブロックを復号するために必要な符号化データをビットストリームから切り出す。そして、データ解析器902は、取得した符号化データを、残差信号の符号化データ(即ち、木構造のノードとリーフの状態をゼロツリー符号化して得られた符号化データ、および非ゼロの量子化変換係数の符号化データ)と、分割方法を識別する情報の符号化データとに分離し、残差信号の符号化データをゼロツリーエントロピー復号器903に出力するとともに、分割方法の識別情報の符号化データを分割方法エントロピー復号器905に出力する。
分割方法エントロピー復号器905は、入力された分割方法の識別情報の符号化データを復号し、対象ブロックにおけるサブブロック分割方法の識別情報を復元する。復元された識別情報は分割方法切り替え器906に出力される。
一方、ゼロツリーエントロピー復号器903は、対象ブロックにおける各サブブロックの木構造のノードとリーフの状態を、対象ブロックの分割方法に依存しない共通の確率モデルを用いてエントロピー復号する。そして、ゼロツリーエントロピー復号器903は、復号された木構造のノードとリーフの状態と、復号されたリーフの状態が1を示す量子化変換係数(非ゼロの量子化変換係数)に対応する復号値の符号化データとを、非ゼロ係数エントロピー復号器904に出力する。
非ゼロ係数エントロピー復号器904は、入力された非ゼロの量子化変換係数の符号化データをエントロピー復号し、量子化変換係数の値を復元する。復元された非ゼロの量子化変換係数の復号値と、入力された木構造のノードとリーフの状態とは、分割方法切り替え器906に出力される。
分割方法切り替え器906は、分割方法の識別情報に基づいて、木構造のノードとリーフの状態および各サブブロックの非ゼロの量子化変換係数の復号値を、3つの分割方法p予測復号器109のうちいずれか1つに出力する。
例えば、分割方法の識別情報として分割方法1が復号された場合、木構造のノードとリーフの状態および各サブブロックの非ゼロの量子化変換係数の復号値は、分割方法1予測復号器109aに出力され、分割方法1予測復号器109aは、入力された木構造のノードとリーフの状態および各サブブロックの非ゼロの量子化変換係数の復号値から、各サブブロックの量子化変換係数を復元する。そして、分割方法1予測復号器109aは、各サブブロックの量子化変換係数を逆量子化し、その後、逆変換することで再生残差信号を生成する。同時に、分割方法1予測復号器109aは、図1の分割方法1予測符号化器104aと同様に、各サブブロックの予測信号を生成する。最後に、分割方法1予測復号器109aは、各サブブロックの再生残差信号と予測信号とを加算して再生信号を復元する。復元された再生信号はフレームメモリ108に出力され、予測処理に用いる参照画像として保存される。
図9の分割方法p予測復号器109の動作については、図4と図5で説明済みのため、説明を割愛する。なお、図9では、分割方法p予測復号器109を分割方法1、2、3についてそれぞれ用意しているが、図4に示すゼロツリー量子化変換係数マッピング器401、逆量子化器402、逆変換器403、予測器202、加算器404、およびブロック統合器405が、それぞれ、分割方法1~3の機能を含み、分割方法によって処理を切り替える機能を有している場合には、図9の分割方法1予測復号器109a、分割方法2予測復号器109bおよび分割方法3予測復号器109cは、1つの分割方法p予測復号器109に置き換えることができる。例えば、1つの分割方法1予測復号器109aが、3つの分割方法p予測復号器109の機能を果たし、分割方法1予測復号器109aには分割方法の識別情報が分割方法エントロピー復号器905から入力される。分割方法2予測復号器109bと分割方法3予測復号器109cは不要となる。
(画像符号化方法について)
以下、図10を用いて、画像符号化装置100により実行される画像符号化方法に係る処理を説明する。ここでは、対象ブロックを8×8画素のブロックとする。
以下、図10を用いて、画像符号化装置100により実行される画像符号化方法に係る処理を説明する。ここでは、対象ブロックを8×8画素のブロックとする。
まず、画像符号化装置100では、分割方法選択器110が、対象ブロックの分割方法を識別するためのカウンタpを1(ここでは例えば、1は4×4画素、2は2×8画素、3は8×2画素とする)に、分割方法の数PPを3に、それぞれ初期設定する(S102)。これにより、分割方法切り替え器103には、分割方法1の選択信号が分割方法選択器110から入力され、ブロック分割器102により分割された対象ブロックは、分割方法切り替え器103から分割方法1予測符号化器104aへ出力される。
次に、分割方法1予測符号化器104aは、分割方法1で対象ブロックを4×4画素のサブブロック(小領域)に分割する(S103)。次に、分割方法1予測符号化器104aは、各サブブロックの予測信号を生成し、予測信号の生成に要する付加情報を符号化する(S104)。続いて、分割方法1予測符号化器104aは、各サブブロックについて、予測信号と画像信号との残差信号を生成し、この残差信号に対し変換および量子化を施して各サブブロックの量子化変換係数を生成する(S105)。さらに、分割方法1予測符号化器104aは、図3にて説明したS300の処理により、対象ブロックの量子化変換係数を木構造のリーフにマッピングし、各リーフの係数値にしたがって、木構造のノードとリーフの状態を更新する(S300)。
次に、ゼロツリーエントロピー符号化器105は、対象ブロックの分割方法に依存しない共通の確率モデルを用いて、上記生成された木構造のリーフとノードの状態をゼロツリー符号化するとともに、状態が1のリーフ(非ゼロの量子化変換係数)について量子化変換係数の値を符号化する(S106)。
続いて、分割方法1予測復号器109aは、図5にて説明したS500の処理により、対象ブロックの各サブブロックについて、木構造のノードとリーフの状態ならびに非ゼロの量子化変換係数の値から、各サブブロックの量子化変換係数を復元し、各サブブロックの復元した量子化変換係数に対し逆量子化および逆変換を施して各サブブロックの残差信号を生成する。同時に、分割方法1予測復号器109aは、分割方法1予測符号化器104aと同じ方法で各サブブロックの予測信号を生成し、該予測信号と上記残差信号とを加算することにより各サブブロックの再生信号を復元する。ここで、画像符号化装置100は、復元された対象ブロックの再生信号と符号化された符号化データのレート歪コストを、所定の計算式(例えば、符号化データのビット数に量子化精度にて決まる係数を掛けて得られた値に、対象ブロックの再生信号から画像信号を差し引いて得られた差分信号の二乗和を加える)に基づいて算出する(S107)。
次に、画像符号化装置100は、カウンタpの値に1を加え、次に、分割方法p(即ち、分割方法2)について、上記のS103からS107までの処理を実施する。
そして、3種類の分割方法(分割方法1、2、3)について上記のS103からS107までの処理を実施完了すると、S108でカウンタpの値は「4」となり、S109でカウンタpの値が分割方法の数PP(ここでは「3」)より大きくなり、S110へ進む。この時点で、分割方法1、2、3それぞれにおけるレート歪コストが得られている。
そして、S110にて分割方法選択器110は、3つの分割方法のうち、レート歪コストが最も小さい分割方法を選択し、選択された分割方法について生成された対象ブロックの再生信号はフレームメモリ108に一時格納される。また、分割方法エントロピー符号化器111は、選択された分割方法の識別情報をエントロピー符号化する(S111)。
最後に、画像符号化装置100は、符号化した分割方法の識別情報と、選択した分割方法に関する木構造のゼロツリー符号化データおよび非ゼロの量子化変換係数の符号化データと、予測信号の生成に用いる付加情報の符号化データとを出力端子107から出力する(S112)。
(画像復号方法について)
以下、図11を用いて、画像復号装置900により実行される画像復号方法に係る処理を説明する。ここでは、対象ブロックを8×8画素のブロックとする。
以下、図11を用いて、画像復号装置900により実行される画像復号方法に係る処理を説明する。ここでは、対象ブロックを8×8画素のブロックとする。
まず、画像復号装置900では、圧縮データが入力され、データ解析器902が対象ブロックの符号化データを抽出し(S902)、ゼロツリーエントロピー復号器903と非ゼロ係数エントロピー復号器904と分割方法エントロピー復号器905により、上記抽出されたデータのエントロピー復号を行うことで、対象ブロックの分割方法と、対象ブロックの各サブブロックに関する木構造のノードとリーフの状態と、対象ブロックの非ゼロの量子化変換係数(木構造で状態が1のリーフに対応する係数)に対応する復号値と、予測信号の生成に要する付加情報(付加情報については図9に図示なし)とを復号する(S903)。この際、木構造のノードとリーフの状態のゼロツリー復号には、対象ブロックの分割方法に依存しない共通の確率モデルが用いられる。
分割方法p予測復号器109は、復元された分割方法と付加情報に基づいて、対象ブロックの予測信号を生成する(S904)。
続いて、分割方法p予測復号器109は、上記復号で得られた、木構造のノードとリーフの状態、およびリーフの状態が1を示す量子化変換係数(非ゼロの量子化変換係数)に対応する復号値から、図5に示したS500の処理によって、各サブブロックの量子化変換係数に変換する。
さらに、分割方法p予測復号器109は、各サブブロックの量子化変換係数に対し逆量子化および逆変換を施して残差信号を復元する(S905)。
最後に、分割方法p予測復号器109は、復元した残差信号に予測信号を加算して各サブブロックの再生信号を生成し、生成された各サブブロックの再生信号を統合して対象ブロックの再生信号を復元する。復元された再生信号は、フレームメモリ108に一時格納される(S906)。
(マップの変形例)
図3のS304と図5のS504では、対象ブロックのサブブロック分割の方法に基づいて、量子化変換係数を木構造のリーフにマッピングする際に使用するマップを、複数のマップから選択しているが、本発明ではこの選択方法には限定されない。画像復号装置にて識別できる情報であれば、対象ブロックやサブブロックについての付随する属性情報や隣接ブロックの復号情報などもマップの選択に利用できる。
図3のS304と図5のS504では、対象ブロックのサブブロック分割の方法に基づいて、量子化変換係数を木構造のリーフにマッピングする際に使用するマップを、複数のマップから選択しているが、本発明ではこの選択方法には限定されない。画像復号装置にて識別できる情報であれば、対象ブロックやサブブロックについての付随する属性情報や隣接ブロックの復号情報などもマップの選択に利用できる。
例えば、対象ブロックにおけるサブブロックの位置や、サブブロックの量子化係数における非ゼロ係数の数や非ゼロ係数の値、隣接する対象ブロックの分割方法、サブブロックのブロック形状や画素数などに基づいて分類されるマップを用意してもよい。また、これらを分割方法と組み合わせても良い。さらに、画像符号化装置においてどのマップを使用するかを選択し、該選択情報をフレーム単位やブロック単位で符号化してもよい。
図6~図8では、3種類の分割方法について、サブブロック内の画素数が一定であるが、サブブロックの数やサブブロック内の画素数が任意の場合にも本発明を適用することができる。
図14~図16では、図14の対象ブロック1401が4個のサブブロック分割であるのに対し、図15の対象ブロック1501と図16の対象ブロック1601は、3個のサブブロックに分割されている。また、サブブロック内の画素数が16個の場合や32個の場合も含まれている。
このようなケースでも、対象ブロック内の量子化変換係数をリーフにマッピングする共通の木構造(図14のツリー1402と図15のツリー1502と図16のツリー1602)を用いることで、対象ブロックの分割方法に依存しない1つの確率モデルでゼロツリーの符号化を実施することが可能となる。
図12は、対象ブロック単位の木構造を用いる場合について、図2の量子化変換係数ゼロツリーマッピング器206において木構造のノードとリーフの状態を更新する処理を示すフローチャートS300-2である。以下、この図12の処理を説明する。
量子化変換係数ゼロツリーマッピング器206は、最初にS1201にて、kの値(サブブロックの識別番号)を0に、KKの値(対象ブロック内のサブブロックの数)を4(図14の分割方法1)または3(図15の分割方法4と図16の分割方法5)に、それぞれ初期設定し、S303にて、0番目のサブブロック内の量子化変換係数をラスタスキャン順に取得する。
次に、量子化変換係数ゼロツリーマッピング器206は、S306にてkの値を1つ増やし、k番目(ここでは1番目)のサブブロックについてS303の処理を実施する。以降、すべてのサブブロックについてS303の処理が完了するまで、S303、S306の処理を繰り返す(S307)。
そして、すべてのサブブロックについてS303の処理が完了すると、S1202にて、量子化変換係数ゼロツリーマッピング器206は、対象ブロックの分割方法p(pは1または4または5;図14~図16参照)に対応するマップを選択し、次のS1203では、選択したマップ(図6~図8のツリー62または72または82)に基づいて、対象ブロック内の量子化変換係数を木構造のリーフにマッピングし、そして、各リーフの係数値にしたがって、木構造のノードとリーフの状態を更新する。
このように、本発明によれば、対象ブロック内のサブブロックの数やサブブロック内の画素数が異なる場合でも、対象ブロックの分割方法に依らない共通の木構造のリーフに量子化変換係数をマッピングできるので、同一の木構造ならびに同一の確率モデルでゼロツリーの符号化を行うことが可能となる。
なお、上記のマップの変形例では、対象ブロックの分割方法の種類と数は限定されない。
図13は、対象ブロック単位の木構造を用いる場合について、図4のゼロツリー量子化変換係数マッピング器401における量子化変換係数復元処理を示すフローチャートS500-2である。以下、この図13の処理を説明する。
ゼロツリー量子化変換係数マッピング器401は、最初にS1301にて、対象ブロック内の量子化変換係数について、複数の分割方法に共通の木構造のノードとリーフの状態を取得し、S1302にて、対象ブロックの分割方法p(pは1または4または5;図14~図16参照)に対応するマップを選択する。
続いて、ゼロツリー量子化変換係数マッピング器401は、S1303にて、kの値(サブブロックの識別番号)を0に、KKの値(対象ブロック内のサブブロックの数)を4(図14の分割方法1)または3(図15の分割方法4と図16の分割方法5)に、それぞれ初期設定する。次に、ゼロツリー量子化変換係数マッピング器401は、S1304にて、状態が1となる木構造のリーフに対応し且つ0番目のサブブロック内の係数について、復号値を取得し、S1305にて、S1302で選択されたマップに基づいて、木構造におけるリーフの状態と非ゼロの量子化変換係数の復号値からサブブロック内の量子化係数を復元する。
そして、ゼロツリー量子化変換係数マッピング器401は、S506にてkの値を1つ増やし、k番目(ここでは1番目)のサブブロックについてS1304~S1305の処理を実施する。以降、すべてのサブブロックについてS1304~S1305の処理が完了するまで、S1304、S1305およびS506の処理を繰り返す(S507)。
なお、図12~図16の例では、対象ブロック内の64個の量子化変換係数を木構造のリーフにマップしているが、この木構造の一部を用いて、各サブブロックの木構造を生成するにようにマップを生成してもよい。各サブブロックについて、ブロックサイズと形状に基づいて利用するノードとリーフを予め定めておけば、画像符号化装置と画像復号装置は同じように動作させることが可能である。
さらに、図6~図8に示すサブブロック単位の木構造と、図14~図16で示す対象ブロック単位の木構造とを併用することも可能である。例えば、画面内予測ブロックでは、サブブロック単位の木構造を用い、画面間予測ブロックでは、対象ブロック単位の木構造を用いてもよい。また、サブブロック単位の木構造と対象ブロック単位の木構造のうち何れを用いるかを対象ブロック毎に決定し、用いられる木構造の識別情報を画像符号化装置から画像復号装置へ送ってもよい。
上記実施形態では、木構造と、その木構造の各ノードとリーフの状態を符号化するための確率モデルとを、対象ブロックの分割方法に依らず共通としていたが、その一方のみを共通としてもよい。例えば、木構造は、対象ブロックの分割方法に依らず共通のものを用いるが、木構造の各ノードとリーフの状態を符号化するための確率モデルは、対象ブロックの分割方法毎に異なるものを定義しても良い。逆に、用意している各ノードとリーフの状態を符号化するための確率モデルは、対象ブロックの分割方法に依らず共通であるが、対象ブロックの分割方法毎に異なる木構造を用いてもよい。このとき、各木構造のノードとリーフについて、用意した1つ以上の確率モデルから、使用される確率モデルを予め選択しておき、該選択情報をフレームレベルやブロックレベルで符号化し、画像符号化装置から画像復号装置へ送ってもよい。
(画像符号化プログラム、画像復号プログラムについて)
画像符号化装置に係る発明は、コンピュータを画像符号化装置として機能させるための画像符号化プログラムに係る発明として捉えることができる。あるいは、本実施形態に係る画像符号化方法をプログラムとして記録媒体に格納して提供することもできる。また、画像復号装置に係る発明は、コンピュータを画像復号装置として機能させるための画像復号プログラムに係る発明として捉えることができる。あるいは、本実施形態に係る画像復号方法をプログラムとして記録媒体に格納して提供することもできる。
画像符号化装置に係る発明は、コンピュータを画像符号化装置として機能させるための画像符号化プログラムに係る発明として捉えることができる。あるいは、本実施形態に係る画像符号化方法をプログラムとして記録媒体に格納して提供することもできる。また、画像復号装置に係る発明は、コンピュータを画像復号装置として機能させるための画像復号プログラムに係る発明として捉えることができる。あるいは、本実施形態に係る画像復号方法をプログラムとして記録媒体に格納して提供することもできる。
画像符号化プログラム及び画像復号プログラムは、例えば、記録媒体に格納されて提供される。記録媒体としては、フレキシブルディスク、CD-ROM、DVD等の記録媒体、あるいはROM等の記録媒体、あるいは半導体メモリ等が例示される。
図19には、コンピュータを画像符号化装置として機能させるための画像符号化プログラムのモジュールを示す。図19に示すように、画像符号化プログラムP100は、ブロック分割モジュールP101、予測符号化モジュールP102、予測復号モジュールP103、分割方法選択モジュールP104、記憶モジュールP105、切り替えモジュールP106、ゼロツリー符号化モジュールP107、非ゼロ係数符号化モジュールP108、分割方法符号化モジュールP109、および出力モジュールP110を備えている。このうち、予測符号化モジュールP102は、1つのプログラムとして捉えることができ、図20に示すように、サブブロック分割モジュールP201、予測モジュールP202、差分モジュールP203、変換モジュールP204、量子化モジュールP205、および量子化変換係数ゼロツリーマッピングモジュールP206を含んでいる。
上記各モジュールが実行されることにより実現される機能は、上述した図1の画像符号化装置100の機能と同じである。即ち、機能面において、図19のブロック分割モジュールP101は図1のブロック分割器102に、予測符号化モジュールP102は分割方法p予測符号化器104に、予測復号モジュールP103は分割方法p予測復号器109に、分割方法選択モジュールP104は分割方法選択器110に、記憶モジュールP105はフレームメモリ108に、切り替えモジュールP106は分割方法切り替え器103に、ゼロツリー符号化モジュールP107はゼロツリーエントロピー符号化器105に、非ゼロ係数符号化モジュールP108は非ゼロ係数エントロピー符号化器106に、分割方法符号化モジュールP109は分割方法エントロピー符号化器111に、出力モジュールP110は出力端子107に、それぞれ相当する。また、図20のサブブロック分割モジュールP201は図2の小領域分割器201に、予測モジュールP202は予測器202に、差分モジュールP203は差分器203に、変換モジュールP204は変換器204に、量子化モジュールP205は量子化器205に、量子化変換係数ゼロツリーマッピングモジュールP206は量子化変換係数ゼロツリーマッピング器206に、それぞれ相当する。
図21には、コンピュータを画像復号装置として機能させるための画像復号プログラムのモジュールを示す。図21に示すように、画像復号プログラムP900は、データ解析モジュールP901、ゼロツリー復号モジュールP902、非ゼロ係数復号モジュールP903、切り替えモジュールP904、分割方法復号モジュールP905、予測復号モジュールP103、および記憶モジュールP105を備えている。このうち、予測復号モジュールP103は、1つのプログラムとして捉えることができ、図22に示すように、ゼロツリー量子化変換係数マッピングモジュールP401、逆量子化モジュールP402、逆変換モジュールP403、予測モジュールP202、加算モジュールP404、およびブロック統合モジュールP405を含んでいる。
上記各モジュールが実行されることにより実現される機能は、上述した図9の画像復号装置900の機能と同じである。即ち、機能面において、図21のデータ解析モジュールP901は図9のデータ解析器902に、ゼロツリー復号モジュールP902はゼロツリーエントロピー復号器903に、非ゼロ係数復号モジュールP903は非ゼロ係数エントロピー復号器904に、切り替えモジュールP904は分割方法切り替え器906に、分割方法復号モジュールP905は分割方法エントロピー復号器905に、予測復号モジュールP103は分割方法p予測復号器109に、記憶モジュールP105はフレームメモリ108に、それぞれ相当する。また、図22のゼロツリー量子化変換係数マッピングモジュールP401は図4のゼロツリー量子化変換係数マッピング器401に、逆量子化モジュールP402は逆量子化器402に、逆変換モジュールP403は逆変換器403に、予測モジュールP202は予測器202に、加算モジュールP404は加算器404に、ブロック統合モジュールP405はブロック統合器405に、それぞれ相当する。
上記のように構成された画像符号化プログラムP100および画像復号プログラムP900は、図17に示す記録媒体10に記憶され、後述するコンピュータ30により実行される。
図17は、記録媒体に記録されたプログラムを実行するためのコンピュータのハードウェア構成を示す図であり、図18は、記録媒体に記憶されたプログラムを実行するためのコンピュータの斜視図である。コンピュータとして、CPUを具備しソフトウエアによる処理や制御を行うDVDプレーヤ、セットトップボックス、携帯電話などを含む。
図17に示すように、コンピュータ30は、フレキシブルディスクドライブ装置、CD-ROMドライブ装置、DVDドライブ装置等の読取装置12と、オペレーティングシステムを常駐させた作業用メモリ(RAM)14と、記録媒体10に記憶されたプログラムを記憶するメモリ16と、ディスプレイといった表示装置18と、入力装置であるマウス20及びキーボード22と、データ等の送受を行うための通信装置24と、プログラムの実行を制御するCPU26とを備えている。コンピュータ30は、記録媒体10が読取装置12に挿入されると、読取装置12から記録媒体10に格納された画像符号化プログラムP100と画像復号プログラムP900にアクセス可能になり、当該画像符号化プログラムP100と画像復号プログラムP900によって、本発明による画像符号化装置や画像復号装置として動作することが可能になる。
図18に示すように、画像符号化プログラムもしくは画像復号プログラムは、搬送波に重畳されたコンピュータデータ信号40としてネットワークを介して提供されるものであってもよい。この場合、コンピュータ30は、通信装置24によって受信した画像符号化プログラムもしくは画像復号プログラムをメモリ16に格納し、当該画像符号化プログラムもしくは画像復号プログラムを実行することができる。
以上説明した本実施形態によれば、複数の分割方法にて生成された予測信号に対して、共通の木構造でゼロツリー符号化を実施できるため、適切な予測ブロックのサイズや形状で予測処理を行い、かつ残差信号のエントロピー符号化を効率良く実施することが可能となる。
101、901…入力端子、102…ブロック分割器、103…分割方法切り替え器、104a…分割方法1予測符号化器、104b…分割方法2予測符号化器、104c…分割方法3予測符号化器、105…ゼロツリーエントロピー符号化器、106…非ゼロ係数エントロピー符号化器、107、907…出力端子、108…フレームメモリ、109a…分割方法1予測復号器、109b…分割方法2予測復号器、109c…分割方法3予測復号器、110…分割方法選択器、111…分割方法エントロピー符号化器、201…小領域分割器、202…予測器、203…差分器、204…変換器、205…量子化器、206…量子化変換係数ゼロツリーマッピング器、401…ゼロツリー量子化変換係数マッピング器、402…逆量子化器、403…逆変換器、404…加算器、405…ブロック統合器、902…データ解析器、903…ゼロツリーエントロピー復号器、904…非ゼロ係数エントロピー復号器、905…分割方法エントロピー復号器、906…分割方法切り替え器。
Claims (16)
- 入力画像を複数の領域に分割する領域分割手段と、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、
前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、
前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、
前記小領域の残差信号を周波数変換して変換係数を生成する変換手段と、
前記小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、
前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記小領域の属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、
前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段と、
を備えることを特徴とする画像符号化装置。 - 前記小領域の属性情報が、前記対象領域の前記選択した分割方法であることを特徴とする請求項1に記載の画像符号化装置。
- 圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析手段と、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、
前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、
前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、
前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記小領域の復号済み属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピング手段と、
前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、
前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、
前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元手段と、
を備えることを特徴とする画像復号装置。 - 前記小領域の復号済み属性情報が、復号した前記対象領域の分割方法であることを特徴とする請求項3に記載の画像復号装置。
- 入力画像を複数の領域に分割する領域分割手段と、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、
前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、
前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、
前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換手段と、
前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、
前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、
前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記対象領域の各小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段と、
を備えることを特徴とする画像符号化装置。 - 前記対象領域の属性情報が、前記対象領域の前記選択した分割方法であることを特徴とする請求項5に記載の画像符号化装置。
- 圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析手段と、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、
前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、
前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、
前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の復号済み属性情報に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピング手段と、
前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、
前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、
前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元手段と、
前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合手段と、
を備えることを特徴とする画像復号装置。 - 前記対象領域の復号済み属性情報が、復号した前記対象領域の分割方法であることを特徴とする請求項7に記載の画像復号装置。
- 画像符号化装置により実行される画像符号化方法であって、
入力画像を複数の領域に分割する領域分割ステップと、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択ステップと、
前記選択した分割方法を識別する情報を符号化する分割方法符号化ステップと、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割ステップと、
前記小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、
前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成ステップと、
前記小領域の残差信号を周波数変換して変換係数を生成する変換ステップと、
前記小領域の変換係数を量子化して量子化変換係数を生成する量子化ステップと、
前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピングステップと、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化ステップと、
前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化ステップと、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力ステップと、
を備えることを特徴とする画像符号化方法。 - 画像復号装置により実行される画像復号方法であって、
圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析ステップと、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号ステップと、
前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号ステップと、
前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号ステップと、
前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピングステップと、
前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化ステップと、
前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換ステップと、
前記小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、
前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元ステップと、
を備えることを特徴とする画像復号方法。 - 画像符号化装置により実行される画像符号化方法であって、
入力画像を複数の領域に分割する領域分割ステップと、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択ステップと、
前記選択した分割方法を識別する情報を符号化する分割方法符号化ステップと、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割ステップと、
前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、
前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成ステップと、
前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換ステップと、
前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化ステップと、
前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピングステップと、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化ステップと、
前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化ステップと、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記対象領域の各小領域の非ゼロの量子化変換係数の符号化データとを出力する出力ステップと、
を備えることを特徴とする画像符号化方法。 - 画像復号装置により実行される画像復号方法であって、
圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析ステップと、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号ステップと、
前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号ステップと、
前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号ステップと、
前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピングステップと、
前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化ステップと、
前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換ステップと、
前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測ステップと、
前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元ステップと、
前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合ステップと、
を備えることを特徴とする画像復号方法。 - コンピュータを、
入力画像を複数の領域に分割する領域分割手段と、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、
前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、
前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、
前記小領域の残差信号を周波数変換して変換係数を生成する変換手段と、
前記小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、
前記複数の分割方法に共通の木構造を用意し、前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記小領域の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、
前記小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段、
として動作させるための画像符号化プログラム。 - コンピュータを、
圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域を分割した小領域の残差信号の符号化データを抽出するデータ解析手段と、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、
前記分割方法に共通の木構造を用意し、前記小領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、
前記小領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、
前記小領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した小領域の量子化変換係数の復号値を、前記小領域の再生量子化変換係数に復元するゼロツリー量子化変換係数マッピング手段と、
前記小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、
前記小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、
前記小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記小領域の前記予測信号と前記再生残差信号とを加算することによって、前記小領域の画素信号を復元する画像復元手段、
として動作させるための画像復号プログラム。 - コンピュータを、
入力画像を複数の領域に分割する領域分割手段と、
前記複数の領域のうちの処理対象である対象領域の分割方法を複数の分割方法から選択する分割方法選択手段と、
前記選択した分割方法を識別する情報を符号化する分割方法符号化手段と、
前記選択した分割方法で前記対象領域を複数の小領域に分割する小領域分割手段と、
前記対象領域の各小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記対象領域の各小領域の予測信号と画素信号との残差信号を生成する残差信号生成手段と、
前記対象領域の各小領域の残差信号を周波数変換して変換係数を生成する変換手段と、
前記対象領域の各小領域の変換係数を量子化して量子化変換係数を生成する量子化手段と、
前記複数の分割方法に共通の木構造を用意し、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記対象領域の前記選択した分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記対象領域内の量子化変換係数を前記木構造のリーフにマッピングし、各リーフの係数値に従って前記木構造のノードとリーフの状態を更新するゼロツリーマッピング手段と、
前記木構造のノードとリーフの状態を、前記複数の分割方法に共通の確率モデルでエントロピー符号化するゼロツリー符号化手段と、
前記対象領域の各小領域の非ゼロの量子化変換係数をエントロピー符号化する非ゼロ係数符号化手段と、
前記選択した分割方法を識別する情報の符号化データと、前記木構造のノードとリーフの状態の符号化データと、前記小領域の非ゼロの量子化変換係数の符号化データとを出力する出力手段、
として動作させるための画像符号化プログラム。 - コンピュータを、
圧縮データの中から、処理対象である対象領域の分割方法を指示する符号化データと前記対象領域の残差信号の符号化データを抽出するデータ解析手段と、
対象領域の分割方法を指示する符号化データから、複数の分割方法の中で前記対象領域の分割方法を識別する情報をエントロピー復号する分割方法復号手段と、
前記分割方法に共通の木構造を用意し、前記対象領域の残差信号の符号化データから、前記木構造のノードとリーフの状態を前記複数の分割方法に共通の確率モデルでエントロピー復号するゼロツリー復号手段と、
前記対象領域の残差信号の符号化データから、前記復号した木構造のリーフの状態が1である量子化変換係数の復号値をエントロピー復号する非ゼロ係数復号手段と、
前記対象領域の量子化変換係数を前記木構造のリーフにマッピングするための複数のマップから、前記復号した前記対象領域の分割方法に基づいて定まる1つのマップを選択し、前記選択したマップに基づいて、前記復号した木構造のノードとリーフの状態と前記復号した対象領域の量子化変換係数の復号値を、前記対象領域の各小領域の再生量子化変換係数に変換するゼロツリー量子化変換係数マッピング手段と、
前記対象領域の各小領域の再生量子化変換係数を逆量子化して再生周波数変換係数を生成する逆量子化手段と、
前記対象領域の各小領域の再生周波数変換係数を逆変換して再生残差信号を復元する逆変換手段と、
前記対象領域の小領域に含まれる画素信号に対する予測信号を生成する予測手段と、
前記対象領域の各小領域の前記予測信号と前記再生残差信号とを加算することによって、前記対象領域の各小領域の画素信号を復元し再生画像信号を生成する画像復元手段と、
前記対象領域の各小領域の再生画像信号を統合することによって、前記対象領域の再生画像信号を生成する領域統合手段、
として動作させるための画像復号プログラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200980155740.XA CN102301691B (zh) | 2009-02-18 | 2009-12-25 | 图像编码装置、方法和程序以及图像解码装置、方法和程序 |
EP09840444A EP2400738A4 (en) | 2009-02-18 | 2009-12-25 | BILDCODER, &8209; PROCESS AND PROGRAM AND IMAGE DECODER, &8209; PROCESS AND PROGRAM |
US13/212,035 US8542936B2 (en) | 2009-02-18 | 2011-08-17 | Image encoding and decoding device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009035339A JP5001964B2 (ja) | 2009-02-18 | 2009-02-18 | 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム |
JP2009-035339 | 2009-02-18 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/212,035 Continuation US8542936B2 (en) | 2009-02-18 | 2011-08-17 | Image encoding and decoding device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010095341A1 true WO2010095341A1 (ja) | 2010-08-26 |
Family
ID=42633633
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/071671 WO2010095341A1 (ja) | 2009-02-18 | 2009-12-25 | 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US8542936B2 (ja) |
EP (2) | EP2400738A4 (ja) |
JP (1) | JP5001964B2 (ja) |
CN (1) | CN102301691B (ja) |
ES (1) | ES2563743T3 (ja) |
TW (1) | TWI496438B (ja) |
WO (1) | WO2010095341A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8542936B2 (en) | 2009-02-18 | 2013-09-24 | Ntt Docomo, Inc. | Image encoding and decoding device |
CN103348383A (zh) * | 2010-11-26 | 2013-10-09 | 皇家飞利浦电子股份有限公司 | 图像处理装置 |
CN108028930A (zh) * | 2015-09-10 | 2018-05-11 | 三星电子株式会社 | 编码设备、解码设备及其编码方法和解码方法 |
CN111191386A (zh) * | 2020-01-20 | 2020-05-22 | 浙江省森林资源监测中心 | 一种多尺度相容的林木年生长模型组建模方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2549734T3 (es) | 2010-04-13 | 2015-11-02 | Ge Video Compression, Llc | Codificación de vídeo que usa subdivisiones multi-árbol de imágenes |
CN106454371B (zh) | 2010-04-13 | 2020-03-20 | Ge视频压缩有限责任公司 | 解码器、数组重建方法、编码器、编码方法及存储介质 |
KR101584480B1 (ko) | 2010-04-13 | 2016-01-14 | 지이 비디오 컴프레션, 엘엘씨 | 평면 간 예측 |
KR102166520B1 (ko) | 2010-04-13 | 2020-10-16 | 지이 비디오 컴프레션, 엘엘씨 | 샘플 영역 병합 |
JP6056122B2 (ja) | 2011-01-24 | 2017-01-11 | ソニー株式会社 | 画像符号化装置と画像復号装置およびその方法とプログラム |
CN102176750B (zh) * | 2011-03-10 | 2012-12-26 | 西安电子科技大学 | 高性能自适应二进制算术编码器 |
EP2793468A4 (en) * | 2011-12-15 | 2015-09-02 | Tagivan Ii Llc | PICTURE CODING METHOD, PICTURE DECODING METHOD, PICTURE CODING DEVICE, IMAGE DECODING DEVICE, AND PICTURE CODING / DECODING DEVICE |
CN103209323A (zh) * | 2012-12-26 | 2013-07-17 | 辽宁师范大学 | 基于k阶零树间向量的图像压缩方法 |
CN104104958B (zh) * | 2013-04-08 | 2017-08-25 | 联发科技(新加坡)私人有限公司 | 图像解码方法及其图像解码装置 |
JP6528765B2 (ja) * | 2014-03-28 | 2019-06-12 | ソニー株式会社 | 画像復号装置および方法 |
CN108353179A (zh) * | 2015-09-10 | 2018-07-31 | 三星电子株式会社 | 编码设备、解码设备及其编码方法和解码方法 |
CN106888380B (zh) * | 2017-01-04 | 2019-05-03 | 西安万像电子科技有限公司 | 图像中文字块的编码方法及装置 |
EP3742403A4 (en) * | 2018-01-19 | 2021-03-17 | Panasonic Intellectual Property Corporation of America | METHOD FOR CODING THREE-DIMENSIONAL DATA, METHOD FOR DECODING THREE-DIMENSIONAL DATA, DEVICE FOR CODING THREE-DIMENSIONAL DATA AND DEVICE FOR DECODING THREE-DIMENSIONAL DATA |
CN109660803A (zh) * | 2019-01-22 | 2019-04-19 | 西安电子科技大学 | 一种编码块的量化方法及用于hevc编码的量化方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111869A (ja) * | 1994-09-27 | 1996-04-30 | Samsung Electron Co Ltd | 条件付き4分割ツリー方式を用いた画像データ圧縮方法及び装置 |
US6765964B1 (en) | 2000-12-06 | 2004-07-20 | Realnetworks, Inc. | System and method for intracoding video data |
JP2005530375A (ja) * | 2002-05-02 | 2005-10-06 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | 画像および/またはビデオ符号器と復号器における変換係数を符号化するための方法と装置および対応するコンピュータプログラムと対応するコンピュータによる読み出し可能な記憶媒体 |
US7003035B2 (en) | 2002-01-25 | 2006-02-21 | Microsoft Corporation | Video coding methods and apparatuses |
US20060133680A1 (en) | 2004-12-22 | 2006-06-22 | Frank Bossen | Method and apparatus for coding positions of coefficients |
JP2006186995A (ja) * | 1997-02-12 | 2006-07-13 | Mediatek Inc | ウェーブレットに基づく符号化方法により生成されたウェーブレットツリーを符号化するための装置および方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997017797A2 (en) * | 1995-10-25 | 1997-05-15 | Sarnoff Corporation | Apparatus and method for quadtree based variable block size motion estimation |
DE10022331A1 (de) * | 2000-05-10 | 2001-11-15 | Bosch Gmbh Robert | Verfahren zur Transformationscodierung von Bewegtbildsequenzen |
TWI300311B (en) * | 2005-11-22 | 2008-08-21 | Aspeed Technology Inc | Progressive differential motion jpeg codec |
TWI304303B (en) * | 2006-01-04 | 2008-12-11 | Sunplus Technology Co Ltd | Apparatus for image encoding and the method thereof |
JP5001964B2 (ja) | 2009-02-18 | 2012-08-15 | 株式会社エヌ・ティ・ティ・ドコモ | 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム |
US8406546B2 (en) * | 2009-06-09 | 2013-03-26 | Sony Corporation | Adaptive entropy coding for images and videos using set partitioning in generalized hierarchical trees |
BRPI1014232A2 (pt) * | 2009-06-09 | 2016-04-12 | Sony Corp | aparelho para gerar múltiplas árvores de codificação de candidato para uso durante codificação, sistema para codificação e de codificação adaptável de imagens ou vídeos, e, método para gerar múltiplas árvores de codificação de candidato |
WO2011002492A1 (en) * | 2009-07-02 | 2011-01-06 | Thomson Licensing | Methods and apparatus for video encoding and decoding binary sets using adaptive tree selection |
-
2009
- 2009-02-18 JP JP2009035339A patent/JP5001964B2/ja active Active
- 2009-12-25 CN CN200980155740.XA patent/CN102301691B/zh active Active
- 2009-12-25 WO PCT/JP2009/071671 patent/WO2010095341A1/ja active Application Filing
- 2009-12-25 ES ES13155379.4T patent/ES2563743T3/es active Active
- 2009-12-25 EP EP09840444A patent/EP2400738A4/en not_active Withdrawn
- 2009-12-25 EP EP13155379.4A patent/EP2615820B1/en active Active
- 2009-12-30 TW TW098145872A patent/TWI496438B/zh active
-
2011
- 2011-08-17 US US13/212,035 patent/US8542936B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08111869A (ja) * | 1994-09-27 | 1996-04-30 | Samsung Electron Co Ltd | 条件付き4分割ツリー方式を用いた画像データ圧縮方法及び装置 |
JP2006186995A (ja) * | 1997-02-12 | 2006-07-13 | Mediatek Inc | ウェーブレットに基づく符号化方法により生成されたウェーブレットツリーを符号化するための装置および方法 |
US6765964B1 (en) | 2000-12-06 | 2004-07-20 | Realnetworks, Inc. | System and method for intracoding video data |
US7003035B2 (en) | 2002-01-25 | 2006-02-21 | Microsoft Corporation | Video coding methods and apparatuses |
JP2005530375A (ja) * | 2002-05-02 | 2005-10-06 | フラウンホーファー−ゲゼルシャフト・ツール・フェルデルング・デル・アンゲヴァンテン・フォルシュング・アインゲトラーゲネル・フェライン | 画像および/またはビデオ符号器と復号器における変換係数を符号化するための方法と装置および対応するコンピュータプログラムと対応するコンピュータによる読み出し可能な記憶媒体 |
US20060133680A1 (en) | 2004-12-22 | 2006-06-22 | Frank Bossen | Method and apparatus for coding positions of coefficients |
Non-Patent Citations (1)
Title |
---|
See also references of EP2400738A4 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8542936B2 (en) | 2009-02-18 | 2013-09-24 | Ntt Docomo, Inc. | Image encoding and decoding device |
CN103348383A (zh) * | 2010-11-26 | 2013-10-09 | 皇家飞利浦电子股份有限公司 | 图像处理装置 |
CN108028930A (zh) * | 2015-09-10 | 2018-05-11 | 三星电子株式会社 | 编码设备、解码设备及其编码方法和解码方法 |
CN111191386A (zh) * | 2020-01-20 | 2020-05-22 | 浙江省森林资源监测中心 | 一种多尺度相容的林木年生长模型组建模方法 |
CN111191386B (zh) * | 2020-01-20 | 2023-04-14 | 浙江省森林资源监测中心 | 一种多尺度相容的林木年生长模型组建模方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2400738A1 (en) | 2011-12-28 |
EP2615820B1 (en) | 2015-11-25 |
TWI496438B (zh) | 2015-08-11 |
US8542936B2 (en) | 2013-09-24 |
JP5001964B2 (ja) | 2012-08-15 |
EP2400738A4 (en) | 2012-09-05 |
CN102301691B (zh) | 2014-04-02 |
EP2615820A1 (en) | 2013-07-17 |
ES2563743T3 (es) | 2016-03-16 |
JP2010193162A (ja) | 2010-09-02 |
CN102301691A (zh) | 2011-12-28 |
TW201032596A (en) | 2010-09-01 |
US20110299788A1 (en) | 2011-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5001964B2 (ja) | 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム | |
JP5258664B2 (ja) | 画像符号化装置、方法およびプログラム、並びに、画像復号装置、方法およびプログラム | |
JP5781313B2 (ja) | 画像予測符号化方法、画像予測符号化装置、画像予測符号化プログラム、画像予測復号方法、画像予測復号装置及び画像予測復号プログラム | |
AU2009338306B2 (en) | Device, method and program for image prediction encoding, device, method and program for image prediction decoding, and encoding/decoding system and method | |
WO2011083573A1 (ja) | 動画像符号化装置及び動画像復号化装置 | |
US20100086028A1 (en) | Video encoding and decoding method and apparatus | |
CN103339940B (zh) | 运动图像编码方法以及运动图像解码方法 | |
JP2002315004A (ja) | 画像符号化方法及び装置、画像復号方法及び装置、並びに画像処理システム | |
CN104041039A (zh) | 用于编码和解码图像的方法、编码和解码设备、以及相应的计算机程序 | |
JP2015109695A (ja) | 動画像符号化装置及び動画像復号化装置 | |
JP6038243B2 (ja) | 画像予測復号方法及び画像予測復号装置 | |
WO2012096104A1 (ja) | 画像予測符号化装置、画像予測符号化方法、画像予測符号化プログラム、画像予測復号装置、画像予測復号方法、及び画像予測復号プログラム | |
JP5526277B2 (ja) | 動画像復号化装置、方法及びプログラム | |
JP5432359B2 (ja) | 動画像符号化装置、方法及びプログラム | |
JP5432412B1 (ja) | 動画像符号化装置及び動画像復号化装置 | |
CN107409216A (zh) | 图像编码和解码方法、编码和解码设备以及相应的计算机程序 | |
JP6486528B2 (ja) | 画像予測復号方法及び画像予測復号装置 | |
JP5898924B2 (ja) | 動画像予測符号化方法、動画像予測符号化装置、動画像予測符号化プログラム、動画像予測復号方法、動画像予測復号装置および動画像予測復号プログラム | |
JP2018056903A (ja) | 画像符号化装置、画像復号装置、符号化プログラム、及び復号プログラム | |
JP6310992B2 (ja) | 画像予測復号方法及び画像予測復号装置 | |
JP5696248B2 (ja) | 動画像符号化装置及び動画像復号化装置 | |
JP5525650B2 (ja) | 動画像復号化装置、方法及びプログラム | |
JP5323209B2 (ja) | 動画像符号化装置及び動画像復号化装置 | |
JP5597782B2 (ja) | 動画像符号化装置及び動画像復号化装置 | |
JP2008017295A (ja) | カラー画像符号化方法、装置及びプログラム、並びに、カラー画像復号方法、装置及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980155740.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09840444 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009840444 Country of ref document: EP |