WO2010095262A1 - 内燃機関の燃料性状判定装置 - Google Patents

内燃機関の燃料性状判定装置 Download PDF

Info

Publication number
WO2010095262A1
WO2010095262A1 PCT/JP2009/053201 JP2009053201W WO2010095262A1 WO 2010095262 A1 WO2010095262 A1 WO 2010095262A1 JP 2009053201 W JP2009053201 W JP 2009053201W WO 2010095262 A1 WO2010095262 A1 WO 2010095262A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
injection
injection timing
combustion
determination
Prior art date
Application number
PCT/JP2009/053201
Other languages
English (en)
French (fr)
Inventor
西海 亮児
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/053201 priority Critical patent/WO2010095262A1/ja
Priority to JP2010503158A priority patent/JP4844690B2/ja
Priority to CN200980100155XA priority patent/CN101903631B/zh
Priority to US12/678,075 priority patent/US8256281B2/en
Publication of WO2010095262A1 publication Critical patent/WO2010095262A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/085Control based on the fuel type or composition
    • F02D19/087Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels
    • F02D19/088Control based on the fuel type or composition with determination of densities, viscosities, composition, concentration or mixture ratios of fuels by estimation, i.e. without using direct measurements of a corresponding sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a fuel property determination apparatus for an internal combustion engine that determines the property of fuel used in the internal combustion engine, and more particularly, a fuel suitable for determining the property of fuel used in a compression ignition type internal combustion engine.
  • the present invention relates to a property determination device.
  • Patent Document 1 discloses a diesel engine combustion control device.
  • the ignition timing of the fuel is detected using an in-cylinder pressure sensor. Then, based on the difference between the detected actual ignition timing and the target value, the fuel injection timing, the EGR rate, and the like are corrected.
  • the fuel injection timing, the EGR rate, and the like are corrected.
  • the applicant has recognized the following documents including the above-mentioned documents as related to the present invention.
  • the fuel distillation property (evaporation index value) has a great influence on the combustion of the compression ignition internal combustion engine. Therefore, it is desirable that the ignitability index value and the evaporability index value can be individually determined. However, the above-described conventional method cannot individually determine the ignitability index value and the evaporability index value.
  • the present invention has been made to solve the above-described problems, and provides a fuel property determination device for an internal combustion engine that can individually determine the ignitability index value and the evaporability index value of the fuel with high accuracy.
  • the purpose is to do.
  • a first invention is a fuel property determination device for an internal combustion engine, A fuel injection valve for injecting fuel into the cylinder; First injection execution means for executing fuel injection using the fuel injection valve at a first injection timing during an expansion stroke; The fuel injection valve is used during a combustion cycle different from the fuel injection at the first injection timing at an injection timing delayed from the first injection timing and at least one second injection timing during the expansion stroke.
  • Second injection execution means for executing the fuel injection, Combustion pressure acquisition means for detecting or estimating the combustion pressure or its correlation value; Air-fuel ratio acquisition means for acquiring the air-fuel ratio of the exhaust gas; Combustion pressure at the time of combustion associated with fuel injection at the first injection timing and the second injection timing or a correlation value thereof, and respective combustion associated with fuel injection at the first injection timing and the second injection timing; Fuel property determination means for determining the fuel property based on the air-fuel ratio of the exhaust gas at the time, It is characterized by providing.
  • the second invention is the first invention, wherein
  • the fuel property determining means includes The change information of the combustion pressure at the time of combustion accompanying the fuel injection at the second injection timing or the correlation value thereof with respect to the combustion pressure at the time of combustion accompanying the fuel injection at the first injection timing or the correlation value thereof, First determination index calculation means for calculating as one determination index; A change information of the air-fuel ratio at the time of combustion accompanying the fuel injection at the second injection timing with respect to the air-fuel ratio at the time of combustion accompanying the fuel injection at the first injection timing is calculated as a second determination index.
  • a determination index calculation means for determining the ignitability index value and the evaporative index value according to the first determination index, the second determination index, and the determination basic information; It is characterized by including.
  • the third invention is the second invention, wherein
  • the first determination index is the combustion pressure at the time of combustion accompanying the fuel injection at the second injection timing or the correlation thereof with respect to the combustion pressure at the time of combustion accompanying the fuel injection at the first injection timing or a correlation value thereof.
  • the amount of change in value is a change amount of the air-fuel ratio at the time of combustion accompanying fuel injection at the second injection timing with respect to the air-fuel ratio at the time of combustion accompanying fuel injection at the first injection timing
  • the determination basic information is a value indicating that the ignitability index value is lower as the first determination index is larger, and the evaporability index value is lower as the second determination index is larger. It is set so that it may become a value which shows sex.
  • a fourth invention in any one of the first to third inventions, Based on at least one of the combustion pressure at the time of combustion accompanying fuel injection at the first injection timing or a correlation value thereof, and the air-fuel ratio at the time of combustion accompanying fuel injection at the first injection timing, It further comprises a second injection timing setting means for setting the second injection timing.
  • the fifth invention is the fourth invention, wherein
  • the second injection timing setting means is such that the leaner the air-fuel ratio during combustion associated with fuel injection at the first injection timing, the more retarded the second injection timing with respect to the first injection timing. It is characterized by making small.
  • the sixth invention is the fourth invention, wherein
  • the second injection timing setting means sets the retardation amount of the second injection timing with respect to the first injection timing as the combustion pressure at the time of combustion accompanying the fuel injection at the first injection timing or a correlation value thereof is smaller. It is characterized by being made small.
  • the correlation value of the combustion pressure is a measured value of a crank angular velocity.
  • the amount of fuel bore flushing and the combustion rate when injection is performed during the expansion stroke differ depending on the difference in the ignitability index value and the evaporability index value of the fuel. Further, the ignitability index value of the fuel has a large influence on the combustion pressure, and the evaporability index value has a large influence on the air-fuel ratio of the exhaust gas.
  • the fuel property is determined based on the combustion pressure and the air-fuel ratio at different injection timings at the time of combustion (combustion in the expansion stroke) that is easily affected by the ignitability and evaporation of the fuel. Thus, it becomes possible to accurately determine the ignitability index value and the evaporability index value of the fuel individually.
  • the first determination information that is change information of the combustion pressure or its correlation value largely reflects the influence of the fuel ignitability index value
  • the second determination information that is change information of the air-fuel ratio of the exhaust gas is It largely reflects the effect of fuel evaporative index.
  • the determination using the determination basic information defining the fuel ignitability index value and the fuel evaporability index value is performed between the first determination index and the second determination index.
  • the determination basic information set so as to be the value shown the ignitability index value and the evaporability index value can be determined individually and accurately.
  • the size of the determination index (first determination index or second determination index) required for ensuring the determination accuracy of the fuel property is sufficiently ensured while suppressing the amount of bore flushing. It becomes possible.
  • the air-fuel ratio at the time of combustion accompanying fuel injection at the first after injection timing is lean, it can be determined that fuel that is easy to bore flushing is used. Therefore, it can be determined that the amount of change in the air-fuel ratio increases as the after injection timing is retarded.
  • the retard amount of the second after injection timing with respect to the first after injection timing is reduced. Accordingly, the size of the second determination information required for ensuring the determination accuracy of the fuel property while suppressing the bore flushing amount by preventing the second after injection timing from being retarded unnecessarily. Can be secured sufficiently.
  • the combustion pressure at the time of combustion accompanying the fuel injection at the first after injection timing or its correlation value is small, it can be determined that the fuel that is easily subjected to bore flushing is being used. Therefore, it can be determined that the amount of change in the combustion pressure or its correlation value increases as the after injection timing is retarded.
  • the retard amount of the second after injection timing with respect to the first after injection timing is reduced.
  • the correlation value of the combustion pressure can be obtained satisfactorily based on the measured value of the crank angular velocity.
  • FIG. 2 is a diagram for explaining fuel injection and combustion modes performed in the internal combustion engine shown in FIG. 1 and setting of an injection angle of a fuel injection valve. It is a figure for demonstrating the influence which the difference in a fuel property has on each of the change of the air-fuel ratio of exhaust gas accompanying the change of after injection timing, and the change of crank angular velocity. It is a figure which shows the basic judgment information which defined the cetane number (CN) and the distillation property (T90) between the variation
  • CN cetane number
  • T90 distillation property
  • FIG. 1 is a diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system shown in FIG. 1 includes an internal combustion engine 10.
  • the internal combustion engine 10 is a four-cycle diesel engine (compression ignition type internal combustion engine).
  • Each cylinder of the internal combustion engine 10 is provided with a fuel injection valve 12 that injects fuel directly into the cylinder.
  • the fuel injection valve 12 of each cylinder is connected to a common common rail 14.
  • Fuel in a fuel tank (not shown) is pressurized to a predetermined fuel pressure by a supply pump 16, stored in the common rail 14, and supplied from the common rail 14 to each fuel injection valve 12.
  • An air cleaner 20 is provided near the inlet of the intake passage 18 of the internal combustion engine 10.
  • the air sucked through the air cleaner 20 is compressed by the compressor of the turbocharger 22 and then cooled by the intercooler 24.
  • the intake air that has passed through the intercooler 24 is distributed to the intake port of each cylinder by the intake manifold 26.
  • An intake throttle valve 28 is installed between the intercooler 24 and the intake manifold 26. Further, an air flow meter 30 for detecting the intake air amount is installed in the vicinity of the downstream side of the air cleaner 20.
  • the exhaust passage 32 of the internal combustion engine 10 is branched by an exhaust manifold 34 and connected to the exhaust port of each cylinder.
  • a turbine of the turbocharger 22 is disposed in the exhaust passage 32.
  • An exhaust gas purification device 36 for purifying exhaust gas is provided on the exhaust passage 32 downstream of the turbocharger 22.
  • an air-fuel ratio sensor 38 that detects an air-fuel ratio (A / F) of the exhaust gas flowing through the exhaust passage 32 is installed at a portion upstream of the exhaust purification device 36.
  • the system of the present embodiment includes an ECU (Electronic Control Unit) 40.
  • the ECU 40 includes various sensors for detecting the operating state of the internal combustion engine 10 such as a crank angle sensor 44 for detecting the rotation angle (crank angle) and the rotation speed (crank angular velocity) of the crankshaft 42 in addition to the sensors described above. Sensors are connected.
  • various actuators for controlling the operating state of the internal combustion engine 10 are connected to the ECU 40.
  • the ECU 40 controls the operating state of the internal combustion engine 10 by driving each actuator according to a predetermined program based on those sensor signals and information.
  • FIG. 2 is a diagram for explaining the fuel injection and combustion modes performed in the internal combustion engine 10 shown in FIG. 1 and the setting of the injection angle of the fuel injection valve 12.
  • the above-described fuel injection valve 12 is installed so that its tip protrudes from the central portion of the combustion chamber 50 at a position between the intake valve 46 and the exhaust valve 48.
  • a cavity 52a for guiding the injected fuel is formed on the top surface of the piston 52 arranged in the cylinder.
  • Main injection which is fuel injection for obtaining torque of the internal combustion engine 10, is executed when the piston 52 is positioned near the compression top dead center, as shown in FIG.
  • the fuel injection angle of the fuel injection valve 12 and the shape of the cavity 52a are set so that the fuel injected during the main injection is surely introduced into the cavity 52a when the piston 52 is located near the top dead center.
  • the injection angle as shown in FIG. 2 (C)
  • the fuel injection is performed in a situation where the piston 52 is moving down from the top dead center, the injected fuel It becomes easy to adhere to the cylinder wall surface 54 where a part of is exposed.
  • FIG. 2 (B) As shown, the main combustion is performed.
  • after injection for the purpose of increasing the exhaust temperature or the like is performed.
  • the after injection is performed during the expansion stroke after the main combustion and before the exhaust valve 48 is opened.
  • the temperature and pressure in the cylinder decrease as the piston 52 descends.
  • after-injection for the purpose of increasing the exhaust temperature or the like is performed during a period in which combustion is possible after main combustion.
  • the injected fuel evaporates and mixes with air, and after-combustion is performed as shown in FIG.
  • the amount of fuel bore flushing and the combustion rate when after-injection is executed vary depending on the distillation properties and cetane number of the injected fuel.
  • the bore flushing is a phenomenon in which the fuel injected into the cylinder wash away the lubricating oil adhering to the cylinder wall surface 54. As a result, the fuel contributing to combustion is reduced.
  • the combustion rate shown here is a value indicating the ratio of the fuel that has been subjected to combustion with respect to the injected fuel.
  • the piston 52 when the after injection is executed, the piston 52 is away from the top dead center, so that the injected fuel does not hit the top surface of the piston 52 as shown in FIG. It is injected toward the cylinder wall surface 54.
  • the evaporation of the fuel in the cylinder is insufficient, and the fuel is likely to reach the cylinder wall surface 54 in the form of droplets. Thereby, the amount of bore flushing increases and the combustion rate decreases.
  • the first after-injection is performed under conditions that are relatively easy to burn (under conditions in which bore flushing is unlikely to occur), and under conditions that are relatively difficult to combust (in conditions where bore flushing is likely to occur).
  • the second after injection was performed.
  • the amount of change (difference) in the air-fuel ratio of the exhaust gas during combustion accompanying the execution of the second after injection with respect to the air-fuel ratio of the exhaust gas during combustion accompanying the execution of the first after-injection, and the execution of the first after-injection The cetane number and distillation of the fuel currently used in the operation of the internal combustion engine 10 based on the change amount (difference) in the crank angular speed during combustion accompanying the execution of the second after injection with respect to the crank angular speed during combustion associated with The property was judged. Note that as the combustion pressure increases, the crank angular velocity also increases. Accordingly, the crank angular velocity is used here as the correlation value of the combustion pressure.
  • FIG. 3 is a diagram for explaining the influence of the difference in fuel properties on each of the change in the air-fuel ratio of the exhaust gas and the change in the crank angular velocity due to the change in the after injection timing. More specifically, FIG. 3A shows the relationship between the air-fuel ratio of the exhaust gas and the after injection timing, and FIG. 3B shows the relationship between the crank angular velocity and the after injection timing.
  • the timing of the first after-injection corresponds to the timing T1 on the advance side close to the main combustion
  • the timing of the first after-injection corresponds to the timing of the second after-injection. This corresponds to a timing T2 that is retarded from the timing T1.
  • the effect of retarding the after injection timing on the air-fuel ratio of the exhaust gas is lighter or heavier than the cetane number (ie, the ignitability is good or bad). It can be seen that it is larger (that is, whether the vaporization is good or bad).
  • crank angular velocity that is, the change rate of the crank angle
  • the combustion rate decreases with the fuel ( ⁇ ) having a lower cetane number than the white circle ( ⁇ ) and the heavy fuel ( ⁇ ).
  • the crank angular speed during after-combustion decreases.
  • such a decrease in crank angular velocity is more remarkable in the case of a heavy fuel ( ⁇ ) with a low cetane number.
  • FIG. 4 shows basic determination information for determining the cetane number (CN) and the distillation property (T90) between the amount of change in air-fuel ratio ( ⁇ A / F) and the amount of change in crank angular velocity ( ⁇ crank angular velocity).
  • FIG. 4 More specifically, in the determination basic information shown in FIG. 4, the distillation temperature under T90 increases as the air-fuel ratio change amount ( ⁇ A / F) increases, and the crank angular velocity change amount ( ⁇ crank angular velocity). ) Is set such that the cetane number decreases as the value increases.
  • ⁇ A / F which is the amount of change between the air-fuel ratio at the first after-injection time T1 and the air-fuel ratio at the second after-injection time T2, obtained as shown in FIG. 3, the crank angular speed at the first after-injection time T1, and the first
  • ⁇ crank angle which is the amount of change from the crank angular speed at the two after injection timing T2
  • the cetane number (CN) and the distillation property in relation to the relationship shown in FIG. 4, that is, between the amount of change in the air-fuel ratio ( ⁇ A / F) and the amount of change in the crank angular velocity ( ⁇ crank angular velocity).
  • the relationship that defines T90) is acquired in advance.
  • the obtained relationship is mapped as fuel property determination basic information and stored in the ECU 40 in advance.
  • the amount of change in the air-fuel ratio ( ⁇ A / F) and the amount of change in the crank angular velocity ( ⁇ crank angular velocity) are calculated, and then compared with the above basic determination information,
  • the cetane number and distillation properties of the fuel are determined simultaneously and individually.
  • FIG. 5 is a flowchart of a routine executed by the ECU 40 in the first embodiment in order to realize the above function.
  • step 100 it is first determined whether or not fuel property determination is necessary. Specifically, in this step 100, it is determined whether or not refueling has been performed as an example of determining whether or not fuel property determination is necessary. When the fuel is supplied, there is a possibility that the property of the fuel in the fuel tank changes. Therefore, in step 100, when fuel is supplied, it is determined that the fuel property determination is necessary.
  • the determination of the presence or absence of refueling can be performed, for example, by detecting the liquid level of the fuel in the fuel tank based on the output of a liquid level sensor (not shown).
  • step 100 If it is determined in step 100 that fuel property determination is necessary, whether or not the internal combustion engine 10 has been warmed up is output from a water temperature sensor (not shown) that detects the engine coolant temperature. (Step 102). As a result, when the warm-up of the internal combustion engine 10 is completed, the following fuel property determination process is started.
  • the first after injection timing T1 is a time during the expansion stroke after the main combustion and before the exhaust valve 48 is opened, and is in a condition that facilitates combustion (that is, a condition in which bore flushing is difficult). It is a time set in advance that is relatively close to the time when the main combustion is performed.
  • the first after injection is executed (step 106).
  • crank angular speed during combustion (first crank angular speed) accompanying the execution of fuel injection at the first after injection timing T1 is detected using the crank angle sensor 44 (step 108).
  • the air-fuel ratio (first air-fuel ratio) of the exhaust gas during combustion accompanying the execution of fuel injection at the first after-injection timing T1 is detected using the air-fuel ratio sensor 38 (step 110).
  • the second after injection timing T2 is a time during the expansion stroke after the main combustion and before the exhaust valve 48 is opened, and it is difficult to combust (that is, a condition in which bore flushing is easily performed). It is a time set in advance on the retard side from the first after injection time T1 as much as possible.
  • after injection timings T1 and T2 are timings when combustion is possible when a predetermined standard fuel (for example, light oil) is used.
  • step 112 If it is determined in step 112 that the second after-injection timing condition has been established, the second after-injection is executed (step 114). Next, the crank angular speed during combustion (second crank angular speed) accompanying the execution of fuel injection at the second after injection timing T2 is detected using the crank angle sensor 44 (step 116). Next, the air-fuel ratio (second air-fuel ratio) of the exhaust gas during combustion accompanying the execution of fuel injection at the second after-injection timing T2 is detected using the air-fuel ratio sensor 38 (step 118).
  • ⁇ crank angular speed which is a change amount (difference) between the first crank angular speed and the second crank angular speed
  • ⁇ A / F which is a change amount (difference) between the first air fuel ratio and the second air fuel ratio
  • the air-fuel ratio and crank angular velocity at the time of combustion accompanying the execution of each after-injection are detected at the two after-injection timings T1 and T2.
  • the white triangle mark ( ⁇ ) and the black circle mark ( ⁇ ) in FIG. 3 (A) are seen only by the measurement result of the air-fuel ratio at one point of the first after injection timing T1.
  • crank angular speed is shown. It is not possible to determine whether the factor that determines the height is because the cetane number is low or because it is heavy.
  • the cetane number (ignitability index value) has a great influence on the crank angular velocity (combustion pressure), and the distillation property (evaporation index value) has a great influence on the air-fuel ratio of the exhaust gas.
  • the cetane number of the fuel is determined by using the crank angular velocity and the air-fuel ratio at different injection timings T1 and T2 at the time of after combustion that is easily affected by the ignitability and evaporability of the fuel.
  • the distillation property can be determined simultaneously and individually with high accuracy.
  • the first and second after injections are executed during the expansion stroke after the main combustion in order to determine the fuel properties.
  • the first injection timing in the present invention is not limited to the first after injection timing T1. That is, when fuel injection for main combustion is performed at an injection timing after compression top dead center, the first injection timing may be the injection timing for main combustion.
  • the second injection timing in the present invention is not the second after-injection timing T2, but is an after-stroke that is performed during the expansion stroke after the injection timing for the main combustion after the compression top dead center. It may be an injection timing.
  • the correlation value of the combustion pressure at the time of after-combustion is acquired using the crank angular velocity detected by the crank angle sensor 44.
  • the method for obtaining the combustion pressure or the correlation value in the present invention is not limited to this, and for example, an in-cylinder pressure sensor for detecting the in-cylinder pressure of the internal combustion engine 10 is provided, and the after combustion is performed. You may make it acquire the combustion pressure of time.
  • the second after-injection timing in the present invention is not limited to the example of one point as in the timing T2.
  • the following method may be used. That is, in consideration of the suppression of the bore flushing amount, the second after injection timing having a relatively small retardation amount with respect to the first after injection timing is first set. In such a second after injection timing, when the ⁇ A / F and ⁇ crank angular velocity of the magnitudes necessary for sufficiently ensuring the property determination accuracy cannot be obtained, the second after injection timing is further set. After retarding, a third after-injection may be performed.
  • the distillation property (T90) is used as the evaporability index value.
  • the evaporative index value in the present invention is not limited to such a distillation property, and may be, for example, the kinematic viscosity of the fuel. When the kinematic viscosity of the fuel is lowered, the fuel is easily atomized, and the fuel evaporability is improved. For this reason, you may use kinematic viscosity as an evaporability index value.
  • ⁇ A / F which is the amount of change (difference) between the first air-fuel ratio and the second air-fuel ratio
  • the ⁇ crank angular velocity which is the amount of change (difference) from the angular velocity
  • the respective pieces of change information serving as the first and second determination indexes in the present invention are not limited to this.
  • the change rate (ratio) between the first air-fuel ratio and the second air-fuel ratio It may be a change rate (ratio) between the first crank angular speed and the second crank angular speed.
  • the ECU 40 executes the process of step 106, whereby the “first injection execution means” in the first invention executes the process of step 114.
  • the “second injection execution means” in the first invention executes the above steps 108 and 116
  • the “combustion pressure acquisition means” in the first invention executes the processing of the above steps 110 and 118.
  • the “fuel property determination means” according to the first aspect of the present invention is realized by executing the processing of steps 120 and 122 by the “air-fuel ratio acquisition means” according to the first aspect of the present invention.
  • the first after injection timing T1 and the second after injection timing correspond to the “first injection timing” and the “second injection timing” in the first aspect of the present invention, respectively.
  • ⁇ crank angular velocity corresponds to the “first determination index” in the second invention
  • ⁇ A / F corresponds to the “second determination index” in the second invention.
  • the ECU 40 executes the process of step 120
  • the “first determination index calculation means” and the “second determination index calculation means” in the second invention execute the process of step 122.
  • the “determination basic information acquisition unit” and the “determination execution unit” in the second aspect of the invention are realized.
  • Embodiment 2 a second embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by causing the ECU 40 to execute a routine shown in FIG. 6 described later instead of the routine shown in FIG. 5 using the hardware configuration shown in FIG.
  • the system of the present embodiment is configured so that the second after-injection timing is based on the air-fuel ratio value (first air-fuel ratio) of the exhaust gas at the time of the first after-injection at the preset first after-injection timing T1. It is characterized in that T2 is set.
  • FIG. 6 is a flowchart of a routine executed by the ECU 40 in the second embodiment in order to realize the above function.
  • the same steps as those shown in FIG. 2 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the routine shown in FIG. 6 after the air-fuel ratio (first air-fuel ratio) of the exhaust gas during combustion accompanying the execution of the first after-injection is detected in step 110, then, based on this first air-fuel ratio.
  • the second after injection timing T2 is set (step 200).
  • the ECU 40 stores a map that defines the second after-injection timing T2 in relation to the first air-fuel ratio.
  • FIG. 7 is a diagram showing the tendency of such a map. That is, in FIG. 7, the second after-injection timing T2 is set so that the retard amount with respect to the first after-injection timing T1 becomes smaller as the value of the first air-fuel ratio becomes leaner. In this step 200, such a map is referred to, and the second after injection timing T2 is determined based on the first air-fuel ratio.
  • step 112 when the second after injection timing condition set in step 200 is satisfied (step 112) after execution of the first after injection and during another cycle under the same operating condition (step 112), Two after-injection is executed (step 114), and the second air-fuel ratio and the second crank angular velocity are detected (steps 116 and 118), respectively.
  • step 120 basic fuel property determination information corresponding to the second after injection timing T2 set in step 200 (shown in FIG. 4 above).
  • the relationship between the cetane number and the distillation property of the fuel is determined based on the current ⁇ crank angular velocity and ⁇ A / F (step 202).
  • the basic determination information since the second after-injection time T2 is varied according to the first after-injection time T1, the basic determination information includes a plurality of maps for each second after-injection time T2 to be changed. As provided.
  • the second after-injection timing T2 is set based on the air-fuel ratio during combustion (first air-fuel ratio) accompanying the execution of the first after-injection.
  • first air-fuel ratio the air-fuel ratio during combustion
  • the change amount ⁇ A / F of the air-fuel ratio increases as the after injection timing is retarded.
  • the retard amount of the second after injection timing T2 with respect to the first after injection timing T1 is reduced. This prevents the second after-injection timing T2 from being retarded unnecessarily, thereby suppressing the amount of bore flushing and the magnitude of ⁇ A / F required to ensure the accuracy of fuel property determination. Can be secured sufficiently.
  • the value of the first air-fuel ratio is richer than when a predetermined standard fuel is used, it can be determined that the fuel that is difficult to bore flushing is used. Therefore, it can be determined that the change amount ⁇ A / F of the air-fuel ratio decreases as the after injection timing is retarded. According to the processing of the above routine, in such a case, the retard amount of the second after injection timing T2 with respect to the first after injection timing T1 is increased. Thereby, it is possible to sufficiently secure the magnitude of ⁇ A / F necessary for ensuring the accuracy of determining the fuel property.
  • the bore flushing amount can be achieved even if the retard amount of the second after injection timing T2 is increased as compared with the case where the value of the first air-fuel ratio is lean. It can be said that there is little concern about the increase.
  • the second after-injection timing T2 is set based on the air-fuel ratio (first air-fuel ratio) of the exhaust gas during combustion accompanying the execution of the first after-injection.
  • the present invention is not limited to such a method.
  • the present invention is based on the crank angular speed during combustion (first crank angular speed) associated with execution of the first after injection. You may set 2 after-injection time T2.
  • Such a method can be realized by causing the ECU 40 to execute a routine process similar to the routine shown in FIG.
  • processing for setting the second after-injection timing T2 is performed based on the first crank angular velocity in accordance with a map representing a tendency as shown in FIG. 8 below.
  • the second after injection timing T2 is set such that the retard amount with respect to the first after injection timing T1 becomes smaller as the value of the first crank angular velocity is lower.
  • the crank angular speed change amount ⁇ crank angular speed increases as the after injection timing is retarded.
  • the retard amount of the second after injection timing T2 with respect to the first after injection timing T1 is reduced in such a case. This prevents the second after-injection timing T2 from being retarded unnecessarily, thereby suppressing the amount of bore flushing and the magnitude of the ⁇ crank angular speed required to ensure the accuracy of determination of fuel properties. Can be secured sufficiently.
  • the value of the first crank angular velocity is higher than that when a predetermined standard fuel is used, it can be determined that the fuel having a high combustion rate and difficult to flush the bore is used. Accordingly, it can be determined that the change amount ⁇ crank angular velocity of the crank angular velocity becomes smaller as the after injection timing is retarded. According to the tendency of the map shown in FIG. 8, the retard amount of the second after injection timing T2 with respect to the first after injection timing T1 is increased in such a case. As a result, it is possible to sufficiently ensure the magnitude of the ⁇ crank angular velocity required for ensuring the fuel property determination accuracy.
  • the bore flushing amount increases even if the retard amount of the second after-injection timing T2 is increased as compared with the case where the value of the first crank angular velocity is low. There are few concerns about this.
  • the “second after-injection timing setting means” in the fourth aspect of the present invention is realized by the ECU 40 executing the process of step 200.

Abstract

 燃料の着火性指標値と蒸発性指標値とを個別に精度良く判定することを目的とする。  燃料がシリンダ壁面(54)に向かう方向となるように燃料の噴射方向が設定された燃料噴射弁(12)を備える。第1アフター噴射時期T1での燃料噴射に伴う燃焼時の排気ガスの空燃比(第1空燃比)およびクランク角速度(第1クランク角速度)を取得する。第1アフター噴射時期T1よりも遅角された第2アフター噴射時期T2での燃料噴射に伴う燃焼時の排気ガスの空燃比(第2空燃比)およびクランク角速度(第2クランク角速度)を取得する。第1空燃比と第2空燃比との変化量であるΔA/Fと、第1クランク角速度と第2クランク角速度との変化量であるΔクランク角速度と、所定の判定基礎情報とに基づいて、セタン価と蒸留性状を判定する。

Description

内燃機関の燃料性状判定装置
 この発明は、内燃機関に使用されている燃料の性状を判定する内燃機関の燃料性状判定装置に係り、特に、圧縮着火式内燃機関に使用されている燃料の性状を判定するうえで好適な燃料性状判定装置に関する。
 従来、例えば特許文献1には、ディーゼルエンジンの燃焼制御装置が開示されている。この従来の制御装置では、筒内圧センサを用いて、燃料の着火時期を検出するようにしている。そして、検出された実着火時期と目標値との差に基づいて、燃料の噴射時期やEGR率などを補正するようにしている。このような従来の制御装置の手法によれば、燃料の着火性指標値であるセタン価の変化に伴う弊害を抑制しつつ、ディーゼルエンジンの燃焼を制御することができる。
 尚、出願人は、本発明に関連するものとして、上記の文献を含めて、以下に記載する文献を認識している。
日本特開平11-107820号公報 日本特開2004-239229号公報
 圧縮着火式内燃機関の燃焼には、上述した従来の制御装置において考慮されているセタン価(着火性指標値)に加え、燃料の蒸留性状(蒸発性指標値)が大きな影響を与える。従って、着火性指標値と蒸発性指標値とを個別に判定できるようになっていることが望ましい。しかしながら、上記従来の手法は、着火性指標値と蒸発性指標値とを個別に判定できるものではない。
 この発明は、上述のような課題を解決するためになされたもので、燃料の着火性指標値と蒸発性指標値とを個別に精度良く判定することのできる内燃機関の燃料性状判定装置を提供することを目的とする。
 第1の発明は、内燃機関の燃料性状判定装置であって、
 燃料を筒内に噴射する燃料噴射弁と、
 膨張行程中の第1噴射時期において、前記燃料噴射弁を用いた燃料噴射を実行する第1噴射実行手段と、
 前記第1噴射時期よりも遅角された噴射時期であって膨張行程中の少なくとも1つの第2噴射時期において、前記第1噴射時期での燃料噴射とは異なる燃焼サイクル時に前記燃料噴射弁を用いた燃料噴射を実行する第2噴射実行手段と、
 燃焼圧またはその相関値を検出または推定する燃焼圧取得手段と、
 排気ガスの空燃比を取得する空燃比取得手段と、
 前記第1噴射時期および前記第2噴射時期での燃料噴射に伴うそれぞれの燃焼時の燃焼圧またはその相関値と、前記第1噴射時期および前記第2噴射時期での燃料噴射に伴うそれぞれの燃焼時の排気ガスの空燃比とに基づいて、燃料性状を判定する燃料性状判定手段と、
 を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記燃料性状判定手段は、
 前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値の変化情報を、第1判定指標として算出する第1判定指標算出手段と、
 前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記空燃比の変化情報を、第2判定指標として算出する第2判定指標算出手段と、
 前記第1判定指標と前記第2判定指標との間で、燃料の着火性指標値と燃料の蒸発性指標値とを定めた判定基礎情報を取得する判定基礎情報取得手段と、
 前記第1判定指標、前記第2判定指標、および前記判定基礎情報とに従って、前記着火性指標値と前記蒸発性指標値とを判定する判定実行手段と、
 を含むことを特徴とする。
 また、第3の発明は、第2の発明において、
 前記第1判定指標は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値の変化量であって、
 前記第2判定指標は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記空燃比の変化量であって、
 前記判定基礎情報は、前記第1判定指標が大きくなるほど、前記着火性指標値がより低い着火性を示す値となり、かつ、前記第2判定指標が大きくなるほど、前記蒸発性指標値がより低い蒸発性を示す値となるように設定されていることを特徴とする。
 また、第4の発明は、第1乃至第3の発明の何れかにおいて、
 前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値、および前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比のうちの少なくとも一方に基づいて、前記第2噴射時期を設定する第2噴射時期設定手段を更に備えることを特徴とする。
 また、第5の発明は、第4の発明において、
 前記第2噴射時期設定手段は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比がよりリーンな値であるほど、前記第1噴射時期に対する前記第2噴射時期の遅角量を小さくすることを特徴とする。
 また、第6の発明は、第4の発明において、
 前記第2噴射時期設定手段は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値が小さいほど、前記第1噴射時期に対する前記第2噴射時期の遅角量を小さくすることを特徴とする。
 また、第7の発明は、第1乃至第6の発明の何れかにおいて、
 前記燃焼圧の相関値は、クランク角速度の測定値であることを特徴とする。
 膨張行程中の噴射がなされた際の燃料のボアフラッシング量や燃焼率は、燃料の着火性指標値および蒸発性指標値の違いによって異なるものとなる。また、燃料の着火性指標値は、燃焼圧への影響が大きく、蒸発性指標値は、排気ガスの空燃比への影響が大きい。第1の発明によれば、燃料の着火性や蒸発性の影響を受け易い燃焼(膨張行程における燃焼)時において、異なる噴射時期での燃焼圧と空燃比とに基づいて、燃料性状が判定されることにより、燃料の着火性指標値と蒸発性指標値とを個別に精度良く判定することが可能となる。
 燃焼圧またはその相関値の変化情報である第1判定情報は、燃料の着火性指標値の影響を大きく反映しており、また、排気ガスの空燃比の変化情報である第2判定情報は、燃料の蒸発性指標値の影響を大きく反映している。第2の発明によれば、このような第1判定指標と第2判定指標との間で、燃料の着火性指標値と燃料の蒸発性指標値とを定めた判定基礎情報を用いた判定を行うことで、燃料の着火性指標値と蒸発性指標値とを個別に精度良く判定することができる。
 第3の発明によれば、第1判定指標が大きくなるほど、着火性指標値がより低い着火性を示す値となり、かつ、第2判定指標が大きくなるほど、蒸発性指標値がより低い蒸発性を示す値となるように設定された判定基礎情報を用いて、着火性指標値と蒸発性指標値とを個別に精度良く判定することができる。
 第4の発明によれば、ボアフラッシング量を抑制しつつ、燃料性状の判定精度確保のために必要とされる判定指標(第1判定指標や第2判定指標)の大きさを十分に確保することが可能となる。
 第1アフター噴射時期での燃料噴射に伴う燃焼時の空燃比がリーンである場合には、ボアフラッシングし易い燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴って空燃比の変化量が大きくなるものと判断できる。第5の発明によれば、このような場合には、第1アフター噴射時期に対する第2アフター噴射時期の遅角量が小さくされる。これにより、第2アフター噴射時期が無駄に遅角化されるのを防ぐことにより、ボアフラッシング量を抑制しつつ、燃料性状の判定精度確保のために必要とされる第2判定情報の大きさを十分に確保することができる。
 第1アフター噴射時期での燃料噴射に伴う燃焼時の燃焼圧またはその相関値が小さい場合には、ボアフラッシングし易い燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴って燃焼圧またはその相関値の変化量が大きくなるものと判断できる。第6の発明によれば、このような場合には、第1アフター噴射時期に対する第2アフター噴射時期の遅角量が小さくされる。これにより、第2アフター噴射時期が無駄に遅角化されるのを防ぐことにより、ボアフラッシング量を抑制しつつ、燃料性状の判定精度確保のために必要とされる第1判定情報の大きさを十分に確保することができる。
 第7の発明によれば、クランク角速度の測定値に基づいて、燃焼圧の相関値を良好に取得することが可能となる。
本発明の実施の形態1のシステム構成を説明するための図である。 図1に示す内燃機関において行われる燃料噴射および燃焼の形態、並びに燃料噴射弁の噴射角の設定を説明するための図である。 燃料性状の違いが、アフター噴射時期の変更に伴う排気ガスの空燃比の変化およびクランク角速度の変化のそれぞれに与える影響を説明するための図である。 空燃比の変化量(ΔA/F)とクランク角速度の変化量(Δクランク角速度)との間で、セタン価(CN)と蒸留性状(T90)とを定めた判定基礎情報を示す図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 本発明の実施の形態2において実行されるルーチンのフローチャートである。 図6に示すルーチン中で参照されるマップの傾向を表した図である。 本発明の実施の形態2の変形例において参照されるマップの傾向を表した図である。
符号の説明
10 内燃機関
12 燃料噴射弁
14 コモンレール
16 サプライポンプ
18 吸気通路
32 排気通路
38 空燃比センサ
40 ECU(Electronic Control Unit)
44 クランク角センサ
46 吸気弁
48 排気弁
50 燃焼室
52 ピストン
52a ピストンのキャビティ
54 シリンダ壁面
実施の形態1.
[システム構成の説明]
 図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10は、4サイクルのディーゼルエンジン(圧縮着火式内燃機関)である。内燃機関10の各気筒には、燃料を筒内に直接噴射する燃料噴射弁12が設置されている。各気筒の燃料噴射弁12は、共通のコモンレール14に接続されている。図示しない燃料タンク内の燃料は、サプライポンプ16によって所定の燃圧まで加圧されて、コモンレール14内に蓄えられ、コモンレール14から各燃料噴射弁12に供給される。
 内燃機関10の吸気通路18の入口付近には、エアクリーナ20が設けられている。エアクリーナ20を通って吸入された空気は、ターボ過給機22のコンプレッサで圧縮された後、インタークーラ24で冷却される。インタークーラ24を通過した吸入空気は、吸気マニホールド26により、各気筒の吸気ポートに分配される。
 インタークーラ24と吸気マニホールド26との間には、吸気絞り弁28が設置されている。また、エアクリーナ20の下流近傍には、吸入空気量を検出するエアフローメータ30が設置されている。
 内燃機関10の排気通路32は、排気マニホールド34により枝分かれして、各気筒の排気ポートに接続されている。また、排気通路32には、ターボ過給機22のタービンが配置されている。排気通路32におけるターボ過給機22の下流側には、排気ガスを浄化するための排気浄化装置36が設けられている。また、排気通路32における排気浄化装置36の上流側の部位には、当該部位を流れる排気ガスの空燃比(A/F)を検出する空燃比センサ38が設置されている。
 また、本実施形態のシステムは、ECU(Electronic Control Unit)40を備えている。ECU40には、上述したセンサに加え、クランク軸42の回転角度(クランク角度)および回転速度(クランク角速度)を検出するためのクランク角センサ44等の内燃機関10の運転状態を検出するための各種のセンサが接続されている。また、ECU40には、上述した各種アクチュエータに加え、内燃機関10の運転状態を制御するための各種のアクチュエータが接続されている。ECU40は、それらのセンサ信号や情報に基づき、所定のプログラムに従って各アクチュエータを駆動させることにより、内燃機関10の運転状態を制御する。
 図2は、図1に示す内燃機関10において行われる燃料噴射および燃焼の形態、並びに燃料噴射弁12の噴射角の設定を説明するための図である。
 図2に示すように、上述した燃料噴射弁12は、吸気弁46と排気弁48とに挟まれる位置において、燃焼室50の中央部位にその先端が突出するように設置されている。また、筒内に配置されたピストン52の頂面には、噴射された燃料を案内するためのキャビティ52aが形成されている。
 内燃機関10のトルクを得るための燃料噴射である主噴射は、図2(A)に示すように、ピストン52が圧縮上死点近傍に位置している際に実行される。燃料噴射弁12の燃料の噴射角およびキャビティ52aの形状は、ピストン52が上死点近傍に位置している際に、主噴射時に噴射された燃料がキャビティ52aに確実に導入されるように設定されている。このような噴射角の設定によれば、図2(C)に示すようにピストン52が上死点を離れて下降している状況下で燃料噴射が行われた場合には、噴射された燃料の一部が露出したシリンダ壁面54に付着し易くなる。
 また、筒内のガスが高温となっている圧縮上死点近傍において、上記主噴射が実行されることで、噴射された燃料が蒸発して空気と混合し、その結果、図2(B)に示すように、主燃焼が行われるようになる。
 また、本実施形態では、排気温度の上昇等を目的としたアフター噴射が実施される。アフター噴射は、図2(C)に示すように、主燃焼後であって排気弁48が開く前の膨張行程中に実施される。主燃焼後の膨張行程では、ピストン52の下降が進むにつれ、筒内の温度、圧力が低下していく。このため、アフター噴射の実行時期が遅角されていくに従って、燃焼が生じにくい条件となっていく。従って、排気温度の上昇等を目的としたアフター噴射は、主燃焼後において燃焼が可能な期間中に実行される。その結果、噴射された燃料が蒸発して空気と混合し、図2(D)に示すように、アフター燃焼が行われるようになる。
[実施の形態1における燃料性状判定手法]
 内燃機関において、燃料性状は、燃焼や触媒に大きな影響を与える。また、合成燃料やバイオ燃料等の使用が拡大すると、使用される燃料のセタン価(燃料の着火し易さを表す着火性指標値)や蒸留性状(燃料の蒸発し易さを表す蒸発性指標値)が広範囲となる。その結果、燃料の性状を正確に判定することが益々重要になってくる。そこで、本実施形態では、上述したアフター噴射が行なわれた際の燃料の蒸発および燃焼が、燃料の蒸留性状およびセタン価の影響を受け易いことを利用して、燃料の蒸留性状およびセタン価を個別に判定する手法について説明を行う。
 アフター噴射が実行された際の燃料のボアフラッシング量および燃焼率は、噴射された燃料の蒸留性状やセタン価によって異なるものとなる。尚、ボアフラッシングとは、筒内に噴射された燃料がシリンダ壁面54に付着している潤滑油を洗い流してしまう現象のことであり、結果として、燃焼に寄与する燃料が減少することになる。尚、ここで示す燃焼率とは、噴射された燃料に対する燃焼に付された燃料の割合を示す値である。
 より具体的には、アフター噴射実行時には、ピストン52が上死点から離れているので、上記図2(C)に示すように、噴射された燃料は、ピストン52の頂面に当たらない角度でシリンダ壁面54に向けて噴射されることになる。この場合において、重質(蒸発性の悪い)燃料が使用されていると、筒内での燃料の蒸発が不足し、燃料が液滴のままでシリンダ壁面54に到達し易くなってしまう。これにより、ボアフラッシング量が多くなり、燃焼率が低くなる。また、軽質(蒸発性の良い)燃料であっても、セタン価の低い燃料が使用されていると、筒内に噴射された燃料が着火しにくいので、燃料が液滴のままでシリンダ壁面54に到達し易くなってしまう。この場合にも、ボアフラッシング量が多くなり、燃焼率が低くなる。このように、重質な燃料が使用されている場合であっても、セタン価の低い燃料が使用されている場合であっても、ボアフラッシング量の増加や燃焼率の低下が生ずることとなる。
 そこで、本実施形態では、比較的燃焼し易い条件下(ボアフラッシングが生じにくい条件下)で第1アフター噴射を実施するとともに、比較的燃焼しにくい条件下(ボアフラッシングが生じ易い条件下)で第2アフター噴射を実施するようにした。そして、第1アフター噴射の実行に伴う燃焼時の排気ガスの空燃比に対する、第2アフター噴射の実行に伴う燃焼時の排気ガスの空燃比の変化量(差)と、第1アフター噴射の実行に伴う燃焼時のクランク角速度に対する、第2アフター噴射の実行に伴う燃焼時のクランク角速度の変化量(差)とに基づいて、内燃機関10の運転に現在使用されている燃料のセタン価と蒸留性状を判定するようにした。尚、燃焼圧が高くなると、クランク角速度も高くなる。従って、ここでは、燃焼圧の相関値として、クランク角速度を使用するようにしている。
 図3は、燃料性状の違いが、アフター噴射時期の変更に伴う排気ガスの空燃比の変化およびクランク角速度の変化のそれぞれに与える影響を説明するための図である。より具体的には、図3(A)は、排気ガスの空燃比とアフター噴射時期との関係を示し、図3(B)は、クランク角速度とアフター噴射時期との関係を示している。尚、白丸印(○)で表された燃料は、セタン価CNが60であって蒸留性状がT90(90%留出温度)=250℃である高セタン価かつ軽質な燃料を示している。また、白三角印(△)で表された燃料は、セタン価CNが40であって蒸留性状がT90(90%留出温度)=250℃である低セタン価かつ軽質な燃料を示している。また、黒丸印(●)で表された燃料は、セタン価CNが60であって蒸留性状がT90(90%留出温度)=350℃である高セタン価かつ重質な燃料を示している。また、黒三角印(▲)で表された燃料は、セタン価CNが40であって蒸留性状がT90(90%留出温度)=350℃である低セタン価かつ重質な燃料を示している。
 既述したように、主燃焼後の膨張行程では、ピストン52の下降が進むにつれ、筒内の温度、圧力が低下していくので、アフター噴射の実行時期が遅角されていくに従って、燃焼がしにくい条件となっていく。従って、図3に示すように、上記第1アフター噴射の実施時期には、主燃焼に近い進角側の時期T1が相当し、上記第2アフター噴射の実施時期には、当該第1アフター噴射時期T1よりも遅角側の時期T2が相当することになる。
 図3(A)に示すように、第1アフター噴射時期T1における排気ガスの空燃比の測定結果より、高セタン価かつ軽質な燃料(○)の使用時には、シリンダ壁面54に付着して筒内に残留する燃料量が少なくなるので、アフター噴射の実施に伴って排気ガスの空燃比が最もリッチな値を示していることが判る。また、この第1アフター噴射時期T1における空燃比の測定結果より、白丸印(○)に対してセタン価が低い燃料(△)および重質な燃料(●)の方が、ボアフラッシングの影響で、排気ガスの空燃比がリーン化することが判る。更に、セタン価が低くかつ重質な燃料(▲)の場合には、そのようなリーン化がより顕著であることが判る。
 また、図3(A)において、第1アフター噴射時期T1と第2アフター噴射時期T2での空燃比の測定結果を比べると、燃焼がしにくい第2アフター噴射時期T2での測定結果の方がセタン価や蒸発性の影響をより受けて、性状の違いによる変化が大きいことが判る。より具体的には、高セタン価かつ軽質な燃料(○)の場合には、アフター噴射時期の遅角化の影響を受けにくく、これに対し、セタン価の低い燃料や蒸発性の悪い燃料の方がアフター噴射時期の遅角化の影響をより受けているのが判る。そのうえで、図3(A)より、アフター噴射時期の遅角化が排気ガスの空燃比に与える影響としては、セタン価の高低(すなわち、着火性の良し悪し)よりも軽質であるか重質であるか(すなわち、蒸発性の良し悪し)の方が大きいことが判る。
 一方、図3(B)に示すように、第1アフター噴射時期T1におけるクランク角速度の測定結果より、白丸印(○)で表された高セタン価かつ軽質な燃料の使用時には、他の性状燃料の使用時よりも燃焼が良好となることで、アフター燃焼時のクランク角速度(すなわち、クランク角度の変化率)が最も高くなることが判る。また、この第1アフター噴射時期T1におけるクランク角速度の測定結果より、白丸印(○)に対してセタン価が低い燃料(△)および重質な燃料(●)の方が、燃焼率の低下の影響で、アフター燃焼時のクランク角速度が低くなることが判る。更に、セタン価が低くかつ重質な燃料(▲)の場合には、そのようなクランク角速度の低下がより顕著であることが判る。
 更に、図3(B)において、第1アフター噴射時期T1と第2アフター噴射時期T2でのクランク角速度の測定結果を比べると、排気ガスの空燃比の場合と同様に、燃焼がしにくい第2アフター噴射時期T2での測定結果の方がセタン価や蒸発性の影響をより受けて、性状の違いによる変化が大きいことが判る。より具体的には、高セタン価かつ軽質な燃料(○)の場合には、アフター噴射時期の遅角化の影響を受けにくく、セタン価の低い燃料や蒸発性の悪い燃料の方がアフター噴射時期の遅角化の影響をより受けているのが判る。そのうえで、図3(B)より、アフター噴射時期の遅角化がアフター噴射時のクランク角速度に与える影響としては、軽質であるか重質であるか(すなわち、蒸発性の良し悪し)よりもセタン価の高低(すなわち、着火性の良し悪し)の方が大きいことが判る。
 図4は、空燃比の変化量(ΔA/F)とクランク角速度の変化量(Δクランク角速度)との間で、セタン価(CN)と蒸留性状(T90)とを定めた判定基礎情報を示す図である。より具体的には、図4に示す判定基礎情報では、空燃比の変化量(ΔA/F)が大きくなるほど、T90下での蒸留温度が高くなり、かつ、クランク角速度の変化量(Δクランク角速度)が大きくなるほど、セタン価が低くなるように設定されている。
 上記図3のように得られた第1アフター噴射時期T1における空燃比と第2アフター噴射時期T2における空燃比との変化量であるΔA/Fと、第1アフター噴射時期T1におけるクランク角速度と第2アフター噴射時期T2におけるクランク角速度との変化量であるΔクランク角度とを、上記4つの性状の燃料のそれぞれについて算出してまとめると、図4に示すような関係を得ることができる。
 本実施形態では、図4に示すような関係、すなわち、空燃比の変化量(ΔA/F)とクランク角速度の変化量(Δクランク角速度)との間で、セタン価(CN)と蒸留性状(T90)とを定めた関係を事前に取得するようにしている。そして、得られた関係を燃料性状の判定基礎情報としてマップ化し、ECU40に予め記憶しておくようにしている。そして、実機上において、空燃比の変化量(ΔA/F)とクランク角速度の変化量(Δクランク角速度)とをそれぞれ算出したうえで、両者を上記判定基礎情報と比較することで、現在の使用燃料のセタン価および蒸留性状を同時かつ個別に判定するようにしている。
 図5は、上記の機能を実現するために、本実施の形態1においてECU40が実行するルーチンのフローチャートである。
 図5に示すルーチンでは、先ず、燃料性状判定が必要であるか否かが判別される(ステップ100)。具体的には、本ステップ100では、燃料性状判定の要否判定の一例として、給油がされたか否かが判別される。給油がなされた場合には、燃料タンク内の燃料の性状に変化が生ずる可能性がある。そこで、本ステップ100では、給油がされた場合に、燃料性状判定が必要であると判定するようにしている。尚、給油の有無の判定は、例えば、液面センサ(図示省略)の出力に基づいて燃料タンク内の燃料の液面高さを検出することで行うことができる。
 上記ステップ100において、燃料性状判定が必要であると判定された場合には、内燃機関10の暖機が完了しているか否かが、エンジン冷却水温度を検出する水温センサ(図示省略)の出力に基づいて判別される(ステップ102)。その結果、内燃機関10の暖機が完了している場合には、以下に示す燃料性状判定処理が開始される。
 先ず、所定の第1アフター噴射時期条件が成立したか否かが判別される(ステップ104)。第1アフター噴射時期T1は、既述したように、主燃焼後であって排気弁48が開く前の膨張行程中の時期であり、燃焼し易い条件(すなわち、ボアフラッシングがしにくい条件)を得るべく比較的主燃焼の実施時期の近くに予め設定された時期である。上記第1アフター噴射時期条件が成立したと判定された場合には、第1アフター噴射が実行される(ステップ106)。
 次に、第1アフター噴射時期T1での燃料噴射の実行に伴う燃焼時のクランク角速度(第1クランク角速度)がクランク角センサ44を用いて検出される(ステップ108)。次いで、第1アフター噴射時期T1での燃料噴射の実行に伴う燃焼時の排気ガスの空燃比(第1空燃比)が空燃比センサ38を用いて検出される(ステップ110)。
 次に、上記第1アフター噴射より後であって同一運転条件下における別の燃焼サイクル時に、所定の第2アフター噴射時期条件が成立したか否かが判別される(ステップ112)。第2アフター噴射時期T2は、既述したように、主燃焼後であって排気弁48が開く前の膨張行程中の時期であり、燃焼しにくい条件(すなわち、ボアフラッシングがし易い条件)を得るべく上記第1アフター噴射時期T1よりも遅角側に予め設定された時期である。尚、更に付け加えると、アフター噴射時期T1、T2は、所定の標準燃料(例えば、軽油)の使用時に、燃焼が可能な時期とされている。
 上記ステップ112において、第2アフター噴射時期条件が成立したと判定された場合には、第2アフター噴射が実行される(ステップ114)。次いで、第2アフター噴射時期T2での燃料噴射の実行に伴う燃焼時のクランク角速度(第2クランク角速度)がクランク角センサ44を用いて検出される(ステップ116)。次いで、第2アフター噴射時期T2での燃料噴射の実行に伴う燃焼時の排気ガスの空燃比(第2空燃比)が空燃比センサ38を用いて検出される(ステップ118)。
 次に、第1クランク角速度と第2クランク角速度との変化量(差)であるΔクランク角速度と、第1空燃比と第2空燃比との変化量(差)であるΔA/Fとが算出される(ステップ120)。次いで、燃料性状の判定基礎情報(上記図4に示すような関係)を参照したうえで、現在のΔクランク角速度およびΔA/Fを当該判定基礎情報に当てはめることで、燃料のセタン価および蒸留性状が判定される(ステップ122)。
 以上説明した図5に示すルーチンによれば、2つのアフター噴射時期T1、T2において、それぞれのアフター噴射の実行に伴う燃焼時の空燃比とクランク角速度とが検出される。このような手法とは異なり、上記第1アフター噴射時期T1の1点での空燃比の測定結果だけでは、図3(A)中の白三角印(△)と黒丸印(●)を見て判るように、空燃比のリーン化の要因が、セタン価が低いためであるか重質のせいであるかを判断することができない。また、上記第1アフター噴射時期T1の1点でのクランク角速度の測定結果だけでは、図3(B)中の白三角印(△)と黒丸印(●)を見て判るように、クランク角速度の高低を決める要因が、セタン価が低いためであるか重質のせいであるかを判断することができない。
 これに対し、上記ルーチンの処理のように、2つのアフター噴射時期T1、T2の間で空燃比の変化量ΔA/Fを算出することにより、図3(A)に示す結果から判るように、セタン価よりも燃料の蒸発性の影響がより大きく反映された指標を得ることができるようになる。これにより、ΔA/Fに基づいて、燃料の蒸発性の影響を明確に把握することができるようになる。また、2つのアフター噴射時期T1、T2の間でΔクランク角速度を算出することにより、図3(B)に示す結果から判るように、燃料の蒸発性よりもセタン価の影響がより大きく反映された指標を得ることができるようになる。これにより、Δクランク角速度に基づいて、燃料のセタン価の影響を明確に把握することができるようになる。
 ただし、ΔA/FおよびΔクランク角速度の何れか一方のみを使用する方法では、セタン価や蒸留性状を精度良く特定することが難しくなる。より具体的には、上記図4に示すような判定基礎情報に対してΔA/Fのみを用いただけでは、燃料のセタン価の影響を明確に把握できていないことになるので、ある範囲内の値という低い精度でしか蒸留性状を特定することができない。また、上記図4に示すような判定基礎情報に対してΔクランク角速度のみを用いただけでは、燃料の蒸発性の影響を明確に把握できていないことになるので、ある範囲内の値という低い精度でしかセタン価を特定することができない。これに対し、上記ルーチンの手法では、ΔA/FおよびΔクランク角速度の双方を用いた判定を行っているので、上記判定基礎情報を利用して、セタン価と蒸留性状とを同時かつ個別に精度良く判定(特定)することが可能となる。
 以上説明したように、セタン価(着火性指標値)は、クランク角速度(燃焼圧)への影響が大きく、蒸留性状(蒸発性指標値)は、排気ガスの空燃比への影響が大きい。本実施形態の燃料性状判定手法によれば、燃料の着火性や蒸発性の影響を受け易いアフター燃焼時において、異なる噴射時期T1、T2でのクランク角速度と空燃比を用いて、燃料のセタン価と蒸留性状とを同時かつ個別に精度良く判定することができる。
 ところで、上述した実施の形態1においては、燃料性状の判定のために、主燃焼後の膨張行程中に、第1および第2アフター噴射を実行するようにしている。しかしながら、本発明における第1噴射時期は、上記第1アフター噴射時期T1に限られるものではない。すなわち、主燃焼のための燃料噴射が圧縮上死点より後の噴射時期で行われる場合には、第1噴射時期は、主燃焼のための当該噴射時期であってもよい。また、それに伴い、本発明における第2噴射時期は、上記第2アフター噴射時期T2ではなく、圧縮上死点より後の主燃焼のための上記噴射時期よりも後の膨張行程中に行われるアフター噴射時期であってもよい。
 また、上述した実施の形態1においては、クランク角センサ44によって検出されるクランク角速度を用いて、アフター燃焼時の燃焼圧の相関値を取得するようにしている。しかしながら、本発明における燃焼圧またはその相関値の取得手法は、これに限定されるものではなく、例えば、内燃機関10の筒内圧を検出するための筒内圧センサを備えるようにしておき、アフター燃焼時の燃焼圧を取得するようにしてもよい。
 また、上述した実施の形態1においては、第1アフター噴射時期T1および第2アフター噴射時期T2の2点において、燃料性状の判定のためのアフター噴射を実施するようにしている。しかしながら、本発明における第2アフター噴射時期は、上記時期T2のように1点である例に限定されるものではない。例えば、次のような手法であってもよい。すなわち、ボアフラッシング量の抑制を考慮して、第1アフター噴射時期に対する遅角量が比較的小さい第2アフター噴射時期を先ず設定しておく。そして、このような第2アフター噴射時期では性状判定の精度を十分に確保するために必要な大きさのΔA/FやΔクランク角速度が得られないような場合に、第2アフター噴射時期を更に遅角させたうえで、3点目となるアフター噴射を実施するようにしてもよい。
 また、上述した実施の形態1においては、蒸発性指標値として、蒸留性状(T90)を用いるようにしている。しかしながら、本発明における蒸発性指標値は、このような蒸留性状に限らず、例えば、燃料の動粘度であってもよい。燃料の動粘度が低くなると、燃料が微粒化し易くなるので、燃料の蒸発性が良くなる。このため、動粘度を蒸発性指標値として用いてもよい。
 また、上述した実施の形態1においては、燃料性状の判定のために、第1空燃比と第2空燃比との変化量(差)であるΔA/Fや、第1クランク角速度と第2クランク角速度との変化量(差)であるΔクランク角速度を算出するようにしている。しかしながら、本発明における第1および第2判定指標となるそれぞれの変化情報は、これに限定されるものではなく、例えば、第1空燃比と第2空燃比との変化率(比)や、第1クランク角速度と第2クランク角速度との変化率(比)であってもよい。
 尚、上述した実施の形態1においては、ECU40が、上記ステップ106の処理を実行することにより前記第1の発明における「第1噴射実行手段」が、上記ステップ114の処理を実行することにより前記第1の発明における「第2噴射実行手段」が、上記ステップ108および116を実行することにより前記第1の発明における「燃焼圧取得手段」が、上記ステップ110および118の処理を実行することにより前記第1の発明における「空燃比取得手段」が、上記ステップ120および122の処理を実行することにより前記第1の発明における「燃料性状判定手段」が、それぞれ実現されている。また、第1アフター噴射時期T1および第2アフター噴射時期が前記第1の発明における「第1噴射時期」および「第2噴射時期」に、それぞれ相当している。
 また、上述した実施の形態1においては、Δクランク角速度が前記第2の発明における「第1判定指標」に、ΔA/Fが前記第2の発明における「第2判定指標」に、それぞれ相当している。また、ECU40が、上記ステップ120の処理を実行することにより前記第2の発明における「第1判定指標算出手段」および「第2判定指標算出手段」が、上記ステップ122の処理を実行することにより前記第2の発明における「判定基礎情報取得手段」および「判定実行手段」が、それぞれ実現されている。
実施の形態2.
 次に、図6乃至図8を参照して、本発明の実施の形態2について説明する。
 本実施形態のシステムは、図1に示すハードウェア構成を用いて、ECU40に図5に示すルーチンに代えて後述する図6に示すルーチンを実行させることにより実現することができるものである。
[実施の形態2の特徴部分]
 上述した実施の形態1においては、予め設定されたアフター噴射時期T1、T2において、アフター噴射を実行するようにしている。これに対し、本実施形態のシステムは、予め設定された第1アフター噴射時期T1における第1アフター噴射時の排気ガスの空燃比の値(第1空燃比)に基づいて、第2アフター噴射時期T2を設定するという点に特徴を有している。
 図6は、上記の機能を実現するために、本実施の形態2においてECU40が実行するルーチンのフローチャートである。尚、図4において、実施の形態1における図2に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図6に示すルーチンでは、上記ステップ110において、第1アフター噴射の実行に伴う燃焼時の排気ガスの空燃比(第1空燃比)が検出された後には、次いで、この第1空燃比に基づいて、第2アフター噴射時期T2が設定される(ステップ200)。
 具体的には、ECU40には、上記第1空燃比との関係で第2アフター噴射時期T2を定めたマップが記憶されている。図7は、そのようなマップの傾向を表した図である。すなわち、図7では、第2アフター噴射時期T2は、第1空燃比の値がよりリーンな値であるほど、第1アフター噴射時期T1に対する遅角量が小さくなるように設定されている。本ステップ200では、このようなマップが参照され、第1空燃比に基づいて、第2アフター噴射時期T2が決定される。
 次に、上記第1アフター噴射実行後であって同一運転条件下における別のサイクル時に、上記ステップ200において設定された第2アフター噴射時期条件が成立した場合には(ステップ112)には、第2アフター噴射が実行され(ステップ114)、第2空燃比および第2クランク角速度がそれぞれ検出される(ステップ116および118)。
 次に、Δクランク角速度とΔA/Fとが算出された後には(ステップ120)、上記ステップ200において設定された第2アフター噴射時期T2に対応した燃料性状の判定基礎情報(上記図4に示すような関係)が参照されたうえで、現在のΔクランク角速度およびΔA/Fに基づいて、燃料のセタン価および蒸留性状が判定される(ステップ202)。尚、本ルーチンでは、第2アフター噴射時期T2が第1アフター噴射時期T1に応じて可変されるため、上記判定基礎情報は、変更の対象となる第2アフター噴射時期T2毎に、複数のマップとして備えられている。
 以上説明した図6に示すルーチンによれば、第1アフター噴射の実行に伴う燃焼時の空燃比(第1空燃比)に基づいて、第2アフター噴射時期T2が設定される。第1空燃比の値が所定の標準燃料の使用時に比べてリーンである場合には、ボアフラッシングし易い燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴って空燃比の変化量ΔA/Fが大きくなるものと判断できる。上記ルーチンの処理によれば、このような場合には、第1アフター噴射時期T1に対する第2アフター噴射時期T2の遅角量が小さくされる。これにより、第2アフター噴射時期T2が無駄に遅角化されるのを防ぐことにより、ボアフラッシング量を抑制しつつ、燃料性状の判定精度確保のために必要とされるΔA/Fの大きさを十分に確保することができる。
 また、第1空燃比の値が所定の標準燃料の使用時に比べてリッチである場合には、ボアフラッシングしにくい燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴って空燃比の変化量ΔA/Fが小さくなるものと判断できる。上記ルーチンの処理によれば、このような場合には、第1アフター噴射時期T1に対する第2アフター噴射時期T2の遅角量が大きくされる。これにより、燃料性状の判定精度確保のために必要とされるΔA/Fの大きさを十分に確保することができる。尚、このような場合には、ボアフラッシングが比較的しにくいので、第1空燃比の値がリーンである場合と比べ、第2アフター噴射時期T2の遅角量を大きくしてもボアフラッシング量の増加に対する懸念が少ないといえる。
 ところで、上述した実施の形態2においては、第1アフター噴射の実行に伴う燃焼時の排気ガスの空燃比(第1空燃比)に基づいて、第2アフター噴射時期T2を設定している。しかしながら、本発明は、このような手法に限定されるものではなく、上記第1空燃比に代え、第1アフター噴射の実行に伴う燃焼時のクランク角速度(第1クランク角速度)に基づいて、第2アフター噴射時期T2を設定してもよい。このような手法は、ECU40に上記図6に示すルーチンと類似するルーチンの処理を実行させることで実現することができる。
 より具体的には、上記ステップ200と類似するステップにおいて、以下の図8に示すような傾向を表したマップに従って、第1クランク角速度に基づいて、第2アフター噴射時期T2を設定する処理を行うようにする。図8では、第2アフター噴射時期T2は、第1クランク角速度の値がより低いほど、第1アフター噴射時期T1に対する遅角量が小さくなるように設定されている。
 第1クランク角速度の値が所定の標準燃料の使用時に比べて低いような場合には、ボアフラッシングし易い燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴ってクランク角速度の変化量Δクランク角速度が大きくなるものと判断できる。上記図8に示すマップの傾向によれば、このような場合には、第1アフター噴射時期T1に対する第2アフター噴射時期T2の遅角量が小さくされる。これにより、第2アフター噴射時期T2が無駄に遅角化されるのを防ぐことにより、ボアフラッシング量を抑制しつつ、燃料性状の判定精度確保のために必要とされるΔクランク角速度の大きさを十分に確保することができる。
 また、第1クランク角速度の値が所定の標準燃料の使用時に比べて高いような場合には、燃焼率が高く、ボアフラッシングしにくい燃料が使用されていると判断できる。従って、アフター噴射時期の遅角化に伴ってクランク角速度の変化量Δクランク角速度が小さくなるものと判断できる。上記図8に示すマップの傾向によれば、このような場合には、第1アフター噴射時期T1に対する第2アフター噴射時期T2の遅角量が大きくされる。これにより、燃料性状の判定精度確保のために必要とされるΔクランク角速度の大きさを十分に確保することができる。尚、このような場合には、ボアフラッシングが比較的しにくいので、第1クランク角速度の値が低い場合と比べ、第2アフター噴射時期T2の遅角量を大きくしてもボアフラッシング量の増加に対する懸念が少ないといえる。
 尚、上述した実施の形態2においては、ECU40が上記ステップ200の処理を実行することにより前記第4の発明における「第2アフター噴射時期設定手段」が実現されている。

Claims (7)

  1.  燃料を筒内に噴射する燃料噴射弁と、
     膨張行程中の第1噴射時期において、前記燃料噴射弁を用いた燃料噴射を実行する第1噴射実行手段と、
     前記第1噴射時期よりも遅角された噴射時期であって膨張行程中の少なくとも1つの第2噴射時期において、前記第1噴射時期での燃料噴射とは異なる燃焼サイクル時に前記燃料噴射弁を用いた燃料噴射を実行する第2噴射実行手段と、
     燃焼圧またはその相関値を検出または推定する燃焼圧取得手段と、
     排気ガスの空燃比を取得する空燃比取得手段と、
     前記第1噴射時期および前記第2噴射時期での燃料噴射に伴うそれぞれの燃焼時の燃焼圧またはその相関値と、前記第1噴射時期および前記第2噴射時期での燃料噴射に伴うそれぞれの燃焼時の排気ガスの空燃比とに基づいて、燃料性状を判定する燃料性状判定手段と、
     を備えることを特徴とする内燃機関の燃料性状判定装置。
  2.  前記燃料性状判定手段は、
     前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値の変化情報を、第1判定指標として算出する第1判定指標算出手段と、
     前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記空燃比の変化情報を、第2判定指標として算出する第2判定指標算出手段と、
     前記第1判定指標と前記第2判定指標との間で、燃料の着火性指標値と燃料の蒸発性指標値とを定めた判定基礎情報を取得する判定基礎情報取得手段と、
     前記第1判定指標、前記第2判定指標、および前記判定基礎情報とに従って、前記着火性指標値と前記蒸発性指標値とを判定する判定実行手段と、
     を含むことを特徴とする請求項1記載の内燃機関の燃料性状判定装置。
  3.  前記第1判定指標は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値の変化量であって、
     前記第2判定指標は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比に対する、前記第2噴射時期での燃料噴射に伴う燃焼時の前記空燃比の変化量であって、
     前記判定基礎情報は、前記第1判定指標が大きくなるほど、前記着火性指標値がより低い着火性を示す値となり、かつ、前記第2判定指標が大きくなるほど、前記蒸発性指標値がより低い蒸発性を示す値となるように設定されていることを特徴とする請求項2記載の内燃機関の燃料性状判定装置。
  4.  前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値、および前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比のうちの少なくとも一方に基づいて、前記第2噴射時期を設定する第2噴射時期設定手段を更に備えることを特徴とする請求項1乃至3の何れか1項記載の内燃機関の燃料性状判定装置。
  5.  前記第2噴射時期設定手段は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記空燃比がよりリーンな値であるほど、前記第1噴射時期に対する前記第2噴射時期の遅角量を小さくすることを特徴とする請求項4記載の内燃機関の燃料性状判定装置。
  6.  前記第2噴射時期設定手段は、前記第1噴射時期での燃料噴射に伴う燃焼時の前記燃焼圧またはその相関値が小さいほど、前記第1噴射時期に対する前記第2噴射時期の遅角量を小さくすることを特徴とする請求項4記載の内燃機関の燃料性状判定装置。
  7.  前記燃焼圧の相関値は、クランク角速度の測定値であることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の燃料性状判定装置。
PCT/JP2009/053201 2009-02-23 2009-02-23 内燃機関の燃料性状判定装置 WO2010095262A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/053201 WO2010095262A1 (ja) 2009-02-23 2009-02-23 内燃機関の燃料性状判定装置
JP2010503158A JP4844690B2 (ja) 2009-02-23 2009-02-23 内燃機関の燃料性状判定装置
CN200980100155XA CN101903631B (zh) 2009-02-23 2009-02-23 内燃机的燃料性状判定装置
US12/678,075 US8256281B2 (en) 2009-02-23 2009-02-23 Fuel property determination apparatus for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/053201 WO2010095262A1 (ja) 2009-02-23 2009-02-23 内燃機関の燃料性状判定装置

Publications (1)

Publication Number Publication Date
WO2010095262A1 true WO2010095262A1 (ja) 2010-08-26

Family

ID=42633562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053201 WO2010095262A1 (ja) 2009-02-23 2009-02-23 内燃機関の燃料性状判定装置

Country Status (4)

Country Link
US (1) US8256281B2 (ja)
JP (1) JP4844690B2 (ja)
CN (1) CN101903631B (ja)
WO (1) WO2010095262A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8621843B2 (en) * 2009-10-30 2014-01-07 Bp Corporation North America Inc. Composition and method for reducing NOx emissions from diesel engines at minimum fuel consumption
US8813690B2 (en) * 2009-10-30 2014-08-26 Cummins Inc. Engine control techniques to account for fuel effects
JP5327026B2 (ja) * 2009-12-04 2013-10-30 トヨタ自動車株式会社 内燃機関の燃料性状判定装置
JP5328757B2 (ja) * 2010-12-17 2013-10-30 本田技研工業株式会社 エンジン制御装置
ITBO20110122A1 (it) * 2011-03-15 2012-09-16 Magneti Marelli Spa Metodo di riconoscimento di almeno una caratteristica del carburante in un motore a combustione interna
DE102013206552A1 (de) * 2013-04-12 2014-10-16 Robert Bosch Gmbh Verfahren zur Identifikation von Kraftstoffgemischen
GB2544788A (en) * 2015-11-27 2017-05-31 Gm Global Tech Operations Llc Method of operating a fuel injector of an internal combustion engine of a motor vehicle
JP6340633B2 (ja) * 2016-08-26 2018-06-13 マツダ株式会社 エンジンの燃料性状判定装置および燃焼制御装置
KR20210006629A (ko) * 2019-07-09 2021-01-19 현대자동차주식회사 인젝터의 연료분사량 편차 보상방법 및 시스템

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044513A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp 内燃機関の燃料供給装置
JP2004239229A (ja) * 2003-02-10 2004-08-26 Nissan Motor Co Ltd 内燃機関の燃料性状判定装置
JP2005344557A (ja) * 2004-06-01 2005-12-15 Toyota Motor Corp 内燃機関の燃料セタン価測定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622446B2 (ja) 1997-09-30 2005-02-23 日産自動車株式会社 ディーゼルエンジンの燃焼制御装置
JP2004239230A (ja) * 2003-02-10 2004-08-26 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4464876B2 (ja) * 2005-07-01 2010-05-19 日立オートモティブシステムズ株式会社 エンジンの制御装置
JP2007231898A (ja) * 2006-03-03 2007-09-13 Nissan Motor Co Ltd エンジン使用燃料のセタン価検出装置
JP4611273B2 (ja) * 2006-10-31 2011-01-12 本田技研工業株式会社 内燃機関の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004044513A (ja) * 2002-07-12 2004-02-12 Toyota Motor Corp 内燃機関の燃料供給装置
JP2004239229A (ja) * 2003-02-10 2004-08-26 Nissan Motor Co Ltd 内燃機関の燃料性状判定装置
JP2005344557A (ja) * 2004-06-01 2005-12-15 Toyota Motor Corp 内燃機関の燃料セタン価測定方法

Also Published As

Publication number Publication date
JP4844690B2 (ja) 2011-12-28
CN101903631A (zh) 2010-12-01
US20110214495A1 (en) 2011-09-08
US8256281B2 (en) 2012-09-04
CN101903631B (zh) 2013-05-08
JPWO2010095262A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP4844690B2 (ja) 内燃機関の燃料性状判定装置
JP5327026B2 (ja) 内燃機関の燃料性状判定装置
JP4158577B2 (ja) エンジンの燃焼制御装置
US8042517B2 (en) Fuel property detector for internal combustion engine
US6941929B2 (en) Combustion control system for internal combustion engine
US8423267B2 (en) Cetane number detection device and cetane number detection method
US8150596B2 (en) Fuel ignition quality detection
JP2006226188A (ja) ディーゼルエンジンの燃料性状検出装置
US11333092B2 (en) Control device and control method for internal combustion engine
WO2008111689A1 (ja) 内燃機関の制御装置および制御方法
JP2007231883A (ja) 内燃機関の空燃比制御装置
JP4605060B2 (ja) 内燃機関の制御装置
US10273888B2 (en) GDCI transient EGR error compensation
JP2012132411A (ja) 内燃機関の制御装置
JP5556970B2 (ja) 内燃機関のセタン価判定装置
JP3847052B2 (ja) 内燃機関の燃料噴射制御装置
JP2014074337A (ja) 内燃機関の制御装置
JP2010019115A (ja) ディーゼル機関の燃料のアンチノック性指標値検出装置
EP2778378B1 (en) Fuel property determination device for internal combustion engine
JP2003097328A (ja) 内燃機関の燃料噴射制御装置
JP2008151029A (ja) 内燃機関の燃料噴射制御装置および方法
JP2013142305A (ja) 内燃機関の制御装置
Almkvist et al. Fuel Injection System for a High Speed One Cylinder SI Engine
Takahashi et al. Quantitative analysis of intake port and cylinder wall-wet during cold start of port fuel injection engine
JP2012112314A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980100155.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010503158

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12678075

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840368

Country of ref document: EP

Kind code of ref document: A1